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PREFACE TO THE 
SECOND EDITION 

In this second edition, many changes have been made based on nine years of classroom 
experience. There are major revisions to the first six chapters and the Epilogue, and there 
is one completely new chapter, Chapter 14, on differential equations. In addition, the origi­
nal Chapters 11 and 12 have been repackaged as three chapters: Chapter 11 on partial dif­
ferentiation, Chapter 12 on multiple integration, and Chapter 13 on vector calculus. 

Chapter 1 has been shortened, and much of the theoretical material from the first 
edition has been moved to the Epilogue. The calculus of transcendental functions has been 
fully integrated into the course beginning in Chapter 2 on derivatives. Chapter 3 focuses 
on applications of the derivative. The material on setting up word problems and on related 
rates has been moved from the first two chapters to the beginning of Chapter 3. The theoreti­
cal results on continuous functions, including the Intermediate, Extreme, and Mean Value 
Theorems, have been collected in a single section at the end of Chapter 3. The development 
of the integral in Chapter 4 has been streamlined. The Trapezoidal Rule has been moved 
from Chapter 5 to Chapter 4, and a discussion of Simpson's Rule has been added. The sec­
tion on area between two curves has been moved from Chapter 6 to Chapter 4. Chapter 
5 deals with limits, approximations, and analytic geometry. An extensive treatment of 
conic sections and a section on Newton's method have been added. Chapter 6 begins with 
new material on finding a volume by integrating areas of cross sections. 

Only minor changes and corrections have been made to Chapters 7 through 13. 
The new Chapter 14 gives a first introduction to differential equations, with emphasis on 
solving first and second order linear differential equations. In Section 14.4, infinitesimals 
are used to give a simple proof that every differential equation y' = f(t,y), where fis con­
tinuous, has a solution. The proof of this fact is beyond the scope of a traditional elementary 
calculus course, but is within reach with infinitesimals. 

I wish to thank all my friends and colleagues who have suggested corrections and 
improvements to the first edition of the book. 

H. Jerome Keisler 
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PREFACE TO THE 
FIRST EDITION 

The calculus was originally developed using the intuitive concept of an infinitesimal, 
or an infinitely small number. But for the past one hundred years infinitesimals have 
been banished from the calculus course for reasons of mathematical rigor. Students 
have had to learn the subject without the original intuition. This calculus book is 
based on the work of Abraham Robinson, who in 1960 found a way to make infinitesi­
mals rigorous. While the traditional course begins with the difficult limit concept, 
this course begins with the more easily understood infinitesimals. It is aimed at the 
average beginning calculus student and covers the usual three or four semester 
sequence. 

The infinitesimal approach has three important advantages for the student. 
First, it is closer to the intuition which originally led. to the calculus. Second, the 
central concepts of derivative and integral become easier for the student to under­
stand and use. Third, it teaches both the infinitesimal and traditional approaches, 
giving the student an extra tool which may become increasingly important in the 
future. 

Before describing this book, I would like to put Robinson's work in historical 
perspective. In the 1670's, Leibniz and Newton developed the calculus based on the 
intuitive notion of infinitesimals. Infinitesimals were used for another two hundred 
years, until the first rigorous treatment of the calculus was perfected by Weierstrass 
in the 1870's. The standard calculus course of today is still based on the "a, 6 definition" 
of limit given by Weierstrass. In 1960 Robinson solved a three hundred year old 
problem by giving a precise treatment of the calculus using infinitesimals. Robinson's 
achievement will probably rank as one of the major mathematical advances of the 
twentieth century. 

Recently, infinitesimals have had exciting applications outside mathematics, 
notably in the fields of economics and physics. Since it is quite natural to use infinitesi­
mals in modelling physical and social processes, such applications seem certain to 
grow in variety and importance. This is a unique opportunity to find new uses for 
mathematics, but at present few people are prepared by training to take advantage of 
this opportunity. 

Because the approach to calculus is new, some instructors may need addi­
tional background material. An instructor's volume, "Foundations of Infinitesimal 
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Calculus," gives the necessary background and develops the theory in detail. The 
instructor's volume is keyed to this book but is self-contained and is intended for the 
general mathematical public. 

This book contains all the ordinary calculus topics, including the traditional 
hmit definition, plus one exua tool-the infinitesimals. Thus the student will be 
prepared for more advanced courses as they are now taught. In Chapters 1 through 4 
the basic concepts of derivative, continuity, and integral are developed quickly using 
infinitesimals. The traditional limit concept is put off until Chapter 5, where it is 
motivated by approximation problems. The later chapters develop transcendental 
functions, series, vectors, partial derivatives, and multiple .integrals. The theory 
differs from the traditional course, but the notation and methods for solving practical 
problems are the same. There is a variety of applications to both natural and social 
sciences. 

I have included the following innovation for instructors who wish to intro­
duce the transcendental functions early. At the end of Chapter 2 on derivatives, there 
is a section beginning an alternate track on transcendental functions, and each of 
Chapters 3 through 6 have alternate track problem sets on transcendental functions. 
This alternate track can be used to provide greater variety in the early problems, or 
can be skipped in order to reach the integral as soon as possible. In Chapters 7 and 8 
the transcendental functions are developed anew at a more leisurely pace. 

The book is written for average students. The problems preceded by a square 
box go somewhat beyond the examples worked out in the text and are intended for 
the more adventuresome. 

I was originally led to write this book when it became clear that Robinson's 
infinitesimal calculus col}ld be made available to college freshmen. The theory is 
simply presented; for example, Robinson's work used mathematical logic, but this 
book does not. I first used an early draft of this book in a one-semester course at the 
University of Wisconsin in 1969. In 1971 a two-semester experimental version was 
published. It has been used at several colleges and at Nicolet High School near 
Milwaukee, and was tested at five schools in a controlled experiment by Sister Kathleen 
Sullivan in 1972-1974. The results (in her 1974 Ph.D. thesis at the University of 
Wisconsin) show the viability of the infinitesimal approach and will be summarized 
in an article in the American Mathematical Monthly. 

I am indebted to many colleagues and students who have given me encourage­
ment and advice, and have carefully read and used various stages of the manuscript. 
Special thanks are due to Jon Barwise, University of Wisconsin; G. R. Blakley, 
Texas A & M University; Kenneth A. Bowen, Syracuse University; William P. 
Francis, Michigan Technological University; A. W. M. Glass, Bowling Green 
University; Peter Loeb, University of Illinois at Urbana; Eugene Madison and 
Keith Stroyan, University of Iowa; Mark Nadel, Notre Dame University; Sister 
Kathleen Sullivan, Barat College; and Frank Wattenberg, University of Massa­
chusetts. 

H. Jerome Keisler 
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INTRODUCTION 

While arithmetic deals with sums, differences, products, and quotients, calculus 
deals with derivatives and integrals. The derivative and integral can be described in 
everyday language in terms of an automobile trip. An automobile instrument panel 
has a speedometer marked off in miles per hour with a needle indicating the speed. 
The instrument panel also has an odometer which tallies up the distance travelled in 
miles (the mileage). 

90 

o~------~~------~100 

Speedometer-derivative 

Odometer-integral 

Both the speedometer reading and the odometer reading change with time; 
that is, they are both "functions of time." The speed shown on the speedometer is 
the rate of change, or derivative, of the distance. Speed is found by taking a very small 
interval of time and forming the ratio of the change in distance to the change in time. 
The distance shown on the odometer is the integral of the speed from time zero to the 
present. Distance is found by adding up the distance travelled from the first use of the 
car to the present. 

The calculus has a great variety of applications in the natural and social 
sciences. Some of the possibilities are illustrated in the problems. However, future 
applications are hard to predict, and so the student should be able to apply the 
calculus himself in new situations. For this reason it is important to learn why the 
calculus works as well as what it can do. To explain why the calculus works, we 
present a large number of examples, and we develop the mathematical theory with 
great care. 

xi 



REAL AND 
HYPER REAL 
NUMBERS 

1 

Chapter 1 takes the student on a direct route to the point where it is possible to 
study derivatives. Sections 1.1 through 1.3 are reviews of precalculus material and 
can be skipped in many calculus courses. Section 1.4 gives an intuitive explanation 
of the hyperreal numbers and how they can be used to find slopes of curves. This 
section has no problem set and is intended as the basis for an introductory lecture. 
The main content of Chapter 1 is in the last two sections, 1.5 and 1.6. In these 
sections, the student will learn how to work with the hyperreal numbers and in 
particular how to compute standard parts. Standard parts are used at the beginning 
of the next chapter to find derivatives of functions. Sections 1.5 and 1.6 take the 
place of the beginning chapter on limits found in traditional calculus texts. 

For the benefit of the interested student, we have included an Epilogue at 
the end of the book that presents the theory underlying this chapter. 

1 THE REAL LINE 

Familiarity with the real number system is a prerequisite for this course. A review of 
the rules of algebra for the real numbers is given in the appendix. For convenience, 
these rules are also listed in a table inside the front cover. The letter R is used for 
the set of all real numbers. We think of the real numbers as arranged along a straight 
line with the integers (whole numbers) marked off at equal intervals, as shown in 
Figure 1.1.1. This line is called the real line. 

-4 -3 -2 -l 

Figure 1.1.1 The real line. 

0 2 3 4 

In grade school and high school mathematics, the real number system is 
constructed gradually in several stages. Beginning with the positive integers, the 
systems of integers, rational numbers, and finally real numbers are built up. One 
way to construct the set of real numbers is as the set of all non terminating decimals. 



2 1 REAL AND HYPER REAL NUMBERS 

After constructing the real numbers, it is possible to prove the familiar rules for 
sums, differences, products, quotients, exponents, roots, and order. In this course, 
we take it for granted that these rules are familiar to the student, so that we can 
proceed as quickly as possible to the calculus. 

Before going on, we pause to recall two special points that are important 
in the calculus. First, division by zero is never allowed. Expressions such as 

2 

0' 
0 

0' 
X 

o' 
5 

1 + 3 - 4 

are always considered to be undefined. 
Second, a positive real number c always has two square roots, Jc and 

- Jc, and Jc always stands for the positive square root. Negative real numbers 
do not have real square roots. For each positive real number c, Jc is positive and 
~ is undefined. 

On the other hand, every real number has one real cube root. If c > 0, c 
has the positive cube root~, and -c has the negative cube root .J~ = -~. 

In calculus, we often deal with sets of real numbers. By a setS of real numbers, 
we mean any collection of real numbers, called members of S, elements of S, or 
points inS. 

A simple but important kind of set is an interval. Given two real numbers 
a and b with a < b, the closed interval [a, b] is defined as the set of all real numbers 
x such that a :::;; x and x :::;; b, or more concisely, a :::;; x :::;; b. 

The open interval (a, b) is defined as the set of all real numbers x such that 
a < x < b. Closed and open intervals are illustrated in Figure 1.1.2. 

a b 
The closed interval [a, b) 

a b 

Figure1.1.2 The open interval (a, b) 

For both open and closed intervals, the number a is called the lower endpoint, 
and b the upper endpoint. The difference between the closed interval [a, b] and the 
open interval (a, b) is that the endpoints a and b are elements of [a, b] but are not 
elements of (a, b). When a :::;; x :::;; b, we say that xis between a and b; when a < x < b, 
we say that xis strictly between a and b. 

Three other types of sets are also counted as open intervals: the set (a, YJ) of 
all real numbers x greater than a; the set (-OJ, b) of all real numbers x less than b, 
and the whole real line R. The real line R is sometimes denoted by (- x, 'lJ ). The 
symbols JJ and - :x::, read "infinity" and "minus infinity," do not stand for numbers; 
they are only used to indicate an interval with no upper endpoint, or no lower 
endpoint. 

Besides the open and closed intervals, there is one other kind of interval, 
called a halfopen interval. The set of all real numbers x such that a :::;; x < b is a half­
open interval denoted by [a, b). The set of all real numbers x such that a :::;; xis also a 
half-open interval and is written [a, OJ). Here is a table showing the various kinds of 
intervals. 
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Table 1.1.1 Kinds of Intervals 

Type Symbol Defining Formula 

Closed [a,b] as;xs;b 
Open (a, b) a<x<b 
Open (a, oo) a<x 
Open (-oo,b) x<b 
Open (-oo, oo) 
Half-open [a, b) a:S;x<b 
Half-open [a, oo) a:S;x 
Half-open (a, b] a<x:S;b 
Half-open ( -00, b] x:S;b 

We list some other important examples of sets of real numbers. 

(1) The empty set 0, which has no elements. 
(2) The finite set {au ... , an}, whose only elements are the numbers 

al>a2 , •.• ,an. 
(3) The set of all x such that x =!= 0. 
(4) The set N = {1, 2, 3, 4, ... } of all positive integers. 
(5) The set Z = { ... , -3, -2, -1, 0, 1, 2, 3, ... } of all integers. 
(6) The set Q of all rational numbers. A rational number is a quotient 

mjn where m and n are integers and n =1= 0. 

While real numbers correspond to points on a line, ordered pairs of real 
numbers correspond to points on a plane. This correspondence gives us a way to 
draw pictures of calculus problems and to translate physical problems into the 
language of calculus. It is the starting point of the subject called analytic geometry. 

An ordered pair of real numbers, (a, b), is given by the first number a and the 
second number b. For example, (1, 3), (3, 1), and (1, 1) are three different ordered pairs. 
Following tradition, we use the same symbol for the open interval (a, b) and the 
ordered pair (a, b). However the open interval and ordered pair are completely 
different things. It will always be quite obvious from the context whether (a, b) stands 
for the open interval or the ordered pair. 

We now explain how ordered pairs of real numbers correspond to points in 
a plane. A system of rectangular coordinates in a plane is given by a horizontal and a 
vertical copy of the real line crossing at zero. The horizontal line is called the horizontal 
axis, or x-axis, while the vertical line is called the vertical axis, or y-axis. The point 
where the two axes meet is called the origin and corresponds to the ordered pair (0, 0). 
Now consider any point Pin the plane. A vertical line through P will cross the x-axis 
at a real number x 0 , and a horizontal line through P will cross the y-axis at a real 
number y0 • The ordered pair (x0 , y0) obtained in this way corresponds to the point P. 
(See Figure 1.1.3.) We sometimes call P the point (x0 , y0 ) and sometimes write 
P(x 0 , y0 ). x 0 is called the x-coordinate of P and y0 they-coordinate of P. 

Conversely, given an ordered pair (x0 , y0 ) of real numbers there is a corre­
sponding point P(x0 , y0 ) in the plane. P(x0 , y0 ) is the point of intersection of the 
vertical line crossing the x-axis at x0 and the horizontal line crossing the y-axis at Yo. 
We have described a one-to-one correspondence between all points in the plane and all 
ordered pairs of real numbers. 

From now on, we shall simplify things by identifying points in the plane with 
ordered pairs of real numbers, as shown in Figure 1.1.4. 

3 



4 1 REAL AND HYPER REAL NUMBERS 

y y 

Yo --------------, P(xo, Yo) 
I 
I 
I 
I 
I 
I 

(0, 0) Xo 

Figure 1.1.3 

DEFINITION 

X 

(0, y) -------------, (x, y) 
I 
I 
I 
I 
I 
I 

(0, 0) (x, 0) 

Figure 1.1.4 

X 

The (x, y) plane is the set o{ all ordered pairs (x, y) of rea/numbers. The origin 
is the point (0, 0). The x-axis is the set of all points of the form (x, 0), and the 
y-axis is the set of all points of the form (0, y). 

The x- and )·-axes divide the rest of the plane into four parts called quadrants. 
The quadrants are numbered I through IV, as shown in Figure 1.1.5. 

In Figure 1.1.6, P(x 1 , y 1 ) and Q(x 2 , y2 ) are two different points in the (x, y) 
plane. As we move from P to Q, the coordinates x andy will change by amounts that 
we denote by f..x and L'.y. Thus 

change in x = l-.x == x 2 - x 1 , 

change in_\' = l-.y = J'z - Yt· 

The quantities f..x and L'..r may be positive, negative, or zero. For example, when 
x 2 > x 1 , L'.x is positive, and when x 2 < x 1 , L'.x is negative. Using f..x and f..y we define 
the basic notion of distance. 

II 
X <0, Y >0 X> 0, y > 0 

III IV 

X <0, y <0 X> 0, y < 0 

Figure 1.1.5 Quadrants 

DEFINITION 

y 

0 

Figure 1.1.6 

d·1.\"~ ~,_.·yj'i1 Q p l~y 
p ~·~----------~ 

~X 

The distance betll'een the poillts P(x 1 , y tl and Q(x2 , h) is the quantit_r 

When we square both sides of the distance formula, we obtain 

[distance (P, Q)F = (L'.x) 2 + (L'.y) 2
. 

X 
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One can also get this formula from the Theorem of Pythagoras in geometry: The 
square of the hypotenuse of a right triangle is the sum of the squares of the sides. 

EXAMPLE 1 Find the distance between P(7, 2) and Q(4, 6) (see Figure 1.1.7). 

tu = 4- 7 = -3, L'l.y = 6- 2 = 4. 

distance (P, Q) = Jc- 3) 2 + 42 = 5. 

We often deal with sets of points in the plane as well as on the line. One 
way to describe a set of points in the plane is by an equation or inequality in two 
variables, say x and y. A solution of an equation in x and y is a point (x 0 , y 0 ) in 
the plane for which the equation is true. The set of all solutions is called the locus, 
or graph, of the equation. The circle is an important example of a set of points in 
the plane. 

y Q(4,6) 

X 

Figure1.1.7 

DEFINITION OF CIRCLE 

The set of all points in the plane at distance rfrom a point Pis called the circle 
of radius rand center P. 

Using the distance formula, we see that the circle of radius rand center at the 
origin (Figure 1.1.8) is the locus of the equation 

xz + yz = ,.z_ 

The circle of radius rand center at P(h, k) (Figure 1.1.8) is the locus of the equation 

(X_ h)z + (y _ k)2 = r2. 

y y 

X X 

Figure 1.1.8 (x -h)z + (y -k)z = ,.z 
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For example, the circle with radius 3 and center at P(2, - 4) has the equation 

(x - 2) 2 + (y + 4)2 = 9. 

PROBLEMS FOR SECTION 1.1 

In Problems 1-6, find the distance between the points P and Q. 
I ?(2, 9), Q(- 1, 13) 2 ?(1, - 2), Q(2, 10) 

3 P(O,O),Q(-2,-3) 4 P(-1,-1),Q(4,4) 

5 P(6, 1), Q( -7, 1) 6 ?(5, 10), Q(9, 10) 

Sketch the circles given in Problems 7-12. 

7 

9 

11 

13 

14 

0 15 

0 16 

0 17 

x2 + y2 = 4 

(x - 1)2 + (y + 2)2 = 1 

(x - 1)2 + (y - V = 2 

8 

10 

12 

(x + 2)2 + (y + W = 9 

(x + 3)2 + (y - 4? = 25 

Find the equation of the circle of radius 2 with center at (3, 0). 

Find the equation of the circle of radius J3 with center at ( -1, - 2). 

There are two circles of radius 2 that have centers on the line x = 1 and pass through 
the origin. Find their equations. 

Find the equation of the circle that passes through the three points (0, 0), (0, 1), (2, 0). 

Find the equation of the circle one of whose diameters is the line segment from ( -1, 0) 
to (5, 8). 

1.2 FUNCTIONS OF REAL NUMBERS 

The next two sections are about real numbers only. The calculus deals with problems 
in which one quantity depends on one or more others. For example, the area of a 
circle depends on its radius. The length of a day depends on both the latitude and the 
date. The price of an object depends on the supply and the demand. The way in which 
one quantity depends on one or more others can be described mathematically by a 
function of one or more variables. 

DEFINITION 

A real fimction of one variable is a set f of ordered pairs of rea/numbers such 
that for every rea/number a one of the following two things happens: 

(i) There is exactly one rea/number b for which the ordered pair (a, b) is a 
member off. In this case we say that f(a) is defined and we write f(a) = b. 
The number b is called the value off at a. 

(ii) There is no rea/number b for which the ordered pair (a, b) is a member of 
f. In this case we say that f(a) is undefined. 

Thus f(a) = b means that the ordered pair (a, b) is an element of f. 
Here is one way to visualize a function. Imagine a black box labeled f as in 

Figure 1.2.1. Inside the box there is some apparatus, which we can't see. On both the 
left and right sides of the box there is a copy of the real line, called the input line and 
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Figure 1.2.1 

a 

D f(a) 

R 

Input 
line 

R 

Output 
line 

output line, respectively. Whenever we point to a number a on the input line, either 
one point b will light up on the output line to tell us that f(a) = b, or else nothing will 
happen, in which case f(a) is undefined. 

A second way to visualize a function is by drawing its graph. The graph of a 
real function f of one variable is the set of all points P(x, y) in the plane such that 
y = f(x). To draw the graph, we plot the value of x on the horizontal, or x-axis and 
the value of f(x) on the vertical, or y-axis. How can we tell whether a set of points in 
the plane is the graph of some function? By reading the definition of a function again, 
we have an answer. 

A set of points in the plane is the graph of some function f if and only if for 
each vertical line one of the following happens: 

( 1) Exactly one point on the line belongs to the set. 
(2) No point on the line belongs to the set. 

A vertical line crossing the x-axis at a point a will meet the set in exactly one 
point (a, b) if f(a) is defined and f(a) = b, and the line will not meet the set at all if 
f(a) is undefined. Try this rule out on the sets of points shown in Figure 1.2.2. 

y y y 

• 

X X Jx 

Graphs of functions 

y y y 

• 

X X X X 

Not graphs of functions 

Figure 1.2.2 
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Here are two examples of real functions of one variable. Each function will 
be described in two ways: the black box approach, where a rule is given for finding 
the value of the function at each real number, and the graph method, where an 
equation is given for the graph of the function. 

EXAMPLE 1 The square function. 
The square function is defined by the rule 

f(x) = x 2 

for each number x. The value of f(a) is found by squaring a. For instance, the 
values of f(O), f(2), f(- 3), f(r), f(r + 1) are 

f(O) = 0, 

f(r) = r2, 

f(2) = 4, f(- 3) = 9, 

f(r + 1) = r2 + 2r + 1. 

The graph of the square function is the parabola with the equation y = x 2 . 

The graph ofy = x 2
, with several points marked in, is shown in Figure 1.2.3. 

EXAMPLE 2 The reciprocal function. 
The reciprocal function g is given by the rule 

1 
g(x) = -. 

X 

g(x) is defined for all nonzero x, but is undefined at x = 0. Find the following 
values if they are defined: g(O), g(2), g(- tJ, g(iJ, g(r + I). 

g(O) is undefined. g(2) = 1. g(- tl = - 3. 

1 
g(7) 4 g(r + 1) = --. 

4 = 7· r + 1 

The graph of the reciprocal function has the equation y = ljx. This equation 
can also be written in the form xy = 1. The graph is shown in Figure 1.2.4. 

In Examples 1 and 2 we have used the variables x andy in order to describe 
a function. A variable is a letter which stands for an arbitrary real number; that is, it 
"varies" over the real line. In the equation y = x 2

, the value of y depends on the value 
of x; for this reason we say that x is the independent variable and y the dependent 
variable of the equation. 

y 

y 

X 

( -2, 

X xy= I 

Figure 1.2.3 Figure 1.2.4 
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In describing a function, we do not always use x and y; sometimes other 
variables are more convenient, especially in problems involving several functions. 
The variable t is often used to denote time. 

It is important to distinguish between the symbol f and the expression f(x). 
f by itself stands for a function. f(x) is called a term and stands for the value of the 
function at x. The need for this distinction is illustrated in the next example. 

EXAMPLE 3 Let h be the function given by the rule 

h(t) = t 3 + l. 

t is a variable, h is a function, and h(t) is a term. The following expressions 
are also terms: h(!), h(x), h(t3

), h(t3
) + 1, h(t3 + 1), h(x)- h(t), h(t + M), 

h(t + Llt) - h(t). Find the values of each of these terms. 

The values are computed by careful substitution. 

h(1) = cw + 1 = 1i. 
h(x) = x 3 + 1. 

h(t3
) = (t3

)
3 + 1 = t9 + 1. 

h(t3
) + 1 = [(t3

)
3 + 1] + 1 = t9 + 2. 

h(t3 + 1) = (t 3 + 1)3 + 1 = t9 + 3t6 + 3t3 + 2. 

h(x) - h(t) = [x3 + 1] - [t 3 + 1] = x 3 
- t 3

. 

h(t + Llt) = (t + Llt) 3 + 1 = t 3 + 3t2 Llt + 3t Llt2 + Llt 3 + 1. 

h(t + M) - h(t) = [(t + M)3 + 1] - [t3 + 1] 

= [t 3 + 3t2 Llt + 3t Llt2 + Llt 3 + 1] - [t 3 + 1] 

= 3t2 Llt + 3t Llt2 + M 3
. 

The graph of h is given by the equation x = t 3 + 1. In this equation, t is the 
independent variable and x is the dependent variable. In Figure 1.2.5, the 
five points 

h( -1) = 0, h(-!) = ~. h(O) = 1, h(l) = 2 

are plotted and the graph is drawn. 

X 

X= ! 3 + 1 
Figure 1.2.5 
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DEFINITION 

The domain of a real function f of one variable is the set of all rea/numbers x 
such that f(x) is defined. 

The range off is the set of all values f(x) where x is in the domain of f. 

EXAMPLE 1 (Continued) The domain of the square function is the set R of all real 
numbers. The range is the interval [0, oo) of all nonnegative reals. 

EXAMPLE 2 (Continued) Both the domain and the range of the reciprocal function 
are equal to the set of all real x such that x i= 0. 

When a function is described by a rule, it is understood that the domain is 
the set of all real numbers for which the rule is meaningful. 

EXAMPLE 3 (Continued) The function h given by the rule 

h(t) = t 3 + 1 

has the whole real line as its domain and as its range. 

EXAMPLE 4 Let f be the function given by the rule 

f(x)=~. 

Thus f(x) is the positive square root of 1 - x 2
. The domain off is the closed 

interval [ -1, 1]. The range off is [0, 1]. 

For instance, 

f(- 2) is undefined, 

f(~) = Jl 
f( -1) = 0, 

f(l) = 0, 

The graph off is given by the equation y = )1-0. 
The equation can also be written in the form 

x 2 + y 2 = 1, y ~ 0. 

f(O) = 1, 

f(2) is undefined. 

The graph is just the upper half of the unit semicircle, shown in Figure 1.2.6. 

y 

X 

Figure 1 .2.6 
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Sometimes a function is described by explicitly giving its domain in addition 
to a rule. 

EXAMPLE 5 Let g be the function whose domain is the closed interval [1, 2] with the 
rule 

g(x) = x 2
. 

The domain and rule can be written in concise form with an equation and 
extra inequalities, 

Note that 

1 ::::; X::::; 2. 

g(O) is undefined g(l) = 1 

g(2) = 4 g(3) is undefined. 

The graph is described by the formulas 

and is drawn in Figure 1.2.7. 

Some especially important functions are the constant functions, the identity 
function, and the absolute value function. 

A real number is sometimes called a constant. This name is used to emphasize 
the difference between a fixed real number and a variable. 

For a given real number c, the function f with the rule 

f(x) = c 

is called the constant function with value c. It has domain R and range { c}. 

EXAMPLE 6 The constant function with value 5 is described by the rule 

f(x) = 5. 

Thus f(O) = 5, f(- 3) = 5, j(l,OOO,OOO) = 5. 

The graph (Figure 1.2.8) of the constant function with value 5 is given by the 
equation y = 5. 

y 

y 

( -3, 5) (0, 5) (10, 5) 

X X 

y=5 

Figure 1.2.7 Figure 1.2.8 
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EXAMPLE 7 The function f given by the rule 

f(x) = x 

is called the identity function. 

The graph (Figure 1.2.9) of the identity function is the straight line with the 
equation y = x. 

y 

X 

Figure 1.2.9 

The absolute value function is defined by a rule which is divided into two 
cases. 

DEFINITION 

The absolute value function I I is defined by 

{ 

X 
lxl = -~ 

if' X 2: 0. 

if"x < 0. 

The absolute value of x gives the distance between x and 0. It is always 
positive or zero. For example, 

131 = 3, 1-31 = 3, 101 = 0. 

The domain of the absolute value function is the whole real lineR while its range is the 
interval [0, :x: ). 

The absolute value function can also be described by the rule 

lxl=fi?". 
Its graph is given by the equation y = p. The graph is the V shown in Figure 1.2.10. 

y 

(2, 2) 

X 

Figure 1.2.10 
y= lxl 
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If a and b are two points on the real line, then from the definition of Jxl we see that 

{
a- b 

Ia- bi = 
b- a 

if a ;:::: b, 

if b ;:::: a. 

Thus Ja - bi is the difference between the larger and the smaller of the two numbers. 
In other words, Ia - bi is the distance between the points a and b, as illustrated in 
Figure 1.2.11. 

a b b a 

f-Ja-bJ--J 
Figure 1.2.11 

For example, 12 - 51 = 3, 14 - ( -4)1 = 8. Here are some useful facts about absolute 
values. 

THEOREM 1 

Let a and b be rea/numbers. 

(i) 1-al = Ia!. 
(ii) Jab! = lal • lbJ. 

(iii) If b "# 0, la/bl = Jai/JbJ. 

PROOF We use the equation Jxl = p. 
(i) 1-ai=~=P=Ial. 

(ii) JabJ = ~ = Pb2 = .. Jaz P = Jal ·lbJ. 
(iii) The proof is similar to (ii). 

Warning The equation Ia + bl = Jal + Jbl is false in general. For example, 
12 + (- 3)1 = 1, while 121 + I(- 3)1 = 5. 

Functions arise in a great variety of situations. Here are some examples. 

Geometry: 

Physics: 

nr2 = area of a circle of radius r 

4m·2 = surface area of a sphere of radius r 

%m·3 = volume of a sphere of radius r 

sin e = the sine of the angle e 

s(t) = distance a particle travels from time 0 to t 

v(t) = velocity of a particle at time t 

a(t) = acceleration of a particle at time t 

p(y) = water pressure at depth y below the surface 

C = ~(F - 32) = Celsius temperature as a 
function of Fahrenheit temperature 
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Economics: 

f(t) = population at time t 

p(t) = price of a commodity at time t 

c(x) = cost of x items of a commodity 

D(p) = demand for a commodity at price p, i.e., the 
amount which can be sold at price p 

Functions of two or more variables can be dealt with in a similar way. Here 
is the precise definition of a function of two variables. 

DEFINITION 

A l'ea/ function of two variables is a set f of ordered triples of real numbers 
such that for every ordered pair of rea/numbers (a, b) one of the following two 
things occurs: 

(i) There is exactly one rea/number c for which the ordered triple (a, b, c) is 
a member of f. In this case, f(a, b) is defined and we write: 

f(a, b)= c. 

(ii) There is no rea/number c for which the ordered triple (a, b, c) is a member 
of f. In this case f(a, b) is called undefined. 

Iff is a real function of two variables, then the value of f(x, y) depends on 
both the value of x and the value of y when f(x, y) is defined. 

A real function f of two variables can be visualized as a black box with two 
input lines and one output line, as in Figure 1.2.12. 

Figure 1.2.12 

input 
lines 

X y 

a 

z 

f(a, b) 

output 
line 

The domain of a real function f of two variables is the set of all pairs of real 
numbers (x, y) such that f(x, y) is defined. 

The most important examples of real functions of two variables are the sum, 
difference, product, and quotient functions: 

f(x,y) = x + y, 

f(x,y) = x- y, 

f(x, y) = xy, 

f(x, y) = xjy. 

The sum, difference, and product functions have the whole plane as domain. The 
domain of the quotient function is the set of all ordered pairs (x, y) such that y i= 0. 
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Here are some examples of functions of two or more variables arising in 
applications. 

Geometry: 

ab = area of a rectangle of sides a and b 

abc = volume of a rectangular solid 

-!bh = area of a triangle with base b and height h 

nr2h = volume of a cylinder with circular base of radius rand height h 

1nr2h = volume of a cone with circular base of radius rand height h 

Jx2 + l = distance from the origin to (x, y) 

Physics: 

F = ma = force required to give a mass m an acceleration a 

p(x, y, z) = density of a three-dimensional object at the point (x, y, z) 

F = Gm 1m2/s 2 =gravitational force between objects of mass m 1 and m2 at 
distances 

m = J mo = relativistic mass of an object with rest mass m0 and 
1 - v

2
fc

2 velocity v 

Economics: 

c(x, y) = cost of x items of one commodity and y items of another 
commodity 

D1(p1 , p2) = demand for commodity one when commodity one has price p1 

and commodity two has price p2 

PROBLEMS FOR SECTION 1.2 

For each of the following functions (Problems 1-8), make a table showing the value of f(x) 
when x = -1, -t, 0, t, 1. Put a* where.f(x) is undefined. Example: 

1 X I -1 -t 0 t 
f(x)=~ f(x) -1 -2 * 2 

1 f(x) = x/3 2 f(x) = 3 

3 f(x) = 3x3 
- 5x2 + 2 4 f(x) = 1/(x - 1) 

5 f(x) = Fx 6 f(x) =!xi 
7 f(x) = lx- fl + lx + fl 

8 f(x) = Jx2=l 
9 Is the set of ordered pairs { (3, 2), (0, 1 ), ( 4, 2)} a function? 

10 Is the set of ordered pairs {(0, 2), (3, 6), (3, 4)} a function? 

11 Iff is the function f(x) = 1 + x + x2
, find f(2),f(t),f(t + 8t),j(l + t + t2 ),j(g(t)). 

12 Ifj(x) = 1/x, findf(t),f(t + M),f(t 2 ),j(ljt),f(g(t)). 

13 Ifj(x) = xfi, findj(t),f(t + M),f(t 2 ),f(J"i),j(g(t)). 

14 Ifj(x) = ax + b, findj(ct + il),f(t2 ),j(1jt),j(tja),j(g(t)). 

For each of the following functions (Problems 15-20), findf(x + 8x)- f(x). 

15 f(x) = 4x + 1 16 f(x) = x2 
- x 
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17 

19 

21 

22 

23 

24 

25 

D 26 

f(x)=x- 2 

f(x) = fi 
18 

20 

f(x) = x4 

f(x) = 4 

Find the domain of the functionf(x) = !j(x 2 
- 1). 

Find the domain of the functionf(z) = ~· 
What is the domain of the functionf(x) = fi:? 
What is the domain of the functionf(t) = .J It I? 
What is the domain of the functionf(x) = 1/~? 
Show that if a and b have the same sign then Ia + bl = Ia I+ lbl, and if a and b have 
opposite signs then Ia + bl < Ia I+ lbl. 

1.3 STRAIGHT LINES 

DEFINITION 

Let P(x 0 , y0 ) be a point and let m be a real number. The line through P with 
slope m is the set of all points Q(x, y) with 

y - Yo = m(x - x 0 ). 

This equation is called the point-slope equation of the line (See Figure 1.3.1.) 

The vertical line through Pis the set of all points Q(x, y) with x = x 0 • Vertical 
lines do not lwL"e slopes. 

y 

X 

Figure 1.3.1 

The slope is a measure of the direction of the line. Figure 1.3.2 shows lines 
with zero, positive, and negative slopes. 

The line that crosses they-axis at the point (0, b) and has slope m has the 
simple equation. 

Slope= 0 

Figure 1.3.2 

y = mx +b. 

Slope> 0 Slope <0 Vertical 
no slope 
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This is called the slope-intercept equation for the line. We can get it from the point­
slope equation by setting x0 = 0 and Yo = b. 

EXAMPLE 1 The line through the point P( -1, 2) with slope m = -t (Figure 1.3.3) 
has the point-slope equation 

y- 2 = (x- (-1))•(-!), or y- 2 = -t{x + 1). 

The slope-intercept equation is 

Y = -ix +H. 

y 

X 

Figure 1.3.3 

We now describe the functions whose graphs are nonverticallines. 

DEFINITION 

A linear function is a function f of the form 

f(x) = mx + b, 

where m and b are constants. 

The graph of a linear function is just the line with slope-intercept equation 

y = mx +b. 

This is the line through (0, b) with slope m. 
If two points on a line are known, the slope can be found as follows. 

THEOREM 1 

Suppose a line L passes through two distinct points P(xi, Yi) and Q(x 2 , Y2). 
Ifx 1 = x 2 , then the line Lis vertical. Ifx 1 "# x 2 , then the slope of the line Lis 
equal to the change in y divided by the change in x, 

8y Yz- Y1 m=-=::..-=. _ _c__;:_ 

8x x 2 - X1 

PROOF Suppose x 1 "# x 2 , so L is not vertical. Let m be the slope of L. L has the 
point-slope formula 

Y- Y1 = m(x - x1). 

Substituting y2 for y and x 2 for x, we see that m = (y 2 - YI)/(x2 - Xi)· 

Theorem 1 shows why the slope of a line is a measure of its direction. Some-
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times Llx is called the run and Lly the rise. Thus the slope is equal to the rise divided 
by the run. A large positive slope means that the line is rising steeply to the right, 
and a small positive slope means the line rises slowly to the right. A negative slope 
means that the line goes downward to the right. These cases are illustrated in 
Figure 1.3.4. 

Large positive 
slope 

Figure 1.3.4 

Small positive 
slope 

~Q ~y~ 

Negative 
slope 

There is exactly one line L passing through two distinct points P(x 1, y 2) 

and Q(x2 , y 2). If x 1 =P x 2 , we see from Theorem 1 that L has the equation 

(Y2- YJ) Y - Y 1 = (x - x 1). 
Xz- xl 

This is called the two-point equation for the line. 

EXAMPLE 2 Given P(3, 1) and Q(l, 4), find the changes in x and y, the slope, and 
the equation of the line through P and Q. (See Figure 1.3.5.) 

Llx = 1 - 3 = - 2, Lly = 4- 1 = 3. 

The line through P and Q has slope LlyjLlx = -t, and its equation is 

y - 1 = -~(x - 3). 

0 

Figure 1.3. 5 

y - I = -1(x - 3) 
2 

X 

EXAMPLE 3 Given P(l, -1) and Q(l, 2), as in Figure 1.3.6, 

Llx = 1 - 1 = 0, Lly = 2 - ( -1) = 3. 

The line through P and Q is the vertical line x = 1. 
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y 

Q(l, 2) 

0 X 
P(l, -1) 

Figure 1.3.6 

EXAMPLE 4 A particle moves along the y-axis with constant velocity. At time 
t = 0 sec, it is at the pointy = 3 ft. At timet = 2 sec, it is at the pointy = 11ft. 
Find the velocity and the equation for the motion. 

The velocity is defined as the distance moved divided by the time elapsed, so 
the velocity is 

L1y 11 - 3 
v =-=--=4ft/sec. 

L1t 2- 0 

If the motion of the particle is plotted in the (t, y) plane as in Figure 1.3.7, 

Figure 1.3.7 

the result is a line through the points P(O, 3) and Q(2, 11). The velocity, 
being the ratio of L1y to L1t, is just the slope of this line. The line has the 
equation 

y- 3 = 4t. 

Suppose a particle moving with constant velocity is at the point y = y1 at 
time t = t 1 , and at the pointy = Y2 at time t = t2 • Then the velocity is v = L1y/L1t. 
The motion of the particle plotted on the (t, y) plane is the line passing through the 
two points (t1 , y1 ) and (t2 , y 2 ), and the velocity is the slope of this line. 

An equation of the form 

Ax+ By+ C = 0 
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where A and Bare not both zero is called a linear equation. The reason for this name is 
explained by the next theorem. 

THEOREM 2 

Every linear equation determines a line. 

PROOF 

Case 1 B = 0. The equation Ax+ C = 0 can be solved for x, x = -CjA. This is a 
vertical line. 

Case 2 B # 0. In this case, we can solve the given equation for y, and the result is 

y= 
-Ax- C 

B 

A C 
y =--X--. 

B B 

This is a line with slope - A/B crossing the y-axis at - CjB. 

EXAMPLE 5 Find the slope of the line 6x - 2y + 7 = 0. 

The answer ism = - AjB = - 6/(- 2) = 3. 

To draw the graph of a linear equation, find two points on the line and 
draw the line through them with a ruler. 

EXAMPLE 6 Draw the graph of the line 4x + 2y + 3 = 0. 

First solve for y as a function of x: 

y = -2x- f. 
Next select any two values for x, say x = 0 and x = I, and compute the 
corresponding values of y. 

When 

When 

X 

X 

= 0, 

= I, 

y = 3 
-2· 

y = 7 
I· 

Finally, plot the two points (0, -~)and (1, -~),and draw the line through 
them. (See Figure 1.3.8.) 

.\' 

X 

Figure 1.3.8 4x + 2y + 3 = 0 



1.4 SLOPE AND VELOCITY; THE HYPERREAL LINE 

PROBLEMS FOR SECTION 1.3 

In Problems 1-8, find the slope and equation of the line through P and Q. 
1 P(l, 2), Q(3, 4) 2 P(l, - 3), Q(O, 2) 

3 P( -4, 1), Q( -4, 2) 4 P(2, 5), Q(2, 7) 

5 P(3, 0), Q(O, 1) 6 P(O, 0), Q(lO, 4) 

7 P(l, 3), Q(3, 3) 8 P(6, - 2), Q(l, - 2) 

In Problems 9-16, find the equation of the line with slope m through the point P. 

9 m=2, P(3,3) 10 m=3, P(-2,1) 

11 

13 

15 

m- _l. 
- 2• 

m= 5, 

Ill= 0, 

P(1, -4) 

P(O, 0) 

P(7, 4) 

12 

14 

16 

Ill= -1, 

Ill= -2, 

vertical line, 

P(2, 4) 

P(O, 0) 

P(4, 5) 

In Problems 17-22, a particle moves with constant velocity and has the given positions y at the 
given times t. Find the velocity and the equation of motion. 

17 y = 0 at t = 0, y = 2 att = 1 

18 

19 

20 

21 

22 

y = 3 at t = 0, 

y = 4 at t = 1, 

y = 1 at t = 2, 

y = 4 at t = 0, 

y = 1 at t = 3, 

y = 1 at t = 2 

y = 2 at t = 5 

y = 3 at t = 3 

y = 4 at t = 1 

y = -2 at t = 6 

23 A particle moves with constant velocity 3, and at time t = 2 is at the pointy = 8. Find 
the equation for its motion. 

24 A particle moves with constant velocity ±, and at time t = 0 is at y = 1. Find the 
equation for its motion. 

In Problems 25-30, find the slope of the line with the given equation, and draw the line. 

25 3x - 2y + 5 = 0 26 x + y - 1 = 0 

27 2x- y = 0 28 6x + 2y = 0 

29 3x + 4y = 6 30 - 2x + 4y = -1 

31 Show that the line that crosses the x-axis at a =1= 0 and the y-axis at b =1= 0 has the 
equation (xfa) + (yfb) - 1 = 0. 

32 What is the equation of the line through the origin with slope m? 

33 Find the points at which the line ax + by + c = 0 crosses the x- and y-axes. (Assume 
that a =1= 0 and b =1= 0.) 

34 Let C denote Celsius temperature and F Fahrenheit temperature. Thus, C = 0 and 
F = 32 at the freezing point of water, while C = 100 and F = 212 at the boiling point 
of water. Use the two-point formula to find the linear equation relating C and F. 

SLOPE AND VELOCITY; THE HYPER REAL LINE 

In Section 1.2 the slope of the line through the points (x1 , y 1) and (x 2 , y2 ) is shown 
to be the ratio of the change in y to the change in x, 

Ay Yz- Y1 
slope = - = ~-.c._::_ 

Ax x 2 - x1 

21 

hjkeisler
Text Box
1.3
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If the line has the equation 

y = mx + b, 

then the constant m is the slope. 
What is meant by the slope of a cul've? The differential calculus is needed to 

answer this question, as well as to provide a method of computing the value of the 
slope. We shall do this in the next chapter. However, to provide motivation, we now 
describe intuitively the method of finding the slope. 

Consider the parabola 

J' = x2. 

The slope will measure the direction of a curve just as it measures the direction of a 
line. The slope of this curve will be different at different points on the x-axis, because 
the direction of the curve changes. 

If (x 0 ,;·0 ) and (.\' 0 + fix, .l'o + fly) are two points on the curve, then the 
"average slope" of the curve between these two points is defined as the ratio of the 
change in y to the change in x, 

fir 
average slope = -· . 

fix 

This is exactly the same as the slope of the straight line through the points (x0 , .l'o) 
and (x0 + fix, Yo + fl.r), as shown in Figure 1.4.1. 

y 

(xo + .6x, Yo+ ily) 

X 
Figure 1.4.1 

Let us compute the average slope. The two points (x0 , y0 ) and (x 0 + fix, y0 + fly) 
are on the curve, so 

Subtracting, 

Dividing by fix, 

This can be simplified, 

Yo = xii, 

Yo + fly = (xo + flx)2. 

fly 

fix 

fly = (x 0 + flx) 2 
- x6. 

fly (x 0 + flx) 2 - x6 

fix fix 

x6 + 2x0 fix + (flx) 2 
- x6 

fix 

2x0 fix + (flx)2 
---fl-,--x ___ = 2x 0 + fix. 



Thus the average slope is 
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L'ly 
- = 2x0 + L'lx. 
L'lx 

Notice that this computation can only be carried out when L'lx t= 0, because at 
L'lx = 0 the quotient L'lyjllx is undefined. 

Reasoning in a nonrigorous way, the actual slope of the curve at the point 
(x 0 ,)'0 ) can be found thus. Let L'lx be very small (but not zero). Then the point 
(x 0 + L'lx, Yo + L'ly) is close to (x0 , y0 ), so the average slope between these two points 
is close to the slope of the curve at (x0 , y0 ); 

[slope at (x0 , y0 )] is close to 2x0 + L'lx. 

We neglect the term L'lx because it is very small, and we are left with 

[slope at (x 0 , y 0 )] = 2x0 . 

For example, at the point (0, 0) the slope is zero, at the point (1, 1) the slope is 2, and 
at the point (- 3, 9) the slope is - 6. (See Figure 1.4.2.) 

X 

Figure 1.4.2 

The whole process can also be visualized in another way. Lett represent time, 
and suppose a particle is moving along they-axis according to the equation y = t 2

. 

That is, at each time t the particle is at the point t2 on they-axis. We then ask: what 
is meant by the velocity of the particle at time t0? Again we have the difficulty that the 
velocity is different at different times, and the calculus is needed to answer the question 
in a satisfactory way. Let us consider what happens to the particle between a time t 0 

and a later time t0 + L'lt. The time elapsed is L'lt, and the distance moved is L'ly = 
2t0 L1t + (L'lt)2

. If the velocity were constant during the entire interval of time, then it 
would just be the ratio L'ly/L'lt. However, the velocity is changing during the time 
interval. We shall call the ratio L'ly/L'lt of the distance moved to the time elapsed the 
"average velocity" for the interval; 

L'ly 
Vave = L'lt = 2to + L'lt. 

The average velocity is not the same as the velocity at time t0 which we are after. As a 
matter of fact, for t0 > 0, the particle is speeding up; the velocity at time t0 will be 
somewhat less than the average velocity for the interval of time between t0 and t0 + L'lt, 
and the velocity at time t0 + L'lt will be somewhat greater than the average. 
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But for a very small increment of time Lit, the velocity will change very little, 
and the average velocity Liy/ Lit will be close to the velocity at time t0 . To get the 
velocity v0 at time t0 , we neglect the small term Lit in the formula 

Dave = 2to + Lit, 

and we are left with the value 

v0 = 2t0 . 

When we plot y against t, the velocity is the same as the slope of the curve 
y = t 2

, and the average velocity is the same as the average slope. 
The trouble with the above intuitive argument, whether stated in terms of 

slope or velocity, is that it is not clear when something is to be "neglected." Neverthe­
less, the basic idea can be made into a useful and mathematically sound method of 
finding the slope of a curve or the velocity. What is needed is a sharp distinction 
between numbers which are small enough to be neglected and numbers which aren't. 
Actually, no real number except zero is small enough to be neglected. To get around 
this difficulty, we take the bold step of introducing a new kind of number, which is 
infinitely small and yet not equal to zero. 

A number e is said to be irifinitely small, or infinitesimal, if 

-a < e <a 

for every positive real number a. Then the only real number that is infinitesimal is 
zero. We shall use a new number system called the hypeiTeal numbers, which contains 
all the real numbers and also has infinitesimals that are not zero. Just as the real 
numbers can be constructed from the rational numbers, the hyperreal numbers can 
be constructed from the real numbers. This construction is sketched in the Epilogue 
at the end of the book. In this chapter, we shall simply list the properties of the 
hyperreal numbers needed for the calculus. 

First we shall give an intuitive picture of the hyperreal numbers and show 
how they can be used to find the slope of a curve. The set of all hyperreal numbers is 
denoted by R*. Every real number is a member of R*, but R* has other elements too. 
The infinitesimals in R* are of three kinds: positive, negative, and the real number 0. 
The symbols Lix, Liy, ... and the Greek letters e (epsilon) and Ci (delta) will be used for 
infinitesimals. If a and bare hyperreal numbers whose difference a - b is infinitesimal, 
we say that a is irifinitely close to b. For example, if Lix is infinitesimal then x 0 + Lix is 
infinitely close to x 0 . If e is positive infinitesimal, then - e will be a negative infinitesi­
mal. 1/e will be an irifinite positive number, that is, it will be greater than any real 
number. On the other hand, - 1/e will be an infinite negative number, i.e., a number 
less than every real number. Hyperreal numbers which are not infinite numbers are 
called finite numbers. Figure 1.4.3 shows a drawing of the hyperrealline. The circles 
represent "infinitesimal microscopes" which are powerful enough to show an infinitely 
small portion of the hyperrealline. The set R of real numbers is scattered among the 
finite numbers. About each real number c is a portion of the hyperrealline composed 
of the numbers infinitely close to c (shown under an infinitesimal microscope for 
c = 0 and c = 100). The numbers infinitely close to 0 are the infinitesimals. 

In Figure 1.4.3 the finite and infinite parts of the hyperrealline were separated 
from each other by a dotted line. Another way to represent the infinite parts of the 
hyperrealline is with an "infinite telescope" as in Figure 1.4.4. The field of view of an 
infinite telescope has the same scale as the finite portion of the hyperreal line, while 
the field of view of an infinitesimal microscope contains an infinitely small portion 
of the hyperrealline blown up. 
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-e 0 E 

Figure 1.4.3 
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Finite 

Finite 

-2 -1 0 1 2 

-€ 0 E 

Infinitesimal 
microscope 

Positive 
infinite 

Positive 
infinite-

~+1 

----

Infinite 
telescope 

--

We have no way of knowing what a line in physical space is really like. 
It might be like the hyperrealline, the real line, or neither. However, in applications 
of the calculus it is helpful to imagine a line in physical space as a hyperreal line. 
The hyperreal line is, like the real line, a useful mathematical model for a line in 
physical space. 

The hyperreal numbers can be algebraically manipulated just like the real 
numbers. Let us try to use them to find slopes of curves. We begin with the parabola 
y = x2. 

Consider a real point (x0 , y0 ) on the curve y = x2
. Let ~x be either a positive 

or a negative infinitesimal (but not zero), and let ~y be the corresponding change in y. 
Then the slope at (x0 , y0 ) is defined in the following way: 

[slope at (x0 , y0)] = [the real number infinitely close to~~ J 
~y 

We compute- as before: 
~X 

~y (xo + ~xf - x6 
- = = 2x0 + ~x. 
~X ~X 

This is a hyperreal number, not a real number. Since ~xis infinitesimal, the hyperreal 
number 2x0 + ~xis infinitely close to the real number 2x0 . We conclude that 

[slope at (x0 , y0 )] = 2x0 . 
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y y 

X 

Figure 1.4.5 Figure 1.4.6 

y 

Figure 1.4. 7 

The process can be illustrated by the picture in Figure 1.4.5, with the infinitesimal 
changes L'.x and t.y shown under a microscope. 

The same method can be applied to other curves. The third degree curve 
y = x3 is shown in Figure 1.4.6. Let {x 0 , y0 ) be any point on the curve y = x3, and 
let L'.x be a positive or a negative infinitesimal. Let t.y be the corresponding change in 
y along the curve. In Figure 1.4.7, L'.x and 6.y are shown under a microscope. We again 
define the slope at (x 0 , y0 ) by 

[slope at {x0 , y0 )] = [the real number infinitely close to t.y]· 
L'.x 

t.y 
We now compute the hyperreal number-. 

L'.x 

Yo = x6, 

J'o + L'.y = (xo + L'.x)3, 

L'.y = (x 0 + L'.x) 3 - x6, 

L'.y (x 0 + L'.x)3 - x6 
t.x L'.x 

x6 + 3x6 L'.x + 3x0 (L'.x) 2 + (L'.x)3 - x6 
L'.x 

3x6 L'.x + 3x0 (6.x) 2 + (L'.x)3 



and finally 
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Lly 2 2 
Llx = 3x0 + 3x0 Llx + (Llx) . 

In the next section we shall develop some rules about infinitesimals which 
will enable us to show that since L'lx is infinitesimal, 

3x0 Llx + (Llx)2 

is infinitesimal as well. Therefore the hyperreal number 

3x6 + 3x0 Llx + (Llx)2 

is infinitely close to the real number 3x6, whence 

[slope at (x0 , y 0 )] = 3x6. 

For example, at (0, 0) the slope is zero, at (1, 1) the slope is 3, and at (2, 8) the 
slope is 12. 

We shall return to the study of the slope of a curve in Chapter 2 after we have 
learned more about hyperreal numbers. From the last example it is evident that we 
need to know how to show that two numbers are infinitely close to each other. This is 
our next topic. 

INFINITESIMAL, FINITE, AND INFINITE NUMBERS 

Let us summarize our intuitive description of the hyperreal numbers from Section 1.4. 
The real line is a subset of the hyperreal line; that is, each real number belongs to 
the set of hyperreal numbers. Surrounding each real number r, we introduce a 
collection of hyperreal numbers infinitely close to r. The hyperreal numbers infinitely 
close to zero are called infinitesimals. The reciprocals of nonzero infinitesimals are 
infinite hyperreal numbers. The collection of all hyperreal numbers satisfies the 
same algebraic laws as the real numbers. In this section we describe the hyperreal 
numbers more precisely and develop a facility for computation with them. 

This entire calculus course is developed from three basic principles relating 
the real and hyperreal numbers: the Extension Principle, the Transfer Principle, 
and the Standard Part Principle. The first two principles are presented in this section, 
and the third principle is in the next section. 

We begin with the Extension Principle, which gives us new numbers called 
hyperreal numbers and extends all real functions to these numbers. The Extension 
Principle will deal with hyperrealfunctions as well as real functions. Our discussion 
of real functions in Section 1.2 can readily be carried over to hyperreal functions. 
Recall that for each real number a, a real function! of one variable either associates 
another real number b = f(a) or is undefined. Now, for each hyperreal number 
H, a hyperreal function F of one variable either associates another hyperreal number 
K = F(H) or is undefined. For each pair of hyperreal numbers Hand J, a hyperreal 
function G of two variables either associates another hyperreal number K = G(H, J) 
or is undefined. Hyperreal functions of three or more variables are defined in a 
similar way. 

I. THE EXTENSION PRINCIPLE 

(a) The real numbers form a subset of the hyperreal numbers, and the order 
relation x < y for the real numbers is a subset of the order relation for 

h IT l n hers. 
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(b) There is a hyperreal number that is greater than zero but less than every 
positive real number. 

(c) For every realfunctionfofone or more variables we are given a con·e­
sponding hyperreal function f* of the same number of variables. f* is 
called the natural extension off 

Part (a) of the Extension Principle says that the real line is a part of the 
hyperreal line. To explain part (b) of the Extension Principle, we give a careful 
definition of an infinitesimal. 

DEFINITION 

A hyperrealnumber b is said to be: 

positive infinitesimal if b is positive but less than every positive real number. 

negative infinitesimal if b is negative but greater than every negative real 
number. 

infinitesimal if b is either positive infinitesimal, negative infinitesimal, or zero. 

With this definition, part (b) of the Extension Principle says that there is at 
least one positive infinitesimal. We shall see later that there are infinitely many 
positive infinitesimals. A positive infinitesimal is a hyperreal number but cannot be 
a real number, so part (b) ensures that there are hyperreal numbers that are not 
real numbers. 

Part (c) of the Extension Principle allows us to apply real functions to 
hyperreal numbers. Since the addition function + is a real function of two variables, 
its natural extension + * is a hyperreal function of two variables. If x and y are 
hyperreal numbers, the sum of x and y is the number x + * y formed by using the 
natural extension of +. Similarly, the product of x andy is the number x ·* y formed 
by using the natural extension of the product function •. To make things easier 
to read, we shall drop the asterisks and write simply x + y and x • y for the sum 
and product of two hyperreal numbers x and y. Using the natural extensions of 
the sum and product functions, we will be able to develop algebra for hyperreal 
numbers. Part (c) of the Extension Principle also allows us to work with expressions 
such as cos (x) or sin (x + cos (y)), which involve one or more real functions. We 
call such expressions real expressions. These expressions can be used even when 
x and yare hyperreal numbers instead of real numbers. For example, when x and y 
are hyperreal, sin (x +cos (y)) will mean sin* (x +cos* (y)), where sin* and cos* 
are the natural extensions of sin and cos. The asterisks are dropped as before. 

We now state the Transfer Principle, which allows us to carry out compu­
tations with the hyperreal numbers in the same way as we do for real numbers. 
Intuitively, the Transfer Principle says that the natural extension of each real function 
has the same properties as the original function. 

II. TRANSFER PRINCIPLE 

Every real statement that holds for one or more particular real functions holds 
for the hyperrealnatural extensions of these functions. 

Here are seven examples that illustrate what we mean by a real statement. 
In general, by a real statement we mean a combination of equations or inequalities 
about real expressions, and statements specifying whether a real expression is defined 
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or undefined. A real statement will involve real variables and particular real functions. 

(1) Closure law for addition: for any x andy, the sum x + y is defined. 
(2) Commutative law for addition: x + y = y + x. 
(3) A rule for order: If 0 < x < y, then 0 < 1/y < 1/x. 
(4) Division by zero is never allowed: x/0 is undefined. 
(5) An algebraic identity: (x - y)2 = x 2 

- 2xy + y 2
• 

(6) A trigonometric identity: sin2 x + cos2 x = 1. 
(7) A rule for logarithms: If x > 0 and y > 0, then log 10 (xy) = log 10 x 

+ loglo y. 

Each example has two variables, x and y, and holds true whenever x and y are real 
numbers. The Transfer Principle tells us that each example also holds whenever x 
and y are hyperreal numbers. For instance, by Example (3), x/0 is undefined, even 
for hyperreal x. By Example (6), sin2 x + cos2 x = 1, even for hyperreal x. 

Notice that the first five examples involve only the sum, difference, product, 
and quotient functions. However, the last two examples are real statements involving 
the transcendental functions sin, cos, and log 10 . The Transfer Principle extends all 
the familiar rules of trigonometry, exponents, and logarithms to the hyperreal 
numbers. 

In calculus we frequently make a computation involving one or more 
unknown real numbers. The Transfer Principle allows us to compute in exactly 
the same way with hyperreal numbers. It "transfers" facts about the real numbers 
to facts about the hyperreal numbers. In particular, the Transfer Principle implies 
that a real function and its natural extension always give the same value when applied 
to a real number. This is why we are usually able to drop the asterisks when computing 
with hyperreal numbers. 

A real statement is often used to define a new real function from old real 
functions. By the Transfer Principle, whenever a real statement defines a real function, 
the same real statement also defines the hyperreal natural extension function. Here 
are three more examples. 

(8) The square root function is defined by the real statement y = Jx if, 
and only if, l = x and y 2: 0. 

(9) The absolute value function is defined by the real statement y = lxl 
if, and only if, y = p. 

(10) The common logarithm function is defined by the real statement 
y = log10 x if, and only if, lOY = x. 

In each case, the hyperreal natural extension is the function defined by the given 
real statement when x and y vary over the hyperreal numbers. For example, the 
hyperreal natural extension ofthe square root function, J *,is defined by Example (8) 
when x andy are hyperreal. 

An important use of the Transfer Principle is to carry out computations 
with infinitesimals. For example, a computation with infinitesimals was used in the 
slope calculation in Section 1.4. The Extension Principle tells us that there is at 
least one positive infinitesimal hyperreal number, say e. Starting from e, we can use 
the Transfer Principle to construct infinitely many other positive infinitesimals. For 
example, e2 is a positive infinitesimal that is smaller than e, 0 < e2 < e. (This 
follows from the Transfer Principle because 0 < x 2 < x for all real x between 0 
and 1.) Here are several positive infinitesimals, listed in increasing order: 

e3
, e2

, e/100, e, 75e, Je, e + Je. 

hjkeisler
Text Box
(4),
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We can also construct negative infinitesimals, such as - 8 and -8
2

, and other hyper­
real numbers such as 1 + Je, (10 - 8f, and 1/8. 

We shall now give a list of rules for deciding whether a given hyperreal 
number is infinitesimal, finite, or infinite. All these rules follow from the Transfer 
Principle alone. First, look at Figure 1.5.1, illustrating the hyperrealline. 

Infinitesimal 

0 

----- ------- -----41--<>--+---_____________________ _ 

Negative 
infinite 

Figure 1.5.1 

DEFINITION 

-3 -2 -1 0 I 2 3 

Finite 

A hype!Teal number b is said to be: 

finite if b is between two real numbers. 

positive infinite if b is greater than every real number. 

negative infinite if b is less than every real number. 

Positive 
infinite 

Notice that each infinitesimal number is finite. Before going through the 
whole list of rules, let us take a close look at two of them. 

If 8 is infinitesimal and a is finite, then the product a • 8 is infinitesimal. For 
example, k -68, 10008, (5 - 8)8 are infinitesimal. This can be seen intuitively from 
Figure 1.5.2; an infinitely thin rectangle of length a has infinitesimal area. 

If 8 is positive infinitesimal, then 1/8 is positive infinite. From experience we 
know that reciprocals of small numbers are large, so we intuitively expect 1/8 to 
be positive infinite. We can use the Transfer Principle to prove 1/8 is positive infinite. 
Let r be any positive real number. Since 8 is positive infinitesimal, 0 < 8 < 1/r. 
Applying the Transfer Principle, 1/8 > r > 0. Therefore, l/8 is positive infinite. 

cc===========================~ Area=a·E 
a 

Figure 1.5.2 

RULES FOR INFINITESIMAL, FINITE, AND INFINITE NUMBERS Assume that 8, 6 
are infinitesima/s; b, care hype!Tea/ numbers that are finite but not infinitesimal; 
and H, K are infinite hype1Teal numbers. 

(i) Real numbe1·s: 
The only infinitesimal real number is 0. 
Every real number is finite. 

(ii) Negatives: 
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-b is finite but not infinitesimal. 
-His infinite. 

(iii) Reciprocals: 
If e =I= 0, lfe is infinite. 
1/ b is finite but not infinitesimal. 
1/H is infinitesimal. 

(iv) Sums: 
e + l5 is infinitesimal. 
b + e is finite but not infinitesimal. 
b + c is finite (possibly infinitesimal). 
H + e and H + bare infinite. 

(v) Products: 
(j • e and b • e are infinitesimal. 
b • c is finite but not infinitesimal. 
H • band H • K are infinite. 

(vi) Quotients: 
efb, ef H, and bf Hare infinitesimal. 
bf c is finite but not infinitesimal. 
bfe, Hfe, and Hfb are infinite, provided that e -=f. 0. 

(vii) Roots: 
If e > 0, ~ is infinitesimal. 
If b > 0, jZi is finite but not infinitesimal. 
If H > 0, '..:jii is infinite. 

Notice that we have given no rule for the following combinations: 

efl5, the quotient of two infinitesimals. 
HfK, the quotient of two infinite numbers. 
He, the product of an infinite number and an infinitesimal. 
H + K, the sum of two infinite numbers. 

Each of these can be either infinitesimal, finite but not infinitesimal, or infinite, 
depending on what e, l5, H, and K are. For this reason, they are called indeterminate 
forms. 

Here are three very different quotients of infinitesimals. 

2 

~is infinitesimal (equal to e). 
e 

!. is finite but not infinitesimal (equal to 1). 
e 

e . . fi . ( 1 1) e2 ts m mte equa to "i . 

Table 1.5.1 on the following page shows the three possibilities for each indeterminate 
form. Here are some examples which show how to use our rules. 

EXAMPLE 1 Consider (b - 3e)f(c + 26). e is infinitesimal, so - 3e is infinitesimal, 
and b - 3e is finite but not infinitesimal. Similarly, c + 2(5 is finite but not 
infinitesimal. Therefore the quotient 

is finite but not infinitesimal. 

b - 3e 

c + 2(5 
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Table 1.5.1 
~- ---- -- -·· 

Examples 

indeterminate ! finite I 

form infini~ (equal to 1) infinite 

F. £2 £ 

6 £ F. c2 

H H H H2 

K H2 H H 

He 
I 

H·-H2 
1 

H·-
H 

H2. _l_ 
H 

H+K H +(-H) (H + 1)+ (-H) H+H 

The next three examples are quotients of infinitesimals. 

EXAMPLE 2 The quotient 

(1) 

is infinitesimal, provided E =J 0. 

The given number is equal to 

ie 3 
- ~B2 + 1e. 

We see in turn that E, E
2

, 8
3

, 18, -ie2
, ie3 are infinitesimal; hence the sum (1) 

is infinitesimal. 

EXAMPLE 3 If 8 =J 0, the quotient 

(2) 

is finite but not infinitesimal. 

Cancelling an E from numerator and denominator, we get 

3E2 + 8 - 6 

2e + 1 

Since 3e 2 + 1: is infinitesimal while -6 is finite but not infinitesimal, the 
numerator 

is finite but not infinitesimal. Similarly, the denominator 2E + 1, and hence 
the quotient (2) is finite but not infinitesimal. 

EXAMPLE 4 If F. =J 0, the quotient 

is infinite. 

E4- £3 + 2E2 

5~:4 + e3 
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We first note that the denominator 584 + 83 is not zero because it can be 
written as a product of nonzero factors, 

584 + 83 = 8 o 8 o 8 o (5~: + 1). 

When we cancel 8
2 from the numerator and denominator we get 

8
2 

- E + 2 

582 + E • 

We see in turn that: 

8 2 - 8 + 2 is finite but not infinitesimal, 

58 2 + E is infinitesimal, 

8
2 

- E + 2 .. fi , 
2 ts m ntte. 

58 + E 

EXAMPLE 5 2H2 + H . fi . b . fi . . I 
H 2 _ H + 

2 
ts mte ut not m mtestma . 

In this example the trick is to multiply both numerator and denominator by 
1/H2

. We get 

2 + 1/H 
1 - 1/H + 2/H 2

' 

Now 1/H and 1/H2 are infinitesimal. Therefore both the numerator and 
denominator are finite but not infinitesimal, and so is the quotient. 

In the next theorem we list facts about the ordering of the hyperreals. 

THEOREM 1 

(i) Every hyperreal number which is between two infinitesimals is it~finitesi­

mal. 

(ii) Every hyperreal number which is between two finite hyperrealnumbers is 
finite. 

(iii) Every hyperreal number which is greater than some positive infinite 
number is positive it~nite. 

(iv) Every hyperrealnumber which is less than some negative infinite number 
is negative infinite. 

All the proofs are easy. We prove (iii), which is especially useful. Assume His 
positive infinite and H < K. Then for any real number r, r < H < K. 
Therefore, r < K and K is positive infinite. 

EXAMPLE 6 If H and K are positive infinite hyperreal numbers, then H + K is 
positive infinite. This is true because H + K is greater than H. 

Our last example concerns square roots. 

33 
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EXAMPLE 7 If His positive infinite then, surprisingly, 

-..jH+1-~ 
is infinitesimal. 

This is shown using an algebraic trick. 

~ J~- (jH +I- ~)(.jH+ l + jf-I -1) v H + 1 - H - 1 = ___,__ ___ ----'c==c-----"-==~--'----
JH+T+~ 

(H + 1) - (H - 1) 2 

.JH+1 + ~ JH+l + jH-1 

The numbers H + 1, H - 1, and their square roots are positive infinite, and 
thus the sum JH+1 + ~is positive infinite. Therefore the quotient 

~ ~ 2 
-..Jll--r-1-.JH-1= ~ ~· 

'-;H+l+yH-1 

a finite number divided by an infinite number, is infinitesimal. 

PROBLEMS FOR SECTION 1.5 

In Problems 1-40, assume that: £, c5 are positive infinitesimal, H, K are positive infinite. 
Determine whether the given expression is infinitesimal, finite but not infinitesimal, or infinite. 

1 76,000,000£ 2 3£ + 46 

3 1 + 1/t: 4 3£3 - 2£2 + E + 1 

5 Ij'\;lc 6 s/H 

7 H/I,OOO,OOO 8 (3 + £) 2
- 9 

9 (3 + s)(4 + aJ - 12 10 1 + E + 3£2 

2- £- 8£3 

11 
2£3 - £4 

12 
2£3 - £4 

4£- £2 + £3 4£3 + £4 

13 
3£ - 4£2 

14 Jr. -t- £ 
£2 + 5£3 Jr.+ 1 

15 
I 1 -

Jr.- E 

16 -· /t: £ '\ 

17 
1 
-. 5£ 18 1 3 

-· £ 
8 £ 

19 I ( 1 I) 2H + 1 20 ---
£ 3 + £ 3 3H + 2 

21 2H4 + 3H- 6 
22 H+4+s 

4H3 + 5 H2 + 2s 

23 
H+K 

24 
H-K 

HK H2 + K2 

25 H2 - H 26 fo+l- fii 
27 (H+~r-(H-~r 28 (H+~r-(H-~r 
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29 ~-2 30 H1-~) [; 

31 H(R-J3) 32 
.jii 

JH+l-+ fo+2 
33 H(Jli+2- JH) 34 1-~ 

[; 

35 .jH- ..;/H + 1 36 H-jH+lfo+?. 

37 
(3 + e)(4 + b) - 12 

38 
5 + [; 5 

eb 
----
7+b 7 

39 e+b 
40 

H+K 

~ jH2 + K2 

(Hint: Assume e ;::.: b 
and divide through by e.) 

41 In (a}-{f) below, determine which of the two numbers is greater. 

[;2 1 1 
(a) [; or (b) 

63 
or 

64 
(c) H or H2 

(d) 6 or 0 (e) H or JH (f) JH or Jii 
42 Let x, y be positive hyperreal numbers. Can_:.:: + ~be infinite? Finite? Infinitesimal? 

)' X 

] 43 Let a and b be real. When is (36 2 
- 6 + a)/(462 + 2e + b) 

(a) infinitesimal? 
(b) finite but not infinitesimal? 
(c) infinite? 

] 44 Let a and b be real. When is (aH2 - 2H + 5)/(bH2 + H - 2) 
(a) infinitesimal? 
(b) finite but not infinitesimal? 
(c) infinite? 

STANDARD PARTS 

In this section we shall develop a method that will enable us to compute the slope 
of a curve by means of infinitesimals. We shall use the method to find slopes of 
curves in Chapter 2 and to find areas in Chapter 4. The key step will be to find the 
standard part of a given hyperreal number, that is, the real number that is infinitely 
close to it. 

DEFINITION 

Two hype1-real numbers b and c are said to be infinitely close to each other, in 
symbols b ~ c, if their difference b - c is infinitesimal. b ;;fo c means that b is 
not infinitely close to c. 

Here are three simple remarks. 

(1) If s is infinitesimal, then b ~ b + s. This is true because the difference, 
b - (b + s) = -s, is infinitesimal. 

35 
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(2) b is infinitesimal if and only ifb :::::; 0. The formula b :::::; 0 will be used as a 
short way of writing "b is infinitesimal. " 

(3) Ifb and care real and b is infinitely close to c, then b equals c. 
b - c is real and infinitesimal, hence zero; so b = c. 

The relation :::::; between hyperreal numbers behaves somewhat like equality, 
but, of course, is not the same as equality. Here are three basic properties of :::::o. 

THEOREM 1 

Let a, b and c be hype/Tea/numbers. 

(i) a :::::o a. 
(ii) If a :::::o b, then b :::::; a. 

(iii) rr a ::::::0 b and b ::::::0 c, then a ::::::0 c. 

These properties are useful when we wish to show that two numbers are 
infinitely close to each other. 

The reason for (i) is that a - a is an infinitesimal, namely zero. For (ii), we 
note that if a - b is an infinitesimal 8, then b - a = -8, which is also infinitesimal. 
Finally, (iii) is true because a - c is the sum of two infinitesimals, namely a - b and 
b- c. 

THEOREM 2 

Asswne a :::::; b. Then 

(i) If a is infinitesimal, so is b. 
(ii) I fa is finite, so is b. 

(iii) If a is infinite, so is b. 

The real numbers are sometimes called "standard" numbers, while the 
hyperreal numbers that are not real are called "nonstandard" numbers. For this 
reason, the real number that is infinitely close to b is called the "standard part" of b. 
An infinite number cannot have a standard part, because it can't be infinitely close 
to a finite number (Theorem 2). Our third principle (stated next) on hyperreal 
numbers is that every finite number has a standard part. 

Ill. STANDARD PART PRINCIPLE 

Every finite hyperreal number is infinitely close to exactly one rea/number. 

DEFINITION 

Let b be a .finite hype1Teal number. The standard part of b, denoted by st(b), is 
the real number which is infinitely close to b. In,finite hype1Tea/ numbers do 
not have standard parts. 
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Here are some facts that follow at once from the definition. 

Let b be a finite hyperreal number. 

(I) st(b) is a real number. 
(2) b = st(b) + r.for some infinitesimal r.. 
(3) If b is real, then b = st(b ). 

Our next aim is to develop some skill in computing standard parts. This will 
be one of the basic methods throughout the Calculus course. The next theorem is the 
principal tool. 

THEOREM 3 

Let a and b befinite hyperreal numbers. Then 

(i) st(-a)= -st(a). 

(ii) st(a + b) = st(a) + st(b). 

(iii) st(a - b) = st(a) - st(b). 

(iv) st(ab) = st(a) • st(b). 

(v) Ifst(b) =1= 0, then st(ajb) = st(a)jst(b). 

(vi) st(a") = (st(a))". 

(vii) If a ;::: 0, then st(fa) = ~­
(viii) If a ::::; b, then st(a) ::::; st(b). 

This t11eorem givesiormulas for the standard parts of the simplest expressions. 
All of the rules in Theorem 3 follow from our three principles for hyperreal 

numbers. As an illustration, let us prove the formula (iv) for st(ab). Let r be the 
standard part of a and s the standard part of b, so that 

a= r + r., b = s + 0, 

where e and o are infinitesimal. Then 

ab = (r + e)(s + o) 

= I'S + 1"0 + SB + eO ~ rs. 

Therefore st(ab) = rs = st(a) • st(b). 

Often the symbols !J.x, !J.y, etc. are used for infinitesimals. In the following 
examples we use the rules in Theorem 3 as a starting point for computing standard 
parts of more complicated expressions. 

EXAMPLE 1 When !J.x is an infinitesimal and xis real, compute the standard part of 

3x2 + 3x !J.x + (!J.xf. 

Using the rules in Theorem 3, we can write 

st(3x2 + 3x !J.x + (!J.x)2
) = st(3x2

) + st(3x !J.x) + st((!J.x) 2
) 

= 3x2 + st(3x) • st(!J.x) + st(!J.x)2 

= 3x2 + 3x • 0 + 02 = 3x2
. 
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EXAMPLE 2 If st(c) = 4 and c =/= 4, find 

(
c

2 + 2c - 24) st 2 . 
c - 16 

We note that the denominator has standard part 0, 

st(c2 
- 16) = st(c) 2 

- 16 = 42 
- 16 = 0. 

However, since c =1- 4 the fraction is defined, and it can be simplified by 
factoring the numerator and denominator. 

Then 

c 2 + 2c - 24 (c + 6)(c - 4) c + 6 

c2 
- 16 (c + 4)(c - 4) c + 4 

st(c
2 

+ 2c- 24) 
c2 - 16 

= st(c + 6) = st(c + 6) 
c + 4 st(c + 4) 

st(c) + 6 4 + 6 10 

st(c) + 4 4 + 4 8 

We now have three kinds of computation available to us. First, there are 
computations involving hyperreal numbers. In Example 2, the two steps giving 

c2 + 2c - 24 c + 6 

c2 
- 16 c + 4 

are computations of this kind. The computations of this first kind are justified by the 
Transfer Principle. 

Second, we have computations which involve standard parts. In Example 2, 
the three steps giving 

c2 + 2c - 24 st(c) + 6 
st----:;----

c2 - 16 st(c) + 4 

are of this kind. This second kind of computation depends on Theorem 3. 
Third there are computations with ordinary real numbers. Sometimes the 

real numbers will appear as standard parts. In Example 2, the last two steps which give 

st(c) + 6 10 

st(c) + 4 8 

are computations with ordinary real numbers. 
Usually, in computing the standard part of a hyperreal number, we use the 

first kind of computation, then the second kind, and then the third kind, in that order. 
We shall give two more somewhat different examples and pick out these three stages 
in the computations. 

EXAMPLE 3 If His a positive infinite hyperreal number, compute the standard part 
of 

2H 3 + 5H2
- 3H 

c = -=7-=-H=-"3---2::-cH=o2 -+----,4-H. 

In this example both the numerator and denominator are infinite, and we 
have to use the first type of computation to get the equation into a different 
form before we can take standard parts. 
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First stage 

2H3 + 5H2
- 3H H- 3 ·(2H3 + 5H2

- 3H) 2 + 5H- 1
- 3H- 2 

c = = = -------,---~ 
7H3 - 2H2 + 4H H- 3 ·(7H3 - 2H2 + 4H) 7- 2H- 1 + 4H_ 2 . 

Second stage H- 1 and H- 2 are infinitesimal, so 

(
2 + 5H- 1

- 3H- 2
) st(2 + 5H- 1

- 3H- 2
) 

st(c) = st 7 - 2H- 1 + 4H- 2 = st(7 - 2H- 1 + 4H- 2 ) 

_ st(2) + st(5H- 1
) - st(3H- 2

) _ 2 + 0 - 0 
- st(7)- st(2H- 1) + st(4H- 2 )- 7- 0 + o· 

Third stage st(c) = 2 + 0 - 0 = ~ 
7- 0 + 0 7' 

EXAMPLE 4 If E is infinitesimal but not zero, find the standard part of 

b = E 

5- fiS+e' 
Both the numerator and denominator are nonzero infinitesimals. 

