88-826 Differential Geometry, moed A

Bar Ilan University, Prof. Katz

Date: 13 july '20

Duration of the exam: 3 hours
Each of 5 problems is worth 20 points; bonus problem is 10 points
All answers must be justified by providing complete explanations and proofs

1. In \mathbb{R}^{3} with standard basis $\left(e_{1}, e_{2}, e_{3}\right)$, consider the unit sphere $S^{2} \subseteq$ \mathbb{R}^{3}. Construct an atlas for the manifold S^{2} consisting of two coordinate charts, (A, u) and (B, v) as follows.
(a) Let $A=S^{2} \backslash\left\{e_{3}\right\}$. Given a point $p \in A$, consider the line $\ell_{x}^{+} \subseteq$ \mathbb{R}^{3} through p and e_{3}. Let $u: A \rightarrow \mathbb{R}^{2}$ map each point $p \in A$ to the intersection of the line ℓ_{p} with the (x, y)-plane equipped with polar coordinates (r, θ). Find an explicit formula for u.
(b) Let $B=S^{2} \backslash\left\{-e_{3}\right\}$ and $p \in B$. Consider the line $\ell_{p}^{-} \subseteq \mathbb{R}^{3}$ through p and $-e_{3}$. Let $v: B \rightarrow \mathbb{R}^{2}$ map each point $p \in B$ to the intersection of the line ℓ_{p}^{-}with the (x, y)-plane equipped with polar coordinates $\left(r^{\prime}, \theta^{\prime}\right)$. Find an explicit formula for v.
(c) Determine the transition function for the overlap $A \cap B$.
(d) Find the metric coefficients of the unit sphere metric with respect to the coordinate u defined in part (a).
2. This question deals with orientations on manifolds.
(a) Let M be an oriented manifold with boundary. Give a detailed definition of the notion of the induced orientation on the boundary ∂M.
(b) Let $b>0$ and let D be the unbounded region $D=\{(x, y) \in$ $\left.\mathbb{R}^{2}: x^{2}+y^{2} \geq b^{2}\right\}$ endowed with the standard orientation $d x \wedge d y$. Calculate the induced orientation on ∂D and compare it to $d \theta$.
(c) Let $b>0$ and let D be the unbounded region $D=\{(x, y, z) \in$ $\left.\mathbb{R}^{3}: x^{2}+y^{2}+z^{2} \geq b^{2}\right\}$ endowed with the standard orientation $d x \wedge d y \wedge d z$. Calculate the induced orientation on ∂D and compare it to the orientation defined by $\alpha_{F S}=\sin \phi d \theta \wedge d \phi$.
3. For each of the lattices $L_{n} \subseteq \mathbb{C}$, find the conformal parameter $\tau\left(\mathbb{C} / L_{n}\right)$:
(a) L_{1} spanned by the roots of the polynomial $z^{3}-8$;
(b) L_{2} spanned by 2 and i;
(c) L_{3} spanned by 1 and $3+i$.
4. This problem deals with de Rham cohomology.
(a) Compute (with proof) all of the de Rham cohomology groups $H_{d R}^{k}(\mathbb{R} / \mathbb{Z})$.
(b) Let $L \subseteq \mathbb{C}$ be the Gaussian integers. Compute (with proof) the de Rham cohomology group $H_{d R}^{2}(\mathbb{C} / L)$.
5. Let M be an closed connected orientable 8-dimensional manifold. Assume that $b_{2}(M)=1$ and that a class $\omega \in H_{d R}^{2}(M)$ satisfies $\omega^{\cup 4} \neq 0$.
(a) Give a detailed definition of what it means for a de Rham class $\omega \in H_{d R}^{2}(M)$ to be an integer class.
(b) Consider a metric g on M. Give detailed definitions of the norm $\left\|\|\right.$ in $\Lambda^{2}\left(T_{p} M\right)$; the norm $\| \|_{\infty}$ in $\Omega^{2} M$; and the norm $\left\|\|^{*}\right.$ in de Rham cohomology.
(c) Let $\eta \in \omega$ be a representative differential 2-form. Estimate the integral $\int_{M} \eta \wedge \eta \wedge \eta \wedge \eta$ in terms of the comass of η as well as the total volume $\operatorname{vol}(M)$ of M.
(d) Provide (with proof) the best upper bound for the following ratio: $\operatorname{stsys}_{2}(g)^{4} / \operatorname{vol}(g)$.
6. (bonus) Consider the cylinder $C_{H}=\mathbb{R} / \mathbb{Z} \times[0, H]$ of height $H>0$, with coordinates $x \in \mathbb{R} / \mathbb{Z}$ and $y \in[0, H]$. Suppose a surface M contains an annulus conformally equivalent to C_{H}, where \mathbb{R} / \mathbb{Z} is noncontractible in M. Determine the best upper bound for the ratio $\frac{\operatorname{sys}_{1}^{2}(M)}{\operatorname{area}(M)}$.

Good luck!

