May 13, 2020
Differential geometry $\quad 88-826$ HOMEWORK SET 4

1. Recall that the n-th exterior power $\Lambda^{n}\left(\mathbb{R}^{n}\right)$ of \mathbb{R}^{n} is spanned by the single element $\omega=e_{1} \wedge e_{2} \wedge \cdots \wedge e_{n}$.
(a) Consider the 2-multivector $\alpha=e_{1} \wedge e_{2}+e_{3} \wedge e_{4} \in \Lambda^{2}\left(\mathbb{R}^{4}\right)$. Express the product $\alpha \wedge \alpha$ explicitly as a multiple of of $\omega \in \mathbb{R}^{4}$.
(b) Consider the 2-multivector $\alpha=e_{1} \wedge e_{2}+e_{3} \wedge e_{4}+e_{5} \wedge e_{6}$ in $\Lambda^{2}\left(\mathbb{R}^{6}\right)$. Express the product $\alpha \wedge \alpha \wedge \alpha$ explicitly as a multiple of $\omega \in \mathbb{R}^{6}$.
2. Consider the differential 2-form $\eta=f\left(u^{1}, \ldots, u^{n}\right) d u \wedge d v$, where $d u$ and $d v$ are among the coordinate forms $d u^{i}$. Prove that the 4 -form $d d \eta$ identically vanishes.
3. Consider the Eisenstein lattice $L_{E} \subseteq \mathbb{C}$ spanned by the cube roots of unity. Prove that $\lambda_{1}\left(L_{E}^{*}\right) \lambda_{1}\left(L_{E}\right)=\frac{\overline{2}}{\sqrt{3}}$.