First stage We multiply both numerator and denominator by 5 + fiS+e. 

b = E = E(5 + j25+e) 
5 - J25+e (5 - j25+e)(5 + j25+e) 

_ E(5 + j25+e) _ E(5 + j25+e) 
- 25 - (25 + E) - - E 

= -5- fiS+e. 
Second stage st(b) = st(- 5 - j25+e) = st(- 5) - st(j25+e) 

-5- Jst(25 +E)= -5- J25. 
Third stage st(b) = -5 - J25 = -10. 

EXAMPLE 5 Remember that infinite hyperreal numbers do not have standard parts. 
Consider the infinite hyperreal number 

3 + E 

4E + E2
' 

where E is a nonzero infinitesimal. The numerator and denominator have 
standard parts 

st(3 + E) = 3, 

However, the quotient has no standard part. In other words, 

st ( 
4
! : :2 ) is undefined. 

PROBLEMS FOR SECTION 1.6 

Compute the standard parts of the following. 

1 2 + e + 3e2, e infinitesimal 
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2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

b + 28- 8
2

, 

2- 38 
5 + 48' 

)'4 + 2y2Ll.y + Ll.y3, 

(x 2 + 3x Ll.x + Ll.x 2
)
6

, 

)x + Ll.x + J x - Ll.x, 

e3 - 82 + 48 

382 + 2e- 3' 

8 4 _ e3 + e2 

2e2 

484 
- 3e3 + 2e 2 

384 - 283 + 82 , 

(2 + e + 6)(3 - eo), 

~fi+b, 
2H + 4 
3H- 6' 

6H- 7 

H 2 + 2' 

3H2
- 5H + 2 

H 2 + 1 

H + 1 + e 
2H- 1 + 3e' 

H 4 + 3H2 + 1 
4H4 + 2H2

- 1' 

2b2 + c + 1 
3c2 + 6b + 1' 

)b2 + be + b - c, 

(x + e)(y + e) - xy 

e 

(x + Ll.x)2
- x 2 

Ll.x 

(x + Ll.x)3
- x 3 

Ll.x 

1/(a + e) - 1/a 

4- a 

2- Ja' 
3- Jc+2 

c- 7 

~Jc+2 
c- 7 

a2 -Sa+ 6 
a-3 

st(b) = 5, 8 infinitesimal 

e infinitesimal 

y real, Ll.y infinitesimal 

x real, Ll.x infinitesimal 

x positive real, Ll.x infinitesimal 

e infinitesimal 

e =F 0 infinitesimal 

e =F 0 infinitesimal 

e, o infinitesimal 

st(a) = 3, e, o infinitesimal 

H infinite 

H infinite 

H infinite 

H infinite, e infinitesimal 

H infinite 

st(b) = 2, st(c) = -1 

st(b) = 3, st(c) = 2 

x, y real, e =F 0 infinitesimal 

x real, Ll.x =F 0 infinitesimal 

x real, Ll.x =F 0 infinitesimal 

a =F 0 real, e =F 0 infinitesimal 

b =F 5 and st(b) = 5 

a =F 4 and st(a) = 4 

c =F 7 and st(c) = 7 

st(c) = 5 

a =F 3 and st(a) = 3 



EXTRA PROBLEMS FOR CHAPTER 1 

28 
2b2

- b- 6 
b # 2 and st(b) = 2 

b2
- 3b + 2' 

29 
c2 + 5c + 6 

c # -3 and st(c)= -3 
c2 + 4c + 3' 

30 ~-5 
e # 0 and e infinitesimal 

e 

31 1 ( 1 1) 
;~-2' e#O and e infinitesimal 

32 2H(J1+~-1), H positive infinite 

33 JH+l H positive infinite 
FH+~' 

34 jH2 + H + 1- H, H positive infinite 

In the following problems let a, b, a 1 , b 1 be hyperreal numbers with a ~ a
1

, b :::: b
1

• 

0 35 Show that a + b ~ a1 + b1 • 

0 36 

0 37 

Hint: Put a1 =a+ e, b 1 = b + <5, and compute the difference (a 1 + b
1
)- (a+ b). 

Show that if a, bare finite, then ab ~ a 1b 1 • 

Show that if a= b = H, a1 = b1 = H + 1/H, then ab -;j:; a 1b1 • (H positive infinite). 

EXTRA PROBLEMS FOR CHAPTER 1 

1 Find the distance between the points P(2, 7) and Q(1, -4). 

2 Find the slope of the line through the points P(2, - 6) and Q(3, 4). 

3 Find the slope of the line through P(3, 5) and Q(6, 0). 

4 Find the equation of the line through P(4, 4) and Q(5, 9). 

5 Find the equation of the line through P( 4, 5) with slope m = - 2. 

6 Find the velocity and equation of motion of a particle which moves with constant 
velocity and has positions y = 2 at t = 0, y = 5 at t = 2. 

7 Find the equation of the circle with radius J5 and center at (1, 3). 

8 Find the equation of the circle that has center (1, 0) and passes through the point (0, 1). 

Let e be positive infinitesimal. Determine whether the following are infinitesimal, finite but not 
infinitesimal, or infinite. 

9 

11 

(4e + 5)(2e + 6) 

1/e- 2/e2 

10 

12 

(4e + 5)(e2 
- e) 

1-~ 

Let H be positive infinite. Determine whether the following are infinitesimal, finite but not 
infinitesimal, or infinite. 

13 (H- 2)(2H + 5) 14 H- 2 
2H + 5 

15 16 JWTi -H 

Compute the standard parts in Problems 17-22. 

17 (b + 2e)(3b - 4e), st(b) = 4, e infinitesimal 

18 j2 + e + 3e2
, e infinitesimal 

41 
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19 

20 

21 

22 

23 

24 

0 25 

0 26 

0 27 

28 

0 29 
D 30 

0 31 

0 32 

0 33 

0 34 

0 35 

0 36 

0 37 

0 38 
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4 +58 
7 - 382 , 

8 infinitesimal 

(~- 3 +
1 ~x) (L), 

(3H + 4)(SK + 6) 
(H + 1)(1 - 4K)' 

(/H2 + 4- H)H, 

0 =1 !J.x infinitesimal 

H, K positive infinite 

H positive infinite 

If((x) = 1/fi, find{(x + !J.x) - .f(x). 

1 ~ 
What is the domain of the function .f(x) = x(x + 1) (x + 2) · 

Show that if a < b, then (a + b)/2 is between a and b; that is, a < (a + b)/2 < b. 

Show that every open interval has infinitely many points. 

The union of two sets X and Y, X u Y, is the set of all x such that x is either in X or 
Y or both. Prove that the union of two bounded sets is bounded. 

The intersection of X and Y, X n Y. is the set of all x such that xis in both X and Y. 
Prove that the intersection of two closed intervals is either empty or is a closed interval. 

Prove that the intersection of two open intervals is either empty or is an open interval. 

Prove that two (real) straight lines with different slopes intersect. 

Prove that if His infinite, then 1/H is infinitesimal. 

Prove that if H is infinite and b is finite, then H + b is infinite. 

Prove that if 8 is positive infinitesimal, so is ~f;. 
Prove that if a, b are not infinitesimal and a ;::::; b, then 1/a ;::::; 1/b. 

Prove that if a is finite, then st(iall = lst(a)i. 

Suppose a is finite, r is real, and st(a) < r. Prove that a < r. 

Suppose a and b are finite hyperreal numbers with st(a) < st(b). Prove that there is a 
real number r with a < r < b. 

Suppose that f is a real function. 

Show that the set of real solutions of the equation j(x) = 0 is bounded if and only if 
every hyperreal solution of f*(x) = 0 is finite. 



2 

DIFFERENTIATION 

~.1 DERIVATIVES 

We are now ready to explain what is meant by the slope of a curve or the velocity of 
a moving point. Consider a real function f and a real number a in the domain off 
When x has value a,f(x) has value f(a). Now suppose the value of x is changed 
from a to a hyperreal number a + ~x which is infinitely close to but not equal to a. 
Then the new value of f(x) will be f(a + ~x). In this process the value of x will be 
changed by a nonzero infinitesimal amount ~x, while the value of f(x) will be changed 
by the amount 

f(a + ~x) - f(a). 

The ratio of the change in the value of f(x) to the change in the value of xis 

f(a + ~x) - f(a) 

~X 

This ratio is used in the definition of the slope off which we now give. 

DEFINITION 

S is said to be the slope off at a if 

S = st (
f(a + ~x) - f(a)) 

~X 

for every nonzero irifinitesimal ~x. 

The slope, when it exists, is infinitely close to the ratio of the change in f(x) 
to an infinitely small change in x. Given a curve y = f(x), the slope off at a is also 
called the slope of the curve y = j(x) at x = a. Figure 2.1.1 shows a nonzero infinitesi-

43 
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mal !J.x and a hyperreal straight line through the two points on the curve at a and 
a + !'!.x. The quantity 

J(a + !J.x) - .f(a) 

!'!.x 

is the slope of this line, and its standard part is the slope of the curve. 

Figure 2.1.1 

of x. 

The slope of .fat a does not always exist. Here is a list of all the possibilities. 

( 1) The slope of .fat a exists if the ratio 

.f(a + !J.x) - .f(a) 

!'!.x 

is finite and has the same standard part for all infinitesimal !J.x t= 0. It 
has the value 

(
.f(a + !J.x) - .f(a)) 

S = st !'!. . 
X 

(2) The slope of .fat a can fail to exist in any of four ways: 

(a) .f(a) is undefined. 

(b) .f(a + !J.x) is undefined for some infinitesimal !J.x t= 0 . 

.f(a + !J.x) - .f(a) 
(c) The term is infinite for some infinitesimal 

!'!.x 
!'!.x t= 0. 

(d) The term .f(a + !'!.x) - .f(a) has d'ff d d f 
1 erent stan ar parts or 

!'!.x 
different infinitesimals !J.x t= 0. 

We can consider the slope of .fat any point x, which gives us a new function 
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DEFINITION 

Let f be a real function of one variable. The derivative off is the new function 
f' whose value at x is the slope off at x. In symbols, 

f'(x) = st ( f(x + ~; - f(x)) 

whenever the slope exists. 

The derivative f'(x) is undefined if the slope off does not exist at x. 
For a given point a, the slope off at a and the derivative off at a are the 

same thing. We usually use the word "slope" to emphasize the geometric picture and 
"derivative" to emphasize the fact that f' is a function. 

The process of finding the derivative off is called differentiation. We say that 
f is differentiable at a if f'(a) is defined; i.e., the slope off at a exists. 

Independent and dependent variables are useful in the study of derivatives. 
Let us briefly review what they are. A system of formulas is a finite set of equations and 
inequalities. If we are given a system offormulas which has the same graph as a simple 
equation y = f(x), we say that y is afunction ofx, or that y depends on x, and we call 
x the independent variable and y the dependent variable. 

When y = f(x), we introduce a new independent variable L1x and a new 
dependent variable L1y, with the equation 

(1) L1y = f(x + L1x) - f(x). 

This equation determines L1y as a real function of the two variables x and L1x, when 
x and L1x vary over the real numbers. We shall usually want to use the Equation 1 
for L1y when x is a real number and L1x is a nonzero infinitesimaL The Transfer 
Principle implies that Equation 1 also determines L1y as a hyperreal function of two 
variables when x and L1x are allowed to vary over the hyperreal numbers. 

L1y is called the increment of y. Geometrically, the increment L1y is the change 
in y along the curve corresponding to the change L1x in x. The symbol y' is sometimes 
used for the derivative, y' = f'(x). Thus the hyperreal equation 

f'(x) = st ( f(x + ~:; - f(x)) 
now takes the short form 

y' = st(!~). 
The infinitesimal L1x may be either positive or negative, but not zero. The 

various possibilities are illustrated in Figure 2.1.2 using an infinitesimal microscope. 
The signs of L1x and L1y are indicated in the captions. 

Our rules for standard parts can be used in many cases to find the derivative 
of a function. There are two parts to the problem of finding the derivative f' of a 
functionf: 

(1) Find the domain off'. 
(2) Find the value of f'(x) when it is defined. 
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X 

.:.lx > 0, .:.ly <0 .:.lx < 0, ily > 0 

X 

ilx > 0, .:.ly > 0 ilx < 0, .:.ly < 0 

X X 

ilx > 0, .:.ly = 0 .:.lx<O, .:.ly=O 

Figure 2.1.2 

EXAMPLE 1 Find the derivative of the function 

f(x) = x 3
. 

In this and the following examples we let x vary over the real numbers and 
.6.x vary over the nonzero infinitesimals. Let us introduce the new variable y 
with the equation y = x 3

. We first find .6.y/.6.x. 
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y = x3, 

y + ~y = (x + ~x) 3 , 

~y = (x + ~x)3 
- x 3

, 

~y (x + ~x) 3 
- x 3 

~X ~X 

Next we simplify the expression for ~yj~x. 

~y (x 3 + 3x2 ~x + 3x(~xf + (~x)3 ) - x3 

~X ~X 

3x2 ~x + 3x(~x)2 + (~x? 
~X 

= 3x2 + 3x ~x + (~x) 2 • 

Then we take the standard part, 

Therefore, 

st(!~) = st(3x 2 + 3x ~x + (~x)2 ) 
= st(3x2

) + st(3x ~x) + st((~xf) 
= 3x2 + 0 + 0 = 3x2

. 

f'(x) = st(!~) = 3x
2

• 

We have shown that the derivative of the function 

is the function 

f(x) = x 3 

f'(x) = 3x2 

with the whole real line as domain. f(x) and f'(x) are shown in Figure 2.1.3. 

y 

X X 

y' = 3x2 

Figure2.1.3 

EXAMPLE 2 Find f'(x) given f(x) = .j;. 
Case 7 x < 0. Since .j; is not defined, f'(x) does not exist. 
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Case 2 x = 0. When /j,x is a negative infinitesimal, the term 

Jx + ""x - .;-; = ,1 o + ""x - ,/0 
/j,x /j,x 

is not defined because~ is undefined. When /j,x is a positive infinitesimal, 
the term 

,0~-~ 
/j,x 

is defined but its value is infinite. Thus for two reasons, f'(x) does not exist. 

Case 3 x > 0. Let y = J~. Then 

y + j'j,y = Jx + /j,x, 

""r = F+-Li~- .;-;, 
j'j,y = Jx + /j,x - fi 
/j,x /j,x 

We then make the computation 

j'j,y (,F~ - p) (j X + /j,x + ,0) 
/j,x /j,x (jx + /j,x + ,~) 

(x + /j,x)- x 

/j,x(jx + /j,x + fil 
/j,x 

Taking standard parts, 

Therefore, when x > 0, 

So the derivative of 

is the function 

st(jx + /j,x + fil 
1 

st(jx + /j,x) + st(fil 

1 1 

,0 + ,/( 2fi' 
f'(x) = ~· 

2vx 

.f(x) = fi 

.f'(x) = 1/:' 
2yx 

and the set of all x > 0 is its domain (see Figure 2.1.4). 
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y y' 

L 
X 

y= vX 
Figure 2.1.4 

EXAMPLE 3 Find the derivative ofj(x) = 1/x. 

Case 1 x = 0. Then 1/x is undefined so f'(x) is undefined. 

Case 2 x # 0. 

Simplifying, 

y = 1/x, 

1 
y + ~y = ' 

X+ ~X 

1 1 
~y=---

x +~X X 

~y 1/(x + ~x)- 1/x 
~X ~X 

y' I 

2h 

1/(x + ~x)- 1/x 
~X 

x- (x + ~x) 
x(x + ~x) ~x 

-1 

x(x + ~x) ~x 

x(x + ~x)' 
Taking the standard part, 

1 

st(x(x + ~x)) 
1 1 

st(x)st(x + ~x) x • x X 
2. 

Thus f'(x) = -1/x2
• 

X 

The derivative of the function f(x) = 1/x is the function f'(x) = - 1/x2 

whose domain is the set of all x # 0. Both functions are graphed in Figure 
2.1.5. 
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Figure 2.1.5 
I 

y=­x 

y' 

X 

EXAMPLE 4 Find the derivative of f(x) = JxJ. 

Case 1 x > 0. In this case Jx/ = x, and we have 

y = x, 

y + L'ly = x + L'lx, 

L'ly = L'lx, 

L'ly -,.-= 1, 
u.X 

f'(x) = 1. 

Case 2 x < 0. Now Jx/ = -x, and 

Case 3 x = 0. Then 

and 

L'ly 

L'lx 

y = -x, 

y + L'ly = - (x + L'lx), 
L'ly = -(x + L'lx)- (-x) = -L'lx, 
L'lx 

L'lx 
-1, 

y = 0, 

j'(x) = -1. 

y + L'ly = /0 + L'lx/ = /L'lx/, 
L'ly = /L'lx/, 

L'ly = /L'lxJ = { 1 
L'lx L'lx -1 

if L'lx > 0, 

if L'lx < 0. 

The standard part of L'lyjtlx is then 1 for some values of L'lx and -1 for 
others. Therefore j'(x) does not exist when x = 0. 

In summary, 

{ 

1 

f'(x) = -1 

undefined 

Figure 2.1.6 shows f(x) and j'(x). 

if X> 0, 

if X< 0, 

if X= 0. 
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y y' 

X X 

Figure 2.1.6 Y=lxl 
The derivative 

of y = lxl 

The derivative has a variety of applications to the physical, life, and social 
sciences. It may come up in one of the following contexts. 

Velocity: If an object moves according to the equation s = f(t) where t is 
time and s is distance, the derivative v = j'(t) is called the velocity of the object at 
timet. 

Growth rates: A population y (of people, bacteria, molecules, etc.) grows 
according to the equation y = f(t) where t is time. Then the derivative y' = j'(t) is 
the rate of growth of the population y at time t. 

Marginal values (economics): Suppose the total cost (or profit, etc.) of 
producing x items is y = f(x) dollars. Then the cost of making one additional item 
is approximately the derivative y' = j'(x) because y' is the change in y per unit change 
in x. This derivative is called the marginal cost. 

EXAMPLE 5 A ball thrown upward with initial velocity b ft per sec will be at a height 

y = bt- 16t2 

feet after t seconds. Find the velocity at time t. Let t be real and !1t i= 0, 
infinitesimal. 

At timet sec, 

y + ~y = b(t + ~t)- 16(t + !1t) 2
, 

~y = [b(t + ~t)- 16(t + ~t)2] - [bt- 16t2
], 

~y [b(t + ~t) - 16(t + At?] - [bt - 16t2
] 

~t !1t 

b !1t - 32t !1t - 16(~t)2 

!1t 

= b - 32t - 16 At. 

st(~~) = st(b - 32t- 16 At) 

= st(b - 32t) - st(16 ~t) 

= b - 32t - 0 = b - 32t. 

v = y' = b - 32t ft/sec. 

Both functions are graphed in Figure 2.1.7. 
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y v 

b 

Figure 2.1.7 y=bt-16t2 v = b- 32t 

EXAMPLE 6 Suppose a bacterial culture grows in such a way that at timet there are 
t 3 bacteria. Find the rate of growth at time t = 1000 sec. 

y' = 3t2 by Example 1. 

At t = 1000, y' = 3,000,000 bacteria/sec. 

EXAMPLE 7 Suppose the cost of making x needles is fi dollars. What is the 
marginal cost after 10,000 needles have been made? 

y = fi, 1 
y'=--

2fi 
by Example 2. 

1 1 
y' = ~ = - dollars per needle. 

2....; 10,000 200 
At X = 10,000, 

Thus the marginal cost is one half of a cent per needle. 

PROBLEMS FOR SECTION 2.1 

Find the derivative of the given function in Problems 1-21. 

I f(x) = x 2 2 f(t) = t2 + 3 

3 f(x) = 1- 2x2 4 f(x) = 3x2 + 2 

5 f(t) = 4t 6 f(x) = 2- 5x 

7 f(t) = 4t3 8 f(t)= _,3 
9 f(u) = s.Ju 10 f(u)=~ 

11 g(x) = xfi 12 g(x) = 1/fi 
13 g(t) = ,-2 14 g(t) = ,-3 
15 f(y) = 3y- 1 + 4y 16 f(y) = 2y3 + 4y2 

17 f(x) =ax+ b 18 f(x) = ax2 

19 f(x)=~ 20 f(x) = lf(x + 2) 

21 f(x) = 1/(3 - 2x) 



22 Find the derivative of f(x) = 2x2 at the point x = 3. 

23 Find the slope of the curve f(x) = Jx""-=--1 at the point x = 5. 

24 An object moves according to the equation y = 1/(t + 2), t ;::: 0. Find the velocity as a 
function of t. 

25 A particle moves according to the equation y = t4
• Find the velocity as a function oft. 

26 Suppose the population of a town grows according to the equation y = lOOt + t2
• Find 

the rate of growth at timet = 100 years. 

27 Suppose a company makes a total profit of 1000x - x 2 dollars on x items. Find the 
marginal profit in dollars per item when x = 200, x = 500, and x = 1000. 

28 Find the derivative of the function f(x) = lx + 11. 
29 Find the derivative of the function f(x) = Jx 3 J. 

30 Find the slope of the parabola y = ax2 + bx + c where a, b, c are constants. 

DIFFERENTIALS AND TANGENT LINES 

Suppose we are given a curve y = f(x) and at a point (a, b) on the curve the slope 
f'(a) is defined. Then the tangent line to the curve at the point (a, b), illustrated in 
Figure 2.2.1, is defined to be the straight line which passes through the point (a, b) 
and has the same slope as the curve at x = a. Thus the tangent line is given by the 
equation 

or 

l(x) - b = f'(a)(x - a), 

l(x) = f'(a)(x - a) + b. 

X X 

Figure 2.2.1 Tangent lines. 

EXAMPLE 1 For the curve y = x 3
, find the tangent lines at the points (0, 0), (1, 1), 

and ( -t, -i) (Figure 2.2.2). 

The slope is given by f'(x) = 3x2
• At x = 0, f'(O) = 3 • 02 = 0. The tangent 

line has the equation 

y = O(x - 0) + 0, or y = 0. 



y 

(-4.-t) 
X 

Figure 2.2.2 

At x = 1,f'(1) = 3, whence the tangent line is 

y = 3(x - 1) + 1, or y = 3x - 2. 

At x = -!,!'( --!-) = 3 • ( --!-)2 = i, so the tangent line is 

y = iCx - ( --!-)) + (- !-), or y = ix + -!. 

Given a curve y = f(x), suppose that x starts out with the value a and then 
changes by an infinitesimal amount ~x. What happens to y? Along the curve, y will 
change by the amount 

f(a + ~x) - f(a) = ~y. 

But along the tangent line y will change by the amount 

/(a+ ~x)- l(a) = [f'(a)(a + ~x- a)+ b] - [f'(a)(a- a)+ b] 

= f'(a) ~x. 

When x changes from a to a + ilx, we see that: 

change in y along curve = f(a + ~x) - .f(a), 

change in y along tangent line = f'(a) ilx. 

In the last section we introduced the dependent variable ~y, the increment 
of y, with the equation 

ily = .f(x + ilx) - f(x). 

ily is equal to the change in y along the curve as x changes to x + ~x. 
The following theorem gives a simple but useful formula for the increment ily. 

INCREMENT THEOREM 

Let y = f(x). Suppose f'(x) exists at a certain point x, and ~x is irifinitesimal. 
Then L).y is infinitesimal, and 
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Lly = f'(x) Llx + B Llx 

for some infinitesimal B, which depends on x and Llx. 

Case 1 Llx = 0. In this case, Lly = f'(x) Llx = 0, and we put B = 0. 

Case 2 Llx # 0. Then 

Lly 
ilx ~ f'(x); 

so for some infinitesimal e, 

~~ = f'(x) + B. 

Multiplying both sides by .llx, 

Lly = f'(x) Llx + B Llx. 

EXAMPLE 2 Let y = x\ so that y' = 3x2
. According to the Increment Theorem, 

Lly = 3x2 Llx + B Llx 

for some infinitesimal B. Find Bin terms of x and .llx when Llx # 0. We have 

Lly = 3x2 Llx + B Llx, 

Lly 2 
Llx = 3x + B, 

Lly 
B = Llx - 3xz. 

We must still eliminate Lly. From Example 1 in Section 2.1, 

Lly = (x + .llx)3 
- x3

, 

Lly 
Llx = 3x2 + 3x Llx + (.llx)2

• 

Substituting, B = (3x2 + 3x Llx + (.llxf)- 3x2
. 

Since 3x2 cancels, 

We shall now introduce a new dependent variable dy, called the differential 
of y, with the equation 

dy = f'(x) Llx. 

dy is equal to the change in y along the tangent line as x changes to x + .llx. In Figure 
2.2.3 we see dy and .lly under the microscope. 
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.6.y = change in y along curve 

dy = change in y along tangent line 

y 

l(x) 

f(x) 

Figure 2.2.3 

To keep our notation uniform we also introduce the symbol dx as another 
name for .6.x. For an independent variable x, .6.x and dx are the same, but for a 
dependent variable y, .6.y and dy are different. 

DEFINITION 

Suppose y depends on x, y = f(x). 

(i) The differential ofx is the independent variable dx = .6.x. 
(ii) The differential of y is the dependent variable dy given by 

dy = f'(x) dx. 

When dx f= 0, the equation above may be rewritten as 

dy = ['( ) 
d 

. X. 
X 

Compare this equation with 

~~ ~ f'(x). 

The quotient dy/dx is a very convenient alternative symbol for the derivative f'(x). 
In fact we shall write the derivative in the form dy/dx most of the time. 

The differential dy depends on two independent variables x and dx. In 
functional notation, 

dy = df(x, dx) 

where dfis the real function of two variables defined by 

df(x, dx) == f'(x) dx. 
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When dx is substituted for Ax and dy for f'(x) dx, the Increment Theorem takes the 
short form 

D.y = dy + e dx. 

The Increment Theorem can be explained graphically using an infinitesimal micro­
scope. Under an infinitesimal microscope, a line of length D.x is magnified to a line 
of unit length, but a line of length e D.x is only magnified to an infinitesimal length e. 
Thus the Increment Theorem shows that whenf'(x) exists: 

(1) The differential dy and the increment D.y = dy + e dx are so close to 
each other that they cannot be distinguished under an infinitesimal 
microscope. 

(2) The curve y = f(x) and the tangent line at (x, y) are so close to each 
other that they cannot be distinguished under an infinitesimal micro­
scope; both look like a straight line of slopef'(x). 

Figure 2.2.3 is not really accurate. The curvature had to be exaggerated 
in order to distinguish the curve and tangent line under the microscope. To give an 
accurate picture, we need a more complicated figure like Figure 2.2.4, which has a 
second infinitesimal microscope trained on the point (a + D.x, b + D.y) in the field 
of view of the original microscope. This second microscope magnifies e dx to a 
unit length and magnifies D.x to an infinite length. 

y 

X 

Figure 2.2.4 
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EXAMPLE 3 Whenever a derivative f'(x) is known, we can find the differential 
dy at once by simply multiplying the derivative by dx, using the formula 
dy = f'(x) dx. The examples in the last section give the following differentials. 

(a) Y = x3, dy = 3x2 dx. 

(b) y = Jx, dy = d~ where x > 0. 
2-.j X 

(c) y = 1/x, dy = -dxjx 2 when x =!= 0. 

{ dx 
when x > 0, 

(d) Y = lxl, dy = -dx when x < 0, 

undefined when x = 0. 

(e) y = bt - 16t2
, dy = (b - 32t) dt. 

The differential notation may also be used when we are given a system of 
formulas in which two or more dependent variables depend on an independent 
variable. For example if y and z are functions of x, 

Y = f(x), z = g(x), 

then Lly, Llz, dy, dz are determined by 

Lly = f(x + Llx) - f(x), 

dy = f'(x) dx, 

Llz = g(x + Llx) - g(x), 

dz = g'(x) dx. 

EXAMPLE 4 Given y = !x, z = x 3
, with x as the independent variable, then 

Lly = !(x + Llx) - !x = 1 Llx, 

Llz = 3x 2 Llx + 3x(Llx)2 + (Llx) 3
, 

dy = !dx, dz = 3x 2 dx. 

The meaning of the symbols for increment and differential in this example 
will be different if we take y as the independent variable. Then x and z are 
functions of y. 

X= 2y, z = 8l. 
Now Lly = dy is just an independent variable, while 

Moreover, 

Llx = 2(y + Lly) - 2y = 2 Lly, 

Llz = 8(y + Lly)3 
- 8y 3 

= 8[3y2 Lly + 3y(Lly)2 + (Lly) 3
] 

= 24yl Lly + 24y(Lly)2 + 8(Lly) 3
. 

dx = 2 dy, dz = 24y2 dy. 

We may also apply the differential notation to terms. If r(x) is a term with the 
variable x, then r(x) determines a function f, 

r(x) = f(x), 
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and the differential d(r(x)) has the meaning 

d(r(x)) = f'(x) dx. 

EXAMPLE 5 

(a) d(x 3
) = 3x2 dx. 

(b) Jx dx 
d( ) = Jx' 2 X 

X> 0. 

(c) d(l/x) = 
dx 

X =/= 0. 2' X 

(d) d(lxl) ={ -~= 
undefined 

when x > 0, 

when x < 0, 

when x = 0. 

(e) Let u = bt and w = -16t2
• Then 

u + w = bt - 16t2
, d(u + w) = (b - 32t) dt. 

PROBLEMS FOR SECTION 2.2 

In Problems 1-8, express Ll.y and dy as functions of x and Ll.x, and for Ll.x infinitesimal find an 
infinitesimal e such that Ll.y = dy + e Ll.x. 

1 y = x2 2 y = -5x2 

3 y = 2Jx 4 y = x4 

5 y = 1/x 6 y = x-2 

7 y = x- 1/x 8 y = 4x + x 3 

9 If y = 2x2 and z = x 3
, find Ll.y, Ll.z, dy, and dz. 

10 If y = 1/(x + 1) and z = 1/(x + 2), find Ll.y, Ll.z, dy, and dz. 

11 Find d(2x + 1) 12 Find d(x 2 - 3x) 

13 Find d(Jx+'l) 14 Find d(fo+l) 

15 Find d(ax +b) 16 Find d(ax 2) 

17 Find d(3 + 2/x) 18 Find d(xp) 

19 Find d(1/p) 20 Find d(x 3 - x 2) 

21 Let y = Jx, z = 3x. Find d(y + z) and d(yfz). 

22 Let y = x- 1 and z = x 3
. Find d(y + z) and d(yz). 

In Problems 23-30 below, find the equation of the line tangent to the given curve at the given 
point. 

23 Y = x2; (2,4) 24 y = 2x2; ( -1, 2) 

25 y = -x2; (0, 0) 26 y=Jx; (1, 1) 
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27 

29 

y = 3x - 4; (1, -1) 

y=x4
; (-2,16) 

28 

30 

y = Jt -=---1; (5, 2) 

y = x3 
- x; (0, 0) 

31 Find the equation of the line tangent to the parabola y = x 2 at the point (x0 , x6). 

32 Find all points P(x0 , x6) on the parabola y = x 2 such that the tangent line at P passes 
through the point (0, - 4). 

0 33 Prove that the line tangent to the parabola y = x 2 at P(x0 , x&l does not meet the 
parabola at any point except P. 

2.3 DERIVATIVES OF RATIONAL FUNCTIONS 

A term of the form 

a1x + a0 

where a 1 , a0 are real numbers, is called a linear term in x; if a 1 #- 0, it is also called 
polynomial of degree one in x. A term of the form 

is called a polynomial of degree two in x, and, in general, a term of the form 

an#- 0 

is called a polynomial of degree n in x. 
A rational term in x is any term which is built up from the variable x and real 

numbers using the operations of addition, multiplication, subtraction, and division. 
For example every polynomial is a rational term and so are the terms 

(3x 2 
- 5)(x + 2) 3 

5x - 11 
(1 + 1/x)9 

x 3 + 1/(2 - x)' 

A linear jimction, polynomial function, or rational function is a function which 
is given by a linear term, polynomial, or rational term, respectively. In this section we 
shall establish a set of rules which enable us to quickly differentiate any rational 
function. The rules will also be useful later on in differentiating other functions. 

THEOREM 1 

The derivative of a linear function is equal to the coefficient of x. That is, 

d(bx +c) 
d = b, 

X 
d(bx + c.) = b dx. 

PROOF Let y = bx + c, and let 11x #- 0 be infinitesimal. Then 

Therefore 

y + L1y = b(x + 11x) + c, 

L1y = (b(x + 11x) + c) - (bx + c) = b L1x, 

L1y = b L1x = b. 
L1x L1x 

dy 
- = st(b) =b. 
dx 



Multiplying through by dx, we obtain at once 

dy = b dx. 

If in Theorem 1 we put b = 1, c = 0, we see that the derivative of the identity 
function f(x) = x is f'(x) = 1; i.e., 

dx = 1 dx = dx. 
dx ' 

On the other hand, if we put b = 0 in Theorem 1 then the term bx + c is just 
the constant c, and we find that the derivative of the constant function f(x) = c is 
f'(x) = 0; i.e., 

THEOREM 2 (Sum Rule) 

de 
-d =0, 

X 
de= 0. 

Suppose u and v depend on the independent variable x. Thenfor any value ofx 
where dujdx and dv/dx exist, 

d(u + v) du dv 
dx = dx + dx' 

d(u + v) = du + dv. 

In other words, the derivative of the sum is the sum of the derivatives. 

PROOF Let y = u + v, and let dx =1= 0 be infinitesimal. Then 
y + dy = (u + du) + (v + Llv), 

Lly = [(u + du) + (v + Llv)] - [u + v] = du + Llv, 

Lly 

Llx 

du + Llv du Llv 
-Ll--c-x- = -Ll-x + -Ll-x · 

Taking standard parts, 

st(~~) = st(~: + ~:) = st(~:) + st(~:). 
dy du dv 

Thus - =-+-· 
dx dx dx 

By using the Sum Rule n - 1 times, we see that 

d(ul + ... + un) dul dun 
-'--"--~dx __ _:::_ = -d-x + ... + -d-x' or d(ul + ... + un) = dul + ... +dun. 

THEOREM 3 (Constant Rule) 

Suppose u depends on x, and cis a real number. Then .for any value of x where 
du/dx exists, 

d(cu) du 
d;- = c dx' d(cu) = c du. 



PROOF Let y = cu, and let L'!x =F 0 be infinitesimal. Then 

)' + L'!y = c(u + L'!u), 

L'!y = c(u + L'!u) - cu = c L'!u, 

LlJ' C LlU LlU 
~=~-=c~. 

LlX LlX LlX 

Taking standard parts, 

st(~n = st(c~~) =est(~~) 
whence 

dy du -=c-. dx dx 

The Constant Rule shows that in computing derivatives, a constant factor 
may be moved "outside" the derivative. It can only be used when cis a constant. For 
products of two functions of x, we have: 

THEOREM 4 (Product Rule) 

Suppose u and v depend on x. Then for any value of x where du/dx and dv/dx 
exist, 

d(uv) dv du 
--= u- + v-, 
dx dx dx 

d(uv) = u dv + v du. 

PROOF Let y = uv, and let ilx =F 0 be infinitesimal. 

y + Liy = (u + L'!u)(v + L'!v), 

Liy = (u + L'!u)(v + L'!v)- uv = u L'!v + v L'!u + L'!u L'!v, 

Ll}' !I LlV + V Liu + Liu LlV LlV LlU LlV 
Ax_ Ll = u-:. + v-:. + Liu-,;:-. 
U, X uX uX uX 

L'!u is infinitesimal by the Increment Theorem, whence 

st(Lly) = st(uLlV + VLlU + LlULlV) 
L'!x L'!x L'!x L'!x 

= u • st ( L'!v) + v • st ( L'!u) + 0 • st ( L'!v) . 
LlX Lix LlX 

So 
dy dv du 
-d = u-d + v-d · 

X X X 

The Constant Rule is really the special case of the Product Rule where v is 
a constant function of x, v = c. To check this we let v be the constant c and see what 
the Product Rule gives us: 

d(u • c) de du du du --= u- + c- = u · 0 + c- =c-. 
dx dx dx dx dx 

This is the Constant Rule. 
The Product Rule can also be used to find the derivative of a power of u. 
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THEOREM 5 (Power Rule) 

Let u depend on x and let n be a positive integer. For any value of x where 
dufdx exists, 

PROOF To see what is going on we first prove the Power Rule for n = 1, 2, 3, 4. 

n = 1: We have un = u and u0 = 1, whence 

(1) 

d(un) du 
1 0 

du 
--=-= •U •-. 
dx dx dx 

n = 2: We use the Product Rule, 

d(u
2

) = d(u • u) = u du + u du = 2 , u1 • du. 
dx dx dx dx dx 

n = 3: We write u3 = u • u2
, use the Product Rule again, and then use the 

result for n = 2. 

d(u 3
) d(u • u2

) d(u 2
) 2 du 

--= =u--+u-
dx dx dx dx 

du du du 
= u•2u- + u2

- = 3u2
-. 

dx dx dx 

n = 4: Using the Product Rule and then the result for n = 3, 

d(u4
) d(u • u3

) d(u 3
) 3 du 

--= =u--+u-
dx dx dx dx 

du du du 
= u • 3u 2

- + u3
- = 4u 3

-. 
dx dx dx 

We can continue this process indefinitely and prove the theorem for every 
positive integer n. To see this, assume that we have proved the theorem form. 
That is, assume that 

d(um) m-l du 
-;IX= mu dx' 

We then show that it is also true form + 1. Using the Product Rule and the 
Equation 1, 

d(um+ 1) d(u • urn) d(um) du 
--- = = u-- + um-

dx dx dx dx 
du du du = u. mum-!_+ um- = (m + 1)um-. 
dx dx dx 

Thus 
d(um+l) du 

dx .= (m + 1)um dx' 

This shows that the theorem holds for m + 1. 

We have shown the theorem is true for 1, 2, 3, 4. Set m = 4; then the theorem 
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holds for m + 1 = 5. Set m = 5; then it holds for m + 1 = 6. And so on. 
Hence the theorem is true for all positive integers n. 

In the proof of the Power Rule, we used the following principle: 

PRINCIPLE OF INDUCTION 

Suppose a statement P(n) about an arbitrary integer n is true when n = 1. 
Suppose further that for any positive integer m such that P(m) is true, P(m + 1) 
is also true. Then the statement P(n) is true of every positive integer n. 

In the previous proof, P(n) was the Power Rule, 

d(u") = nu"- 1 du. 
dx dx 

The Principle of Induction can be made plausible in the following way. Let 
a positive integer n be given. Set m = 1; since P(l) is true, P(2) is true. Now set m = 2; 
since P(2) is true, P(3) is true. We continue reasoning in this way for n steps and con­
clude that P(n) is true. 

The Power Rule also holds for n = 0 because when u # 0, u0 = 1 and 
d1jdx = 0. 

Using the Sum, Constant, and Power rules, we can compute the derivative 
of a polynomial function very easily. We have 

and thus 

EXAMPLE 1 

d(x") -- = nx"- 1 

dx · ' 

d(cx") 
-d- = cnx"- 1

, 
X 

EXAMPLE 2 d(6x
4 

-
2x

3 
+ x- 1) = 24x 3 - 6x 2 + 1. 

dx 

Two useful facts can be stated as corollaries. 
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COROLLARY 1 

The derivative of a polynomial of degree n > 0 is a polynomial of degree n - 1. 
(A nonzero constant is counted as a polynomial of degree zero.) 

COROLLARY 2 

If u depends on x, then 
d(u +c) du 

dx dx 

whenever dujdx exists. That is, adding a constant to a function does not change 
its derivative. 

In Figure 2.3.1 we see that the effect of adding a constant is to move the curve 
up or down the y-axis without changing the slope. 

For the last two rules in this section we need the formula for the derivative 
of 1/v. 

X 
du = d(u+c) 

Figure 2.3.1 dx dx 

LEMMA 

Suppose v depends on x. Then for any value of x where v f= 0 and dvjdx exists, 

d(l/v) 1 dv 
dx - v2 dx' 

1 
- 2 dv. 

v 

PROOF Let y = 1/v and let L\x f= 0 be infinitesimal. 

1 
y + L\y = v + L\v' 

1 1 
dy=-----, 

v + L\v v 

L\y 1/(v + L\v) - 1/v 

L\x L\x 

v- (v + L\v) 

L\xv(v + L\v) 

1 L\v 

v(v + L\v) L\x· 
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Taking standard parts, 

st(~;) = st(- v(v ~ ~v) ~~) 

= st(- v(v ~ ~v)) st(~~) 
_ __!:_st(~v). 

v2 ~x 

dy 1 dv 
dx - v2 dx · 

Therefore 

THEOREM 6 (Quotient Rule} 

Suppose u, v depend on x. Then for any value ofx where dujdx, dvjdx exist and 
v # 0, 

d(ujv) v dujdx - u dvjdx 

dx v2 
d(~) = vdu- udv. 

v v2 

PROOF We combine the Product Rule and the formula for d(ljv). Let y = ujv. We 
write y in the form 

Then 

v = -· u. . v 

dy = d(~u) = ~du + u d(~) 
1 

= - du + u(- v- 2
) dv 

v 

v du- u dv 
v2 

THEOREM 7 (Power Rule for Negative Exponents) 

Suppose u depends on x and n is a negative integer. Then for any value of x 
where dujdx exists and u # 0, d(u")jdx exists and 

d(u") n-1 du 
~ = nu dx' d(u") = nu"- 1 du. 

PROOF Since n is negative, n = - m where m is positive. Let y = u" = u -m. Then 
y = 1/u"'. By the Lemma and the Power Rule, 

dy 1 d(u"') 
dx - (u"') 2 '--;r;--

1 m-1 du --•mu -
u2

"' dx 
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du = ( _ m )u- 2mum- 1_ 

dx 

du du = ( -m)u-m-1_ =nun- I_. 

dx dx 

The Quotient Rule together with the Constant, Sum, Product, and Power 
Rules make it easy to differentiate any rational function. 

EXAMPLE 3 Find dy when 

y = x2 - 3x + 1· 

Introduce the new variable u with the equation 

u = x2 - 3x + 1. 

Then y = 1/u, and du = (2x - 3) dx, so 

dy = - _!_du = -(2x- 3) dx. 
u2 (x2 - 3x + 1)2 

EXAMPLE 4 
(x4- 2)3 

Let y = and find dy. 
5x - 1 

Let 

Then 

Also, 

Therefore 

u 
y = -, 

v 

v = 5x- 1. 

d 
v du- u dv 

y= vz 

du = 3 • (x4 - 2)2 • 4x 3 dx = 12(x4 - 2)2 • x 3 dx, 

dv = 5 dx. 

d _ (5x - 1)12(x4 - 2)2x 3 dx - (x4 - 2)35 dx 
Y- (5x- 1)2 

_ (x4 - 2)2[12(5x - 1)x3 - 5(x4 - 2)] d 
- (5x- 1? x. 

EXAMPLE 5 Let y = 1/x3 + 3jx2 + 4/x + 5. 

Then dy = ( _]_ - ~ - ~) dx. 
x4 x3 x2 

EXAMPLE 6 Find dy where 

y = (-2 1_ + 1) 2. 
X +X 

This problem can be worked by means of a double substitution. Let 

u = x 2 + x, 
1 

v=-+1. 
u 
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Then 

We find dy, dv, and du, 

dy = 2v dv, 

dv = -u- 2 du, 

du = (2x + 1)dx. 

Substituting, we get dy in terms of x and dx, 

dy = 2v( -u- 2 du) 

= -2vu- 2(2x + 1)dx 

-2u + 1) u- 2(2x + 1) dx 

-2(-2-1~ + 1}(x 2 + x)- 2(2x + 1)dx. 
X +X 

EXAMPLE 7 Assume that u and v depend on x. Given y = (uv)- 2
, find dy/dx in 

terms of du/dx and dvjdx. 

Lets= uv, whence y = s- 2
. We have 

Substituting, 

and 

dy = -2s- 3 ds, 

ds = u dv + v du. 

dy = -2(uv)- 3(udv + vdu), 

- = -2(uv)- 3 u- + v- . dy ( dv du) 
dx dx dx 

The six rules for differentiation which we have proved in this section are so 
useful that they should be memorized. We list them all together. 

Table 2.3.1 Rules for Differentiation 

(1) d(bx + c) = b. 
dx 

d(u + v) du dv 
(2) dx = dx + dx · 

d(cu) du 
(3) ~=c-. 

dx dx 

d(uv) dv du 
(4) ~ = u- + v-. 

dx dx dx 

(5) 
d(u") n _ 1 du 
-d- = nu -d . 

X X 

(
6
) d(ujv) v dujdx - u dvjdx 

dx v2 

d(bx + c) = b dx. 

d(u + v) = du + dv. 

d(cu) = c du. 

d(uv) = u dv + v du. 

d(u") = nu"- 1 du (n is any integer). 

d ) 
_ v du- u dv 

(ujv - 2 . 
v 
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An easy way to remember the way the signs are in the Quotient Rule 6 is to 
put u = 1 and use the Power Rule 5 with n = -1, 

-1 dv 
d(ljv) = d(v- 1

) = -l·v- 2 dv = --
2
-. 

v 

PROBLEMS FOR SECTION 2.3 

In Problems 1-42 below, find the derivative. 

1 f(x) = 3x2 + 5x - 4 

3 y = (x + 8)5 

5 f(t) = (4 - t)3 

7 y = (x2 + W 
9 

11 

13 

15 

17 

19 

21 

23 

25 

27 

29 

31 

33 

35 

37 

39 

41 

u = (6- 2x2) 3 

w = (1 - 4x3)- 2 

f(x) = 5(x + 1 - 1/x) 

v = 4(2x2 
- x + 3)- 2 

1 
)' = 1 + 1/t 

-3 
s = 4t2 - 2t + 1 

h(x) = -!{x 2 + 1)(5 - 2x) 

v = (3t 2 + 1)(2t - 4)3 

X + 1 
y=x-1 

x 2 - 1 
y = x 2 + 1 

(s - 1)(s - 2) 
X= 

s-3 
2x- 1 - x- 2 

y = 3x 1 - 4x 2 

y=6 

y = 3(x2 + 1)(2x2 
- 1)(2x + 3) 

1 
Z=----~ 

(2x + 1)(x - 3) 

y = [(2x + n- 1 + 3r 1 

y = (2x + 1}3(x2 + 1f 

2 

4 

6 

8 

10 

12 

14 

16 

18 

20 

22 

24 

26 

28 

30 

32 

34 

36 

38 

40 

42 

s = ft 3 + 1t2 + t 
z = (2 + 3x)4 

g(x) = 3(2 - 5x)6 

u = (6 + 2x2
) 3 

w = (1 + 4x3)-2 

y = 1 + x- 1 + x- 2 + x- 3 

u = (x2 + 3x + 1)4 

y = -(2x + 3 + 4x- 1
)-

1 

1 
y = 2x2 + 1 

s = (2t + 1)(3t - 2) 

y = (2x3 + 4)(x2 
- 3x + 1) 

z = (- 2x + 4 + 3x- 1 )(x + 1 - 5x- 1) 

2- 3x 
\1'=--

1 + 2x 

X 
U=--

X2 + 1 

t 
y = 1 + 1/t 

y = 4x- 5 

y = 2x(3x - 1)(4 - 2x) 

y = (4x + 3)- 1 + (x - 4)- 2 

y = (xz + l)-1(3x- 1)-z 

s = [(t2 + 1)3 + rr 1 

Y = (-2 -x-3)4 
X - 1 

In Problems 43-48, assume u and v depend on x and find dyjdx in terms of dujdx and dvjdx. 

43 y = u - v 44 y = u2v 

45 y = 4u + v2 46 y = 1/(u + v) 

47 y = 1juv 48 y = (u + v)(2u - v) 

49 Find the line tangent to the curve y = 1 + x + x 2 + x 3 at the point (1, 4). 
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50 

D 51 

Find the line tangent to the curve y = 9x- 2 at the point (3, 1 ). 

Consider the parabola y = x 2 + bx + c. Find values of band c such that the line y = 2x 
is tangent to the parabola at the point x = 2, y = 4. 

D 52 

D 53 

D 54 

D 55 

Show that if u, v, and II' are differentiable functions of x and y = ttnr, then 

dy dw dr du 
-=til'-+ tl\\'- + V\\'-. 
dx dx dx dx 

Use the principle of induction to show that if 11 is a positive integer, tt 1 , ... , u, are 
differentiable functions of x, andy = tt 1 + · · · + u,, then 

dy du 1 dtt, 
-=-+"·+-. 
dx dx dx 

Use the principle of induction to prove that for every positive integer 11, 

11(11 + 1) 
1 + 2 + · · · + II = --

2
-. 

Every rational function can be written as a quotient of two polynomials, p(x)jq(x). 
Using this fact, show that the derivative of every rational function is a rational function. 

2.4 INVERSE FUNCTIONS 

Two real functions f and g are called inverse functions if the two equations 

Y = f(x), X= g(y) 

have the same graphs in the (x, y) plane. That is, a point (x, y) is on the curve y = f(x) 
if, and only if, it is on the curve x = g(y). (In general, the graph of the equation 
x = g(y) is different from the graph of y = g(x), but is the same as the graph of 
y =f(x); see Figure 2.4.1.) 

y 

Y =f(x) 

X= g(y) 

Figure 2.4.1 Inverse Functions 

Xo X 

y 

Yz 

Y = g(x) 

X =f(y) 

X 

For example, the function y = x 2
, x ;;:::: 0, has the inverse function x = Jy; 

the function y = x 3 has the inverse function x = .;JY. 
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If we think off as a black box operating on an input x to produce an output 
f(x), the inverse function g is a black box operating on the output f(x) to undo the 
work of .f and produce the original input x (see Figure 2.4.2). 

I D ~ D r
=g(f(x)) 

f f(x) g 

Figure 2.4.2 

Many functions, such as y = x 2
, do not have inverse functions: In Figure 

2.4.3, we see that x is not a function of y because at y = 1, x has the two values x = 1 
and x = -1. 

Often one can tell whether a function .f has an inverse by looking at its 
graph. If there is a horizontal line y = c which cuts the graph at more than one point, 
the function .f has no inverse. (See Figure 2.4.3.) If no horizontal line cuts the graph 
at more than one point, then .f has an inverse function g. Using this rule, we can see 
in Figure 2.4.4 that the functions y = lxl and y = ~ do not have inverses. 

y 

X 

Figure 2.4.3 

y y 

y=! 

X X 

y=~ Y= !xi 

No inverse functions 
Figure 2.4.4 

Table 2.4.1 shows some familiar functions which do have inverses. Note 

. h dx 1 
that m eac case, dy = dyjdx. 
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Table 2.4.1 

inverse 
function dy function dx 1 

- - = --
y = f(x) dx X = g(y) dy dyjdx 

y=x+c 1 x=y-c 1 

y = kx k X= yjk 1/k 

Y = x2, x;:o:O 2x X= .jY 1 1 

2./Y = -
2x 

y = xz, xsO 2x -.JY 1 1 
X= -2./Y = -

2x 

y = 1/x 
1 

X= 1jy 
1 -x2 - x2 - )'2 = 

Suppose the (x, y) plane is flipped over about the diagonal line y = x. This 
will make the x- andy-axes change places, forming the (y, x) plane. Iff has an inverse 
function g, the graph of the function y = f(x) will become the graph of the inverse 
function x = g(y) in the (y, x) plane, as shown in Figure 2.4.5. 

The following rule shows that the derivatives of inverse functions are always 
reciprocals of each other. 

INVERSE FUNCTION RULE 

Suppose f and g are inverse functions, so that the two equations 

Y =f(x) and X= g(y) 

have the same graphs. If both derivatives f'(x) and g'(y) exist and are nonzero, 
then 

f'(x) = g':y); 

that is, 

dy 
dx dxjdy · 

PROOF Let Llx be a nonzero infinitesimal and let Lly be the corresponding change 
in y. Then Lly is also infinitesimal becausef'(x) exists and is nonzero because 
f(x) has an inverse function. By the rules for standard parts, 

(Lly) (Llx) f'(x) • g'(y) = st - • st -
Llx L\y 

(
Lly Llx) 

= st - • - = st(l) = 1. 
Llx Lly 

Therefore f'(x) = g,;y). 
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X 

X 

(a) 

X 

(b) y=x+c 

y X 

(c) 

(d) 

Figure 2.4.5 

The formula 

X 

X 

X 

x- ..;y 

dy 1 

dx dxfdy 

y 

y 

y 

X= VY 

in the Inverse Function Rule is not as trivial as it looks. A more complete statement is 

~~ computed with x the independent variable 

= dx~dy computed with y the independent variable. 
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Sometimes it is easier to compute dxjdy than dyjdx, and in such cases the 
Inverse Function Rule is a useful method. 

EXAMPLE 1 Find dyjdx where x = 1 + y- 3
. 

Before solving the problem we note that 

1 
y= 3~' 

-yx-1 

sox andy are inverse functions of each other. We want to find 

dy d(l/Tx-=ll 
dx dx 

with x the independent variable. This looks hard, but it is easy to compute 

dx d(1+y- 3) 

dy dy 

with y the independent variable. 

SOLUTION 
dx 3 -4 - - y ' 
d~y 

dy 1 
-

-3y-4 
- \.4. 

dx 3' 

We can write dyjdx in terms of x by substituting, 

dy 1 _ = --(x _ 11 -413. 
dx 3 · 

EXAMPLE 2 Find dyjdx where x = y 5 + y3 + y. Compute dyjdx at the point (1, 3). 

Although we cannot solve the equation explicitly for y as a function of x, we 
can see from the graph in Figure 2.4.6 that there is an inverse function 
Y = f(x). 

X y 

(3, I) 

y X 

( -3, -I) 

(-1, -3) 

Figure 2.4.6 

hjkeisler
Text Box
(3, 1).
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By the Inverse Function Rule, 

dx 
dy = 5y4 + 3y2 + 1, 

dy 1 

dx 5y4 + 3y 2 + 1· 

This time we must leave the answer in terms of y. At the point (1, 3), we 
substitute 3 for y and get dyjdx = 4~ 3 . 

For y 2 0, the function x = y" has the inverse function y = x 1
'"· In the next 

theorem, we use the Inverse Function Rule to find a new derivative, that of y = x 1
'"· 

THEOREM 1 

If n is a positive integer and 

then dy _ 1 (1/n)-1 ---x 
dx n 

Remember that y = x 11" is defined for all x if n is odd and for x > 0 if n is 

even. The derivative~ x111"'-
1 is defined for x i= 0 if n is odd and for x > 0 if n is even. 

11 

If we are willing to assume that dyfdx exists, then we can quickly find dyfdx 
by the Inverse Function Rule. 

X= y", 

dx n-1 
-d = ny , 

y 

dy 1 1 1 l-n 
-=--=--=-y 
dx dxfdy ny"- 1 n 

= ~ (xlfn)l-n = ~x<l-n)/n = ~X(l/n)-1. 
n n n 

Here is a longer but complete proof which shows that dyfdx exists and com­
putes its value. 

PROOF OF THEOREM 
show that 

Let x i= 0 and let ~x be nonzero infinitesimal. We first 

~Y = (x + ~x)lfn _ xlln 

is a nonzero infinitesimal. ~Y i= 0 because x + ~x i= x. The standard part of 
~Y is 

st(~y) = st((x + ~x) 11") - st(x 1'") 

= xlfn - xlln = 0. 

hjkeisler
Text Box
(3,1),

hjkeisler
Text Box
1

hjkeisler
Text Box
1/9.
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Therefore .0.y is nonzero infinitesimal. 

Now 

Therefore 

y 

Figure 2.4,7 

X= y", 

,0, Y 1 1 (I 'n)- 1 
-~--=-X I ' 

.1.x ny"- 1 11 

dy - 1 (1/n)- 1 
---X 
dx n 

X 

y = xl/3 

y 

X 

y = xl/4 

Figure 2.4.7 shows the graphs of y = x 113 andy= x 114. At x = 0, the curves 
are vertical and have no slope. 

EXAMPLE 3 Find the derivatives of y = x 11" for n = 2, 3, 4. 

d(x 112
) 1 - -1/2 

~-2x , X> 0. 

d(x 113
) 1 __ = -x-2;3 

dx 3 ' 
X# 0. 

d(xll4) 1 
- -3/4 ----;;:;- - 4 X ' 

X> 0. 

Using Theorem 1 we can show that the Power Rule holds when the exponent 
is any rational number. 

POWER RULE FOR RATIONAL EXPONENTS 

Let y = xr where r is a rational number. Then whenever x > 0, 

dy _ = J'Xr-1 
dx · 
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PROOF Let r = mjn where m and n are integers, n > 0. Let 

Then 

and 

du - 1 (1/n)-1 
---X 
dx n 

dy = mum-1 du 
dx dx 

= m(x1fnr-1(~xOfn)-1) 

= ~x(m/n)-1 = rxr-1. 
n 

EXAMPLE 4 Find dyjdx where 

y = x-3!7. 

dy 3 (-3{7)-1 
dx -;/ = 

-~x-1017 7 . 

EXAMPLE 5 Find dyjdx where 

1 
Y = 2 + x3/2' 

Let 

Then 

u = 2 + x312, 

du _ 3 112 
dx- 2x ' 

dy _
2 

du 
-= -u -
dx dx 

= -u-2Gxi/2) 

PROBLEMS FOR SECTION 2.4 

In Problems 1-16, find dyjdx. 

1 X= 3y3 + 2y 2 

3 X= 1- 2y2
, y>O 4 

5 X= (y2 + 2)-1, y>O 6 

7 y = x4f3 8 

9 y = (Jx + 1)/(Jx - 1) 10 

11 y = 1 + 2x 113 + 4x213 + 6x 12 

13 y = (xstJ _ x)-2 14 
15 X = 3y1/3 + 2y, y>O 16 

3 x1/2 

2 (2 + x3f2)2 · 

X= y 2 + 1, y>O 

X= 2y5 + y 3 + 4 

y = 1/Jx 

y=Jh 

y = (2x1/3 + 1)3 

y = x-1/4 + 3x-3/4 

x=y+2JY 

X= 1/(1 + jY) 
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In Problems 17-25, find the inverse function y and its derivative dy/dx as functions of x. 

17 X = ky + C, k # 0 18 X = y3 + 1 

19 X = 2y2 + 1, )' 2': 0 20 X = 2y2 + 1, )' :::;; 0 

21 X = y4 
- 3, y 2': 0 22 X = y 2 + 3y - 1, y 2': -t 

23 X = y4 + l + 1, y 2': 0 24 X = 1/y2 + 1/y - 1, y > 0 

25 X = JY + 2y, y > 0 

D 26 

D 27 

D 28 

Show that no second degree polynomial x = al + by+ c has an inverse function. 

Show that x = ay2 + by+ c, y 2': -b/2a, has an inverse function. What does its 
graph look like? 

Prove that a function y = f(x) has an inverse function if and only if whenever x 1 # x 2 , 

f(xd # f(xz). 

2.5 TRANSCENDENTAL FUNCTIONS 

The transcendental functions include the trigonometric functions sin x, cos x, tan x, 
the exponential function eX, and the natural logarithm function In x. These functions 
are developed in detail in Chapters 7 and 8. This section contains a brief discussion. 

1 TRIGONOMETRIC FUNCTIONS 

The Greek letters e (theta) and ¢(phi) are often used for angles. In the calculus it is 
convenient to measure angles in radians instead of degrees. An angle e in radians is 
defined as the length of the arc of the angle on a circle of radius one (Figure 2.5.1). 
Since a circle of radius one has circumference 2n, 

360 degrees = 2n radians. 

Figure 2.5.1 

Thus a right angle is 

90 degrees = n/2 radians. 

To define the sine and cosine functions, we consider a point P(x, y) on the 
unit circle x 2 + y2 = 1. Let e be the angle measured counterclockwise in radians 
from the point (1, 0) to the point P(x, y) as shown in Figure 2.5.2. Both coordinates 
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X and y depend on e. The value of X is called the cosine of e, and the value of y is the 
sine of e. In symbols, 

x =cos e, y =sine. 

Figure 2.5.2 

The tangent of e is defined by 

tan e = sin ejcos e. 

Negative angles and angles greater than 2n radians are also allowed. 
The trigonometric functions can also be defined using the sides of a right 

triangle, but this method only works for e between 0 and n/2. Let e be one of the 
acute angles of a right triangle as shown in Figure 2.5.3. 

a 

Figure 2.5.3 b 

Then sin e = opposite side = ~ ' 
hypotenuse c 

e _ adjacent side _ b 
cos - --' 

hypotenuse c 

tan e = opposite side = ~ . 
adjacent side b 

The two definitions, with circles and right triangles, can be seen to be equivalent 
using similar triangles. 
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Table 2.5.1 gives the values of sin 8 and cos 8 for some important values of e. 

Table 2.5.1 

e in degrees oo 30° 45° 
I 

60° 90° 180° 270° 360° 
e in radians 0 n/6 n/4 n/3 n/2 1! 3nj2 2n 
sine 0 1/2 .j2/2 .j3/2 1 0 -1 0 
cos e 1 .j3/2 .j2/2 1/2 0 -1 0 1 

A useful identity which follows from the unit circle equation x 2 + y 2 = 1 is 

sin2 8 + cos 2 e = 1. 

Here sin 2 e means (sin e) 2
. 

Figure 2.5.4 shows the graphs of sin 8 and cos e, which look like waves that 
oscillate between I and - 1 and repeat every 2n: radians. 

The derivatives of the sine and cosine functions are: 

Figure 2.5.4 

d(sin e) = cos e 0 

de 
d(cos e) . 

de = -sm e. 

sin 8 

cos 0 

8 

8 

In both formulas e is measured in radians. We can see intuitively why these 
are the derivatives in Figure 2.5.5. 

In the triangle under the infinitesimal microscope, 

.1.(sin 8) adjacent side 
8 -.,--,----:::::: =cos ; 

.1.8 hypotenuse 

.1.( cos e) -opposite side 
:::::: -----o-----

.1.e hypotenuse 
-sin e. 
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Figure 2.5.5 

Notice that cos(} decreases, and Ll(cos (}) is negative in the figure, so the derivative 
of cos e is -sin e instead of just sin e. 

Using the rules of differentiation we can find other derivatives. 

EXAMPLE 1 Differentiate y = sin2 e. Let u = sine, y = u2
• Then 

dy du . 
de = 2u de = 2 Sill e COS e. 

EXAMPLE 2 Differentiate y = sin e(l - cos e). Let u = sine, v = 1 - cos e. Then 
y = u • v, and 

~~ = u ~~ + v ~~=sine(-( -sin e))+ (1 -cos e) cos e 

= sin2 e + cos e - cos2 e. 

The other trigonometric functions (the secant, cosecant, and cotangent 
functions) and the inverse trigonometric functions are discussed in Chapter 7. 

2 EXPONENTIAL FUNCTIONS 

Given a positive real number b and a rational number mjn, the rational power bmln 
is defined as 

bmln = .jb"i, 
the positive nth root of bm. The negative power b-mtn is 

b-m/n = _1_ 
bmln' 

As an example consider b = 10. Several values of 10mtn are shown in Table 
2.5.2. 
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Table 2.5.2 

10-3 10-3/2 10-1 10-2/3 10 -1/3 100 101/3 102/3 101 103/2 103 

1 1 1 1 1 .yw J10o 10 10JIO 1000 --
10JIO 

-
fiOO .yw 1 

1000 10 

If we plot all the rational powers 10m1", we get a dotted line, with one value 
for each rational number mjn, as in Figure 2.5.6. 

... ... . t4•····· 
-1 

Figure 2.5.6 

4 

3 

2 

1 . • • ... 
0 

y = lOx, x rational 

X 

By connecting the dots with a smooth curve, we obtain a function y = lOx, 
where x varies over all real numbers instead of just the rationals. lOx is called the 
exponential function with base 10. It is positive for all x and follows the rules 

The derivative of 10-' is a constant times 10-', approximately 

To see this let L1x be a nonzero infinitesimal. Then 

-- = st = st = st 1 ox. d(IO. ") [10x+~x - lOx] [(10~" -. l)lOx] [10~" - 1] 
dx L1x L1x L1x 

The number st[(IO~x- 1)/L1x] is a constant which does not depend on x and can be 
shown to be approximately 2.303. 

If we start with a given positive real number b instead of 10, we obtain the 
exponential jimction with base b, y = bx. The derivative of b" is equal to the constant 
st[(b~"- 1)/L1x] times bx. This constant depends on b. The derivative is computed as 
follows: 

-- = st = st - st b . d(bx) [bx+~x - bx] [(b~x - l)b"] _ . [b~x - 1] x 
d x L1x L1x L1x 

The most useful base for the calculus is the number e. e is defined as the real 
number such that the derivative of ex is ex itself, 



In other words, e is the real number such that the constant 

[

e8x - 1' 
st J = 1 Ax 

(where Ax is a nonzero infinitesimal). It will be shown in Section 8.3 that there is 
such a number e and that e has the approximate value 

e- 2.71828. 

The function y = ex is called the exponential function. ex is always positive and follows 
the rules 

Figure 2.5.7 shows the graph of y = ex. 

y 

Figure 2.5.7 
-2 -1 0 2 X 

EXAMPLE 3 Find the derivative of y = x 2 ex. By the Product Rule, 

dy 2 d(ex) x d(x 2
) _ 2 x 

2 
x 

- = x -- + e -- - x e + xe . 
dx dx dx 

3 THE NATURAL LOGARITHM 

The inverse of the exponential function x = er is the natural logarithm jimction, 
written 

y = lnx. 

Verbally, In xis the number y such that eY = x. Since y = In xis the inverse function 
of x = eY, we have 

e'"a ==a, In (e0
) = a. 

The simplest values of y = In x are 

In (1/e) = -1, In (1) = 0, In e = 1. 

Figure 2.5.8 shows the graph of y = In x. It is defined only for x > 0. 
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The most important rules for logarithms are 

In(ab) =Ina+ lnb, 

In (ab) = b ·In a. 

X 

The natural logarithm function is important in calculus because its derivative 
is simply 1/x, 

d(ln x) 

dx 
1 

X ' 
(x > 0). 

This can be derived from the Inverse Function Rule. 

If 

then 

y = lnx, 

X= eY, 

dx 
- = eY, 
dy 

dy 
dx dxjdy e)' x 

The natural logarithm is also called the logarithm to the base e and is some­
times written loge x. Logarithms to other bases are discussed in Chapter 8. 

EXAMPLE 4 

4 SUMMARY 

D·~ . 1 Iuerentlate y = -
1 
-. 

nx 

dy -1 d(lnx) 
dx = (In x)2 ~ = x(ln x)2 · 

Here is a list of the new derivatives given in this section. 

d(sin x) 
~~- = cosx. 

dx 



d(cos x) 

dx 
-sinx. 

d(ex) 
~=ex. 

d(ln x) 

dx 
1 
X 

(x > 0). 
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Tables of values for sin x, cos x, eX, and In x can be found at the end of the 
book. 

PROBLEMS FOR SECTION 2.5 

In Problems 1-20, find the derivative. 

1 y = cos2 
() 2 s = tan2 t 

3 y = 2 sin x + 3 cos x 4 y = sin x • cos x 

5 IV=-- 6 IV=-.-
cos z sm z 

7 y =sin"() 8 y =tan"() 

9 s=tsint 10 
cost 

S=--
t- 1 

11 y = xex 12 y = 1/(1 + ex) 

13 y =(In x)2 14 y = x In x 

15 y = e" ·In x 16 y = e" • sin x 

17 u = Jv(l- e") 18 u = (1 + e")( 1 - e") 

19 y=x"Inx 20 y =(In x)" 

In Problems 21-24, find the equation of the tangent line at the given point. 

21 y = sin x at (n/6, !) 22 y = cos x at (n/4, .j2f2) 
23 y = x -In x at (e, e- 1) 24 y = e-x at (0, 1) 

CHAIN RULE 

The Chain Rule is more general than the Inverse Function Rule and deals with the 
case where x and y are both functions of a third variable t. 

Suppose X= f(t), y = G(x). 

Thus x depends on t, and y depends on x. But y is also a function oft, 

y = g(t), 

where g is defined by the rule 

g(t) = G(f(t)). 

The function g is sometimes called the composition of G and f (sometimes written 
g =Go f). 
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The composition of G and f may be described in terms of black boxes. 
The function g = Go f is a large black box operating on the input t to produce 
g(t) = G(f(t)). If we look inside this black box (pictured in Figure 2.6.1), we see two 
smaller black boxes,fand G. Firstfoperates on the input t to producef(t), and then 
G operates onf(t) to produce the final output g(t) = G(f(t)). 

The Chain Rule expresses the derivative of g in terms of the derivatives off 
and G. It leads to the powerful method of "change of variables" in computing deriva­
tives and, later on, integrals . 

.------- ,---
/(f) 

I 
f G 

g(l) = G(/(1)) 

g 
l,______ l,______ 

Figure 2.6.1 Composition g = Gof 

CHAIN RULE 

Let f, G be two real functions and define the new function g by the rule 

g(t) = G(f(t)). 

At any value oft where the derivatives j'(t) and G'(f(t)) exist, g'(t) also exists 
and has the value 

g'(t) = G'(f(t))f'(t). 

PROOF Let X = f(t), y = g(t), y = G(x). 

Take t as the independent variable, and let l1t i= 0 be infinitesimal. Form the 
corresponding increments Llx and Lly. By the Increment Theorem for 
x = f(t), Llx is infinitesimal. Using the Increment Theorem again but this 
time for y = G(x), we have 

Lly = G'(x) Llx + e Llx 

for some infinitesimal e. Dividing by Llt, 

Lly , Llx Llx 
Llt = G (x) At + e Llt 

Then taking standard parts, 

( Lly) ( Llx) st Llt = G'(x)st M + 0, 

or g'(t) = G'(x)f'(t) = G'(f(t))f'(t). 

EXAMPLE 1 Find the derivative of g(t) = ln (sin t). g(t) is the natural logarithm 
of the sine oft. It can be written in the form 
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g(t) = G(f(t)) 

where f(t) = sin t, G(x) = ln x. 

We have f'(t) = cos t, G'(x) = L 
X 

By the Chain Rule, 

g'(t) = G'(f(t))f'(t) 

1 cost 
= --•COSt = --. 

sin t sin t 

EXAMPLE 2 Find the derivative of g(t) = j3t+l. g(t) has the form 

g(t) = G(f(t)), 

where f(t) = 3t + 1, G(x) = Jx. 
We have f'(t) = 3, G'(x) = ~x-112. 

Then g'(t) = G'(f(t))f'(t) 

= ~(3t + 1)-1/23 = 3 . 
2 2j3t+l 

In practice it is more convenient to use the Chain Rule with dependent 
variables x and y instead of functions f and g. 

CHAIN RULE WITH DEPENDENT VARIABLES 

Let 

X= f(t), 

Assume g'(t) and G'(x) exist. Then 

y = g(t) = G(x). 

(i) dy = dy dx 
dt dx dt 

(J"i) d dy d 
y = dx x 

where dxfdt, dyfdt are computed with t as the independent variable, and dyfdx 
is computed with x as the independent variable. 

Let us work Examples 1 and 2 again with dependent variables. 

EXAMPLE 1 (Continued) Let x = sin t, y = ln X. 

Find dyfdt using Chain Rule (i) and dy by using Chain Rule (ii). 

dx dy 1 
(i) dt = cos t, dx x 

dy dy dx 1 cos t 
- = -.- = -.cos t = -.-. 
dt dx dt x sm t 
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dy 

dx x 
(ii) dx = cost dt, 

1 1 cos t 
dy = - dx = -cos t dt = -.~ dt. 

X X Sill t 

EXAMPLE 2 (Continued) Let X = 3t + 1, y = .j-;, 

(i) 
dx dy 1 .-1. 2 
dt = 3' dx = 2x ' 

dy = dydx = ~x-1/2 = ~(3t + 1)-112. 
dt dx dt 2 2 

(ii) dx = 3 dt, 
dy 1 -1 2 

dx = 2x ' ' 

The equation 

dy dy dx 

dt dx dt 

with t as the independent variable is trivial. We simply cancel the dx's. But when 
dyjdx is computed with x as the independent variable while dxjdt is computed with t 
as the independent variable, the two dx's have different meanings, and the equation 
is not trivial. 

Similarly, the equation 

dy 
dy = -dx 

dx 

is trivial with x as the independent variable but not when tis the independent variable 
in dy and dx, while x is independent in dyjdx. 

The Chain Rule shows that when we change independent variables the 
equations 

dy dy dx 

dt dx dt' 

dy 
dy = -dx 

dx 
remain true. 

The Inverse Function Rule can be proved from the Chain Rule as follows. 
Let 

Y = f(x), X= g(y) 

be inverse functions whose derivatives exist. Then 

whence 

dy dx dy 
--=-= 1 
dx dy dy ' 

dy 1 

dx dxjdy' 
., 1 

j (x) = -;-( )' g )' 

Using the Chain Rule we may write the Power Rule in a general form. 
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POWER RULE 

Let r be a rational number, and let u depend on x. If u > 0 and dujdx exists, 
then 

d(u') r-1 du 
dx = ru dx" 

This is proved by letting y = u' and computing dyjdx by the Chain Rule, 

dy dy du r-1 du 
-=--=ru -. 
dx du dx dx 

The Chain Rule has two types of applications. 

dy dy dy dx 
(1) Given x = f(t) andy = G(x), find-. Use- = -d -. 

dt dt X dt 

. dy dy dyjdt 
(2) G1ven x = f(t) andy = g(t), find -d . Use-d = --. 

X X dxjdt 

Applications of type (1) often arise when a new dependent variable x is 

introduced to help compute ~~. Applications of type (2) arise when two variables 

x and y both depend on a third variable t, for example, when x and y are the co­
ordinates of a moving particle and tis time. 

We give three examples of type (1) and then two of type (2). 

