Differential geometry 88-826-01 homework set 1

Due Date: 16 march '22

- 1. Consider the plane \mathbb{R}^2 with standard basis (e_1, e_2) . Consider the unit circle $S^1 \subseteq \mathbb{R}^2$. In Section 1.5 of the lecture notes (see http://u.math.biu.ac.il/~katzmik/88-826.html) we constructed an atlas for the manifold S^1 consisting of four coordinate neighborhoods, and specified the transition functions ϕ . This exercise seeks to use the stereographic projection to construct an atlas for the manifold S^1 consisting of only two coordinate neighborhoods, (A, u) and (B, v).
 - (a) Let $A = S^1 \setminus \{e_2\}$. Given a point $x \in A$, consider the line $\ell_x^+ \subseteq \mathbb{R}^2$ through x and e_2 . Let $u: A \to \mathbb{R}$ map each point $x \in A$ to the intersection of the line ℓ_x with the x-axis in \mathbb{R}^2 . Find an explicit formula for u.
 - (b) Let $B = S^1 \setminus \{-e_2\}$. Consider the line $\ell_x^- \subseteq \mathbb{R}^2$ through x and $-e_2$. Let $v: B \to \mathbb{R}$ map each point $x \in B$ to the intersection of the line ℓ_x^- with the x-axis in \mathbb{R}^2 . Find an explicit formula for v.
 - (c) Determine the transition function $v = \phi(u)$ associated with the overlap $A \cap B$.
 - (d) With respect to the new atlas, is S^1 a manifold of class C^1 ? Is it of class C^{∞} ? Of class C^{an} ?
- 2. Let $Mat_{n,n}(\mathbb{R})$ be the set of square matrices with real coefficients. Consider the subset $S \subseteq Mat_{n,n}(\mathbb{R})$ consisting of all matrices X such that $Tr(X) \neq 0$ (matrices with nonzero trace). Determine whether S is an open submanifold, with explanation.
- 3. Let $X=\mathbb{C}^2\setminus\{0\}$ be the collection of pairs $x=(x^0,x^1)$ distinct from the origin. Define an equivalence relation \sim between $x,y\in X$ by setting $x\sim y$ if and only if there is a complex number $t\neq 0$ such that y=tx, i.e.,

$$y^i = tx^i$$
, $i = 0, 1$ where $t \in \mathbb{C} \setminus \{0\}$.

Denote by [x] the equivalence class of $x \in X$. Define the complex projective line, \mathbb{CP}^1 , as the collection of equivalence classes [x], i.e., $\mathbb{CP}^1 = \{[x] : x \in X\}$.

- (1) Prove that \mathbb{CP}^1 is a smooth manifold by exhibiting charts and the transition function ϕ ;
- (2) check the metrizability condition;
- (3) determine the real dimension of \mathbb{CP}^1 .