88-826 Differential Geometry, moed A Bar Ilan University, Prof. Katz Date: 13 july '20

Duration of the exam: 3 hours

Each of 5 problems is worth 20 points; bonus problem is 10 points All answers must be justified by providing complete explanations and proofs

1. In \mathbb{R}^3 with standard basis (e_1, e_2, e_3) , consider the unit sphere $S^2 \subseteq \mathbb{R}^3$. Construct an atlas for the manifold S^2 consisting of two coordinate charts, (A, u) and (B, v) as follows.

- (a) Let $A = S^2 \setminus \{e_3\}$. Given a point $p \in A$, consider the line $\ell_x^+ \subseteq \mathbb{R}^3$ through p and e_3 . Let $u: A \to \mathbb{R}^2$ map each point $p \in A$ to the intersection of the line ℓ_p with the (x, y)-plane equipped with polar coordinates (r, θ) . Find an explicit formula for u.
- (b) Let $B = S^2 \setminus \{-e_3\}$ and $p \in B$. Consider the line $\ell_p^- \subseteq \mathbb{R}^3$ through p and $-e_3$. Let $v: B \to \mathbb{R}^2$ map each point $p \in B$ to the intersection of the line ℓ_p^- with the (x, y)-plane equipped with polar coordinates (r', θ') . Find an explicit formula for v.
- (c) Determine the transition function for the overlap $A \cap B$.
- (d) Find the metric coefficients of the unit sphere metric with respect to the coordinate u defined in part (a).
- 2. This question deals with orientations on manifolds.
 - (a) Let M be an oriented manifold with boundary. Give a detailed definition of the notion of the induced orientation on the boundary ∂M .
 - (b) Let b > 0 and let D be the unbounded region $D = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \ge b^2\}$ endowed with the standard orientation $dx \wedge dy$. Calculate the induced orientation on ∂D and compare it to $d\theta$.
 - (c) Let b > 0 and let D be the unbounded region $D = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \ge b^2\}$ endowed with the standard orientation $dx \wedge dy \wedge dz$. Calculate the induced orientation on ∂D and compare it to the orientation defined by $\alpha_{FS} = \sin \phi \, d\theta \wedge d\phi$.
- 3. For each of the lattices $L_n \subseteq \mathbb{C}$, find the conformal parameter $\tau(\mathbb{C}/L_n)$:
 - (a) L_1 spanned by the roots of the polynomial $z^3 8$;
 - (b) L_2 spanned by 2 and *i*;
 - (c) L_3 spanned by 1 and 3 + i.
- 4. This problem deals with de Rham cohomology.
 - (a) Compute (with proof) all of the de Rham cohomology groups *H^k_{dR}*(ℝ/ℤ).

(b) Let $L \subseteq \mathbb{C}$ be the Gaussian integers. Compute (with proof) the de Rham cohomology group $H^2_{dR}(\mathbb{C}/L)$.

5. Let M be an closed connected orientable 8-dimensional manifold. Assume that $b_2(M) = 1$ and that a class $\omega \in H^2_{dR}(M)$ satisfies $\omega^{\cup 4} \neq 0$.

- (a) Give a detailed definition of what it means for a de Rham class $\omega \in H^2_{dR}(M)$ to be an integer class.
- (b) Consider a metric g on M. Give detailed definitions of the norm $\| \|$ in $\Lambda^2(T_pM)$; the norm $\| \|_{\infty}$ in Ω^2M ; and the norm $\| \|^*$ in de Rham cohomology.
- (c) Let $\eta \in \omega$ be a representative differential 2-form. Estimate the integral $\int_M \eta \wedge \eta \wedge \eta \wedge \eta$ in terms of the comass of η as well as the total volume $\operatorname{vol}(M)$ of M.
- (d) Provide (with proof) the best upper bound for the following ratio: $stsys_2(g)^4/vol(g)$.

6. (**bonus**) Consider the cylinder $C_H = \mathbb{R}/\mathbb{Z} \times [0, H]$ of height H > 0, with coordinates $x \in \mathbb{R}/\mathbb{Z}$ and $y \in [0, H]$. Suppose a surface M contains an annulus conformally equivalent to C_H , where \mathbb{R}/\mathbb{Z} is noncontractible in M. Determine the best upper bound for the ratio $\frac{\text{sys}_1^2(M)}{\text{area}(M)}$.

Good luck!