EXAMPLE 3 Suppose that by investing t dollars a company can produce 

t 
X= 

10
- 100, t 2 1000, 

items, and that it can sell x items for a total profit of 

x2 
y = Sx- 100· 

Find dy , which is the marginal profit with respect to the amount invested. 
dt 

We have 
dx 1 
dt 10' 

By the Chain Rule, 

~~~ = ~~ ~; = ( 5 - 5~) 1
1
0 

10 1 
( 

_!_-100) 

= 5 - 50 . 10 

t 
= 0"7 - 5000" 

Thus after t dollars have been invested, an additional dollar invested will 
bring 0.7 - t/5000 dollars of additional profit. 
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EXAMPLE 4 Find dyjdt where y = (5t 2
- 2) 114

. 

Let 

Then 

X= 5t 2 
- 2, 

dx dy 1 _314 - = lOt, - = -X , 
dt dx 4 

dy = dy dx = (!x_ 314) (lOt) 
dt dx dt 4 

= 10 (5t2.- 2)-314t. 
4 

EXAMPLE 5 Find dyjdx where y = Jsin (4x + 1) + cos (4x - 1). This problem 
requires three uses of the Chain Rule. 

Let u = sin(4x + 1) + cos(4x- 1), y = Ju. 
Then by the Chain Rule, 

dy dy du du 
dx = du ' dx = 2Ju ' dx · 

Now let v = sin (4x + 1), w = cos ( 4x - 1 ), 

du dv dw 
Then dx = dx + dx' 

u = v + w. 

We use the Chain Rule twice more to find dvjdx and dwjdx. 

v = sin(4x + 1). 

dv d(4x + 1) 
dx = cos(4x + 1) dx = 4cos(4x + 1). 

w = cos (4x - 1). 

dw . d(4x - 1) . 
dx = -sm (4x - 1) dx = -4 sm (4x - 1). 

Finally, we combine everything to get 

dy = _1~. du = _l~(dv + dw) 
dx 2Ju dx 2Ju dx dx 

4cos(4x + 1)- 4sin(4x- 1) 

2Jsin (4x + 1) + cos (4x - 1) · 

If a particle is moving in the plane, its position (x, y) at time twill be given by 
a pair of equations 

X = f(t), y = g(t). 

These are called parametric equations. The slope of the curve traced out by this particle 
can be found by the Chain Rule, 

dy 

dx 

dyjdt 
dxjdt 

g'(t) 
f'(t), 
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whenever the derivatives exist and f'(t) # 0. This is a Chain Rule application of 
type (2). 

EXAMPLE 6 A ball thrown horizontally from a 100ft cliff at a velocity of 50ft/sec 
will follow the parametric equations 

X= SOt, y = 100- 16t2
, in feet. 

Find the slope of its path at time t (Figure 2.6.2). 

so 

Figure 2.6.2 

dx =50 
dt ' 

dy 
- = -32t 
dt ' 

dy dyjdt 32t 

50 dx = dxjdt = 

y 

t= 0 

X= SOt 

y=l00-16!2 

X 

EXAMPLE 1 A particle moves according to the parametric equations 

X = t 3 
- t, y = t2

• 

Find the slope of its path. 

dx 2 - = 3t - 1 
dt ' 

dy 
dt = 2t, 

dy dyjdt 2t 
dx = dxjdt = 3t2 - 1 ' so t # ±JT]i 

We see from Figure 2.6.3 that the path of this particle is not the graph of a 
function, and in fact contains a loop and crosses the point (0, 1) twice, at 

t = -1 and t = 1. The path is vertical at the points t = ± .jff3, where there 
is no slope. At the point (0, 1), the two slopes of the path are dyjdx = -1 
when t = -1, and dyjdx = 1 when t = 1. 

EXAMPLE s A particle moving according to the parametric equations 

X= COSt, y=sint 

will move counterclockwise around the unit circle at one radian per second 
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X y 

X= t 3 - f 

y 

t= -Jr/3 
t = 0 X 

Figure 2.6.3 

beginning at the point (1, 0), as shown in Figure 2.6.4. Find the slope of its 
path at time t. 

The slope is 

dx 
dt 

-sin t, 

dy dyjdt 
dx = dxjdt 

dy 
dt = cost. 

cost 
sin t 

In terms of x and y the slope is 

I= 7T 

Figure 2.6.4 

y 

I = }-

I_ 3rr 
- 2 

dy X 

dx y 

X 

X =cos I, y =sin I 



PROBLEMS FOR SECTION 2.6 

In Problems 1-44, find dyfdx. 

I y = .jX+2 2 

3 y=~ 4 

5 

7 

9 

11 

13 

15 

17 

19 

21 

23 

24 

25 

26 

27 

28 

29 

30 

31 

33 

35 

37 

39 

41 

43 

1 
y=---

J2+ 3x 

y = ..j6x + 1 

y=Jx2+T 

y =sin (3x) 

y = sin cx- 2) 

)' = e4x 

y = ecosx 

y = cos u, u = ex 

y = u10
, u = 1 - 4x 

y = sin u + sin v, u = 1 - x 2 , 

6 

8 

10 

12 

14 

16 

18 

20 

22 

v=2x-1 

y = e" + e", u = 1 - 3x, v = 3 - 4x 

y = e", u = Jv, v = sin x 

y = In u, u = tan v, v = 1fx 

y = u- 1
'
3

, u = 1 + Jv, v = x 2
- 1 

y=u-t, u=3v+4, v=l/(x+1) 

y = u4
, u = 1 + 1fv, v = x 3 + 1 

y = u2 + 1, u = v2 + 1, v = x 2 + 1 

y = (jX2=1 + .j7+1)t/3 32 

y = 3x sin(2x- 1) 

x = cos (3t), y = sin (3t) 

x = sin t, y = sin (2t) 

X = ln (t + 1), }' = t2 

X = jt2=4, }' = .jt2+4 

X = J't+l, )' = .yt+2 

34 

36 

38 

40 

42 

44 
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y = J? + 4x 

y = Jl- lOx 

1 
y= 
~ 

y = .j2=3x 
y = J1=X2 
y = cos(4- 2x) 

y =cos Jx 
)' = e-x2 

y = ln(lnx) 

y = tan u, u = In x 

y = u- 10, u = 1 - x2 

y = (x + J3- 4x)- 112 

y = sin (2x) cos (3x) 

x = e', y =In t 

x = sin (e'), y = cos (e') 

X= ecosr, y = esinr 

X = 1 + jt, }' = 2 + jt 
2t + 1 2t + 3 

X= t+2' }'=(+2 

45 A particle moves in the plane according to the parametric equations 

X= t2 + 1, )' = 3t3 . 

Find the slope of its path. 

46 An ant moves in the plane according to the equations 

X=(l-t2
)-

1
, y=.fi. 

Find the slope of its path. 

] 47 Let y depend on u, u depend on v, and v depend on x. Assume the derivatives dyjdu, 
dufdv, and dvjdx exist. Prove that 

dy dydu dv 
dx- du dvdx' 

] 48 Let the function f(x) be differentiable for all x, and let g(x) = f(f(x)). Show that g'{x) = 
f'(f(x))f'(x). 
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2.7 HIGHER DERIVATIVES 

DEFINITION 

The second del'ivative of a real function f is the derivative of the derivative of 
f, and is denoted by f". The third derivative off is the derivative of the second 
derivative, and is denoted by f'", or Jf 31. In general, the nth derivative off is 
denoted by Jf"1. 

If y depends on x, y = f(x), then the second differential of y is defined to be 

d2 y = f"(x) dx 2
. 

In general the nth differential of y is defined by 

d"y = Jf"1(x) dx". 

Here dx 2 means (dx) 2 and dx" means (dx)". 

We thus have the alternative notations 

for the second and nth derivatives. The notation 

y" = f"(x), 

is also used. 
The definition of the second differential can be remembered in the following 

way. By definition, 

dy = f'(x) dx. 

Now hold dx constant and formally apply the Constant Rule for differentiation, 
obtaining 

or 

d(dy) = f"(x) dx dx, 

d2 y = f"(x) dx 2
. 

(This is not a correct use of the Constant Rule because the rule applies to a real 
constant c, and dx is not a real number. It is only a mnemonic device to remember the 
definition of d2 y, not a proof.) 

The third and higher differentials can be motivated in the same way. If we 
hold dx constant and formally use the Constant Rule again and again, we obtain 

and so on. 

dy = f'(x) dx, 

d2 y = f"(x) dx dx = f"(x) dx 2
, 

d3 y = f'"(x) dx 2 dx = f"'(x) dx 3
, 

d4 y = Jf 41(x) dx 3 dx = Jf41(x) dx 4
, 

The acceleration of a moving particle is defined to be the derivative of the 
velocity with respect to time, 

a = dvldt. 
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Thus the velocity is the first derivative of the distance and the acceleration is the 
second derivative of the distance. If sis distance, we have 

ds 
v = dt' 

EXAMPLE 1 A ball thrown up with initial velocity b moves according to the equation 

y = bt- 16t2 

with y in feet, t in seconds. Then the velocity is 

v = b - 32t ftjsec, 

and the acceleration (due to gravity) is a constant, 

a = -32 ft/sec 2
• 

EXAMPLE 2 Find the second derivative of y = sin (2B). 

First derivative Put u = 2B. Then 

y =sin u, 
dy 
du =cos u, 

By the Chain Rule, 

du 
dB= 2· 

dy dy du 
dB = du o d8 = cos (28) o 2, 

dy 
d8 = 2 cos (28). 

Second derivative Let v = 2 cos (28). We must find dvjd8. Put u = 28. Then 

dv du = 2 v = 2 cos u, du - 2 sin u, d
8 

. 

Using the Chain Rule again, 

d2 y dv dv du . 
dez = d8 = duo dB = ( -2 sm (28)) 0 2. 

This simplifies to 

EXAMPLE 3 A particle moves so that at time t it has gone a distance s along a 
straight line, its velocity is v, and its acceleration is a. Show that 

By definition we have 

dv 
a= v-. 

ds 

ds 
v = dt' 

dv 
a= dt' 
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so by the Chain Rule, 

dv ds dv 
a=--=v-. 

ds dt ds 

EXAMPLE 4 If a polynomial of degree 11 is repeatedly differentiated, the kth deriva­
tive will be a polynomial of degree 11 - k fork .:::; n, and the (n + l)st deriva­
tive will be zero. For example, 

y = 3x 5 
- 10x4 + x 2 

- 7x + 4. 

dy/dx = 15x4
- 40x 3 + 2x- 7. 

d2 y/dx 2 = 60x 3 
- 120x2 + 2. 

d3 yfdx 3 = 180x2 
- 240x. 

d4 y/dx 4 = 360x - 240. 

d5 yfdx 5 = 360, d6 y/dx 6 = 0. 

Geometrically, the second derivative f"(x) is the slope of the curve y' = f'(x) 
and is also the rate of change of the slope of the curve y = f(x). 

PROBLEMS FOR SECTION 2.7 

In Problems 1-23, find the second derivative. 

4 

7 

10 

12 

14 

16 

18 

21 

24 

25 

26 

27 

28 

29 

30 
31 

0 32 

y = i(x 2 Y = xs 3 
-5 

y=~-

X + I 

f(x) = 3x- 2 5 f(x) = xl/2 + x-1/2 6 f(t) = 13 
- 4t2 

f(t) = tjt 8 )' = (3t - 1)10 9 y =sin x 

)'=COS X 11 y =A sin (Bx) 

y =A cos (Bx) 13 )' = e"x 

)' = e-ax 15 y =In x 

1 
y = x In x 17 y =f2+[ 

y = J3r+2 19 
x-5 

z=~-

x+2 
20 

2x- 1 
Z=--

3x- 2 

z=xJx+l 22 s=(~r t + 2 
23 s=fh 

Find the third derivative of y = x 2 
- 2jx. 

A particle moves according to the equation s = 1 - ljt2
, t > 0. Find its acceleration. 

An object moves in such a way that when it has moved a distances its velocity is v = Js. 
Find its acceleration. (Use Example 3.) 

Suppose u depends on x and d2 ujdx2 exists. If y = 3u, find d2 yjdx2
. 

If d2ujdx2 and d2 vjdx 2 exist andy = u + v, find d2yjdx2
. 

If d2 ujdx2 exists andy = u2
, find d2 yjdx2

. 

If d2ujdx2 and d2 vjdx2 exist andy= uv, find d2yjdx2
. 

Let y = ax 2 + bx + c be a polynomial of degree two. Show that dyjdx is a linear 
function and d2 yjdx 2 is a constant function. 

Prove that the nth derivative of a polynomial of degree n is constant. (Use the fact that 
the derivative of a ol nomial of de reek is a ol nomial of de ree k - 1. 
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8 IMPLICIT FUNCTIONS 

We now turn to the topic of implicit differentiation. We say that y is an implicit 
function of x if we are given an equation 

a(x, y) = <(x, y) 

which determines y as a function of x. An example is x + xy = 2y. Implicit differentia­
tion is a way of finding the derivative of y without actually solving for y as a function 
of x. Assume that dyjdx exists. The method has two steps: 

Step 1 Differentiate both sides of the equation a(x, y) = <(x, y) to get a new equation 

d(a(x, y)) d(<(x, y)) 
(l) 

dx dx 

The Chain Rule is often used in this step. 

Step 2 Solve the new Equation 1 for dyfdx. The answer will usually involve both x 
andy. 

In each of the examples below, we assume that dyjdx exists and use implicit 
differentiation to find the value of dyjdx. 

EXAMPLE 1 Given the equation x + xy = 2y, find dyjdx. 

Step 1 
d(x + xy) d(2y) . 

dx =ax· We find each s1de by the Sum and Product Rules, 

d(x + xy) dx + d(xy) dx + x dy + y dx 

dx dx dx 

dy 
= 1 + x dx + y. 

d(2y) = 2 dy. 
dx dx 

Thus our new equation is 

Step 2 Solve for dyjdx. 

dy dy 
2--x-=l+y. 

dx dx 

dy 1 + y 

dx 2- x 

We can check our answer by solving the original equation for y and using 
ordinary differentiation: 

x + xy = 2y. 

2y- xy = x. 

X 
y =-2-. -x 
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By the Quotient Rule, 

dy (2 - x) • 1 - x( -1) 2 

dx (2 - x) 2 (2 - x) 2 
• 

A third way to find dyjdx is to solve the original equation for x, find dx/dy, 
and then use the Inverse Function Rule. 

x + xy = 2y. 

'- 2y 
x-l+y' 

dx (1 + y) • 2 - 2y • 1 2 
dy (1 + y)2 (1 + y)2. 

dy 1 2 

dx = 2(1 + y) · 

To see that our three answers 

dy 1 + y dy 2 
dx 2- x' dx (2- x) 2

' 

dy 1 2 - = -(1 + y) 
dx 2 

X 
are all the same we substitute 

2 
_ x for y: 

X 

d 
1+-- 2 

y 1+y 2-x 
dx 2 - x 2 - x = (2 - x) 2 • 

dy 1 2 1( X )
2 

2 
dx = 2(1 + y) = 2 1 + 2 - x = (2 - x) 2 · 

In Example 1, we found dyfdx by three different methods. 

(a) Implicit differentiation. We get dy/dx in terms of both x andy. 

(b) Solve for y as a function of x and differentiate directly. This gives dy/dx 
in terms of x only. 

(c) Solve for x as a function of y, find dx/dy directly, and use the Inverse 
Function Rule. This method gives dy/dx in terms of y only. 

EXAMPLE 2 Given y + jY = x 2
, find dyjdx. 

d(y + jY) d(x 2
) 

dx =-;r;:· 
dy 1 -1/2 dy - 2' 
dx + 2 y dx- x. 

dy 2x 
dx 1 + ty- 112 • 

This answer can be used to find the slope at any point on the curve. For ex­
ample, at the point (j2, 1) the slope is 
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2Jl 
1 + ! 0 1-1/2 

2Jl 
3/2 

4Jl 
3 

while at the point (- Jl, 1) the slope is 

2(-j2) 
1 +! 0 1-1/2 

-4Jl 

3 

To get dyjdx in terms of x, we solve the original equation for y using the 
quadratic formula: 

y + JY- x 2 = 0, 

JY = - 1 ± ~ 1 + 4x
2 

2 

Since Jy ;::: 0, only one solution may occur, 

Jy = -1 + ~r-i -+.....,-4x.....,2
. 

2 

Then y = ( - 1 + ~~1 _+_4_x-=z· r 
The graph of this function is shown in Figure 2.8.1. By substitution we get 

dy 2x 2x 

dx 1+h 112 1+(-1+~1+4x2)- 1 

y 

X 

Figure 2.8.1 

Often one side of an implicit function equation is constant and has derivative 
zero. 

EXAMPLE 3 Given x 2 
- 2y2 = 4, y ::::; 0, find dyjdx. 

d(x 2 - 2y2
) d(4) 

dx = dx · 

d(xz - 2yz) = 2x - 4y dy. 
dx dx 

d(4) = 0. 
dx 

dy 
2x- 4y dx = 0. 

dy -2x x 
dx- -4y = 2y' 
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Solving the original equation for y, we get 

- 2y2 = 4 - .\2, .\'::;; 0: 

Thus dyjdx in terms of x is 

dy X 

.\2 - 4 
r 2 = --- r::;; 0: . 2 , -

-Rx2 -4 
.r= 2 . 

X X 

dx 2y j2(x2
- 4) 

The graph of this function is shown in Figure 2.8.2. 

y 

X 

Figure 2.8.2 x 2 - 2y 2 = 4, y .s. 0 

Implicit differentiation can even be applied to an equation that does not 
by itself determine y as a function x. Sometimes extra inequalities must be assumed 
in order to make y a function of x. 

EXAMPLE 4 Given 

(2) 

(3) 

x2 + )'2 = 1, 

find dyjdx. This equation does not determine y as a function of x; its graph 
is the unit circle. Nevertheless we differentiate both sides with respect to x 
and solve for dyjdx, 

dy 
2x + 2y-d = 0, 

X 

dy 

dx 

X 

We can conclude that for any system of formulas S which contains the 
Equation 2 and also determines y as a function of x, it is true that 

dy 

dx .\' 

We can use Equation 3 to find the slope of the line tangent to the unit circle 
at any point on the circle. The following examples are illustrated in Figure 2.8.3. 
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y 

Figure 2.8.3 

gives us 

dy dy 
-d = 0 at (0, -1), 

x dx 

dy = 18 at (J8 -~) 
dx ....;o 3 ' 3 ' 

The system of formulas 

xz + yz = 1, 

Y=~, 
dy 

dx 

--
1 at(~ fi) J3 2' 2 , 

dy . d fi dx Is un e ned at ( -1, 0). 

y;:-::0 

X X 

y ~-

On the other hand the system 

gives us y=-~, 
dy 

dx 

y::;;O 

X X 

y ~-

EXAMPLE 5 Find the slope of the line tangent to the curve 

(4) x 5y 3 + xy6 = y + 1 

(5) 

at the points (1, 1), (1, -1), and (0, -1). 

The three points are all on the curve, and the hrsr rwo points have the same 
x coordinate, so Equation 4 does not by itself determine y as a function of x. 

We differentiate with respect to x, 

d(x 5y3 + xy6) d(y + 1) 
dx dx 

and then solve for dyjdx, 

dy 
5x4y3 + y6 + (3xsyz + 6xys - 1) dx = 0, 

dy 

dx 
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Substituting, 
6 

at (L l), 
8 

dy 

dx 

dy 
-= -1 
dx 

at (L -I), 

dy 
- = + 1 at (0, - 1), 
dx 

Equation 5 for dyjdx is true of any system S of formulas which contains 
Equation 4 and determines y as a function of x. 

Here is what generally happens in the method of implicit differentiation. 
Given an equation 

(6) r(x, y) = tJ(x, y) 

between two terms which may involve the variables x and y, we differentiate both 
sides of the equation and obtain 

(7) 
d(r(x, y)) d(O"(x, y)) 

dx dx 

We then solve Equation 7 to get dyjdx equal to a term which typically involves both 
x andy. We can conclude that for any system of formulas which contains Equation 6 
and determines y as a function of x, Equation 7 is true. Also, Equation 7 can be used 
to find the slope of the tangent line at any point on the curve r(x, y) = tJ(x, y). 

PROBLEMS FOR SECTION 2.8 

In Problems 1-26, find dyjdx by implicit differentiation. The answer may involve both x and y. 

1 xy = 1 2 2x2 
- 3 y2 = 4, y :5: 0 

3 x 3 + l = 2 4 x 3 = y 5 

5 y = 1/(x + y) 6 l + 3y- 5 =X 

7 x-2+y-2=1 8 xy3 = y + x 

9 x 2 + 3xy + y2 = 0 10 xjy + 3y = 2 

11 xs = y2- y + 1 12 Jx+JY=x+y 

13 y = JxY+1 14 x4 + y4 = 5 

15 xy2 
- 3x 2y + x = 1 16 2xy- 2 + x- 2 = y 

17 y =sin (xy) 18 y =cos (x + y) 

19 x = cos2 y 20 x = sin y + cos y 

21 y = ex+2y 22 e)'= x 2 + y 

23 ex= In y 24 In y =sin x 

25 y2 = In (2x + 3y) 26 In (cos y) = 2x + 5 

In Problems 27-33, find the slope of the line tangent to the given curve at the given point or points. 

27 x 2 + xy + y2 = 7 at (1, 2) and ( -1, 3) 

28 x + y3 = y at (0, 0), (0, 1), (0, -1), (- 6, 2) 

29 x 2 
- y2 = 3 at (2, 1), (2, -1), cfi, 0) 

30 tan y = x 2 at (n/4, 1) 
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31 2 sin2 x = 3 cosy at (n/3, n/3) 

32 y + eY = 1 + In x at (1, 0) 

33 e'inx =In y at (0, e) 

34 Given the equation x 2 + y2 = 1, find dyjdx and d2yjdx2
• 

35 Given the equation 2x2 
- y2 = 1, find dyjdx and d2 yjdx2

• 

36 Differentiating the equation x 2 = y2 implicitly, we get dyjdx = xjy. This is undefined 
at the point (0, 0). Sketch the graph of the equation to see what happens at the point (0, 0). 

EXTRA PROBLEMS FOR CHAPTER 2 

1 Find the derivative of f(x) = 4x 3 
- 2x + 1. 

2 Find the derivative of f(t) = 1/~. 
3 Find the slope of the curve y = x(2x + 4) at the point (1, 6). 

4 A particle moves according to the equation y = 1/(t2 
- 4). Find the velocity as a 

function oft. 

5 Given y = 1/x3
, express 8y and dy as functions of x and 8x. 

6 Given y = 1/Jx, express 8y and dy as functions of x and 8x. 

7 Find d(x2 + 1jx2
). 

8 Find d(x - 1/x). 

9 Find the equation of the line tangent to the curve y = 1/(x - 2) at the point (1, -1). 

10 Find the equation of the line tangent to the curve y = 1 + xJx at the point (1, 2). 

11 Find dyjdx where y = - 3x3 
- 5x + 2. 

12 Find dyjdx where y = (2x - 5)- 2
. 

13 Find dsfdt where s = (3t + 4)(t2 
- 5). 

14 Finddsfdtwheres = (4t 2
- 6)- 1 + (1- 2t)- 2

• 

15 Find dujdv where u = (2v 2 
- 5v + 1)/(v3 

- 4). 

16 Find dujdv where u = (v + (1/v))j(v - (1/v)). 

17 Find dyjdx where y = x 1i 2 + 4x3
1
2

. 

18 Find dyjdx where y = (1 + Jxf. 

19 Find dyjdx where y = x 1
'
3 

- x- 114
. 

20 Find dyjdx where y = ex cos2 x. 

21 Find dyjdx where x = JY + y2
, y > 0. 

22 Find dyjdx where x = y- 112 + y- 1
, y > 0. 

23 Find dyjdx where y = ~-
24 Find dyjdx where y = sin(2 + Jx). 

25 Find dyjdx where y = u- 112
, u = 5x + 4. 

26 Find dyjdx where y = u5
, u = 2- x3

. 

27 Find the slope dyjdx of the path of a particle moving so that y = 3t + jt, x = (1/t)- t2
. 

28 Find theslopedy/dx of the path of a particle moving so thaty = j4t=S, x = J]t+6. 
29 Find d2yjdx2 where y = j4x"=l. 
30 Find d2 yjdx2 where y = xj(x2 + 2). 

31 An object moves so that s = tjt+3. Find the velocity v = dsfdt and the acceleration 
a = d2sjdt2

• 

32 Find dyjdx by implicit differentiation when x + y + 2x2 + 3y3 
= 2. 
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33 

34 

D 35 

D 36 

D 37 

D 38 

D 39 

D 40 

D 41 

D 42 

2 DIFFERENTIATION 

Find dyjdx by implicit differentiation when 3xl + 2x3y = 1. 

Find the slope of the line tangent to the curve 2xjY- y2 = Jx at (1, 1). 

Find the derivative ofj(x) = lx 2
- 11. 

Find the derivative of the function 

f(x) = g if x is an integer, 

otherwise. 

Letf(x) = (x- c)413
. Show thatf'(x) exists for all real x but thatf"(c) does not exist. 

Let n be a positive integer and c a real number. Show that there is a functiong(x) which 
has an nth derivative at x = c but does not have an (11 + l)st derivative at x = c. That 
is,g("1(c) exists butg("+ 11(c) does not. 

(a) Let u = lxl, y = u2
. Show that at x = 0, dyjdx exists even though dujdx does not. 

(b) Let u = x4
, y = lui. Show that at x = 0, dyjdx exists even though dyjdu does not. 

Supposeg(x) is differentiable at x = c and ((x) = lg(x)l. Show that 
(a) f'(c) = g'(c) if g(c) > 0, 
(b) f'(c) =- g'(c) if g(c) < 0, 
(c) f'(c) = 0 if g(c) = 0 andg'(c) = 0, 
(d) f'(c) does not exist if g(c) = 0 and g'(c) =1- 0. 

Prove by induction that for every positive integer 11, 11 < 2". 

Prove by induction that the sum of the first n odd positive integers is equal to n2, 

1 + 3 + 5 + ... + (211 - 1) = 11 2
. 



CONTINUOUS 
FUNCTIONS 

3.1 HOW TO SET UP A PROBLEM 

3 

In applications, a calculus problem is often presented verbally, and it is up to you 
to set up the problem in mathematical terms. The problem can usually be described 
mathematically by a list of equations and inequalities. The next two sections contain 
several examples that illustrate the process of setting up a problem. The examples 
in this section are from algebra and geometry, and those in the next section are from 
calculus. 

It is sometimes hard to see how to begin on a story problem. It is helpful 
to break the process up into three steps: 

Step 7 Draw a diagram if possible, and label all quantities involved. 

Step 2 Write the given information as a set of equations andjor inequalities. 

Step 3 Solve the mathematical problem, and interpret the mathematical solution 
to answer the original story problem. 

EXAMPLE 1 According to a treasure map, a buried treasure is located due east 
of a cave and is 200 paces from a tree. The tree is 30 paces east and 40 paces 
north of the cave. How far is the treasure from the cave? 

The solution of this problem uses the quadratic formula, which will be 
needed throughout the calculus course. We review it here. 

QUADRATIC FORMULA If a =f. 0, then 

ax2 + bx + c = 0 

if and only if 

-b ± Jb 2
- 4ac 

x=--~----
2a · 

We solve Example 1 in three steps. 

105 
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Step 1 Draw a diagram and label all quantities involved. In Figure 3.1.1, we put 
the cave at the origin and let x be the distance from the cave to the target 
along the x-axis. The tree is at the point (30, 40), and the treasure is at the 
point (x, 0). 

y 

Figure 3.1.1 

tree 
(30,40) 

treasure 
~t,O) 

Step 2 Write the known information as a system of formulas. By the distance 
formula, we have 

200 = Jcx - 30)2 + co - 40) 2
, x :::::-: o. 

The inequality x ::=:-: 0 arises because the treasure is east of the cave. 

Step 3 Solve for x. We square the Distance Formula. 

40,000 = (x - 30)2 + (0 - 40) 2 = x 2 
- 60x + 900 + 1600 

= x 2 
- 60x + 2500 

x 2 
- 60x - 37,500 = 0 

To find x we use the Quadratic Formula. 

60 ± JC60)2
- 4( -37,500) 60 ± Jt53,600 

X= 2 = 2 

= 30 ± J38,4oO 

INTERPRET THE SOLUTION Since x ::=:-: 0, we reject the negative solution. Thus 
x = 30 + J38,400 ,..., 226 paces. The treasure is approximately 226 paces 
from the cave. 

Most calculus problems involve two or more variables. 

EXAMPLE 2 A six-foot man stands near a ten-foot lamppost. Find the length of 
his shadow as a function of his distance from the lamppost. 

Step 1 Draw a diagram and label all the quantities involved. In Figure 3.1.2, we let 

x = man's distance from lamppost, 

s = length of his shadow. 
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lamp 

!0~ 
Figure 3.1.2 X s 

Step 2 Write the known information as a system of formulas. By similar triangles we 
have 

S S +X 
X~ 0. -

6 10 , 

The inequality x ~ 0 arises because the distance cannot be negative. 

Step 3 Solve for s as a function of x. 

lOs= 6s + 6x, 

4s = 6x, 

s = !x. 

INTERPRET THE SOLUTION s = !x, x ~ 0. 
The domain of the function is [0, oo ). The length of the shadow is ! times 
the distance from the lamppost. In this problem, x is the independent 
variable and s depends on x. 

EXAMPLE 3 Two ships start at the same point at timet= 0. One ship moves north 
at 30 miles per hour, while the other ship moves east at 40 miles per hour. 
Find the distance between the two ships as a function of time. 

Step 1 The ships start at the origin; they-axis points north; and the x-axis points 
east. The diagram is shown in Figure 3.1.3. x and y are the distances of the 
east- and north-moving ships from the origin, and z is the distance between 
the ships, all in miles. t is the time in hours. 

Step 2 t ~ 0, y = 30t, x = 40t, z = Jx2 + /. 

i 
30 mph 

y 

X 40mph-

Figure 3.1.3 
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Step 3 z = j(30t)2 + (40t) 2 = J2SOOt 2 = SOt. 

INTERPRET THE SOLUTION z = SOt, t ;::::: 0. 

tis the independent variable, and x, y, z all depend on t. The distance between 
the ships is SOt miles, where tis the time in hours. 

EXAMPLE 4 A brush fire starts along a straight line segment of length 20ft and 
expands in all directions at the rate of 2 ft per second. Find the burned out 
area as a function of time. 

Step 1 A = total burned out area 
A 1 = area of left semicircle 
A 2 = area of central rectangle 
A 3 = area of right semicircle 

s = distance of spread of fire 
t =time 

The diagram is shown in Figure 3.1.4. 

Figure 3.1.4 

Cl~: 20-~:1) 
Step 2 s = 2t, t ;::::: 0. 

A 1 = !ns2
, A 2 = 20(2s), 

A= A 1 + A 2 + A 3 . 

Step 3 A 1 = !n(2t)2 = 2nt 2
. 

A 2 = 20·2·2t = 80t. 

A 3 = !n(2t) 2 = 2nt2
. 

A = 2nt2 + 80t + 2nt 2 = 4nt2 + 80t. 

INTERPRET THE SOLUTION The burned out area is A = 4nt2 + 80t sq ft, t ;::::: 0, 
where tis time in seconds. 

An algebraic identity that comes up frequently in calculus problems is 

(a - b)(a + b) = a2 
- bz. 

Sometimes it occurs in the form 

cJa- .,/b)(Ja + -JjJ) = a - b. 

EXAMPLE 5 The area of square A is twelve square units greater than the area of 
square B, and the side of A is three units greater than the side of B. Find the 
areas of A and B. 
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Figure 3.1.5 A B 

Step 1 Let a be the area of A and b the area of B. See Figure 3.1.5. 

Step 2 The sides of the squares have length "-ra and .jb respectively. Thus 

Step 3 We find Ja + .jb. 
a - b = 12, Ja - .jb = 3. 

cJa - .jb)(Ja + .jb) = a - b, 
3(Ja + .jb) = 12, 

Ja + .jb = 4. 

Adding the equations Ja + .jb = 4 and Ja- .jb = 3, we obtain 
2Ja = 7, Ja = .f, a = 4jl. Subtracting the equations gives 2.jb = 1, 

.jb = i, b = t. 

INTERPRET THE SOLUTION The area of square A is 4jl square units, and the area 
of square B is t square units. 

PROBLEMS FOR SECTION 3.1 

1 Find the perimeter p of a square as a function of its area A. 

2 A piece of clay in the shape of a cube of sides is rolled into a sphere of radius r. Find r 
as a function of s. 

3 Find the volume V of a sphere as a function of its surface area S. 

4 Find the area A of a rectangle of perimeter 4 as a function of the length x. 

5 Find the distance z between the origin and a point on the parabola y = 1 - x2 as a 
function of x. 

6 Express the perimeter p of a right triangle as a function of the base x and height y. 

7 Four small squares of side x are cut from the corners of a large cardboard square of 
side s. The sides are then folded up to form an open top box. Find the volume of the 
box as a function of s and x. 

8 A ladder of length L is propped up against a wall with its bottom at distance x from the 
wall. Find the height y of the top of the ladder as a function of x. 

9 A man of height y stands 3 ft from a ten foot high lamp. Find the length s of his shadow 
as a function of y. 
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10 
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One ship traveling north at 30 mph passes the origin at timet = 0 hours. A second ship 
moving east at 30 mph passes the origin at t = 1. Find the distance z between them as a 
function oft. 

A ball is thrown from ground level, and its path follows the equations 

X = bt, }' = t - 16t2
• 

How far does it travel in the x direction before it hits the ground? 

12 A circular weedpatch is initially 2ft in radius. It grows so that its radius increases by I ft/ 
day. Find its area after five days. 

13 A rectangle originally has length I and width IV. Its shape changes so that its length 
increases by one unit per second while its width decreases by 2 units per second. Find 
its area as a function of I, IV and time t. 

14 At p units of pollution per item, a product can be made at a cost of 2 + 1/p dollars per 
item. x items are to be produced with a total pollution of one unit. Find the cost. 

15 In economics, the profit in producing and selling x items is equal to the revenue minus the 
cost, 

P(x) = R(x) - C(x). 

If a product can be manufactured at a cost of $10 per item and x items can be sold at 
a price of 100 - fi per item, find the profit as a function of x. 

16 Suppose the demand for a commodity at price pis x = 1000/JP, that is, x = 1000/JP 
items can be sold at a price of p dollars per item. If it costs 100 + lOx dollars to produce 
x items, find the profit as a function of the selling price p. 

3.2 RELATED RATES 

In a related rates problem, we are given the rate of change of one quantity and wish to 
find the rate of change of another. Such problems can often be solved by implicit 
differentiation. 

EXAMPLE 1 The point of a fountain pen is placed on an ink blotter, forming a 
circle of ink whose area increases at the constant rate of 0.03 in. 2 jsec. Find 
the rate at which the radius of the circle is changing when the circle has a 
radius of-!- inch. We solve the problem in four steps. 

Step 1 Label all quantities involved and draw a diagram. 

t = time A= area r = radius of circle 

Both A and r are functions of t. The diagram is shown in Figure 3.2.1. 

Figure 3.2.1 
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Step 2 Write the given information in the form of equations. 

dA/dt = 0.03. 

The problem is to find dr/dt when r = 1/2. 

Step 3 Differentiate both sides of the equation A = nr2 with respect to t. 

dA dr 
dt = 2nr dt' 

Step 4 Set r = t and solve for dr/dt. 

whence 

dr 0.03. 
so - = -m./sec. 

dt 1t 

EXAMPLE 2 A 10 foot ladder is propped against a wall. The bottom end is being 
pulled along the floor away from the wall at the constant rate of 2ft/sec. 
Find the rate at which the top of the ladder is sliding down the wall when the 
bottom end is 5 ft from the wall. Warning: although the bottom end of the 
ladder is being moved at a constant rate, the rate at which the top end moves 
will vary with time. 

Step 1 t = time, 
x = distance of the bottom end from the wall, 
y = height of the top end above the floor. 

The diagram is shown in Figure 3.2.2. 

2 ftjsec -. 

Figure 3.2.2 

Step 2 dx/dt = 2, 

Step 3 We differentiate both sides of x2 + l = 100 with respect to t. 

dx dy 
2xdt + 2y dt = 0, whence 

dy 
4x + 2y dt = 0. 

Step 4 Set x = 5 ft and solve for dy/dt. We first find the value of y when x = 5. 

x 2 + l = 100, y = Jwo- x 2 = Jwo- 52 =ft. 
Then we can solve for dyjdt, 

dy 
4x + 2}'- = 0 

dt ' 
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~dy 
4. 5 + 2v /..J dt = o, 

dy 4. 5 2 
~ = -~ = --ft/sec. 
dt 2~75 vl3 

The sign of dyjdt is negative because y is decreasing. 

Related rates problems have the following form. 

Given: 

(a) Two quantities which depend on time, say x andy. 
(b) The rate of change of one of them, say dx/dt. 
(c) An equation showing the relationship between x andy. 

(Usually this information is given in the form of a verbal description of a physical 
situation and part of the problem is to express it in the form of an equation.) 

The problem: Find the rate of change of y, dyjdt, at a certain time t0 . (The 
time t0 is sometimes specified by giving the value which x, or y, has at that time.) 

Related rates problems can frequently be solved in four steps as we did in the 
examples. 

Step 1 Label all quantities in the problem and draw a picture. If the labels are 
x, y. and t (time). the remaining steps are as follows: 

Step 2 Write an equation for the given rate of change dxjdt. Write another equation 
for the given relation between x andy. 

Step 3 Differentiate both sides of the equation relating x and y with respect to t. 
We choose the time t as the independent variable. The result is a new 
equation involving x, y, dx/dt, and dyfdt. 

Step 4 Set t = t0 and solve for dyfdt. It may be necessary to find the values of x, y, 
and dxfdt at t = t 0 first. 

The hardest step is usually Step 2, because one has to start with the given 
verbal description of the problem and set it up as a system of formulas. Sometimes 
more than two quantities that depend on time are given. Here is an example with 
three. 

EXAMPLE 3 One car moves north at 40 mph (miles per hour) and passes a point P 
at time 1 :00. Another car moves east at 60 mph and passes the same point P 
at time 2:30. How fast is the distance between the two cars changing at the 
time 2:00? 

It is not even easy to tell whether the two cars are getting closer or farther 
away at time 2:00. This is part of the problem. 

Step 1 t = time, 
y = position of the first car tra veiling north, 
x = position of the second car travelling east. 
z = distance between the two cars. 

In the diagram in Figure 3.2.3, the point P is placed at the origin. 
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North 

y t 
40 mph 

x 60mph- P East 

Figure 3;2.3 

Step 2 

Step 3 

dy dx = 60 dt = 40' dt , 

dx dy dz 
2x- + 2y- = 2z-, whence 

dt dt dt 
dz 

60x + 40y = z-. 
dt 

Step 4 We first find the values of x, y, and z at the timet = 2 hrs. We are given that 
when t = 1, y = 0. In the next hour the car goes 40 miles, so at t = 2, y = 40. 
We are given that at time t = 2~, x = 0. One-half hour before that the car 
was 30 miles to the left of P, so at t = 2, x = -30. To sum up, 

at t = 2, y = 40 and x = - 30. 

We can now find the value of z at t = 2, 

z = J x 2 + y 2 = j(- 30)2 + 402 = 50. 

Finally, we solve for dzjdt at t = 2. 

dz 
60 • (- 30) + 40 • 40 = 50-

dt' 
dz -1800 + 1600 
dt 50 

-4. 

The negative sign shows that z is decreasing. Therefore at 2:00 the cars are 
getting closer to each other at the rate of 4 mph. 

EXAMPLE 4 The population of a country is growing at the rate of one million people 
per year, while gasoline consumption is decreasing by one billion gallons per 
year. Find the rate of change of the per capita gasoline consumption when 
the population is 30 million and total gasoline consumption is 15 billion 
gallons per year. 

By the per capita gasoline consumption we mean the total consumption 
divided by the population. 

Step 1 t = time 
x = population 
y = gasoline consumption 
z = per capita gasoline consumption. 

Step 2 At t = t0 , 

dxjdt = 1 million = 106 

dyjdt = -1 billion = -109 

z = yjx. 
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Step 3 
dz x (dyjdt) - y (dx/dt) 

dt x 2 

dz -109x- 106 y 

dt x 2 

Step 4 At t = t 0 , we are given 

Thus 

x = 30 million = 30 x 106
. 

y = 15 billion = 15 x 109
. 

dz -109 
• 30 • 106 

- 106 
• 15 ·109 

dt (30 • 1 06
)

2 

45 ·10 15 

900. 1012 = -50. 

The per capita gasoline consumption is decreasing at the annual rate of 
50 gallons per person. 

We conclude with another example from economics. In this example the 
independent variable is the quantity x of a commodity. The quantity x which can be 
sold at price p is called the demand fimction D(p), 

x = D(p). 

When a quantity x is sold at price p, the revemte is the product 

R = px. 

The additional revenue from the sale of an additional unit of the commodity is called 
the marginal revenue and is given by the derivative 

marginal revenue = dRjdx. 

EXAMPLE 5 Suppose the demand for a product is equal to the inverse of the square 
of the price. Find the marginal revenue when the price is $10 per unit. 

Step 1 p = price, x = demand, R = revenue. 

Step 2 x = 1jp2
, R = px. 

Step 3 
dR dx dp dp 
-d = p~d + x~d = p + x~d ' 

X X X X 

dx 

dp 
2 -3 - p ' 

so by the Inverse Function Rule, 

Substituting, 

Step 4 We are given p = $10. Therefore the marginal revenue is 

dRjdx = S5. 
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An additional unit sold would bring in an additional revenue of $5. 

Here is a list of formulas from plane and solid geometry which will be useful 
in related rates problems. We always let A = area and V = volume. 

Rectangle with sides a and b: A = ab, perimeter = 2a + 2b 

Triangle with base b and height h: A = 1bh 
Circle of radius r: A = nr1

, circumference = 2nr 

Sector (pie slice) of a circle of radius r and central angle e (measured in 
radians): A = 1r18 

Rectangular solid with sides a, b, c: V = abc 

Sphere of radius r: V = %nr3
, A = 4nr 1 

Right circular cylinder, base of radius r, height of h: V = nr1h, A = 2nrh 

Prism with base of area B and height h: V = Bh 

Right circular cone, base of radius r, height h: V = nr2hj3, 

A= nrjr1 + h2 

PROBLEMS FOR SECTION 3.2 

1 Each side of a square is expanding at the rate of 5 em/sec. How fast is the area changing 
when the length of each side is 10 em? 

2 The area of a square is decreasing at the constant rate of 2 sq em/sec. How fast is the 
length of each side decreasing when the area is 1 sq em? 

3 The vertical side of a rectangle is expanding at the rate of 1 in.jsec, while the horizontal 
side is contracting at the rate of 1 in.jsec. At time t = 1 sec the rectangle is a square 
whose sides are 2 in. long. How fast is the area of the rectangle changing at time t = 2 sec? 

4 Each edge of a cube is expanding at the rate of 1 in./sec. How fast is the volume of the 
cube changing when the volume is 27 cu in.? 

5 Two cars pass point Pat approximately the same time, one travelling north at 50 mph. 
the other travelling west at 60 mph. Find the rate of change of the distance between the 
two cars one hour after they pass the point P. 

6 A cup in the form of a right circular cone with radius r and height h is being filled with 
water at the rate of 5 cu in.jsec. How fast is the level of the water rising when the volume 
of the water is equal to one half the volume of the cup? 

7 A spherical balloon is being inflated at the rate of 10 cu in.jsec. Find the rate of change 
of the area when the balloon has radius 6 in. 

8 A snowball melts at the rate equal to twice its surface area, with area in square inches 
and melting measured in cubic inches per hour. How fast is the radius shrinking? 

9 A ball is dropped from a height of 100ft, at which time its shadow is 500ft from the ball. 
How fast is the shadow moving when the ball hits the ground? The ball falls with 
velocity 32 ft/sec, and the shadow is cast by the sun. 

10 A 6 foot man walks away from a 10 foot high lamp at the rate of 3ft/sec. How fast is the 
tip of his shadow moving? 

11 A car is moving along a road at 60 mph. To the right of the road is a bush 10ft away 
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and a parallel wall 30ft away. Find the rate of motion of the shadow of the bush on the 
wall cast by the car headlights. 

/ 

/ 
road // wall 

10~/ 
// 

12 A car moves along a road at 60 mph. There is a bush 10ft to the right of the road, and a 
wall 30ft behind the bush is perpendicular to the road. Find the rate of motion of the 
shadow of the bush on the wall when the car is 26ft from the bush. 

road 

wall 

30 // 

!OJ,/ 
~/ 

/ 
/ 

/ 
/ 

/ 

/ 
/ 

/ 

13 An airplane passes directly above a train at an altitude of 6 miles. If the airplane moves 
north at 500 mph and the train moves north at 100 mph, find the rate at which the 
distance between them is increasing two hours after the airplane passes over the train. 

14 A rectangle has constant area, but its length is growing at the rate of 10ft/sec. Find the 
rate at which the width is decreasing when the rectangle is 3ft long and 1 ft wide. 

15 A cylinder has constant volume. but its radius is growing at the rate of l ft/sec. Find the 
rate of change of its height when the radius and height are both I ft. 

16 A country has constant national income, but its population is growing at the rate of 
one million people per year. Find the rate of change of the per capita income (national 
income divided by population) when the population is 20 million and the national 
income is 20 billion dollars. 

17 If at timet a country has a birth rate of l,OOO,OOOt births per year and a death rate of 
300,000jt deaths per year, how fast is the population growing? 

18 The population of a country is 10 million and is increasing at the rate of 500,000 people 
per year. The national income is $10 billion and is increasing at the rate of $100 million 
per year. Find the rate of change of the per capita income. 

19 Work Problem 18 assuming that the population is decreasing by 500,000 per year. 

20 Sand is poured at the rate of 4 cu in./sec and forms a conical pile whose height is equal 
to the radius of its base. Find the rate of increase of the height when the pile is 12 in. 
high. 
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21 A circular clock has radius 5 in. At time t minutes past noon, how fast is the area of the 
sector of the circle between the hour and minute hand increasing? (t s 60). 

22 The demand x for a commodity at price pis x = 1/(1 + jP). Find the marginal revenue, 
that is, the change in revenue per unit change in x, when the price is $100 per unit. 

23 x units of a commodity can be produced at a total cost of y = 100 + 5x. The average 
cost is defined as the total cost divided by x. Find the change in average cost per unit 
change in x (the marginal average cost) when x = 100. 

24 The demand for a commodity at price p is x = 1/(p + p3
). Find the change of the price 

per unit change in x, dpjdx, when the price is 3 dollars per unit. 

25 In one day a company can produce x items at a total cost of 200 + 3x dollars and can 
sell x items at a price of 5 - x/1000 dollars per item. Prqfit is defined as revenue minus 
cost. Find the change in profit per unit change in the number of items x (marginal profit). 

26 In one day a company can produce x items at a total cost of 200 + 3x dollars and can 
sell x = 1000/.JY items at a price of y dollars per item. 
(a) Find the change in profit per dollar change in the pricey (the marginal profit with 

respect to price). 
(b) Find the change in profit per unit change in x (the marginal profit). 

27 An airplane P flies at 400 mph one mile above a line L on the surface. An observer is at 
the point 0 on L. Find the rate of change (in radians per hour) of the angle e between 
the line Land the line OP from the observer to the airplane when 8 = n/6. 

28 A train 20ft wide is approaching an observer standing in the middle of the track at 
100ft/sec. Find the rate of increase of the angle subtended by the train (in radians per 
second) when the train is 20ft from the observer. 

29 Find the rate of increase of e2
x+ 

3
" when x = 0, y = 0, dxjdt = 5, and dyjdt = 4. 

30 Find the rate of change of In A where A is the area of a rectangle of sides x and y when 
x = 1, y = 2, dxjdt = 3, dyjdt = -2. 

LIMITS 

The notion of a limit is closely related to that of a derivative, but it is more general. 
In this chapter f will always be a real function of one variable. Let us recall the 
definition of the slope off at a point a: 

Sis the slope off at a if whenever dx is infinitely close to but not equal to 
zero, the quotient 

is infinitely close to S. 

f(a + dx) - f(a) 

dx 

We now define the limit. c and L are real numbers. 

DEFINITION 

L is the limit of f(x) as x approaches c if whenever x is infinitely close to but 
not equal to c, f(x) is infinitely close to L. 

In symbols, 

limf(x) = L 
x~c 
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if whenever x ::::: c but x =f. c, f(x) ::::: L. When there is no number L satisfying the 
above definition, we say that the limit of f(x) as x approaches c does not exist. 

Notice that the limit 

limf(x) 
x-+c 

depends only on the values of f(x) for x infinitely close but not equal to c. The value 
f(c) itself has no influence at all on the limit. In fact, it very often happens that 

limf(x) 
x_,.c 

exists but f(c) is undefined. 
Figure 3.3.l(a) shows a typical limit. Looking at the point (c, L) through an 

infinitesimal microscope, we can see the entire portion of the curve with x ::::: c 
because f(x) will be infinitely close to L and hence within the field of vision of the 
microscope. 

In Figure 3.3.1(b ), part of the curve with x ::::: c is outside the field of vision 
of the microscope, and the limit does not exist. 

Our first example of a limit is the slope of a function. 

/(x) 

C X 

(a) lim f(x) = L 
x->c 

Figure 3.3.1 (b) Limit does not exist 
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THEOREM 1 

The slope off at a is given by the limit 

f'(a) = lim f(a + ~x) - f(a). 
~x~o ~X 

Verbally, the slope off at a is the limit of the ratio of the change in f(x) to 
the change in x as the change in x approaches zero. The theorem is seen by simply 
comparing the definitions of limit and slope. The slope exists exactly when the limit 
exists; and when they do exist they are equal. Notice that the ratio 

f(a + ~x) - f(a) 

~X 

is undefined when ~x = 0. 
The slope off at a is also equal to the limit 

f'(a) = lim f(x) - f(a) 
x-+a X - a 

This is seen by setting 

~X= X- a, 

X= a+ ~X. 

Then when x ~a but x #a, we have ~x ~ 0 but ~x # 0; and 

f(x) - f(a) = f(a + ~x) - f(a) ~ f'(a). 
X- a ~X 

Sometimes a limit can be evaluated by recognizing it as a derivative and 
using Theorem 1 above. 

EXAMPLE 1 
. (3 + ~x)2 

- 9 
Evaluate hm . 

~x~o ~X 

Let F(x) = x 2
. The given limit is just F'(3), 

F'(3) = lim F(3 + ~x) - F(3) = lim (3 + ~x)z - 9, 
~x~o ~X ~x~o ~X 

F'(3) = 2 • 3 = 6. 

Therefore 
(3 + ~x)2 - 9 

lim = 6. 
~x~o ~X 

The symbol x in 

limf(x) 
x~c 

is an example of a "dummy variable." The value of the limit does not depend on x 
at all. However, it does depend on c. If we replace c by a variable u, we obtain a new 
function 

L(u) = lim f(x). 
x~u 
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A limit lim f(x) is usually computed as follows. 

Step 1 Let x be infinitely close but not equal to c, and simplify f(x). 

Step 2 Compute the standard part st(f(x)). 

CONCLUSION If the limit lim f(x) exists, it must equal st(f(x)). 
x-tc 

EXAMPLE 1 (Continued) Instead of using the derivative, we can directly compute 

1
. (3 + Llxf - 9 
Ill . 

t.x~o Llx 

Step 1 Let Llx ~ 0, but Llx i= 0. Then 

(3 + Llx)2 
- 9 9 + 6 Llx + Llx2 - 9 

Llx Llx 
6 Llx + Llx2 

---- = 6 + Llx. 
Llx 

Step 2 Taking standard parts, 

(3 + Llx)2 
- 9 

st = st(6 + Llx) = 6. 
Llx 

Therefore the limit is equal to 6. (See Figure 3.3.2.) 

Figure 3.3.2 

EXAMPLE 2 Find lim (t 2 + 3t - 5). 

Step 1 Let t be infinitely close to but not equal to 4. 

Step 2 We take the standard part. 

.6x 

st(t 2 + 3t - 5) = 42 + 3 · 4 - 5 = 23, 

so the limit is 23. 

EXAMPLE 3 

Step 1 This time the term inside the limit is undefined at x = 2. Taking x ~ 2 
but x i= 2, we have 
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x 2 + 3x - 10 (x - 2)(x + 5) x + 5 

x2 
- 4 (x - 2)(x + 2) x + 2 

Step2 st(x
2

:/:~ 10
) =st(::~) =~:~=~. 

1. (x
2 

+ 3x - 10) = ~ Im 2 . 
x~2 X - 4 4 

Thus 

EXAMPLE 4 Find lim ((2/x) + 3) 
x~o (3/x)- 1 

Step 1 Taking x ~ 0 but x =!= 0, 

(2/x) + 3 = _2 _+_3_x 
(3/x) - 1 3-x 

Step 2 st((2fx) + 3) = st(2 + 3x) = ~-
(3/x) - 1 3 - x 3 

Thus the limit exists and equals l 

F. dl" Jx- 3 
EXAMPLE 5 Ill }~ X _ g . 

Step 1 Taking x ~ 9 and x =!= 9, 

Jx - 3 cJx - 3)(Jx + 3) x - 9 

x - 9 = (x - 9)(jX + 3) = (x - 9)(jX + 3) 

Step 2 st(~_-9 3) = st(Jx\ 3) = J9
1
+ 3 = ~, 

so the limit exists and is i. 
Our rules for standard parts in Chapter 1 lead at once to rules for limits. 

We list these rules in Table 3.3.1. The limit rules can be applied whenever the two 
limits limj(x) and limg(x) exist. 

x-+c x-+c 

Table 3.3.1 

Standard Part Rule 

st(kb) = k st(b), k real 

st(a + b) = st(a) + st(b) 

st(ab) = st(a) · st(b) 

st(ajb) = st(a)jst(b), if b # 0 

st(.,Ya) = ~. if a > 0 

Limit Rule 

limkf(x) = klimf(x) 
x-+c x-~>c 

lim(J(x) + g(x)) = limf(x) + limg(x) 

lim(J(x)g(x)) = limf(x) · limg(x) 
x--+c x-c x-+c 

lim(J(x)/g(x)) = limf(x)jlimg(x), iflimg(x) # 0 
x-~>c x-+c x-+c x-+c 
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EXAMPLE 6 Find lim (x 2
- 2x)j(x2 

- 1)/(x- 1). 
x~l 

All the limits involved exist, so we can use the limit rules to compute the 
limit as follows. First we find the limit of the expression inside the radical. 

. x 2 
- 1 . (x- 1)(x + 1) . 

!Im -- = !Im = !Im (x + 1) = 2. 
x~ I X - 1 x~ 1 X - 1 x~ 1 

Now we find the answer to the original problem. 

lim (x 2 
- 2x) j(x2 

- 1)/(x - 1) = lim (x 2 
- 2x) Jlim (x 2 

- 1)/(x - 1) 
x~1 x-1 x-1 

= (!- 2))2 = -J2. 
There are three ways in which a limit lim f(x) can fail to exist: 

(1) f(x) is undefined for some x which is infinitely close but not equal to c. 

(2) f(x) is infinite for some x which is infinitely close but not equal to c. 

(3) The standard part of f(x) is different for different numbers x which are 
infinitely close but not equal to c. 

EXAMPLE 7 lim Jx does not exist because jX is undefined for negative infinitesimal 
x~o 

x. (See Figure 3.3.3(a).) 

EXAMPLE a lim 1/x2 does not exist because 1jx2 is infinite for infinitesimal x #- 0. 
x~o 

(See Figure 3.3.3(b ).) 

y 

(a) Y = v'X 
Figure 3.3.3 

X 

y 

(b) y =_L 
x2 

EXAMPLE 9 limx/lxl does not exist because 
x~o 

(See Figure 3.1.3(c).) 

X 

if X> 0, 

if X< 0. 

y 

X 

X 
(c) Y = /XT 

In the above examples the function behaves differently on one side of the 
point 0 than it does on the other side. For such functions, one-sided limits are useful. 
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We say that 

lim f(x) = L 
x-+c+ 

if whenever x > c and x ~ c, f(x) ~ L. 

lim f(x) = L 
x-+c-

means that whenever x < c and x ~ c, f(x) ~ L. These two kinds of limits, shown 
in Figure 3.3.4, are called the limit from the right and the limit from the left. 

f(x) 

lim f(x) = M 
x~c+ 

M -----------

lim f(x) = L 
x->c 

Figure 3.3.4 One-sided limits. 

THEOREM 2 

A limit has value L, 

limf(c) = L, 

if and only if both one-sided limits exist and are equal to L, 

lim f(x) = lim f(x) = L. 
x-+c- x-+c+ 

PROOF If limx~c f(x) = L, it follows at once from the definition that both one-sided 
limits are L. 

Assume that both one-sided limits are equal to L. Let x ~ c, but x =f. c. 
Then either x < c or x > c. If x < c, then because limx~c- f(x) = L, we 
have f(x) ~ L. On the other hand if x > c, then limx~c+ f(x) = L gives 
f(x) ~ L. Thus in either case f(x) ~ L. This shows that limx~c f(x) = L. 

When a limit does not exist, it is possible that neither one-sided limit exists, 
that just one of them exists, or that both one-sided limits exist but have different 
values. 

EXAMPLE 7 (Continued) lim Jx = 0, 
x-7o+ 

and lim Jx does not exist. 
x-+o-

EXAMPLE 8 (Continued) Neither lim 1/x2 nor lim ljx2 exists. 
x-+o+ x-o-



With a calculator, compute some values as x approaches its limit, and see what happens.
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EXAMPLE 9 (Continued) lim xflxl = 1, and lim xj I x I = - 1. 
x-o+ x-+o-

PROBLEMS FOR SECTION 3.3 

In each problem below, determine whether or not the limit exists. When the limit exists, find its 
value. 

3 

5 

7 

9 

II 

13 

I5 

I7 

19 

2I 

23 

25 

27 

29 

3I 

lim 3t2 + t + 1 
t~4 

lim~ 
x---+c 

lim-x­
x~z x 2 - 4 

limJS- fi 
,.~s v- 8 

I
. y;;- 1 
1m--­
"~ I !I- 1 

lim(Jr+l;Y- JDY 
y-+0 

. y2 + 1 
hm-­

;-~-1 y + I 

I
. lx- II 
1m-­

x~l + X- I 

lim 1- + j- + 1::. ,~~v- ,. v 

lim xfi+ x- 2 

x-+0 + 

I' I+ 2t- 1 

,1_."6 3- 4t I 

l
. (x - ~x)3 

- x 3 

1m -'-----''-------
c.x~o ~X 

I' 1(1 + ~x)3 
- (1 + ~x)l 

C.xl_."6. ~X 

3.4 CONTINUITY 

2 

4 

6 

8 

IO 

I2 

I4 

I6 

I8 

20 

22 

24 

26 

28 

30 

I' ~x2 + 2~x + 1 
C.xi_."2_ I ~X + 1 

. 1 

!-~l 
l
. x 2

- 4 
1m-­
x~z X- 2 

l. Fx+l- 1 
1m 
x~O X 

. t3 - 2t2 + 4 
hm 2 ~~o3t -5t+7 

. (a+ x)2
- a2 

hm 
x-+0 X 

l
. lx- 11 
1m-­
x~l X- J 

lim xJ! + x- 2 

x-+o-

. 3+4x- 1 -5x- 2 

hm I 2 
x~o 6- X + 3x 

l
. X+ ~X X O 

,.,;~o ~x (x i= ) 

. (£ + ~t)lfS _ tl/5 
hm ~ (t > 0) 
c.t~o t 

X+ ~X X 

l
. X + ~X + 1 X + 1 
1m (xi=-!) 

c.x~o ~X 

l
. 1(1 + ~x)3 

- (1 + ~x)l 
1m 

"x-o• ~X 

Intuitively, a curve y = f(x) is continuous if it forms an unbroken line, that is, when­
ever x 1 is close to x 2 , f(x 1) is close to f(x 2 ). To make this intuitive idea into a mathe­
matical definition, we substitute "infinitely close" for "close." 



DEFINITION 

f is said to be continuous at a point c if: 

(i) f is defined at c; 
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(ii) whenever x is itifinitely close to c, f(x) is itifinitely close to f(c). 

Iff is not continuous at c it is said to be discontinuous at c. 
When f is continuous at c, the entire part of the curve where x :::::; c will be 

visible in an infinitesimal microscope aimed at the point (c,f(c)), as shown in Figure 
3.4.l(a). But iffis discontinuous at c, some values off(x) where x:::::; c will either be 
undefined or outside the range of vision of the microscope, as in Figure 3.4.l(b). 

Continuity, like the derivative, can be expressed in terms of limits. Again the 
proof is immediate from the definitions. 

f(x) 

Figure 3.4.1 

THEOREM 1 

I 

+.~ 
I 
I 
I 
I 
I 
I 
I 
I 

C X 

(a) f continuous at c 

(b) f discontinuous at c 

f is continuous at c if and only if 

limf(x) = f(c). 
x-c 
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As an application, we have a set of rules for combining continuous functions. 
They can be proved either by the corresponding rules for limits (Table 3.3.1 in Section 
3.3) or by computing standard parts. 

THEOREM 2 

Suppose f and g are continuous at c. 

(i) For any constant k, the function k · f(x) is continuous at c. 

(ii) f(x) + g(x) is continuous at c. 

(iii) f(x) • g(x) is continuous at c. 

(iv) If g(c) =f. 0, then f(x)jg(x) is continuous at c. 

(v) If f(c) is positive and n is an integer, then~ is continuous at c. 

By repeated use of Theorem 2, we see that all of the following functions are 
continuous at c. 

Every polynomial function. 

Every rational function f(x)jg(x), where f(x) and g(x) are polynomials and 
g(c) =f. 0. 

The functions f(x) = x', r rational and x positive. 

Sometimes a function f(x) will be undefined at a point x = c while the limit 

L = limf(x) 
x-+c 

exists. When this happens, we can make the function continuous at c by defining 
f(c) = L. 

x 2 + x- 2 
EXAMPLE 1 Letf(x) = x _ 

1 
. 

At any point c =f. 1,/is continuous. Butf(l) is undefined so fis discontinuous 
at 1. However, 

l
. x 2 + x - 2 

1
. (x - 1)(x + 2) 

!ill = !ill = 3. 
x~l X- 1 x~l X- 1 

We can make f continuous at 1 by defining 

{

x 2 + x- 2 

f(x) = x; 1 
if X =f. 1, 

if X = 1. 

(See Figure 3.4.2.) 

In terms of a dependent variable y = f(x), the definition of continuity takes 
the following form, where L).y = f(c + L).x) - f(c). 

y is continuous at x = c if : 

(i) y is defmed at x = c. 
(ii) Whenever L).x is infinitesimal, L).y is infinitesimal. 



f(x) 

Figure 3.4.2 

/ 
j(l) undefined 

f(x) = x2+x-2 
x-1 

X 

f(x) 

3.4 CONTINUITY 

{

x2+x-2 if X =fo I 
f(x) = x-1 

3 if X=} 

X 

To summarize, given a function y = f(x) defined at x = c, all the statements 
below are equivalent. 

(1) f is continuous at c. 
(2) Whenever x ~ c, f(x) ~ f(c). 
(3) Whenever st(x) = c, st(f(x)) = f(c). 
{4) limx-c f(x) = f(c). 
(5) y is continuous at x = c. 
(6) Whenever ~xis infinitesimal, ~y is infinitesimal. 

Our next theorem is that differentiability implies continuity. That is, the 
set of differentiable functions at c is a subset of the set of continuous functions at c. 
(See Figure 3.4.3.) 

All real functions 

Figure 3.4.3 

THEOREM 3 

Iff is differentiable at c then f is continuous at c. 

PROOF Let y = f{x), and let ~x be a nonzero infinitesimal. Then ~y/~x is infinitely 
close to f'(c) and is therefore finite. Thus ~y = ~x(~yj~x) is the product 
of an infinitesimal and a finite number, so ~Y is infinitesimal. 

For example, the transcendental functions sin x, cos x, ex are continuous 
for all x, and In x is continuous for x > 0. Theorem 3 can be used to show that com­
binations of these functions are continuous. 
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EXAMPLE 2 Find as large a set as you can on which the function 

sin x In (x + 1) 
j(x) = x2 - 4 

is continuous. 

sin x is continuous for all x. In (x + 1) is continuous whenever x + 1 > 0, 
that is, x > - 1. The numerator sin x In (x + 1) is thus continuous whenever 
x > -1. The denominator x 2 - 4 is continuous for all x but is zero when 
x = ± 2. Thereforej(x) is continuous whenever x > -1 and x i= 2. 

The next two examples give functions which are continuous but not differ­
entiable at a point c. 

EXAMPLE 3 The function y = x 113 is continuous but not differentiable at x = 0. 
(See Figure 3.4.4(a).) We have seen before that it is not differentiable at x = 0. 
It is continuous because if L'lx is infinitesimal then so is 

l'ly = (O + L'lx)l/3 _ 01;3 = (L'lx)l/3. 

EXAMPLE 4 The absolute value function y = I xI is continuous but not differentiable 
at the point x = 0. (See Figure 3.4.4(b ).) 

We have already shown that the derivative does not exist at x = 0. To see 
that the function is continuous, we note that for any infinitesimal Ax, 

l'ly = 10 + ilxl - 101 = lilxl 

and thus l'ly is infinitesimal. 

y 

X X 

Y =xi/~ Y = lxl 

Figure 3.4.4 (a) (b) 

The path of a bouncing ball is a series of parabolas shown in Figure 3.4.5. 
The curve is continuous everywhere. At the points a1, a2 , a3 , ..• where the ball 
bounces, the curve is continuous but not differentiable. At other points, the curve is 
both continuous and differentiable. 

In the classical kinetic theory of gases, a gas molecule is assumed to be 
moving at a constant velocity in a straight line except at the instant of time when it 
collides with another molecule or the wall of the container. Its path is then a broken 
line in space, as in Figure 3.4.6. 
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Figure 3.4.5 Path of Bouncing Ball 

0 

Figure 3.4.6 

The position in three dimensional space at time t can be represented by three 
functions 

X= f(t), y = g(t), z = h(t). 

All three functions, f, g, and h are continuous for all values of t. At the time t of a 
collision, at least one and usually all three derivatives dxjdt, dyjdt, dz/dt will be 
undefined because the speed or direction of the molecule changes abruptly. At any 
other time t, when no collision is taking place, all three derivatives dxjdt, dyjdt, 
dzjdt will exist. 

The functions we shall ordinarily encounter in this book will be defined 
and have a derivative at all but perhaps a finite number of points of an interval. The 
graph of such a function will be a smooth curve where the derivative exists. At points 
where the curve has a sharp corner (like 0 in I xI) or a vertical tangent line (like 0 
in x 1f 3

), the function is continuous but not differentiable (see Figure 3.4.7). At points 
where the function is undefined or there is a jump, or the value approaches infinity 
or oscillates wildly, the function is discontinuous (see Figure 3.4.8). 

X 

Figure 3.4.7 Points where f is continuous but nondifferentiable 

129 



130 3 CONTINUOUS FUNCTIONS 

f(x) 

__...-/l 

Figure 3.4.8 

I 
I 

/'......./ 

I 
I 
I 

Points where f is discontinuous 

The next theorem is similar to the Chain Rule for derivatives. 

THEOREM 4 

X 

Iff is continuous at c and G is continuous atf(c), then the function 

g(x) = G(j(x)) 

is also continuous at c. That is, a continuous function of a continuous function 
is continuous. 

PROOF Let x be infinitely close to but not equal to c. Then 

st(g(x)) = st(G(j(x))) = G(st(f(x))) = G(j(c)) = g(c). 

For example, the following functions are continuous: 

f(x) = JxZ+l, 
g(x) = lx 3

- xl, 

h(x) = (1 + .j;) 113, 

j(x) = e•in X, 

k(x) = lnlxl, 

all x 

all x 

x>O 
all x 

all x #- 0 

Here are two examples illustrating two types of discontinuities. 

. x 2
- 3x + 4 

EXAMPLE 5 The functiOn g(x) = 
4

(x _ 
1
)(x _ 

2
) 

is continuous at every real point except x = 1 and x = 2. At these two points 
g(x) is undefined (Figure 3.4.9). 

EXAMPLE 6 The greatest integer function [x], shown in Figure 3.4.10, is defined by 

[x] = the greatest integer n such that n :s; x. 

Thus [x] = 0 if 0 :s; x < 1, [x] = 1 if 1 :s; x < 2, [x] = 2 if 2 :s; x < 3, 
and so on. For negative x, we have [x] = -1 if -1 :s; x < 0, [x] = -2 



y 

Figure 3.4.9 
(\ 
y 

-2 -1 

Figure 3.4.10 
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X 

y = xL3x+4 
4(x-l)(x-2) 

-

2 3 

y = [x] 

X 

if -2 ~ x < -1, and so on. For example, 

[7.362] = 7, [n] = 3, [ -2.43] = -3. 

For each integer n, [n] is equal to n. The function [x] is continuous when 
x is not an integer but is discontinuous when xis an integer n. At an integer n, 
both one-sided limits exist but are different, 

limf(x) = n- 1, limf(x) = n. 
X-i>n- x--+n+ 

The graph of [x] looks like a staircase. It has a step, or jump discontinuity, 
at each integer n. The function [x] will be useful in the last section of this 
chapter. Some hand calculators have a key for either the greatest integer 
function or for the similar function that gives [x] for positive x and [x] + 1 
for negative x. 

Functions which are "continuous on an interval" will play an important 
role in this chapter. Intervals were discussed in Section 1.1. Recall that closed intervals 
have the form 

[a, b], 
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open intervals have one of the forms 

(a, b), (a, XJ), (-x,b), (- JJ, JJ), 

and half-open intervals have one of the forms 

[a, b), (a, b ], (-x,b]. 

In these intervals, a is called the lower endpoint and b, the upper endpoint. The symbol 
-ex; indicates that there is no lower endpoint, while ro indicates that there is no 
upper endpoint. 

DEFINITION 

We say that f is colltinuous 011 an open illtel'val I iff is continuous at every 
point c in I. If in addition f has a derivative at every point of I, we say that f 
is differentiable on I. 

To define what is meant by a function continuous on a closed interval, we 
introduce the notions of continuous from the right and continuous from the left, 
using one-sided limits. 

DEFINITION 

fis continuous ji-om the right at c if lim f(x) = f(c). 
x-c+ 

f is continuous ji-om the left at c if limf(x) = f(c). 
x-+c-

EXAMPLE 6 (Continued) The greatest integer function f(x) = [x] is continuous 
from the right but not from the left at each integer n because 

[n] = n, lim[x] = n, lim[x] = n - 1. 
x-+u + y-+JJ-

It is easy to check that f is continuous at c if and only iff is continuous from 
both the right and left at c. 

DEFINITION 

f is said to be continuous 011 the closed interval [a, b] iff is continuous at each 
point c where a < c < b, continuous from the right at a, and continuous from 
the left at b. 

Figure 3.4.11 shows a functionfcontinuous on [a, b]. 

EXAMPLE 7 The semicircle 

y=~, 
shown in Figure 3.4.12, is continuous on the closed interval [ -1, 1]. It is 
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a X 

Figure 3.4.11 /is continuous on the interval [a, b] 

y 

X 

Figure 3.4.12 
y=~ 

differentiable on the open interval ( -1, 1). To see that it is continuous from 
the right at x = -1, let L!x be positive infinitesimal. Then 

Thus 

y = )1- (-If= 0 

y + L!y = )1- (-1 + L!x)2 = )1- (1- 2L!x + L!x2
) 

= )2 LlX - LlX 2 = j(2 - LlX) LlX. 

L!y = j(2 - L!x) L!x. 

The number inside the radical is positive infinitesimal, so L!y is infinitesimal. 
This shows that the function is continuous from the right at x = - 1. Similar 
reasoning shows it is continuous from the left at x = 1. 

PROBLEMS FOR SECTION 3.4 

In Problems 1-17, find the set of all points at which the function is continuous. 

3 

5 

2 2 f(x) = 5x + 2 j(x) = 3x + 5x + 4 x2 + 1 

j(x)=fi+l 4 

j(x) = )lx - 21 + 1 6 

X 
f(x) = x + 2 

x+3 
f(x) = lx + 31 
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7 

9 

II 

13 

15 

17 

18 

19 

20 

21 

22 

23 

D 24 

D 25 

26 
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X 
f(x) = -z-­

x +X 

f(x)=~ 
I 

f(x) = x- (1/(x + 1)) 

x-2 x-3 
g(x)=--+--

x-3 x-2 

g(x) = .jx2
- x3 

f(t)= ~~ 

8 

10 

12 

14 

16 

X+ 2 
f(x) = (x - 1)(x - W13 

f(x) = JxT=4 
1 1 

g(x) = -+-­
x X - 1 

f(t)=~ 

Show that f(x) = fi is continuous from the right at x = 0. 

Show that f(x} = ~ is continuous from the left at x = 1. 

Show that j(x) = ~is continuous on the closed interval [- 1, 1]. 

Show that f(x) = fi + J2 - xis continuous on the closed interval [0, 2]. 

Show that f(x} = ~is continuous on the closed interval [- 3, 3]. 

Show that f(x} = ~ is continuous on the half-open intervals (- L, - 3] and 
[3, Cf) ). 

Suppose the function f(x) is continuous on the closed interval [a, b]. Show that there 
is a function g(x) which is continuous on the whole real line and has the value g(x) = f(x) 

for x in [a, b]. 

Suppose limx~J(x) = L. Prove that the function g(x), defined by g(x) = f(x) for 
x '# c and g(x) = L for x = c, is continuous at c. 

In the curve y = j(x) illustrated below, identify the points x = c where each of the 
following happens: 
(a) f is discontinuous at x = c 
(b) f is continuous but not differentiable at x = c. 

3.5 MAXIMA AND MINIMA 

Let us assume throughout this section that f is a real function whose domain is an 
interval I, and furthermore that f is continuous on I. A problem that often arises is 
that of finding the point c wheref(c) has its largest value, and also the point c where 
f(c) has its smallest value. The derivative turns out to be very useful in this problem. 
We begin by defining the concepts of maximum and minimum. 
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DEFINITION 

Let c be a real number in the domain I of f. 

(i) f has a maximum at c if f(c) ;::::: f(x) for all real numbers x in I. In this 
case f(c) is called the maximum value of f. 

(ii) f has a minimum at c if f(c) ::::;; f(x) for all real numbers x in I. f(c) is then 
called the minimum value of f. 

When we look at the graph of a continuous function f on I, the maximum 
will appear as the highest peak and the minimum as the lowest valley (Figure 3.5.1). 

y 

max 

Figure 3.5.1 Maximum and Minimum 

In general, all of the following possibilities can arise: 

f has no maximum in its domain I. 
f has a maximum at exactly one point in I. 
f has a maximum at several different points in I. 

X 

However even iff has a maximum at several different points, f can have only one 
maximum value. Because iff has a maximum at c1 and also at c2 , then f(c 1) ;::::: f(c 2) 

and f(c 2) ;::::: f(c 1), and therefore f(c 1) and f(c2 ) are equal. 

EXAMPLE 1 Each of the following functions, graphed in Figure 3.5.2, have no 
maximum and no minimum: 

(a) f(x) = 1/x, 0 < x. 
(b) f(x) = x 2

, 0 < x < 1. 
(c) f(x) = 2x + 3. 

f(x)l_ f(x) 

X X X 

(a) f(x) = ·b 0 < x (b) f(x) = x 2, 0 < x < 1 (c) f(x) = 2x + 3 

Figure 3.5.2 No Maximum or Minimum 
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EXAMPLE 2 The function I(x) = x 2 + 1 has no maximum. But I has a minimum at 
x = 0 with value 1, because for x # 0, we always have x 2 > 0, x 2 + 1 > 1. 
The graph is shown in Figure 3.5.3. 

/{x) = x 2 + 1 

min (0, 1) 

X 

Figure 3.5.3 

The use of the derivative in finding maxima and minima is based on the 
Critical Point Theorem. It shows that the maxima and minima of a function can 
only occur at certain points, called critical points. The theorem will be stated now, 
and its proof is given at the end of this section. 

CRITICAL POINT THEOREM 

Let I be continuous on its domain I. Suppose that c is a point in I and I has 
either a maximum or a minimum at c. Then one of the following three things 
mttst happen: 

(i) c is an endpoint of I, 
(ii) f'(c) is undefined, 

(iii) f'(c) = 0. 

We shall say that cis a critical point of/if either (i), (ii), or (iii) happens. The 
three types of critical points are shown in Figure 3.5.4. When I is an open interval, 
(i) cannot arise since the endpoints are not elements of I. But when I is a closed 

Case (i) Case (ii) Case (iii) 

Figure 3.5.4 Critical Point Theorem 
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interval, the two endpoints of I will always be among the critical points. Geometrically 
the theorem says that iff has a maximum or minimum at c, then either cis an endpoint 
of the curve, or there is a sharp corner at c, or the curve has a horizontal slope at c. 
Thus at a maximum there is either an endpoint, a sharp peak, or a horizontal summit. 

The Critical Point Theorem has some important applications to economics. 
Here is one example. Some other examples are described in the problem set. 

EXAMPLE 3 Suppose a quantity x of a commodity can be produced at a total cost 
C(x) and sold for a total revenue of R(x), 0 < x < oo. The profit is defined 
as the difference between the revenue and the cost, 

P(x) = R(x) - C(x). 

Show that if the profit has a maximum at x 0 , then the marginal cost is equal 
to the marginal revenue at x0 , 

R'(x0 ) = C'(x0 ). 

In this problem it is understood that R(x) and C(x) are differentiable 
functions, so that the marginal cost and marginal revenue always exist. 
Therefore P'(x) exists and 

P'(x) = R'(x) - C'(x). 

Assume P(x) has a maximum at x 0 . Since (0, oo) has no endpoints and P'(x0 ) 

exists, the Critical Point Theorem shows that P'(x 0 ) = 0. Thus 

and 

DEFINITION 

P'(x 0 ) = R'(x 0 ) - C'(x0 ) = 0 

R'(x0 ) = C'(xol· 

An interior point of an interval I is an element of I which is not an endpoint of I. 

For example, if I is an open interval, then every point of I is an interior point 
of I. But if I is a closed interval [a, b ], then the set of all interior points of I is the 
open interval (a, b) (Figure 3.5.5). 

a b 

endpoint} interior points \ endpoint 

Figure 3.5.5 

An interior point of I which is a critical point off is called an interior critical 
point. There are a number of tests to determine whether or not f has a maximum at a 
given interior critical point. Here are two such tests. In both tests we assume that f is 
