March 1, 2011 Differential geometry 88-826 Homework 2

1. In the Euclidean plane, let p be a point other than the origin. Consider the polar coordinates (r, θ), and the 1 -forms $d r$ and $r d \theta$. They give an orthonormal basis for the cotangent plane

$$
T_{p}^{*}
$$

at p. Find an orthonormal basis for the tangent plane T_{p}, by modifying the basis $\frac{\partial}{\partial r}, \frac{\partial}{\partial \theta}$.
2. Let

$$
S^{1} \subset \mathbb{R}^{2}=\mathbb{C}
$$

be the unit circle. Let $T S^{1}$ be its tangent bundle (eged hameshik). Construct an explicit map from $T S^{1}$ to the Cartesian product

$$
S^{1} \times \mathbb{R}
$$

which is one-to-one and onto.
3. The squaring function $f: \mathbb{R} \rightarrow \mathbb{R}$ is given by

$$
y=x^{2} .
$$

(a) Describe the associated trivial bundle

$$
(E, B, \pi)
$$

(b) Give an explicit description of the section of the bundle E corresponding to the squaring function.
4. Let $\tau_{a, b}$ be the conformal parameter of the torus of revolution defined as the set of points in the plane satisfying

$$
(x-a)^{2}+y^{2}=b^{2}
$$

where $b<a$. Calculate the following limits.
(a) $\lim _{s \rightarrow 0} \tau_{a, s}$ for fixed $a>0$.
(b) $\lim _{s \rightarrow\left(a^{-}\right)} \tau_{a, s}$ for fixed $a>0$.
(c) $\lim _{s \rightarrow \infty} \tau_{s, b}$ for fixed $b>0$.
(d) $\lim _{s \rightarrow \infty} \tau_{2 s, s}$.

