88826 Differential geometry 2015 targil 3

1. This problem deals with flows on manifolds.
(a) Define the notion of a flow $\theta(t, p)$ on a manifold M.
(b) Define the notion of an infinitesimal generator X of the flow θ.
(c) Prove that a vector field on a manifold is invariant under its flow θ_{t}.
2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a real function.
(a) State the definition of the microcontinuity of a function at a point, and express the property of continuity of f on its domain D_{f} assuming $D_{f}=\mathbb{R}$, in terms of microcontinuity.
(b) Express the property of uniform continuity of f on its domain D_{f}, assuming $D_{f}=\mathbb{R}$, in terms of microcontinuity.
(c) Analyze the behavior of $f(x)=x^{2}$ in terms of microcontinuity and uniform continuity.
(d) Given a continuous function f on $[0,1]$, define a hyperfinite partition and use it to prove the extreme value theorem for f.
3. Let \mathbb{C} be the field of complex numbers. Let $A \subset \mathbb{C}$ be the subfield consisting of all points of the form $a+i b$ where $a, b \in \mathbb{Q}$.
(a) Give a detailed definition of the structure ${ }^{*} \mathbb{Q}$ of hyperrational numbers in terms of a nonprincipal ultrafilter $\mathcal{F} \subset \mathcal{P}(\mathbb{N})$.
(b) Determine whether ${ }^{*} \mathbb{Q}$ contains nonzero infinitesimals, and if so provide an example.
(c) Let ${ }^{*} A=\left\{a+i b: a, b \in{ }^{*} \mathbb{Q}\right\}$. Let $I=\left\{a+i b \in{ }^{*} A\right.$: $\operatorname{st}(a)=$ $0, \operatorname{st}(b)=0\}$. Let $B=\left\{a+i b \in{ }^{*} A: a\right.$ is finite, b is finite $\}$. Determine whether the quotient B / I is isomorphic to either of the structures $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, A$ or their natural extensions ${ }^{*} \mathbb{N}$, ${ }^{*} \mathbb{Z},{ }^{*} \mathbb{Q},{ }^{*} \mathbb{R},{ }^{*} \mathbb{C},{ }^{*} A$.
4. Let \mathcal{F} be a nonprincipal ultrafilter on \mathbb{N}, and ${ }^{*} \mathbb{R}$ the corresponding hyperreal line.
(a) Consider a sequence $\mathcal{A}=\left\langle A_{n} \subset \mathbb{R}: n \in \mathbb{N}\right\rangle$ of subsets of \mathbb{R}. Give a detailed definition of the internal subset $[\mathcal{A}] \subset{ }^{*} \mathbb{R}$.
(b) Specify when a hyperreal $u=\left[u_{n}\right] \in{ }^{*} \mathbb{R}$ belongs to $[\mathcal{A}]$.
(c) Consider the sequence $\langle 1,2,3, \ldots\rangle$ and let H be the corresponding hyperreal. Determine whether the set $[0, H]=\left\{x \in{ }^{*} \mathbb{R}\right.$: $0 \leq x \leq H\}$ is internal, and if so describe it by a sequence of sets as in part (a).
(d) Determine whether the set $\left\{x \in{ }^{*} \mathbb{R}: 0 \leq x \leq \pi\right\}$ is internal, and if so describe it by a sequence of sets as in part (a).
