88-826 Differential Geometry, moed A

Bar Ilan University, Prof. Katz
Date: 3 july ' 19
Duration of the exam: 3 hours
Each of 5 problems is worth 20 points; bonus problem is 10 points
All answers must be justified by providing complete proofs

1. Let $X=\mathbb{C}^{n+1} \backslash\{0\}$ be the collection of $(n+1)$-tuples $x=$ $\left(x^{0}, \ldots, x^{n}\right)$ distinct from the origin. Define an equivalence relation \sim between $x, y \in X$ by setting $x \sim y$ if and only if there is a complex number $t \neq 0$ such that $y=t x$, i.e.,

$$
y^{i}=t x^{i}, \quad i=0, \ldots, n .
$$

Denote by $[x]$ the equivalence class of $x \in X$. Define the complex projective space, $\mathbb{C P}^{n}$, as the collection of equivalence classes $[x]$, i.e., $\mathbb{C P}^{n}=\{[x]: x \in X\}$. Prove that $\mathbb{C P}^{n}$ is a smooth manifold and determine its real dimension.
2. For each of the lattices $L_{n} \subseteq \mathbb{C}$, find the conformal parameter $\tau\left(\mathbb{C} / L_{n}\right)$:
(1) L_{1} spanned by the roots of the polynomial $z^{3}-1$;
(2) L_{2} spanned by 2 and i;
(3) L_{3} spanned by 1 and $3+i$.
3. This problem concerns the exterior differential complex on a manifold M.
(1) Define the term $\Omega^{k}(M)$ of the complex.
(2) Define the differentials d_{1} and d_{2} in the following segment of the exterior differential complex: $\Omega^{1}(M) \xrightarrow{d_{1}} \Omega^{2}(M) \xrightarrow{d_{2}} \Omega^{3}(M)$.
(3) Prove that the segment is exact, i.e., $d_{2} \circ d_{1}(\xi)=0$ for all 1-forms $\xi \in \Omega^{1}(M)$.
4. Let $C \in \mathbb{R}$. Compute the Gaussian curvature of the metric $f^{2}\left(d x^{2}+\right.$ $d y^{2}$) with conformal factor $f(x, y)=\frac{1}{1+C\left(x^{2}+y^{2}\right)}$.
5 . Let \mathbb{T}^{n} be the n-dimensional torus.
(1) Compute the de Rham cohomology group $H_{d R}^{0}\left(\mathbb{T}^{n}\right)$.
(2) Let $S^{1}=\mathbb{T}^{1}$ be the circle. Compute the de Rham cohomology group $H_{d R}^{1}\left(S^{1}\right)$.
6. (bonus) Let \mathbb{R} / \mathbb{Z} denote the circle of length 1 . Consider the cylinder $C_{H}=\mathbb{R} / \mathbb{Z} \times[0, H]$ of height $H>0$, with coordinates $x \in \mathbb{R} / \mathbb{Z}$ and $y \in[0, H]$. Suppose a surface M contains an annulus conformally equivalent to C_{H}. Find the best upper bound for the ratio $\frac{\operatorname{sys}_{1}^{2}(M)}{\operatorname{area}(M)}$.

Good luck!

