88826 Differential geom., moed B, 15 sep '14

Duration of the exam: 3 hours.

All answers must be justified by providing complete proofs.

1. Let D_{p} be the space of functions $f(x, y, z)$ differentiable in a neighborhood of a point $p \in \mathbb{R}^{3}$.
(a) Give a detailed definition of the notion of a 1-form on D_{p}.
(b) Give a detailed definition of the notion of a derivation at the point p.
(c) Calculate, with proof, the dimension of the space of derivations at the point $p=0 \in \mathbb{R}^{3}$.
2. Let C be the curve in the (x, z)-plane defined by the equation $(x-3)^{2}+z^{2}=4$. Let $M \subset \mathbb{R}^{3}$ be the surface of revolution obtained by rotating C around the z-axis, with parametrisation $\underline{x}(\theta, \phi)$.
(a) Find the coefficients of the first and second fundamental forms and the Gaussian curvature $K(\theta, \phi)$ of M.
(b) Determine when the Gaussian curvature is positive, first as a function of θ, ϕ, and then also in terms of the coordinates (x, y, z).
(c) Find the lattice $L \subset \mathbb{R}^{2}$ corresponding to the conformal class of the metric on M.
(d) Calculate the corresponding parameter τ in the standard fundamental domain.
3. This problem deals with flows on manifolds.
(a) Define the notion of a flow $\theta(t, p)$ on a manifold M.
(b) Define the notion of an infinitesimal generator X of the flow θ.
(c) Prove that a vector field on a manifold is invariant under its flow θ_{t}.
4. This problem deals with various notions related to continuity.
(a) State the definition of microcontinuity of a function at a point, and determine whether the functions $x^{1 / 3}$ and x^{3} are microcontinuous at 0 and at $H \in * \mathbb{N} \backslash \mathbb{N}$.
(b) Given a real function f on a domain $D_{f} \subset \mathbb{R}$, express the property of continuity of f in its domain when $D_{f}=\mathbb{R}$ in terms of microcontinuity.
(c) Given a real function f on a domain $D_{f} \subset \mathbb{R}$, express the property of uniform continuity of f in its domain when $D_{f}=\mathbb{R}$ in terms of microcontinuity.
(d) Assume that a continuous function f on $[0,1]$ satisfies $f(0)<0$ and $f(1)>0$. Use a hyperfinite partition to give a detailed proof of the intermediate value theorem for f.
5. Let \mathcal{F} be a nonprincipal ultrafilter on \mathbb{N}, and ${ }^{*} \mathbb{R}$ the corresponding hyperreal line.
(a) Present a detailed definition of $* \mathbb{R}$ in terms of \mathcal{F}.
(b) Consider a sequence $\mathcal{A}=\left\langle A_{n} \subset \mathbb{R}: n \in \mathbb{N}\right\rangle$ of subsets of \mathbb{R}. Give a detailed definition of the internal subset $[\mathcal{A}] \subset{ }^{*} \mathbb{R}$ and specify when a hyperreal $u=\left[u_{n}\right] \in{ }^{*} \mathbb{R}$ belongs to $[\mathcal{A}]$.
(c) Consider the sequence $\langle 1,2,3, \ldots\rangle$ and let H be the corresponding hyperreal. Determine whether the set $[0, H]=\left\{x \in{ }^{*} \mathbb{R}\right.$: $0 \leq x \leq H\}$ is internal, and if so describe it by a sequence of sets as in part (b).
(d) Determine whether the set $\left\{x \in{ }^{*} \mathbb{R}: 0 \leq x \leq \pi\right\}$ is internal, and if so describe it by a sequence of sets as in part (b).

GOOD LUCK!