continuous on its domain I. 

DIRECT TEST 

Suppose c is the only interior critical point off, and u, v are points in I with 
U < C < V. 

137 
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(i) If f(c) > f(u) and f(c) > f(v), then f has a maximum at c and nowhere 
else. 

(ii) If f(c) < f(u) and f(c) < f(v), then f has a minimum at c and nowhere 
else. 

(iii) Otherwise, f has neither a maximum nor a minimum at c. 

The three cases in the Direct Test are shown in Figure 3.5.6. The advantage 
of the Direct Test is that one can determine whether fhas a maximum or minimum 
at c by computing only the three valuesf(u),.f(v), andf(c) instead of computing all 
values off(x). 

~ 
I I I 
I I I 
I I I 
I I I 
I I I 

~ 
I I I 
I I 1 
I I I 
I I I 

I I I I I I 
I 

u c v u c v u c u 

(i) max (ii) min (iii) neither 

Figure 3.5.6 

PROOF OF THE DIRECT TEST We must prove that if two points of I are on the 
same side of c, their values are on the same side ofj'(c). Suppose, for instance, 
that u1 < u2 < c (Figure 3.5.7). On the closed interval [u 1, c] the only 

y y 

c 

X X 

Figure 3.5.7 

critical points are the endpoints. Thus when we restrict f to this interval, it 
has a maximum at one endpoint and a minimum at the other. If the maximum 
is at c, then f(u 1) and f(u 2 ) are both less than f(c); if the minimum is at c, 
then f(u 1) and f(u 2 ) are both greater than f(c). A similar proof works when 
C < V 1 < V 2 . 

SECOND DERIVATIVE TEST 

Suppose cis the only interior critical point off and that f'(c) = 0. 

(i) If f"(c) < 0, .f has a maximum at c and nowhere else. 

(ii) If f"(c) > 0, f has a minimum at c and nowhere else. 

We omit the proof and give a simple intuitive argument instead. (See Figure 
3.5.8.) Since .f'(c) = 0, the curve is horizontal at c. If f"(c) is negative the slope is 
decreasing. This means that the curve climbs up until it levels off at c and then falls 
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down, so it has a maximum at c. On the other hand, ifj"(c) is positive, the slope is 
increasing, so the curve falls down until it reaches a minimum at c and then climbs up. 
This argument makes it easy to remember which way the inequalities go in the 
test. 

The Second Derivative Test fails when f"(c) = 0 and when f"(c) does not· 
exist. When the Second Derivative Test fails any of the following things can still 
happen: 

(1) f has a maximum at x = c. 
(2) f has a minimum at x = c. 
(3) f has neither a maximum nor a minimum at x = c. 

y y 

c 

X 

(i) !"(c) <0, max (ii) j"(c) > 0, min 
Figure 3.5.8 

X 

In most maximum and minimum problems, there is only one critical point 
except for the endpoints of the interval. We develop a method for finding the maximum 
and minimum in that case. 

METHOD FOR FINDING MAXIMA AND MINIMA 

When to use: f is continuous on its domain I, and f has exactly one interior 
critical point. 

Step 1 Differentiate f. 

Step 2 Find the unique interior critical point c of f. 

Step 3 Test to see whether f has a maximum or minimum at c. The Direct Test or 
the Second Derivative Test may be used. 

This method can be applied to an open or half-open interval as well as a 
closed interval. The Second Derivative Test is more convenient because it requires 
only the single computation f"(c), while the Direct Test requires the three computa­
tions f(u), f(v), and f(c). However, the Direct Test always works while the Second 
Derivative Test sometimes fails. 

We illustrate the use of both tests in the examples. 

EXAMPLE 4 Find the point on the line y = 2x + 3 which is at minimum distance 
from the origin. 

The distance is given by 
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and substituting 2x + 3 for y, 

z = Jx 2 + (2x + W = J5x 2 + 12x + 9. 

This is defined on the whole real line. 

Step 1 
dz lOx+ 12 5x + 6 

z 

d:: 
Step 2 -d = 0 only when 5x + 6 = 0, or x = 

X 

Step 
3 

d
2
z 5z - (5x + 6)(dz/dx) 

dx 2 z 2 

_§_ 
s 

At x = -~, 5x + 6 = 0 and z > 0 so d 2zjdx2 = 5/z > 0. By the Second 
Derivative Test, z has a minimum at x = -~. 

CONCLUSION The distance is a minimum at x = -~, y = 2x + 3 =!. The 
minimum distance is z = J x 2 + y2 = ,./!. This is shown in Figure 3.5.9. 

Figure 3.5.9 

EXAMPLE 5 Find the minimum ofj(x) = x 6 + 10x4 + 2. 

Step 1 f'(x) = 6x 5 + 40x 3 = x 3(6x 2 + 40). 

Step 2 f'(x) = 0 only when x = 0. 

Step 3 The Second Derivative Test fails, because 

X 

j"(x) = 30x4 + 120x 2
, f"(O) = 0. 

We use the Direct Test. Let u = - 1, v = I. Then 

f(O) = 2, f(- I) = 13, f(1) = 13. 

Hencefhas a minimum at 0, as shown in Figure 3.5.10. 

EXAMPLE 6 Find the maximum ofJ(x) = 1 - x 213 . 

Step 1 f'(x) = -(i)x-!!3. 

Step 2 f'(x) is undefined at x = 0, and this the only critical point. 
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min (0, 2) 

-2 -1 0 

f(x) = x 6 + l0x 4+ 2 

Figure 3.5.10 

2 X 

y 

max (0, l) 

f(x) = 1 - x2/3 

Figure 3.5.11 

Step 3 We use the Direct Test. Let u = -1, v = 1. 

f(O) = 1, f( -1) = 0, f(I) = 0. 

Thusfhas a maximum at x = 0, as shown in Figure 3.5.11. 

X 

Iff has more than one interior critical point, the maxima and minima 
can sometimes be found by dividing the interval into two or more parts. 

EXAMPLE 7 Find the maximum and minimum off(x) = xj(x2 + 1). 

, (x 2 + 1) - 2x2 1 - x 2 

Step 1 f (x) = (x2 + 1)2 = (x2 + 1)2· 

Step 2 f'(x) = 0, when x = -1 and x = 1. There are two interior critical points. 
We divide the interval (- oo, oo) on which f is defined into the two sub­
intervals (- oo, OJ and [0, oo ). On each of these subintervals, f has just one 
interior critical point. 

Step 3 We shall use the direct test for the subinterval (- oo, 0]. At the critical 
point -1, we have f( -1) = -1. By direct computation, we see that 
f( -2) = -~ andf(O) = 0. Both of these values are greater than -1. This 
shows that the restriction off to the subinterval (- oo, OJ has a minimum 
at x = -1. Moreover, f(x) is always ~ 0 for x in the other subinterval 
[0, oo ). Therefore f has a minimum at -1 for the whole interval (- oo, oo ). 
In a similar way, we can show thatfhas a maximum at x = 1. 

CONCLUSION f has a minimum at x = -1 with value f( -1) = 
maximum at x = 1 with value f(1) = 1. (See Figure 3.5.12.) 

and a 

The Critical Point Theorem can often be used to show that a curve has no 
maximum or minimum on an open interval I= (a, b). The theorem shows that: 

If y = f(x) has no critical points in (a, b), the curve has no maximum or 
minimum on (a, b). 

If y = f(x) has just one critical point x = c in (a, b) and two points x 1 and 
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f(x) 

min ( -1, -~) 
Figure 3.5.12 

1 max (1, 2 ) 

f(x) = _x_ 
!+x2 

X 

x 2 arefound wheref(x 1 ) <f(c) <f(x2 ), then the curve has no maximum or minimum 
on (a, b). 

EXAMPLE 8 f(x) = x 3 
- 1. Test for maxima and minima. 

Step 1 f'(x) = 3x2 . 

Step 2 f'(x) = 0 only when x = 0. 

Step 3 The Second Derivative Test fails, because f"(x) = 6x, 

By direct computation, f(O) = -1, f( -1) = -2, 

f"(O) = 0. 

f(l) = 0. 

Therefore f has neither a minimum nor a maximum at x = 0. 

CONCLUSION Since x = 0 is the only critical point off and f doesn't have a 
maximum or minimum there, we conclude that f has no maximum and no 
minimum as shown in Figure 3.5.13. 

f(x) 

X 

Figure 3.5.13 

PROOF OF THE CRITICAL POINT THEOREM Assume that neither (i) nor (ii) holds; 
that is, assume that cis not an endpoint of I and f'(c) exists. We must show 
that (iii) is true; i.e., f'(c) = 0. We give the proof for the case that f has a 
maximum at c. Let x = c, and let L'l.x > 0 be infinitesimal. Then 

f(c + L'l.x) ::;; f(c), 

(See Figure 3.5.14.) Therefore 

f(c - L'l.x) ::;; f(c). 

f(c + L'l.x) - f(c) < 
0 

< .f(c - L'l.x) - f(c). 
L'l.x - - -L'l.x 
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X 

Figure 3.5.14 Proof of the Critical Point Theorem 

Taking standard parts, 

f'(c) = st(f(c + ~;- f(c)) :s; 0, 

and also, 0 :s; st(f(c - Llx) - f(c)) = f'(c). 
-Llx 

Therefore f'(c) = 0. 

PROBLEMS FOR SECTION 3.5 

In Problems 1-36, find the unique interior critical point and determine whether it is a maximum, 
a minimum, or neither. 

1 

3 

5 

7 

9 

11 

13 

15 

17 

19 

21 

23 

25 

27 

29 
31 

33 

f(x) = x2 

f(x) = x 4 + 2 

f(x) = x 3 + 2 

f(x) = 3x2 + 2x - 5 

f(x) = x415 

1 
f(x) = -2--1 ' 

X -
-1 <X< 1 

f(x) = x113 + 1 

f(x)=x2 -x-1, x<O 

J(x) = x- 1 - (x -- 3)-1, 
0<x<3 

f(x) = J4='?, -2:::;; x :::;; 2 

y = sin x + x, 0 ::;; x :::;; 2n 
y = e-x2 

n n 
y=--, --< x<-

cosx 2 . 2 

y = xex 

y = x - lnx, 0 < x < w 

f(x)=lx-31 

f(x)=2-lxl 

2 

4 

6 

8 

10 

12 

14 

16 

18 

20 

22 

24 

26 

28 

30 

32 

34 

f(x) = 1 - x 2 

f(x) = x4 + 3x 2 + 5 

f(x) = x 3 
- 3x 2 + 3x 

f(x) = 2(x- 1)4 + (x- 1)2 + 6 

f(x) = 2 - (x + 1)213 

1 
f(x) = x2 + 1 

f(x) = 4 - x115 

f(x)=x 1 -x-1, x>O 

f(x) = x + x-1, 0 < x 

j(x) = (4- X2)- 112, -2 <X< 2 

y = sin 2 x, 0 < x < n 
y=ex2-1 

y = ln(sinx), 0 < x < n 

y = xlnx, 0 < x < oc 

y=ex-x 

f(x) = 3 + 11 - xI 
f(x) = 21xl- x 
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35 f(x) = .j~ + .j1 - x, 

O::s;x::s;1 
36 f(x) = J-;_ + J9 - 3x, 0 ::s; x ::s; 3 

37 Find the shortest distance between the line y = 1 - 4x and the origin. 

38 Find the shortest distance between the curve y = 2/x and the origin. 

39 Find the minimum of the curve{ (x) = x"' - mx, x > 0, where m is an integer :2: 2. 

40 Find the maximum off (x) = x"' - mx, x < 0, where m is an odd integer :2: 2. 

In Problems 41-44, find the maximum and minimum of the given curve. 

41 
X 

f(x) = x2 + 4 42 
3x + 4 

f(x) = x2 + 1 

43 
X 

j (x) = x4 + I 44 
x3 

f(x) = x4 + 1 

3.6 MAXIMA AND MINIMA-APPLICATIONS 

Maximum and minimum problems arise in both the physical and social sciences. 
We give three examples. 

EXAMPLE 1 A woman wishes to rent a house. If she lives x miles from her work, 
her transportation cost will be ex dollars per year, while her rent will be 
25ej(x + 1) dollars per year. How far should she live from work to minimize 
her rent and transportation expenses? 

Let y be her expenses in dollars per year. Then 

25e 
y =ex +--

1
. 

x+ 

The problem is to find the minimum value of y in the interval 0 ::s; x < co. 

dy 25e 
-=c- . 
dx (x + 1)2 

Step 1 

Step 2 To find x such that dy/dx = 0 we set dyjdx = 0 and solve for x. 

25c 25c 2 c- 2 = 0, e = 2 , (x + 1) = 25, x + 1 = +5. 
(x + 1) (x + 1) 

Then x = 4 or x = -6. We reject x = -6 because 0 s x. The only interior 
critical point is x = 4. 

Step 3 We use the Direct Test. 

At x = 0, y = e • 0 + 25ej(O + 1) = 25c. 

At x = 4, y = 4e + 25e/(4 + 1) = 9e. 

At x = 9, y = 9e + 25e/(9 + 1) = 11.5e. 

CONCLUSION y has its minimum at x = 4 miles. So the woman should live four 
miles from work. (See Figure 3.6.1.) 



3.6 MAXIMA AND MINIMA-APPLICATIONS 145 

25c 

20c 

15c 

lOc 
min 

Sc 

0 4 9 X 

Figure 3.6.1 

EXAMPLE 2 A farmer plans to use 1000 feet of fence to enclose a rectangular plot 
along the bank of a straight river. Find the dimensions which enclose the 
maximum area. 

Figure 3.6.2 

Let x be the dimension of the side along the river, and y be the other 
dimension, as in Figure 3.6.2. Call the area A. 

No fencing is needed on the side of the plot bordering the river. The given 
information is expressed by the following system of formulas. 

A = xy, X + 2y = 1000, 0 :0::: X :0::: 1000. 

The problem is to find the values of x andy at which A is maximum. In this 
problem A is expressed in terms of two variables instead of one. However, 
we can select x as the independent variable, and then both y and A are 
functions of x. We find an equation for A as a function of x alone by 
eliminating y. 

X+ 2y = 1000, 
lOQQ- X 

y =-------c---
2 

A = xy = x(lOO~ - x) = 500x - ~x2 • 

We then find the maximum of A in the closed interval 0 :0::: x :0::: 1000. 

Step 1 dA/dx = 500- x. 

Step 2 dA/dx = 0 when x = 500. This is the unique interior critical point. 

Step 3 We use the Second Derivative Test: d2A/dx2 = -1. Therefore A has a 
maximum at the critical point x = 500. 

CONf!:LUSION The maximum area occurs when the plot has dimensions x = 500ft 
andy = (1000 - x)/2 = 250ft (Figure 3.6.3). 
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A 

125,000 

500 1000 X 
Figure 3.6.3 

EXAMPLE 3 Find the shape of the cylinder of maximum volume which can be 
inscribed in a given sphere. 

The shape of a right circular cylinder can be described by the ratio of the 
radius of its base to its height. This ratio for the inscribed cylinder of maximum 
volume should be a number which does not depend on the radius ofthesphere. 
For example, we should get the same shape whether the radius of the sphere 
is given in inches or centimeters. 

Let r be the radius of the given sphere, x the radius of the base of the cylinder, 
h its height, and V its volume. First, we draw a sketch of the problem in 
Figure 3.6.4. 

X 

4[7 
Figure 3.6.4 

From the sketch we can read off the formulas 

V = nx 2 h, x 2 + Cth) 2 = r2
, 0 ::s; x ::s; r. 

r is a constant. We select x as the independent variable, while h and V are 
functions of x. To solve the problem we shall find the value of x where Vis a 
maximum and then compute the ratio x/h at this point to describe the shape 
of the cylinder. The answer x/h should not depend on the constant r. We 
give two methods of solution. 

FIRST SOLUTION Express Vas a function of x by eliminating h. 

X
2 + Cth) 2 = r2

, 

h = 2Jc-cr2~-~x-=-2 . 

V = nx2h = 2nx 2 Jr 2 
- x 2

. 
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The problem is to find the maximum of V in the interval 0 ~ x ~ r. 

Step 1 dV = 4nxJrz - xz - 2nx3 ' 
dx Jrz- xz 

(x < r). 

Step 2 There is one critical point at x = r, where dVjdx does not exist. We set 
dVjdx = 0 and solve for x to find the other critical points. 

2nx 3 

4nxjr2 
- x 2 

- = 0, 4nx(r2 
- x 2

) - 2nx 3 = 0, 
Jrz- xz 

2nx(2r2
- 3x2

) = 0, x = 0 or x = ±rfl. 

We reject x = -r.J% because 0 ~ x ~ r. The only interior critical point is 
x=r.J%. 

Step 3 We use the Direct Test. 

At X= 0, v = 0. 

Atx = r.j%, 

At x = r, V = 0. 

CONCLUSION The maximum of Vis at x = r.Ji (see Figure 3.6.5). At that point, 
h = 2jr2 

- x2 = 2r;.j3. Then the ratio of x to h is 

xjh = 1/y0.. 

Notice that, as we expected, this number does not depend on r. 

v max 

r X 

Figure 3.6.5 

SECOND SOLUTION Instead of eliminating hand expressing Vas a function of x, 
we shall use the equations in their original form and find the critical points 

. by implicit differentiation. 

Step 1 V = nx 2h, dVjdx = 2nxh + nx2 dhjdx. 

We find dhjdx by implicit differentiation. 

2 1 2 2 1 dh dh 
x + (-2 h) = r , 2x + h 0 2 dx = ' dx 

(h # 0). 

Then dV 2 ( 4x) 4nx
3 

- = 2nxh + nx -~ = 2nxh - --, 
~ h h 

(h # 0). 

Step 2 When h = 0 we have x = r, which is an endpoint. When h # 0 we set 
dVjdx = 0 and solve for x. 
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xh- 2x 3/h = 0, 

or x = ±h/j2. 

We rejec.!_ x = -h;j2 because x and h ~ 0. x = 0 is an endpoint. Thus 
x = hj.J2 is the unique interior critical point. 

Step 3 We use the Direct Test. At x = 0, V = 0. At x = h/...;'2, V = nh 3j2. At 
X= 1', V = 0. 

CONCLUSION The maximum of Vis at x = hjj2. At that point the ratio of x to 
h is xjh = 1/}2. 

The second method of solution may be better in a problem where it is hard 
or impossible to find explicit equations for the dependent variables (like h and V) as 
functions of the independent variable. 

PROBLEMS FOR SECTION 3.6 

Split 20 into the sum of two numbers x ~ 0 and y ~ 0 such that the product of x and 
y 2 is a maximum. 

2 Find two numbers x ~ 0 and y ~ 0 such that x + y = 8 and x 2 + y1 is a minimum. 

3 Find two numbers x ~ 1 and y ~ 1 such that xy = 50 and 2x + y is a maximum. 

4 Find the rectangle with perimeter 8 which has maximum area. 

5 Find the maximum value of x 3y if x andy belong to [0, 1] and x + y = 1. 

6 A rectangular box which is open at the top can be made from a 10 by 12 inch piece of 
metal by cutting a square from each corner and bending up the sides. Find the dimen­
sions of the box with greatest volume. 

7 A poster of total area 400 sq in. is to have a margin of 4 in. at the top and bottom and 
3 in. at each side. Find the dimensions which give the largest printed area. 

8 A man can travel 5 mph along the path AB and 3 mph off the path a:s shown in the 
figure. Find the quickest route APC from the point A to the point C. 

A 10 mi. B 

9 Find the dimensions of the right triangle of maximum area whose hypotenuse has 
length one. 

10 Find the dimensions of the isosceles triangle of maximum area which has perimeter 3. 

11 Find the five-sided figure of maximum area which has the shape of a square topped by 
an isosceles triangle, and such that the sum of the height of the figure and the perimeter 
of the square is 20ft. 
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a a 
2 2 

a a 

a 

12 A wire of length Lis to be divided into two parts; one part will be bent into a square and 
the other into a circle. How should the wire be divided to make the sum of the areas of the 
square and circle as large as possible? As small as possible? 

13 Find the area of the largest rectangle which can be inscribed in a semicircle of radius r. 

14 Find the dimensions of the rectangle of maximum area which can be inscribed in an 
equilateral triangle as shown in the figure. 

15 Find the shape of the right circular cylinder of maximum volume which can be inscribed 
in a right circular cone of height 3 and base of radius l. 

16 Find the shape of the right circular cone of maximum volume which can be inscribed 
in a given sphere. 

17 Find the shape of the cylinder of maximum volume such that the sum of the height and 
the circumference of the base is equal to 4. 

18 Find the shape of the largest trapezoid which can be inscribed in a semicircle as shown 
in the figure. 

19 If a farmer plants x units of wheat in his field, 0 ~ x ~ 100, the yield will be lOx - x 2 /10 
units. How much wheat should he plant for the maximum yield? 

20 In Problem 19 above, it costs the farmer $100 for each unit of wheat he plants, and he is 
able to sell each unit he harvests for $50. How much should he plant to maximize his 
profit? 

21 A professional football team has a stadium which seats 60,000. It is found that x tickets 
can be sold at a price of p = 10 - x/10,000 dollars per ticket. Find the values of x and p 

at which the total money received will be a maximum. 

149 
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22 

23 

24 

25 

26 

27 
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In Problem 21 a tax of $1 per ticket is added onto the price. Find x and p so that the 
total revenue after taxes is a maximum. 

A store can buy up to 300 seconds of advertising time daily on the radio at the rate of 
$2jsec for the first 100 sec, and $1/sec thereafter. x seconds on the radio increases daily 
sales by 32fi dollars. How many seconds on the radio will yield the maximum profit? 

Work Problem 23 if the cost of advertising time is $1/sec for the first 100 sec and $2/sec 
thereafter. 

Find the real number which most exceeds its square. 

Find the rectangle of area 9 which has the smallest perimeter. 

Find the right triangle of smallest area in which a 1 by 2 rectangle can be inscribed as 
shown in the figure. 

28 A farmer wishes to enclose 10,000 sq ft of land along a river by three sides of fence as 
shown in the figure. Find the dimensions which require the minimum length of fence. 

river 

29 Find the shortest distance between the line y = 1 - 4x and the origin. 

30 Find the shortest distance between the curve y = 2jx and the origin. 

31 A warehouse is to be built in the shape of a rectangular solid with a square base. The cost 
of the roof per unit area is three times the cost of the walls. Find the shape which will 
enclose the maximum volume for a given cost. 

32 A rectangular box with volume 1 cu ft is to be made with a square base and no top. Find 
the dimensions which require the smallest amount of material. 

33 Find the dimensions of the right circular cylinder of volume 1 cu ft which has the smallest 
surface area (top plus bottom plus sides). 

34 Find the dimensions of the right circular cone of smallest volume which can be circum­
scribed about a sphere of radius r. 

35 Given two real numbers a and b, find x such that (x - a) 2 + (x- b) 2 is a minimum. 

36 The area of a sector of a circle with radius r and central angle e is A = 1r28, and its arc 
has lengths = re. Find rand e so that 0 < e < 2n, the sector has area 1, and the perim­
eter is a minimum. 

37 Show that among all right circular cylinders of volume 1 cu ft which are open at both 
ends, there is no maximum or minimum surface area. 

38 The population of a country at time t = 0 is 50 million and is increasing at the rate of 
one million people per year. The national income at time t is (20,000 + t 2

) million 
dollars per year. At what time t ;;::: 0 is the per capita income ( = national income -o­

population) a minimum? 

39 A man estimates that he can paint his house in x hours of his spare time if he buys 
equipment costing 200 + 2000jx 2 dollars, and that his spare time is worth $2/hr. How 
many hours should he take? 



3.7 DERIVATIVES AND CURVE SKETCHING 

40 An artisan can produce x items at a total cost of 100 + Sx dollars and sell x items at a 
price of 10 - x/100 dollars per item. Find the value of x which gives the maximum 
profit. 

41 A manufacturer can produce any number of buttons at a cost of two cents per button 
and can sell x buttons at a price of 1000/Jx cents per button. How many buttons should 
be produced for maximum profit? 

DERIVATIVES AND CURVE SKETCHING 

If we compute n values of f(x), 

f(xl), f(x2), ... ,J(xn), 

we obtain n points through which the curve y = f(x) passes. The first and second 
derivatives tell us something about the shape of the curve in the intervals between 
these points and permit a much more accurate plot of the curve. It is especially 
helpful to know the signs of the first two derivatives. 

When the first derivative is positive the curve is increasing from left to right, 
and when the first derivative is negative the curve is decreasing from left to right. 
When the first derivative is zero the curve is horizontal. These facts can be proved as a 
theorem if we define exactly what is meant by increasing and decreasing (see Figures 
3.7.1 and 3.7.2). 

Figure 3.7.1 

I 
Increasing, /'(x) > 0 

/(x) 

X 

/(x) 

I 

I 
Decreasing, f' (x) < 0 

X 

Figure 3.7.2 Constant on 1,/'(x) = 0 

DEFINITION 

A fimction f is said to be constant on an interval I if: 

for all x 1 , x 2 in I. 

f is increasing on I if: 

f(x,) < f(x~) whenever x, < x~ in I. 

X 
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f is decreasing on I if: 

f(x tl > f(x 2l whenever x 1 < x 2 in I. 

THEOREM 1 

Suppose f is continuous on I and has a derivative at every interior poillt of I. 

(i) I/f'(x) = 0 for all interior points x of I, then f is constant on I. 

(ii) Iff'(x) > 0 for all interior points x of I, then f is increasing on I. 

(iii) If f'(x) < 0 for all interior points x of I, then f is decreasing on I. 

A proof will be given in the next section. 

EXAMPLE 1 The curve y = x 3 + x - 1 has derivative dyjdx = 3x2 + 1. The 
derivative is always positive, so the curve is always increasing (Figure 3.7.3). 

y 

X 

y = x 3 +x -1 

Figure 3.7.3 

Let us now turn to the second derivative. It is the rate of change of the slope 
of the curve, so it has something to do with the way in which the curve is changing 
direction. When the second derivative is positive, the slope is increasing, and we would 
expect the curve to be concave upward, i.e., shaped like a u. When the second 
derivative is negative the slope is decreasing, so the curve should be shaped like n 
(see Figure 3.7.4). 

A precise definition of concave upward or downward can be given by 
comparing the curve with the chord (straight line segment) connecting two points on 
the curve. 

DEFINITION 

Let f be defined on I. The cwTe J = f(x) is conca1•e upward on I tffor any t\\'O 

points x 1 < x 2 in I and any ralue of' x betll'een x 1 and x 2 , the curre at x is 
be loll' the chord ll'hich meets the cun•e at x 1 and x 2 • 

The cwTe y = f(x) is concave downwm·d on I if for any two points x 1 < x2 in I 
and any mlue of x between x 1 and x 2 , the curve at x is aboL·e the chord which 
meets the cwTe at x 1 and x 2 (see Figure 3.7.5). 
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f(x) f(x) 

,...___/ /l I I 
i I I I 
I I I I 
I I I I 

I X I X 

concave upward concave downward 
f"(x) > 0 f"(x) < 0 

f(x) f(x) 

~ i\ 
I I I I 
I I I I 
I I I I 

I X I X 

concave upward concave downward 
f"(x)>O f"(x) < 0 

Figure 3.7.4 

y 

X X 

concave upward concave downward 

Figure 3.7.5 

The next theorem gives the geometric meaning of the sign of the second 
derivative. 

THEOREM 2 

Suppose f is continuous on I and f has a second derivative at every interior 

point of I. 

(i) If f"(x) > 0 for all interior points x of I, then f is concave upward on I. 

(ii) If f"(x) < 0 for all interior points x of I, then f is concave dowmvard on I. 

We have already explained the intuitive reason for Theorem 2. The proof 
is omitted. Theorem 1 tells what happens when f' always has the same sign on an 
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open interval I, while Theorem 2 does the same thing for f". To use these results 
we need another theorem that tells us that certain functions always have the same 
sign on I. 

THEOREM 3 

Suppose g is continuous on I, and g(x) =1- 0 for all x in I. 

(i) If g(c) > 0 for at least one c in I, then g(x) > 0 for all x in I. 

(ii) If g(c) < 0 for at least one c in I, then g(x) < 0 for all x in I. 

The two cases are shown in Figure 3.7.6. We give the proof in the next section. 

g(x) g(x) 

I 

0 X 0 

Figure 3.7.6 g(x) > 0 for all x in I g(x) <0 for all x in I 

Let us show with some simple examples how we can use the first and second 
derivatives in sketching curves. The three theorems above and the tests for minima 
and maxima are all helpful. 

EXAMPLE 1 (Continued) )' = x 3 + x - 1. We have 

ddy = 3x2 + 1, 
X 

d2y 

d~ = 6x. 
X 

dyjdx is always positive, while d2yjdx 2 = 0 at x = 0. We make a table of 
values for y and its first two derivatives at x = 0 and at a point to the right 
and left side of 0. 

dy d2y 
X y -

dx 2 dx 

-1 -3 4 -6 
0 -1 1 0 
1 1 4 6 

With the aid of Theorems 1-3, we can draw the following conclusions: 

(a) dyjdx > 0 and the curve is increasing for all x. 
(b) d2 yjdx 2 < 0 for x < 0; concave downward. 
(c) d2 yjdx 2 > 0 for x > 0; concave upward. 

At the point x = 0, the curve changes from concave downward to concave 
upward. This is called a point of inflection. 
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To sketch the curve we first plot the three values of y shown in the table, then 
sketch the slope at these points as shown in Figure 3.7.7, then fill in a smooth 
curve, which is concave downward or upward as required. 

X 

Figure 3.7.7 

EXAMPLE 2 Sketch the curve y = 2x- x2
. 

dy d2y 
dx = 2 - 2x, dxz - 2. 

We see that dyjdx = 0 when x = 1, a critical point. d2 yjdx2 is never zero 
because it is constant. We make a table of values including the critical point 
x = 1 and points to the right and left of it. 

X y 

-1 -3 
0 0 
1 1 
2 0 
3 -3 

CONCLUSIONS 

(a) dyjdx > 0 for x < 1; increasing. 
(b) dyjdx < 0 for x > 1; decreasing. 

dy d2y 

dx dx 2 

4 -2 
2 -2 
0 -2 

-2 -2 
-4 -2 

(c) d2yjdx 2 < 0 for all x; concave downward. 
(d) dyjdx = 0, d2yjdx2 < 0 at x = 1; maximum. 

The curve is shown in Figure 3.7.8. 

In general a curve y = f(x) may go up and down several times. To sketch it 
we need to determine the intervals on which it is increasing or decreasing, and concave 
upward or downward. Here are some things which may happen at the endpoints of 
these intervals. 
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y 

3 X 

Figure 3.7.8 
y = 2x- x 2 

DEFINITION 

Let c be an interior point of I. 

f has a local maximum at c iff(c) ~ f(x) for all x in some open interval (a 0 , b0 ) 

containing c. 

f lws a local minimum at c if f(c) ~ f(x) for all x in some open interval (a 0 , b0 ) 

containing c. (The interval (a 0 , b0 ) may be only a small subinterval of I.) 

f has a point of inflection at c iff changes ji·mn one direction of concavity to 
the other at c. 

These definitions are illustrated in Figure 3.7.9. 

point of 
inflection 

point of 
inflection 

concave concave concave 
upward downward upward 

-t--- increasing decreasing incr. 

endpoint local min local max local min 

Figure 3.7.9 

endpoint 
max 

We may now describe the steps in sketching a curve. We shall stick to the 
simple case where f and its first two derivatives are continuous on a closed interval 
[a, b ], and either are never zero or are zero only finitely many times. (Curve plotting in 
a more general situation is discussed in Chapter 5 on limits.) 

Step 1 Compute dyjdx and d2 yjdx 2
. 

Step 2 Find all points where dyjdx = 0 and all points where d2 yjdx 2 = 0. 

Step 3 Pick a few points 
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first or second derivative is zero, and at least one point between any two 
consecutive zeros of dyjdx or d2yjdx2. 

Step 4 At each of the points x0 , ... , xn, compute the values of y and dyjdx and 
determine the sign of d2yjdx2. Make a table. 

Step 5 From the table draw conclusions about where y is increasing or decreasing, 
where y has a local maximum or minimum, where the curve is concave 
upward or downward, and where it has a point of inflection. Use Theorems 
1-3 of this section and the tests for maxima and minima. 

Step 6 Plot the values of y and indicate slopes from the table. Then connect them 
with a smooth curve which agrees with the conclusions of Step 5. 

EXAMPLE 3 y = x4/2- x2
, -2 s X s 2. 

Step 1 dyjdx = 2x3 
- 2x. d2yjdx2 = 6x 2 

- 2. 

Step 2 dyjdx = 0 at x = -1, 0, 1. 

Step 3 d2yjdx2 = 0 at x ±A. -2, -1,- jt, 0, jt, I, 2. 

Step 4 dy d2y 
X y 

dx 2 dx 

-2 4 -12 + 
-1 I 0 + -2 

-A 5 4/(3j3) 0 -n 
0 0 0 

A 5 -4/(3j3) 0 -n 
1 I 0 + -2 
2 4 12 + 

Step 5 We indicate the conclusions schematically in Figure 3.7.10. 

silgn ::* 
-------0+++++++0------0+++++++++ 

-1 0 2 

Cond"'ion" d''""""• 1 '"""""• 1 d"''"'ing 1 increasing 

local min local max local min 

. d2y 

r :'2"' 
L +++++++++++0-------0++++++++++++ 

2 

Conclusions: =noavo upw"d 1 =""" downw"d 1 concave upward 

point of point of 
inflection inflection 



Step 6 The curve is W-shaped, as shown in Figure 3.7.11. 

-2 

Figure 3.7.11 

PROBLEMS FOR SECTION 3.7 

y 

6 

5 

4 

3 

2 

y = x4- x2 
2 

X 

Sketch each of the curves given below by the six-step process explained in the text. For each curve, 
give a table showing all the critical points, local maxima and minima, intervals on which the curve 
is increasing or decreasing, points of inflection, and intervals on which the curve is concave up­
ward or downward. 

1 J' = x 2 + 2, -2-::; X -::; 2 

3 y = x 2
- 2x, -2 < x < 2 

5 y = 2x 2 
- 4x + 3, 0 -::; x -::; 2 

7 

9 

10 

11 

12 

13 

-2-::; X-::; 2 

J' = x3 + x 2 + X, - 2 -::; X -::; 2 

}' = x3 + x 2 
- X, - 2 -::; X -::; 2 

)' = ±x3 + x2 + X, -2 -::; X -::; 2 

)' = - X 
3 + 12x - 12, - 3 -::; X -::; 3 

-4-::; X-::; 2 

14 _I' = ±-·(~ - X, -2 -::; X -::; 2 

15 y = x2 
- !x~. -2 -::; x -::; 2 

16 y = x 2(x - 2) 2
, -1 -::; x -::; 3 

2 

4 

6 

8 

17 _r=1/x, -4-::;x-:=:-± and ±-:=:x-:=:4 

-2-::; X-::; 2 

.\' = !x2 + X, - 2 -::; X -::; 2 

y = - x 2 
- 2x + 6, - 4 -::; x -::; 0 

.J' = X5, -2-::; X-::; 2 

18 _r=1/x+x, -4-:=:x-:=:-± and ±-:=:x-:=:4 

19 y=x- 2
, -2-::;x-:=:-1 and ±-:=:x-:=:2 

20 y = x + x- 2
, -2-::; x -::; --!, and ±-::; x -::; 2 

21 

23 

25 

X - 1 
\' = -- 0 -::;X -::; 10 

X+ I' 

1 
\' = -- -4 -::; X -::; 4 

x2 + 1' 

22 

24 

26 

2x 
I' = -- 0 -::; X -::; 10 
• X + 1' 

X 
r=--­
- x 2 + 1' 

1 
_r = x2- I' 

-4-::; X-::; 4 

9 9 
- IQ-::; X-::; [Q 
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27 y=fi, ;\:sxs4 28 ,1' = 2p- X, ;\:sxs4 

29 y = lj'\{;, ;\:sxs4 30 y = xli2 + x- 112, ;\:sxs4 

31 y=~, -2 S X S 2 32 y = J9 + x 2
, -4 S X S 4 

33 y = sinxcosx, 0 s x s 2n 34 y = sinx + cosx, 0 s x s 2n 

35 y = 3sin(!x), 0 s x s 2n 36 . 2 y = sm x, 0 s x s 2n 

37 y = tanx, -n/3 s x s n/3 38 y = ljcosx, -n/3 s x s n/3 

39 y =e-x, -2 S X S 2 40 y = e<lf2)x, -2 S X S 2 

41 y = lnx, lje s x s e 42 y = (lnx)2
, Ije s x s e 

43 y = xe-x, -1 S X S 3 44 )'=X- ex, -2 S X S 2 

45 y = xlnx, e- 2 s x s e 46 y = x -lnx, e- 2 sxse 

47 y = xex, -3 S X S 1 48 y =e-x>, -2 S X S 2 

49 y = exjx, ;\:sxs4 50 y = ln(l + x2), -3 S X S 3 

PROPERTIES OF CONTINUOUS FUNCTIONS 

This section develops some theory that will be needed for integration in Chapter 4. 
We begin with a new concept, that of a hyperinteger. The hyperintegers are to the 
integers as the hyperreal numbers are to the real numbers. The hyperintegers consist 
of the ordinary finite integers, the positive infinite hyperintegers, and the negative 
infinite hyperintegers. The hyperintegers have the same algebraic properties as the 
integers and are spaced one apart all along the hyperreal line as in Figure 3.8.1. 

Finite 
______________________ .,.._ _________ >--_______________________ _ 

----- -6-5-4-3-2-1 0 I 2 -----

H-4 H-3 H-2 H-I H H+l H+2 H+3 H+4 

Negative Positive 
infinite infinite 

Figure 3.8.1 The Set of Hyperintegers 

The rigorous definition ofthe hyperintegers uses the greatest integer function 
[x] introduced in Section 3.4, Example 6. Remember that for a real number x, [x] 
is the greatest integer n such that n :::;; x. A real number y is itself an integer if and 
only if y = [x] for some real x. To get the hyperintegers, we apply the function [x] 

159 



160 3 CONTINUOUS FUNCTIONS 

I 
I 
I 
I 
I 

/; 
/I 

/ I 
// / 

/ I 

// / 
/ I 

/ I 
/ I 

/ I 

// / 
// / 

y -(4;"_1/ (3=----
(2,2) 

..----
(I' 1) -

0 
--------------------~---------------

X 

(H,H) 

(H-1,H-1) 

Figure 3.8.2 

DEFINITION 

A hyperinteger is a hyperreal number y such that y = [x] for some hyperreal x. 

When x varies over the hyperreal numbers, [x] is the greatest hyperinteger 
y such that y :c::; x. Because of the Transfer Principle, every hyperreal number x is 
between two hyperintegers [x] and [x] + 1, 

[x] :S: x < [x] + 1. 

Also, sums, differences, and products of hyperintegers are again hyperintegers. 
We are now going to use the hyperintegers. In sketching curves we divided 

a closed interval [a, b] into finitely many subintervals. For theoretical purposes in 
the calculus we often divide a closed interval into a finite or infinite number of equal 
subintervals. This is done as follows. 

Given a closed real interval [a, b], a finite partition is formed by choosing 
a positive integer n and dividing [a, b] into n equal parts, as in Figure 3.8.3. Each 
part will be a subinterval of length t = (b - a)jn. Then subintervals are 

'' I 
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a 
Figure 3.8.3 

The endpoints 

a +t a +2t 

a, a + t, a + 2t, ... , a + (n - l)t, a + nt = b 

are called partition points. 

a +nt = b 

The real interval [a,b] is contained in the hyperreal interval [a,b]*, which 
is the set of all hyperreal numbers x such that a ::; x ::; b. An infinite partition is 
applied to the hyperreal interval [a, b]* rather than the real interval. To form an 
infinite partition of [a, b]*, choose a positive infinite hyperinteger Hand divide [a, b]* 
into H equal parts as shown in Figure 3.8.4. Each subinterval will have the same 
infinitesimal length o = (b - a)jH. The H subintervals are 

[a, a + o], [a+ o, a+ 2o], ... , [a+ (K - l)o, a+ Ko], ... , [a+ (H- l)o, b], 

and the partition points are 

a, a+ o,a + 2o, ... ,a+ Ko, ... ,a+ Ho = b, 

where K runs over the hyperintegers from 1 to H. Every hyperreal number x between 
a and b belongs to one of the infinitesimal subintervals, 

a + (K - l)o ::; X < a + Ko. 

a X b 

Figure 3.8.4 An infinite partition 

We shall now use infinite partitions to sketch the proofs of three basic results, 
called the Intermediate Value Theorem, the Extreme Value Theorem, and Rolle's 
Theorem. The use of these results will be illustrated by studying zeros of continuous 
functions. By a zero of a functionfwe mean a point c where f(c) = 0. As we can see 
in Figure 3.8.5, the zeros off are the points where the curve y = f(x) intersects the 
x-axis. 

f(x) 

X 

Zeros of a function f 

Figure 3.8.5 



INTERMEDIATE VALUE THEOREM 

Suppose the realfunctionfis continuous on the closed interval [a, b] andf(x) 
is positive at one endpoint and negative at the other endpoint. Then f has a 
zero in the interval (a, b); that is,f(c) = Ofor some real c in (a, b). 

Discussion There are two cases illustrated in Figure 3.8.6: 

f(a) < 0 < f(b) and f(a) > 0 > f(b). 

f(b) f(a) 

f(a) 
f(b) 

Figure 3.8.6 

In the first case, the theorem says that if a continuous curve is below the 
x-axis at a and above it at b, then the curve must intersect the x-axis at 
some point c between a and b. Theorem 3 in the preceding Section 3.7 on 
curve sketching is simply a reformulation of the Intermediate Value 
Theorem. 

SKETCH OF PROOF We assume f(a) < 0 < f(b). Let H be a pos1trve infinite 
hyperinteger and partition the interval [a, b]* into H equal parts 

a, a+ b, a+ 26, ... , a+ Hb =b. 

Let a + Kb be the last partition point at whichf(a + Kb) < 0. Thus 

f(a + Kb) < 0 ~f(a + (K + 1)6). 

Since f is continuous, f(a + Kb) is infinitely close to f(a + (K + 1)6). 
We conclude thatf(a + Kb) ~ 0 (Figure 3.8.7). We take c to be the standard 
part of a + Kb, so that 

EXAMPLE 1 The function 

f(c) = st(f(a + Kb)) = 0. 

f(x) = -
1
-- x- Jx- fx, 

1 +X 

which is shown m Figure 3.8.8, is continuous for 0 ~ x ~ 1. Moreover, 

f(O) = 1, f(l) = t- 3 = -2!, 

The Intermediate Value Theorem shows that f(x) has a zero f(c) = 0 for 
some c between 0 and 1. 
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a 

Figure 3.8.7 

y 

-1 
I 

Figure 3.8.8 

The Intermediate Value Theorem can be used to prove Theorem 3 of 
Section 3.7 on curve sketching: 

in I. 
Suppose g is a continuous function on an interval I, and g(x) =I= 0 for all x 

(i) Ifg(c) > Ofor at least one c in I, then g(x) > Ofor all x in I. 
(ii) If g(c) < 0 for at least one c in I, then g(x) < 0 for all x in I. 

PROOF (i) Let g(c) > 0 for some c in I. If g(x 1) < 0 for some other point x 1 in I, 

then by the Intermediate Value Theorem there is a point x 2 between c 
and x 1 such that g(x2) = 0, contrary to hypothesis (Figure 3.8.9). Therefore 
we conclude that g(x) > 0 for all x in I. 
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g(x) g(x) 

X 

Figure 3.8.9 

EXTREME VALUE THEOREM 

Let f be continuous on its domain, which is a closed interval [a, b]. Then f 
has a maximum at some point in [a, b], and a minimum at some point in [a, b]. 

Discussion We have seen several examples of functions that do not have maxima 
on an open interval, such as f(x) = 1/x on (0, oo), or g(x) = 2x on (0, 1). 
The Extreme Value Theorem says that on a closed interval a continuous 
function always has a maximum. 

SKETCH OF PROOF Form an infinite partition of [a, b]*, 

a, a + 6, a + 26, ... , a + H 6 = b. 

By the Transfer Principle, there is a partition point a + K6 at which 
f(a + K6) has the largest value. Let c be the standard part of a + Kf> 
(see Figure 3.8.10). Any point u of [a, b]* lies in a subinterval, say 

a + Lb :::;; u < a + (L + 1)6. 

We have f(a + Kb) :2:: f(a + Lb), 

and taking standard parts, 

f(c) :2::/(u). 

This shows that f has a maximum at c. 

a ll c b 

Figure 3.8.10 Proof of the Extreme Value Theorem 
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ROLLE'S THEOREM 

Suppose that f is continuous on the closed interval [a, b] and d(fferentiable on 
the open interval (a, b). If 

f(a) = f(b) = 0, 

then there is at least one point c strictly between a and b where f has derivative 
zero; i.e., 

f'(c) = 0 for some c in (a, b). 

Geometrically, the theorem says that a differentiable curve touching the 
x-axis at a and b must be horizontal for at least one point strictly between a and b. 

PROOF We may assume that [a, b] is the domain off By the Extreme Value Theorem, 
fhas a maximum value Manda minimum value min [a, b]. Sincef(a) = 0, 
m :S: 0 and M ~ 0 (see Figure 3.8.11). 

Case 1 M = 0 and m = 0. Then f is the constant function f(x) = 0, and therefore 
f'(c) = 0 for all points c in (a, b). 

Case 2 M > 0. Let f have a maximum at c, f(c) = M. By the Critical Point Theorem, 
f has a critical point at c. c cannot be an endpoint because the value of f(x) 
is zero at the endpoints and positive at x = c. By hypothesis, f'(x) exists at 
x = c. It follows that c must be a critical point of the type f'(c) = 0. 

Case 3 m < 0. We let f have a minimum at c. Then as in Case 2, c is in (a, b) and 
f'(c) = 0. 

a c 

Case I, m=M=O 

Case 3, m < 0 

Figure 3.8.11 Rolle's Theorem 

b 

/]"\ 
a c b 

Case 2, M> 0 

Case 2 and 3, m < 0 < M 

EXAMPLE 2 f(x) = (x - 1)2(x - 2)3, a = 1, b = 2. The function f is continuous 
and differentiable everywhere (Figure 3.8.12). Moreover, f(1) = f(2) = 0. 
Therefore by Rolle's Theorem there is a point c in (1, 2) withf'(c) = 0. 

Let us find such a point c. We have 

f'(x) = 3(x - 1)2(x - 2)2 + 2(x - 1)(x - 2)3 = (x - l)(x - 2)2(5x - 7). 
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f(x) 

0 
' I 

I 
I 

I 
I 

I 
I 

7 
5 

I 

/' 
2 / 

~"' 

I 
I 

J 
I 

I 
I 

I 
I 

X 

I 
f(x) = (x- 1) 2 (x- 2) 3 

Figure 3.8.12 

Notice that f'(1) = 0 and f'(2) = 0. But Rolle's Theorem says that there is 
another point c which is in the open interval (1, 2) where j'(c) = 0. The 
required value for cis c =~because f'W = 0 and I < ~ < 2. 

x4 
EXAMPLE 3 Letf(x) = l- x 2

, a= -fi, b = fi. 

Then f(a) = f(b) = 0. 

Rolle's Theorem says that there is at least one point c in (- fi, j2) at which 
f'(c) = 0. As a matter of fact there are three such points, 

c = -1, c = 0, c = 1. 

We can find these points as follows: 

f'(x) = 2x 3 
- 2x = 2x(x 2 

- 1), 

f'(x) = 0 when x = 0 or x = ± 1. 

The function is drawn in Figure 3.8.13. 

l 
I 
I 
I 
I 
I 
l 
I 
I 
I 

-V2 

y 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

\12 X 

Figure 3.8.13 

,. 
f(x) =.:____- X 2 

2 

EXAMPLE 4 f(x) = jl=?, a= -1, b = 1. Then j( -1) = f(l) = 0. The func­
tionjis continuous on [ -1, 1] and has a derivative at each point of ( -1, 1), 
as Rolle's Theorem requires (Figure 3.8.14). Note, however, thatj'(x) does not 
exist at either endpoint, x = -1 or x = 1. By Rolle's Theorem there is a 
point c in ( -1, 1) such thatf'(c) = 0, c = 0 is such a point, because 

f'(x) = X 
f'(O) = 0. 



-1 

Figure 3.8.14 

f(x) f(x) 

0 X 1 

f(x)=~ 

-1 

Figure 3.8.15 

X 

/(x) = 1- x 213 

EXAMPLE 5 f(x) = 1 - x213, a = -1, b = 1. Then f( -1) = f(l) = 0, and 
f'(x) = -ix- 113 for x # O.f'(O) is undefined. There is no point c in ( -1, 1) 
at whichf'(c) = 0. Rolle's Theorem does not apply in this case becausef'(x) 
does not exist at one of the points of the interval ( -1, 1), namely at x = 0. 
In Figure 3.8.15, we see that instead of being horizontal at a point in the 
interval, the curve has a sharp peak. 

Rolle's Theorem is useful in finding the number of zeros of a differentiable 
function f. It shows that between any two zeros off there must be one or more zeros 
off'. It follows that iff' has no zeros in an interval I, then f cannot have more than 
one zero in I. 

EXAMPLE 6 How many zeros does the functionf{x) = x 3 + x + 1 have? We use 
both Rolle's Theorem and the Intermediate Value Theorem. 

Using Rolle's Theorem: f'(x) = 3x2 + 1. For all x, x 2 
;;::: 0, and hence 

f'(x) ;;::: 1. Thereforef(x) has at most one zero. 

Using the Intermediate Value Theorem: We havef(-1) = -1,/(0) = 1. 
Therefore/has at least one zero between -1 and 0. 

CONCLUSION f has exactly one zero, and it lies between -1 and 0 (see Figure 
3.8.16). 

X 

Figure 3.8.16 



Our method of sketching curves in Section 3.7 depends on a consequence 
of Rolle's Theorem called the Mean Value Theorem. It deals with the average slope 
of a curve between two points. 

DEFINITION 

Let f be df!fined on the closed interval [a, b]. The average slope off between a 
and b is the quotient 

f(b) - f(a) 
arerage slope = ----, b- a · 

We can see in Figure 3.8.17 that the average slope ofjbetween a and b is 
equal to the slope of the line passing through the points (a,f(a)) and (b,j(b )). 
This is shown by the two-point equation for a line (Section 1.3). In particular, if 
f is already a linear function f(x) = mx + c, then the average slope off between 
a and b is equal to the slope m of the line y = f(x). 

y 

~(h,/(b)) 
f(x) 

f(b)- f(a) 

1(a,/(a)) b-a 1 
I I 
I I 
I I 

a b X 

Figure 3.8.17 Average Slope 

This is shown by the two-point equation for a straight line (Section 1.2). In particular, 
iff is already a linear function f(x) = mx + c, then the average slope off between 
a and b is equal to the slope m of the straight line y = f(x). 

MEAN VALUE THEOREM 

Assume that f is continuous on the closed interval [a, b] and has a derivative 
at every point of the open interval (a, b). Then there is at least one point c in 
(a, b) where the slope f'(c) is equal to the arerage slope off between a and b, 

j'(c) = f(b~ =~(a). 

Remark In the special case that f(a) = f(b) = 0, the Mean Value Theorem becomes 
Rolle's Theorem: 

f'(c) = f(b) - f(a) = 0 - 0 = O. 
b-a b-a 
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On the other hand, we shall use Rolle's Theorem in the proof of the Mean 
Value Theorem. The Mean Value Theorem is illustrated in Figure 3.8.18. 

f(x) 

f(b)- f(a) 

b-a 

a c b X 

Figure 3.8.18 The Mean Value Theorem 

PROOF OF THE MEAN VALUE THEOREM Let m be the average slope, m = 
(f(b) - f(a))j(b - a). The line through the points (a,f(a)) and (b,f(b)) has 
the equation 

l(x) = f(a) + m(x - a). 

Let h(x) be the distance of f(x) above l(x), 

h(x) = f(x) - l(x). 

Then his continuous on [a, b] and has the derivative 

h'(x) = f'(x) - l'(x) = f'(x) - m 

at each point in (a, b). Since f(x) = l(x) at the endpoints a and b, we have 

h(a) = 0, h(b) = 0. 

Therefore Rolle's Theorem can be applied to the function h, and there is a 
point c in (a, b) such that h'(c) = 0. Thus 

0 = h'(c) = f'(c) - l'(c) = f'(c) - m, 

whence f'(c) = m. 

We can give a physical interpretation of the Mean Value Theorem in terms 
of velocity. Suppose a particle moves along the y-axis according to the equation 
y = f(t). The average velocity of the particle between times a and b is the ratio 

f(b) - f(a) 

b- a 

of the change in position to the time elapsed. The Mean Value Theorem states that 
there is a point of time c, a < c < b, when the velocity f'(c) of the particle is equal to 
the average velocity between times a and b. 

Theorems 1 and 2 in Section 3.7 on curve sketching are consequences of 
the Mean Value Theorem. As an illustration, we prove part (ii) of Theorem 1: 

Iff'(x) > 0 for all interior points x of I, thenfis increasing on I. 
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PROOF Let x 1 < x 2 where x 1 and x 2 are points in /. By the Mean Value Theorem 
there is a point c strictly between x 1 and x 2 such that 

Since cis an interior point of I,f'(c) > 0. Because x 1 < x 2 , x2 - x 1 > 0. 
Thus 

This shows that/is increasing on/. 

PROBLEMS FOR SECTION 3.8 

In Problems 1-16, use the Intermediate Value Theorem to show that the function has at least 
one zero in the given interval. 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

f(x) = x4 
- 2x 3 

- x 2 + 1, 0 ~ x ~ 1 

f(x) = x 2 + x - 3/x, 1 ~ x ~ 2 

f(x) = Jx + Jx+T - X, 4 ~ X ~ 9 

f(x) = Jx + 1/x2 
- x2

, 1 ~ x ~ 2 

2 
f(x)= Jx-jx2 +2, O~x~l 

1 +X X 

f(x) = x5 + x- Jx+T, 0 ~ x ~ 1 

f (x) = x 3 + x 2 
- 1, 0 ~ x ~ 1 

3 
f(x) = x2 + 1---, 0 ~ x ~ 1 

x+l 

f (x) = 1 - 3x + x 3
, 0 ~ x ~ 1 

f (x) = 1 - 3x + x 3
, 1 ~ x ~ 2 

f (x) = x 2 + Jx- 1, 0 ~ x ~ 1 

f(x)=x 2 -(x+l)- 112
, O~x~l 

f(x) = cosx - fo, 0 ~ x ~ n 

f(x) = sinx- 2cosx, 0 ~ x ~ n 

1 
f(x)=lnx--, l~x~e 

X 

16 f (x) = ex - lOx, 1 ~ X ~ 10 

In Problems 17-30, determine whether or notf' has a zero in the interval (a, b). Warning: Rolle's 
Theorem may give a wrong answer unless all the hypotheses are met. 

17 f(x) = 5x2
- 8x, [a, b] = [0, !J 

18 f(x) = 1- x- 2
, [a, b] = [ -1, 1] 

19 f(x) = ~, [a,b] = [ -2,2] 

20 f(x) = )4- x 217 , [a, b] = [ -128, 128] 

21 f(x) = 1/x - x, [a, b] = [ -1, 1] 

22 f(x) = (x- 1)2(x- 2), [a, b] = [1, 2] 

23 f(x) = (x - 4)3x4
, [a, b] = [0, 4] 



24 

25 

26 

27 

28 

29 
30 

31 

32 
33 

34 

(x- 2)(x- 4) 
f(x)= x3 +x+

2
, [a,b]=[2,4] 

f(x) = Jxl- 1, [a,b] = [ -1, 1] 

x(x- 2) 
f(x) = , [a, b] = [0, 2] 

X - 1 

f(x) = xsinx, [a, b] = [0, n] 

f(x) = excosx, [a,b] = [ -n/2,n/2] 

f(x) = tanx, [a, b] = [0, n] 

f(x) = ln(1- sinx), [a,b] = [O,n] 

Find the number of zeros of x4 + 3x + 1 in [- 2, - 1 ]. 

Find the number of zeros of x4 + 2x3 
- 2 in [0, 1]. 

Find the number of zeros of x4 
- 8x - 4. 

Find the number of zeros of 2x + Jx - 4. 

In Problems 35-42, find a point c in (a, b) such thatf(b) - f(a) = f'(c)(b - a). 

35 f(x) = x 2 + 2x -1, [a,b] = [0, 1] 

36 f(x) = x 3
, [a, b] = [0, 3] 

37 f(x) = x 213 , [a, b] = [0, 1] 

38 f(x) = F+l, [a, b] = [0, 2] 

39 f(x) = x + Jx, [a,b] = [0,4] 

40 f(x) = 2 + (1/x), [a, b] = [1, 2] 

x-1 
41 f(x)=x+

1
, [a,b]=[0,2] 

42 f(x) = xJx+"l, [a, b] = [0, 3] 

43 Use Rolle's Theorem to show that the functionf(x) = x3 
- 3x + b cannot have more 

than one zero in the interval [ -1, 1], regardless of the value of the constant b. 

44 Suppose_f,.f', and{" are all continuous on the interval [a, b ], and suppose.fhas at least 
three distinct zeros in [a, b ]. Use Rolle's Theorem to show that{" has at least one zero in 
[a, b]. 

] 45 Suppose that .f"(x) > 0 for all real numbers x, so that the curve y = f(x) is concave 
upward on the whole real line as illustrated in the figure. Let L be the tangent line to the 
curve at x = c. Prove that the line L lies below the curve at every point x "# c. 

c X 

EXTRA PROBLEMS FOR CHAPTER 3 

1 Find the surface area A of a cube as a function of its volume V. 

2 Find the length of the diagonal d of a rectangle as a function of its length x and width J'. 



3 An airplane travels fort hours at a speed of 300 mph. Find the distance x of travel as a 
function of r. 

4 An airplane travels x miles at 500 mph. Find the travelling time 1 as a function of x. 

5 A 5 foot tall woman stands at a distance x from a 9 foot high lamp. Find the length of her 
shadow as a function of x. 

6 The sides and bottom of a rectangular box are made of material costing $1 ;sq ft. and 
the top of material costing S2 sq ft. Find the cost of the box as a function of the length x. 
width _r. and height :: feet. 

7 A piece of dough with a constant volume of 10 cu in. is being rolled in the shape of a 

right circular cylinder. Find the rate of increase of its length when the radius is 1 inch 
and is decreasing at /0 inch per second. 

8 Car A travels north at 60 mph and passes the point P at 1 :00. Car B travels east at 
40 mph and passes the point P at 3:00. Find the rate of change of the distance between 

the two cars at 2:00. 

9 A cup of water has the shape of a cone with the apex at the bottom, height 4 in., and a 
circular top of radius 2 in. The loss of water volume due to evaporation is 0.0 I A cu in./sec 
where A is the water surface area. Find the rate at which the water level drops due to 

evaporation. 

10 A country has a constant national income and its population is decreasing by one 
million people per year. Find the rate of change of the per capita income when the 
population is 50 million and the national income is 100 billion dollars. 

11 Evaluate lim x 3 
- 4x 2 + 3x -

12 

14 

x--2 

(x2 - 9)2 
Evaluate lim -·- --, 

x~J (x - 3)• 

. /o + ~x- /o 
Evaluate hm _'v____ V . 

.h-0' ~X 

13 
2 + r·t 2 

Evaluate lim - --_c8 1-D'3-4t. 

15 

16 

Find the set of all points at which .f(x) = ~x + J! :::_-~ is continuous. 

Find the set of all points at which 

x-2 
g(x) = ----c-- -- --·-­

(x - 3)(x - 4)(x - 5) 

is continuous. 

17 Find the set of all points at which f(x) = .J{<l_.:. x 2 )(x 2 - 1) is continuous. 

18 Assume a < b. Show that f(x) = .j(x - a)(b - x) is continuous on the closed interval 
[a, b]. 

19 Show that g(x) = (x - 1) 113 is continuous at every real number x = c. 

20 Find the maximum and minimum of 

f(x) = 4x 3 
- 3x2 + 2, 

21 Find the maximum and minimum of 

4 
f(x) = x + --,, 

x· 

22 Find the maximum and minimum of 

f(x) = 12x - 51 + 3, 

23 Find the maximum and minimum of 

j(x) = 4 - 3x2 3
, 

24 Find the maximum and minimum of 

.f(x) = (x- W3 
- 2, 

-l<::;x<::;l. 

<::;X<::; 4. 

Q <::;X<::; IQ. 

-I <::;X<::; I. 

Q <::;X<::; 2. 

25 Find the rectangle of maximum area which can be inscribed in a circle of radius 1. 
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26 A box with a square base and no top is to be made with 10 sq ft of material. Find the 
dimensions which will have the largest volume. 

27 In one day a factory can produce x items at a total cost of c0 + ax dollars and can sell 
x items at a price of bx- 113 dollars per item. How many items should be produced for 
a maximum daily profit? 

28 Test the curve f(x) = x 3 
- 5x + 4 for maxima and minima. 

29 Test the curve f(x) = 3x4 -t 4x3 
- 12x2 for maxima and minima. 

30 The light intensity from a light source is equal to S/D2 where S is the strength of the 
source and D the distance from the source. Two light sources A and B have strengths 
SA= 2 and SB = 1 and are loc"ated on the x-axis at xA = 0 and xB = 10. Find the point 
x, 0 < x < 10, where the total light intensity is a minimum. 

31 Find the right triangle of area 1 with the smallest perimeter. 

32 Find the points on the parabola y = x 2 which are closest to the point (0, 2). 

33 Find the number of zeros of f(x) = x 3 - 8x2 + 4x + 2. 

34 Find the number of zeros of f(x) = x 3 - 2x2 + 2x - 4. 

35 Sketch the curve y = x4 
- x 3

, -1 :::; x :::; 1. 

36 Sketch the curve y = x2 + x- 2
, 1:::; x:::; 2. 

37 Find all zeros of f(x) = x 2 
- 5x + 10. 

38 Show that the function f(x) = x 6 
- 5x5 

- 3x2 + 4 has at least one zero in the interval 
[0, 1]. 

39 Show that the function f(x) = fi+l + fx+s- 2 has at least one zero in the 
interval [- 1, 0]. 

40 Show that the equation 1 - x 2 = ~has at least one solution in the interval [0, 1]. 

] 41 Prove that limx-c f(x) exists if and only if there is a function g(x) such that 
(a) g(x) is continuous at x = c, 
(b) g(x) = f(x) whenever x -# c. 

] 42 Let S = {a 1 , •.. , a.} be a finite set of real numbers. Show that the characteristic function 
of S, 

f(x) = {~ if xis inS, 

otherwise, 

is discontinuous for x in S and continuous for x not in S. 

] 43 Show that the function f(x) = J~ is continuous but not differentiable at x = 0. 

J 44 Let 

if 1 :::; lxl 

if1/ll:::; lxl < 1/(11- 1), n = 2,3.4, ... 

ifx = 0. 

Show that f is continuous at x = 0 but discontinuous at x = 1/11 and x = -1/n, 
II= 1, 2, 3, .... 

] 45 Let 

if 1 :::; lxl 

if 1/11 :::; lxl < 1/(11 - 1), 11 = 2, 3, ... 

if X= 0. 

Prove that f is differentiable at x = 0 but discontinuous at x = 1/11 and x = -1/n. 
II= 1, 2, 3, .... 

] 46 Supposef(x) is continuous on [0, 1] andf(O) = 1,f(l) = 0. Prove that there is a point 
c in (0, 1) such that f(c) = c. 
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0 47 

0 48 

0 49 

0 50 

0 51 

0 52 

0 53 

0 54 

0 55 

0 56 

3 CONTINUOUS FUNCTIONS 

Suppose f(x) is continuous for all x, and f(O) = 0, f(l) = 4, f(2) = 0. Prove that there 
is a point c in (0, 1) such that f(c) = f(c + 1). 

Prove that if x = c is the only real solution of f(x) = 0, then x = c is also the only 
hyperreal solution. 

Prove that if 11 is odd, then the polynomial 

x" + a"_ 1x"- 1 + · · · + a1x + a0 

has no maximum and no minimum. 

Prove that if n is even then the polynomial 

x" + an_ 1x"- 1 + · · · + a1x + a0 

has no maximum. 

Prove that if 11 is even then the polynomial 

x" + an_ 1x"- 1 + ... + a1x + a0 

has a minimum. You may use the fact that there are only finitely many critical points. 

Prove the First Derivative Test: Assume f(x) is continuous on an interval I. 

If f'(a) > 0 for all a < c and f'(b) < 0 for all b > c, then f has a maximum at x = c. 

If f'(a) < 0 for all a < c and f'(b) > 0 for all b > c, then f has a minimum at x = c. 

Suppose f is differentiable and j'(x) > l for all x. If f(O) = 0, show that f(x) > x for all 
positive x. 

Suppose f"(x) > 0 for all x. Show that for any two points P and Q above the curve 
y = f(x), every point on the line segment PQ is above the curve y = f(x). 

Suppose f(O) = A and f'(x) has the constant value B for all x. Use the Mean Value 
Theorem to show that f is the linear function f{x) = A + Bx. 

Suppose f'(x) is continuous for all real x. Use the Mean Value Theorem to show that 
for all finite hyperreal band nonzero infinitesimal ~x, 

f(b + ~x) - f(b) 
f'(b)""' . 

~X 
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INTEGRATION 

.1 THE DEFINITE INTEGRAL 

We shall begin our study ofthe integral calculus in the same way in which we began 
with the differential calculus-by asking a question about curves in the plane. 

Suppose f is a real function continuous on an interval I and consider the 
curve y = f(x). Let a < b where a, bare two points in J, and let the curve be above the 
x-axis for x between a and b; that is, f(x) ~ 0. We then ask: What is meant by the 
area of the region bounded by the curve y = f(x), the x-axis, and the lines x = a and 
x = b? That is, what is meant by the area of the shaded region in Figure 4. 1.1? We 
call this region the region under the curve y = f(x) between a and b. 

y 

a b X 

Figure 4.1 .1 The Region under a Curve 

The simplest possible case is where f is a constant function; that is, the curve 
is a horizontal line f(x) = k, where k is a constant and k ~ 0, shown in Figure 4.1.2. 
In this case the region under the curve is just a rectangle with height k and width 
b - a, so the area is defined as 

Area= k·(b- a). 

The areas of certain other simple regions, such as triangles, trapezoids, and semi­
circles, are given by formulas from plane geometry. 

175 
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y 

f(X) = k 

0 a b X 

area = k(b - a) 

Figure 4.1.2 

The area under any continuous curve y = f(x) will be given by the definite 
integral, which is written 

fj(x)dx. 

Before plunging into the detailed definition of the integral, we outline the main ideas. 
First, the region under the curve is divided into infinitely many vertical 

strips of infinitesimal width dx. Next, each vertical strip is replaced by a vertical 
rectangle of height f (x ), base dx, and area j (x) dx. The next step is to form the sum 
of the areas of all these rectangles, called the infinite Riemann sum (look ahead to 
Figures 4.1.3 and 4.1.11). Finally, the integral J~ f(x) dx is defined as the standard 
part of the infinite Riemann sum. 

The infinite Riemann sum, being a sum of rectangles, has an infinitesimal 
error. This error is removed by taking the standard part to form the integral. 

It is often difficult to compute an infinite Riemann sum, since it is a sum of 
infinitely many infinitesimal rectangles. We shall first study finite Riemann sums, 
which can easily be computed on a hand calculator. 

Suppose we slice the region under the curve between a and b into thin vertical 
strips of equal width. If there are n slices, each slice will have width Llx = (b - a)jn. 
The interval [a, b] will be partitioned into n subintervals 

[x0 , x 1], [x 1 , x 2], ••• , [x 11 _ 1 , X 11], 

where x 0 = a,x 1 =a+ Llx,x 2 =a+ 2Llx, .. . ,X 11 =b. 

The points x0 , x 1 , ... , X 11 are called partition points. On each subinterval [xk _ 1 , xk], 
we form the rectangle of height f(xk- d. The kth rectangle will have area 

From Figure 4.1.3, we can see that the sum of the areas of all these rectangles will be 
fairly close to the area under the curve. This sum is called a Riemann sum and is equal 
to 

f(x 0 ) Llx + f(x 1) Llx + · · · + /(x,_ 1) Llx. 

It is the area of the shaded region in the picture. A convenient way of writing Riemann 
sums is the "l:-notation" (l: is the capital Greek letter sigma), 

h 

I f(x) Llx = f(x 0 ) Llx + /(x 1) Llx + · · · + /(x11 _ 1) Llx. 
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f(x) 

x6 x 7 = b X 

Figure 4.1.3 The Riemann Sum 

The a and b indicate that the first subinterval begins at a and the last subinterval ends 
at b. 

We can carry out the same process even when the subinterval length ~x does 
not divide evenly into the interval length b- a. But then, as Figure 4.1.4 shows, there 
will be a remainder left over at the end of the interval [a, b], and the Riemann sum will 
have an extra rectangle whose width is this remainder. We let n be the largest integer 
such that 

a+ n ~x.::::; b, 

and we consider the subintervals 

[xo, xJl, ... , [xn-1, xn], [xll, b], 

where the partition points are 

x 0 = a, x 1 = a + ~x, x 2 = a + 2 ~x, ... , x" = a + 11 ~x, b. 

f(x) 

Figure 4.1.4 
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X
11 

will be less than or equal to b but X 11 + Llx will be greater than b. Then we define 
the Riemann sum to be the sum 

b 

I f(x) Llx = f(x 0 ) Llx + f(xd Llx + · · · + /(x11 _ 1) Llx + f(x")(b - X 11 ). 

a 

Thus given the function f, the interval [a, b ], and the real number Llx > 0, we have 
defined the Riemann sum I~ f(x) Llx. We repeat the definition more concisely. 

DEFINITION 

Let a < h and let Llx be a posltlve real number. Then the Riemann sum 
I~ f(x) Llx is defined as the sum 

b 

I f(x) Llx = f(x 0 ) Llx + f(x 1) Llx + · · · + f(x"- d Llx + f(x")(b - x,J 
a 

where n is the largest integer such that a + n Llx s b, and 

x 0 = a, x 1 = a + Llx, · · ·, X 11 = a + n Llx, b 

are the partition points. 

If X 0 = b, the last term f(x")(b - X 11) is zero. The Riemann sum I~ f(x) Llx 
is a real function of three variables a, b, and Llx, 

D 

L f(x) Llx = S(a, b, Llx). 

The symbol x which appears in the expression is called a dummy variable (or bound 
variable), because the value of I~ f(x) Llx does not depend on x. The dummy variable 
allows us to use more compact notation, writing f(x) Llx just once instead of writing 
f(x 0 ) Llx, f(x 1) Llx, f(x 2 ) Llx, and so on. 

From Figure 4.1.5 it is plausible that by making Llx smaller we can get the 
Riemann sum as close to the area as we wish. 

f(x) 

a 

Figure 4.1.5 

--.-.....=-..... , 
I" h 

I 
I 
I 
I 
I 
I 
I 
I 

b 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

X 

EXAMPLE 1 Letf(x) = !x. In Figure 4.1.6, the region under the curve from x = 0 
to x = 2 is a triangle with base 2 and height 1, so its area should be 

A= !bh = 1. 



y 

Figure 4.1.6 

q., I I n t:. LJ C r- I 1'\l I I t:. 11'\l I t:. \.::1 riP\ L 

I 
f(x) = 2 x 

Area= l 

2 X 

Let us compare this value for the area with some Riemann sums. In Figure 
4.1.7, we take Llx = l The interval [0, 2] divides into four subintervals 
[0, -!-J, [-!-, 1], [1, Hand[!, 2]. We make a table of values ofj(x) at the lower 
endpoints. 

y 

Figure 4.1.7 

The Riemann sum is then 
2 

I 
t.x = 2 
Riemann sum= i 

X 

" f( ) A 0 1 1 1 1 1 3 1 6 L... X LlX = ' 2 + 4 '2 + 2" 2 + 4 '2 = 8 · 
0 

In Figure 4.1.8, we take Llx = i. The table of values is as follows. 

The Riemann sum is 

2 

I o * 0 t 
2 3 4 5 6 7 
4 4 4 4 4 4 
2 .1 4 5 6 7 
8 8 8 8 8 8 

" f( ) A 0 1 1 1 2 1 3 1 4 I 5 1 6 1 7 I 7 1... x LlX= '4+8·4+8·4+8'4+8'4+8'4+8'4+8'4=8· 
0 

We see that the value is getting closer to one. 

Finally, let us take a value of Llx that does not divide evenly into the interval 
length 2. Let Llx = 0.6. We see in Figure 4.1.9 that the interval then divides 
into three subintervals of length 0.6 and one of length 0.2, namely [0, 0.6], 
[0.6, 1.2], [1.2, 1.8], [1.8, 2.0]. 

0 0.6 1.2 1.8 
0 0.3 0.6 0.9 

""' 



y I 
2.x = 4 

Riemann sum = i 
y .h = 0.6 

Riemann sum = . 72 

0 2 X X 

Figure 4.1 .8 Figure 4.1.9 

The Riemann sum is 

2 

L f(x) Llx = 0(.6) + (.3)(.6) + (.6)(.6) + (.9)(.2) = .72. 
0 

EXAMPLE 2 Letj(x) = j1 - x 2
, defined on the closed interval I= [ -1, 1]. The 

region under the curve is a semicircle of radius 1. We know from plane 
geometry that the area is n/2, or approximately 3.14/2 = 1.57. Let us compute 
the values of some Riemann sums for this function to see how close they are 
to 1.57. First take t.x =~as in Figure 4.1.10(a). We make a table of values. 

xk - 1 -1/2 0 1/2 

f(xk) 0 J3;4 1 J3;4 
The Riemann sum is then 

I 

I f(x) Llx = 0 · 1/2 + vl3f4 · 1/2 + 1 · 1/2 + J3;4 · 1/2 
-I 

= 1 +2J3 ~ 1.37. 

Next we take Llx = t. Then the interval [ -1, 1] is divided into ten subinter-
vals as in Figure 4.1.10(b). Our table of values is as follows. 

4 3 2 1 2 3 4 
xk -1 0 - - - -

5 5 5 5 5 5 5 5 

f(xk) 
3 4 '\/21 J24 ~ fo 4 3 

0 - - - -

5 5 5 5 5 5 5 5 

f(x) f(x) 

X X 

(a) (b) 
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The Riemann sum is 

1 1[ 3 4 fi1 J24 J24 fi1 4 3] I f(x) 8.x = - 0 + - + - + - + - + 1 + - + - + - + -
-1 5 5 5 5 5 5 5 5 5 

= 19 + 2j21 + 2)24 ~ 1 52. 
25 . 

Thus we are getting closer to the actual area rr/2 ~ 1.57. 

By taking ~x small we can get the Riemann sum to be as close to the area 
as we wish. 

Our next step is to take ~x to be infinitely small and have an irifinite Riemann 
sum. How can we do this? We observe that if the real numbers a and bare held fixed, 
then the Riemann sum 

b 

I f(x) 8.x = S(8.x) 
a 

is a real function of the single variable 8.x. (The symbol x which appears in the 
expression is a dummy variable, and the value of 

b 

I f(x) 8.x 
a 

depends only on 8.x and not on x.) Furthermore, the term 

b 

I f(x) 8.x = S(8.x) 

is defined for all real 8.x > 0. Therefore by the Transfer Principle, 

b 

I f(x) dx = S(dx) 
a 

is defined for all hyperreal dx > 0. When dx > 0 is infinitesimal, there are infinitely 
many subintervals of length dx, and we call 

b 

I f(x) dx 
a 

an infinite Riemann sum (Figure 4.1.11). 

f(x) 

a X b X 

Fi ure 4.1.11 Infinite Riemann um 
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We may think intuitively of the Riemann sum 

b 

If(x)dx 

as the infinite sum 

f(x 0 )dx + f(xddx + · · · + f(xH- 1)dx + f(xH)(b- xH) 

where H is the greatest hyperinteger such that a + H dx :::;; b. (Hyperintegers are 
discussed in Section 3.8.) H is positive infinite, and there are H + 2 partition points 
x 0 , x 1, ... , xH, b. A typical term in this sum is the infinitely small quantity f(xx) dx 
where K is a hyperinteger, 0 :::;; K < H, and xx =a + K dx. 

The infinite Riemann sum is a hyperreal number. We would next like to take 
the standard part of it. But first we must show that it is a finite hyperreal number and 
thus has a standard part. 

THEOREM 1 

Let f be a continuous function on an interval I, let a < b be two points in I, and 
let dx be a positive infinitesimal. Then the infinite Riemann sum 

b 

I f(x) dx 
a 

is a finite hyperrealnumber. 

PROOF Let B be a real number greater than the maximum value off on [a, b]. 
Consider first a real number i".x > 0. We can see from Figure 4.1.12 that the 

1-------- b -a _____ _, 

1------- no .6x ----~ 

Figure 4.1.12 a b 

finite Riemann sum is less than the rectangular area B • (b - a); 

b 

I f(x) i".x < B • (b - a). 

Therefore by the Transfer Principle, 

b 

I f(x) dx < B • (b - a). 

In a similar way we let C be less than the minimum off on [a, b] and show 
that 
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b 

L f(x) dx > C • (b - a). 
a 

Thus the Riemann sum L~ f(x) dx is finite. 

We are now ready to define the central concept of this chapter, the definite 
integral. Recall that the derivative was defined as the standard part of the quotient 
!1yjl1x and was written dyjdx. The "definite integral" will be defined as the standard 
part of the infinite Riemann sum 

b 

L f(x) dx, 
a 

and is written J! f(x) dx. Thus the /1x is changed to dx in analogy with our differential 
notation. The ~ is changed to the long thin S, i.e., J, to remind us that the integral is 
obtained from an infinite sum. We now state the definition carefully. 

DEFINITION 

Let f be a continuous function on an interval I and let a < b be two points in I. 
Let dx be a positive infinitesimal. Then the definite integral off from a to b with 
respect to dx is defined to be the standard part of the infinite Riemann sum with 
respect to dx, in symbols 

ff(x)dx = st(tf(x)dx). 

We also define ff(x)dx = 0, 

ff(x) dx = - ff(x) dx. 

By this definition, for each positive infinitesimal dx the definite integral 

is a real function of two variables defined for all pairs (u, w) of elements of I. The 
symbol x is a dummy variable since the value of 

does not depend on x. 
In the notation L~ f(x) dx for the Riemann sum and J: f(x) dx for the 

integral, we always use matching symbols for the infinitesimal dx and the dummy 
variable x. Thus when there are two or more variables we can tell which one is the 
dummy variable in an integral. For example, x 2 t can be integrated from 0 to 1 with 
respect to either x or t. With respect to x, 

1 

L x 2t dx = x~t dx + xft dx + · · · + x]i_ 1t dx 
0 
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(where dx = 1/H), and we shall see later that 

f x 2 t dx = st(x6t dx + :.;it dx + · · · + x}1 _ 1t dx) = 1t. 

With respect to t, however, 

I 

L x 2 t dt = x 2 t0 dt + x 2 t 1 dt + · · · + x 2
tK-J dt, 

0 

and we shall see later that 

11 xzt dt = ixz. 

The next two examples evaluate the simplest definite integrals. These 
examples do it the hard way. A much better method will be developed in Section 4.2. 

EXAMPLE 3 Given a constant c > 0, evaluate the integral g c dx. 

y 

Figure 4.1.13 shows that for every positive real number L1x, the finite Riemann 
sum is 

b 

L c L1x = c(b - a). 

By the Transfer Principle, the infinite Riemann sum in Figure 4.1.14 has the 
same value, 

