February 22, 2011 Differential geometry 88-826 Homework 1

1. The area of a region $D \subset \mathbb{R}^{2}$ in polar coordinates is calculated using the area element $d A=r d r d \theta$. Thus, an integral is of the form $\int_{D} d A=\iint r d r d \theta$. Find the area of the following regions:
(a) $0 \leq r \leq 3 ;-\pi / 2 \leq \theta \leq \pi / 2$;
(b) $2 \leq r \leq 4 ; 0 \leq \theta \leq \pi / 4$;
(c) $0 \leq \theta \leq \pi ; ~ 0 \leq r \leq \theta$.
2. The volume of an open region $D \subset \mathbb{R}^{3}$ is calculated with respect to spherical coordinates (r, θ, z) using the volume element $d V=r d r d \theta d z$. Namely, an integral is of the form $\int_{D} d V=\iiint r d r d \theta d z$.
(a) Find the volume of a right circular cone with height h and base a circle of radius b.
(b) evaluate the integral $\iiint_{E} \sqrt{x^{2}+y^{2}} z d V$ where E is the cylinder $x^{2}+y^{2} \leq 1,0 \leq z \leq 2$.
(c) Find the volume of the object filling the region above the paraboloid $z=x^{2}+y^{2}$ and below the plane $z=1$.
3. Spherical coordinates (ρ, θ, ϕ) range between the bounds $0 \leq \rho$, $0 \leq \theta \leq 2 \pi$, and $0 \leq \phi \leq \pi$ (note the different upper bounds for θ and ϕ). The area of a spherical region D is calculated using a volume element of the form $d V=\rho^{2} \sin \phi d \rho d \theta d \phi$, so that the volume of a region D is $\int_{D} d V=\iiint_{D} \rho^{2} \sin \phi d \rho d \theta d \phi$.
(1) Find the volume of the region above the cone $\phi=\beta$ and inside the sphere of radius $\rho=c$.
(2) Find the integral $\iiint_{E} x^{2}+y^{2}+z^{2} d V$, where E is the sphere $x^{2}+y^{2}+z^{2}=b^{2}$.
(3) Find the integral $\iiint \frac{1}{x^{2}+y^{2}+z^{2}} d V$, where E is the region between two spheres: $a \leq \rho \leq b$.
4. Let $\delta^{i}{ }_{j}$ be the Kronecker delta function on \mathbb{R}^{n}, where $i, j=1, \ldots, n$, viewed as a linear transformation $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. Evaluate the expression

$$
\delta^{i}{ }_{j} \delta^{j}{ }_{k} \delta_{i}^{k} .
$$

