April 2, 2019

Differential geometry 88-826 homework set 4

- 1. Recall that the *n*-th exterior power $\Lambda^n(\mathbb{R}^n)$ of \mathbb{R}^n is spanned by the single element $\omega = e_1 \wedge e_2 \wedge \cdots \wedge e_n$.
 - (a) Consider the 2-multivector $\alpha = e_1 \wedge e_2 + e_3 \wedge e_4 \in \Lambda^2(\mathbb{R}^4)$. Express the product $\alpha \wedge \alpha$ explicitly as a multiple of of $\omega \in \mathbb{R}^4$.
 - (b) Consider the 2-multivector $\alpha = e_1 \wedge e_2 + e_3 \wedge e_4 + e_5 \wedge e_6$ in $\Lambda^2(\mathbb{R}^6)$. Express the product $\alpha \wedge \alpha \wedge \alpha$ explicitly as a multiple of $\omega \in \mathbb{R}^6$.
- 2. Consider the 2-form $\alpha = f(u^1, \dots, u^n)du \wedge dv$, where du and dv are among the coordinate forms du^i . Prove that the 4-form $dd\alpha$ identically vanishes.
- 3. Consider the Eisenstein lattice $L_E \subseteq \mathbb{C}$ spanned by the cube roots of unity. Prove that $\lambda_1(L_E^*)\lambda_1(L_E) = \frac{2}{\sqrt{3}}$.