March 5, 2019
DIFFERENTIAL GEOMETRY 88-826 HOMEWORK SET 2

1. Let $M=T^{2}$ be the 2 -torus. Prove that the tangent bundle of M can be naturally identified with the product $T^{2} \times \mathbb{R}^{2}$.
2. Consider the unit sphere S^{2} in spherical coordinates (θ, φ). Consider the vector fields $\frac{\partial}{\partial \theta}$ and $\frac{\partial}{\partial \varphi}$ defined everywhere on S^{2}.
(a) Find the zeros of the vector field $\frac{\partial}{\partial \theta}$ if any;
(b) compute the length of the vector field $\frac{\partial}{\partial \theta}$ at an arbitrary point with coordinates (θ, φ);
(c) Find the zeros of the vector field $\frac{\partial}{\partial \varphi}$ if any;
(d) compute the length of the vector field $\frac{\partial}{\partial \varphi}$ at an arbitrary point with coordinates (θ, φ).
3. Consider the real projective plane $\mathbb{R}^{2} \mathbb{P}^{2}$ defined in the lecture as the collection of equivalence classes $[x]$ where $x \in \mathbb{R}^{3} \backslash\{0\}$ (see choveret of the course, section 1.5 on pages $15-16$). Prove that the following two definitions are naturally equivalent to the one given in the lecture:
(1) Let S^{2} be the unit 2 -sphere. Then $\mathbb{R}^{2} \mathbb{P}^{2}$ is the set of unordered pairs $\{p,-p\}$ where $p \in S^{2}$.
(2) Let $U \subseteq S^{2}$ be the upper hemisphere, namely the set $U=$ $\left\{(x, y, z) \in S^{2}: z \geq 0\right\}$. Then $\mathbb{R P}^{2}$ is obtained from U by identifying antipodal points on the equator by an equivalence relation \sim where by definition $(x, y, 0) \sim(-x,-y, 0)$ whenever $x^{2}+y^{2}=1$.
