March 12, 2019
Differential geometry $88-826$ homework set 3

1. Consider the 1-dimensional manifold $S^{1}=\left\{e^{i \theta}\right\} \subseteq \mathbb{C}$. Consider the Riemannian metric of S^{1} expressed by a $q \times 1$ matrix with respect to the coordinate θ. Since θ is the arclength parameter, the vector field $\frac{\partial}{\partial \theta}$ along S^{1} has unit length.
(a) Conclude that the matrix of the Riemannian metric is the 1×1 matrix with coefficient 1 ;
(b) find the coefficient of the Riemannian metric with respect to a new coordinate defined by the stereographic projection of the circle to \mathbb{R}.
2. Let $C>0$ be a positive real number. Calculate the Gaussian curvature of the Riemannian metric $\frac{C^{2}}{y^{2}}\left(d x^{2}+d y^{2}\right)$ using formula 3.3.3 on page 31 of the choveret of the course.
3. Consider the torus of revolution $(x-a)^{2}+y^{2}=b^{2}$ where $0<b<a$ and let τ be its conformal parameter as in Section 3.12 of the choveret of the course.
(a) Let $a=1$ and find the limit of τ as $b \rightarrow 0$;
(b) let $b=1$ and find the limit of τ as $a \rightarrow \infty$;
(c) find a torus of revolution with conformal parameter $\tau=i$.
4. Consider the lattice $L \subseteq \mathbb{C}$ spanned by the roots of the polynomial $z^{3}-1$. Find the conformal parameter $\tau(\mathbb{C} / L)$.