b 

L c dx = c(b - a). 

Taking standard parts, 

fcdx = c(b- a). 
ll 

This is the familiar formula for the area of a rectangle. 

1+--fl il.x--

c ~·--·--r---,,---.---~~ 

a Xn b X a X b X 

Figure4.1.13 Figure 4.1.14 
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EXAMPLE 4 Given b > 0, evaluate the integral Jt x dx. 

(1) 

(2) 

(3) 

(4) 

The area under the line y = x is divided into vertical strips of width dx. 
Study Figure 4.1.15. The area of the lower region A is the infinite Riemann 
sum 

b 

area of A = L x dx. 
0 

By symmetry, the upper region B has the same area as A; 

area of A = area of B. 

Call the remaining region C, formed by the infinitesimal squares along the 
diagonal. Thus 

area of A +area of B +area of C = b2
• 

Each square in C has height dx except the last one, which may be smaller, 
and the widths add up to b, so 

0 :::.;; area of C :::.;; b dx. 

Putting (1)-(4) together, 

2 t x dx :::.;; b
2 

:::.;; ( 2 t x dx) + b dx. 

Since b dx is infinitesimal, 
b 

2l_:X dx::::::: b2
, 

0 

b b2 
Ixdx ::::::: 2 . 
0 

Taking standard parts, we have 

rb b2 
Jo xdx = 2· 

B 

Figure 4.1.15 
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PROBLEMS FOR SECTION 4.1 

Compute the following finite Riemann sums. If a hand calculator is available, the Riemann sums 

can also be computed with L>.x = ftJ. 

3 

5 

7 

9 

11 

13 

15 

17 

19 

21 

23 

D 25 

D 26 

D 27 

I~ (3x + 1) L>.x, L>.x = 1 2 L,~ (3x + 1) L>.x, 

I~ 1 (3x+1)L>.x, L>.x = i 4 I~ 2x2 L>.x, L>.x = i 
I~ 1 2x2 L>.x, L>.x = i 6 Ig (2x - 1) L>.x, L>.x = 1 

Ig (2x - 1) L>.x, L>.x = 2 8 I~t (xz- 1)L>.x, L>.x =! 
I~ (x 2 

- 1) L>.x, L>.x =! 10 I~t (x2- 1)L>.x, L>.x =-fa 

I~ 4 (5x2 - 12)L>.x, L>.x = 2 12 I~ 4 (5x 2 - 12) L>.x, L>.x = 1 

Ii (1 + 1/x) L>.x, L>.x = 1 14 Is 10-h L>.x 0 •. L>.x =! 
I~~ x4 L>.x, L>.x = i 16 I~ 1 2x 3 L>.x, L>.x =! 
I~ .fi L>.x, L>.x = 1 18 I~2lx- 41 L>.x, L>.x = 2 

I~ sinx L>.x, L>.x = rr4 20 I" sin 2
' L>.x-0 - - . L>.x = rr,4 

I~ e' L>.x. L>.x = 1 5 22 '[,~ xe' L>.x, L>.x =I 5 

L, ' I' lnx - In' L>.' L>.x = 1 24 - -- L>.x I - -' I X .. L>.x = 1 

Let b be a positive real number and ll a positive integer. Prove that if L>.x = bjn, 
b 

I x L>.x = (1 + 2 + · · · + (n - 1)) l>.x 2
. 

0 

_ . ll(n- 1) 
Usmg the formula 1 + 2 + · · · + (11- 1) = --

2
-, prove that 

b 

I x L>.x = (1 - 1/nW/2. 
0 

Let H be a positive infinite hyperinteger and dx = bjH. Using the Transfer Principle and 
Problem 25, prove that Jt x dx = b2 /2. 

Let b be a positive real number, n a positive integer, and L>.x = bjn. Using the formula 

2 
2

2 
3

2 ( 
1
)2 n(n - 1)(2n - 1) 

1 + + +"·+ n- = 
6 

, 

prove that 

~ .z A _ n(n - 1)(2n - 1) b3 

L. X LlX -
6 3 . 

0 ll 

D 28 Use Problem 27 to show that Jt x 2 dx = b3 /3. 

4.2 FUNDAMENTAL THEOREM OF CALCULUS 

In this section we shall state five basic theorems about the integral, culminating in 
the Fundamental Theorem of Calculus. Right now we can only approximate a 
definite integral by the laborious computation of a finite Riemann sum. At the end 
of this section we will be in a position easily to compute exact values for many definite 
integrals. The key to the method is the Fundamental Theorem. Our first theorem 
shows that we are free to choose any positive infinitesimal we wish for dx in the 
definite integral. 
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THEOREM 1 

Given a continuous function f on [a, b] and two positive infinitesimals dx 
and du, the definite integrals with respect to dx and du are the same, 

f f(x) dx = f!(u) du. 

From now on when we write a definite integral J~ f(x) dx, it is understood 
that dx is a positive infinitesimal. By Theorem 1, it doesn't matter which infinitesimal. 

The proof of Theorem 1 is based on the following intuitive idea. Figure 4.2.1 
shows the two Riemann sums I~ f(x) dx and I~ f(u) du. We see from the figure 
that the difference I~ f(x) dx - I~ f(u) du is a sum of rectangles of infinitesimal 
height. These difference rectangles all lie between the horizontal Jines y = -E and 
y = E, where E is the largest height. Thus -E(b -a) s I~ f(x) dx - I~ f(u) du s 
e(b - a). Taking standard parts, 

0 s f f(x) dx - f f(u) du S: 0, 

f f(x) dx = f f(u) du. 

j(x) 

b 

y = -e 

Figure 4.2.1 
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Theorem 1 shows that whenever Ll.x is positive infinitesimal, the Riemann 
sum is infinitely close to the definite integral, 

b fb I f(x) Ll.x ~ f(x) dx. 
a a 

This fact can also be expressed in terms of limits. It shows that the Riemann sum 
approaches the definite integral as Ll.x approaches 0 from above, in symbols 

f f(x) dx =8-~~~+ t f(x) Ll.x. 

Given a continuous function f on an interval I, Theorem 1 shows that the 
definite integral is a real function of two variables a and b, 

A(a, b) = f f(x) dx, a, bin I. 

We now formally define the area as the definite integral shown m Figure 4.2.2. 

a b 
X 

Figure 4.2.2 

DEFINITION 

Iff is continuous and f(x) ;::-:.: 0 on [a, b], the area of the region below the 
curve y = f(x)ji·om a to b is defined as the definite integral: 

Area = f f(x) dx. 

The next two theorems give basic properties of the integral. 

THEOREM 2 (The Rectangle Property) 

Suppose f is continuous and has minimum value m and maximum value M 
on a closed interval [a, b]. Then 

m(b - a) s f f(x) dx s M(b - a). 

That is, the area of the region under the curve is between the area of the rectangle 
whose height is the minimum value off and the area of the rectangle \\'hose 
height is the maximum value off in the interval [a, b]. 
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The Extreme Value Theorem is needed to show that the minimum value m 
and maximum value M exist. The rectangle of height miscalled the inscribed rectangle 
of the region, and the rectangle of height M is called the circumscribed rectangle. 
From Figure 4.2.3, we see that the inscribed rectangle is a subset of the region under 
the curve, which is in turn a subset of the circumscribed rectangle. The Rectangle 
Property says that the area of the region is between the areas of the inscribed and 
circumscribed rectangles. 

y 

M 

m 

a b X 

Figure 4.2.3 The Rectangle Property 

PROOF By Theorem 1, any positive infinitesimal may be chosen for dx. Let us 
choose a positive infinite hyperinteger H and let dx = (b - a)/H. Then 
dx evenly divides b - a; that is, the interval [a, b] is divided into H sub­
intervals of exactly the same length dx. Then 

b 

I m dx = m • H • dx = m(b - a), 
a 

b 

I M dx = M • H • dx = M(b - a). 

For each x, we have m ~f(x) ~ M. Adding up and taking standard parts, 
we obtain the required formula. 

b b b 

I m dx ~I f(x) dx ~I M dx, 
a a 

m(b- a)~ f f(x)dx ~ M(b- a). 

One useful consequence of the Rectangle Property is that the integral of 
a positive function is positive and the integral of a negative function is negative: 

Ifj(x) > 0 on [a, b], then 0 < m(b - a) ~ f f(x) dx. 

Ifj(x) < 0 on [a, b], then f f(x) dx ~ M(b - a) < 0. 

The definite integral of a negative function f(x) = - g(x) from a to b is 
just the negative of the area of the region above the curve and below the x axis. 
This is because 

f(x) dx = -g(x) dx, 



(See Figure 4.2.4.) 

a 

Figure 4.2.4 

b b 

I f(x) dx = - I g(x) dx, 
a a 

ff(x) dx = - f g(x) dx. 

1------...... -... ......... 
........... g(.r) 

....... 
+ ~---'~ 

b 

THEOREM 3 (The Addition Property) 

Supposefis continuous on an interml I. Then for all a, b, c in I, 

f f(x) dx = f f(x) dx + f f(x) dx. 

This property is illustrated in Figure 4.2.5 for the case a < b < c. The 
Addition Property holds even if the points a, b, c are in some other order on the 
real line, such as c < a < b. 

f(x) 

Figure 4.2.5 a b c 

PROOF First suppose that a < b < c. Choose a dx that evenly divides the first 
interval length b - a. This simplifies our computation because it makes 
b a partition point, b = a + H dx. Then, as Figure 4.2.6 suggests, 

c b c 

I f(x) dx = I f(x) dx + I f(x) dx. 
b 

Taking standard parts we have the desired formula 

J>(x) dx = f f(x) dx + f f(x) dx. 
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Figure 4.2.6 a b c 

To illustrate the other cases, we prove the Addition Property when 
c < a < b. The previous case gives 

f f(x) dx = r f(x) dx + f f(x) dx. 

Since reversing the endpoints changes the sign of the integral, 

- J:j(x)dx =- {f(x)dx + fj(x)dx, 

and the desired formula 

f f(x) dx = f j(x) dx + f f(x) dx 

follows. 

The definite integral of a curve can be thought of as area even if the curve 
crosses the x-axis. The curve in Figure 4.2.7 is positive from a to band negative from 
b to c, crossing the x-axis at b. The integral f~ j(x) dx is a positive number and the 
integral Sb j(x) dx is a negative number. By the Addition Property, the integral 

{f(x)dx = f j(x)dx + J:f(x)dx 

is equal to the area from a to b minus the area from b to c. The definite integral 
s~ f(x) dx always gives the net area between the x-axis and the curve, counting 
areas above the x-axis as positive and areas below the x-axis as negative. 

The definite integral f~ f(t) dt is a real function of two variables u and v 
and does not depend on the dummy variable t. If we replace u by a constant a and v 
by the variable x, we obtain a real function of one variable x, given by 

F(x) = r j(t) dt. 

Our fourth theorem states that this new function is continuous. 

f(x) 

e x 

Figure 4.2.7 
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THEOREM 4 

Let j be continuous on an intenal I. Choose a point a in I. Then the fimction 
F(x) defined by 

F(x) = rj(t) dt 

is continuous on I. 

SKETCH OF PROOF Let c be in I, and let x be infinitely close to c and between 
the endpoints of I. By the Addition Property, r j(t) dt = rf(t) dt + J>(t) dt, 

Jc f(t) dt - J' j(t) dt = f f(t) dt, 
a a x 

and F(c) - F(x) = L f(t) dt. 

This is the area of the infinitely thin strip under the curve y = f(t) between 
t = x and t = c (see Figure 4.2.8). The strip has width ~x = c - x. By the 
Rectangle Property, its area is between m ~x and M ~x and hence is infinitely 
small. Therefore F(x) is infinitely close to F(c), and F is continuous on I. 

f(t) 

/F(c) -F(x) 

Figure 4.2.8 a c b 

Our fifth theorem, the Fundamental Theorem of Calculus, shows ·that 
the definite integral can be evaluated by means of antiderivatives. The process of 
antidifferentiation is just the opposite of differentiation. To keep things simple, let I 
be an open interval, and assume that all functions mentioned have domain I. 

DEFINITION 

Let j and F be functions with domain I. Iff is the derivative ofF, then F is 
called an antiderivative off. 
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For example, suppose a particle is moving upward along the y-axis with 
velocity v = f(t) and position y = F(t) at time t. The position y = F(t) is an anti­
derivative of the velocity v = f(t). We shall discuss antiderivatives in more detail 
in the next section. We are now ready for the Fundamental Theorem. 

FUNDAMENTAL THEOREM OF CALCULUS 

Suppose f is continuous on its domain, which is an open interval I. 

(i) For each point a in I, the definite integral offfi"om a to x considered as a 
function ofx is an antiderivative off That is, 

d(f f(t) dt) = f(x) dx. 

(ii) IfF is any antideriuative of j; then for any two points (a, b) in I the 
definite integral off fi"om a to b is equal to the difference F(b) - F(a), r f(x) dx = F(b) - F(a). 

The Fundamental Theorem of Calculus is important for two reasons. First, 
it shows the relation between the two main notions of calculus: the derivative, which 
corresponds to velocity, and the integral, which corresponds to area. It shows that 
differentiation and integration are "inverse" processes. Second, it gives a simple 
method for computing many definite integrals. 

EXAMPLE 1 

(a) Find f~ c dx. Since ex is an antiderivative of c, 

f c dx = cb - ca = c(b - a). 

(b) Find f.b x dx. ix2 is an antiderivative of x. Thus 
ll 

The above example gives the same result that we got before but is much 
simpler. We can easily go further. 

EXAMPLE 2 Find J~ x 2 dx. x 3 j3 is an antiderivative of x 2 because 

d(x 3/3) 3x2 
2 ---=-=x. 

dx 3 

Therefore f
b b3 a3 

a xzdx = 3- 3' 

This gives the area of the region under the curve y = x 2 between a and b 
(Figure 4.2.9). 
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y 

y = x2 

a b X 

Figure 4.2.9 

If a particle moves along the y-axis with continuous velocity u = f(t), the 
position y = F(t) is an antiderivative of the velocity, because v = dyjdt. The 
Fundamental Theorem of Calculus shows that the distance moved (the change in y) 
between times t = a and t = b is equal to the definite integral of the velocity, 

distance moved = F(b) - F(a) = f f(t) dt. 

EXAMPLE 3 A particle moves along they-axis with velocity v = 8t 3 cmjsec. How 
far does it move between times t = -1 and t = 2 sec? The function 
G(t) = 2t 4 is an antiderivative of the velocity v = 8t 3

. Thus the definite 
integral is 

distance moved = J2 

8t 3 dt = 2 o 24 
- 2 o ( -1)4 = 30 em. 

-[ 

EXAMPLE 4 Find J6 jt dt (Figure 4.2.10). The function yft is defined and con­
tinuous on the half-open interval [0, oc ). But to apply the Fundamental 
Theorem we need a function continuous on an open interval that contains 
the limit points 0 and 4. We therefore define 

f(t) = {) 
fort < 0 

fort ::0: 0. 

This function is continuous on the whole real line. In particular it is con­
tinuous at 0 because if t ~ 0 then f(t) ~ 0. The function 

Figure 4.2.10 

fort < 0 

for t ::0: 0 
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is an antiderivative of f. Then 

f jt dt = F(4) - F(O) = (t. 43/2 - t. o3t2) = lt 

In the next section we shall develop some methods for finding antiderivatives. 
The antiderivative of a very simple function may turn out to be a "new" function 
which we have not yet given a name. 

EXAMPLE 5 The only way we can show that the functionf(x) =~has an 
antiderivative is to take a definite integral 

fJi+7dt. 

This is a "new" function that cannot be expressed in terms of algebraic, 
trigonometric, and exponential functions without calculus. 

The Fundamental Theorem can also be used to find the derivative of a 
function which is defined as a definite integral with a variable limit of integration. 
This can be done without actually evaluating the integral. 

EXAMPLE 6 Let y = f.J1+t2 dt. Then y = - r .j1+t2 dt, 
X 2 

and 

J
xl+x 1 

EXAMPLE 7 Let y = -3-- dt. 
3 t + 1 

Let u = x2 + x. Then 

du - = (2x + 1), 
dx 

By the Chain Rule, 

Ju 1 
y = -3--dt, 

3 t + 1 

dy 

du u3 + 1· 

dy = dy du = _1_(lx + 1) = 2x + 1 . 
dx du dx u3 + 1 (x 2 + x) 3 + 1 

We conclude this section with a proof of the Fundamental Theorem of 
Calculus. 

PROOF (i) Let F(x) be the area under the curve y = f(t) from a to x, 

F(x) = r f(t) dt. 

Imagine that the vertical line cutting the t-axis at x moves to the right as 
in Figure 4.2.11. 
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a X 

Figure 4.2.11 

We show that the rate of change of F(x) is equal to the length f(x) of the 
moving vertical line. 

Suppose x increases by an infinitesimal amount ,1.x > 0. Then 

F(x + ,1.x) - F(x) = r+t.x f(t) dt 

is the area of an infinitely thin strip of width ,1.x and height infinitely close to 
f(x). By the Rectangle Property the area of the strip is between the inscribed 
and circumscribed rectangles (Figure 4.2.12), 

m ,1.x :::;; F(x + ,1.x) - F(x) :::;; M ,1.x. 

Dividing by ,1.x, 
F(x + ,1.x) - F(x) 

m :::;; ,1.x :::;; M. 

Since f is continuous at x, the values m and Mare both infinitely close to f(x), 
and therefore 

F(x + ,1.x) - F(x) ""' f( ) 
A ""' X. 
uX 

The proof is similar when ,1.x < 0. Hence F'(x) = f(x). 

a 

Figure 4.2.12 

X 

F(x+ 6x)- F(x) 

t:.x 
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PROOF (ii) Let F(x) be any antiderivative off Then, by (i), 

d(F(x)- rf(t)dt) =f(x)- f(x) = 0. 

In Section 3.7 on curve sketching, we saw that every function with derivative 
zero is constant. Thus 

F(x)- ff(t) dt = C0 , F(x) = f'f(t)dt + C0 

for some constant C0 . Then 

so 

F(b) - F(a) = (f f(t) dt + C0 ) - (f f(t) dt + C0 ) 

= f f(t) dt - 0 = f f(t) dt, 

F(b) - F(a) = f f(x) dx. 

PROBLEMS FOR SECTION 4.2 

In Problems 1-14, find an antiderivative of the given function. 

1 f(x) = sfi 2 f(x) = 4/fi 

3 f(t) = 3t2 + 1 4 f(x) = 5x3 

5 f(t) = 4- 3t2 6 f(z) = 2/z2 

7 f(s) = 7s- 3 8 f(t) = t2 + t-2 

9 f(x) = (x - 6)2 10 f(u) = (Su + 1)2 

11 f(y) = y3f2 12 f(x) = 2/xfi 

13 f(x) = lxl 14 f(t) = 12t - 41 

15 If F'(x) = x + x 2 for all x, find F(1) - F( -1). 

16 If F'(x) = x4 for all x, find F(2) - F(1). 

17 If F'(t) = t 113 for all t, find F(8) - F(O). 

Evaluate the definite integrals in Problems 18-22. 

18 J
1 

2x
2 

dx 19 Iz x3 dx 
-1 -2 

20 I-I t-2dt 21 f 2fidx 
-2 

r2 22 -5x4 dx 
-3 

In Problems 23-27 an object moves along they-axis. Given the velocity v, find how far the object 
moves between the given times t0 and t 1 . 

23 v = 2t + 5, t 0 = 0, t 1 = 2 

24 v = 4- t, t0 = 1, t 1 = 4 
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25 

26 

27 

l' = 3, 

t' = 3t2
, 

r = 1or- 2 , 

t0 = 2, It = 6 

t0 = 1, It = 3 

10 = 1, t t = 100 

In Problems 28-32, find the area of the region under the curve y = f(x) from a to b . 

28 

29 

30 

31 

32 

33 

34 

D 35 

D 36 

D 37 

D 38 

D 39 

.\' = 4- X
2

, 

y = Jx + 2, 

.r = 9x- x2
• 

\, = ;-:;:- X 
. 'v" . ' 

.\' = 3xt 3 

a= -2, b = 2 

a= -2. b = 2 

a= 0, b = 3 

(/ = 0, b = 1 

a= 1, b = 8 

If F'(t) = t - 1 for all t and F(O) = 2, find F(2). 

If F'(x) = 1 - x 2 for all x and F(3) = 5, find F(- 1). 

Suppose F(x) and G(x) have continuous derivatives and F'(x) + G'(x) = 0 for all x. 

Prove that F(x) + G(x) is constant. 

Suppose F(x) and G(x) have continuous derivatives such that F'(x) :<; G'(x) for all x. 
Prove that F(b) - F(a) :<; G(b) - G(a) 

where a <b. 

Prove that a function F(x) has a constant derivative if and only if F(x) is linear, i.e., of the 
form F(x) = ax + b. 

Prove that a function F(x) has a constant second derivative if and only if F(x) has the 

form F(x) = ax 2 + hx + c. 

Suppose that F"(x) = G"(x) for all x. Prove that F(x) and G(x) differ by a linear function, 
that is, G(x) = F(x) + ax + b for some real numbers a and b. 

4.3 INDEFINITE INTEGRALS 

The Fundamental Theorem of Calculus shows that every continuous function f 
has at least one antiderivative, namely F(x) = J~ f(t) dt. Actually, f has infinitely 
many antiderivatives, but any two antiderivatives off differ only by a constant. This 
is an important fact about antiderivatives, which we state as a theorem. 

THEOREM 1 

Let f be a real function whose domain is an open interval I. 

(i) If F(x) is an antiderivative of f(x), then F(x) + C is an antiderivative 
off(x)for every rea/number C. 

(ii) If F(x) and G(x) are two antiderivatives of f(x), then F(x) - G(x) is 
constant for all x in I. That is, 

G(x) = F(x) + C 

for some real number C. 

Discussion Parts (i) and (ii) together show that if we can find one antiderivative 
F(x) off(x), then the family of functions 

F(x) + C, C = a real number 
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gives all antiderivatives of f(x). We see from Figure 4.3.1 that the graph 
of F(x) + Cis just the graph of F(x) moved vertically by a distance C. The 
graphs of F(x) and F(x) + C have the same slopes at every point x. For 
example, letj(x) = 3x2

• Then F(x) = x 3 is an antiderivative of 3x2 because 

d(x3)- 3 2 
~-X. 

But x 3 + 6 and x 3 - J2 are also antiderivatives of 3x2. In fact, x 3 + Cis 
an antiderivative of 3x2 for each real number C. Theorem 1 shows that 3x2 

has no other antiderivatives. 

y 

X 

Figure 4.3.1 

PROOF We prove (i) by differentiating, 

d(F(x) +C)= d(F(x)) dC =f( ) O =f( ) 
dx dx + dx x + x · 

Part (ii) follows from a theorem in Section 3.7 on curve sketching. If a 
function has derivative zero on I, then the function is constant on I. The 
difference F(x) - G(x) has derivative f(x) - f(x) = 0 and is therefore 
constant. We used this fact in the proof of the Fundamental Theorem of 
Calculus. 

In computing integrals of J, we usually work with the family of all anti­
derivatives off We shall call this whole family of functions the indefinite integral off 
The symbol for the indefinite integral is J f(x) dx. If F(x) is one antiderivative of J, 
the indefinite integral is the set of all functions of the form F(x) + C0 , C0 constant. 
We express this with the equation 

f f(x) dx = F(x) + C. 

It is an equation between two families of functions rather than between two single 
functions. C is called the constant of integration. To illustrate the notation, 

J 3x2 dx = x 3 + C. 

We repeat the above definitions in concise form. 
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DEFINITION 

Let the domain off be an open interval I and suppose f has an antiderivative. 
The family of all antiderivatives off is called the indefinite integral off and is 
denoted by f f(x) dx. 

Given a function F, the family of all functions which differ fi'om F only by a 
constant is written F(x) + C. Thus ifF is an antiderivative off we write 

J f(x) dx = F(x) + C. 

When working with indefinite integrals, it is convenient to use differentials 
and dependent variables. If we introduce the dependent variable u by u = F(x), then 

du = F'(x) dx = f(x) dx. 

Thus the equation Jf(x) dx = F(x) + C 

can be written in the form J du = u +C. 

The differential symbol d and the indefinite integral symbol J behave as 
inverses to each other. We can start with the family of functions u + C, form du, and 
then form J du = u + C to get back where we started. Some of the rules for differentia­
tion given in Chapter 2 can be turned around to give a set of rules for indefinite 
integration. 

THEOREM 2 

Let u and v be functions of x whose domains are an open interval I and suppose 
du and dv exist for every x in I. 

(i) J du = u + C. 

(ii) Constant Rule f c du = c f du. 

(iii) Sum Rule f du + dv = J du + f dv. 

(iv) Power Rule f 
ur+l 

u' du = -- + C, where r is rational, r =F - 1, 
}' + 1 

and u > 0 on I. 

(v) J sinudu = -cosu +C. 

(vi) J cos u du = sin u + C. 

(vii) J e" du = e" + C. 
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(viii) J ~du =In lui+ C (u =f. 0). 

Discussion The Power Rule gives the integral of u' when r =f. - 1, while Rule 
(viii) gives the integral of u' when r = -1. When we put u = f(x) and 
v = g(x), the Constant and Sum Rules take the form 

Constant Rule f cf(x) dx = c f f(x) dx. 

Sum Rule f (f(x) + g(x)) dx = f f(x) dx + f g(x) dx. 

In the Constant and Sum Rules we are multiplying a family of functions 
by a constant and adding two families of functions. If we do either of these 
two things to families of functions differing only by a constant, we get another 
family of functions differing only by a constant. For example, 

7(3x4 + C) = 2lx4 + 7C = 21x4 + C' 

is the family of all functions equal to 2lx4 plus a constant. Similarly, 

(3Jx +C)+ (5x- Jx +D)= 5x + 2Jx + (C +D)= 5x + 2Jx + C' 

is the family of all functions equal to 5x + 2Jx plus a constant. 

PROOF OF THEOREM 2 

(i) This is just a short form of the theorem that u + C is the family of all 
functions which have the same derivative as u. 

(ii) We have c du = d(cu), whence 

f c du = f d(cu) = cu + C = c(u + C') = c f du. 

(iii) du + dv = d(u + v), 

f du + dv = f d(u + v) = u + v + C = f du + f dv. 

(iv) d -- = du = u du, ( 
u' + 

1 
) (r + 1 )u' r 

r+l r+l 

f 
ur+l 

u' du = --
1 

+ C. 
r+ 

Rules (v)-(viii) are similar. Only the last formula, (viii), requires an explana­
tion. The absolute value in In I u I comes about by combining the two cases u > 0 
and u < 0. When u > 0, u = I u I and 

1 
d(ln lui)= d(ln u) = -du. 

u 

When u < 0, In u is undefined, but lui= -u and In lui= In ( -u). Thus 

1 1 
d(ln lui)= d(ln ( -u)) = - -d( -u) = -du. 

u u 
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Thus, in both cases, when 11 =1= 0, 

1 
d(ln lui)= -du, 

II 

J ~ du = In lui + C. 
u 

EXAMPLE 1 J (2x- 1 + 3 sinx)dx = 2ln lxl- 3 cosx +C. 

We can use the rules to write down at once the indefinite integral of any 
polynomial. 

EXAMPLE 2 J (4x 3 - 6x 2 + 2x + 1) dx = x4 
- 2x3 + x2 + X + C. 

3 2 
EXAMPLE 3 -~+3X3/2+C. 

Indefinite integration is much harder than differentiation, because there are 
no rules for integrating the product or quotient of two functions. It often requires 
guesswork. The short list of rules in Theorem 1 will help, and as this course proceeds 
we shall add many more techniques for finding indefinite integrals. 

EXAMPLE 4 Show that ( dx J1 +X 
J (1 + x)1i2(1 - x)3!2 = 1 - x + C. 

Our rules give no hint on finding this integral. However, once the answer 
is given to us we can easily prove that it is correct by differentiating, 

dj1 +X 
1 _ x d((1 + x)1;2(1 _ x)-112) 

dx dx 

= (1 + x)1'2(- 1)(-!)(1 _ x)-3;2 + (1 _ x)-1;2(!)(1 + x)-1 12 

= (1 + x)- 1
'
2(1- x)- 3

:
2 [!(1 + x) + ±0- x)] 

1 

Here is a warning that may prevent some common mistakes. 
Warning: The integral of the product of two functions is not equal to the 

product of the integrals. The same goes for quotients. That is, 

Wrong: J (uv) dx = (f u dx) (f v dx). 
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For example, 

Wrong: 

Correct: f f 
x3 xz 

x(x + 1) dx = (x2 + x) dx = ~ + 2 +C. 

Wrong: 
u J udx f -dx=-. 
v f vdx 

For example, 

Wrong: 
f (x + 1) dx 1 2 

f X + 1 d = = {l·)x + X C Jx x f Jx dx (~)x312 + 

= 3.._/~ + _3_ + c. 
4 2Jx 

Correct: f xJx 
1 

dx = f(Jx + Jx) dx = ~x 3 12 + 2Jx +c. 

The indefinite integral can be used to solve problems of the following type. 
Given that a particle moves along the y-axis with velocity v = f(t), and that at a 
certain timet = t0 its position is y = y0 . Find the position y as a function oft. 

EXAMPLE 5 A particle moves with velocity v = 1jt2
, t > 0. At time t = 2 it is at 

position y = 1. Find the position y as a function oft. We compute 

f v dt = f _!_ dt = - ~ + c. 
t2 t 

Since dyjdt = v, y is one of the functions in the family -1/t + C. We can 
find the constant C by setting t = 2 andy = 1, 

1 
y =-- + C, 

t 

Then the answer is 

1 
1 = - l + C, 

1 1 
y = -- + lz. 

t 

c = 1!. 

The next theorem shows that in such a problem we can always find the answer 
if we are given the position of the particle at just one point of time. 
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THEOREM 3 

Suppose the domain off is an open interred I and f has an antideriratire. Let 
P(x0 , y0 ) be any point with x 0 in I. Then f has exactly one antideriratiL·e 
whose graph passes through P. 

PROOF Let F be any antiderivative off Then F(x) + C is the family of all anti­
derivatives. We show that there is exactly one value of C such that the 
function F(x) + C passes through P(x 0 , y0 ) {Figure 4.3.2). We note that all 
of the following statements are equivalent: 

( 1) F(x) + C passes through P(x0 , y0 ). 

(2) F(x 0 ) + C = Yo· 
(3) C = Yo - F(x 0 ). 

Thus y0 - F(x 0 ) is the unique value of C which works. 

y 

X 

Figure 4.3.2 

The Fundamental Theorem of Calculus, part (ii), may be expressed briefly 
as follows, where f is continuous on I. 

Iff f(x) dx = F(x) + C, then 

f f(x) dx = F(b)- F(a). 

For evaluating definite integrals we introduce the convenient notation 

J
b 

F(x) " = F(b) - F(a). 

It is read "F(x) evaluated from a to b." 
The Constant and Sum Rules hold for definite as well as indefinite integrals: 

Constant Rule 
b (b i cf(x) dx = c J" f(x) dx. 

Sum Rule fucx) + g(x)) dx = f f(x) dx + f g(x) dx. 

The Constant Rule is shown by the computation 
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f cf(x) dx = cF(b) - cF(a) = c(F(b) - F(a)) = c f f(x) dx. 

The Sum Rule is similar. 

EXAMPLE 6 Evaluate the definite integral of y = (1 + t)jt 3 from t = 1 to t = 2 
(see Figure 4.3.3). 

f2 1 + t f2 
-3-dt = (t- 3 + t- 2 )dt 

1 t 1 

= t- 3 dt+ t- 2 dt=- +-f
2 J2 C2]2 t-1]2 
1 1 -2 1 -1 1 
( 1 1 ) (1 1) 3 1 7 

= ( -2). 4- ( -2) ·1 + -2- -=1 = 8 + 2 = 8' 

Thus the area under the curve y = (1 + t)jt 3 from t = 1 to t = 2 is l 

y 

Figure 4.3.3 

!+t y=-
t" 

2 

EXAMPLE 7 Find the area of the region under one arch of the curve y = sin x 
(see Figure 4.3.4). 

One arch of the sine curve is between x = 0 and x = n. The area is the 
definite integral 

fo" sin x dx = -cos x J: 
= -cos n- (-cos 0) = -( -1) - ( -1) = 2. 

The area is exactly 2. 

y 

Y= sin x 

X 

Figure 4.3.4 
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EXAMPLE 8 Find the area under the curve y = - 2x- 1 from x = -5 to x = -1. 
(See Figure 4.3.5.) 

The area is given by the definite integral 

J
-1 

~ 5 -2x- 1 dx. 

First compute the indefinite integral 

J -2x- 1 dx = -2 J x- 1 dx = -2ln lxl +C. 

Now compute the definite integral. 

J-
1 

-2x- 1 dx = -2ln lxl]-
1 

-5 -5 

= - 2(ln I - 11 - In I -51) = - 2(ln 1 - In 5) 

= 2ln 5 ~ 3.219. 

y 

y = -2x-• 

-5 -I X 

Figure 4.3.5 

This example illustrates the need for the absolute value in the integration rule 

J x- 1 dx =In lx I+ C. 

The natural logarithm In x is undefined at x = -5 and x = -1, but In I xI is defined 
for all x =1= 0. The absolute value sign is put in when integrating x- 1 and removed 
when differentiating In I x 1. 

EXAMPLE 9 In computing definite integrals one must first make sure that the 
function to be integrated is continuous on the interval. For instance, 

IncmTect: J1 

-;dx = x-
1

]

1 

= -1- (-(-1)) = -2. 
_ 1 x -1 -1 

This is clearly wrong because 1/x 2 > 0 so the area under the curve cannot be 
negative. The mistake is that 1/x2 is undefined at x = 0 and hence the 
function is discontinuous at x = 0. Therefore the area under the curve and 
the definite integral 



are undefined (Figure 4.3.6). 

f(x) 

f(x) = _J_ 
x2 

Figure 4.3.6 

PROBLEMS FOR SECTION 4.3 

Evaluate the following integrals. 

J (1 + 2x + 3x2)dx 

3 f (12t7 
- 3t5 + 2t2 + 1) dt 

5 f (t!f2 + t-lf2)dt 

7 J (2x- 3)2 dx 

9 J (z + 1/z)2 dz 

11 J 5 cos x dx 

J x + 1 dx 13 
X 

15 J (1 + x- 1
)

2 dx 

17 J (3 + jt)(4 - 2jt) dt 

19 f4 + 3JY + yJY 
y2 

dy 

21 J (ax2 + bx + c)dx 
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Jl 1 
2 dx 

-IX 

X 

2 

4 

6 

8 

10 

12 

14 

16 

18 

20 

22 

~F(x) 

-! 
F(x) = ~ 

-I 

J (2x2
- 6x + 9)dx 

f (5 + y-2- 4y-3)dy 

f (2ii3 - 3y2i3) dy 

J (x- 2)(2x + 1)dx 

J (z - 1/z)2 dz 

J (sinx + cosx)dx 

J 2x
2

- 3x + 6 
xz 

dx 

J 3ex dx 

J 3s + 1 ds 

3Js 

J (3 - x2)(1 + 4x2
) dx 

J (a3x3 + a2x
2 + a 1x + a0 ) dx 
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23 J2 

(2x - 4x 3 + x 5
) dx 24 11 

(I + x 2 + 3x4) dx 
-2 

25 r (I + x 2 + 3x4
) dx 26 r e-'dx 

-I -I 

27 1" cos x dx 28 r2 
0 

cos x dx 

J
1

2 
3x- 1 dx f X- 1 29 30 --dx 

2 X 

r11 31 - dx 
-3 X 

In Problems 32-36, find the position y as a function oft given the velocity v = dyjdt and the value 
of)' at one point of time. 

32 v = 2t + 3, y = 0 when t = 0 

33 v = 4t 2
- 1, r-"> when t=O 

34 l' = 3r4
, y=O when t= -l 

35 r = 2 sin r, J' = 10 when t=O 

36 r = 31- 1, .r=1 when t = 1 

In Problems 37-42, find the position y and velocity vas a function oft given the acceleration a and 
the values of y and v at 1 = 0 or t = 1. 

37 

38 

39 

40 

41 

42 

43 

44 

45 

a= I, l' = 0 and )' = 1 when I= 0 

a= -32, l' = 10 and y=O when t=O 
a= 31 2

, V=1 and )'=2 when t = 0 
-

a= 1 - .Jt, r = -2 and )' = 1 when 1=0 

a= t- 3 , r = 1 and .r=O when t = 1 

a= -sin t, r = 0 and )'=4 when 1=0 

Which of the following definite integrals are undefined? 

f1 f1 (a) -dx (b) - dx 
-I X 1-' 

(c) r i~dr (d) r /\-dr ' .. ,. - . 
-I -I 

r f2' (e) /4- x 2 dx (f) x 2 
- 4 dx 

-2 

(g) r I -,- du 
-lu--1 

(h) rl _
2 

, t 2 
- I d1 

(i) f2 v~ldt (JJ r lx- 11 dx 
-3 

(k) J1 

tan x dx (I) 1" tan xdx 
-I 

Find the function I such that I' is constant. f(O) = f'(O) and /(2) = f'(2). 

An object moves with acceleration a = 6t. Find its position y as a function oft. given 
that y = I when t = 0 and .r = 4 when t = I. 

46 

0 47 

Find the function h such that h" is constant, h(l) = I, h(2) = 2. and h(3) = 3. 

Suppose that F"(x) exists for all x. and let (x 0 , y 0 ) and (x 1 , y 1) be two given points. 
Prove that there is exactly one function G(x) such that 
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G(xo) =Yo 

G'(x 1) = y 1 

G"(x) = F"(x) for all x. 

l 48 Assume that F"(x) exists for all x, and let (x 1 , y 1) and (x2 , y2 ) be two points with x 1 =f= x 2 . 

Prove that there is exactly one function G(x) such that G"(x) = F"(x) for all x, and the 
graph of G passes through the two points (x 1 , Ytl and (x2 , y2 ). 

~ INTEGRATION BY CHANGE OF VARIABLES 

We have seen that the sum, constant, and power rules for differentiation can be turned 
around to give the sum, constant, and power rules for integration. In this section we 
shall show how to make use of the Chain Rule for differentiation in problems of 
integration. The Chain Rule will lead to the important method of integration by 
change of variables. The basic idea is to try to simplify the function to be integrated 
by changing from one independent variable to another. 

IfF is an antiderivative off and we take u as the independent variable, then 
f f(u) du is a family of functions of u, 

J f(u) du = F(u) + C. 

But if we take x as the independent variable and introduce u as a dependent variable 
u = g(x), then du and f f(u) du mean the following: 

du = g'(x) dx, f f(u) du = f f(g(x))g'(x) dx = H(x) + C. 

The notation f f(u) du always stands for a family of functions of the independent 
variable, which in some cases is another variable such as x. The next theorem can be 
used as follows. To integrate a given function of x, properly choose a new variable 
u = g(x) and integrate a new function with respect to u. 

DEFINITION 

Let I and J be intervals. We say that a function g maps J into I if for every 
point x in J, g(x) is defined and belongs to I (Figure 4.4.1 ). 

y 

I 

J 
X 

Figure 4.4.1 g maps J into I 
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THEOREM 1 (Indefinite Integration by Change of Variables) 

Suppose I and J are open intervals, f has domain I, g maps J into I, and g is 
differentiable on J. Assume that when we take u as the independent variable, 

J f(u) dti = F(u) + C. 

Then when x is the independent variable and u = g(x), 

J f(u) du = F(g(x)) + C. 

PROOF Let H(x) = F(g(x)). For any x in J, the derivatives g'(x) and F'(g(x)) = f(g(x)) 
exist. Therefore by the Chain Rule, 

H'(x) = F'(g(x))g'(x) = f(g(x))g'(x). 

It follows that 

J f(g(x))g'(x) dx = H(x) + C = F(g(x)) -\- C. 

So when u = g(x), we have 

f(u) du = f(g(x))g'(x) dx, J f(u) du = F(g(x)) + C. 

Theorem 1 gives another proof of the general power rule 

J 
un+! 

u" du = --
1 

+ C. 
n+ 

n =1- -1, 

where u is given as a function of the independent variable x, from the simpler power 
rule 

J 
x"+t 

x"dx = -- + C, 
11 + 1 

n =1- -1, 

where x is the independent variable. 

EXAMPLE 1 Find f(4x + 1)3 + (4x + 1j2 + (4x + 1) dx. Let u = 4x + 1. Then 
du = 4 dx, dx = ± du. Hence 

J (4x + 1)3 + (4x + 1)2 + (4x + 1)dx 

= J (u3 + u2 + u), ~ du = ~(u4 + u3 + uz) + C 
4 4 4 3 2 

_ ~ [(4x + 1) 4 (4x + 1)3 (4x + 1)2
] 

-4 4 + 3 + 2 +C. 

EXAMPLE 2 Find J 2( -

1 
I 2 dx. 

x I + 1 x) 

Let u = I + 1/x. Then du = -1/x 2 dx and thus 
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1 
---+c. 
1 + 1/x 

In a simple problem such as this example, we can save writing by using the 
term 1 + 1/x instead of introducing a new letter u, 

f -1 dx = f 1 d( 1 + ~) = (1 + 1/x)-' + C 
x2(1 + 1/x)2 (1 + 1/xf x - 1 · 

In examples such as the above one, the trick is to find a new variable u such 
that the expression becomes simpler when we change variables. This usually must 
be done by an "educated" trial and error process. 

One must be careful to express dx in terms of du before integrating with 
respect to u. 

EXAMPLE 3 Find f(l + 5xf dx. Let u = 1 + 5x. For emphasis we shall do it 
correctly and incorrectly. 

Correct: du = 5 dx, dx = t du, 

f f 1 u3 (1 + 5x)3 

(1 + 5x)2 dx = u
2 

• -
5 

du = - + C = + C. 
. 15 15 

Incorrect: f f u3 (1 + 5x)3 

(1 + 5xf dx = u2 dx = 3 + C = 
3 

+ C. 

Incorrect: f f u3 (1 + 5x) 3 

(1 + 5x)2 dx = u2 du = 3 + C = 
3 

~ + C. 

EXAMPLE 4 Find J x 3 j2- x 2 dx. Let u = 2 - x 2
, du = - 2x dx, dx = du/(- 2x). 

We try to express the integral in terms of u. 

J x 3 
j2 - x

2 
dx = J x\ru :~x = J - ~ x\ru du. 

Since u = 2 - x 2
, x 2 = 2 - u. Therefore 

J -tx 2 Ju du = J -!(2- u)Ju du = J -Ju + !u3
i
2 du 

-~u3f2 + t, ~ustz + c 
= -~2 _ x2)3/2 + t(2 _ xz)stz + C. 

We next describe the method of definite integration by change of variables. In 
a definite integral 

f h(x) dx 

it is always understood that x is the independent variable and we are integrating 
between the limits x = a and x = b. Thus when we change to a new independent 
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variable u, we must also change the limits of integration. The theorem below will 
show that if u = c when x = a and u = d when x = b, then c and d will be the new 
limits of integration. 

THEOREM 2 (Definite Integration by Change of Variables) 

Suppose I and J are open intervals, f is continuous and has an antiderivative 
on I, g has a continuous derivative on J, and g maps J into I. Then for any two 
points a and b in J. 

fb fg(b) 
f(g(x))g'(x) dx = f(u) du. 

a g(a) 

PROOF Let F be an antiderivative of f Then by Theorem 1, H(x) = F(g(x)) is an 
antiderivative of h(x) = f(g(x))g'(x). Since f, g, and g' are continuous, h is 
continuous on J. Then by the Fundamental Theorem of Calculus, 

fb f~~ 
f(g(x))g'(x) dx = H(b) - H(a) = F(g(b)) - F(g(a)) = f(u) du. 

a g(a) 

EXAMPLE 5 Find the area under the line y = 1 + 3x from x = 0 to x = 1. This can 
be done either with or without a change of variables. 

Without change of variable: f(1 + 3x) dx = x + 3x 2 /2 + C, so 

f (1 + 3x) dx = x + 3~2I = ( 1 + 3 ~12) - ( 0 + 3 ~oz) ~ 

With change of variable: Let u = 1 + 3x. Then du = 3 dx, dx = 1 du. 
When x = 0, 11 = 1 + 3 • 0 = 1. When x = 1, u = 1 + 3 · 1 = 4. 

J1 J4 1 l/2]4 
(1 + 3x) dx = u •- du = -

0 1 3 6 1 

16 

6 6 

15 5 
6 2' 

Example 5 shows us that J6 (1 + 3x) dx = Ji (u/3) du; that 1s, the areas 
shown in Figure 4.4.2 are the same. 

y v 

y = 1 + 3x 

X II 

Figure 4.4.2 
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2 

2x 
y=-­

(x2-3)2 

3 
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v 

X 

I v=­
u2 

6 u 

Figure 4.4.3 

EXAMPLE 6 Find the area under the curve y = 2xj(x2 
- 3)2 from x = 2 to x = 3 

(Figure 4.4.3). 

Let u = x2 - 3. Then du = 2x dx. At x = 2, u = 22 - 3 = 1. At x = 3, 
u = 32 

- 3 = 6. Then 

J3 2x dx= (6_.!._du=-~]6=1-~=~. 
2 (x2 

- 3)2 J 1 u2 u 1 6 6 

EXAMPLE 7 Find g~ x dx. The function~ x as given is only defined 
on the closed interval [ -1, 1]. In order to use Theorem 2, we extend it to the 
open interval J = (- oo, oo) by 

h(x) = {J1- x2x 
if x < - 1 or x > 1, 
if -1:::;: X:::;: 1. 

Let u = 1 - x 2
. Then du = -2x dx, dx = -duj2x. At x = 0, u = 1. At 

x = 1, u = 0. Therefore 

f ~xdx = f Ju·C-±du) = f- ±Judu 

= ± f Ju du = ± ·1u312 ]~ = 1 - 0 = 1. 

We see in Figure 4.4.4 that as x increases from 0 to 1, u decreases from 1 to 0, 
so the limits become reversed. The areas shown in Figure 4.4.5 are equal. 

u 

X 

Figure 4.4.4 u = 1 -x2 
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y v 

.fJI-x2 xdx 
u 

X 
ro _l Vii du 

}I 2 

Figure 4.4.5 

We can use integration by change of variables to derive the formula for the 
area of a circle, A = nr2

, where r is the radius. It is easier to work with a semicircle 
because the semicircle of radius r is just the region under the curve 

-r :s; x :s; r. 

To start with we need to give a rigorous definition of n. By definition, n is the area of 
a unit circle. Thus n is twice the area of the unit semicircle, which means: 

DEFINITION 

n=2J
1 

~dx. 
-I 

The area of a semicircle of radius r is the definite integral 

J~, vlr
2 

- x
2 

dx. 

To evaluate this integral we let x = ru. Then dx = r du. When x = ±r, u = ± 1. Thus 

f, .Jr2 
- x2 dx = f 

1 
Jr 2 

- (ru) 2 r du = f 
1 
r\/~~~ du 

= r2 J1 

~du = r2 •?'_. 
-1 2 

Therefore the semicircle has area nr2 /2 and the circle area nr 2 (Figure 4.4.6). 

f
1 3x2 

- 1 
EXAMPLE 8 Find ~ dx. 

o1+y~..-.-..-. 

Let u = x - x 3
. Then du = (1 - 3x2

) dx. When x = 0, u = 0 - 03 = 0. 
When x = 1, tl = 1 - 1 3 = 0. Then 

f 
1 3x2 

- 1 fo du 
---===dX = - = 0 

o 1 + Jx- x 3 o 1 + Ju . 
As x goes from 0 to 1, u starts at 0, increases for a time, then drops back to 0 
(Figure 4.4.7). 
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y v 

-r r -1 u 

-rrr2 Jl ~ 2= _
1
r 2vl-u 2 du 

Figure 4.4.6 

f(x) ll 

u = x- x 3 

X X 

Figure 4.4.7 

We do not know how to find the indefinite integrals in this example. Neverthe­
less the answer is 0 because on changing variables both limits of integration 
become the same. Using the Addition Property, we can also see that. for 
instance, 

f2!3 3x2 - 1 il 3x2 - 1 
----=== dx = - dx. 

0 1+~ 2;31+~ 

PROBLEMS FOR SECTION 4.4 

In Problems 1-90, evaluate the integral. 

1 f (2x ~ 1)2 dx 
2 f J3Y+1 dy 

3 f (3- 4z)6 dz 4 f (1 - x)3i2 dx 

5 f2t~dt 6 f X d 
J2x 2 + 1 x 

7 f x(4 + 5x2)2 dx 8 f 4y 
(2 + 3y2)2 dy 

~10 



~ 11\IIC.\...Jn/-\J IUJ\1 

9 J sin(3x) dx 10 J cos(4 - 2x) dx 

11 J 6sin(4x -1)dx 12 J asinx + bcosxdx 

13 J sinO cosO dB 14 J sin2 8 cos 8 dB 

15 J cos3 8 sin 8 dB 16 J sin (28) + cos (38) dB 

17 J x sin(x2 + 1) dx 18 J x2 cos(x3
) dx 

19 J sin (In x) dx 20 J e' cos(e') dt 
X 

21 J fiiiU cost dt 22 J "/i cos(tjt) dt 

23 J e2·' dx 24 J 3e 1 -x dx 

25 J ae·' + be-x dx 26 J (e"' + 1)2 dx 

27 J xe"'' dx 28 J xe 1
-·'' dx 

29 J be""' dx 30 J eax+b dx 

31 J esin 8 cos 8 dB 32 Je'~dt 

33 J-
1
-dx 

x+2 
34 J 3 _: 4xdx 

J e"' 36 J~dx 35 --dx 
e"' + 1 X + 

37 j--' dx 
X+ 1 

38 J x2 (1 ~ 1/x) dx 

39 
J vh(1 ~ ~)dx 40 J 1 - 2t dt 

1 + 2t 

41 J 3t + 4 dt J x2 42 32dx 
5- t X + 

43 J x3 )X4+5dx 44 J 1 dx 
(2x - 1 )j 1 - 2x · 

45 J )' /l+?dy . ' . 
46 J (2t2 ~ 1)3 dt 

J 11 J (4x + 1)j2x2 + x + 5dx 47 ---du 48 
fl-U2 v 

49 J 1 
j3s + 2 

ds 50 J jl=Szdz 

51 J 1 52 J 1 dx dy 
x2J1 + 1/x /(1 - 4/y)2 

53 Jx- 3~-2dx 54 J 1 ~ dx 
jx(l + 2Jx)2 
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55 r3- ~)2 d· Jx X 
56 JJ1)t jt dt 

57 I 2 + 1/z dz 
zz 58 I 1 d (3y + 1)3 y 

59 X d f 2 

jx3 + 4 x 
60 I xz 

~ 
dx 

61 f x3 J x3y'1=7dx dx 62 
J1+7 

63 I tjt+l dt 64 Ls: 2)3 ds 

65 J (2s + 6)(1 - s)- 4 ds 66 f y3j4+Yldy 

67 I )'3 
(yl + 1)3 dy 68 f xs 

J1+7 
dx 

69 f x dx 
J4X+I 

70 J J2 + .,fo du 

71 Iu~dr1 72 I 1 
(2~+W 

dx 

I 4x- 1 J xz 73 dx 74 ---dx 
J4X+I fx-=-1 

75 f x3 
1- x4dx 76 f y3 

2- yl dy 

77 I ys 
1 + yl dy 78 I (u; 4)2 du 

79 f 6!1- 5 
(3u + 2f du 80 ---dx f 1 

1+~ 

81 I ~ d 82 I!?+ c?sx dx 
2+~ X ex+ SlllX 

83 J c?se de 
sme 

84 J tane de 

85 --dx I 1 
a+ bx 

86 I 2x + 1 d 
X2 +X+ 1 X 

87 I sine de 
1 +case 

88 I s~ne- case de 
sme + cose 

89 Il:x dx 90 --dx I 1 
xlnx 

In Problems 91-108, evaluate the definite integral. 

91 f/3 
0 sine de 92 

fn/4 
- n/4 cos (2e) de 

93 II ex dx 94 11 

xi?, dx 
-I 

r1 96 r X 95 -dx -2--1 dx 
1 2x 0 X + 

97 f/2 
0 sine cose de 98 rn 0 a sine + b cos e de 
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99 

101 

103 

105 

107 

109 

llO 
111 
112 

113 
114 

D 115 

D 116 

D 117 

D liS 

D 119 
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fF+idx 100 r 1 o (4x + W dx 

L4 (2x + 1 )Ji2 dx 102 Ll t(t 2 + 3)- 2 dt 

f (1 + 6x-j3 dx 104 r 2 
I ;,!3t+l 

dt 

fv~dv 106 Jl xz 
-I (4 - x3)2 dx r X Is x(xz + 2)1i3 dx ~dx 108 

-1 X J6 

Find the area of the region below the curve y = 1/(10 - 3x) from x = 1 to x = 2. 

Find the area of the region under one arch of the curve y = sin x cos x. 

Find the area of the region under one arch of the curve y = cos (3x). 

Find the area of the region below the curve y = 4xj4=Xl between x = 0 and x = 2. 

Find the area below the curve y = (1 + 7x)213 between x = 0 and x = 1. 

Find the area below the curve y = x/(x2 + 1) 2 between x = 0 and x = 3. 

J
1 1- 2x 

Evaluate: 
3
r:: dx 

o 1 + J x- x2 

Evaluate: f 
1 

2xj(1 - x2
)
3 + 1 dx 

Let f and g have continuous derivatives and evaluate J f'(g(x))g'(x) dx. 

A real function f is said to be even if f(x) = f(- x) for all x. Show that iff is a continuous 
even function, then J~J(x) dx = J~ f(x) dx. 

An odd function is a real function g such that g(- x) = - g(x) for all x. Prove that for 
a continuous odd function g, s~b g(x) dx = 0. 

4.5 AREA BETWEEN TWO CURVES 

A region in the plane can often be represented as the region between two curves. 
For example, the unit circle is the region between the curves 

y = -~, y = jl - x 2 
, -1 :o;; x :o;; 1 

shown in Figure 4.5.1. Consider two continuous functions f and g on [a, b] such that 
f(x) :::; g(x) for all x in [a, b]. The region R, bounded by the curves 

y = f(x), y = g(x), x = a, x = b, 

is called the region betweenf(x) and g(x) from a to b. If both curves are above the 
x-axis as in Figure 4.5.2, the area of the region R can be found by subtracting the 
area below f from the area below g: 

area of R = f g(x) dx - f f(x) dx. 

It is usually easier to work with a single integral and write 

area of R = f(g(x) - f(x)) dx. 
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y 

y 

y=~ 

X 

f(x) 

a b 
X 

y = -Vl=X2 

Figure 4.5.1 Figure 4.5.2 

In the general case shown in Figure 4.5.3, we may move the region R above the 
x-axis by adding a constant c to bothf(x) and g(x) without changing the area, and 
the same formula holds: 

y 

a 

Figure 4.5.3 

area of R = f(g(x) +c) dx- f(f(x) +c) dx 

= f(g(x)- f(x))dx. 

y 

X a 

f(x) 

I 
I 
1 f(x) + c 
I I g(x) 
I 
I 
I 
I 

f(x) 

I 

I 
I 
I 
I 
I 
I il 

b 

To sum up, we define the area between two curves as follows. 

X 
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DEFINITION 

Iff and g are continuous and f(x) ::::: g(x) for a ::::; x ::::; b, then the area of the 
region R between f(x) and g(x) fi'om a to b is defined as 

f (g(x) - f(x)) dx. 

EXAMPLE 1 Find the area of the region between the curves y = !x2 
- 1 andy = x 

from x = 1 to x = 2. In Figure 4.5.4, we sketch the curves to check that 
±x 2 

- 1 ::::; x for 1 ::::; x ::::; 2. Then 

A = fx- C±x2 
- 1) dx = ±x2

- ix
3 +xi=~-

y 

X 

Figure 4.5.4 

EXAMPLE 2 Find the area of the region bounded above by y = x + 2 and below 
by y = x 2

. 

Part of the problem is to find the limits of integration. First draw a sketch 
(Figure 4.5.5). The curves intersect at two points, which can be found by 
solving the equation x + 2 = x 2 for x. 

x 2 
- (x + 2) = 0, (x + 1)(x - 2) = 0, 

x = - I and x = 2. 

Then A = J
2 

(x + 2 - x2
) dx = !x2 + 2x - tx3

]

2 

= 4±. 
-1 -1 

-1 2 X 

Figure 4.5.5 
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EXAMPLE 3 Find the area of the region R bounded below by the line y = -1 and 
above by the curves y = x 3 and y = 2 - x. The region is shown in Figure 
4.5.6. 

y 

X 

(3, -I) 
Figure 4.5.6 

This problem can be solved in three ways. Each solution illustrates a different 
trick which is useful in other area problems. The three corners of the region 
are: 

( -1, -1), 
(3, -1), 
(1, 1), 

where y = x3 and y = - 1 cross. 
where y = 2 - x and y = - 1 cross. 
where y = x3 and y = 2 - x cross. 

Note that y = x3 and y = 2 - x can cross at only one point because x3 is 
always increasing and 2 - xis always decreasing. 

FIRST SOLUTION Break the region into the two parts shown in Figure 4.5.7: 
R 1 from x = -1 to x = 1, and R 2 from x = 1 to x = 3. Then 

Figure 4.5.7 

area of R = area of R 1 + area of R 2 . 

area of R1 = f
1 

x3
- (-1)dx = !x4 + xi

1 

= 2. 

area of R2 = f (2 - x) - ( -1) dx = 3x -!x2I = 2. 

area of R = 2 + 2 = 4. 

y 

X 

First solution 



ZZZ 4 INTEGRATION 

SECOND SOLUTION Form the triangular regionS between y = -1 andy= 2- x 
from -1 to 3. The region R is obtained by subtracting from S the regionS 1 

shown in Figure 4.5.8. Then 

area of R = area of S- area of S1 . 

area of S = f3 

(2 - x) - ( -1) dx = 3x - !x 2]~ 
-I I 

= 8. 

area of S1 = J1 

(2- x)- x 3 dx = 2x- !x2
- ±x4l

1 

= 4. 
-I J -I 

area of R = 8 - 4 = 4. 

y 

X 

(3, -I) 

Figure 4.5.8 Second solution 

THIRD SOLUTION Use y as the independent variable and x as the dependent 
variable. Write the boundary curves with x as a function of y. 

y=2-x 

y = x3 
becomes x = 2 - y. 

becomes x = yl 13 . 

The limits of integration are y = -1 and y = 1 (see Figure 4.5.9). Then 

A = Jl (2- y)- y1!3 ely= 2)'- ty2 - ;iy4i3]' = 4. 
-1 -I 

As expected, all three solutions gave the same answer. 

X 

Fi ure 4.5.9 Tlmd solution 
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PROBLEMS FOR SECTION 4.5 

In Problems 1-43 below, sketch the given curves and find the area of the region bounded by 
them. 

1 f(x) = 0, g(x) = 5x - x 2
, 0 ::; x ::; 4 

2 f(x) = Jx, g(x) = x2
, 1 ::; x ::; 4 

3 f(x) = x~, g(x) = 1, -1 ::; x ::; 1 

4 y = X - 2, y = 3x113 , 0 ::; X ::; 1 

5 }' = Jx, }' = Jx+"l, 0 ::; X ::; 4 

6 y = P+1- X, }' = P+1 + X, - 0::; X ::; 1 

7 The x-axis and the curve y = - 5 + 6x - x2 

8 The x-axis and the curve y = 1 - x4 

9 The y-axis and the curve x = 25 - y2 

10 The y-axis and the curve x = y(S - y) 

11 }' = COS X, }' = 2 COS X, - nj2 ::; X ::; nj2 

12 y = sin x cos x, y = 1, 0::; x::; n/2 

13 y = -sin x, y = sin x, 0 ::; x ::; n 

14 y = sin x, y = cos x, 0 ::; x ::; n/4 

15 y = sin x cos x, y = sin x, 0 ::; x ::; n 

16 y = sin 2 x cos x, y = sin x cos x, 0 ::; x ::; n/2 

17 y = x, y = ex, 0 ::; x ::; 2 

18 y = e-x, y = eX, 0 ::; x ::; 2 

19 }' = -ex, }' = ex, - 1 ::; X ::; 1 

20 y = xex>, y = e, 0 ::; x ::; 1 

21 

22 

23 

24 

1 
}' = X + 1, }' = 1, 0 ::; X ::; 2 

1 1 
}' = 2x + 1 ' y = X + 1 ' O ::; X ::; 2 

}' = 1/x, }' = X, 1 ::; X ::; 2 

X 
y = xz + 1 , y = t, 0 ::; x ::; 1 

25 f(x) = x3i2, g(x) = x2i3 

26 y = x 2 - 2x, y = x - 2 

27 y = x4 
- 2x2

, y = 2x2 + 12 

28 y = x4 - 1, y = x3 - x 

29 y = x4/(x2 + 1), y = 1/(x2 + 1) 

30 }'=X3~, }'=X~, O:s;x 

31 y = 2x2
, y = x 2 + 4 

32 X = y2, X = 2 - y2 

33 Jx + JY = 1 and the x- and y-axes 

34 x 2y = 4, x2 + y = 5 (first quadrant) 

35 y = xJx+"l, y = 2x 

36 }' = 0, y = x 3 + X + 2, X = 2 

37 y = 2x + 4, y = 2 - 3x, y = - x 

38 v=x2 -l. v=(x-1f, y=(x+1f 



;!;!4 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

4 INTI=liRATIUN 

)' = ,/x, )' = L y = 10- 2x 

)' = X - 2, )' = 2 - X, )' = j_~ 
J' = -X, _\' = p, )' = 3x - 2 

J' = -2, J' = x 3 + X, X + J' = 3 

r = x 2 , )' = 2x- 2
, _\' = 2x- 3 (first quadrant) 

Find the area of the ellipse x 2 fa 2 + y2/b 2 = I. Use the fact that the unit circle has area n. 

Sketch the four-sided region bounded by the lines y = 1, y = x, y = 2x, and 
y = 6 - x and find its area. 

Find the number c > 0 such that the region bounded by the curves y = x, y = - 2x, and 
x = c has area 6. 

Find the number c > 1 such that the region bounded by the curves y = 1, y = x- 2
, 

and x = c has area 1. 

Find the number c such that the region bounded by the curves y = x 2 and .r = c has 
area 36. 

Find the number c > 0 such that the region bounded by the curves y = x 2 and y = ex 

has area 9. 

Find the value of e between - 1 and 2 such that the area of the region bounded by the 
lines y = - x, y = 2x, and y = 1 + ex is a minimum. 

Find the value of e such that the line y = e bisects the region bounded by the curves 
y = x 2 and y = 1. 

Find the value of e such that the line y = ex bisects the region bounded by the x-axis 
and the curve y = x - x 2

. 

4.6 NUMERICAL INTEGRATION 

In numerical integration, one computes an approximate value for the definite 
integral rather than finding an exact value. In this section we shall present two 
methods of numerical integration, called the Trapezoidal Rule and Simpson's Rule. 

The Fundamental Theorem of Calculus gives us a method of computing 
the definite integral of a given continuous function .f from a to b. The method is to 
find, by trial and error, an antiderivative F of .f and then to use the equation 

f .f(t) dt = F(b) - F(a). 

When the method works, it provides an exact value for the integral. However, the 
method succeeds only if the antiderivative happens to be a function that can be 
described in a simple way. For many integrals one cannot find a formula for the 
antiderivative, and the method fails. Such integrals can still be computed approxi­
mately using numerical integration. 

The Trapezoidal Rule and Simpson's Rule can always be applied and do 
not use the antiderivative. They are easy to carry out on a computer or hand calculator. 
We already discussed one method of approximating the definite integral in Section 4.1, 
the Riemann sum. The Trapezoidal Rule is a modified form of the Riemann sum, 
which gives a much closer approximation for a given amount of effort. Simpson's 
Rule is a further modification that gives still better approximations. 
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Let f be a continuous function on an interval J, and let a < b in J. By 
definition, for each positive infinitesimal dx the definite integral 

ff(x)dx 

is the standard part of the infinite Riemann sum 
b 

L j(x) dx, 
a 

f f(x) dx = s{t f(x) dx]. 

In Section 4.1, examples were worked out to show that the finite Riemann sums 
become very close to the definite integral when .1x is small; that is, the finite Riemann 
sums approximate the definite integral. In Section 4.2, we saw that the definite 
integral is the limit of the finite Riemann sums as .1x--> o+: 

J
b b 

a j(x) dx = &!~+ ~ f(x) .1x. 

The Riemann sum, which is a sum of areas of rectangles, is a rather inefficient 
approximation of the definite integral. We can usually get a much closer approxi­
mation with the same amount of work by adding up areas of trapezoids instead of 
rectangles, forming the Trapezoidal Rule suggested by Figure 4.6.1. The Trapezoidal 
Rule also provides a formula, called an error estimate, which tells us how close the 
approximation is to the exact value of the definite integral. 

a b a b 
Riemann Sum Trapezoidal Approximation 

Figure 4.6.1 

Choose a positive integer n and divide the interval [a, b] into n subintervals 
of equal length .1x = (b - a)jn. The partition points are a = x 0 , x 1 , x 2 , •.. , x .. = b. 

The trapezoidal approximation is the area of the region under the broken line con­
necting the points 

(x0 ,J(x0 )), (x 1 ,f(x1)), ... , (x .. ,f(x .. )). 

Since all of these points lie on the curve y = f(x), the broken line closely follows the 
curve. So one would expect the area of the region under the broken line to closely 
approximate the area under the curve. 

Consider a single subinterval [xm, xm+ 1] of width .1x. The region under the 
line segment connecting the two points 
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is a trapezoid and its area is 

f(x,) + f(xm+ 1) L'ix. 
2 

The sum of the areas of the trapezoids is a modified Riemann sum 

I f(x) + j)(x + L'ix) L'ix 

a -

= [±f(xo) + f(x1) + f(x2) + · · · + f(x"_1) + !J(x")] L'ix. 

We thus make the definition: 

DEFINITION 

Let L'ix = (b - a)jn evenly divide b -a. Then by the trapezoidal approxi­
mation to the definite integral f~f(x) dx we mean the sum 

~, f(x) + f(x + L'ix) 1 1 
L 

2 
L'ix = [zf(xo) + f(x1) + · · · + f(x"_ Il + If(xu}] L'ix. 

a 

The Trapezoidal Approximation of an integral J~ f(x) dx can be computed 
very efficiently on most hand calculators. First compute the sum 

!f(xo) + f(x1) + f(x2) + · · · + !f(x") 

by cumulative addition. Then multiply this sum by L'ix to obtain the Trapezoidal 
Approximation. 

THEOREM 1 

For a continuous jimction f on [a, b ], the trapezoidal approximation approaches 
the definite integral as L'ix--> o+, that is, 

fb f(x) dx = lim I f(x) + f(x + L'ix) L'ix. 
a ti.x----0 + a 2 

PROOF Comparing the formulas for the trapezoidal approximation and the Riemann 
sum, we see that 

b f(x) + f(x + L'ix) b 
L · · 

2 
L'ix = Lf(x) L'ix + C!f(x.J - tf(xo)) L'ix. 

a a 

For dx positive infinitesimal, the extra term 

(!f(xH) - !f(x0 )) dx 

is infinitely small. It follows that 

I f(x) + f(x + dx) dx ;::::: I f(x) dx ;::::: fb f(x) dx. 
a 2 a a 
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From a practical standpoint, it is desirable to have a good estimate of error. 
We shall first work an example and then state a theorem which gives an error estimate 
for the trapezoidal approximation. 

EXAMPLE 1 Approximate the definite integral 

f jl"+?dx. 

Use the trapezoidal approximation with .ilx = i. We first make a table of 
values of jl"+?. The graph is drawn in Figure 4.6.2. 

Figure 4.6.2 

X 

x 0 = 0 
xi=! 
x2 = ~ 
X3 = i 
x4 =! 
x 5 = 1 

y 

)'=~ ./ 
1.4 / 

1.2 _,__../ 
l.O...L----

J. 1 ~ dx -~ 1.1501 
(I 

l. 1. 3 
5 5 

J1"+? 

1 

Jim 
JI!& 
J1J§ 
JIM 

I j2 

I 

! I 

~to 
four places 

1.0000 
1.0198 
1.0770 
1.1662 
1.2806 
1.4142 

X 

term in trapezoidal 
approximation 

0.5000 = tf(xo) 
1.0198 = f(x 1 ) 

1.0770 = f(x 2 ) 

1.1662 = f(x 3 ) 

1.2806 = f(x4 ) 

0.7071 = t/(x5) 

5.7507 = total 

Thus, tf(x0) + f(x 1) + f(x 2) + f(x 3) + f(x4 ) + tf(x5) = 5.7507. Since 
.ilx = t, the trapezoidal approximation is 

(5.7507). t = 1.1501, 

f J1"+? dx ~ 1.1501. 

The trapezoidal approximation can be made as close to the definite integral 
as we want by taking .ilx small. From a practical standpoint, however, it is helpful 
to know how small we should take .ilx in order to be sure of a given degree of accuracy. 
For instance, suppose we need to know the definite integral to three decimal places. 
How small must we take .ilx in our trapezoidal approximation? The answer is given 
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by the Trapezoidal Rule, which gives an error estimate for the trapezoidal 
approximation. 

The error in the trapezoidal approximation is the absolute value of the 
difference between the trapezoidal sum and the definite integral, 

error = It f(x) + f~x + Ll.x) In - f f(x) dx I· 
An error estimate for the trapezoidal approximation is a function E(Ll.x), which is 
known to be greater than or equal to the error. 

Thus if E(Ll.x) is an error estimate, the trapezoidal sum is within E(Ll.x) of 
the definite integral. If we want to be sure that the trapezoidal approximation is 
accurate to three decimal places-i.e., the error is less than 0.0005-we choose 
Ll.x so that E(Ll.x) :::;; 0.0005. We are now ready to state the Trapezoidal Rule. 

TRAPEZOIDAL RULE 

Let f be a function whose second derivative f" exists and has absolute value 
at most M on a closed interval [a, b ], 

lf"(x)l:::;; M for a:::;; x:::;; b. 

If Ll.x evenly divides b - a, then the trapezoidal approximation of the definite 
integral off has the error estimate 

b-a 
12M(Ll.x)2. 

That is, 

I
± f(x) + f(x + Ll.x) L'lx - rb f(x) dx I :::;; b - a M(Ll.x)2. 
a 2 .Ja 12 

The proof is omitted. 

EXAMPLE 1 {Concluded) We let f(x) = Jl + x 2
. Then 

f
., X 

. (x)= ~· v 1 + x2 

" jl~i- x2/fl+? 1 
J (x) = I + x2 = (I + x2)3i2. 

Therefore I f"(x) I :::;; I for all x in [0, I]. We take M = I and use the error 
estimate given by the Trapezoidal Rule, 

b-a 2 1 (I) 2 I 
12M(Ll.x) =12· 1 • 5 = 300' 

Thus our approximation is within an accuracy of I/300, 

I f Jl + x 2 dx - 1.1501 :::;; I/300 ~ 0.0033. 

This shows that the integral is, at least, between 1.146 and 1.154. 
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In this particular example we can even conclude that the integral is between 
1.146 and 1.150 (rounded off to three places). That is, the integral is less than its 
trapezoidal approximation. This is because the second derivative f"(x) = (1 + x 2

)-
3

'
2 

is always greater than 0, whence the curve is concave upwards and therefore y = f(x) 
is always less than or equal to the broken line used in the trapezoidal approximation. 
Actually, the value to three places is 1.148. This can be found by taking ~x = /0 . 

EXAMPLE 2 Consider the integral 

Let 

rl ~dx = n/2. 

f(x)=~. 

By Theorem 1, we have 

. 
1 f(x) + f(x + ~x) n 

hm I 2 ~x = -2. 
Ax--+0+ -1 

However, the Trapezoidal Rule fails to give an error estimate in this case 
because f'(x) is discontinuous at x = ± 1. 

We now turn to Simpson's Rule, for which the number of subintervals n 
must be even. As before, we divide the interval [a, b] into n subintervals of equal 
length ~x with the n + 1 partition points 

a = x0 , x 1, ... , x, =b. 

We shall use subintervals of length 2 ~x rather than ~x. On each of the n/2 sub­
intervals 

of length 2 ~x we approximate the curve y = f(x) by a parabolic arc that meets the 
curve at both endpoints and the midpoint of the subinterval, as shown in Figure 4.6.3. 
We then add up the areas under each ofthe parabolic arcs to obtain an approximation 
to the area under the curve, which is the definite integral. We begin with a lemma that 
gives a formula for the area of the region under one parabolic arc. 

Figure 4.6.3 

LEMMA 

The area of the region under the parabola through three points (u, r), (u + h, s), 
and (u + 2h, t) (shown in Figure 4.6.4) is 



(u,r) 

Figure 4.6.4 l/ l/ + h II + 2h 

h 

3 (r + 4s + t). 

The lemma is proved at the end of this section. Using the lemma, we find 
that the area of the region under one parabolic arc from xk to xk + 2 is 

It follows that the sum of the n/2 regions under the parabolic arcs is a modified 
Riemann sum, t [f(x) + 4f(x + ~x) + f(x + 2 L'.x)J t.x 

t.x 
= 3 {[f(xo) + 4f(xl) + f(xJ] + [f(x2) + 4f(x 3) + j(x4)] + · · ·} 

t.x 
= 3 [f(x0 ) + 4f(x 1) + 2f(x2 ) + 4f(x 3 ) + 2f(x4) + · · · + 4f(x11 - 1) + f(x")]. 

This modified Riemann sum is Simpson's approximation to the definite 
integral. Note the sequence of coefficients, 

1, 4, 2, 4, 2, ... ' 2, 4, 1. 

Like the trapezoidal approximation, it is easily computed on a computer or hand 
calculator. 

THEOREM 2 

For a continuous function f on [a, b], Simpson's approximation approaches 
the definite integral as t.x --> 0 +, 

J
b t.x 
f(x) dx = lim - [f(x0 ) + 4f(x 1) + 2f(x2 ) + 4f(x3 ) + · · · + f(x")]. 

a dx~o• 3 

Simpson's approximation is almost as easy to calculate as the trapezoidal 
approximation, but is much more accurate. Simpson's Rule is an error estimate 
that involves the fourth derivative of the function and the fourth power of t.x. 
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SIMPSON'S RULE 

Suppose the function f has a fourth derivative on the interval [a, b] that has 
absolute value at most M, 

lf<41(x)l ~ M for a~ x ~b. 

If [a, b] is divided into an even number of subintervals of length Ax, then 
Simpson's approximation to the definite integral has the error estimate 

b-a 
18QM(Ax)4

• 

EXAMPLE 3 Use Simpson's Rule with Ax= 0.25 to approximate the integral 

A = Ll e-x,/2 dx 

and find the error estimate. 

The curve is the normal (bell-shaped) curve used in statistics, shown in 
Figure 4.6.5. We are to divide the interval [0, 1] into four subintervals of 
equal length Ax = 0.25. The following table shows the values of x and y 
and the coefficient to be used in Simpson's approximation for each partition 
point. 

y 

0 X 

Figure 4.6.5 Example 3 

X e-xl/2 Coefficient 

0.0 1.000000 1 
0.25 0.969233 4 
0.5 0.882496 2 
0.75 0.754840 4 
1.0 0.606531 

The sum used in the Simpson approximation is then 

[1.000000 + 4. (0.969233) + 2. (0.882496) + 4. (0.754840) + 0.606531] 
= 10.267816 
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To get the Simpson approximation, we multiply this sum by b.x/3: 

s = (10.267816). (0.25)/3 = 0.855651. 

To find the error estimate we need the fourth derivative of 

The fourth derivative can be computed as usual and turns out to be 

y<4) == (x4 - 6x2 + 3)e- xl/2. 

On the interval [0, 1], yl4
> is decreasing because both x 4 

- 6x 2 + 3 and 
- x 2 /2 are decreasing, and therefore y< 4

> has its maximum value at x = 0 
and its minimum value at x == 1, 

maximum: 

minimum: 

yC4l(O) = 3 

y(4l(l) = -1.213061 

The maximum value of the absolute value I yr4
> I is thus M = 3. The error 

estimate in Simpson's Rule is then 

b 
1 
~O a (b.x)4 M = 

1 
~O • (0.25)4 

• 3 = 0.000065. 

This shows that the integral is within 0.000065 of the approximation; that is, 

fe-x 212 dx = 0.855651 ± 0.000065, 

or using inequalities, 

0.855586 :-:::; fe-x 212 dx :-:::; 0.855716. 

For comparison, a more accurate computation with a smaller b.x shows 
that the actual value to six places is 

fe-x 212 dx = 0.855624. 

The Trapezoidal Rule for this integral and the same value of b.x = 0.25 
give an approximate value of 0.85246 for the integral and an error estimate 
of 0.00521. 

PROOF OF THE LEMMA The algebra is simpler if they-axis is drawn through the 
second point, so that u + h = 0, and the three points have coordinates 

(- h, r), (0, s), (h, t). 

Suppose the parabola has the equation y = ax 2 + bx + c. Then the area 
under the parabola is 

A= fh(ax 2 + bx + c)dx 

ax 3 bx 2 ]h =-+-+ex 
3 2 -h 

2 
= 1 ah 3 + 2ch. 



4.6 NUMERICAL INTEGRATION 233 

When we substitute the coordinates of the three points ( -h, r), (0, s), (h, t) 
into the equation for the parabola, we obtain the three equations 

r = ah2 
- bh + c, 

s = c, 

t = ah2 + bh + c. 

Add the first and third equations and solve for a: 

r + t = 2ah 2 + 2c 

r+t-2c 
a = 2h2 

Finally, substitute the above expression for a and s for c in the equation 
for the area: 

2 
A= 3ah 3 + 2ch 

r+t-2c 2 13 211 -----:-:~-·-· 1 + c 
2h2 3 

r + t- 2c + 6c 
= •h 

3 

h 
= 3 (r + 4c + t). 

h 
= 3 (r + 4s + t). 

PROBLEMS FOR SECTION 4.6 

Approximate the integrals in Problems 1-20 using (a) the Trapezoidal Rule and (b) Simpson's 
Rule. When possible, find error estimates. If a hand calculator is available, do the problems 
again with L'.x = 0.1. 

1 S:xdx, L'.x = 0.5 2 Iaz x 3dx, L'.x = 0.5 

f~dx, r1 3 L'.x = 0.25 4 -dx, L'.x = 0.5 
1 X r 1 6 f>Jx+ldx, L'.x = 0.25 5 --2 dx, L'.x = 0.25 

1 1 +X 

r X 8 fP"+Idx, L'.x =± 7 --dx, L'.x = 0.5 
1 X+ 1 

9 fJx4 + 1 dx, L'.x = ± 10 r~dx, L'.x = 0.5 

11 r 1 --dx 
o X+ 1 ' 

L'.x = 1 12 r2 1 --dx 
0 2x+3' 

L'.x = 2 

13 r3 1 
1 x+Jx 

dx, L'.x = 3 14 ---dx r 1 
0 2+Jx ' 

L'.x = 1 



15 

17 

19 

0 21 

0 22 

D 23 

D 24 

D 25 

f sin B dB, L'lx = n/2, n/10 

{e·' dx, L'lx = ± 

f In x dx, L'lx = ± 

16 

18 

20 

f sin2 B dB, L'lx = n/2, n/10 

{ex' dx, L'lx = ± 

f In (1/x) dx, L'lx = ± 

Let f be continuous on the interval [a, b] and let L'lx = (b - a)fn where n is a positive 
integer. Prove that the trapezoidal sum is equal to the Riemann sum plus ±(j(b) -
f(a)) L'lx, that is, 

ttCJ(x) + f(x + L'lx))L'Ix =(tf(x)L'Ix) + ±{_f(b)- f(a)) L'lx. 

Show that if f(a) = f(b) then the trapezoidal sum and Riemann sum are equal. 

Prove that for a linear function f(x) = kx + c, the trapezoidal sum is exactly equal to 

the integral. 

Show that if f(x) is concave downward, f"(x) > 0, then the trapezoidal sum is less 
than the definite integral ofj(x). 

Show that for a quadratic function f(x) = ax 2 + bx + c, Simpson's approximation 
is equal to the definite integral. 

Show that for a cubic functionf(x) = ax 3 + bx2 +ex+ d, Simpson's approximation 
is still equal to the definite integral. 

EXTRA PROBLEMS FOR CHAPTER 4 

2 

3 

Evaluate Ii -4 L'lx, L'lx = 1/4 
X 

'<;'10 1 Evaluate L..t 2 L'lx, 
X 

Evaluate I~ 
3 

2x L'lx, 

L'lx = 2 

L'lx = 1 

4 Evaluate I~ xfi+l L'lx, L'lx = 1/2 

5 If F'(x) = 1/(2x - 1)2 for all x =f. 1/2, find F(2)- F(1). 

6 If G'(l) = }4t+1 for all t > - 1/4, find G(2) - G(O). 

7 A particle moves with velocity v = (3 + 2jt)2
• How far does it move from times t0 = 1 

to I 1 = 5? 

8 A particle moves with velocity v = t2 ~·How far does it move from times t0 = 1 
tot 1 =4? 

9 A particle moves with velocity v = (1 + 1)(21 + 3). If it has position y0 = 0 at time 
t = 0, find its position at time t = 10. 

10 A particle moves with acceleration a = 1/14
. If it has velocity t> 0 = 4 and position y0 = 2 

at time 1 = 1, find its position at timet = 3. 

11 Find the area of the region under the curve y = 1/ fi, 1 -:;; x -:;; 4. 

12 Find the area of the region under the curve y = fi - xfi, 0 -:;; x -:;; 1. 

In Problems 13-30, evaluate the integral. 

13 J (1 - x)(2 + 3x) dx 14 
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15 f (x2: 1)3 dx 16 J (4x + 1) 113 dx 

17 f (u/~)du 18 J x- 2 )2+x- 1 dx 

19 f cJ2t+l- J2t=l) ac 20 f 2x + 1 
(x + 4)3 dx 

21 f yjY+ldy 22 J (1 - p)- 4 dx 

23 J cos G) dx 24 J Jxsinpdx 

25 J e-' dt 26 f t + 1 --dt 
t- 1 

27 f(y + JY)dy 28 J:(x/~)dx 

29 {
1 
e4

x dx 30 fx sin (x2) dx 

31 Differentiate r jt3+2 dt 32 fx Differentiate 
0 

(t 2 f(t 2
- l))dt 

33 Differentiate r p~ dx 34 Differentiate r2 

(1/(x + p)) dx 

35 Find the function F such that F'(x) = x - 1 for all x, and the minimum value of F(x) is b .• 

36 Find the function F such that F"(x) = x for all x, F(O) = 1, and F(1) = 1. 

37 Find the fun.ction F such that F"(x) = 6 for all x, F(x) has a minimum at x = 1, and the 
minimum value is 2. 

38 Find all functions F such that F"(x) = I + x- 3 for all positive x. 

D 39 Find the function F such that 

F'(x) = {0 
ifx < 0 

X ifx 2 0 

and F(O) = 1. 

D 40 Find the value of b such that the area of the region under the curve y = x(b - x), 
0 ::::; x ::::; b, is 1. 

D 41 Supposejis increasing for a ::::; x ::::; b, and ~x = (b- a)fn where n is a positive integer. 
Show that 

It f(x) ~x- f f(x) dx I ::::; [f(b)- f(a)] ~x 
D 42 Suppose f is continuous for a ::::; x ::::; b. Show that 

If f(x) dx I ::::; f lf(x)l dx. 

D 43 Find the area of the top half of the ellipse x 2 fa 2 + y2fb 2 = 1 using the formula 
n = 2f~ 1 jl7du. 

D 44 Evaluates~ I (1 - x)312(1 + x) 112 dx using the formula n = 2f~ I J17 du. 

D 45 Find dyfdx if y = f~ xf(t) dt. 

D 46 Suppose j(t) is continuous for all t and let G(x) = g (x - t)f(t) dt. Prove that 

G"(x) = f(x). 

D 47 Prove that for any continuous functions f and g, 
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·b fb lb 2ABj f(x)g(x) dx-<; A 2 j(x) 2 dx + B2 g(x) 2 dx. 
" a a 

D 48 Prove Schwartz' Inequality, 

r f(x)g(x} dx -<; Jfb ~ (x~x -f· b g(x)2 dx. 
~~~ u a 

