March 24, 2015
Differential geometry 88-826-01 HOMEWORK SET 2

1. Let \mathbb{R} act on the manifold $M=\mathbb{R}^{2}$ by means of the flow $\theta_{t}(x, y)$ acting according to the formulas

$$
x \mapsto x \cos t+y \sin t, \quad y \mapsto-x \sin t+y \cos t,
$$

i.e., $\theta_{t}(x, y)=(x \cos t+y \sin t,-x \sin t+y \cos t)$.
(a) Show that this is a globally defined action of \mathbb{R} on M.
(b) find the infinitesimal generator X of this flow.
(c) Describe the orbits of this flow.
2. Consider the action of \mathbb{R} on $M=\mathbb{R}^{2}$ given by the flow $\theta_{t}(x, y)=$ $\left(x e^{2 t}, y e^{-3 t}\right)$.
(a) Show that this is a C^{∞} action.
(b) Determine the infinitesimal generator X.
(c) Show that the infinitesimal generator is θ-invariant.
3. Consider the manifold $M=\mathrm{GL}(2, \mathbb{R})$ and define an action of \mathbb{R} on M by the formula

$$
\theta(t, A)=\left(\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right) A
$$

via matrix multiplication of $\left(\begin{array}{ll}1 & t \\ 0 & 1\end{array}\right)$ and A for all $A \in \mathrm{GL}(2, \mathbb{R})$. Find the infinitesimal generator X of this action.
4. If c is an upper bound for a set $A \subset \mathbb{R}$ we will write $A \leq c$. The completeness property of \mathbb{R} asserts that if A is bounded from above, then there is a least upper bound $d \in \mathbb{R}$ for A, or in formulas $(\forall A \subset \mathbb{R})[(\exists c \in \mathbb{R})[A \leq c] \rightarrow(\exists d \in \mathbb{R})[A \leq d] \wedge(\forall e \in \mathbb{R})[A \leq e \rightarrow d \leq e]]$
(a) Express the condition $A \leq c$ by a explicit first-order formula with quantification only over numbers.
(b) Reformulate the completeness property (1) in a way amenable to an application of the transfer principle as explained in class.
(c) Apply the transfer principle to the resulting formula so as to obtain a correct statement over ${ }^{*} \mathbb{R}$.
(d) Give an example of the failure of the naive application of transfer to (1).

