88-826 Differential Geometry, moed A

Bar Ilan University, Prof. Katz

Duration of the exam: 3 hours

Date: 3 july '19

Each of 5 problems is worth 20 points; bonus problem is 10 points All answers must be justified by providing complete proofs

1. Let $X = \mathbb{C}^{n+1} \setminus \{0\}$ be the collection of (n+1)-tuples $x = (x^0, \ldots, x^n)$ distinct from the origin. Define an equivalence relation \sim between $x, y \in X$ by setting $x \sim y$ if and only if there is a complex number $t \neq 0$ such that y = tx, i.e.,

$$y^i = tx^i, \quad i = 0, \dots, n.$$

Denote by [x] the equivalence class of $x \in X$. Define the complex projective space, \mathbb{CP}^n , as the collection of equivalence classes [x], i.e., $\mathbb{CP}^n = \{[x] \colon x \in X\}$. Prove that \mathbb{CP}^n is a smooth manifold and determine its real dimension.

- 2. For each of the lattices $L_n \subseteq \mathbb{C}$, find the conformal parameter $\tau(\mathbb{C}/L_n)$:
 - (1) L_1 spanned by the roots of the polynomial $z^3 1$;
 - (2) L_2 spanned by 2 and i;
 - (3) L_3 spanned by 1 and 3 + i.
- 3. This problem concerns the exterior differential complex on a manifold ${\cal M}.$
 - (1) Define the term $\Omega^k(M)$ of the complex.
 - (2) Define the differentials d_1 and d_2 in the following segment of the exterior differential complex: $\Omega^1(M) \xrightarrow{d_1} \Omega^2(M) \xrightarrow{d_2} \Omega^3(M)$.
 - (3) Prove that the segment is exact, i.e., $d_2 \circ d_1(\xi) = 0$ for all 1-forms $\xi \in \Omega^1(M)$.
- 4. Let $C \in \mathbb{R}$. Compute the Gaussian curvature of the metric $f^2(dx^2 + dy^2)$ with conformal factor $f(x,y) = \frac{1}{1+C(x^2+y^2)}$.
- 5. Let \mathbb{T}^n be the *n*-dimensional torus.
 - (1) Compute the de Rham cohomology group $H_{dR}^0(\mathbb{T}^n)$.
 - (2) Let $S^1 = \mathbb{T}^1$ be the circle. Compute the de Rham cohomology group $H^1_{dR}(S^1)$.
- 6. (bonus) Let \mathbb{R}/\mathbb{Z} denote the circle of length 1. Consider the cylinder $C_H = \mathbb{R}/\mathbb{Z} \times [0, H]$ of height H > 0, with coordinates $x \in \mathbb{R}/\mathbb{Z}$ and $y \in [0, H]$. Suppose a surface M contains an annulus conformally equivalent to C_H . Find the best upper bound for the ratio $\frac{\operatorname{sys}_1^2(M)}{\operatorname{area}(M)}$.

Good luck!