July 4, 2022

DIFFERENTIAL GEOMETRY 88-826 HOMEWORK SET 5

Due Date: 22 june '22

1. Let r > 0 and let D be the unbounded region

$$D = \{ (x, y) \in \mathbb{R}^2 \colon x^2 + y^2 \ge r^2 \}$$

endowed with the standard orientation $dx \wedge dy$. Determine the induced orientation on ∂D and compare it to $d\theta$.

2. Let M be a 6-dimensional manifold with $b_2(M) = 1$, with an integer de Rham class $\omega \in L^2_{dR}(M)$ such that $\omega^{\cup 3}$ is the fundamental cohomology class of M. Prove that every Riemannian metric g on M satisfies the stable systolic inequality $stsys_2(g)^3 \leq 6vol(g)$.

3. Let M be the Cartesian product of the manifolds \mathbb{CP}^1 , \mathbb{CP}^2 , ..., \mathbb{CP}^n . Prove that all metrics g of unit volume (i.e., volume 1) on M satisfy $\mathrm{stsys}_2(g) \leq C_n$ for a suitable constant C_n independent of the metric.

4. Determine which of the following 8-dimensional manifolds satisfy a stable systolic inequality for $stsys_2$ with a constant independent of the metric:

(1) $S^2 \times S^8$; (2) $S^2 \times \mathbb{CP}^3$; (3) $S^2 \times S^2 \times S^4$; (4) $S^2 \times S^2 \times \mathbb{CP}^2$; (5) $\mathbb{CP}^2 \times S^4$.