Due Date: 21 april '21

- 1. Let $M = T^2$ be the 2-torus. Prove that the tangent bundle of M is diffeomorphic to the product $T^2 \times \mathbb{R}^2$.
- 2. Consider the unit sphere S^2 in spherical coordinates (θ, φ) . Consider the vector fields $\frac{\partial}{\partial \theta}$ and $\sin \varphi \frac{\partial}{\partial \varphi}$ on the sphere.
 - (a) Explain why both vector fields can be viewed as continuous vector fields defined everywhere on S^2 .
 - (b) Find the zeros of the vector field $\frac{\partial}{\partial \theta}$ on the sphere if any.
 - (c) compute the length of the vector field $\frac{\partial}{\partial \theta}$ at an arbitrary point with coordinates (θ, φ) ;
 - (d) Find the zeros of the vector field $\sin \varphi \frac{\partial}{\partial \varphi}$ on the sphere if any.
 - (e) compute the length of the vector field $\sin \varphi \frac{\partial}{\partial \varphi}$ at an arbitrary point with coordinates (θ, φ) .
- 3. Consider the real projective plane \mathbb{RP}^2 defined in the lecture as the collection of equivalence classes [x] where $x \in \mathbb{R}^3 \setminus \{0\}$ (see choveret of the course, section 1.6, pages 15–16). Prove that the following two definitions are naturally equivalent to the one given in the lecture:
 - (1) Let S^2 be the unit 2-sphere. Then \mathbb{RP}^2 is the set of unordered
 - pairs $\{p, -p\}$ where $p \in S^2$. (2) Let $U \subseteq S^2$ be the upper hemisphere, namely the set U = $\{(x,y,\overline{z})\in S^2\colon z\geq 0\}$. Then \mathbb{RP}^2 is obtained from U by identifying antipodal points on the equator by an equivalence relation \sim where by definition $(x, y, 0) \sim (-x, -y, 0)$ whenever $x^2 + y^2 = 1$.