March 1, 2020
Differential geometry 88-826-01 homework set 1

1. Consider the plane \mathbb{R}^{2} with standard basis $\left(e_{1}, e_{2}\right)$. Consider the unit circle $S^{1} \subseteq \mathbb{R}^{2}$. In Section 1.5 of the lecture notes (see http://u.math. biu.ac.il/~katzmik/88-826.html) we constructed an atlas for the manifold S^{1} consisting of four coordinate neighborhoods, and specified the transition functions. This exercise seeks to use the stereographic projection to construct an atlas for the manifold S^{1} consisting of only two coordinate neighborhoods, (A, u) and (B, v).
(a) Let $A=S^{1} \backslash\left\{e_{2}\right\}$. Given a point $x \in A$, consider the line $\ell_{x}^{+} \subseteq$ \mathbb{R}^{2} through x and e_{2}. Let $u: A \rightarrow \mathbb{R}$ map each point $x \in A$ to the intersection of the line ℓ_{x} with the x-axis in \mathbb{R}^{2}. Find an explicit formula for u.
(b) Let $B=S^{1} \backslash\left\{-e_{2}\right\}$. Consider the line $\ell_{x}^{-} \subseteq \mathbb{R}^{2}$ through x and $-e_{2}$. Let $v: B \rightarrow \mathbb{R}$ map each point $x \in B$ to the intersection of the line ℓ_{x}^{-}with the x-axis in \mathbb{R}^{2}. Find an explicit formula for v.
(c) Determine the transition function in the overlap $A \cap B$.
(d) With respect to the new atlas, is S^{1} a manifold of class C^{1} ? Is it of class C^{∞} ? Of class $C^{a n}$?
2. Let $M a t_{n, n}(\mathbb{R})$ be the set of square matrices with real coefficients. Consider the subset $S \subseteq M a t_{n, n}(\mathbb{R})$ consisting of all matrices X such that $\operatorname{Tr}(X) \neq 0$ (matrices with nonzero trace). Determine whether S is an open submanifold, with explanation.
3. Let $X=\mathbb{C}^{n+1} \backslash\{0\}$ be the collection of $(n+1)$-tuples $x=$ $\left(x^{0}, \ldots, x^{n}\right)$ distinct from the origin. Define an equivalence relation \sim between $x, y \in X$ by setting $x \sim y$ if and only if there is a complex number $t \neq 0$ such that $y=t x$, i.e.,

$$
y^{i}=t x^{i}, \quad i=0, \ldots, n \quad \text { where } \quad t \in \mathbb{C} \backslash\{0\}
$$

Denote by $[x]$ the equivalence class of $x \in X$. Define the complex projective space, $\mathbb{C P}^{n}$, as the collection of equivalence classes $[x]$, i.e., $\mathbb{C P}^{n}=\{[x]: x \in X\}$.
(1) Prove that $\mathbb{C P}^{n}$ is a smooth manifold;
(2) check the metrizability condition;
(3) determine the real dimension of $\mathbb{C P}^{n}$.