Hint: Use the preceding problem. 

D 49 Suppose f is continuous and dx is positive infinitesimal. Show that 

I> fb I f(x + ! dx) dx ~ f(x) dx. 
a a 

Hint: For each positive real c, 

f(x)- c <f(x + ~dx) <f(x) +c. 

Use this to show that 

Cf(x) dx - c(b -a) < ± f(x + ~ dx) dx < fbJ(x) dx + c(b -a) . 
.. a a 2 a 

D 50 Suppose j is continuous, 11 is an integer, and dx is positive infinitesimal. Prove that 

b fb I f(x + 11 dx) dx ~ .f(x) dx. 
a a 



LIMITS, 
ANALYTIC GEOMETRY, 
AND APPROXIMATIONS 

INFINITE LIMITS 

Up to this point we have studied three types of limits: 

lim f(x) = L means f(x) ;:::; L whenever x ;:::; c but x =1= c. 

lim f(x) = L means f(x) ;:::; L whenever x ;:::; c but x > c. 
X---i>C+ 

lim f(x) = L means f(x) ~ L whenever x ~ c but x < c. 
x-+c-

5 

The limit notation limx~ oo f(x) = L means that whenever H is positive 
infinite, f(H) ;:::; L (Figure 5.l.l(a)). 

limx~cf(x) = - oo means that whenever x ~ c and x =I= c,f(x) is negative 
infinite (Figure 5.1.l(b)). The various other combinations have the meanings which 
one would expect. 

EXAMPLE 1 

EXAMPLE 2 

I
. 1 
Iill2 = 00. 
x~o X 

I
. 1 
Ill - = 00, 

x~o· X 
I
. 1 
Ill - = -00. 

x-+o- X 

3x4 + 5x- 2 
EXAMPLE 3 Find Jim 

2 4 6 3 7
. 

x~oo X - X + 
Let H be positive infinite. Then 

and therefore 

3H4 + 5H- 2 
2H4

- 6H3 + 7 

( 
3H

4 + 5H- 2) 
st 2H4 - 6H3 + 7 

Thus the limit exists and is i. 

3 + 5H- 3 - 2H- 4 

2- 6H- 1 + 7H- 4 ' 

3+0-0 3 
-

2-0+0 2 

237 
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L ---------------------

/ 
/ 

/ 
/ 

/ 
// 

// 

--~+---------------------------------r~------------

Figure 5.1.1 

x // 
/ 

/ 
/ 

(a) lim j(x) = L 

X 

infinite 
telescope 

lb) lim/(x) = - oo 
x -+c 

EXAMPLE 4 Find lim (x 3 + 200x2
). 

infinite 
telescope 

infinite 
microscope 

infinite 
microscope 

We have x 3 + 200x 2 = x 2(x + 200). When H is negative infinite, H 2 is 
positive infinite and (H + 200) is negative infinite, so their product is negative 
infinite. Thus 

x-- 'fJ 
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When limf(x) = en or -en, 

the limit does not exist, because f(x) has no standard part. The infinity symbol is 
only used to indicate the behavior of f(x) and is not to be construed as a number. 

EXAMPLE 5 A student can get a score of 100t/(t + 1) on his math exam if he studies 
t hours for it (Figure 5.1.2). If he studies infinitely long for the exam, his score 
will be infinitely close to 100, because if H is positive infinite, 

( 
100H) ( 100 ) 100 

st H + 1 = st 1 + 1/H = 1 + 0 = 100. 

In the notation of limits, 

lim lOOt = 100. 
t~<Xl t + 1 

lOOt 
y=t+l ___/ I, 

v = 100 

Figure 5.1.2 

------------+-·-
1 
I 
I 
I 
I 
I 

-II 
I 
I 
I 

EXAMPLE 6 Given any polynomial 

f(t) =ant"+ an-1t"- 1 + ... + a1t + ao 

of degree n > 0, the limits as t approaches -en or + en are as follows. 
Suppose an> 0. When n is even, limr~-oof<t) =en, lim1 ~ 00 /(t) =en. 
When n is odd, lim1 ~ _ 00 f(t) = -en, lim1 ~ 00 f(t) = en. 

The signs are all reversed when a" < 0. 

All these limits can be computed from 

f(t) = t"(a + a"-1 + ... + ~ + ao). 
n t t"- 1 t" 

EXAMPLE 1 In the special theory of relativity, a body which is moving at constant 
velocity v, -c < v < c, will have mass 

and its length in the direction of motion will be 

l = l0J1 - v2jc2
. 
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Here m0 , / 0 , and c are positive constants denoting the mass at rest (that is, 
the mass when L' = 0), the length at rest, and the speed of light. 

Suppose the velocity v is infiniteiy close to the speed of light c, that is, 

l' = c- £, t: > 0 infinitesimal. 

Then Jl - t~2 = f·- (c - t:)2 = ~-(~~2) 
c2 c2 y- c1 

= ~ = /e • (~ - __8__) , 
y c c- \ c c2 

which is the square root of a positive infinitesimal. Thus jl.:_ L'
2fc 2 is a 

positive infinitesimal. Therefore for v infinitely close to c, 111 is positive infinite 
and I is positive infinitesimal. That is, a body moving at velocity infinitely 
close to (but less than) the speed of light has infinite mass and infinitesimal 
length in the direction of motion. In the notation of limits this means that 

Caution: This example must be understood in the light of our policy of 
speaking as if a line in physical space really is like the hyperrealline. Actually, 
there is no evidence one way or the other on whether a line in space is like 
the hyperrealline, but the hyperreal line is a useful model for the purpose of 
applications. 

sm x 
EXAMPLE 8 Evaluate lim --. 

x~cc X 

When H is positive infinite, sinH is between -1 and 1 and thus finite, so 
(sin H)/His infinitesimal. The limit is therefore zero: 

. sin x 
0 lim--= . 

x~"" X 

EXAMPLE 9 Find lim cos x. 

If His any integer or hyperinteger, then 

cos (2nH) = 1, cos (2nH + n) = - 1. 

In fact, cos x will keep oscillating between 1 and - 1 even for infinite x. 
Therefore the limit does not exist. 

Limits involving ex and In x will be studied in Chapter 8. 



With a calculator, compute some values as x approaches its limit, and see what happens.With a calculator, compute some values as x approaches its limit, and see what happens.
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47 

49 

51 

53 

55 

57 

59 

61 

63 

65 

67 

69 

71 

72 

73 
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lim )x2 + x- x 
x--+x: 

lim t()t+l - jt) 
(-+tf: 

48 

50 

limp+r-x 
x-tx; 

