March 1, 2020

DIFFERENTIAL GEOMETRY 88-826-01 HOMEWORK SET 1

1. Consider the plane \mathbb{R}^2 with standard basis (e_1, e_2) . Consider the unit circle $S^1 \subseteq \mathbb{R}^2$. In Section 1.5 of the lecture notes (see http://u.math. biu.ac.il/~katzmik/88-826.html) we constructed an atlas for the manifold S^1 consisting of four coordinate neighborhoods, and specified the transition functions. This exercise seeks to use the stereographic projection to construct an atlas for the manifold S^1 consisting of only two coordinate neighborhoods, (A, u) and (B, v).

- (a) Let $A = S^1 \setminus \{e_2\}$. Given a point $x \in A$, consider the line $\ell_x^+ \subseteq \mathbb{R}^2$ through x and e_2 . Let $u: A \to \mathbb{R}$ map each point $x \in A$ to the intersection of the line ℓ_x with the x-axis in \mathbb{R}^2 . Find an explicit formula for u.
- (b) Let $B = S^1 \setminus \{-e_2\}$. Consider the line $\ell_x^- \subseteq \mathbb{R}^2$ through x and $-e_2$. Let $v: B \to \mathbb{R}$ map each point $x \in B$ to the intersection of the line ℓ_x^- with the x-axis in \mathbb{R}^2 . Find an explicit formula for v.
- (c) Determine the transition function in the overlap $A \cap B$.
- (d) With respect to the new atlas, is S^1 a manifold of class C^1 ? Is it of class C^{∞} ? Of class C^{an} ?

2. Let $Mat_{n,n}(\mathbb{R})$ be the set of square matrices with real coefficients. Consider the subset $S \subseteq Mat_{n,n}(\mathbb{R})$ consisting of all matrices X such that $\operatorname{Tr}(X) \neq 0$ (matrices with nonzero trace). Determine whether S is an open submanifold, with explanation.

3. Let $X = \mathbb{C}^{n+1} \setminus \{0\}$ be the collection of (n + 1)-tuples $x = (x^0, \ldots, x^n)$ distinct from the origin. Define an equivalence relation \sim between $x, y \in X$ by setting $x \sim y$ if and only if there is a complex number $t \neq 0$ such that y = tx, i.e.,

$$y^i = tx^i, \quad i = 0, \dots, n \quad \text{where} \quad t \in \mathbb{C} \setminus \{0\}.$$

Denote by [x] the equivalence class of $x \in X$. Define the complex projective space, \mathbb{CP}^n , as the collection of equivalence classes [x], i.e., $\mathbb{CP}^n = \{[x] : x \in X\}.$

(1) Prove that \mathbb{CP}^n is a smooth manifold;

(2) check the metrizability condition;

(3) determine the real dimension of \mathbb{CP}^n .