88826 Differential geometry 2015 targil 3

- 1. This problem deals with flows on manifolds.
 - (a) Define the notion of a flow $\theta(t, p)$ on a manifold M.
 - (b) Define the notion of an infinitesimal generator X of the flow θ .
 - (c) Prove that a vector field on a manifold is invariant under its flow θ_t .
- 2. Let $f : \mathbb{R} \to \mathbb{R}$ be a real function.
 - (a) State the definition of the *microcontinuity* of a function at a point, and express the property of continuity of f on its domain D_f assuming $D_f = \mathbb{R}$, in terms of microcontinuity.
 - (b) Express the property of uniform continuity of f on its domain D_f , assuming $D_f = \mathbb{R}$, in terms of microcontinuity.
 - (c) Analyze the behavior of $f(x) = x^2$ in terms of microcontinuity and uniform continuity.
 - (d) Given a continuous function f on [0, 1], define a hyperfinite partition and use it to prove the extreme value theorem for f.

3. Let \mathbb{C} be the field of complex numbers. Let $A \subset \mathbb{C}$ be the subfield consisting of all points of the form a + ib where $a, b \in \mathbb{Q}$.

- (a) Give a detailed definition of the structure ${}^*\mathbb{Q}$ of hyperrational numbers in terms of a nonprincipal ultrafilter $\mathcal{F} \subset \mathcal{P}(\mathbb{N})$.
- (b) Determine whether *Q contains nonzero infinitesimals, and if so provide an example.
- (c) Let ${}^{*}A = \{a + ib : a, b \in {}^{*}\mathbb{Q}\}$. Let $I = \{a + ib \in {}^{*}A : st(a) = 0, st(b) = 0\}$. Let $B = \{a + ib \in {}^{*}A : a \text{ is finite}, b \text{ is finite}\}$. Determine whether the quotient B/I is isomorphic to either of the structures $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, A$ or their natural extensions ${}^{*}\mathbb{N}, {}^{*}\mathbb{Z}, {}^{*}\mathbb{Q}, {}^{*}\mathbb{R}, {}^{*}\mathbb{C}, {}^{*}A$.

4. Let \mathcal{F} be a nonprincipal ultrafilter on \mathbb{N} , and $*\mathbb{R}$ the corresponding hyperreal line.

- (a) Consider a sequence $\mathcal{A} = \langle A_n \subset \mathbb{R} : n \in \mathbb{N} \rangle$ of subsets of \mathbb{R} . Give a detailed definition of the internal subset $[\mathcal{A}] \subset {}^*\mathbb{R}$.
- (b) Specify when a hyperreal $u = [u_n] \in \mathbb{R}$ belongs to $[\mathcal{A}]$.
- (c) Consider the sequence $\langle 1, 2, 3, \ldots \rangle$ and let H be the corresponding hyperreal. Determine whether the set $[0, H] = \{x \in *\mathbb{R} : 0 \le x \le H\}$ is internal, and if so describe it by a sequence of sets as in part (a).
- (d) Determine whether the set $\{x \in \mathbb{R} : 0 \le x \le \pi\}$ is internal, and if so describe it by a sequence of sets as in part (a).