lim jt(jt+2- Jl+ll 
r~c.o 

lim Ju2 
- 3u + 2 - jU2+l 52 

u-+ oc 

lim cos (1/t) 
f--->X 

I
. sin t 
Im-

t--+ X { 

lim sine 
0--+ J.._ 

lim tane 
o~o 

lim tan e 
8-+ rc/2 + 

lim sin (1/x) 
x-+0 

lim cos-~ 
x-+O+ X 

54 

56 

58 

60 

62 

64 

66 

68 

lim sin (1/t) 
f---;.X 

]' cost 
~~~7 
lim e cos e 
lim tan 8 
o~nt2 

lim tan e 
o~ n/2-

lim x cos (ljx) 
x-+0 

lim cos x 
x-o- X 

Prove that if lim,~cf(x) = w then limx~c 1/ j(x) = 0. 

Prove that if limx~cf(x) = 0 and f(x) > 0 for all x, then limx~r 1/f(x) = oc. 

Prove that if limx~o· j(x) exists or is infinite, then 

lim j(x) = lim j(1/t). 
x-o+ t--+cc 

Prove that if limx~"' j(x) exists or is infinite then 

lim j(x) = lim j(ljt). 
X--+IXJ f-+Q + 

5.2 L'HOSPITAL'S RULE 

Suppose f and g are two real functions which are defined in an open interval con­
taining a real number a, and we wish to compute the limit 

lim f(x). 
x~a g(x) 

Sometimes the answer is easy. Assume that the limits of f(x) and g(x) exist as x --> a, 

limf(x) = L, limg(x) = M. 
x-a 

If M =/= 0, then the limit of the quotient is simply the quotient of the limits, 

lim f(x) = .£. 
x~a g(x) M 

This is because for any infinitesimal L'ix =/= 0, 

1m -- = st ::.......c __ ___c. I. f(x) (f(a + L'ix)) 
x~a g(x) g(a + L'ix) 

If L =/= 0 and M = 0, then the limit 

I
. f(x) 
Jm-­
x~a g{x) 

st(f(a + L'ix)) L 

st(g( a + L'ix)) M 
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does not exist, because when .Llx # 0 is infinitesimal, f(a + .Llx) has standard part 
L # 0 and g(a + .Llx) has standard part 0. 

But what happens if both L and M are 0? In some cases a simple algebraic 
manipulation will enable us to compute the limit. For example, 

. x 2 
- 1 . (x + 1)(x - 1) . 

hm -- = hm = hm (x- 1) = -2, 
x~- 1 X + 1 x~- 1 X + 1 x~- 1 

even though both the numerator x 2 
- 1 and the denominator x + 1 approach 0 as 

x approaches - 1. 
In other cases !'Hospital's Rule is useful in computing limits of quotients 

where both L and M are 0. Before stating !'Hospital's Rule, we introduce the notion 
of a neighborhood of a point c (Figure 5.2.1). 

c 

A neighborhood of c 

Figure 5.2.1 

DEFINITION 

By a neighborhood of a real number c we mean an interval which contains c as 
an interior point. 

The set formed by removing the point c .fi"om a neighborhood I of c is called a 
deleted neighbm·hood of c. Thus a deleted neighborhood is the set of all points 
x in I such that x # c. 

L'HOSPITAL'S RULE FOR 0/0 

Suppose that in some deleted neighborhood of a real number c, f'(x) and g'(x) 
exist and g'(x) # 0. Assume that 

limf(x) = 0, 

Iflim .f'(x) exists or is infinite, then 
· x~c g'(x) 

lim g(x) = 0. 

limf(x) =lim .f'(x) 
x~c g(x) x~c g'(x). 

(See Figure 5.2.2.) Usually the limit will be given by 

lim !;(ex)) = ~('(c)), 
x~c g X g C 

and in this case the proof is very simple. 

Figure 5.2.2 L'Hospital's Rule 
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PROOF IN THE CASE lim f'(x) = f'(c) 
x~c g'(x) g'(c) 

Let Llx be a nonzero infinitesimal. Then f(c) = 0, g(c) = 0, and 

f(c + Llx) 

g(c + Llx) 

Taking standard parts we get 

(f(c + Llx)- f(c))jLlx f'(c) 
~ 

(g(c + Llx)- g(c))/Llx g'(c) · 

lim f(x) = f'(c) = lim f'(x). 
x~c g(x) g'(c) x~c g'(x) 

Intuitively, for x ~ c the graphs off (x) and g(x) are almost straight lines of 
slopesf'(c),g'(c) passing through zero, so the graph of f(x)/g(x) is almost the hori­
zontal line through f'(c)jg'(c) (Figure 5.2.3). 

Figure 5.2.3 

The equation 

lim f'(x) = f'(c) 
x~c g'(x) g'(c) 

is not always true. For example, g'(c) might be zero or undefined. 

l
. f'(x) 
Im-­
x~c g'(x) 

is sometimes another limit of type 0/0, that is, 

lim f'(x) = 0 and lim g'(x) = 0. 

g(c + C.x) 

• 

When this happens, !'Hospital's Rule can often be reapplied to lim~~J'(x)jg'(x). 
The proof of !'Hospital's Rule in general is fairly long and uses the Mean Value 
Theorem. It will not be given here. 

Here are some examples showing how the rule can be applied. 

EXAMPLE 1 F
. d 

1
. (1/x)- 1 

m tm----. 
x-1 ._[;-] 
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Both (1/x) - 1 and Jx - 1 approach 0 as x approaches 1. The limit is thus 
of the form 0/0. Using !'Hospital's Rule, 

. (1/x)- 1 . -x- 2 -1 
hm r:: = hm "1""=172 = - 1- = - 2. 
x~ 1 v' x - 1 x~ 1 2X 2 

. d 1" Jx+l- 1 
EXAMPLE 2 Fm Ill· . 

x~o x3 

The limit is of the form 0/0. The limit of f'(x)jg'(x) as x -+ 0 is oo, 

lim d(Jx+l - 1)/dx = lim -!Cx + 1)-1/2 = w. 
x~o d(x 3)/dx x~o 3x2 

Thus by !'Hospital's Rule, 

I. Jx+l- 1-
Ill 

3 
- UJ. 

x~o X 

EXAMPLE 3 Find lim (x + -
1-)c.fi+l- 2). 

x~3 X- 3 

This limit is not in a form where we can apply !'Hospital's Rule. We must 
first use algebra to put it in another form, 

(X+ -
1-)c.fi+l- 2) = x(Jx+l- 2) + Jx+l

3
-

2
. 

x-3 x-

By elementary computations, lim x(Jx+l - 2) = 3 • 0 = 0. 
x-+3 

Using !'Hospital's Rule, 

lim Jx+l- 2 =lim -t(x + 1)-1/2 = !.4-1/2 = !. 
x~3 X - 3 x~3 1 2 4 

We then add the limits to get the desired answer, 

( 
1 ) ~ 1. ( ~ . .fi+l- 2 lim X + -- (y X + 1 - 2) = Ill X y' X + 1 - 2) + hm -"------

x~3 X- 3 x~3 x~3 X- 3 

= 0 + * = *· 

EXAMPLE 4 Find 

(x- 3) 1 
---+--

1
. 4 X+ 1 
Ill 
x~1 (x- 1)2 

This limit is of the form 0/0. When !'Hospital's Rule is used the limit is still 
of the form 0/0. But when it is used a second time we can compute the limit. 

X - 3 1 

lim_4_ +~=lim 4- (x +If= lim 2(x + 1)-
3 

x~J (X- 1)2 x~J 2(x- 1) x~J 2 

1 

8 

L'Hospital's Rule also holds true for other types of limits. That is, it holds 
true if x-+ cis everywhere replaced by one of the following. 

X -> 00, X-> -UJ. 
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EXAMPLE 5 Find lim~- 2
. 

X--l>O+ X 

The limit as x -> 0 does not exist because Jx is defined only for x > 0. 
However, the one-sided limit as x -> o+ has the form 0/0 and can be found by 
I 'Hospital's Rule. 

1
. Jx+4- 2 - 1. !Cx + 4)-1/2 
Jill r:: - Jill 1 1/2 

x~o+ V X x~o+ 2X 
lim Jx = 0. 
x~o+ Jx+4 

A second form ofl'Hospital's Rule deals with the case where bothf(x) and 
g(x) approach oo as x approaches c. 

L'HOSPITAL'S RULE FOR oo/oo 

Suppose c is a real number, and in some deleted neighborhood of c, f'(x) and 
g'(x) exist and g'(x) i= 0. Assume that 

lim f(x) = oc, lim g(x) = oc. 
x~c x-c 

I'f 1. j'(x) . . . ,~; . I Jm -- exzsts or zs mJ'mte, t 1en 
x~c g'{x) 

lim f(x) = lim f'(x) 
x~c g(x) x~c g'(x). 

The rule for oojoo is exactly the same, word for word, as the rule for 0/0, 
except that 0 is replaced by oo. We omit the proof, which is more difficult in the case 
wjoo. Actually, the assumption 

limf(x) = oc 
x~c 

is not needed. 
Again, !'Hospital's Rule for wjoo also holds for the other types of limits, 

EXAMPLE 6 Find I
. X+ Jx + 1 
Jill r:; ~· 

x~co .yx + yX + 1 

By !'Hospital's Rule for oojoo, 

X -> CO, X-> -CO. 

1 
1 +--2Jx lim -----,---"----: __ = oo. 

x~co 1 1 
-- + ---=== 2Jx 2Jx+l 

Warning: Before using !'Hospital's Rule, check to see whether the limit is 
of the form 0/0 or oojoo. A common mistake is to use the rule when the limit is not of 
one of these forms. 
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EXAMPLE 7 Find 1
. Jx- (1/x) 
Jm . 

x_,.l X 

The limit has the form 0/1, so !'Hospital's Rule does not apply. 

. Jx - (1/x) ;~ (Jx - (1/x)) 0 
Correct: lim = =- = 0 

x~l X lim X 1 . 
x~l 

Incorrect: 

lim Jx - (1/x) = lim d(ft - (1/x))/dx = lim (-1- + ___!__) = ~ 
x~l X x~l dxjdx x~l 2Jx x 2 2' 

PROBLEMS FOR SECTION 5.2 

In Problems 1-34, evaluate the limit using !'Hospital's Rule. 

I
. J9+x - 3 ,. 1/t - 1 

1 liD 2 liD ~2---'----
x~o X r~1•t -2t+1 

3 

5 

7 

9 

11 

13 

15 

17 

19 

21 

23 

25 

27 

29 

r 2-;;+2 
x~ 4- x 2 

. Jy+1 +JY=l hm ~'----~--
r~r. y 

. (1 - x)114 
- 1 hm :___:__ __ 

x--+0 X 

lim (I+ ~)(Jt+T- 1) 
,~o+ t -yt, 

r (u - 1)3 
u~~~~-!~ u2 + 3u- 3 

. 1 + s;Ju hm ____:_-_~ 
u~o+ 2 + 1/yfu 
. x + xl/2 + xt/3 

hm 2/3 114 
x~co X +X 

lim 1 - t/(t - 1) 
t~oc 1 - Jt /(t - 1) 

. s-~ (1/t)dt 
hm~'-'--'--'-'--
x~t J~ lj(2t + 1)dt 

I
. sin x 
lffi-­

x-+0 X 

I
. sin(2x) 
lffi--

x--+0 X 

I
. cos e 
liD--­

a~n/2 n/2- e 
r tane 
a~~-e-

1
. e'- 1 
lffi-­
t~o t 

4 

6 

8 

10 

12 

14 

16 

18 

20 

22 

24 

26 

28 

30 

t + 5 - 2t- I - t- 3 

lim 3 12 2 t~cc t + - t 

lim Jx- 1 

x~1 Jx- 1 

lim (r + I)((4 - t)3
'
2 

- 8) 
r~o t 

x2 
lim · 
.,~o~-1 

I
. 2 + 1/x 
JID--­
t~O 3- 2/x 

3 + u-1/2 + u-1 
lim------
u~o· 2+4u- 112 

I
. 1 - Jt/(t + I) 
Jill---;="=~=~= 

t~oc 2- j(4t + 1)/(t + 2) 

. y + y-1 
hm --=---=== 

r~-oo 1 + JI=Y 
I
. J~ jt+t=! dt 
liD 

x--+::1) xJx 
I
. 1 -COS X 
liD 

x-+0 X 

. 2 
limsm x 
x-+0 X 

. cos (38) 
hm --­
a~n/2 n/2- e 

I
. sin (28) 
lm--­
a~o sin (58) 

t2 
iim-,--­
'~o e - t- 1 
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31 1" In t 32 lim 
ln{t2 + 1) 

1m--
t~1 t- 1 r~o t 

33 1" xlnx Jm--
x~1 x 2 - I 

34 
1" sin (2x) 
1m ~ 

x~o ln(x +I) 

In Problems 35-52, evaluate the limit by !'Hospital's Rule or otherwise. 
. xl4 - I r; 

35 lim ~- -- 36 lim _....;_ -"_ 
x~ 1 X x~ 1 < X - 1 

Jx- I x-1 +·x-1 2 
37 lim --- 38 lim - ~-----:-=TT 

x-+ 1 + X - 1 x--> 'j'_ .\ + .\ 

39 

41 

43 

45 

47 

49 

51 

D 53 

j" X + X-
2 

x~~ 2X +X 2 

. 4x 
lim-~~~~ 
x~x j2.x2 +I 

I
. J7+J- I 
11TI~=~-
x~ofi+4 _ 2 

I
. Jx+l + 1 
Jill --'------

x~o· Jx+l- I 

Jm(x+)) --+--I. _ ( 1 I ) 
x~x 2x X+ 2 

. ( 1 1 ) lim (x + 5) ~2--: + -. -? 
x~1 X X + _ 

\
3 - 6x-? 

lim~ · -
x~2 x 3 - 4x 

40 

42 

44 

46 

48 

50 

52 

5 + \-1 
lim ~~- :-~-T 
x~x 1 + 2x 

. 3x2 + x + 2 
lim x _ 4 x--->0 

;-::-
. v'~x+1-I 

lim 
x-o'v0 2- I 

/'> ___ _ 
. ...;x- +I- I 

Inn ~~=-­
~,~o Jx + I - I 

lim (x + 5)(-
2
I + ~2) x~o• X .\ + 

x3 6x ? lim:____:- ~ -----'= 
x~2 x 3 + 4 

1" x3 + 4x + 8 
x~~. 2x 3 - 2 

Suppose I and g are continuous in a neighborhood of a and g(a) oft 0. Show that 

. tf(l)dt j(a) 
lim-c--- ~~ = ~ 
x~" .1;: g(t)dt g(a) · 

5.3 LIMITS AND CURVE SKETCHING 

By definition. limx~c f(x) = L means that for every hype1Teal number x which is 
infinitely close but not equal to c,f(x) is infinitely close to L. What does lim,~,f(x) = 

L tell us about f(x) for real numbers x? It turns out that if lim,~,.f(x) = L. then for 
every real number x which is close to but not equal to c. f(x) is close to L. 

In the next section we shall justify the above intuitive statement by a math­
ematical theorem. The main difficulty is to make the word "close" precise. For the 
time being we shall simply illustrate the idea with some examples. 

EXAMPLE 1 Consider the limit iim 
21

-' 2:__!_ = 2. 
x~o l!x - 1 

This limit is evaluated by letting x =I= 0 be infinitesimal: 

2/x + 1 
1/x- 1 

2 +X 
I - x' 

lim 2_0x__i__!_ = sr(?_+ x) = st(2 +_:~ = ?__±_ 0 = 1 
x~o 1/x- 1 1 - x st(l - x) I - 0 -· 



With a calculator, the student should try this for some of the limits on pages 124 and 241.
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Let us see what happens if instead of taking x to be infinitely small we take 
x to be a "small" real number. We shall make a table of values of 

f 2/x + 1 
(x) = 1/x - 1 

for various small x. 

X 
f(. _ 2jx + 1 f(x) to 

x)- 1jx- 1 four places 

0.1 21/9 2.3333 
O.Gl 201/99 2.0303 
0.001 2001/999 2.0030 
0.0001 20001/9999 2.0003 

-0.1 19/11 1.7364 
-0.01 199/101 1.9703 
-0.001 1999/1001 1.9970 
-0.0001 19999/10001 1.9997 

We see that as x gets closer and closer to zero, f(x) gets closer and closer to 2. 

The table helps us to draw the graph of the curve y = f(x). Although the 
point (0. 2) is not on the graph, we know that when x is close to O,f(x) is close to 2. 
and draw the graph accordingly. The graph is drawn in Figure 5.3.1. 

Other types oflimits also give information which is useful in drawing graphs. 
For instance, if limx~J(x) = oo, then for every number x which is close to but not 
equal to c, the value off(x) is large. And iflimx~oof(x) = L, then for every large real 
number x,f(x) is close to L. 

In both the above statements, if we replace "close" by "infinitely close" and 
"large" by "infinitely large" we get our official definition of a limit. We give two more 
examples. 

Figure 5.3.1 

EXAMPLE 2 Consider the limit 

.!.+! 
lim _x_ = 2 
x-0.!. -] 

X 

2 X 

1
. 1 
Im 2 = 00. 
x~2 (X - 2) 
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For x infinitely close but not equal to 2, 1/(x - 2)2 is positive infinite. Let 
us make a table of values when x is a real number close to but not equal to 2. 

X j(x) 

2.1 100 
2.01 10000 
2.001 1000000 

1.9 100 
1.99 10000 
1.999 1000000 

As x gets closer and closer to 2, f(x) gets larger and larger. 

EXAMPLE 3 lim (1 + 
1 

2 ) = 1. 
x~oo (x - 2) 

For infinitely large x, 1 + 1/(x - 2)2 is infinitely close to 1. Here is a table of 
values of 1 + 1/(x - 2)2 for large real x. 

X 
1 

1 + (x- 2)z 

12 1.01 
102 1.0001 
1002 1.000001 
10002 1.00000001 

As x gets large, 1 + 1/(x - 2)2 gets close to 1. Also notice that 

x~~oc ( 
1 + (x ~ 2f) = 1' 

and for large negative x, 1 + 1/(x - 2)2 is close to 1. 

In Chapter 3 we showed how to use the first and second derivatives to sketch 
the graph of a function which is continuous on a closed interval. In the next example we 
shall sketch the graph of the functionf(x) = 1 + 1/(x - 2f, But this time the function 
is discontinuous at x = 2, and the domain is the whole real line except for the point 
x = 2. Our method uses not only the values but also the limits of the function and its 
first derivative. 

EXAMPLE 4 Sketch the curve 
1 

f(x) = 1 + (x - 2f · 
The first two derivatives are 

f'(x) = -2(x- 2)- 3 f"(x) = 6(x - 2)- 4 . 

The first and second derivatives are never zero. f(x) is undefined at x = 2. 
In our table we shall show the values of f(x) and its first two derivatives at a 
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point on each side of x = 2. We shall also show the limits of f(x) and its first 
derivative as x --> - oo, x --> 2-, x --> 2 +, and x --> oo. (We will not need the 
limits of f"(x).) 

f(x) 

lim 1 
x--+- oo 

X = 1 2 
lim CIJ 

x--+2-

lim CIJ 
x-+2+-

x=3 2 
lim 
x~oo 

.f'(x) 

0 

2 
CIJ 

-Cf) 

-2 
0 

f"(x) Comments 

horizontal 

6 increasing, u 
vertical 

vertical 

6 decreasing, u 
horizontal 

The first line of the table, limx~ _ oo, shows that for large negative x the curve 
is close to 1 and its slope is nearly horizontal. The second line, x = 1, shows 
that the curve is increasing and concave upward in the interval (- oo, 2), 
and passes through the point (1, 2) with a slope of 2. The third line, limx~ 2 -, 

shows that just before x = 2 the curve is far above the x-axis and its slope is 
nearly vertical. Going through the table in this way, we are able to sketch the 
curve as in Figure 5.3.2. 

The curve approaches the dotted horizontal line y = 1 and the dotted vertical 
line x = 2. These lines are called asymptotes of the curve. 

y 

~ 

y=l 
---------- --------+-----------------

Figure 5.3.2 

1 
I 
I 

X 

y = 1 + (x- 2)-2 

Suppose the function f and its derivative f' exist and are continuous at all 
but a finite number of points of an interval J. The following procedure can be used in 
sketching the curve y = f(x). 

Step 1 First carry out the procedure outlined in Section 3.9 concerning the first 
and second derivative. 

Step 2 Compute limx~ _ ro f(x) and limx~oo .f(x). 
(They may either be real numbers, + oo, - oo, or may not exist.) 

Step 3 At each point c of I where f is discontinuous, compute f(c), limx~c+ f(x) and 
limx~c- .f(x). 
(Some or all of these quantities may be undefined.) 

Step 4 Compute limx~ 00 .f'(x) and limx~ _ 00 .f'(x). 
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Step 5 At each point where f' is discontinuous. compute f(c), lim,~c~ f'(x) and 
lim,~c~ f'(x). 

We shall now work several more examples; the steps in computing the limits 
are left to the student. 

EXAMPLE 5 f(x) = X
315

. 

Then f'(x) = ix- 215
, f"(x) = - 2\x- 75

. 

At the point x = 0, .f(x) = 0 and f'(x) does not exist. We first plot a few 
points, compute the necessary limits, and make a table. 

f(x) j'(x) j"(x) Comments 

lim - J~ 0 horizontal 
x-- :I_ 

X= -I -I 3!5 6/25 increasing, u 
lim 0 J vertical 

x---.o-

x=O 0 undef. 
lim 0 J: vertical 

x-o+ 
X= I 3;'5 -6/25 increasing, n 
lim X 0 horizontal 
x- -:;-_ 

Figure 5.3.3 is a sketch of the curve. 

Figure 5.3.3 

The behavior as x approaches - x, x, and zero are described by the limits 
we have computed. As x approaches either - XJ or w,f(x) gets large but the 
slope becomes more nearly horizontal. As x approaches zero the curve 
becomes nearly vertical, increasing from left to right, so we have a vertical 
tangent line at x = 0. 
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EXAMPLE 6 f(x) = x 4 15
. 

Then f"(x) = - 24sx-6/S 

f'(x) is undefined at x = 0. We make the table: 

f(x) 

lim X 

X= -1 1 
lim 0 

x-o-
x=O 0 
lim 0 

x-o+ 
X = 1 
lim X 

f'(x) 

0 

-4/5 
-x 

undef. 
X 

4/5 
0 

f"(x) Comments 

-4/25 

-4/25 

horizontal 

decreasing, n 
vertical 

vertical 

increasing, n 
horizontal 

With this information we can sketch the curve in Figure 5.3.4. 

y 

X 

y = x4/5 

Figure 5.3.4 

This time the limits of the derivative as x approaches zero show that there 
is a cusp at x = 0, with the curve decreasing when x < 0 and increasing 
when x > 0. 

COS X 
EXAMPLE 7 Sketch the curve f(x) =-.-for 0 < x < 2n. 

Sill X 

f(x) andf'(x) are undefined at x = n because the denominator sin n is zero. 
The first two derivatives are 

f'(x) = -~, 
Sill X 

COS X 
f"(x) = 2-.-3-. 

Sill X 

Thus f'(x) is always negative, and f"(x) = 0 when x = n/2, 3nj2. Here is 
the table: 
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I(x) f'(x) .f"(x) Comments 

lim X -X vertical 
x---+0+ 

7r!4 1 -1/2 + decreasing. u 

7!/2 0 -1 0 decreasing, inflection 

3nj4 -1 -112 decreasing, 11 

lim -x -x vertical 
x-rr-

lim X -x vertical 
X--->tr"'" 

Sn/4 1 -112 + decreasing, u 

3nj2 0 -1 0 decreasing, inflection 

7nj4 -1 -1/2 decreasing, 11 

lim -X -X vertical 
x--> 2n-

Notice that the table from n to 2n is j.ust a repeat of the table from 0 to n. 
This is because 

cos (x + n) 

sin (x + n) 

The curve is sketched in Figure 5.3.5. 

Figure 5.3.5 

PROBLEMS FOR SECTION 5.3 

-cos x cos x 

-sin x sin x 

COS X 
Y = sin x 

This figure is a sketch of a curve y = I(x). At which points x = c do the following 
happen? 

(a) I is discontinuous at c 

(b) lim I(x) does not exist 
x-->c+ ' 

(c) lim f(x) does not exist 
x__,.c-

(d) I is not differentiable at c 

(e) lim f'(x) does not exist 
x-c+ 

(f) lim f'(x) does not exist. 
x-c-



Then check your answer by using a graphics calculator to draw the graph.

c D 
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G HI 
I 
I 
I 
I 

In Problems 2-42, sketch the graph ofj(x). Use a table of values ofj(x),f'(x),f"(x), and limits 
off(x) andf'(x). 

2 

4 

6 

8 

10 

12 

14 

16 

18 

20 

22 

24 

26 

28 

30 

32 

34 

36 

38 

40 

f(x) = 2- tx2 

f(x) = x3
- x 

f(x) = tx4 - x2 

1 
f(x) = 1 +­

X 

2 
f(x) = x2 +­

X 

2 1 
f(x) = x + 2 

X 

f(x)=~ 

1 
f(x) = 1--

Jx 
f(x) = 2 - (x - 1)113 

2x 
f(x) =--

1- X 

X 
f(x) = -­

x2 + 1 

1 
f(x)=-~ x 2

- 1 
x2 

f(x) = x2- 1 

f(x) = 2 + (x - 1)213 

f(x) = 4..j1=7 
f(x) = Jx2=l" 

y = cosx' 0<x<2n 

y = tan2 x, -n ::s; x ::;; n 

1 
y = . , 0 ::s; x ::s; 2n 

Sill X COS X 

f(x) = 2- Jx2 + 4 

3 

5 

7 

9 

11 

13 

15 

17 

19 

21 

23 

25 

27 

29 

31 

33 

35 

37 

39 

41 

f(x) = x 2
- 2x 

f(x) = X
2 

- ix3 

f(x) = x 3 
- h 4 

1 
f(x)= -

2
-
-X 

1 
f(x) = x2 

f(x) = Jx 
1 

f(x) = Jx 

f(x) = fx 

f(x) = x- 1 
X + 1 

1 
f(x) = x2 + 1 

X 
f(x) = -2--1 

X -

f(x) = x2/3 

f(x)=~ 

f(x) = 1 - ..j1=7 
l 

y = -.-, 0 < x < 2n 
smx 

y = tanx, 0 ::s; x ::s; 2n 

1 
y=. 'o::s;x::s;2n 

smx + cosx 

f(x)= ~J7=4 
1 

f(x) = r::z-1 
yX - 1 



256 5 LIMITS, ANALYTIC GEOMETRY, AND APPROXIMATIONS 

42 
. I 

I (x) = fi-=-~ 
· I- x 2 

In Problems 43-55, graph the given function. 

43 f(x) = lxl- I 44 f(x) = I -12xl 

X 
45 f(x) = 12x- II 46 /(x) = 2 + , 2 - 3 r 

• 1 r 

47 f(x) = 2x + lx - 21 48 f(x) = x2 + lxl 

49 f(x) = x2 + lx + II 50 f(x) = lx2 - II 

51 f(x) = JN 52 j(x) = xflxl 

X .flx) = 
X3- X 

53 {(x) =X+~~ 54 - ---

- X \x'1 

0 55 f(x) = xv'l + !jxl 

5.4 PARABOLAS 

In this section we shall study the graph of the equation 

y = ax 2 + bx + c, 

which is a U-shaped curve called a vertical parabola. We begin with the general 
definition of a parabola in the plane. 

Recall that the distance between a point P and a line L is the length of the 
perpendicular line from P to L, as in Figure 5.4.1. If we are given a line Land a point 
F not on L, the set of all points equidistant from Land F will form aU-shaped curve 
that passes midway between Land F. This curve is a parabola, shown in Figure 5.4.2. 

Figure 5.4. 1 

Figure 5.4.2 
Parabola = set of points 

equidistant from Land F. 

p 
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DEFINITION OF PARABOLA 

Given a line L and a point F not on the line, the set of all points equidistant ji-om 
L and F is called the parabola with directrix L and focus F. 

The line through the focus perpendicular to the directrix is called the axis 
of the parabola. The point where the parabola crosses the axis is called the vertex. 
These are illustrated in Figure 5.4.3. 

As we can see from the figure, the parabola is symmetric about its axis. That 
is, if we fold the page along the axis, the parabola will fold upon itself. The vertex is 
just the point halfway between the focus and directrix. It is the point on the parabola 
which is closest to the directrix and focus. 

When a ball is thrown into the air, its path is the parabola shown in Figure 
5.4.4, with the highest point at the vertex. 

Telescope mirrors and radar antennae are in the shape of parabolas. This is 
done because all light rays coming from the direction of the axis will be reflected to a 
single point, the focus (see Figure 5.4.5). For the same reason, reflectors for search­
lights and automobile headlights are shaped like parabolas, with the light at the 
focus. 

Figure 5.4.3 

Figure 5.4.4 

I 
I·~ 

I ><: 
;"'<:' 

I 
I 

I 
I 

;. Focus 
I 

Figure 5.4.5 

A parabola with a vertical axis (and horizontal directrix) is called a vertical 
parabola. The vertex of a vertical parabola is either the highest or lowest point, 
because it is the point closest to the directrix. 
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EXAMPLE 1 Find an equation for the vertical parabola with directrix y = -1 and 
focus F(O, 1) (Figure 5.4.6). 

y 

Figure 5.4.6 

P(x, y) 
I 
I 
I 
I 

I X _______ L _____ _ 

Directrix y = - 1 

Given a point P(x, y), the perpendicular from P to the directrix is a vertical 

line of length Jcv + 1f. Thus 

distance from P to directrix = j(y + 1)2
• 

Also, distance from P to focus = Jx 2 + (y - 1)2
. 

The point Plies on the parabola exactly when these distances are equal, 

j(y + 1)2 = Jx2 + (y- 1)2. 

The equation of a parabola is particularly simple if the coordinate axes 
are chosen so that the vertex is at the origin and the focus is on the y-axis. The 
parabola will then be vertical and have an equation of the form y = ax 2

• 

THEORE.M 1 

The graph of the equation 

(where a i= 0) is the parabola withfocus F(O, ±a) and directrix y = -Cia). Its 
vertex is (0, 0), and its axis is they-axis. 

PROOF Let us find the equation of the parabola with focus F(O, d) and directrix 
y = -d, shown in Figure 5.4.7. 

Our plan is to show that the equation is y = ax2 where d = ±a. Given a 
point P(x, ), the perpendicular from P to the directrix is a vertical line of 
length (y + d) 2

. Thus 

distance from P to directrix = .j(y + d) 2
• 

Also, distance from P to focus = -J x 2 + (y - d) 2 . 

The point P lies on the parabola exactly when these distances are equal, 

.j(y + d)2 = Jx2 + (y- d)2. 

hjkeisler
Text Box
F(0,1/4a)

hjkeisler
Text Box
1/(4a). Its

hjkeisler
Text Box
d = 1/4a.
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Figure 5.4.7 

Simplifying we get 

y 

y = -d 

(y + d)z = xz + (y - d)z 

y2 + 2yd + d2 = x 2 + y2
- 2yd + d2 

4yd = x 2 

1 2 
y = 4dx · 

X 

Putting a = id, we have d = ia where y = ax2 is the equation of the parabola. 

Note that if a is negative, the focus will be below the x-axis and the directrix 
above the x-axis. 

EXAMPLE 2 Find the focus and directrix of the parabola 

y = -2x2
• 

In Theorem 1, a= -2 and d = ia = -l The focus is F(O, -t), and the 
directrix is y = l 

The next theorem shows that the graph of y = ax2 + bx + c is exactly 
like the graph of y = ax2

, except that its vertex is at the point (x0 , y0 ) where the 
curve has slope zero. The focus and directrix are still at a distance of ia above and 
below the vertex. 

THEOREM 2 

The graph of the equation 

y = ax 2 + bx + c 

(where a =!= 0) is a vertical parabola. Its vertex is at the point (x0 , Yo) where 

hjkeisler
Text Box
a=1/4d,

hjkeisler
Text Box
d=1/4a

hjkeisler
Text Box
y = --(1/2)

hjkeisler
Text Box
1/2 and d =1/4a

hjkeisler
Text Box
1/4a
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the curve has slope zero, the focus is F(x 0 , Yo + ia), and the directrix is 

Y =Yo- ta. 
PROOF We first compute x 0 . The curve y = CL'<

2 + bx + c has slope dyjdx = 
2ax + b. The slope is zero when 2ax + b = 0, x = - bj2a. Thus 

x 0 = -bj2a. 

Let p be the parabola with focus F(x 0 , Yo + ia) and directrix y = Yo - ia. 
Put X= x- x 0 and Y = )'- y 0 . In terms of X and Y, the focus and 
directrix are at 

(X, Y) = (0, ia), Y = -4a. 

By Theorem 1, p has the equation 

Y = aX 2
, 

or y - Yo = a(x - Xo)2, 

y = ax 2 
- 2ax0 x + (ax6 + Yo). 

Substituting -bj2a for x 0 , we have 

y = ax2 + bx + (b 2/4a + y 0 ). 

This shows that the parabola p and the curve y = ax 2 + bx + c differ at 
most by a constant. Moreover, the point (x0 , y0 ) lies on the curve. (x0 , y0 ) 

is also the vertex of the parabola p, where (X, Y) = (0, 0). Therefore the 
curve and the parabola are the same. 

EXAMPLE 3 Find the vertex, focus and directrix of the parabola 

y = 2x 2 
- 5x + 4. 

First find the point x 0 where the slope is 0. 

dy 
- = 4x- 5. 
dx 

Then 4x0 - 5 = 0, 

Xo = ~· 

Substitute to find Yo. 

The vertex is 

(xo, Yo) = (~, ~J 

We have a = 2, soia = l By Theorem 2, the focus is 
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The directrix is 

1 
Y =Yo--, 

4a 

3 
y = 4" 
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The vertex, axis, focus, and directrix can be used to sketch quickly the 
graph of a vertical parabola. 

GRAPHING A PARABOLA y = ax 2 + bx + c 

Step 1 Make a table of values of x, y, dyjdx, and d2 yjdx2 at x---+ - oo, x = -b/2a 
(the vertex), and x---+ oc. 

Step 2 Compute the axis, vertex, focus, and directrix, and draw them. 

Step 3 Draw the two squares with sides along the axis and directrix and a corner 
at the focus. The two new corners level with the focus, P and Q, are on the 
parabola because they are equidistant from the focus and the directrix. 

Step 4 Draw the diagonals of the squares through P and Q. These are the tangent 
lines to the parabola at P and Q. (The proof of this fact is left as a problem.) 

Step 5 Draw the parabola through the vertex, P, and Q, using the table and tangent 
lines. The parabola should be symmetrical about the axis x = -b/2a. See 
Figure 5.4.8(a). 

A horizontal parabola x = ay2 + by + c can be graphed by the same 
method with the roles of x and y interchanged, as in Figure 5.4.8(b ). 

y y 

X 

directrix 

(a) Vertical (b) Horizontal 

Figure 5.4.8 

EXAMPLE 2 (Continued) Sketch the parabola y = -tx2
• 

The first two derivatives are 

dy 

dx 
-X, -1. 
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The only critical point is at x = 0. The table of values follows. 

X y dyjdx d2yjdx2 Comments 

lim -CD CD vertical 
x-->- oo 

x=O 0 0 -1 max, n 

lim -oc -XJ vertical 
x_,. oc 

The parabola is drawn in Figure 5.4.9, using Steps 1-5. 

X 

y = -+xz 
Figure 5.4.9 

EXAMPLE 3 (Continued) Sketch the parabola y = 2x 2 
- 5x + 4. 

The first two derivatives are 

dy 
- = 4x- 5 
dx ' 

The only critical point is at the vertex, where x = i, The table of values 
follows. 

X y dyjdx d2yjdx2 Comments 

lim oc -oc vertical 
;.:->- cc 

5/4 7/8 0 + min, u 

lim CD oc vertical 
x-->- co 

The parabola is drawn in Figure 5.4.10, again using Steps 1-5. 
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y 

y = 2x2
- 5x + 4 

y=i 

Figure 5.4.10 

I 
I 

I •. = 1_ 
I_, 4 
I 
I 
I 

I 
I 
I 

We can now sketch the graph of any equation of the form 

Ax2 + Dx + Ey + F = 0. 

X 

In the ordinary case where both A and E are different from zero, proceed as follows. 
First, solve the equation for y, obtaining the new equation 

A 2 D F 
y= --X --X--. 

E E E 

Second, use the metliod in this section to sketch the graph, which will be a vertical 
parabola. There are also two degenerate cases. If A = 0, the graph is a straight line. 
If E = 0, then y does not appear at all, and the graph is either two vertical lines, 
one vertical line, or empty. 

We can also sketch the graph of any equation of the form 

Cy2 + Dx + Ey + F = 0. 

In the ordinary case where C and D are different from zero, the graph will be a 
horizontal parabola. 

PROBLEMS FOR SECTION 5.4 

In Problems 1-14, find the focus and directrix, and sketch the given parabola. 

1 y = 2x2 2 y = 1xz 

3 Y = -xz 4 y = 2- x2 

5 y = x2
- 2x 6 y = x2 + 2x + 1 

7 y = 2x2 + x- 2 8 y = x 2
- x + 1 

9 y = 3 + x- x2 10 y = 1- x- x2 

11 y = 1x2 + x- 1 12 y = tx2- x 

13 Y = (x- 2f 14 y = 2(x + 1)2 

15 X= },2 16 X= 2y2
- 4 

17 X= -y2 + y + 1 18 X= 3- (y- 2)2 



19 

20 

21 

22 
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Find the equation of the parabola with directrix _r = 0 and focus F(2, 2). 

Find the equation of the parabola with directrix y = -1 and focus F(O, 0). 

Find the focus of the parabola with directrix .r = 1 and vertex ( L 2). 

Find the equation of the parabola with focus ( -1. - 1) and vertex ( -1. 0). 

5.5 ELLIPSES AND HYPERBOLAS 

In this section we shall study two important types of curves, the ellipses and 
hyperbolas. The intersection of a circular cone and a plane will always be either a 
parabola, an ellipse, a hyperbola, or one of three degenerate cases-one line, two 
lines, or a point. For this reason, parabolas, ellipses, and hyperbolas are called 
conic sections. We begin with the definition of an ellipse in the plane. 

DEFINITION OF ELLIPSE 

Given two points, F1 and F2 , and a constant, L, the ellipse with foci F1 and 
F2 and length L is the set of all points the sum of whose distances fi"om F1 

and F2 is equal to L. 

If the two foci F1 and F2 are the same, the ellipse is just the circle with center 
at the focus and diameter L. Circles are discussed in Section 1.1. 

We shall concentrate on the case where the foci F1 and F2 are different. 
The ellipse will be an oval curve shown in Figure 5.5.1. The orbit of a planet is an 
ellipse with the sun at one focus. The eye sees a tilted circle as an ellipse. 

Figure 5.5.1 Ellipse 

'-. 

/ 

" '-. 

/ 
/ 

/ . . 
// maJor ax1s 

/ 
/ 

/ 

'-. . . 
'-. mmor axrs 

'-. 

" PF 1 + PF, = length "" 

The line through the foci F1 and F2 is called the major axis of the ellipse. 
The point on the major axis halfway between the foci is called the center. The line 
through the center perpendicular to the major axis is called the minor axis. 

An ellipse is symmetric about both its major and its minor axes. That is, 
for any point P on the ellipse, the mirror image of P on the other side of either axis 
is also on the ellipse. The equation of an ellipse has a simple form when the major 
and minor axes are chosen for the x-axis and y-axis. 
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THEOREM 1 

For any positive a and b, the graph of the equation 

x2 y2 
a2 + b2 = 1 

is an ellipse with its center at the origin. There are three cases: 

(i) a= b. The ellipse is a circle of radius a. 

(ii) a > b. This is a horizontal ellipse, whose major axis is the x-axis, and 
whose minor axis is they-axis. The length is 2a. The foci are at ( -c, 0) 
and (c, 0), where cis found by 

c2 = a2- bz. 

(iii) a < b. This is a vertical ellipse whose major axis is the y-axis and 
whose minor axis is the x-axis. The length is 2b. The foci are at (0, -c) 
and (0, c), where cis found by 

c2 = b2- a2. 

y 

b 

X 
a X 

Horizontal Vertical 

Figure 5.5.2 c" = a2 - b2 c2 = b2 
- a 2 

This theorem is illustrated by Figure 5.5.2. Here is the proof in case (ii), 
a > b. A point P(x, y) is on the ellipse with foci (- c, 0), (c, 0) and length 2a if and 
only if the sum of the distances from P to the foci is 2a. That is, 

Jcx + c)2 + y 2 + J(x- c)2 + y 2 = 2a. 

Rewrite this as 

Square both sides: 

x 2 
- 2cx + c2 + y2 = 4a2

- 4aJ(x + c)2 + y2 + x 2 + 2cx + c2 + y2
• 

Simplify: 
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Square both sides again: 

a 2(x 2 + 2cx + c2 + y2) = a 4 + 2a2cx + c2x 2
. 

Collect the x 2 and y2 terms and simplify. 

x2(a2 _ c2) + y2(a2) = a4 _ azc2 = a2(a2 _ c2). 

Using the equation b2 = a2 
- c2

, write this as 

x2b2 + y2a2 = a2b2. 

Finally, divide by a2b2 to obtain the required equation 

x2 y2 
a2 + b2 = 1. 

Setting x = 0 we see that the ellipse meets they-axis at the two points y = ±b. 
Also, it meets the x-axis at x = ±a. Since all terms are ;:::.: 0, at every point on the 
ellipse we have · 

and 

x2 
2 :s;; 1, 
a 

}'2 

b2 :s;; 1, 

-a :s;; x :s;; a 

-b :s;; y :s;; b. 

Using these facts we can easily sketch the ellipse. It is an oval curve inscribed in the 
rectangle bounded by the lines x = ±a, y = ±b. 

Figure 5.5.3 shows a horizontal ellipse (where a > b) and a vertical ellipse 
(where a < b). 

y 

X 

-b 

Horizontal ellipse 
Figure 5.5.3 

x2 
EXAMPLE 1 Sketch the curve ~ + y2 = 1. 

y 

b 

Vertical ellipse 

X 

The curve is an ellipse that cuts the x-axis at ± 3 and the y-axis at ± 1. To 
sketch the curve, we first draw the rectangle x = ± 3, y = ± 1 with dotted 
lines and then inscribe the ellipse in the rectangle. The ellipse, shown in 
Figure 5.5.4, is horizontal. 
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Figure 5.5.4 

EXAMPLE 2 Sketch the curve 4x2 + y2 = 9 and find the foci. 

The equation may be rewritten as 

~x2 + !Y2 = 1. 

The graph (Figure 5.5.5) is a vertical ellipse cutting the x-axis at ±~and the 
y-axis at ± 3. 

-3/2 

Figure 5.5.5 

y 

3 

X 

4x 2 + y 2 = 9 

By Theorem 1, the foci are on they-axis at (0, ±c). We compute c from the 
equation 

a and b are the x and y intercepts of the ellipse, a = ~, b = 3. Thus 

c2 = 32 - (!)2 = 247 

c = ~ "' 2.598. 

The foci are at (0, ± 2.598). 

We turn next to the hyperbola. A hyperbola, like an ellipse, has two foci. 
However, the distances between the foci and a point on the hyperbola must have a 
constant difference instead of a constant sum. 
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DEFINITION OF HYPERBOLA 

Gi~:en t\\'o distinct points, F1 and F2 , and a constant, !, the hyperbola with 
foci F1 and F2 and difference I is the set of all points the difference of whose 
distances from F1 and F2 is equal to I. 

In this definition, I must be a positive number less than the distance between 
the foci. A hyperbola will have two separate branches, each shaped like a rounded V. 
On one branch the points are closer to F 1 than F2 ; and on the other branch they 
are closer to F2 than F 1. Figure 5.5.6 shows a typical hyperbola. The path of a comet 
on an orbit that will escape the solar system is a hyperbola with the sun at one focus. 
The shadow of a cylindricallampshade on a wall is a hyperbola (the section of the 
light cone cut by the wall). 

The line through the foci is the transverse axis of the hyperbola, and the 
point on the axis midway between the foci is the center. The hyperbola crosses the 
transverse axis at two points called the vertices. The line through the center perpen­
dicular to the transverse axis is the conjugate axis. The hyperbola never crosses its 
conjugate axis. A hyperbola is symmetric about both axes. A simple equation is 
obtained when the transverse and conjugate axes are chosen for the coordinate axes. 

/ 
/ 

/ 
/ 

/ 
/ 

/ 

Figure 5.5.6 Hyperbola 

THEOREM 2 

/ 

/ 
/ 

/ 

/ 
/ 

/ 

/ 
/ 

/ 

/ transverse 
// axis 

For any positive a and b, the graph of the equation 

)'2 x2 
---= 1 b2 a2 

is a hyperbola ·with its center at the origin. Its trans~:erse axis is the y-axis, 
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and its conjugate axis is the x-axis. The vertices are at (0, ±b), and the foci 
are at (0, ±c), where c is found by 

az + bz = cz. 

The graph of the equation 

xz yz 
az- bz = 1 

is a hyperbola with similar properties with the roles of x, a and y, b reversed. The 
proof of Theorem 2 uses a computation like the proof of Theorem 1 on ellipses 
and is omitted. 

Using derivatives and limits, we can get additional information that is 
helpful in sketching the graph of a hyperbola. By solving the equation 

yz xz 
---= 1 
bz az 

for y as a function of x, we see that the upper and lower branches have the equations 

upper branch: 

lower branch: 

b 
y = -Jaz + xz, 

a 

b 
y = - - J az + xz. 

a 

We concentrate on the upper branch. Its first two derivatives, after some algebraic 
simplification, come out to be 

dy bx 

dx aJaz + xz' 

Thus the first derivative is zero only at x = 0 (the vertex), and the second derivative 
is always positive. We have the following table of values for the upper branch. 

X y dyjdx d2yjdx2 Comments 

lim oc -bja 0 decreasing 
x-+- oo 

0 b 0 bja2 minimum, u 

lim CfJ bja 0 increasing 
x-oo 

All the limit computations are easy except for dyjdx, which we work out for x --+ oc. 
Let H be positive infinite. 

lim dyfdx = lim bx 
x-co x-co aJa2 + x 2 

= s{aJ a~: H 2] 

= s{aJ a2 : 2 + J = ~ · 
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We carry out a similar computation for the limit as x---> - cc. 

. dy . bx 
hm - = hm 

x~-oo dx x~-co aJa2 + x 2 

[ 
b(-H) J - st 

- a~a 2 +(-H)2 

[ 
-b J - st -

- aJa 2H- 2 + 1 -

b 

a 

The table shows that the upper branch is almost a straight line with slope 
-bja for large negative x and almost a straight line with slope bja for large positive x. 
In fact, we shall show now that the lines 

y = bxja, y = -bxja 

are asymptotes of the hyperbola. That is, as x approaches CD or -CD, the distance 
between the line and the hyperbola approaches zero. We show that the upper branch 
approaches the line y = bxja as x ---> oo; that is, 

lim - J a2 + x 2 
- - = 0. [

b bx] 
x~co a a 

Let H be positive infinite. Then 

b J 2 2 bH b J 2 2 - a + H - - = - [ a + H - H] 
a a a 

= ~ [(Ja
2 + H 2

- H)(ja
2 + H 2 

+H)] 

a Ja 2 + H 2 + H 

b a2 + H 2
- H 2 

a Ja 2 + H 2 + H 

= ab(Ja2 + H 2 + H)- 1
. 

This is infinitesimal, so the limit is zero. Here are the steps for graphing a hyperbola 
yz;bz _ xz ;az = 1. 

GRAPHING A HYPERBOLA 

Step 7 Compute the values of a and b from the equation. Draw the rectangle with 
sides x = ±a, y = ±b. 

Step 2 Draw the diagonals of the rectangle. They will be the asymptotes. 

Step 3 Mark the vertices of the hyperbola at the points (0, ±b). 

Step 4 Draw the upper and lower branches of the hyperbola. The upper branch 
has a minimum at the vertex (0, b), is concave upward, and approaches the 
diagonal asymptotes from above. The lower branch is a mirror image. 
See Figure 5.5.7. 
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y 

X 

Figure 5.5.7 Figure 5.5.8 

A hyperbola of the form 

is graphed in a similar manner, but with the roles of x and y reversed. There is a 
left branch and a right branch, which are vertical at the vertices (±a, 0). 

EXAMPLE 3 Sketch the hyperbola 4y2 
- x2 = 1 and find its foci. 

First compute a and b. 

4y2 = y2jb2, b=! 
xz = xz;az, a= 1. 

The rectangle has sides x = ± 1, y = ±!, and the vertices are at (0, ±!). 
The hyperbola is sketched using Steps 1-4 in Figure 5.5.8. The foci are 
at (0, ±c) where 

c2 = a2 + b2 = 12 + C!f = 1.25 

c = JT.25 - 1.118. 

Using the method of this section, we can sketch the graph of any equation 
of the form 

Ax2 + Cy2 + F = 0. 

In the ordinary case where A, C, and F are all different from zero, rewrite the 
equation as 

Alxz + Clyz = 1, 

where A1 = - AjF, C1 = - C/F. There are four cases depending on the signs of 
A1 and C1, which are listed in Table 5.5.1. 
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Table 5.5.1 

A! cl Graph of A 1x 2 + C1y 2 = 1 

>0 >0 ellipse 
xz y2 
az + bz = 1 

>0 <0 hyperbola 
xz y2 
---= 1 
az bz 

<0 >0 hyperbola 
y2 xz 
---= 1 bz az 

<0 <0 empty 

If one or two of A, C, and F are zero, the graph will be degenerate (two 
lines, one line, a point, or empty). 

PROBLEMS FOR SECTION 5.5 

In Problems 1-12, find the foci and sketch the given ellipse or hyperbola. 

3 

5 

7 

9 

II 

x 2 + 4y 2 = 1 

±xz + 4yz = 
9x 2 + 4y 2 = 
y

2 
- 4x 2 = 1 

9y 2 
- x 2 = 4 

xz _ )'2 = 1 

2 

1 4 

16 6 

8 

10 

12 

xz + !J-2 = 1 

nx2 + tl = 1 

x 2 + 9y 2 = 4 

)'2- _\"2 = 4 

4y 2 
- 4x 2 = 1 

xz y2 
---= 1 
9 4 

13 Prove that the hyperbola x 2 ja2 - y 2 fb 2 = 1 has the two asymptotes y = bxfa and 
y = -bxja. 

5.6 SECOND DEGREE CURVES 

A second degree equation is an equation of the form 

(1) Ax 2 + Bxy + Cy 2 + Dx + Ey + F = 0. 

The graph of such an equation will be a conic section: a parabola, ellipse, hyperbola, 
or one of several degenerate cases. In Section 5.4 we saw that the graph of a second 
degree equation of one of the forms 

(2) Ax2 + Dx + Ey + F = 0 

or 

(3) Cy 2 + Dx + Ey + F = 0 

is a parabola or degenerate. In Section 5.5 we saw that the graph of a second degree 
equation of the form 
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(4) 

is an ellipse, a hyperbola, or degenerate. 
In this and the next section we shall see how to describe and sketch the 

graph of any second degree equation. We will begin with the Discriminant Test, 
which shows at once whether a nondegenerate curve is a parabola, ellipse, or 
hyperbola. The next topic in this section will be translation of axes, which can change 
any second degree equation with no xy-term, 

(5) Ax2 + Cy2 + Dx + Ey + F = 0, 

into an equation of one of the simple forms (2), (3), or ( 4). 
In the following section we will study rotation of axes, which can change 

any second degree equation into an equation of the form (5) with no xy-term. We 
will then be able to deal with any second degree equation by using first rotation 
and then translation of axes. 

Here is the Discriminant Test. 

DEFINITION 

The quantity B 2 
- 4AC is called the disc1iminant of the equation 

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0. 

DISCRIMINANT TEST 

If we ignore the degenerate cases, the graph of a second degree equation is: 

A parabola if the discriminant is zero. 
An ellipse if the discriminant is negative. 
A hyperbola if the discriminant is positive. 

For example, the equation 

xy- 1 = 0 

has positive discriminant 12 
- 4 • 0 = 1, and its graph is a hyperbola. The equation 

2x2 + xy + y 2
- 1 = 0 

has negative discriminant 12 
- 4 • 2 • 1 = -7, and its graph is an ellipse. 

The degenerate graphs that can arise are: two straight lines, one straight 
line, one point, and the empty graph. The Discriminant Test alone does not tell 
whether or not the graph is degenerate. However, a degenerate case can usually be 
recognized when one tries to sketch the graph. For the remainder of this section 
we shall ignore the degenerate cases. 

We now turn to the method of Translation of Axes. This method is useful 
for graphing a second degree equation with no xy-term, 

Ax2 + Cy 2 + Dx + Ey + F = 0. 

If A or C is zero, the graph will be a horizontal or vertical parabola, which can be 
graphed by the method of Section 5.4. If both A and C are nonzero, the graph turns 
out to be an ellipse or hyperbola with horizontal and vertical axes X and Y, as in 
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Figure 5.6.1. In the method of Translation of Axes, we take X and Y as a new pair 
of coordinate axes and get a new equation for the curve in the simple form 

AX 2 + CY 2 + FI = 0. 

Figure 5.6.1 

This curve can be sketched as in Section 5.5. The name "Translation of Axes" means 
that the original coordinate axes x and y are replaced by new coordinate axes X 
and Y, which are parallel to the original axes. 

The new axes are found using a procedure from algebra called "completing 
the squares." This procedure changes an expression like Ax 2 + Dx into a perfect 
square plus a constant. 

FORMULA FOR COMPLETING THE SQUARES 

Let A be different from zero. Then 

where 

For example, 

where X= x -l 

Ax 2 + Dx = AX 2 + K, 

D 
X=x+-

2A' 

-Dz 
K=--4A . 

We shall illustrate the method of Translation of Axes with an example and 
then describe the method in generaL 

EXAMPLE 1 Sketch the curve 4x 2
- y 2

- 16x- 2y + 11 = 0. 

Step 1 Apply the Discriminant Test to determine the type of curve. 

B 2 
- 4AC = 02 

- 4 • 4 · ( -1) = 16. 

hjkeisler
Text Box
9/16
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The discriminant is positive, so the graph is a hyperbola. 

Step 2 Simplify by completing the squares. This is done by putting 

E 
Y=y+-

2C 

and writing the original equation in terms of X and Y. 
-16 

X = X + 2 • 4 = X - 2, X = X + 2 

-2 
y = y + 2. ( -1) = y + 1, y = y- 1 

4(X + 2)2 
- (Y - 1)2 

- 16(X + 2) - 2(Y - 1) + 11 = 0 

4(X2 + 4X + 4)- 16(X + 2)- (Y 2
- 2Y + 1)- 2(Y- 1) + 11 = 0. 

The X and Y terms cancel, and 

4X2 + 16 - 32 - Y2 
- 1 + 2 + 11 = 0, 

4X2 
- Y 2 

- 4 = 0. 

Step 3 Draw dotted lines for the X and Y axes, and sketch the curve as in Section 
5.5. This is a hyperbola in the (X, Y)-plane. The X -axis is the line Y = 0, 
or y = -1. The Y-axis is the line X= 0, or x = 2. The graph is shown 
in Figure 5.6.2. 

Figure 5.6.2 Example 1 
4x2 

- )'
2 

- 16x - 2y + 11 = 0 

METHOD OF TRANSLATION OF AXES 

When to Use To graph an equation of theform Ax2 + Cy 2 + Dx + Ey + F = 0 where 
A and C are both nonzero. 

Step 1 Use the Discriminant Test to determine the type of curve. 



Step 2 Completing the Squares: Put 

D 
X=x+-

~ 2A' 
E 

y =y+-
2C 

and rewrite the original equation in terms of X and Y. The new equation will 
have the simple form 

where F1 is a nell' constant. 

Step 3 Draw dotted lines for the X and Y axes and sketch the curue as in Section 5.5. 

PROBLEMS FOR SECTION 5.6 

In Problems 1-6, given that the graph is nondegenerate, use the Discriminant Test to determine 
whether the graph is a parabola, ellipse, or hyperbola. 

1 x 2 + 2xy- 3y2 + Sx + 6y- 100 = 0 

2 4x 2 
- 8xy + 6y 2 + lOx - 2y- 20 = 0 

3 4x 2 + 4xy + y 2 + 7x + 8y = 0 

4 9x 2 + 6xy + y2 + 6x - 22 = 0 
5 x 2 + Sxy + 10y2 

- 16 = 0 

6 4xy + Sx - lOy + 1 = 0 

In Problems 7-18, use the method of Translation of Axes to sketch the curve. 

7 x2 + i - 4x + 3 = 0 8 x 2 + / + 2x - 6y + 6 = 0 

9 x2 
- y 2 + 4x- 2y + 2 = 0 10 -x2 + y2 + 8x- 6y - 16 = 0 

11 x 2 + 4y2 
- 4x + 24y + 36 = 0 12 4x 2 

- 9y 2 + 8x + 18y - 41 = 0 

13 9x2
- 4y 2

- 36x- 24y- 36 = 0 14 -x2 + 4y 2 + 16y + 12 = 0 

15 -x2 + 3y2 + 8x + 30y + 56= 0 16 5x 2 + 2y2 + lOx+ 12y + 28 = 0 

17 I6x 2 + 9y2
- 320x- 108y + 1780 = 0 

18 25x 2 + 4l + 250x - 40y + 625 = 0 

5.7 ROTATION OF AXES 

We have seen how to graph any second degree equation with no xy-term. These 
graphs are parabolas, ellipses, or hyperbolas with vertical and horizontal axes. 
When the equation has a nonzero xy-term, the graph will have diagonal axes. By 
rotating the axes, one can get new coordinate axes in the proper direction. The 
method will give us a new equation that has no xy-term and can be graphed by 
our previous method. 

Suppose the x and y axes are rotated counterclockwise by an angle :x, and 
the new coordinate axes are called X and Y, as in Figure 5.7.1. A point P in the 
plane will have a pair of coordinates (x, y) in the old coordinat~ system and (X, Y) 
in the new coordinate system. The old and new coordinates of P are related to each 
other by the equations for rotation of axes. 
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Figure 5.7.1 Rotation of Axes 
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EQUATIONS FOR ROTATION OF AXES 

x = X cos r:J. - Y sin r:J., y = X sin Cl. + Y cos Cl.. 

X 

These equations can be seen directly from Figure 5. 7.2. If we substitute the equations 
for rotation of axes into a second degree equation in x and y, we get a new second 
degree equation in the coordinates X and Y. 

EXAMPLE 1 Find the equation of the curve 

xy- 4 = 0, 

with respect to the new coordinate axes X and Y formed by a counterclockwise 
rotation of 30 degrees (Figure 5.7.3). 

277 
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(I) 

In this example, 

. 1 
Sin'./.= 2' COS'./.= f. 

1 J3 
y =-X +-Y. 

2 2 
Thus 

J3 1 x=--X--Y 2 2 , 

Substitute into the original equation and collect terms. 

X)'- 4 = 0, 

(,j3 1 ) (1 '\/3 ) -X--Y · -X+-Y -4=0 
2 2 2 2 , 

J3 X 2 + ~ XY- J3 Y 2 - 4 = 0. 
4 2 4 

Given any second degree equation 

Ax 2 + Bxy + Cy 2 + Dx + Ey + F = 0 

and any angle of rotation 'l., Of!e can substitute the equations of rotation and collect 
terms to get a new second degree equation in the X and Y coordinates, 

(2) 

It can be shown that the discriminant is unchanged by the rotation; that is, 

B2
- 4AC = Bf- 4AICI. 

This gives a useful check on the computations. 
In Example 1 above1 the original discriminant is 

B2 
- 4AC = 12 

- 4 • 0 · 0 = 1. 

The new equation has the same discriminant, 

2 (1) 2 (J3)( fi) 1 3 BI-4AICI = 2 -4 4 -4 =4+4= 1. 

The trouble with Example 1 is that the new equation is more complicated 
than the original equation, and in particular there is still a nonzero XY-term. We 
would like to be able to choose the angle of rotation '.!. so that the new equation 
has no X Y -term, because we could then sketch the curve. The next theorem tells 
us which angle of rotation is needed. 

THEOREM 1 

Given a second degree equation 

Ax2 + Bxy + Cy 2 + Dx + Ey + F = 0 

with B nonzero. Rotate the coordinate axes counterclockwise through an 
angle rx for which 

A-C 
cot(2'.1.)- --- B . 
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Then the equation 

A1X 2 + B1XY + C1Y 2 + D1X + E1Y + F1 = 0 

with respect to the new coordinate axes X and Y has X Y -term B 1 = 0. 

This theorem can be proved as follows. When the rotation equations are 
substituted and terms collected, the XY coefficient B1 comes out to be 

B1 = B(cos2 a- sin 2 a)- 2(A - C) sin a cos a. 

From trigonometry, 

cos2 a - sin2 a = cos (2a), 2 sin a cos a = sin (2a). 

Thus B1 = B cos (2a) - (A - C) sin (2a). 

So B1 = 0 if and only if 

or 

B cos (2a) - (A - C) sin (2a) = 0, 

cos (2a) _ A- C = 
0 

sin (2a) B ' 

A-C 
cot (2a) = -B-. 

As shown in Figure 5.7.4, a is the angle between the original coordinate 
axes and the axes of the parabola, ellipse, or hyperbola. 

We are now ready to use rotation of axes to sketch a second degree curve. 
We illustrate the method for the curve introduced in Example 1. 

EXAMPLE 2 Sketch the curve xy- 4 = 0. 

Step 1 Apply the Discriminant Test to find the type of curve. 

B2 
- 4AC = 12 

- 4 • 0 • 0 = 1. 

The discriminant is positive, so the curve is a hyperbola. 

Step 2 Find an angle a with 

A-C 
cot (2a) = -B-. 

0-0 
cot (2a) = -

1
- = 0. 

Step 3 Change coordinate axes using the rotation equations. 

fi . fi 
COSC/. = 2' Sill Ct.= 2' 

fi fi x = X cos a - Y sin a = -X - - Y. 
2 2 

y = X sin a + Y cos a = f X + f Y. 
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y\ 

Figure 5.7.4 

\ 
\ 

\ 
\ 

\ 

)' 
y 

X 

Substituting, we get 

xy- 4 = 0, 

(fiX _ fi y) . (fiX + fi y) - 4 = 0 
2 2 2 2 ' 

1 2 1 2 -X --Y -4=0 2 2 . 

As a check, the discriminant is stiJI 02 
- 4 · C1) • ( -1) = 1. 

Step 4 Draw the X and Y axes as dotted lines and sketch the curve. 

The new axes are found by rotating the old axes by Ct. = 45°. The curve is 
shown in Figure 5.7.5. 

METHOD OF ROTATION OF AXES 

When to Use To graph an equation of the form Ax 2 + Bxy + Cl + Dx + Ey + F 
= 0 where B is nonzero. 

Step 1 Use the Discriminant Test to determine the type of curve. 
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Figure 5.7.5 Example 2 

Step 2 Find an angle r.t. with 

y 

xy-4=0 

A-C 
cot (2r.t.) = -B-. 

X 

Step 3 Change coordinate axes using the Rotation Equations. The new equation 
has theform 

where x = X cos r.t. - Y sin r.t., y = X sin r.t. + Y cos r.t.. 

Step 4 Draw the X- and Y-axes by rotating the old axes through the angle r.t.. The 
curve can now be sketched by our previous method, using Translation of Axes 
if necessary. 

Here is an overall summary of the use of rotations and translations of axes. 
The problem is to graph an equation of the form 

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0. 

By Rotation of Axes, we get a new equation of the simpler form 

A 1X 2 + C 1 Y2 + D1X + EtY + Ft = 0. 

If either A 1 = 0 or C 1 = 0, the curve is a parabola that can be sketched by the method 
of Section 5.4. If A1 and C 1 are both nonzero, Translation of Axes gives us a new 
equation of the simpler form 

A 2 U
2 + B 2 V

2 + F 2 = 0. 

The graph of this equation is an ellipse or hyperbola, which can be sketched by the 
method of Section 5.5. The degenerate cases-two lines, one line, a point, or an 
empty graph-may also occur. 
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PROBLEMS FOR SECTION 5.7 

In Problems [-10, rotate the axes to transform the given equation into a new equation with 
no X Y -term. Find the angle of rotation and the new equation. 

1 xy + 4 = 0 2 x 2 + xy + y 2 
= 2 

3 x 2 
- 4xr + y 2 = 1 4 x 2 + 3xy + l = 4 

5 x 2 + 2JJxy - y2 = 7 6 5x 2 
- J3xy + 4y2 = 6 

7 

9 

11 

0 12 

013 

0 14 

x 2 + xy = 3 

4x2 
- J3xy + _r 2 = 5 

8 

10 

2x2 
- xy - y 2 = 1 

2x 2 + J3xy- y 2 = -10 

Prove that any second degree Equation (I) in which A = C can be transformed into 
an equation with no X Y -term by a 45c rotation of axes. 

Prove that if we begin with a second degree equation with no first degree terms, 
Ax 2 + Bxy + Cy 2 + F = 0, and then rotate axes, the new equation will again have 
no first degree terms. 

Prove that the sum A + C is not changed by rotation of axes. That is, if Equation (2) 
is obtained from Equation ( 1) by rotation of axes, then A + C = A 1 + C 1. 

Prove that the discriminant of a second degree equation is not changed by rotation 
of axes. That is, if Equation (2) is obtained from Equation (1) by rotation of axes, then 
B 2

- 4AC = Bf- 4AICI. 

5.8 THE t, o CONDITION FOR LIMITS 

The traditional calculus course is developed entirely without infinitesimals. The 
starting point is the concept of a limit. The intuitive idea of limx~c .f(x) = L is: For 
every rea/number x which is close to but not equal to c, f(x) is close to L. 

It is hard to make this idea into a rigorous definition, because one must clarify 
the word "close". Indeed, the whole point of our infinitesimal approach to calculus is 
that it is easier to define and explain limits using infinitesimals. The definition of 
limits in terms of real numbers is traditionally expressed using the Greek letters 
c: (epsilon) and 6 (delta), and is therefore called the t:, (j condition for limits. 

The &, 6 condition will be based on the notion of distance between two real 
numbers. 

DEFINITION 

The distance between two real numbers x and c is the absolute value of their 
dUJerence, 

distance = lx - cl. 

x is within (j of' c if lx - cl :S: 6. 
x is strictly within 6 of' c !t' lx - cl < 6. 

Notice that the distance I x - c I is just the difference between the larger and 
the smaller of the two numbers x and c. This is a place where the absolute value sign 
is especially convenient. The following simple but helpful lemma is illustrated in 
Figure 5.8.1. 
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c-o c c+o 
t'"" ,,, "''»'>'>a'" N H"'" "'' 

(a) x within (j of c 

c- 0 c c 1- b 
~"''' "'"' ''' ,.,.,,.,.,,; ,,,,,,,. 

Figure 5.8.1 (b) x strictly within o of c 

LEMMA 

(i) xis within b of c if and only if 
C- b ~X~ C +b. 

(ii) x is strictly within b of c if and only if 

C- b <X< C +b. 

PROOF (i) Subtracting c from each term we see that 

c-b~x~c+b 

if and only if -8 ~X-C~ 8, 

which is true if and only if lx - cl ~ 8. 

The proof of (ii) is similar. 

We shall repeat our infinitesimal definition of limit from Section 3.3 and then 
write down thee, 8 condition for limits. Later we shall prove that the two definitions of 
limit are equivalent to each other. 

Suppose the real function f is defined for all real numbers x =f. c in some 
neighborhood of c. 

DEFINITION OF LIMIT (Repeated) 

The equation 

limf(x) = L 

means that whenever a hypeiTeal number x is infinitely close to but not equal 
to c, f(x) is infinitely close to L. 

t, o CONDITION FOR lim f(x) = L 
x~c 

For every real number e > 0 there is a real number b > 0 which depends on e 
such that whenever x is strictly within b of c but not equal to c, f(x) is strictly 
within e of L. In symbols, if 0 < lx - cl < b, then lf(x) - Ll <e. 
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In the 8. 6 condition, the notion of being infinitely close to c is replaced by 
being strictly within 6 of c, and being infinitely close to L is replaced by being strictly 
within 8 of L. But why are there two numbers 8 and 6, instead of just one? And why 
should 6 depend on e? Let us look at a simple example. 

EXAMPLE 1 Consider the limit ( 
1 Ox

2
) lim 1 + - --__ = I. 

x~o X 

When x = 0, the function ./(x) = 1 + !Ox 2 jx is undefined. When x is a real 
number close to but not equal to 0, f(x) is close to 1. 

Now let us be more explicit. How should we choose x to get ./(x) strictly 
within t of 1? To solve this problem we assume x is strictly within some 
distance 6 of 0 and get inequalities for f(x). 

By the lemma, we must find a 6 > 0 such that whenever 

- 6 < x < t5 and x =I= 0, 

we have 1 - t < f(x) < 1 + t. 
Assume -b <X and X< 6. 
Then -!0(5 < !Ox and !Ox< 106 

. !Ox2 
-too<--- and 

!Ox2 
, 

-- < IOo 
X X 

1 - lOb< 1 
10x2 

+-- and 1 
!Ox2 

+--< 1+ 106 
X X 

1 - 106 < f(x) < 1 + 106. 

If we set c'5 = 5
1
0 , then 

1 - t < .f(x) < 1 + t. 
This shows that 

if X =/= 0 

whenever - 5
1
0 < x < 5

1
0 and x =1= 0, 

In other words, 

1 - t < f(x) < 1 + t. 

whenever 0 < lxl < 5
1
0 , l.f(x)- 11 < t. 

A similar computation shows that for each e > 0, if 0 < lxl < e/10 then 
lf(x)- 11 < 8. Thus thee, 6 condition for limx~o (1 + 10x2jx) = 1 is true, 
and, for a given c:, a corresponding 6 is t5 = e/10. 

EXAMPLE 2 In the limit 

lim x 2 = 4, 
x->-2 

find a 6 > 0 such that whenever 0 < lx - 21 < 6, lx 2 - 41 < / 0 . 

By the Lemma, we must find 6 > 0 such that whenever 

2 - 6 < x < 2 + 6 and x =1= 2, 

4 - 1 ~ < X 2 < 4 + 110 • 

Assume that 2 - 6 < x and x < 2 + 6. 

As long as 2 - 6 and x are positive we may square both sides, 

4 - 46 + 62 < x 2 and x 2 < 4 + 46 + 62 
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4 + ( -46 + 62
) < x2 and x2 < 4 + (46 + 6 2

). 

Now take 6 small enough so that 

-/0 :::; -46 + b2 and 46 + 62 
:::; 1

1
0 . 

For example, 6 = s'o will do. Then 

4 - / 0 < x2 < 4 + lo · 
Thus whenever 0 < lx - 21 < lo, 
Notice that any smaller value of b, such as b = 1b0 , will also work. 

In geometric terms, the s, b condition says that for every horizontal strip (of 
width 2s) centered at L, there exists a vertical strip (of width 26) centered at c such 
that whenever x #- cis in the vertical strip,j(x) is in the horizontal strip. The graphs 
in Figure 5.8.2 indicate various horizontal strips and corresponding vertical strips. 
They should be examined closely. 

{(x) f(x) 

(a) 

f(xl f(x) 

(b) 

/(X) 1\xl 

(C) 
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There are also 8, b conditions for one-sided limits and infinite limits. The 
three cases below are typical. 

e, .S CONDITION FOR limf(x) = L 
X-•C 

For every real number£ > 0, there is a real number b > 0 which depends on 8 

such that whenever c < x < c + b, we hcwe if(x) - Ll < 8. 

Intuitively, when x is close to c but greater than c, f(x) is close to L. 

e, .S CONDITION FOR lim f(x} = L 
X.._. y 

For every real number 8 > 0 there is a real number B > 0 which depends on c. 
such that whenever x > B, we have if(x) - Ll < 8. 

Intuitively, when xis large, f(x) is close to L. 

e, .S CONDITION FOR lim f(x) = x 
X-> y_ 

For every real number A > 0 there is a real number B > 0 which depends on A 
such that whenever x > B, we have f(x) > A. 

Intuitively, when x is large, f(x) is large. 

EXAMPLE 3 In the limit 

lim 2 + ~ = 2, 
1~ X t 

find a real number B > 0 such that whenever t > B, (2 + 3/t) is strictly 
within 1/100 of 2. 

To find B, we assume t > B and t > 0, and get inequalities for 2 + 3/t. 

0 < t, 

3 
0<-

t' 

3 
2<2+-, 

t 

t > B 

3 3 
-<­
t B 
3 3 

2+-<2+-
t B 

Now choose B so that 3/B ~ 1/100. The number B = 300 will do. It follows 
that whenever t > 300, 

3 1 
2<2+-<2+-

t 100' 

d 2 
3. . . . 1 

an + t Is stnctly w1thm e = 
100 

of 2. 

EXAMPLE 4 In the limit 

lim (x 2 
- x) = x. 



5.8 THE €, D CONDITION FOR LIMITS 287 

find a B > 0 such that whenever x > B, x2 
- x > 10,000. 

This time we assume x > B and get an inequality for x2 
- x. We may 

assume B > 1. 

x>B>1 

x-1>B-1>0 

x(x - 1) > B(B - 1) 

x2
- x > B 2

- B. 

Now take a B such that B2 
- B > 10,000. The number B = 200 will do, 

because (200? - 200 = 39800. Thus whenever x > 200, x2 - x > 10,000. 

We conclude this section with the proof that the 8, b condition is equivalent 
to the infinitesimal definition of a limit. 

THEOREM 1 

Let f be defined in some deleted neighborhood of c. Then the following are 
equivalent: 

(i) limx~cf(x) = L. 

(ii) The 8, b condition for limx~cf(x) = L is true. 

PROOF We first assume the 8, b condition and prove that 

limf(x) = L. 

(1) 

Let x be any hyperreal number which is infinitely close but not equal to c. 
To prove that f(x) is infinitely close to L we must show that 

for every real 8 > 0, lf(x) - L I < E. 

Let E be any positive real number, and let b > 0 be the corresponding number 
in the 8, b condition. Since xis infinitely close to c and b > 0 is real, we have 

0 < jx- cj <b. 

By the 8, b condition and the Transfer Principle, 

lf(x) - Ll < 8. 

We conclude that f(x) is infinitely close to L. This proves that 

limf(x) = L. 
x~c 

For the other half of the proof we assume that 

limf(x) = L, 

and prove the 8, b condition. This will be done by an indirect proof. Assume 
that the 8, o condition is false for some real number 8 > 0. That means that 
for every real b > 0 there is a real number x = x(b) such that 

X# C, jx- cj < b, lf(x) - L! ~ 8. 

Now let o1 > 0 be a positive infinitesimal. By the Transfer Principle, 
Equation (1) holds for o1• Therefore x 1 = x(o 1 ) is infinitely close but not 
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equal to c. But since 

and c: is a positive real number, f(x 1) is not infinitely close to L. This con­
tradicts the equation 

limf(x) = L. 
x-+c 

We conclude that the 1::, 6 condition must be true after all. 

The theorem is also true for the other types of limits. 
The concept of continuity can be described in terms of limits, as we saw in 

Section 3.4. Therefore continuity can be defined in terms of the real number system 
only. 

COROLLARY 

The following are equivalent. 

(i) f is continuous at c. 

(ii) For every real c: > 0 there is a real 6 > 0 depending on e such that: 

whenever lx - cl < 6, lf(x) - f(c)l < c:. 

PROOF Both (i) and (ii) are equivalent to 

limf(x) = j(c). 
X4C 

Intuitively, this corollary says that f is continuous at c if and only if f(x) is 
close to f(c) whenever xis close to c. 

PROBLEMS FOR SECTION 5.8 

In the limit limx~ 4 !Ox = 40, find a b > 0 such that whenever 0 < lx - 41 < 1), 
I !Ox - 401 < 0.01. 

2 In the limit limx~o (x2
- 4x)/2x = -2, find a b > 0 such that whenever 0 < lxl < b, 

l{x 2 
- 4x)j2x - (- 2)1 < 0.1. 

3 In the limit limx~ 2 1/x = 1/2, find a b > 0 such that whenever 0 < lx - 21 < b, 
11/x- 1/21 < 0.01. 

4 In the limit limx~ _ 3 x
3 = - 27, find a b > 0 such that whenever 0 < lx - (- 3)1 < b, 

lx3 
- (- 27)1 < 0.01. 

5 In the limit limx~o. p = 0, find a b > 0 such that whenever 0 < x < b, fi < 0.01. 

6 In th~mit lim,_ 2 • ,jx2 
- 4 = 0. find a b > 0 such that whenever 2 < x < 2 + 6, 

p- 4 < 0.1. 

7 In the limit lim,_ 1 - jl-=-:;? = 0, find a b > 0 such that whenever 1 - ,S < x < 1, 

j1-=-:;? < 0.00 1. 

8 In the limit limx~ 2 -~ = 0, find a b > 0 such that whenever 2 - b < x < 2, 

~<0.01. 
9 In the limit limx~o x- 2 = x. find a b > 0 such that whenever 0 < lxl < b, x- 2 > 

10,000. 



10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

D 23 

D 24 

D 25 

D 26 

5.9 NEWTON'S METHOD 

In the limit limx~o 16/x4 = x:, find a 8 > 0 such that whenever 0 < lxl < 8, 16/x4 > 
10,000. 

In the limit lim,~o+ 1/lOt = co, find a 8 > 0 such that whenever 0 < t < 8, 1/10t > 100. 

In the limit lim,~4 • 1/(4- t) = -co, find a 8 > 0 such that whenever 4 < t < 4 + 8, 
1/(4 - t) < -100. 

In the limit limx~o· 1/Jx = oo, find a 8 > 0 such that whenever 0 < x < 8, 1/Jx > 
100. 

In the limit limx~o· 1/x3 = co, find a 8 > 0 such that whenever 0 < x < 8, 1/x3 > 1000. 

In the limit limx~I- 1/(1 - x 2
) = co, find a 8 > 0 such that whenever 1 - 8 < x < I, 

1/(1 - x2
) > 100. 

In the limit limx~z- 5/~ = co, find a 8 > 0 such that whenever 2 - 8 < x < 2, 

5/~> 100. 

In the limit lim,~"' 1/(1 + 4t) = 0, find a B > 0 such that whenever t > B, 1/(1 + 4t) < 
O.ot. 

In the limit lim,~oo 1/t2 = 0, find a B > 0 such that whenever t > B, 1jt2 < 0.01. 

In the limit lim,~oo 2t2 
- 5t = oo, find a B > 0 such that whenever t > B, 2t2 

- 5t > 
1000. 

In the limit lim,~oo t 3 + t 2 
- 5 = co, find a B > 0 such that whenever t > B, t 3 + t2 

-

5 > 1000. 

In the limit limx~oo Fx+'1 = oo, find a B > 0 such that whenever x > B, J 5x + 1 > 
100. 

In the limit limx~ _ oo ~ = - oo, find a B > 0 such that whenever x < - B, 

~< -100. 

State the s, 8 condition for the limit Iimx~c- f(x) = L. 

State the s, 8 condition for the limit limx~J(x) = co. 

State the s, 8 condition for the limit limx-oo f(x) = - oo. 

Prove that limx~oo f(x) = oo if and only if the s, 8 condition for this limit holds: For 
every A > 0 there is a B > 0 such that whenever x > B,f(x) > A. 

i.9 NEWTON'S METHOD 

The Increment Theorem for derivatives shows that whenf'(c) exists and x ~ c,f(x) 
is infinitely close to the tangent line f(c) + f'(c)(x - c) even compared to x - c. 
Thus intuitively, when x is real and close to c,f(x) is closely approximated by the 
tangent line f(c) + f'(c)(x - c). Newton's method uses the tangent line to 
approximate a zero of f(x). It is an iterative method that does not always work 
but usually gives a very good approximation. 

Consider a real functionfthat crosses the x-axis as in Figure 5.9.1. From the 
graph we make a first rough approximation x 1 to the zero of f(x). To get a better 
approximation, we take the tangent line at x 1 and compute the point x 2 where the 
tangent line intersects the x-axis. At x2 , the curve f(x) is very close to zero, so we 
take x 2 as our new approximation. The tangent line has the equation 

y = f(x 1) + f'(x 1)(x - x 1). 

We get a formula for x 2 by setting y = 0 and x = x 2 and then solving for x 2 • 

289 
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y 

Figure 5.9.1 f(x) 

0 =f(x1) + f'(x 1)(x2 - x 1) 

f(x 1) 
x 2 = X1 - f'(x

1
). 

X 

We may then repeat the procedure starting from x 2 to get a still better approximation 
x 3 as in Figure 5.9.2, 

)' 

X 

Figure 5.9.2 j(x) 

NEWTON'S METHOD 

When to Use We wish to approximate a zero of f(x), where f'(x) is continuous and 
not close to zero, as in Figure 5.9. 1. 

Step 7 Sketch the graph of.f(x), and choose a point x 1 near the zero of f(x). x 1 is 
the first approximation. 

Step 2 Computef'(x). 

Step 3 Compute the second approximation 

f(x1) 
x2 = x1 - f'(x1). 

Step 4 For a closer approximation repeat Step 3. The (n + 1 )st approximation is 
given by 
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f(x.,) 
x.,+ 1 = x., - f'(xn). 

As a rough check on the accuracy, compute f(x.,) and note how close it is 
to zero. 

Steps 3 and 4 can be done conveniently on a hand calculator. 

Warning: Since Newton's method involves division by f'(x 1), avoid 
starting at a point where the slope is near zero. Figure 5.9.3 shows that when the 
slope is close to zero, the tangent line is nearly horizontal and the approximation 
may be poor. 

y 

f(x) 

Figure 5.9.3 

EXAMPLE 1 Approximate a zero of f(x) = x 3 + 2x2 
- 5 by Newton's method. 

Step 1 The graph is shown in Figure 5.9.4. We choose x 1 = 1 as our first approxi­
mation. 

Step 2 f'(x) = 3x2 + 4x 

f(x 1) ( -2) 9 
x2 = x 1 - -- = 1 - -- = - ~ 1.2857 

f'(x 1) 7 7 
Step 3 

y 

X 

y = x 3 + 2x 2 - 5 

Figure 5.9.4 
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Step 4 
f(x 2 ) x~ + 2xi - 5 

x3 = x2 - -- = x2 - 2 
j'(x2) 3x2 + 4x 2 

1.2430 

As a check we compute 

f(x 3 ) = x~ + 2x~ - 5 ""O.Ql 

One more iteration gives much more accuracy: 

_ . j(x3 ) _ x~ + 2x~ - 5 
24 897 X4- X3 - -f'( ) - X3 - 3 .2 4 ~ 1. 1 

. x3 x3 + x3 

f(x 4 ) = x~ + 2x~ - 5 "" 0.000007 

EXAMPLE 2 Approximate the fifth root of 6 by Newton's method. 

Step 1 We must find the zero ofj(x) = x 5 
- 6. The graph is shown in Figure 5.9.5. 

Choose x 1 = 1.5. 

Step 2 j'(x) = 5x4 

xi- 6 
Step 3 x 2 = X 1 --5 

A ~ 1.437 
Xl 

xi- 6 
Step 4 x 3 = x 2 - --4 -"" 1.43102 

5x 2 

As a check we compute 

CxY ~ 6.oo1 

In this example more iterations would be necessary if our first approximation 
had not been chosen as well. For instance, starting with x 1 = 1 we would not reach 

y 

10 

8 

6 

4 

2 

X 

-2 

-4 y = x• - 6 

-6 

Figure 5.9.5 



the approximation 1.431 until x6 , obtaining the successive approximations 

x 1 = 1, x2 = 2, x 3 = 1.675, x4 = 1.49245, 

x 5 = 1.43583, x6 = 1.43100. 

EXAMPLE 3 Approximate the point x where sin x = In x. 

As one can see from the graphs of sin x and In x in Figure 5.9.6, sin x and 
In x cross at one point x, which is somewhere between x = 1 (where In x 
crosses the x-axis going up) and x = n (where sin x crosses the x-axis 
going down). To apply Newton's method, we Ietf(x) be the function 

f(x) = sinx -Inx 

shown in Figure 5.9.7. We wish to approximate the zero ofj(x). 

\' 

In x 

X 

Figure 5.9.6 

X 

y = sin x - In x 

Figure 5.9.7 



Step 1 Choose x 1 = 2 (since the zero of f(x) is between 1 and n). 

Step 2 f'(x) = cos x - 1/x 

_ sin x 1 - In x 1 _ sin 2 - In 2 
2 23 Step 3 x 2 - x 1 - - 2 - ~ . 593 

cosx 1 -1/x 1 cos2- 1/2 

Step 4 Repeat Step 3. The values of x,, f(x 11 ), and f'(x 11 ) are shown in the table. 

11 x. f(x") f'(x") 

I 2.000000000 0.216150246 -0.916146836 
2 2.235934064 -0.017827280 - 1.064407894 
3 2.219185522 -0.000082645 -1.054519059 
4 2.219107150 -0.00000000 I - 1.054472505 

The answer is 

X~ 2.219107150. 

On a calculator we find that 

sin (2.219107150) = 0.797104929 

In (2.219107150) = 0.797104930. 

PROBLEMS FOR SECTION 5.9 

Use Newton's method to find approximate solutions to each of the following equations. (A 
hand calculator is recommended.) 

1 x 3 + 5x - 10 = 0 2 2x 3 + x + 4 = 0 

3 x 5 + x 3 + x = I 4 2x 5 + 3x = 2 

5 x 4 = x + I, x > 0 6 x4 = x + 1, x<O 

7 x 3 -10x+4=0, x>1 8 x 3 
- I Ox + 4 = 0, 0 <X< 1 

9 x+Jx=l 10 X+ lj.j; = 3 

11 ex= 1/x 12 ex+ X= 4 

13 x +sin x = 2 14 cosx = x 2
, x>O 

15 tan x = e', 0 < x < rr/2 16 ex+ In X= 0 

5.10 DERIVATIVES AND INCREMENTS 

In Section 3.3 we found that the derivative off is given by the limit 

, . f (c + Llx) - I (c) f (c)= hm · ·-. 
t.x-o Llx 

If y = j(x), 
dy . Lly 
-- = hm -. 
dx t.x-o Llx 

By definition this means that when the hyperreal number L'lx is infinitely close to 
but not equal to zero, L'ly/ Llx is infinitely close to dyjdx. 

By contrast, the 1:, 6 condition for this limit says intuitively that when the 
1. 
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The e, b condition for the derivative can be given a geometric interpretation, 
shown in Figure 5.10.1. Consider the curve y = f(x), and supposef'(c) exists. Draw 

X 

Figure 5.10.1 

the line tangent to the curve at c. For dx =/= 0, draw the secant line which intersects 
the curve at the points (c,f(c)) and (c + dx,f(c + dx)). Then the tangent line will 
have slope f'(c) while the secant line will have slope 

f(c + dx) - f(c) 

dx 

The B, !5 condition shows that if we take values of dx closer and closer to zero, then 
the slopes of the secant line will get closer and closer to the slope of the tangent line. 

EXAMPLE 1 Consider the curve f(x) = x 113
. 

Then 

At the point x = 8, we have 

X= 8, f(x) = 2, f'(x) = ft = 0.0833 .... 

Thus 
. (8 + dx) 113 

- 2 1 
hm =-. 
ax~o dx 12 

This is the slope of the line tangent to the curve at the point (8, 2). As dx 
approaches zero, the slope of the secant line through the two points (8, 2) and 
(8 + Llx, (8 + dx) 113

) will approach / 2 • We make a table showing the slope 
of the secant line for various values of dx. 

~X ~y = (8 + ~x) 113 
- 2 I ~J I ~ = slope of secant line 1 

i X i 
I ~J'- J_l 
~X 12 

10 0.6207 
I 

0.0621 I 0.0212 
1 0.0801 0.0801 0.0032 

10 
0.00829 0.0830 0.0003 

-10 -3.2599 0.3260 0.2427 
-1 -0.0871 0.0871 0.0038 

1 
-0.00837 0.0837 

10 
0.0004 
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The 1:, 6 condition for the derivative is of theoretical importance but does 
not give an error estimate for the limit. When the function f has a continuous second 
derivative, we can get a useful error estimate in a different way. lt is more convenient 
to work with one-sided limits. 

By an error estimate for a limit 

lim g(6x) = L 
.1.x- 0 + 

we mean a real function E(6x), 0 < 6 x s b, such that the approximation g(6x) 
is always within E(6x) of the limit L. In symbols, 

lg(6x)- Ll s E(6x) for 0 < 6x s b. 

THEOREM 1 

Suppose f has a continuous second derimtit•e and lf''{t)l :S M for all t in the 
interval [c, b]. Then: 

(i) 

(ii) 

Wheneverc < c + 6.x s h,f(c + 6x)iswithin±M 6.x 2 off(c) + f'(c)6x. 

j"(c + 6x) - /(c) 
Whenever c < c + 6x :<::: b, -· --------·- is IVithin ~M 6x of" 

6x -
f'(c). That is, ±A!f fix is an error estimate for the right-sided limit 

I
. f(c + 6x) - f(c) 

1
.,( ) Jm -- = c . 

. ~x~o+ fix · 

There is a similar theorem for the left-sided limit 

1
. f(c + fix) - f(x) , 
1m ---- -- -- = I (c) 

t.x~o- fix · 

with the error estimate ±Miflxl. 

PROOF Let x = c + fix. Then 

-M sf"(t) s M 

Integrating from c to t, 

for c :<::: t s x. 

r -M dt s rf"(t)dt s r M dt. 

- M(t - c) s f'(t) - f'(c) s M(t - c). 

Integrating again from c to x, 

r -lv!(t - c) dt :<::: r f'(t) - f'(c) dt s r M(t - c) dt, 

(x - c)
2 

. , ]-' (x - cl 
-M--- sj(t) -I (clt s M-- -, 

2 c 2 

6.x2 6x2 -M-T- s (f(x)- f(c))- f'(c)flx s MT, or 

flx 2 6x 2 

-lvf-·- s f"(x)- (({c)+ j"'(c)flx) s M-·-. 2 . . . 2 
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This proves part (i) (Figure 5.10.2). Dividing by ~x we get part (ii). 

/(x) 

Figure 5.10.2 

I 

1 /(c)+ f' (c) L:.x 
I 
I 

~------;/(c) 
I 
I 
I 
I 
I 
I 
I 
I • 

C C +~X X 

EXAMPLE 1 (Concluded) We consider once more the curve f(x) = x 113 at the point 
x = 8. The second derivative is 

f"(x) = -ix-513 

First consider the interval [8, 9]. In this intervalf"(x) has the maximum value 

lf"(8)1 = i(8)- 513 = i2- 5 = r!4· 
Thus we may take M = 1! 4 , and 

Thus 

1 1 
2M ~x = 288 ~x is an error estimate for 

~y 
lim -

L<x~o + ~X 

when ~x = 1, I 
~y 11 1 
~X - 12 ~ 288 = 0.0035' 

A -~ when LlX -
10

, I 
~y 11 1 
~X - 12 ~ 2880 = 0.00035· 

Next consider the interval [7, 8]. This time we take 

M = lf"(7)1 = i(7)- 513 = 0.0087. 

Then !MI~xl = 0.00441~xl 

is an error estimate for the limit 

lim ~Y 
.1x~o- ~X 12 

when ~x = -1, --- ~ 0.0044 
I 
~y 11 
~X 12 ' 

when ~x = 
10' I 

~y II 
~X - 12 1 ~ 0.00044. 

12 

From the table in Example 1 we see that the error estimates are slightly 

l ~y 1 I greater than the actual values of ~x - 12.. 
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We shall now turn the problem around. Instead of using the increment t.y 
to approximate the derivative dyjdx, we shall use the derivative dyjdx to approximate 
the increment t.y. When Llx is small, f(c + L1x) will be close to .f(c) + f'(c) L1x even 
compared to Llx. Part (i) of Theorem 1 gives the error estimate 1M L1x2 for this 
approximation. This method is especially useful for approximating f(x) when there 
is a number c close to x such that both f(c) and f'(c) are known. 

EXAMPLE 2 Find approximate values for j9 and ,j7.9. Both these !_lumbers are 
close to 8, whose cube root 2 comes out even. Taking f(x) = ..J x and c = 8, 
we have 

f(c) = 2, f'(c) = h = 0.0833 .... 

From Theorem 1 the approximate values are 

f(c + Llx) ~ f(c) + f'(c) Llx. 

Thus 
j9 ~ 2 + /2 = 2.0833, 

..:.' 7.9 ~ 2 + /2 ( -0.1) = 1.99167. 

To get an error estimate for j9, take the interval [8, 9]. From Example 1 
we may take M = 1!4 • Therefore by Theorem 1, 

j9 ~ 2.0833, error ::;; 1· 1! 4 • 12 = 0.0035. 

Thus 2.0798 ::;; j9 ::;; 2.0868. 

To get an error estimate for .y79 take the interval [7, 8] and M = 0.0087. 
By Theorem 1, 

.j7.9 ~ 1.991667, error::;; 1(0.0087)(0.1)2 = 0.000044. 

Thus 1.991623::;; .y79::;; 1.991711. 

EXAMPLE 3 Find an approximate value for (0.991 5
. 

Let 

Then 

We put 

f(x) = x 5
, c = 1. 

.f(c) = 15 = 1, f'(c) = 5c4 = 5. 

0.99 = c + Llx, Llx = -0.01. 

Then the approximate value is 

.f(c + Llx) ~ .f(c) + .f'(c) Llx, 

(0.9W ~ 1 + 5( -0.01) = 0.95. 

To get an error estimate we see that .f"(u) = 20u 3
, so \f"(u)\ ::;; 20 for u 

between 0.99 and 1. Then M = 20, and 
(0.01 )2 

(0.9W ~ 0.95, error ::;; -
2
-· (20) = 0.001, 

or o.949 ::;; (0.9W ::;; o.95 1. 

Theorem 1 is closely related to the Increment Theorem in Section 2.2. The 
relation between them can be seen when we write them next to each other. 
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INCREMENT THEOREM (Repeated) 

Hypotheses f'(c) exists and ~x is infinitesimal. 

Conclusion f(c + ~x) = f(c) + f'(c) ~x + E ~x for some infinitesimal r. which 
depends on c and ~x. 

THEOREM 1 OF THIS SECTION (in an equivalent form) 

Hypotheses f"(u) exists and lf"(u)l :S M for all u between the real numbers c and 
C +~X. 

Conclusion f(c + ~x) = f(c) + f'(c) ~x + 8 ~x for some real 8 within !MI~xl ofO. 

Thus Theorem 1 has more hypotheses but also gives more specific information 
about 8 in its conclusion. 

PROBLEMS FOR SECTION 5.10 

In Problems 1-6, find f'(c) and an ·error estimate for the limit 

f'(c) = lim f(c + ~x) - f(c) 
~x~o· ~X 

with 0 < ~x :S 1. 

I 

3 

5 

7 

8 

9 

10 

11 

12 

13 

14 

f(x) = x 2
, c = 1 

f(x) = 2/vfx, c = 4 
f(x) = 1/x, c = 3 

2 

4 

6 

f(x) =sin x, 

j(x) = tanx, 

j(x) = cos (2x), 

f(x) = sin2 (2x), 

j(x) = lnx, 

c = 0, (0 < ~x :S n) 

c = 0, (0 < ~x :S n/6) 

c = n/3, (0 < ~x :S n) 

c = n/2, (0 < ~x :S n) 

c = L (0 < ~X :S 1) 

f(x) = xlnx, 

f(x) = e", 

j(x) = e"
2

, 

C = 1, (0 <~X S 1) 

C = 1, (0 < ~X S 1) 

C = 0, (0 < ~X S 1) 

f(x) = x 3 
- 5x, c = 10 

f(x) = xJx, c = 4 

f(x) = 1/(x2 + 1), c = 1 

In Problems 15-20, findf'(c) and an error estimate for the limit 

f'(c) = lim f(c + ~x) - f(c) 
~x~o- ~X 

with - 1 s ~x < 0. 

15 f(x) = Jx, c = 100 

17 f(x)=p-+1, c=2 

19 f(x) = xfi+{, c = 1 

16 

18 

20 

f(x) = 1/(3x + 6). c = 0 

j(x) = 4x3
• c = I 

j(x) = x 10
, c = 2 

In Problems 21-38, approximate the given quantity and give an estimate of error. 

21 j65 22 t;fi 
23 (0.301)4 24 J36 
25 1/97 26 (99)3

1
2 
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27 jUl2 + j I .02 

29 (1.003}5 

31 sin(}+ 0.004) 

33 tan (0.005) 

35 <"0.002 

37 ln (1.006) 

EXTRA PROBLEMS FOR CHAPTER 5 

In Problems 1-10. find the limit. 

2x2
- 3x + 2 

lim _3 _2 

3 

5 

7 

9 

x~ x .\ + 5.\ - I 

lim x-I 3 

]' 3x + 2 
x~/2n1I- 3x- 2 

. x 3 2
- I 

hm ---= 
.-~I- fi- 1 

. (x + l)3 2 _ x3 2 
11m ~--

.jx 
11 Sketch the curve _r = x - ljx. 

12 Sketch the curve _r = 1 - xi 3
. 

28 

30 

32 

34 

36 

38 

2 

4 

6 

8 

10 

13 Sketch the curve _r = 1/((x - 1)(x - 2)). 

14 Sketch the curve y 2 
- 4x2 = 9. 

15 Sketch the curve y = lx- 11 + lx + 11. 

(101 + jl01)3 

fo.9997 
cos ( ~ + 0.06) 

sin ( - 0.003) 
<"- 0.04 

In (0.98) 

I
. 2x + 4 
Im--­
x~' 5 - 3x 

lim r1x + 1 - ,;;;;:)x 3 4 

X-'> y_ 

. X - 1 
hm-- --­
.,~I vr; _ 1 

1
. x 2 + 3x - 1 

}':} ~:C-=--16 

I
. X+ j.-.: +-1 
1m-~'--;== 

.-~,X- fi+l 

16 Find the equation of the parabola with directrix y = 1 and focus F(l, - 1). 

17 Sketch the curve _r = -x2 + 2x + 4. 

18 Sketch the curve _r = (;\-)x 2 + x. 

19 Find the foci and sketch the ellipse 

20 Find the foci and sketch the hyperbola 

x2 y2 
l. 

4 9 

21 Use Translation of Axes to sketch the curve 

4x2 + y 2 
- 16x + 2y + 16 = 0. 

22 Use Translation of Axes to sketch the curve 

-x2 + 4_r2 
- 6x- 10 = 0. 

23 Use Rotation of Axes to transform the equation x_r - 9 = 0 into a second degree 
equation with no X Y-term. Find the angle of rotation and the new equation. 

24 Use Rotation of Axes to transform the equation x_r - y 2 = 5 into a second degree 
equation with no X Y -term. Find the angle of rotation and the new equation. 

-

25 In th~ limit lim,~ 4 1,\,/ x = 1/2, find a () > 0 such that whenever 0 < I x - 41 < b, 
11~;,/x- 1;21 < 0.01. 



26 

27 

28 

29 

30 

31 

32 

0 33 

0 34 

0 35 

0 36 

0 37 

0 38 

0 39 

0 40 

0 41 

0 42 

EXTRA PROBLEMS FOR CHAPTER 5 

In the limit limx-oc (x2
- l)u = oc, find a B > 0 such that whenever x > B, 

(x2 
- 1)112 > 10,000. 

Use Newton's method to find an approximate solution to the equation x + x 1 3 = 3. 

Use Newton's method to find an approximate solution to the equation cosx = In x. 

Find an error estimate for the limit 
. (16 + L'!x)c 4 

- 2 1 
hm =- O<L'lx:::::l. 

tu-o~ L'!x 32' 

Find an error estimate for the limit 
r (3 + L'!x)- 2 

- ~ 2 
~x~~ L'lx = 27' 

0 < L'!x::; I. 

Find an approximate value for (124)213 and give an estimate of error. 

Find an approximate value for (0.9996)6 and give an estimate of error. 

Prove that lim,_x f(x) exists if and only if whenever H and K are positive infinite, 
f(H) is finite and j(H) ~ f(K). 

Prove that if lim,_ x f(t) = Land g(x) is continuous at x = L then lim,_"' g(f(t)) = g(L). 

Prove that if lim,_ x f(t) = x and limx_ x g(x) = x then lim,_ x g(f(t)) = x. 

Suppose lim,_x f(t) = x, cis a positive constant, and cg(t) ~ f(t) for all t. Prove that 
lim,_"' g(t) = x. 

Prove that limx_, f(x) = L if and only if for every real <: > 0 there is a hyperreal o > 0 
such that whenever Jx - cJ < o, lf(x) - LJ < e. 

Let f be the function 

f(x) = { ~ if x is rationaL 

if x is irrational. 

Using the c, o condition, prove that f(x) is discontinuous at every real number x = c. 

Let g be the function 

g(x) ={ ~ if x is rational, 

if x is irrational. 

Prove that g(x) is continuous at x = 0 but discontinuous everywhere else. 

Prove that the function g in the preceding problem is not differentiable at x = 0. 

Let { 

x2 
h(x) = 

0 

Prove that h'(O) exists a·..] equals 0. 

Suppose j(t) is continuous for all t and 

lim f(t) =A, 
f-+- X-

if x is rational, 

if x is irrational. 

lim f(t) =B. 
t-x 

If A < C < B, prove that there is a real number c with j(c) = C. 

3Ul 



6 

APPLICATIONS 
OF THE INTEGRAL 

6.1 INFINITE SUM THEOREM 

302 

In Chapter 4 we obtained the formula 

Area = f f(x) dx 

for the area of the region bounded by the x-axis, the curve y = f(x), and the lines 
x =a and x =b. 

In this chapter we shall obtain integral formulas for several other quantities 
arising in geometry and physics, such as volumes, curve lengths, and work. We begin 
with the Infinite Sum Theorem, which will be useful in justifying these formulas. It 
tells when a given function B(a, b) is equal to the definite integral J~ h(x) dx. 

Any two infinitesimals are infinitely close to each other. The following 
definition helps us to keep track of how close to each other they are. 

DEFINITION 

Let t:, 6 be infinitesima/s and let L\x be a nonzero infinitesimal. We say that 
t: is infinitely close to b compared to L\x, 

t:;:::; b (compared to L\x), if sjL\x;:::; bjL\x. 

In Figure 6.1.1, an infinitesimal microscope within an infinitesimal micro­
scope is used to shows ;:::; b (compared to L\x). 

For example, 

but 

(compared to L\x) 

(compared to L\x). 

The Infinite Sum Theorem is used when we have a quantity B(u, w) depending on 
two variables u < w in [a, b ], and the total value B(a, b) is the sum of infinitesimal 
pieces 
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LlB = B(x, x + Llx). 

The theorem gives a method of expressing B(a, b) as a definite integral. 

0 

Figure 6.1.1 € ~ o (compared to L'1x) 

INFINITE SUM THEOREM 

Let B(u, w) be a real function of two variables that has the Addition Property 
in the interval [a, b]-i.e., 

B(u, w) = B(u, v) + B(v, w) for u < v < win [a, b]. 

Suppose h(x) is a real function continuous on [a, b] and for any infinitesimal 
subinterval [x,x + Llx] of[a,b], 

tlB ~ h(x) Llx 

Then B(a, b) is equal to the integral 

(compared to Llx). 

B(a, b) = f h(x) dx. 

Intuitively, the theorem says that if each infinitely small piece LlB is infinitely 
close to h(x) Llx compared to Llx, then the sum B(a, b) of all these pieces is infinitely 
close to I: h(x) Llx (Figure 6.1.2). This is why we call it the Infinite Sum Theorem. 

Figure 6.1.2 a X h 
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PROOF Divide the interval [a, b] into subintervals of infinitesimal length 6.x. Because 
B(u, w) has the Addition Property, the sum of all the 6.B's is B(a, b). Now let 
c be any positive real number. For each infinitesimal subinterval [x, x + 6.x] 
we have 

Adding up, 

h(x) 6.x :::::: 6.B (compared to 6.x) 

6.B 
h(x)::::::-

6.x 

6.B 
h(x) - c < - < h(x) + c 

6.x 

(h(x) - c) 6.x < 6.B < (h(x) + c) 6.x. 

b b 

2::: (h(x) - c) 6.x < B(a, b) < 2::: (h(x) + c) 6.x. 

Now take standard parts, 

f (h(x) - c) dx ::::;; B(a, b) ::::;; f (h(x) + c) dx 

or f h(x) dx - c(b - a) ::::;; B(a, b) ::::;; f h(x) dx + c(b - a). 

Since this holds for all positive real c, it follows that 

B(a, b) = f h(x) dx. 

We shall use the Infinite Sum Theorem several times in this chapter. As 
a first illustration of the method, we derive again the formula from Chapter 4 for 
the area of the region between two curves, shown in Figure 6.1.3. 

y 

a X 

j{x) 

Figure 6.1.3 

AREA BETWEEN TWO CURVES Area = f [g(x) - f(x)] dx. 

wherefand g are continuous andf(x)::::;; g(x).for a::::;; x::::;; b. 

The justification of a definition resembles the proof of a theorem, but it 
shows that an intuitive concept is equivalent to a mathematical one. We shall now 
use the Infinitive Sum Theorem to give a justification of the formula for the area 
between two curves. 
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JUSTIFICATION We write A(a, b) for the intuitive area of the region R between 
f(x) and g(x) from a to b. A(u, w) has the Addition Property. Slice R into 
vertical strips of infinitesimal width Ax. Each strip is almost a rectangle of 
height g(x) - f(x) and width Ax (Figure 6.1.4). The area AA = A(x, x + Ax) 
of the strip is infinitely close to the area of the rectangle compared to Ax, 

AA ~ [g(x) - f(x)] Ax (compared to Ax). 

The infinite sum theorem now shows that A( a, b) is the integral of g(x)- f(x) 
from a to b. 

y ,&.~.x+/t,.x\, 
X i 

' ) 
~ . . 

--I I 

I I 
I : 

(/ 

Figure 6.1.4 

We now use the Infinite Sum Theorem to derive a formula for the volume 
of a solid when tlie area of each cross section is known. Suppose a solid S extends 
in the direction of the x-axis from x = a to x = b, and for each x the plane perpen­
dicular to the x-axis cuts the solid in a region of area A(x), as shown in Figure 6.1.5. 
The area A(x) is called the cross section of the solid at x. The volume is given by 
the formula: 

VOLUME OF A SOLID V = fA(x) dx. 

y 

Figure 6.1.5 a X b X 

JUSTIFICATION Slice the solid S into vertical slabs of infinitesimal thickness Ax, 
as in Figure 6.1.6. Each slab, between x and x + Ax, has a face of area A(x), 
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)' 

tlx-11-
X 

Figure 6.1.6 

and thus its volume is given by 

L'lV ~ A(x) L'lx (compared to L'lx). 

(The infinitesimal error arises because the area of the cross section changes 
slightly between x and x + L'lx.) Then by the Infinite Sum Theorem, 

V = fA(x) dx. 

The pattern used in justifying the two formulas in this section will be repeated 
again and again. First find a formula for an infinitesimal piece of volume L'l V. Then 
apply the Infinite Sum Theorem to get an integration formula for the total volume V. 

EXAMPLE 1 Find the volume of a pyramid of height h whose base has area B, as 
in Figure 6.1. 7. 

y 

h X 

Figure 6.1.7 Example 1 
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Place the pyramid on its side with the apex at x = 0 and the base at x = h. 
We use the fact that at any point x between 0 and h, the cross section has 
area proportional to x2

, so that 

The volume is then 

A(x) B 
7=h2 ' 

Bx2 

A(x) = v· 

V = (' Bx2 dx = ~ . Bx3]h = ~ . Bh3 = ~ Bh 
Jo h2 3 h2 

0 3 h2 3 · 

The solution is V = G;)Bh. 

EXAMPLE 2 A wedge is cut from a cylindrical tree trunk of radius 3ft, by cutting 
the tree with two planes meeting on a line through the axis of the cylinder. 
The wedge is 1 ft thick at its thickest point. Find its volume. 

Figure 6.1 .8 Example 2 

The wedge is shown in Figure 6.1.8. The cross sections perpendicular to 
the x-axis are similar triangles. Place the edge along the x-axis with x from 
- 3 to 3. At the thickest point, where x = 0, the cross section is a triangle 
with base 3 ft and altitude 1 ft. The base of the cross section triangle at x is 

b=~, 
and the altitude is 

The area of the cross section is 

A(x) = 1 · base • altitude = !b • tb = ib2 = i(9 - x2
). 
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The volume is thus 

V = f3 A(x) dx = r3 ~ (9- x2) dx = (-23 X- 118 x3)]3 = 6 ft3. 
-3 ·-36 -3 

The solution is 6 cubic feet. 

PROBLEMS FOR SECTION 6.1 

The base of a solid is the triangle in the x, y-plane with vertices at (0, 0), (0, 1), and 
(1, 0). The cross sections perpendicular to the x-axis are squares with one side on the 
base. Find the volume of the solid. 

2 The base of a solid is the region in the x, y-plane bounded by the parabola J = x 2 

and the line J = 1. The cross sections perpendicular to the x-axis are squares with 
one side on the base. Find the volume of the solid. 

3 Find the volume of the solid in Problem 1 if the cross sections are equilateral triangles 
with one side on the base. 

4 Find the volume of the solid in Problem 2 if the cross sections are equilateral triangles 
with one side on the base. 

5 Find the volume of the solid in Problem 1 if the cross sections are semicircles with 
diameter on the base. 

6 Find the volume of the solid in Problem 2 if the cross sections are semicircles with 
diameter on the base. 

7 Find the volume of a wedge cut from a circular cylinder of radius r by two planes whose 
line of intersection passes through the axis of the cylinder, if the wedge has thickness 
c at its thickest point. 

8 Find the volume of the smaller wedge cut from a circular cylinder of radius r by two 
planes whose line of intersection is a chord at distance b from the axis of the cylinder, if 
the greatest thickness is c. 

6.2 VOLUMES OF SOLIDS OF REVOLUTION 

Integrals are used in this section to find the volume of a solid of revolution. A solid 
of revolution is generated by taking a region in the first quadrant of the plane and 
rotating it in space about the x- or y-axis (Figure 6.2.1). 

y y 

R 

X X 

Figure 6.2.1 Solids of Revolution 
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We shall work with the region under a curve and the region between two 
curves. We use one method for rotating about the axis of the independent variable and 
another for rotating about the axis of the dependent variable. 

For areas our starting point was the formula 

area = base x height 

for the area of a rectangle. For volumes of a solid of revolution our starting point is 
the usual formula for the volume of a right circular cylinder (Figure 6.2.2). 

Figure 6.2.2 

DEFINITION 

The volwne of a right circular cylinder with height h and base of radius r is 

V = nr2h. 

DISC METHOD: For rotations about the axis of the independent variable. 

Let us first consider the region under a curve. Let R be the region under a 
curve y = f(x) from x = a to x = b, shown in Figure 6.2.3(a). x is the independent 

y y 

a b X X 

(a) (b) 

Figure 6.2.3 

variable in this case. To keep R in the first quadrant we assume 0 :::::: a < b and 
0 :::::: f(x). Rotate R about the x-axis, generating the solid of revolution S shown in 
Figure 6.2.3(b). 

This volume is given by the formula below. 

VOLUME BY DISC METHOD V = f n(f(x))2 dx. 
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To justify this formula we slice the region R into vertical strips of infinitesimal 
width L'.x. This slices the solid S into discs of infinitesimal thickness {'._,, Each 
disc is almost a cylinder of height L'.x whose base is a circle of radius f(x) 

(Figure 6.2.4). Therefore 

L'. V = n(f(x)) 2 L'.x (compared to L'.x). 

Then by the Infinite Sum Theorem we get the desired formula 

y 

y 

Figure 6.2.4 Disc Method 

V = f n(f(x}f fix. 

I 
I 
I 

:.--.6x 
I 
I 

X 

X 

EXAMPLE 1 Find the volume of a right circular cone with height hand base of radius 
1'. 

It is convenient to center the cone on the x-axis with its vertex at the origin 
as shown in Figure 6.2.5. This cone is the solid generated by rotating about 
the x-axis the triangular region R under the line y = (r/h)x, 0 :::; x :::; h. 

y 

Figure 6.2.5 

- ,. 
j(x) = -x 

h 

X 

Since x is the independent variable we use the Disc Method. The volume 
formula gives 
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J
h ( r ) 2 r2 Jh r2 x3 Jh 1 

V = n - x dx = n 2 x 2 dx = n--z- = -nr2 h, 
o h h 0 h3 0 3 

or 

Now we consider the region R between two curves y = f(x) and y = g(x) 
from x = a to x = b. Rotating R about the x-axis generates a solid of revolution S 
shown in Figure 6.2.6(c). 

(a) 

(b) 

(c) 

Figure 6.2.6 

y 

y 

y 

a b 

a b 

a b 

y 

X X 

y 

X X 

X X 

Let R1 be the region under the curve y = f(x) shown in Figure 6.2.6(b), and R2 , the 
region under the curve y = g(x), shown in Figure 6.2.6(a). Then S can be found by 
removing the solid of revolution S1 generated by R 1 from the solid of revolution S2 

generated by R 2 • Therefore 

volume of S = volume of S2 - volume of S 1 . 
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This justifies the formula 

V = Jb n(g(x))2 dx - Jb n(f(x))2 dx. 
a a 

We combine this into a single integral. 

VOLUME BY DISC METHOD V = f n[(g(x))2 
- (f(x)) 2

] dx. 

Another way to see this formula is to divide the solid into annular discs 
(washers) with inner radius f(x) and outer radius g(x), as illustrated in Figure 
6.2.7. 

X 

X 

Figure 6.2. 7 

EXAMPLE 2 The region R between the curves y = 2- x 2 and y = x 2 is rotated 
about the x-axis generating a solid S. Find the volume of S. 

The curves y = 2 - x 2 and y = x 2 cross at x = ± 1. The region is sketched 
in Figure 6.2.8. The volume is 

16n/3. 



6.2 VOLUMES OF SOLIDS OF REVOLUTION 313 

y y 

X X 

y = 2- x 2 

Figure 6.2.8 

Warning: When using the disc method for a region between two curves, the 
correct formula is 

V = f n(g(x))2 dx - f n(f(x))2 dx, 

or V = f n[(g(x)? - (f(x))2
] dx. 

A common mistake is to subtract f(x) from g(x) before squaring. 

Wrong: V = f n(g(x) - f(x)? dx. 

Wrong: (for Example 2): 

V = f
1 

n((2- x2
)- x2f dx = f

1 

n(2- 2x2
)

2 dx 

= f 
1 

n(4- 8x2 + 4x4
) dx = 64n/l5. 

CYLINDRICAL SHELL METHOD: For rotations about the axis of the dependent 

variable. 

Let us again consider the region R under a curve y = f(x) from x = a to 
x = b, so that xis still the independent variable. This time rotate R about they-axis 
to generate a solid of revolution S (Figure 6.2.9). 

VOLUME BY CYLINDRICAL SHELL METHOD V = f 2nxf(x) dx. 

Let us justify this formula. DivideR into vertical strips of infinitesimal width 
~x as shown in Figure 6.2.10. When a vertical strip is rotated about they-axis 
it generates a cylindrical shell ofthickness ~x and volume~ V. This cylindrical 
shell is the difference between an outer cylinder of radius x + ~x and an 
inner cylinder of radius ~x. Both cylinders have height infinitely close to f(x). 
Thus compared to ~x, 
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y 

a X 

Figure 6.2.9 

y y 

a X 

Figure 6.2.1 0 Cylindrical Shell Method 

whence 

L1 V :::::: outer cylinder - inner cylinder 

:::::: n(x + L1x) 2j'(x) - nx 2f{x) 

= n(x2 + 2x L'lx + (L1x) 2 
- x 2 )f(x) 

= n(2x L'lx + (L'lxf)f{x) :::::: n2x L'lxf(x), 

L1 V :::::: 2nxf(x) L'lx (compared to L'lx). 

By the Infinite Sum Theorem, 

v = r 2nxf(x) dx. 

X 

X 

EXAMPLE 3 The region R between the line y = 0 and the curve y = 2x - x 2 is 
rotated about they-axis to form a solid of revolutionS. Find the volume of S. 

We use the cylindrical shell method because y is the dependent variable. 
We see that the curve crosses the x-axis at x = 0 and x = 2, and sketch the 
region in Figure 6.2.11. The volume is 
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y y 

s 

X X 

Figure 6.2.11 

Now let R be the region between the curves y = f(x) and y = g(x) for 
a s x s b, and generate the solid S by rotating R about the y-axis. The volume of S 
can be found by subtracting the volume of the solid S 1 generated by the region under 
y = f(x) from the volume of the solid S2 generated by the region under y = g(x) 
(Figure 6.2.12). The formula for the volume is 

V = S2 - S1 = f 2nxg(x) dx- f 2nxf(x) dx. 

Combining into one integral, we get 

VOLUME BY CYLINDRICAL SHELL METHOD V = f 2nx(g(x) - f(x)) dx. 

y y 

(a) 

y 

(b) 

Figure 6.2.12 

a 

a 

b X 

y 

b X 

X 

X 
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y y 

X 

X 

EXAMPLE 4 The region between the curves y = x andy = Jx is rotated about the 
y-axis. Find the volume of the solid of revolution. 

We make a sketch in Figure 6.2.13 and find that the curves cross at x = 0 and 
x = 1. We take x for the independent variable and use the Cylindrical Shell 
Method. 

Some regions R are more easily described by taking y as the independent 
variable, so that R is the region between x = f(y) and x = g(y) for c :::; y :::; d. The 
volumes of the solids of revolution are then computed by integrating with respect to 
y. Often we have a choice of either x or y as the independent variable. 

y y 

X X 

Figure 6.2.13 



How can one decide whether to use the Disc or Cylindrical Shell Method? 
The answer depends on both the axis of rotation and the choice of independent 
variable. Use the Disc Method when rotating about the axis of the independent variable. 
Use the Cylindrical Shell Method when rotating about the axis of the dependent 
variable. 

EXAMPLE 5 Derive the formula V = 1m·3 for the volume of a sphere by both the 
Disc Method and the Cylindrical Shell Method. 

The circle of radius r and center at the origin has the equation 

xz + yz = rz. 

The region R inside this circle in the first quadrant will generate a hemisphere 
of radius r when it is rotated about the x-axis (Figure 6.2.14 ). 

y y 

r X X 

Figure 6.2.14 

First take x as the independent variable and use the Disc Method. R is 'the 
region under the curve 

0::::; x::::; r. 

The hemisphere has volume 

! V = { n(f(x)f dx 

= { n(r2 
- x 2

) dx = nr2 x - ~nx 31 
= nr3 

- ~nr3 = tnr3 

Therefore the sphere has volume 

Now take y as the independent variable and use the Cylindrical Shell Method. 
R is the region under the curve 

0::::; y::::; r. 

The hemisphere has volume 

tv= J: 2nyJr2 
- y 2 dy. 
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Putting u = r2 
- y2

, du = - 2y dy, we get 

!V = Jo 2nJu( -!) du = Jo -nJu du 
rl rl 

Thus again V = %nr 3
. 

PROBLEMS FOR SECTION 6.2 

In Problems 1-10 the region under the given curve is rotated about (a) the x-axis, (b) they-axis. 
Sketch the region and find the volumes of the two solids of revolution. 

3 

5 

7 

9 

y = x 2
, 0 ::; x ::; I 

)' = Jx, 0::; X::; 4 

y = I - X, 0 ::; X ::; I 

y = jl+?, 0 ::; X ::; I 

y=x- 3 , l::;x::;2 

2 

4 

6 

8 

10 

y = x3, 0::; X::; I 

y = j2x - 4, 2 ::; x ::; 4 

y =X, I ::; X::; 2 

y = Jx 2 
- 4, 2 ::; x ::; 4 

y = ljx, l ::; x ::; 2 

In Problems 11-22 the region bounded by the given curves is rotated about (a) the x-axis, (b) the 
y-axis. Sketch the region and find the volumes of the two solids of revolution. 

11 x, y 2 0, y = x 2 ,/!="? 12 y = 0, y = x - x 2 

13 )' = X, )' = 2x, 0 ::; X ::; 3 14 )' = x 2
, )' = X 

15 

17 

19 

y = x3, y = x2 

X = 0, X = )' - }'4 

X = 0, X = )' + ljy, 1 ::; J' ::; 2 

20 x :::: 0, y :::: 0, 2x 2 + / = 4 

21 y = o, y = x - 2, r = Jx 

16 

18 

y = 3jx, y = 4 - x 

X = y, X = 2y - )'2 

22 y = ix, y = l - x, y = x - 1/x (first quadrant) 

In Problems 23-34 the region under the given curve is rotated about the x-axis. Find the volume 
of the solid of revolution. 

23 y=~, o::;x::;n 

24 y =cos xjsin x, 0::; x::; n/2 

25 y = cos x - sin x, 0::; x::; n/4 

26 y = sin (x/2) + cos (x/2), o::;x::;n 

27 y =ex, Osx::;J 

29 y = xex3
, o::;xs 1 

31 y = 1/Jx, 1::;x::;2 

33 j;~! 
l::;x::;4 y= --, 

X 

28 

30 

32 

34 

y = e 1 - 2-', 0 ::; x ::; 2 

y=.Je"+l, O::;x::;3 

1 
)'- 0::; X::; 1 

- ....,/2x + 1' 

12X 
)' = f--, 0 ::; X ::; 1 

yx+l 

In Problems 35-46 the region is rotated about the x-axis. Find the volume of the solid of revolution. 

sin x cos x 
35 y = --, n/2::; x::; n 36 y = --, n/6::; x::; n/2 

X X 

37 y = sin (x 2
), 0 ::; x ::; fi 38 y = cos (x 2

), 0 ::; x ::; .j;ji 
39 y = e"', 0 ::; x ::; 1 40 y = e"jx, 1 ::; x ::; 2 

41 y = 1/xe-', I ::; x ::; 4 42 y = xe"', 1 ::; x ::; 2 



43 

45 
1 

y=~2 ~2-~, 1:S:x:S:2 
X ~ 1 

44 

46 

6.3 LENGTH OF A CURVE 

1 
y = x2 + 1 ' 0 :s; x :s; 2 

lnx 
y=-2 , 1:S:x:S:2 

X 

47 A hole of radius a is bored through the center of a sphere of radius r (a < r). Find the 
volume of the remaining part of the sphere. 

48 A sphere of radius r is cut by a horizontal plane at a distance c above the center of the 
sphere. Find the volume of the part of the sphere above the plane (c < r). 

49 A hole of radius a is bored along the axis of a cone of height h and base of radius r. 
Find the remaining volume (a < r). 

50 Find the volume of the solid generated by rotating an ellipse a2x2 + b2y 2 = I about 
the x-axis. Hint: The portion of the ellipse in the first quadrant will generate half the 
volume. 

51 The sector of a circle shown in the figure is rotated about (a) the x-axis, (b) the y-axis. 

y 

52 

53 

0 54 

Find the volumes of the solids of revolution. 

y y 

(a, b) 

r X X 

(a) (b) 

The region bounded by the curves y = x2
, y = x is rotated about (a) the line y = ~ 1, 

(b) the-line x = ~ 2. Find the volumes of the solids of revolution. 

Find the volume of the torus (donut) generated by rotating the circle of radius r with 
center at (c, 0) around they-axis (r < c). 

(a) Find a general formula for the volume of the solid of revolution generated by rotating 
the region bounded by the curves y = f(x), y = g(x), a :S: x :S: b, about the line 
y = ~k_ 

(b) Do the same for a rotation about the line x = ~h. 

3 LENGTH OF A CURVE 

A segment of a curve in the plane (Figure 6.3.1) is described by 

Y = f(x), as x s b. 

What is its length? As usual, we shall give a definition and then justify it. A curve 
y = f(x) is said to be smooth if its derivative j'(x) is continuous. Our definition will 
assign a length to a segment of a smooth curve. 

y j(xY! 
;--___/ l 
I I 
I I 
I I 

(/ h X 
Figure 6.3.1 

319 
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DEFINITION 

Assume the jimction y = f(x) has a continuous derivative for x in [a, b ], that is, 
the curve 

y = f(x), 

is smooth. The length of the curve is defined as 

s = f J 1 + (dyjdxf dx. 

Because j1 + (dyjdx) 2 dx = Jdx 2 + dy 2
, the equation IS sometimes 

written in the form s = r Jdx2 + dy2 

with the understanding that x is the independent variable. The length s is always 
greater than or equal to 0 because a < band 

Jr + (dyjdx) 2 > 0. 

JUSTIFICATION Let s(u, w) be the intuitive length of the curve between t = u and 
t = w. The function s(u, w) has the Addition Property; the length of the 
curve from u to 11· equals the length from u to v plus the length from t,' to w. 
Figure 6.3.2 shows an infinitesimal piece of the curve from x to x + Llx. Its 
length is Lls = s(x, x + Llx). 

y 

{/ X b X 

Figure 6.3.2 

The slope dyjdx is a continuous function of x, and therefore changes only by 
an infinitesimal amount between x and x + Llx. Thus the infinitesimal piece 
of the curve is almost a straight line, the hypotenuse of a right triangle with 
sides Llx and fly. Hence 

(compared to Llx). 

Dividing by Llx, 
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Then f't...s ~ Jl + (dyjdx)2 f't...x (compared to f't...x). 

Using the Infinite Sum Theorem, 

s(a, b) = f Jl + (dyjdx) 2 dx. 

EXAMPLE 1 Find the length of the curve 

y = 2x3f2, 

shown in Figure 6.3.3. We have 

s= f~dx. 
Put u = 1 + 9x. Then 

flO ]10 
s = I ~JU du = 1. ~u3!2 I = }7CJ160o - 1). 

)' 

0 X 

Figure 6.3:3 

Sometimes a curve in the (x, y) plane is given by parametric equations 

X = f(t), y = g(t), c :::;; t :::;; d. 

A natural example is the path of a moving particle where tis time. We give a formula 
for the length of such a curve. 

DEFINITION 

Suppose the functions 

X= f(t), y = g(t) 

have continuous derivatives and the parametric curve does not retrace its path 
for t in [a, b]. The length of the curve is defined by 

s = r j(dx/dtf + (dy/dtf dt . 

. JUST/FICA TION The infinitesimal piece of the curve (Figure 6.3.4) from t to t + f't...t 
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Figure 6.3.4 

is almost a straight line, so its length L'!s is given by 

L'!s ::::: ....; L'!x 2 + L'!y2 (compared to L'!t), 

L'!s ::::: .j(dx/dt)2 + (dy/dt) 2 M (compared toM). 

By the Infinite Sum Theorem, 

s = r .j(dx/dt)2 + (dyjdt) 2 dt. 
a 

The general formula for the length of a parametric curve reduces to our first 
formula when the curve is given by a simple equation x = g(y) or y = .f(x). 

If y =f(.x), a :S:: x :S:: b, we take x = t and get 

s = f Jl + (dy/dx) 2 dx. 

If x = g(y), a :S:: y :S:: b, we take y = t and get 

s = f j(dxfdy) 2 + I dy. 

EXAMPLE 2 Find the length of the path of a ball whose motion is given by 

X = 20t, J' = 32t - 16t 2 

from t = 0 until the ball hits the ground. (Ground level is y = 0, see Figure 
6.3.5.) The ball is at ground level when 

32t - 16t 2 = 0, t = 0 and t = 2. 

We have dx/dt = 20, dy/dt = 32 - 32t, 

s = f )202 + (32 - 32t)2 dt. 

We cannot evaluate this integral yet, so the answer is left in the above form. 

We can get an approximate answer by the Trapezoidal Rule. When L'!x = t. 
the Trapezoidal Approximation is 

s""' 53.5 error :s; 0.4. 
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y 

I= I 

t=O l = 2 

Figure 6.3.5 

The following example shows what happens when a parametric curve does 
retrace its path. 

EXAMPLE 3 Let 

y = 1, -1:St:Sl. 

As t goes from -1 to 1, the point (x, y) moves from (0, 1) to (1, 1) and then 
back along the same line to (0, 1) again. The path is shown in Figure 6.3.6. 

Figure 6.3.6 

y 

f= -I 

t= I 
t=-.!, r=O 

f= * 

X 

The path has length one. However, the point goes along the path twice for a 
total distance of two. The length formula gives the total distance the point 
moves. 

s = f
1 

j(dxfdtf + (dy/dtf dt = f 
1 
jc -2t)2 + 02 dt 

= f I j4t2 dt = f I 21tl dt = 2. 

We next prove a theorem which shows the connection between the length of 
an arc and the area of a sector of a circle. Given two points P and Q on a circle with 
center 0, the arc PQ is the portion of the circle traced out by a point moving from P 
to Q in a counterclockwise direction. The sector POQ is the region bounded by the 
arc PQ and the radii OP and OQ as shown in Figure 6.3.7. 
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Q 

s 

Figure 6.3.7 

THEOREM 

Let P and Q be t\\'o points on a circle with center 0. The area A of the sector 
POQ is equal to one half the radius r times the lengths of the arc PQ, 

A= trs. 

DISCUSSION The theorem is intuitively plausible because if we consider an 
infinitely small arc 11s of the circle as in Figure 6.3.8, then the corresponding 
sector is almost a triangle of height r and base 11s, so it has area 

(compared to 11s). 

Summing up, we expect that A = trs. 

Figure 6.3.8 

We can derive the formula C = 2nr for the circumference of a circle using the 
theorem. By definition, n is the area of a circle of radius one, 

n=J' 2~dy. 
-I 

Then a circle of radius r has area 

A = fr 2jr2 
- y 2 dy = { 

1 
2r 2 J I - (yjr) 2 d(yjr) = nr2. 

Therefore the circumference C is given by 

A= trC, C = 2nr. 
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PROOF OF THEOREM To simplify notation assume that the center 0 is at the 
origin, Pis the point (0, r) on the x-axis, and Q is a point (x, y) which varies 
along the circle (Figure 6.3.9). We may take y as the independent variable and 

r P(O, r) 

Figure 6.3.9 

use rhe equation x = Jr 2 
- y2 for the right half of the circle. Then A and s 

depend on y. Our plan is to show that 

dA 1 ds 
-=-r-. 
dy 2 dy 

First, we find dxjdy: 

dx -y y 

dy Jrz- yz x 

Using the definition of arc length, 

ds = jl + ( dx) 2 = J I + yz = jxz + yz = I"_. 
dy dy x 2 x 2 x 

The triangle OQR in the figure has area -!xy, so the sector has area 

Then 

dA 1 ds 
-=-r-
dy 2 dy" 

Thus 

So A and -!rs differ and only by a constant. But when y = 0, A = -!rs = 0. 
Therefore A = trs. 

To prove the formula A = -!rs for arcs which are not within a single quadrant 
we simply cut the arc into four pieces each of which 'is within a single 
quadrant. 
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PROBLEMS FOR SECTION 6.3 

Find the lengths of the following curves. 

I y = ~(x + 2)3
'
2

, 0 S: x S: 3 

3 (3y - I)2 = x 3
, 0 S: x S: 2 

2 

4 

• y = (x 2 + W'2
, -2 S: x S: 5 

_\' = (4/5)x5 4
, 0 S: x S: 1 

5 y = (x - I)2
'
3

, 1 S: x S: 9 Hinr: Solve for x as a function of r. 

6 

8 

10 

xJ I 
y=-+-

12 x' 
S:xS:3 

y = ~X~ - ~. I S: X S: 100 

8x=2y4 +y- 2, IS:yS:2 

II x 2
1
3 + y2

'
3 = I, first quadrant 

12 y = gjt2+2rdt, 0 s: x s: 10 

13 y = 2J; Jl2+r dt, 2 s: x s: 6 

I4 y = nxJt-4 + t- 2 dt, I::; X::; 3 

IS x = n Jfi--=-I dt, S: y ::; 4 

I6 y = f~'(jt + 1)- 2 dt, 0 S: x S: I 

7 
)'4 + 3 

x=-- 3<y<6 . 6y ' - -

9 _r = !x5 3 
- :ix' 3

• 1 S: x S: 8 

17 Find the distance travelled from r = 0 tot = I by an object whose motion is x = t3
:
2

, 

y = (3 - 1)3/2. 

I8 Find the distance moved from t = 0 to r = I by a particle whose motion is given by 
x = 4(1 - r)3t2, Y = 2r312. 

I9 Find the distance travelled from t = 1 to t = 4 by an object whose motion is given by 
X = t312

, )' = 9t. 

20 Find the distance travelled from timet = 0 tor = 3 by a particle whose motion is given 
by the parametric equations x = 5r2

, y = t3
. 

2I Find the distance moved from t = 0 to t = 2n by an object whose motion is x = cost, 
y =sin t. 

22 Find the distance moved from t = 0 to t = n by an object with motion x = 3 cos 2t, 
y = 3 sin 2t. 

23 Find the distance moved from t = 0 to r = 2n by an object with motion x = cos 2 t, 
y = sin 2 t. 

24 Find the distance moved by an object with motion x = e' cos r, y = e' sin r, 0 S: t S: I. 

25 Let A(t) and L(t) be the area under the curve y = x 2 from x = 0 to x = t, and the length 
of the curve from x = 0 to x = t, respectively. Find d(A(t))jd(L(t)). 

In Problems 26-30, find definite integrals for the lengths of the curves, but do not evaluate the 
integrals. 

26 y = x 3
, 0 S: x S: 

27 y = 2x 2 
- x + I, 0 S: x S: 4 

28 x = 1/t, y = t 2
, I S: t S: 5 

29 x = 2t + I, y = jt, I S: t S: 2 

30 The circumference of the ellipse x 2 + 4y2 = I. 

31 Set up an integral for the length of the curve y = ~. 1 S: x S: 2, and find the Trapezoi­
dal Approximation where Ll.x = t. 

32 Set up an integral for the length of the curve x = r2 
- t, y = %t 312 , 0 S: t S: I, and find 

the Trapezoidal Approximation where Ll.t = ±. 
33 Set up an integral for the length of the curve y = I/x, I S: x S: 5, and find the Trapezoidal 

Approximation where C.x = I. 
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6.4 AREA OF A SURFACE OF REVOLUTION 

Set up an integral for the length of the curve y = x 2
, - 1 :o; x :o; 1, and find the Trapezoi­

dal Approximation where .G.x = 1. 
Suppose the same curve is given in two ways, by a simple equation y = F(x), a :o; x :o; b 
and by parametric equations x = f(t), y = g(t), c :o; t :o; d. Assuming all derivatives are 
continuous and the parametric curve does not retrace its path, prove that the two 
formulas for curve length give the same values. Hint: Use integration by change of 
variables. 

i.4 AREA OF A SURFACE OF REVOLUTION 

When a curve in the plane is rotated about the x- or y-axis it forms a swjace of revolu­
tion, as in Figure 6.4.1. 

y y 

X X 

Figure 6.4.1 Surfaces of Revolution 

The simplest surfaces of revolution are the right circular cylinders and cones. 
We can find their areas without calculus. 

Figure 6.4.2 shows a right circular cylinder with height h and base of radius 
r. When the lateral surface is slit vertically and opened up it forms a rectangle with 
height h and base 2nr. Therefore its area is 

lateral area of cylinder = 2nhr. 

Figure 6.4.3 shows a right circular cone with slant height I and base of radius r. 
When the cone is slit vertically and opened up, it forms a circular sector with 

radius 1 and arc lengths = 2nr. Using the formula A = -! sl for the area of a sector, we 
see that the lateral surface of the cone has area 

lateral area of cone = nrl. 

Figure 6.4.2 Figure 6.4.3 

327 
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Figure 6.4.4 Cone frustum 

Figure 6.4.4 shows the frustum of a cone with smaller radius r 1 , larger radius 
r2 , and slant height I. The formula for the area of the lateral surface of a frustum of a 
cone Is 

lateral area of.fi"ustwn = n(r 1 + r2 )1. 

This formula is justified as follows. The frustum is formed by removing 
a cone of radius r 1 and slant height 11 from a cone of radius r2 and slant height 12 . 

The frustum therefore has lateral area 

A= nr2 12 - nr 111 • 

The slant heights are proportional to the radii, 

The slant height I of the frustum is 

Using the last two equations, 

n(r 1 + r2 )1 = n(r2 + r1)(/2 - ltl 
= n(r2 12 + r112 - r211 - r 11tl 
= nr2 / 2 - nr 111 =A. 

A surface of revolution can be sliced into frustums in the same way that a 
solid of revolution can be sliced into discs or cylindrical shells. Consider a smooth 
curve segment 

y = /(x), 

in the first quadrant. When this curve segment is rotated about the y-axis it forms a 
surface of revolution (Figure 6.4.5). 

Here is the formula for the area. 

AREA OF SURFACE OF REVOLUTION 

A = fb 2nxJ! + (dyjdxf dx 
{/ 

(rotating ohout y-axis). 

To justify this formula we begin by dividing the interval [a, b] into infinitesi­
mal subintervals of length Llx. This divides the curve into pieces of infinitesi-
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y y 

~ 
I I 
I I 

a b X X 

Figure 6.4.5 

mal length !J.s. When a piece !J.s of the curve is rotated about the x-axis it 
sweeps out a piece of the surface, !J.A (Figure 6.4.6). Since !J.s is almost a line 
segment, !J.A is almost a cone frustum of slant height !J.s, and bases of radius 
x and x + !J.x. Thus compared to !J.x, 

!J.s ~ j1 + (dyjdx? !J.x, 

!J.A ~ n(x + (x + !J.x)) !J.s ~ 2nx !J.s, 

!J.A ~ 2nxj1 + (dyjdxf !J.x. 

Then by the Infinite Sum Theorem, 

A= f 2nxj1 + (dyjdx? dx. 

y y 

X 

Figure 6.4.6 

X 

EXAMPLE 1 The line segment y = 3x, from x = 1 to x = 4, is rotated about the 
y-axis (Figure 6.4.7). Find the area of the surface of revolution. 

FIRST SOLUTION We use the integration formula. dyjdx = 3, so 

A = J
1

4 

2nxj1 + (dy/dx)2 dx 

= J
1

4 

2nxji+3'2 dx = 2nji0 r X dx 

11- x2]4 11- ( 16 - 1) 11-= 2n...; 10 2 1 

= 2n...; 10 ~2~ = 15ny 10. 
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y y 

y= 3x 

4 X X 

Figure 6.4.7 

SECOND SOLUTION This surface of revolution is a frustum of a cone, so the 
formula for the lateral area of a frustum can be used directly. From the 
diagram we see that the radii and slant height are: 

~"1 = L r2 = 4, 
I = distance from (1, 3) to (4, 12) 

= j(4- 1)2 + (12- w = Jr--;:32,---+-9---=2 = J9o = 3fi0. 

Then A = n(r 1 + r2 )1 = n(l + 4)3fiQ = 15nfi0. 

EXAMPLE 2 The curve y = tx2
, 0 ::::; x ::::; 1, is rotated about the y-axis (Figure 

6.4.8). Find the area of the surface of revolution. 

Figure 6.4.8 

dy 
-=x 
dx ' 

A = f 2nxJl + (dyjdx) 2 dx 

= f 2nx.JT+? dx = J2 

n . .j~ du 

= ~nu 312T = ~n(2j2- 1). 

y 

y = 2x 2 

X 

(where u = 1 + x 2
) 

y 

X 
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In finding a formula for surface area, why did we divide the surface into 
frustums of cones instead of into cylinders (as we did for volumes)? The reason is that 
to use the Infinite Sum Theorem we need something which is infinitely close to a small 
piece ~A of area compared to ~x. The small frustum has area 

(2x + ~x)n ~s 
which is infinitely close to ~A compared to ~x because it almost has the same shape 
as ~A (Figure 6.4.9). The small cylinder has area 2xn ~y. While this area is infi­
nitesimal, it is not infinitely close to ~A compared to ~x, because on dividing by ~x 
we get 

_j_ .1.y 
T 

Figure 6.4.9 

area of frustum ~s A ~s ds 
------:---- = 2xn- + n LlX- ~ 2xn-

~X ~X ~X dx' 

area of cylinder = 2xn ~y ~ 2xn ddy. 
~X ~X X 

-¥--.1.s 
--- I 

I 
I I 
I I 
I I 

frustum 

.1.y 

cylinder 

Approximating the surface by small cylinders would give us the different and incorrect 

f
b dy 

value a 2nx dx dx for the surface area. 

When a curve is given by parametric equations we get a formula for surface 
area of revolution analogous to the formula for lengths of parametric curves in Section 
6.3. 

Let X = f(t), y = g(t), 

be a parametric curve in the first quadrant such that the derivatives are continuous 
and the curve does not retrace its path (Figure 6.4.10). 

y 

Figure 6.4.10 

o;=b 
~~s 
t =a 

y 
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AREA OF SURFACE OF REVOLUTION 

A= f 2nxJB~r + (~~r dt (rotating about y-axis). 

To justify this new formula we observe that an infinitesimal piece of the 
surface is almost a cone frustum of radii x, x + L1x and slant height L1s. 
Thus compared to t:..t, 

L1s ~ j(dxjdt) 2 + (dyjdt) 2 M, 

L'!A ~ n(x + (x + L1x)) L1s ~ 2nx L1s, 

L1A ~ 2nxj(dxjdt) 2 + (dyjdt) 2 t:..t. 

The Infinite Sum Theorem gives the desired formula for area. 

This new formula reduces to our first formula when the curve has the simple 
form y = f(x). If y = f(x), a :o;; x :o;; b, take x = t and get 

A = fb 2nxJ1 + (dyjdx)2 dx (about ycaxis). 
{I 

Similarly, if x = g(y), a :o;; y :o;; b, we take y = t and get the formula 

A = Jb 2nxj(dxjdyf + 1 dy 
II 

(about y-axis). 

EXAMPLE 3 The curve x = 2t 2
, y = t 3

, 0 :o;; t :o;; 1 is rotated about the y-axis. 
Find the area of the surface of revolution (Figure 6.4.11). 

We first find dxjdt and dyjdt and then apply the formula for area. 

dx = 4t dy = 3tz, 
dt ' dt 

A = f 2nxj(dx/dt? + (dyjdt) 2 dt 

= f 4nt2 j(4t) 2 + (3t 2? dt 

= 4n{ t 2)16t2 + 9t4 dt 

= 4n f 1
3 )16 + 9t 2 dt. 

y y 

t =I 

X X 

Figure 6.4.11 
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1 u- 16 
Let u = 16 + 9t2

, du = 18t dt, dt =- du, t2 = -
9
-. Then u = 16 at 

18t 
t = 0 and u = 25 at t = 1, so 

fzs 1 J25 
1 (u 16) A= 4n t3Ju-

8 
du = 4n - ---- Judu 

16 1 t 16 18 9 

2n J25 
312 r:. 5692 = 81 

16 
(u - 16-y u) du = 

1215 
n ~ 4.7n. 

EXAMPLE 4 Derive the formula A = 4nr2 for the area of the surface of a sphere of 
radius r. 

When the portion of the circle x2 + y2 = r2 in the first quadrant is rotated 
about the y-axis it will form a hemisphere of radius r (Figure 6.4.12). The 
surface of the sphere has twice the area of this hemisphere. 

y y 

r X X 

Figure 6.4.12 

It is simpler to take y as the independent variable, so the curve has the 
equation 

Then 

x = Jr2- y2, 

dx 

dy 

OS:yS:r. 

y 

This derivative is undefined at y = 0. To get around this difficulty we let 
0 < a < r and divide the surface into the two parts shown in Figure 6.4.13, 
the surface B generated by the curve from y = 0 to y = a and the surface C 
generated by the curve from y = a to y = r. 

The area of C is 

C = f 2nxj(dxjdy)2 + 1 dy 

= f 2nJr2- y2 Jt + y2/(r2 - y2) dy 

= f 2nJrz - y2 Jr2/(r2- y2) dy 

= f 2nr dy = 2nryi = 2nr(r - a). 

We could find the area of B by taking x as the independent variable. However, 
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y y 

B 

r X X 

Figure 6.4.13 

it is simpler to let a be an infinitesimal e. Then B is an infinitely thin ring­
shaped surface, so its area is infinitesimal. Therefore the hemisphere has area 

!A = B + C;:::: 0 + 2nr(r- e);:::: 2m·2
, 

so 

and the sphere has area A = 4nr2
. 

If a curve is rotated about the x-axis instead of they-axis (Figure 6.4.14), we 
interchange x and y in the formulas for surface area, 

A = f 2nyJ(dxjdt)2 + (dyjdt) 2 dt (about x-axis), 

A = f 2nyJ(dxjdy)2 + 1 dy (about x-axis), 

A = f 2nyJl + (dyjdx) 2 dx (about x-axis). 

y y 

~ 
I I 
I I 

a b X X 

Figure 6.4.14 

Most of the time the formula for surface area will give an integral which 
cannot be evaluated exactly but can only be approximated, for example by the 
Trapezoidal Rule. 

EXAMPLE 5 Let C be the curve 

0::::; X::::; 1. (see Figure 6.4. l 5) 

Set up an integral for the surface area generated by rotating the curve C about 
(a) they-axis, (b) the x-axis (see Figure 6.4.16). 
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y y y 

y=x4 

X X X 

(a) (b) 

Figure 6.4.15 Figure 6.4.16 

(a) dyjdx = 4x3 

A= f 2nxJ1 + (dyjdx) 2 dx 

= f 2nxjl + 16x6 dx. 

We cannot evaluate this integral, so we leave it in the above form. The 
Trapezoidal Rule can be used to get approximate values. When ~x = /0 the 
Trapezoidal Approximation is 

A ~ 6.42, error ~ 0.26. 

(b) A = f 2nyjl + (dyjdx? dx 

= f 2nx4 jl + 16x6 dx. 

The Trapezoidal Approximation when ~x = /0 is 

A~ 3.582 error~ 0.9. 

PROBLEMS FOR SECTION 6.4 

In Problems 1-12, find the area of the surface generated by rotating the given curve about the 
y-axis. 

1 

3 

5 

6 

y = x 2 , 0::::; X::::; 2 

y = 2x312 , 0::::; x ::::; 1 

y = txJx - Jx, 1 ::::; x ::::; 4 

y=ix4 +ix- 2, 1:::;x:::;2 

7 y = ~x5f3 - ixl/3, 1 ::::; x ::::; 8 

8 X = 2t + 1, }' = 4 - t, 0 ::::; t ::::; 4 

9 X = t + I, y = it 2 + t, 0 ::::; t ::::; 2 

10 x=t2,y=tt3
, o:::;r:::;3 

2 

4 

y = ex + d, a ::::; x ::::; b 

y = t(x2 + 2)312 : 1 ::::; x ::::; 2 
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X = t3
, )' = 3t + 1, 0 ::::; I ::::; [ 

x 2
1
3 + y2

1
3 = 1, first quadrant 

In Problems 13-20, find the area of the surface generated by rotating the given curve about the x­

axls. 

13 y=!x3
, o:::::x:::::1 

14 }' = p, [ ::::; X ::::; 2 

15 

16 y = !x4 + !x- 2
, l ::::: x ::::: 2 

17 y = !xj:~- jx, 3::::: x::::: 4 

18 y = tx 513 
- ix 113

, 8 ::::: x ::::: 27 

19 X = 2t + [, .)' = 4 - l, 0 ::::; l ::::; 4 

20 X = /2 + /, y = 2t + 1, 0 ::::; t ::::; 1 

21 The part of the circle x 2 + y 2 = r2 between x = 0 and x = a in the first quadrant is 
rotated about the x-axis. Find the area of the resulting zone of the sphere (0 < a < r). 

22 Solve the above problem when the rotation is about they-axis. 

In Problems 23-26 set up integrals for the areas generated by rotating the given curve about 
(a) the y-axis, (b) the x-axis. 

23 }' = x 5
, 0::::; X::::; 1 

24 X = y + jY, 2 ::::; )' ::::; 3 

25 x=t2 +t,y=t2 -l, 1:::::1:::::10 

26 

27 

28 

D 29 

Set up an integral for the area generated by rotating the curve y = !x2
, 0 ::::; x ::::: 1 about 

the x-axis and find the Trapezoidal Approximation with ~x = 0.2. 

Set up an integral for the area generated by rotating the curve y = !x3 , 0 ::::; x ::::: 1 
about they-axis and find the Trapezoidal Approximation with ~x = 02. 

Show that the surface area of the torus generated by rotating the circle of radius r and 
center (c, 0) about the y-axis (r < c) is A = 4n2 rc. Hint: Take y as the independent 

variable and use the formula J! r dyj~ for the length of the arc of the circle from 
y =a toy= b. 

6.5 AVERAGES 

Given 11 numbers y 1 , •.. , y,, their average value is defined as 

Yt + · · · + Y, 
Yave = -----

ll 

If all the}'; are replaced by the average value Yave• the sum will be unchanged, 

Y1 + '' · + Y, = Yave + ''' + Yave = ll.J.Iave· 

Iff is a continuous function on a closed interval [a, b ], what is meant by the 
average value of I between a and b (Figure 6.5.1)? Let us try to imitate the procedure 
for finding the average of n numbers. Take an infinite hyperreal number H and 
divide the interval [a, b l into infinitesimal subintervals of len!!th dx = rh - oi!H T Pt 
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f<x) 

,/,...,.. - ..... 
fave / 

r---., 
// 

..... 

...... / 

Figure 6.5.1 a b 

us "sample" the value off at the H points a, a + dx, a + 2 dx, ... , a + (H - 1) dx. 
Then the average value off should be infinitely close to the sum of the values off 
at a, a+ dx, ... , a+ (H - 1) dx, divided by H. Thus 

f.ve ~ f(a) + f(a + dx) + f(a + 2 d~ + · · · + f(a + (H - 1) dx). 

. b- a 1 dx 
Smce dx = --,- = -b--and we have 

H H -a 

fave ~ f(a)dx + f(a + dx)dx; ~-~ + f(a + (H- 1)dx)dx, 

j, ,.._, L~ f(x) dx 
ave ......._, b - a . 

Taking standard parts, we are led to 

DEFINITION 

Let f be continuous on [a, b]. The average value off between a and b is 

J; = J~ f(x) dx 
ave b - a . 

Geometrically, the area under the curve y = f(x) is equal to the area under 
the constant curve y = f.ve between a and b, 

f.ve • (b -a) = f f(x) dx. 

EXAMPLE 1 Find the average value of y = Jx from x = 1 to x = 4 (Figure 6.5.2). 

J~ Jx dx ix311]i i{8 - 1) 
Yave = (4 - 1) = -3- = 3 

y 

Yave 

Figure 6.5.2 4 X 

14 

9 
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Recall that in Section 3.8, we defined the average slope of a function F 
between a and b as the quotient 

F(b)- F(a) 
average slope = b . 

-a 

Using the Fundamental Theorem of Calculus we can find the connection between 
the average value ofF' and the average slope of F. 

THEOREM 1 

Let F be an antiderivative of a continuous function f on an open interval I. 
Then for any a < b in I, the average slope ofF between a and b is equal to 
the average value off between a and b, 

F(b)- F(a) J~f(x)dx 
b-a b-a · 

PROOF By the Fundamental Theorem, 

F(b) - F(a) = f f(x) dx. 

THEOREM 2 (Mean Value Theorem for Integrals) 

Let f be continuous on [a, b]. Then there is a point c strictly between a and b 
where the value off is equal to its average value, 

J~f(x)dx 
f(c) = b . 

-a 

PROOF Theorem 2 is illustrated in Figure 6.5.3. We can make f continuous on the 
whole real line by defining f(x) = f(a) for x < a and f(x) = f(b) for x > b. 
By the Second Fundamental Theorem of Calculus, f has an antiderivative F. 
By the Mean Value Theorem there is a point c strictly between a and b at 
which F'(c) is equal to the average slope ofF, 

F'(c) = F(b)- F(a). 
b- a 

But F'(c) = f(c) and F(b) - F(a) = J~ f(x) dx, so 

J~f(x) dx 
f(c) = b . 

-a 

/(x) 

Figure 6.5.3 a c b 
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EXAMPLE 2 A car starts at rest and moves with velocity v = 3t2
• Find its average 

velocity between times t = 0 and t = 5. At what point of time is its velocity 
equal to the average velocity? 

sg 3t2 dt t 3]6 125 
vave = 5 - 0 = -5- = 5 = 25. 

To find the value oft where v = vave• we put 

3t2 = 25, t = fiXi3 = 5/.fi. 

Suppose a car drives from city A to city Band back, a distance of 120 miles 
each way. From A to Bit travels at a speed of 30 mph, and on the return trip it travels 
at 60 mph. What is the average speed? 

If we choose distance as the independent variable we get one answer, and if we 
choose time we get another. 

Average speed with respect to time: The car takes 120/30 = 4 hours to go 
from A to Band 120/60 = 2 hours to return to A. The total trip takes 6 hours. 

30 • 4 + 60 • 2 = 240 = 40 mph: 
Vave = 6 6 

Average speed with respect to distance: The car goes 120 miles at 30 mph 
and 120 miles at 60 mph, with a total distance of 240 miles. Therefore 

30. 120 + 60. 120 - 4 h 
vave = 240 - 5 mp . 

From Figure 6.5.4 we see that the average with respect to time is smaller 
because most of the time was spent at the lower speed of 30 mph. 

u u 

60 

0 4 6 time, t 0 120 240 distance, s 

Figure 6.5.4 

In general, if y is given both as a function of sand oft, y = f(s) = g(t), then 
there is one average of y with respect to s, and another with respect to t. 

EXAMPLE 3 A car travels with velocity v = 4t + 10, where tis time. Between times 
t = 0 and t = 4 find the average velocity with respect to (a) time, and (b) 
distance. 

(a) 
S6 4t + 10 dt 2t2 + lOtJri 

Vave = 
4 

= 
4 

= 18 (Figure 6.5.5(a)). 
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v v 

0 4 time. 1 0 72 distance, s 

(a) (b) 

Figure 6.5.5 

(b) Let s be the distance, and put s = 0 when t = 0. Since ds = c dt 
= (4t + 10) dt, at time t = 4 we have 

Then 

4 ]4 
s = { 4t + 10 dt = 2t 2 + JOt 0 = 72. 

J6 2 (4t + 10)ds 
Vave = 72 

J6 (4t + 10)(4t + 10) dt 

72 

J616t 2 + 80t + 100dt 

72 

1024/3 + 640 + 400 

72 

l:ft 3 + 40t2 + lOOtJri 
72 

19.2 (Figure 6.5.5(b)). 

PROBLEMS FOR SECTION 6.5 

In Problems 1-8, sketch the curve, find the average value of the function, and sketch the rectangle 
which has the same area as the region under the curve. 

I f(x) =I+ x, -1 :S: X :S: 1 2 

3 f(x) = 4- x 2
, -2 :S: X :S: 2 4 

5 f(x)=~, I:S:x:S:5 6 

7 f(x) = fx, O:S:x:S:8 8 

In Problems 9-22, find the average value ofj(x). 

9 f(x) = x 2 
- ~, 0 :S: x :S: 3 10 

11 f(x) = 6x, -4 :S: X :S: 2 12 

13 f(x) = 2xj1 + x 2
, -3 :S: X :S: 3 14 

15 f(x) =sin x, O:S:x:S:n 16 

17 .f(x) = sin x cos x, 0 :S: x :S: n/2 18 

19 f(x) = e', -I :S:x:S:I 20 

21 
I 

.f(x) = -, 
X 

1 :S: X :S: 4 22 

.f(x) = 2 - ±x, 0 :S: x :S: 4 

f(x) = 1 + x2
, -2 :S: x :S: 2 

f(x) = X3, 0 :S: X :S: 2 

f(x) = I - x4
, -1 :S: x :S: I 

.f(x) = ~ + 1/~, 1 :S: x :S: 9 

3x 
.f(x)= ~· 

y~l-x 
-± :S: X :S: ± 

f(x) = 5x4 
- 8x 3 + 10, 0 :S: x :S: 10 

f(x) = sin x, 0 :S: x :S: 2n 

f(x) = x + sin x, 0 :S: x :S: 2n 

f(x) = e' - 2x, 0 :S: x :S: 2 

X 
f(x) = X + 

1
, 0 ~ X :S: 4 
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In Problems 23-28, find a point c in the given interval such thatf(c) is equal to the average value 
of f(x). 

23 

25 

27 

29 

30 

31 

32 

33 

D 34 

f(x) = 2x, -4::; x::; 6 

f(x) = flx, 0 ::; x ::; 2 

f(x) = x213 , 0 ::; x::; 2 

24 

26 

28 

f(x) = 3x2
, 0::; x ::; 3 

f(x) = X
2 

- x, -1 ::; x ::; 1 

f(x) = lx - 31, 1 ::; x ::; 4 

What is the average distance between a point x in the interval [5, 8] and the origin? 

What is the average distance between a point in the interval [ -4, 3] and the origin? 

Find the average distance from the origin to a point on the curve y = x312 , 0 ::; x ::; 3, 
with respect to x. 

A particle moves with velocity v = 6t from time t = 0 to t = 10. Find its average 
velocity with respect to (a) time, (b) distance. 

An object moves with velocity v = t 3 from timet = 0 tot = 2. Find its average velocity 
with respect to (a) time, (b) distance. 

A particle moves with positive velocity v = f(t) from t = a to t = b. Thus its average 
velocity with respect to time is 

J! f(t) dt 

(b- a)· 

Show that its average velocity with respect to distance is 

J: (f(t))2 dt 

J:f(t) dt . 

6 SOME APPLICATIONS TO PHYSICS 

The Infinite Sum Theorem can frequently be used to derive formulas in physics. 

1 MASS AND DENSITY, ONE DI!\JIENSION 

Consider a one-dimensional object such as a length of wire. We ignore the atomic 
nature of matter and assume that it is distributed continuously along a line seg­
ment. If the density p per unit length is the same at each point of the wire, then the 
mass is the product of the density and the length, m =pL. If Lis in centimeters and p 
in grams per centimeter, then m is in grams. (pis the Greek letter "rho".) 

Now suppose that the density of the wire varies continuously with the posi­
tion. Put the wire on the x-axis between the points x = a and x = b, and let the 
density at the point x be p(x). Consider the piece of the wire of infinitesimal length 
!J.x and mass !J.m shown in Figure 6.6.1. At each point between x and x + !J.x, the 
density is infinitely close to p(x), so 

!J.m ~ p(x) !J.x (compared to !J.x). 

Ax 
X 

Figure 6.6.1 {/ X 
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Therefore by the Infinite Sum Theorem, the total mass is 

111 = f p(x) dx. 

EXAMPLE 1 Find the mass of a wire 6 em long whose density at distance x from the 
center is 9 - x 2 gm/cm. In Figure 6.6.2, we put the center of the wire at the 
origin. Then 

m = J
3 

9 - x 2 dx = 9x - j-x3J3 

= 36 gm. 
-3 -3 

p 

Figure 6.6.2 

2 MASS AND DENSITY, TWO DIMENSIONS 

Imagine a flat plate which occupies the region below the curve y = f(x)J(x) 2 0, 
from x = a to x = b. If its density per unit area is a constant p gmjcm 2

, then its mass is 
the product of the density and area, 

111 = pA = p f f(x) dx. 

Suppose instead that the density depends on the value of x, p(x). Consider a vertical 
strip of the plate of infinitesimal width L'l.x (Figure 6.6.3). On the strip between x 
and x + L'l.x, the density is everywhere infinitely close to p(x), so 

L'l.m ::::: p(x) L'I.A ::::: p(x)f(x) L'l.x (compared to L'l.x). 

y 

(I h 

Figure 6.6.3 
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By the Infinite Sum Theorem, 

m = fp (x)f(x) dx. 

EXAMPLE 2 A circular disc of radius r has density at each point equal to the distance 
of the point from they-axis. Find its mass. (The center of the circle, shown in 
Figure 6.6.4, is at the origin.) The circle is the region between the curves 
-Jr2 

- x2 and Jr2 
- x2 from -r tor. The density at a point (x, y) in the 

disc is \x\. By symmetry, all four quadrants have the same mass. We shall 
find the mass m1 of the first quadrant and multiply by four. 

m1 = { jr2 
- x 2 x dx. 

Put u = r2 
- x2

, du = - 2x dx; u = r2 when x = 0, and u = 0 when x = r. 

- .!. - .!. - .!. l 3/2 - .!. .3 
0 y2 ]'2 

ml - f - 2Ju du - 2 r Ju du - 2 • 3u - 31 . 
~ Jo o 

y 

X 

Figure 6.6.4 

3 MOMENTS, ONE DIMENSION 

Two children on a weightless seesaw will balance perfectly if the product of their 
masses and their distances from the fulcrum are equal, m1 d1 = m2d2 (Figure 6.6.5). 

Figure 6.6.5 

For example, a 60 lb child 6 feet from the fulcrum will balance a 40 lb child 9 feet 
from the fulcrum, 60 • 6 = 40 • 9. If the fulcrum is at the origin x = 0, the masses m1 

and m2 have coordinates x 1 = - d 1 and x2 = d2 . The equation for balancing becomes 

m1x 1 + m2x 2 = 0. 

Similarly, finitely many masses m1 , .•. , mk at the points x 1 , ... , xk will balance about 
the point x = 0 if 

m1x 1 + · · · + mkxk = 0. 

Given a mass mat the point x, the quantity mx is called the moment about the origin. 
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The moment of a finite collection of point masses m 1 , ... , mk at x 1 , •.. , xk 
about the origin is defined as the sum 

J\1 = m1x 1 + · · · + mkxk. 

Suppose the point masses are rigidly connected to a rod of mass zero. If the moment 
M is equal to zero, the masses will balance at the origin. In general they will balance 
at a point x called the center of gravity (Figure 6.6.6). xis equal to the moment divided 
by the total mass m, 

_ M m1x 1 + · · · + mkxk 
.\ =-= 

m m1 +· .. +m~: 

Since the mass m is positive, the moment M has the same sign as the center of gravity x. 

Ill] n1 2 Ill:. Ill.] Ills 1116 

XI X2 X" XJ xs X6 

x 

Figure 6.6.6 

Now consider a length of wire between x = a and x = b whose density at 
x is p(x). The moment of the wire about the origin is defined as the integral 

M = f xp(x) dx. 

This formula is justified by considering a piece of the wire of infinitesimal length Ln. 
On the piece from x to x + L1x the density remains infinitely close to p(x). Thus if 
L1M is the moment of the piece, 

L1M :::;:; x L1m ;::;:; xp(x) L1x (compared to L1x). 

The moment of an object is equal to the sum of the moments of its parts. Hence by 
the Infinite Sum Theorem, 

M = f xp(x) dx. 

If the wire has moment M about the origin and mass m, the center of mass 
of the wire is defined as the point 

.\' = Mjm. 

A point of mass m located at x has the same moment about the origin as the whole 
wire, M = .\'m. Physically, the wire will balance on a fulcrum placed at the center of 
mass. 

EXAMPLE 3 A wire between x = 0 and x = 1 has density p(x) = x2 (Figure 6.6.7). 
The moment is 

M = 11 x2x dx = x4]1 = t. 
Jo 4 o 
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The mass and center of mass are 

x = Mjm = ;i. 

p 

p(x) = x 2 

Figure 6.6.7 X 

4 MOMENTS, TWO DIMENSIONS 

A mass m at the point (x0 , y0 ) in the (x, y) plane will have moments M x about the x­
axis and My about they-axis (Figure 6.6.8). They are defined by 

Consider a vertical length of wire of mass m and constant density which 
lies on the line x = x 0 from y = a to y = b. 

The wire has density 

m 
p=--. 

b-a 

The infinitesimal piece of the wire from y toy + Lly shown in Figure 6.6.9 will have 
mass and moments 

y 

Llm = p Ll y, 

LlMx ~ y Llm = yp Lly 

LlMy ~ x 0 Llm = x 0 p Lly 

Yo ----------..., 111 

I 
I 
I 
I 
I 
I 

Xn X 

(compared to Lly), 

(compared to Lly). 

b 

y ---------

a ---------

Xo 

Figure 6.6.8 Figure 6.6.9 
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The Infinite Sum Theorem gives the moments for the whole wire, 

M, = f ypdy = p(~b 2 - ~a 2 ) = ~(b + a)m, 

Mr = fb x0p dy = x0p(b - a) = x0m. 
a 

We next take up the case of a flat plate which occupies the region R under 
the curve y = f(x), f(x) 2 0, from x = a to x = b (Figure 6.6.1 0). Assume the density 

y 

Figure 6.6.10 
(/ b X 

p(x) depends only on the x-coordinate. A vertical slice of infinitesimal width b.x 
between x and x + b.x is almost a vertical length of wire between 0 and f(x) which 
has area b.A and mass b.m ;:::; p(x) b.A ;:::; p(x)f(x) b.x (compared to b.x). Putting the 
mass b.m into the vertical wire formulas, the moments are 

b.M). ;:::; x b.m ;:::; xp(x)f(x) b.x 

b.Mx ;:::; !(f(x) + 0) b.m ;:::; tp(x)f(x) 2 b.x 

(compared to b.x), 

(compared to b.x). 

Then by the Infinite Sum Theorem, the total moments are 

MJ. = f xp(x)f(x) dx, 

Mx = r tp(x)f(x) 2 dx. 

The center of mass of a two-dimensional object is defined as the point (_\, ,D 
with coordinates 

.1; = Mxfm. 

A single mass mat the point (.'i:, y) will have the same moments as the two-dimensional 
body, Mx = my, MY = m.\. The object will balance on a pin placed at the center of 
mass. 

If a two-dimensional object has constant density, the center of mass depends 
only on the region R which it occupies. The centroid of a region R is defined as the 
center of mass of an object of constant density which occupies R. Thus if R is the 
region below the continuous curve y = f(x) from x = a to x = b, then the centroid 
has coordinates 

x = f xf(x) dx/A, 

where A is the area A = J~ j(x) dx. 

.1' = f tf(x) 2 dx/ A, 
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EXAMPLE 4 Find the centroid of the triangular region R bounded by the x-axis, the 
y-axis, and the line y = 1 - 1-x shown in Figure 6.6.11. R is the region 
under the curve y = 1 - !x from x = 0 to x = 2. The area of R is 

A= f 1 - !x dx = x- :i-x 2I = 1. 

The centroid is (x, y) where 

x = f x(l- !x)dx = !x2
- kx 3J: = 1, 

y = f !(1 -1-xf dx = f! -1-x + ix2 dx 

- l.x l.x2 + _L--1] 2 - 2 - 4 24-'C 

0 

_J. 
- 3· 

Thus the centroid is the point Ct, t). 

y 
y =I -1-x 

Figure 6.6.11 2 X 

The following principle often simplifies a problem in moments. 

If an object is symmetrical about an axis, then its moment about that axis is 
zero and its center of mass lies on the axis. 

PROOF Consider the y-axis. Suppose a plane object occupies the region under the 
curve y = f(y) from -a to a and its density at a point (x, y) is p(x) (Figure 
6.6.12). The object is symmetric about they-axis, so for all x between 0 and a", 

f(- x) = f(x), p(-x) = p(x). 

Then M)" = ra xf(x)p(x) dx = fa xf(x)p(x) dx + s: xf(x)p(x) dx 

= f (- x)f(- x)p(- x) d(- x) + S: xf(x)p(x) dx = 0. 

Also,.'\= My/m = 0. 

y 

-u -X X (/ X 

Figure 6.6.12 Symmetry about the y-axis 
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EXAMPLE 5 Find the centroid of the semicircle y = ~i (Figure 6.6.13). By 
symmetry, the centroid is on they-axis, x = 0. The area of the semicircle is 1n. 
Then 

1 J1 

1 1 I ]
1 

-n\' = -(1 - x 2
) dx = -x- -x3 

2. _,2 2 6 -I 

2 - 2/3 4 
\"=-=-
. ±n 3n· 3' 

J" 

-1 X 

Figure 6.6.13 

5 WORK 

A constant force F acting along a straight line for a distance s requires the amount of 
work 

W= Fs. 

For example, the force of gravity on an object of mass m near the surface of the 
earth is very nearly a constant g times the mass, F = gm. Thus to lift an object of mass 
m a distances against gravity requires the work W = gms. The following principle is 
useful in computing work done against gravity. 

The amount of work.done against gravity to move an object is the same as it 
would be if all the mass were concentrated at the center of mass. Moreover, 
the work against gravity depends only on the vertical change in position of the 
center of mass, not on the actual path of its motion. 

That is, W = gms where s is the vertical change in the center of mass. 

EXAMPLE 6 A semicircular plate of radius one, constant density, and mass m lies fiat 
on the table. (a) How much work is required to stand it up with the straight 
edge horizontal on the table (Figure 6.6.14(a))? (b) How much work is 
required to stand it up with the straight edge vertical and one corner on the 
table (Figure 6.6.14(b))? From the previous exercise, we know that the 

y 

X X 

(a) (b) 

Figure 6.6.14 
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center of mass is on the central radius 4/3n from the center of the circle. 
Put the x-axis on the surface of the table. 

(a) The center of mass is lifted a distance 4/3n above the table. Therefore 
W = mg • 4j(3n). 

(b) The center of mass is lifted a distance 1 above the table, so W = mg. 

Suppose a force F(s) varies continuously with the position s and acts on an 
object to move it from s = a to s = b. The work is then the definite integral of the 
force with respect to s, 

W = f F(s)ds. 

To justify this formula we consider an infinitesimal length /1s. On the interval 
from s to s + !1s the force is infinitely close to F(s), so the work !1 W done on this 
interval satisfies 

!1 W ~ F(s) !1s (compared to !1s). 

By the Infinite Sum Theorem, 

W = f F(s)ds. 

EXAMPLE 7 A spring, shown in Figure 6.6.15, of natural length L exerts a force 
F = ex when compressed a distance x. Find the work done in compressing 
the spring from length L - a to length L - b. 

W = Jb ex dx = -!-ex2Jb = -!-e(b2 - a2). 
a a 

0 al bi--L-b 

f--.--- L-a ----1 

L 

Figure 6.6.15 

EXAMPLE s The force of gravity between two particles of mass m 1 and m2 is 

F = gm 1m2/s2
, 

where g is a constant and sis the distance between the particles. Find the work 
required to move the particle m2 from a distance a to a distance b from m, 
(Figure 6.6.16). 

I"'· 
1112 

a h s 

Figure 6.6.16 
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PROBLEMS FOR SECTION 6.6 

In Problems 1-16 below, find (a) the mass, (b) the moments about the x- andy-axe", (c) the center 
of mass of the given object. 

1 A wire on the x-axis, 0 ::; x ::; 2 with density p(x) = 2. 

2 A wire on the x-axis, 0 ::; x ::; 4, with density p(x) = x 3
• 

3 A wire on the y-axis, 0 ::; y ::; 4, whose density is twice the distance from the lower 
end of the wire times the square of the distance from the upper end. 

4 A straight wire from the point (0, 0) to the point (1, 1) whose density at each point (x, x) 
is equal to 3x. 

5 A wire of le~gth 6 and constant density k which is bent in the shape of an L covering 
the intervals [0, 2] on the x-axis and [0, 4] on the y-axis. 

6 The plane object bounded by the x-axis and the curve y = 4 - x 2
, with constant 

density k. 

7 The plane object bounded by the x-axis and the curve y = 4 - x 2
, with density p(x) = x 2

. 

8 The plane object bounded by the lines x = 0, y = x, y = 4 - 3x, with density p(x) = 2x. 

9 The plane object between the x-axis and the curve y = x 2
, 0 ::; x ::; 1, with density 

p(x) = 1/x. 

10 The object bounded by the x-axis and the curve y = x 3
, 0 ::; x ::; 1, with density 

p(x) = 1- x2
. 

ll The object bounded by the x-axis and the curve y = 1/x, 1 ::; x ::; 2, with density 
p(x) = Jx. 

12 The disc bounded by x 2 + y2 = 4 with density p(x) = J4- x 2 

13 The object in the top half of the circle x2 + y 2 
= 1, with density p(x) = 21xl. 

14 The object between the x-axis and the curve y = ~, with density equal to the 
cube of the distance from they-axis. 

15 The object bounded by the x-axis and the curve y = 4x - x 2
, with density p(x) = 2x. 

16 The object bounded by the curves y = - j(x) and y = f(x), 0 ::; x ::; 3, with density 
p(x) = 4/f(x). (f(x) is always positive.) 

In Problems 17-24, sketch and find the centroid of the region bounded by the given curves. 

17 )' = 0, )' = 2, - 1 :s; X :s; 5 18 )' = 0, X = 0, 3x + 4y = 12 

19 

21 

y = 0, y = 1 - x 2 

y=O, y=~ 
20 

22 

y = 0, y = 1 - x 2
, 0 ::; x ::; 1 

)' = 0, )' = ~, 0 :s; X :s; 3 

23 y = 0, y = x 1i 3
, 0 ::; x ::; I 

24 x = 0, y = 0, Jx + .jy = 1, first quadrant 

25 

26 

27 

28 

29 

30 

31 

Find the mass of an object in the region under the curve y = sin x, 0 ::; x ::; n, with 
density p(x) = cos 2 x. 

Find the mass of an object in the region between the curves y = sin x cos x, y = sin x, 
0 ::; x <:;; n/2, with density p(x) = cos x. 

Find the mass of an object in the region under the curve y = eX, - 1 ::; x ::; I, with 
density e 1 - 2x. 

Find the mass of an object in the region under the curve y = In x, 1 ::; x ::; e, with 
density p(x) = I/x. 

Find the centroid of the region under the curve y = x- 2
, I ::; x ::; 2. 

Find the centroid of the region under the curve y = I/Jx, I ::; x ::; 4. 

Find the centroid of the region bounded by y = 0, y = x(1 - x 2), 0 ::; x ::; 1. 

0 32 Show that the moments of an object bounded by the two curves y = f(x) and y = 
rrf.._,.\ "<"" _.._ • ..:"" h " .. "' 
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MY= f xp(x)(g(x)- f(x)) dx. 

33 Use the formulas in Problem 32 to find the centroid of the region between the curves 
y = x2 and y = x. 

34 A piece of metal weighing 50 lbs is in the shape of a triangle of sides 3, 4, and 5 ft. Find 
the amount of work required to stand the piece up on (a) the 3ft side, (b) the 4ft side. 

35 A 4ft chain lies flat on the ground and has constant density of 5 lbsjft. How much work 
is required to lift one end 6ft above the ground? 

36 In Problem 35, how much work is required to lift the ~enter of the chain 6ft above the 
ground? 

37 A 4ft chain has a density of 4x lbs/ft at a point x ft from the left end. How much work 
is needed to lift the left end 6ft above the ground? 

38 In Problem 37, how much work is needed to lift both ends ofthe chain to the same point 
6 ft above the ground? 

39 A spring exerts a force of 4x lbs when compressed a distance x. How much work is 
needed to compress the spring 5 ft from its natural length? 

40 A bucket of water weighs 10 lbs and is tied to a rope which has a density of fo lb/ft. 
How much work is needed to lift the bucket from the bottom of a 20ft well? 

41 The bucket in Problem 40 is leaking water at the rate of fo lbjsec and is raised from the 
well bottom at the rate of 4 ftjsec. How much work is expended in lifting the bucket? 

42 Two electrons repel each other with a force inversely proportional to the square of the 
distance between them, F = kfs2

• If one electron is held fixed at the origin, find the work 
required to move a second electron along the x-axis from the point (10, 0) to the point 
(5, 0). 

43 If one electron is held fixed at the point (0, 0) and another at the point (100, 0), find the 
work required to move a third electron along the x-axis from (50, 0) to (80, 0). 

7 IMPROPER INTEGRALS 

What is the area of the region under the curve y = 1/Jx from x = 0 to x = 1 
(Figure 6.7.1(a))? The function 1/Jx is not continuous at x = 0, and in fact 1/0 is 
infinite for infinitesimal e > 0. Thus our notion of a definite integral does not apply. 
Nevertheless we shall be able to assign an area to the region using improper integrals. 
We see from the figure that the region extends infinitely far up in the vertical direction. 
However, it becomes so thin that the area of the region turns out to be finite. 

The region of Figure 6.7.1(b) under the curve y = x- 3 from x = 1 to x = oo 

.Y y 

X X 

(a) (b) 
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extends infinitely far in the horizontal direction. We shall see that this region, too, 
has a finite area which is given by an improper integral. 

Improper integrals are defined as follows. 

DEFINITION 

Suppose .f is contimwus on the half-open interval (a, b]. The improper integral 
of .f from a to b is defined by the limit 

•b fb 
J f(x) dx = lim f(x) dx. 

a u-a- II 

If the limit exists the improper integral is said to converge. Otherwise the 
improper integral is said to diverge. 

The improper integral can also be described in terms of definite integrals 
with hyperreal endpoints. We first recall that the definite integral 

D(u, v) = f' f(x) dx 

" 
is a real function of two variables u and v. If u and L' vary over the hyper real numbers 
instead of the real numbers, the definite integral J~; f(x) dx stands for the natural 
extension of Devaluated at (u, v), 

D*(u, v) = J' f(x) dx. 

" 
Here is the description of the improper integral using definite integrals with hyperreal 
endpoints. 

Let .f be continuous on (a, b]. 

(1) f~f(x) dx = S if and only if J~+J(x) dx ~ S for all positiL'e infinite­
simal e. 

(2) f~f(x) dx = x (or - :x:) if and only !f J~+J(x) dx is positive infinite 
(or negatit'e iJifinite) for all positive infinitesimal e. 

EXAMPLE 1 f
! 1 

Find ;:: dx. For u > 0, 
0 .,_;X 

f! 1 ]' I ;::dx = 2p = 2- 2~u. 
II ~A II 

Then JI 1 Jl 1 
;:: dx = lim+ ;:: dx = lim (2 - 2~) = 2. 

0 y.\ u--+0 11 yX u-O+ 

Therefore the region under the curve y = 1/fi from 0 to 1 shown in Figure 
6.7.1(a) has area 2, and the improper integral converges. 

EXAMPLE 2 Find gx- 2 dx. For 11 > 0, 
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f x- 2 dx = - x- 1 I = - 1 + ~. 

This time lim J1 

x- 2 dx = lim ( -1 + ~) = oo. 
u-o· u u-o-~- U 

The improper integral diverges. Since the limit goes to infinity we may write 

{

1 

x- 2 dx = oo. 

The region under the curve in Figure 6.7.2 is said to have infinite area. 

Warning: We remind the reader once again that the symbols oo and - oo 
are not real or even hyperreal numbers. We use them only to indicate the behavior 
of a limit, or to indicate an interval without an upper or lower endpoint. 

Figure 6.7.2 X 

EXAMPLE 3 Find the length of the curve y = x2
'
3

, 0::::;; x::::;; 8. From Figure 6.7.3 the 
curve must have finite length. However, the derivative 

dy 2 -1/3 
-=-X 
dx 3 

is undefined at x = 0. Thus the length formula gives an improper integral, 

Figure 6.7.3 

s = f J1 + (dyjdxf dx = f J1 + ~x 213 dx = f 9x213 + 4 
9x2/3 dx 

18 1 
= --J9x213 + 4 dx 

o 3x1/3 f
8 1 

lim --J9x213 + 4 dx. 
a~o+ a 3x1/3 

y 

y = x~l• 

X 
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Let u = 9x 213 + 4, du = 6x- 113 dx. The indefinite integral is 

J_l_ ~ + 4dx = J_!_ ~du = _!_,~u 312 + C 
3x 113 '-~' 7·~ • 18'-~'u 18 3 

= _!_(9x2;3 + 4)3!2 + C 27 . . 

Therefore s = lim _!_(9x 213 + 4)312
]

8 

a~o~27 a 

= _!__((9 • 4 + 4) 312 
- (9 • 0 + 4) 3

1
2

) = ~(lOjiO - 1). 
27 27 

Notice that we use the same symbol for both the definite and the improper 
integral. The theorem below justifies this practice. 

THEOREM 1 

Iff is continuous on the closed interval [a, b] then the improper integral off 
ji-om a to b converges and equals the definite integral off ji-om a to b. 

PROOF We have shown in Section 4.2 on the Fundamental Theorem that the 
function 

F(u) = Jb f(x) dx 

" 
is continuous on [a, b]. Therefore 

fb f(x) dx = lim fb f(x) dx, 
a u-a- 11 

where J~ f(x) dx denotes the definite integral. 

We now define a second kind of improper integral where the interval is 
infinite. 

DEFINITION 

Let f be continuous on the Jw/j:open interval [a, :x ). The improper integral 
off from a to :x is defined by the limit 

f x f(x) dx = lim f" f(x) dx. 
a u~ x a 

The improper integral is said to converge if the limit exists and to diverge 
otherwise. 

Here is a description of this kind of improper integral using definite integrals 
with hyperreal endpoints. 

Let f be continumts 011 [a, :x ). 

( 1) J; .f(x) dx = S if and only if J: f(x) dx :::::: S for all positive infinite H. 
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(2) S: f(x) dx = oc (or - oc) if and only if S: f(x) dx is positive infinite (or 
negative infinite) for all positive infinite H. 

EXAMPLE 4 Find the area under the curve y = x- 3 from 1 to x. The area is given by 
the improper integral 

J
1

"" x- 3 dx. 

For u > 0, J:' X-
3 

dx = -tx- 2 I= -tu- 2 + t. 

Thus x- 3 dx = lim x- 3 dx = lim ( -tu- 2 + tl = t. IX! f" 
1 u-+oo 1 u-+oo 

So the improper integral converges and the region has area t. The region is 
shown in Figure 6.7.1(b) and extends infinitely far to the right. 

EXAMPLE 5 Find the area under the curve y = x- 213 , 1 :::;; x < oc. 

A= fXJ x- 213 dx = lim f" x- 213 dx 
Jl u-+x 1 

lim 3x 113J" = lim 3(u1
'
3 

- 1) = x. 
u--+ oo 1 u--+ CJJ 

The region is shown in Figure 6.7.4 and has infinite area. 

y 

0 X 

Figure 6.7.4 

EXAMPLE 6 The region in Example 5 is rotated about the x-axis. Find the volume 
of the solid of revolution. 

We use the Disc Method because the rotation is about the axis of the indepen­
dent variable. The volume formula gives us an improper integral. 

V = f'o n(x-213)2 dx = fc nx-4/3 dx 

lim (" nx- 413 dx = lim - 3nx- 1' 3]" 
u--+oo J1 u--+x 1 

=lim 3n(-u- 113 + 1) = 3n. 
u~oo 

So the solid shown in Figure 6.7.5 has finite volume V = 3n. 
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y 

volume= 37!' 

Figure 6. 7.5 

The last two examples give an unexpected result. A region with infinite area 
is rotated about the x-axis and generates a solid with finite volume! In terms of 
hyperreal numbers, the area of the region under the curve y = x- 213 from I to an 
infinite hyperrealnumber His equal to 3(H 113 

- 1), which is positive infinite. But the 
volume of the solid of revolution from 1 to H is equal to 

3n(l - H- 113 ), 

which is finite and has standard part 3n. 
We can give a simpler example of this phenomenon. Let H be a positive 

infinite hyperinteger, and form a cylinder of radius 1/H and length H 2 (Figure 6. 7.6). 
Then the cylinder is formed by rotating a rectangle of length H 2

, width 1/H, and 
infinite area H 2 /H = H. But the volume of the cylinder is equal ton, 

V = nr2 h = n(l/H)2(H 2
) = n. 

d' l 1__ • .---------------------------------~ 
ra IusH~rt~-~~~-~~~~~~~--~~~~~-=--~~--~J 

length H 2 

Figure 6.7.6 Area= H, volume= 7!' 

Imagine a cylinder made out of modelling clay, with initial length and 
radius one. The volume is n. The clay is carefully stretched so that the cylinder gets 
longer and thinner. The volume stays the same, but the area of the cross section keeps 
getting bigger. When the length becomes infinite, the cylinder of clay still has finite 
volume V = n, but the area of the cross section has become infinite. 

There are other types of improper integrals. Ifj is continuous on the half-open 
interval [a, b) then we define 

•b J" 
J f(x) dx = lim f(x) dx. 

ll II___. b- a 

Iff is continuous on (- x, h] we define 

f" j(x) dx = ~~~~\ f f(x) dx. 

We have introduced four types of improper integrals corresponding to the four types 
of half-open intervals 
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[a, b), [a, oo ), (a, b], (-oo,b]. 

By piecing together improper integrals of these four types we can assign an improper 
integral to most functions which arise in calculus. 

DEFINITION 

A function f is said to be piecewise continuous on an interval I iff is defined 
and continuous at all but perhaps finitely many points of I. In particular, every 
continuous function is piecewise continuous. 

We can introduce the improper integral J~ f(x) dx whenever f is piecewise 
continuous on I and a, b are either the endpoints of I or the appropriate infinity 
symbol. A few examples will show how this can be done. 

Let f be continuous at every point of the closed interval [a, b] except at one 
point c where a < c <b. We define 

f f(x) dx = f f(x) dx + f f(x) dx. 

EXAMPLE 7 Find the improper integral J~ 8 x- 113 dx. x- 113 is discontinuous at 
x = 0. The indefinite integral is 

Then 

Similarly, 

So 

J x-1/3 dx = 1x213 + C. 

Io x- 113 dx = lim Ju x- 113 dx = lim 1x213Ju 
_ 8 u~o- _ 8 u~o- _8 

= lim (1u 213 - 1(-8f13
) = -1· 4 = - 6. 

u-o-

I: x-l/3 dx =!. 

J1 x-113dx= -6+1= -1 
-8 

and the improper integral converges. Thus, the region shown in Figure 6.7.7 
has finite area. 

y 

X 

Figure 6.7.7 
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Iff is continuous on the open interval (a, b), the improper integral is defined 
as the sum 

f f(x) dx = f f(x) dx + r f(x) dx, 

where cis any point in the interval (a, b). The endpoints a and b may be finite or infinite. 
It does not matter which point cis chosen, because if e is any other point in (a, b), then 

f f(x) dx + r f(x) dx = f f(x) dx + ( r f(x) dx + f f(x) dx) 

= ( f f(x) dx + r f(x) dx) + f f(x) dx 

= J"f(x) dx + Jb f(x) dx. 
a e 

EXAMPLE 8 f
2 2 1 

Find r:; + ~ dx. 
OyX ....;2-x 

The function 2/fi + 1/~ is continuous on the open interval (0, 2) but 
discontinuous at both endpoints (Figure 6.7.8). Thus 

Figure 6.7.8 

J
2 

2 1 fl 2 1 J2 
2 1 - + dx = - + dx + -- + dx. 

ofi ~ ofi ~ 1J>; ~ 

y 

0 2 

y=2+_1_ 
Vx v'2-X 

X 

First we find the indefinite integral. 

f 2 1 
r:;+ ~dx=4fi-2~+C. 

....;x 2-x 

Then J
1 

__2_ + ~dx = lim J1 

__2_ + 
1 

dx 
o J>; .)2- X u-o· 11 J>; ~ 

= lim (4fi;- 2~)1; 
u-o-

11 

= (4- 2)- (0- 2j2) = 2 + 2}2. 
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Also f
2 

2 1 Jv 2 1 - + dx = lim - + dx 
1 Jx ~ v~2- 1 Jx ~ 

}~~- (4Jx - 2~)1 
= (4j2 - 0) - (4 - 2) = 4j2 - 2. 

Therefore f
2 2 1 

r:; + ~dx = (2 + 2j2) + (4j2- 2) = 6j2. 
o .yx 2- x 

EXAMPLE 9 
11 1 1 

Find Jo x2 + (x - 1f dx. 

The function 1/x2 + 1/(x - 1f is continuous on the open interval (0, 1) but 
discontinuous at both endpoints. The indefinite integral is 

f 1 1 1 1 
2 + ( 1f dx = -- - ---1 + C. 
X X- X X-

We have r 1/2 1 . ( 1 1 ) J 1/2 - + 2 dx = hm -- - --
.0 x2 (x-1) u~o· X x-1 11 

1. ( 1 1 ) Ill -+--
u~o· U U- 1 

= CIJ. 

Similarly we find that 

J1 _; + 1 2 dx = UJ. 
1/2 x (x - 1) 

In this situation we may write 

11 1 1 
Jo x2 + (x- 1)2 dx = UJ, 

and we say that the region under the curve in Figure 6.7.9 has infinite area. 

Figure 6.7.9 

y 

16 

8 

X 

Remark In Example 9 we are faced with a sum of two infinite limits. Using the rules 
for adding infinite hyperreal numbers as a guide we can give rules for sums 
of infinite limits. 

If Hand K are positive infinite hyperreal numbers and cis finite, then 
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H + K is positive infinite, 

H + c is positive infinite, 

- H - K is negative infinite, 

- H + cis negative infinite, 

H - K can be either finite, positive infinite, or negative infinite. 

By analogy, we use the following rules for sums of two infinite limits or of a 
finite and an infinite limit. These rules tell us when such a sum can be con­
sidered to be positive or negative infinite. We use the infinity symbols as 
a convenient shorthand, keeping in mind that they are not even hyperreal 
numbers. 

CO + ·X = %, 

oc + c = %, 

-CJJ- X= -CO, 

-X + C = - ::!.:, 

eX) - x is undefined. 

EXAMPLE 10 Find f':'oo x dx. We see that 

fo x dx = lim fox dx = lim !x 2l
0 

- ::~.:, 
- x; u-- :::r.;, u u-- JJ J 11 

and I' x dx = X:. 

Thus J':'w xdx diverges and has the form co- co. We do not assign it any 
value or either of the symbols co or -co. The region under the curvef(x) = x 
is shown in Figure 6.7.10. 

y 

y=x 

X 

Figure 6.7.10 

It is tempting to argue that the positive area to the right of the origin and the 
negative area to the left exactly cancel each other out so that the improper 
integral is zero. But this leads to a paradox. 

Wrong: J_-<: x x dx = 0. Let v = x + 2, dv = dx. Then 

J~:c (x + 2) dx = f_YCJ" V dv = 0. 
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Subtracting J~OI) (x + 2)- x dx = 0- 0 = 0, 

But f~x 2dx = 00. 

So we do not give the integral J':":' 01) x dx the value 0, and instead leave it 
undefined. 

PROBLEMS FOR SECTION 6.7 

In Problems 1-36, test the improper integral for convergence and evaluate when possible. 

1 L"' x- 2 dx 2 L1 x-o.9 dx 

3 r 1 x-1/2 dx 4 f, (2x- W 3 dx 

r/2 Io x-1/3 dx 5 
0 

(2x - 1)- 3 dx 6 
-1 

7 I: x
2 + 2x - 1 dx 8 {" x- 2- x- 3dx 

9 {"" x(l + x 2
)-

2 dx 10 f" x-1/2 + x-zdx 

11 L1 x-112 + x-:-2 dx 12 f (1- x)-112 dx 

13 J: (x - 1)- 2'3 dx 14 J
1 

x- 2 dx 
-1 

J1 x-2!3 dx f X 15 16 dx 
-1 oJ1=7" 

17 f 2x(x2 - 1)- 113 dx 18 f
1 

2x- 3 dx 

19 f (2x- 1)- 213 dx 20 f (3x- 1)- 5 dx 

21 r, x 2 
dx 22 J_'""' (2x - 1 )3 dx 

l"' 1 24 f'' x-1/3 dx 23 
0 

Jxdx 
-oo 

25 J:, x 3 
dx 26 L"' x-3/2 dx 

27 r 3x 
o (x + 1)4dx 

28 J:ro lxl(x
2 + W 3 

dx 

29 r 2x 
-ooP+l 

dx 30 r (x - 1)- 2 + (x - 3)- 2 dx 

31 f (x -1)-112 + (3- x)-112dx 32 r X -dx 
-slxl 

33 f'2 
sine --de 

0 cos2 e 
34 r12 

sine --de 
0 ~ 

361 



362 

35 

36 

37 

38 

39 
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41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 
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for 0 :0: x < I 
(0 
Jo f(x) dx for I :0: x < 5 

for 5 :0: x :0: 10 

L' f(x)dx { 
1/.fi 

where{(x) = x _ 
2 

ifO <X< 

if I :0: X 

Show that if r is a rational number, the improper integral )'6°0 x-' dx converges when 
r < I and diverges when r > !. 
Show that if r is rational, the improper integral J:i 2 x-' dr converges when r > I and 

diverges when r < I. 

Find the area of the region under the curve y = 4x- 2 from x = I to x = x. 

Find the area of the region under the curve y = 1/~ from x = ! to x = !. 

Find the area of the region between the curves y = x- 114 andy = x- 1
;
2 from x = 0 

to x = I. 

Find the area of the region between the curves y = - x- 3 and y = x- 2
, I :0: x < x. 

Find the volume of the solid generated by rotating the curve y = 1/x, I :0: x < x, 
about (a) the x-axis, (b) they-axis. 

Find the volume of the solid generated by rotating the curve y = x- 113 , 0 < x :0: I, 
about (a) the x-axis, (b) they-axis. 

Find the volume of the solid generated by rotating the curve y = x- 312
, 0 < x :0: 4. 

about (a) the x-axis, (b) they-axis. 

Find the volume generated by rotating the curve y = 4x- 3
, - x < x :0: -2, about 

(a) the x-axis, (b) they-axis. 

Find the length of the curve y = ,(; - tx,(; from x = 0 to x = !. 

Find the length of the curve y = ;ixt. 3 
- ~x 5 3 from x = 0 to x = !. 

Find the surface area generated when the curve y = .....;-; - tx.....;.:.:. 0 :0: x :0: I, is rotated 
about (a) the x-axis, (b) they-axis. 
Do the same for the curve y = ;ix 1

•
3 

- !x513
, 0 :0: x :0: I. 

(a) Find the surface area generated by rotating the curve y = .....fx, 0 :0: x :0: I, about 
the x-axis. 

(b) Set up an integral for the area generated about they-axis. 

Find the surface area generated by rotating the curve y = x 2
'
3

, 0 :0: x :0: 8, about the 
x-axis. 

Find the surface area generated by rotating the curve y = Jr2 
- x 2

, 0 :0: x :0: a, about 
(a) the x-axis, (b) they-axis (0 < a :0: r). 

The force of gravity between particles of mass m 1 and m 2 is F = gm 1 m2 /s 2 where s is the 
distance between them. If m1 is held fixed at the origin. find the work done in moving 
m2 from the point (1, 0) all the way out the x-axis. 

J 55 Show 'that the Rectangle and Addition Properties hold for improper integrals. 

EXTRA PROBLEMS FOR CHAPTER 6 

The skin is peeled off a spherical apple in four pieces in such a way that each horizontal 
cross section is a square whose corners are on the original surface of the apple. If the 
original apple had radius r, find the volume of the peeled apple. 

2 Find the volume of a tetrahedron of height hand base a right triangle with legs of length 
a and b. 
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3 Find the volume of the wedge formed by cutting a right circular cylinder of radius r 
with two planes, meeting on a line crossing the axis, one plane perpendicular to the 
axis and the other at a 45° angle. 

4 Find the volume of a solid whose base is the region between the x-axis and the curve 
y = 1 - x2

, and which intersects each plane perpendicular to the x-axis in a square. 

In Problems 5-8, the region bounded by the given curves is rotated about (a) the x-axis, (b) the 
y-axis. Find the volumes of the two solids of revolution. 

5 y = 0, y = j 4 - x2
, 0 :0: x :0: 1 

6 y = 0, y = x 312
, 0 :0: x :0:: 1 

7 )' = X, )' = 4 - X, 0 :0: X :0: 2 

8 y = xP, y = xq, 0 :0: x :0: 1, where 0 < q < p 

9 The region under the curve y = ~, 0 :0: x :0: 1, where 0 < p, is rotated about 
the x-axis. Find the volume of the solid of revolution. 

10 The region under the curve y = (x 2 + 4) 11
\ 0 :0: x :0: 2, is rotated about the y-axis. 

Find the volume of the solid of revolution. 

11 Find the length of the curve y = (2x + 1)3
'
2

, 0 :0: x :0: 2. 

12 Find the length of the curve y = 3x - 2, 0 :0: x :0: 4. 

13 Find the length of the curve x = 3t + 1, y = 2 - 4t, 0 :0: t :0: l. 

14 Find the length of the curve x = f(t), y = f(t) + c, a :0: t :0: b. 

15 Find the length of the line x =At+ B, y = Ct + D, a :0: t :0: b. 

16 Find the area of the surface generated by rotating the curve y = 3x2 
- 2, 0 :0: x :0: 1, 

about the y-axis. 

17 Find the area of the surface generated by rotating the curve x = At2 + Bt, y = 2At + B, 
0 :0: t :0: 1, about the x-axis. A > 0, B > 0. 

18 Find the average value of f(x) = x/p-+1, 0 :0: x :0: 4. 

19 Find the average value of f(x) = xP, 1 :0: x :0: b, p #- -1. 

20 Find the average distance from the origin of a point on the parabola y = x2
, 0 :0: x :0: 4, 

with respect to x. 

21 Given that f(x) = xP, 0 :0: x :0: 1, p a positive constant, find a point c between 0 and 1 
such that f(c) equals the average value of f(x). 

22 Find the center of mass of a wire on the x-axis·, 0 :0: x :0: 2, whose density at a point 
xis equal to the square of the distance from (x, 0) to (0, 1). 

23 Find the center of mass of a length of wire with constant density bent into three line 
segments covering the top, left, and right edges of the square with vertices (0, 0), (0, 1), 
(1, 1), (1, 0). 

24 Find the center of mass of a plane object bounded by the lines y = 0, y = x, x = 1, 
with density p(x) = 1/x. 

25 Find the center of mass of a plane object bounded by the curves x = y2
, x = 1, with 

density p(y) = y2
. 

26 Find the centroid of the triangle bounded by the x- andy-axes and the line ax + by = c, 
where a, b, and care positive constants. 

27 A spring exerts a force of lOx lbs when stretched a distance x beyond its natural length 
of 2ft. Find the work required to stretch the spring from a length of 3ft to 4ft. 

In Problems 28-36, test the improper integral for convergence and evaluate if it converges. 

28 s_-~ x- 3 dx 29 {'' (x + 2)- 114 dx 
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30 

32 

34 
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fo x- 4 dx 
-I 

f' l I 
Jo J';: + Jl- x dx 

31 

33 

35 

fo x- l/5 dx 
-I 

(,
[ 1 1 

X 2 + (x--=-----1 ) 2 d X 
• 0 ' . 

--dx f
~ 1 

-4JN 

36 f" sinx dx 

37 A wire has the shape of a curve y = j(x), a ::; x ::; b, and has density p(x) at value x. 

38 

39 

Justify the formulas below for the mass and moments of the wire. 

m = f p(x)jl + (f'(x))2 dx, 

Mx = Jbf(x)p(x)j1 + (f'(x))2 dx, 
a 

M .. = f xp(x)j1 + (f'(:1W dx. 

Find the mass, moments, and center of mass of a wire bent in the shape of a parabola 
y = x 2

, -1 ::; x ::; I, with density p(x) = ~-
Find the mass, moments, and center of mass of a wire of constant density p bent in the 
shape of the semicircle y = jl=X2, - 1 ::; x ::; 1. 

D 40 An object fills the solid generated by rotating the region under the curve y = f(x), 
a ::; x ::; b, about the x-axis. Its density per unit volume is p(x). Justify the following 
formula for the mass of the object 

D 41 

m = f p(x)n(f(x))2 dx. 

A container filled with water has the shape of a solid of revolution formed by rotating 
the curve x = g(y), a ::; y ::; b, about the (vertical) y-axis. Water has constant density 
p per unit volume. Justify the formula below for the amount of work needed to pump 
all the water to the top of the container. 

W = f pn(g(y))2(b - y) dy. 

42 Find the work needed to pump all the water to the top of a water-filled container in the 
shape of a cylinder with height hand circular base of radius r. 

43 Do Problem 46 if the container is in the shape of a hemispherical bowl of radius r. 

44 Do Problem 46 if the container is in the shape of a cone with its vertex at the bottom, 

height h, and circular top of radius r. 

D 45 

D 46 

The pressure, or force per unit area, exerted by water on the walls of a container is equal 
to p = p(b - y) where p is the density of water and b - y the water depth. Find the 
total force on a dam in the shape of a vertical rectangle of height band width w, assuming 
the water comes to the top of the dam. 

A water-filled container has the shape of a solid formed by rotating the curve x = g(y), 
a ::; y ::; b about the (vertical) y-axis. Justify the formula below for the total force on 
the walls of the container. 

F = Jb 2np(b- y)xJ(dx/dJf+-1 dy 
ll 



TRIGONOMETRIC 
FUNCTIONS 

.1 TRIGONOMETRY 

7 

In this chapter we shall study the trigonometric functions, i.e., the sine and cosine 
function and other functions that are built up from them. Let us start from the 
beginning and introduce the basic concepts of trigonometry. 

The unit circle x2 + y2 = 1 has radius 1 and center at the origin. 
,-.. 

Two points P and Q on the unit circle determine an arc PQ, an angle LPOQ, 
and a sector POQ. The arc starts at P and goes counterclockwise to Q along the 

circle. The sector POQ is the region bounded by the arc fQ and the lines OP and OQ. 

As Figure 7.1.1 shows, the arcs fQ and (j) are different. 

Figure7.1.1 

Arc PQ 
Sector PDQ 

ArcQp 
Sector QOP 

Trigonometry is based on the notion of the length of an arc. Lengths of 
curves were introduced in Section 6.3. Although that section provides a useful 
background, this chapter can also be studied independently of Chapter 6. As a starting 
point we shall give a formula for the length of an arc in terms of the area of a sector. 
(This formula was proved as a theorem in Section 6.3 but can also be taken as the 
definition of arc length.) 
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DEFINITION 

The length of an arc PQ on the unit circle is equal to tll'ice the area of the 
sector POQ, s = 2A. 

This formula can be seen intuitively as follows. Consider a small arc PQ of 
length b.s (Figure 7.1.2). The sector POQ is a thin wedge which is almost a right 
triangle of altitude one and base b.s. Thus b.A ~ ±b.s. Making b.s infinitesimal and 
adding up, we get A = ±s. 

The number n ~ 3.14159 is defined as the area of the unit circle. Thus the 
unit circle has circumference 2n. 

The area of a sector POQ is a definite integral. For example, if Pis the point 
P(1, 0) and the point Q(x, y) is in the first quadrant, then we see from Figure 7.1.3 that 
the area is 

A(x) = ±x~ + f }1=7 dt. 

Notice that A(x) is a continuous function of x. The length of an ar,~ has the following 
basic property. 

~ A(x) 

0 P(1, 0) 

Figure 7.1.2 Figure 7.1.3 

THEOREM 1 

Let P be the point P(l, 0). For every numbers between 0 and 2n there is a point 

Q on the unit circle such that the arc PQ has length s. 

PROOF We give the proof for s between 0 and n/2, whence 

0 ::;; ±s ::;; n/4. 

Let A(x) be the area of the sector POQ where Q = Q(x, y) (Figure 7.1.4). 
Then A(O) = n/4, A(1) = 0 and the function A(x) is continuous for 0 ::;; x ::;; 1. 
By the Intermediate Value Theorem there is a point x0 between 0 and 1 
where the secto"r has area ts, 

,---.. 
Therefore the arc PQ has length 

2A(x0 ) = s. 
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p 

X 

X= 1 
Figure7.1.4 

Arc lengths are used to measure angles. Two units of measurement for angles 
are radians (best for mathematics) and degrees (used in everyday life). 

DEFINITION 

Let P and Q be two points on the unit circle. The measure of the angle L POQ 
~ 

in radians is fhe length of the arc PQ. A degree is defined as 

1 o = n/180 radians, 

whence the measure of L POQ in degrees is 180/n times the length of PQ. 

Approximately, 1 o ~ 0.01745 radians, 

1 radian ~ 57°18' = (5ngt. 

A complete revolution is 360° or 2n radians. A straight angle is 180° or n radians. A 
right angle is 90° or n/2 radians. 

It is convenient to take the point (1, 0) as a starting point and measure arc 
length around the unit circle in a counterclockwise direction. Imagine a particle 
which moves with speed one counterclockwise around the circle and is at the point 
( 1, 0) at time t = 0. It will complete a revolution once every 2n units of time. Thus if the 
particle is at the point P at time t, it will also be at P at all the times t + 2kn, k an 
integer. Another way to think of the process is to take a copy of the real line, place the 
origin at the point (1, 0), and wrap the line around the circle infinitely many times with 
the positive direction going counterclockwise. Then each point on the circle will 
correspond to an infinite family of real numbers spaced 2n apart (Figure 7.1.5) . 

•• • ' - 7r, 1T' 311'"' ••• ••• • - 271", 0, 271", ••• 

•••, -180°, 180°, 540°, ..• •••• -360°, 0°, 360°, ... 

1r Jrr 7rr 
... , 2'2'T'''' 

Figure 7.1.5 .... -90°, 270°, 630° .... 
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The Greek letters e (theta) and¢ (phi) are often used as variables for angles 
or circular arc lengths. 

DEFINITION 

Let P(x, y) be the point at counterclockll'ise distance 0 around the unit circle 
starting _li-om (1, 0). X is cal/ed the cosine of(} and J' the sine of tJ, 

X= COS 8, )' = sin e. 

Figure 7.1.6 

Cos 8·and sin 8 are shown in Figure 7.1.6. Geometrically, if 0 is between 0 
and n/2 so that the point P(x, y) is in the first quadrant, then the radius OP is the 
hypotenuse of a right triangle with a vertical side sin 0 and horizontal side cos 0. By 
Theorem 1, sin 8 and cos 0 are real functions defined on the whole real line. We 
write sin" 0 for (sin 0)", and cos" 8 for (cos 8)". By definition (cos 8, sin 8) = (x, y) is a 
point on the unit circle x 2 + y 2 

= 1, so we always have 

sin 2 e + cos 2 0 = I. 

Also, - 1 ::::; sin e ::::; 1' - 1 ::::; cos e ::::; 1. 

Sin 8 and cos 0 are periodic functions with period 2n. That is, 

sin (8 + 2nn) = sin 8, 

cos (0 + 2nn) = cos e 
for all integers n. The graphs of sin 0 and cos 0 are infinitely repeating waves which 
oscillate between -1 and + 1 (Figure 7.1.7). 

For infinite values of 8, the values of sin 0 and cos 0 continue to oscillate 
between - 1 and 1. Thus the limits 

lim sin 8, lim sin 0, 
o~x e--x 

lim cos 0, lim cos 8, 
0--->- X 

do not exist. Figure 7.1.8 shows parts of the hyperreal graph of sin 0, for positive and 
negative infinite values of 0, through infinite telescopes. 

The motion of our particle traveling around the unit circle with speed one 
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8 

sin 8 

8 

cos 8 

Figure7.1.7 

y 
y =sin 8 

------------

negative infinite positive infinite 
Figure 7.1.8 
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y 

Figure 7.1.9 

starting at (1, 0) (Figure 7.1.9) has the parametric equations 

x =cos e, y = sin e. 

The following table shows a few values of sin 8 and cos 8, for 8 in either 
radians or degrees. 

Table 7.1.1 

e in radians 
7C 7C 7C n 3n 

0 
3 2 4 6 4 

e in degrees oc 302 45 60c 90c 135 2 

sine 0 1/2 fi/2 j3;2 fi;2 

cos e j3;2 fil2 1/2 0 -fi/2 

DEFINITION 

The other trigonometric fimctions are defined as follmvs. 

tangent: 

cotangent: 

secant: 

cosecant: 

e sine 
tan = --

cos 0 

cos e 
cote= -.-e 

Sill 

1 
sece = --8 

cos 

1 
csce = -.-e 

Sill 

3n 
2n 7C 

2 

180" 2702 360" 

0 ·-1 0 

-l 0 

These functions are defined everywhere except where there is a division by 
zero. They are periodic with period 2n. Their graphs are shown in Figure 7.1.10. 

When 0 is strictly between 0 and n/2, trigonometric functions can be described 
as the ratio of two sides of a right triangle with an angle 0. Let a be the side opposite 
0, h the side adjacent to 8, c the hypotenuse as in Figure 7.1.11. Comparing this triangle 
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rr 

sin() cos() 

tan() cot() 

Ul 
n n 

sec() esc () 

Figure 7.1.10 

a 

Figure 7.1.11 

with a similar triangle whose hypotenuse is a radius of the unit circle, we see that 

. () a 
Sill = -, 

c 

b 
cos() = -, 

c 

c 
sec()= b' 

c 
esc()=-, 

a 

a 
tan() = b' 

b 
cot()=-. 

a 

371 
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(a) (b) (c) 

(e) ¢=~-fJ 

(d) 

cos fJ sin¢ 

cos f) cos¢ 
(f) 

Figure 7.1.12 (Continued) 

Here is a table of trigonometric identities. The diagrams in Figure 7. I. I 2 
suggest possible proofs. ((6) and (7) are called the addition formulas.) 

(1) sin 2 8 + cos 2 8 = 1 

(2) tan 2 0 + 1 = sec 2 0 

(3) cot 2 8 + 1 = csc 2 8 

(Figure 7.1.12(a)) 

(Figure 7.1.12(b )) 

(Figure 7.1.12(c)) 

(4) sin(-8)=-sin8, cos(-0)=cos8 (Figure7.1.12(d)) 

(5) sin (n/2 - 0) =cos 8, cos (n/2- 8) =sin 8 (Figure 7.1.12(e)) 

(6) sin (13 +¢)=sin 8 cos¢+ cos 13 sin¢ (Figure 7.1.12([)) 

(7) cos(8 + ¢) = cos8cos(p- sin8sin¢ (Figure 7.1.12([)) 
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PROBLEMS FOR SECTION 7.1 

In Problems 1-6, derive the given identity using the formula sin 2 8 + cos 2 8 = 1 and the addition 
formulas for sin (8 + r/JJ and cos (8 + rjJ). 

tan 2 8 + 1 = sec 2 8 2 cos2 8 + cos2 8 cot 2 8 = cot2 8 

3 sin 28 = 2 sin 8 cos 8 4 cos 28 = cos2 8 - sin 2 8 

5 sin2 (~8) = 
1 -cos 8 

6 (B ¢ tan 8 + tan ¢ 
2 

tan + ) = 
1 - tan 8 tan rjJ 

In Problems 7-10, find all values of 8 for which the given equation is true. 

7 

9 

sin 8 =cos 8 

sec 8 = 0 

8 

10 

sin 8 cos 8 = 0 

5 sin 38 = 0 

I 1 Find a value of 8 where sin 28 is not equal to 2 sin 8. 

Determine whether the limits exist in Problems 12-17. 

12 lim sinx 13 r smx 
Ill--

x-oc x-+x X 

14 lim xsinx 15 lim x cos (l;x) 
x-+0 

16 lim cotx 17 lim tan x 
x-o x-+0 

18 Find all values of 0 where tan 8 is undefined. 

19 Find all values of 8 where esc 8 is undefined. 

DERIVATIVES OF TRIGONOMETRIC FUNCTIONS 

THEOREM 1 

The functions X = cos e andy = sine are continuous for all e. 

PROOF We give the proof for B in the first quadrant, 0 < B < n/2. Let !'J.B be 
infinitesimal and consider Figure 7.2.1. 

0 

Figure 7.2.1 

373 
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Let 6.s = J 6.x2 + 6.yl be the length of the line PR. Then 

0 <Area of quadrilateral QPOR:::;; Area ofsector POR, 

0 < 1 6.s :::;; ! 6.8. 

Thus 6.s is infinitesimal. It follows that 6.x and 6.y are infinitesimal, whence 
the functions X = COS 8, y = sin 8 are continUOUS. 

THEOREM 2 

The functions X = cos e and y = sin e are differentiable for all 8, and 

d(sin 8) = cos 8 dO, 

d(cos 8) = -sine d8. 

Figure 7.2.2 

Discussion Intuitively, the small triangle in Figure 7.2.2 is infinitely close to a right 
triangle with angle e and hypotenuse 6.0, whence 

LEMMA 

6.y 
6.8 ~cos 8, 

6.x 
- ~ -sin8 ii8 . 

Notice that 6.x is negative while 6.y is positive when 8 is in the first quadrant. 
The proof of Theorem 2 uses a lemma. 

(i) lim sin 8 = 1. 
e~o 8 

(ii) lim cos 8 - 1 = 0. 
o~o 8 

PROOF (i) We show that for any nonzero infinitesimal 6.0, 

sin 6.8 ~ 1. 
6.8 

When 6.8 is positive we drawthe figure shown in Figure 7.2.3. We have 

Then 

Area of triangle QOR < area of sector QOR < area of triangle QOS, 

1 sin 6.8 < 1A8 < ! tan 6.8. 

sin 6.8 sin 6.8 sin 6.8 
---<--<-­
tan 6.0 MJ sin 6.8' 

sin 6.8 
cos6.8 < ~ < 1. 

sin M 
Since cos 8 is continuous, cos 6..8 ~ 1, whence--~ 1. The case 6..8 < 0 

6..0 
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Figure 7.2.3 

(ii) We compute the standard part of (cos 118 - 1)/118. 

st(cos ~~- 1) = st(l1~~cs:s~e ~ \)) = st(M(~:!n~el1~ 1)) 

= -st(sin 118) st(sin 118) = _ 1 • Q = O. 
118 st( cos 118 + 1) 2 

PROOF OF THEOREM 2 Let 118 be a nonzero infinitesimal. Then 

d(sin 8) - (sin (8 + 118) - sin e) 
de - st 118 

= st --------c-------(
sin e cos 118 + cos e sin 118 - sin e) 

118 

= st ------~-----(
sin &(cos M - 1) + cos e sin Ae) 

118 

= sine st( cos~~- 1
) + cos est( si:~e) 

= sin e . 0 + cos e . 1 = cos e. 

Here is a second proof that the derivative of the sine is the cosine. It uses the 
formula for the length of a curve in Section 6.3. 

ALTERNATE PROOF OF THEOREM 2 (Optional) Let 0 ::;; 8 ::;; n/2 and 

x =cos e, y =sin e. 

Then (x, y) is a point on the unit circle as shown in Figure 7.2.4. 

y 

X 

Figure 7.2.4 



Take y as the independent variable. Then 

dx -y 
X= /1 - \' 2 
~ "\' - l 

d.\· Jl=-7 
e is the length of the arc from 0 to .)', so 

0 = f J1 + (dxfd.d dy. 

By the Second Fundamental Theorem of Calculus, 

dO /.x2 + \"2 
- = .J 1 + (dxjd_d = .J1 + (y 2 jx 2

) =' · 
dy .'( .'( 

Then by the Chain Rule. 

dy 1 
-----X 
dO - dBjdy - . ' 

dx dx dr \" 
and - = - ___::_ = - :__ • X = - .\'· 

dO dy dO X . 

Substituting cos 0 for x and sin 0 for y, 

d(sin 0) = cos 0 
dO ' 

d(cos 0) 

dB 
-sin {1. 

We can now find the derivatives of all the trigonometric functions by using 
the Quotient Rule 

d(~) = vdu- udc_ 
L' L'2 

THEOREM 3 

(i) d(sin G) = cos 0 dO, 

(ii) d(tan G) = sec 2 0 dO, 

(iii) d(sec B) = sec 0 tan 8 dB, 

d(cos 0) = -sin 0 dO, 

d(cotO) = -csc2 8d0, 

d(csc 0) = -esc 8 cot G dO. 

PROOF We prove the formula for d(tan G) and leave the rest as problems. 

0 
sin 0 

tan = -­
cos 0' 

d(tan 0) = d --(
sin 0) 
cos(} 

cos 0 d(sin 0) - sin 0 d(cos 0) 

= cos G ~os 0 - sin 0 (-:-~in Gldo = cos
2 

0 ~ sin
2 

0 dO 
cos 2 0 cos-O 

I ? 
= -----dO = sec-(} dO. 

cos 2 0 

These formulas lead at once to new integration formulas. 
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THEOREM 4 

(i) J cos e dB = sin e + C, 

(ii) J sec2 e dB = tan e + C, 

J sin e de = -cos e + c. 

f csc2 e dB = -cot e + C. 

(iii) Jsec e tan e dB = sec e + C, f esc e cote dB = -esc e + C. 

We are not yet able to evaluate the integrals J tan e de, J cote dB, J sec e dB, 
J esc e dB. These integrals will be found in the next chapter. 

EXAMPLE 1 Find the derivative of y = tan2 (3x). 

EXAMPLE 2 

dy = 2 tan 3x d(tan 3x) = 2 tan 3x sec2 3x d(3x) 

= 6 tan 3x sec2 3x dx. 

cost 
Evaluate lim ---:­

'~"/2 t- n/2 

This is a limit of the form 0/0 because 

lim cos t = 0, lim ( t - ~) = 0. 
t~Tt/2 t~Tt/2 2 

By !'Hospital's Rule (Section 5.2), 

I
. cost 

1
. -sin t 

Ill = Ill---= 
'~"12 t - n/2 '~"12 1 -sin(~) = -1. 

EXAMPLE 3 A particle travels around a vertical circle of radius r0 with constant 
angular velocity w = dB/dt, beginning with e = 0 at time t = 0. If the sun 
is directly overhead, find the position, velocity, and acceleration of the 
shadow. 

Let us center the circle at the origin in the (x, y) plane (Figure 7.2.5). Then 

X= ro COS 8, y =rosin e. 

y 

X 

Figure 7.2.5 
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At time t, G has the value 8 = cvt. So the motion of the particle is given by the 
parametric equations 

x = r 0 cos (wt), y = r0 sin (wt). 

The shadow is directly below the particle, and its position is given by the 
x-component 

x = r 0 cos (wt). 

The velocity and acceleration of the shadow are 

dx . 
v = dt = -r0 cv sm (wt), 

dv 
a = dt = -r0 w 2 cos (wt). 

EXAMPLE 4 A light beam on a 100ft tower rotates in a vertical circle at the rate of 
one revolution per second. Find the speed of the spot of light moving along 
the ground at a point 1000 ft from the base of the tower. 

We start by drawing the picture in Figure 7.2.6. 

lOOft~ 
Figure 7.2.6 1,---- X ------J ground 

Assume the rotation is counterclockwise. Let t be time and let x and 8 be as 
in the figure. Then 

dB . 
- = 2n radmnsjsec, x = 100 tan 8 ft. 
dt 

We wish to find dxjdt when x = 1000. 

dx dB 
dt = 100 sec 2 8 dt = 200n sec2 e. 

When x = 1000, 

sec2 8 = 1 + tan 2 8 = 1 + (x/100)2 = l + 102 = 101. 

Therefore 
dx dt = 20200n ~ 63,000 ftjsec. 

EXAMPLE 5 Find f sin 3 t cost dt. Let u = sin t, du = cost dt. 

f f u4 sin 4 t 
Then sin 3 t cost dt = u3 du = 4 + C = -

4
- + C. 

EXAMPLE 6 Find the area under one arch of the curve y = cos x. 
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y 

X 

Figure 7.2.7 

From Figure 7.2.7 we see that one arch lies between the limits x = - n/2 
and x = n/2, therefore the area is 

Jrt/2 ]"'2 cos t dt = sin t 
-~2 -~2 

1 - ( -1) = 2. 

Trigonometric identities can often be used to get an integral into a form 
which is easy to evaluate. 

EXAMPLE 7 Evaluate I sec4 x dx. Using the identity sec2 x = 1 + tan 2 x, we have 

J sec4 x dx = J(1 + tan2 x) sec2 x dx· 

f tan 3 x 
= (1 + tan2 x)d(tanx) =tan x + ~3~ + C. 

EXAMPLE 8 Find I J1 - cos x dx. Using the identity sin2 x + cos 2 x = 1, we 
have 

J 1 _ cosx = Jl- cosxj1 + cosx = j1- cos2 
x 

J 1 + COS X J 1 + COS X 

jSiTx lsin xl 

J 1 + COS X J 1 + COS X. 

Case 1 In an interval where sin x ~ 0, 

IJ1- cosxdx = JJ sinx dx = J--Jr==
1
==d(1 + cosx) 

1 + COS X 1 + COS X 

= - 2j 1 + COS X + C. 

Case 2 In an interval where sin x .::;; 0, 

f J 1 - COS X dx = 2J 1 + COS X + C. 

PROBLEMS FOR SECTION 7.2 

In Problems 1-14, find the derivative. 

1 

3 

y =sin 5x 

x =sin (31f) 

2 

4 

y = 3 cos2 x 

y = sec3 x 

.S/':J 
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5 x = tan ( 40 - 3) 6 .r = x sin x 

7 u = a sin 0 + b cos 8 8 u = sin (a8) + cos (bO} 

9 .\"=COS;,: X IO r = ·cos x . 'v 

II y = tan (sin 0) 12 y =sin 8 tan 0 

13 l/= 
1 

2 + esc (3t} 
I4 .r = cot (1 2 + 3r - 2) 

IS Find dy.dx where x = sin 2 y 

I6 Find dy dx where y = tan (xy) 

In Problems 17-24, evaluate the limit if it exists. 

17 lim 2 sin 2 8 18 lim esc x 
0---> 1I 3 x--->0 

19 lim esc x 20 1
. sin2 t 
nn--

x_,.o-.- t-O t 

]' sin (2t) 
22 J' sin 0 2I Ill-- Ill--

t-O [ o-nn- 0 

23 J' sin (r 2
l 

24 lim (sec 8 - tan 8) Ill-.-
t-o r sm r O_,nl 

In Problems 25-34, find the maxima. minima, inflection points, and limits when necessary, and 
sketch the curve for 0 s; x s; 2n. 

25 

27 

29 

31 

33 

D 35 

D 36 

J'= 3 sin x 26 y = sin x cos x 

y = sin2 x 28 y = cos (2x) 

y =sin (x - ~) 30 y = secx 

y= tanx 32 .r= 1 -COS X 

' 34 y= + sin x y =esc- x X 

Show that at lim sin (I x) does not exist. 
.'1,:___,.0 

Let f(x) = x sin (1 x), with ((0) = 0. Show that f is continuous but not differentiable 
at x = 0. 

In Problems 37-53, evaluate the integral. 

37 Jsin (2r) dr 38 J sin x cos x dx 

39 Jtan x sec 3 x dx 40 Jtan2 8d0 

41 f 1 r-
Jr sin (1

2 + ---r= cos ·/ x dx 42 I) dt 
'\ X 

43 J cot (50) esc (50) dO 44 f,-./1 + sin 8 d8 

45 J sec x) sec x - 1 dx 46 -dO 
f sin 8- cos 8 

(sin 8 + cos Of 

47 -- -d8 f I 
1 +sin 0 

48 L" 3 sin t dt 

r4 J. 1 

sin (rrx) dx 49 sec2 0 dO 50 
n.; ) 
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51 52 
r·;2 
Jo sec

2 
x dx 

53 fonil COt X CSC X dx 

54 A revolving light one mile from shore sweeps out eight revolutions per minute. Find 
the velocity of the beam of light along the shore at the instant when it makes an angle 
of 45 with the shoreline. 

55 A ball is thrown vertically upward from a point P so that its height at time t is y = 

lOOt - 16t2 feet. Q is another point on the surface 100ft from P. At timet = 5 find the 
rate of change of the angle between the horizontal line QP and the line from Q to the ball. 

56 Two hallways of width a and h meet at right angles. Find the length of the longest rod 
which can be slid on the floor around the corner. 

57 Find the area under one arch of the curve y = 3 sin x. 

58 Find the area under one arch of the curve y = sin (3x). 

59 Find the area of the region between the curves y = sin x cos x andy = sin x, 0 :s; x :s; rr/2. 

60 The region between the x-axis and the curve y = tan x, 0 :s; x :s; n/4, is rotated about the 
x-axis. Find the volume of the solid of revolution. 

61 The region between the x-axis and the curve y = (sin x)/x, n/2 :s; x :s; n, is rotated about 
they-axis. Find the volume of the solid of revolution. 

62 Find the length of the parametric curve x = 2 cos (3t), y = 2 sin (3t), 0 :s; t :s; I. 

63 Find the length of the parametric curve x = cos2 t, y = sin 2 t, 0 :s; t :s; n/2. 

64 Find the length of the parametric curve x = cos3 t, y = sin 3 t, 0 :s; t :s; n/2. 

65 Find the area of the surface generated by rotating the curve in Problem 63 about the 
x-axis. 

66 Find the area of the surface generated by rotating the curve in Problem 64 about the 
y-axis. 

INVERSE TRIGONOMETRIC FUNCTIONS 

Inverse functions were studied in Section 2.4. We now take up the topic again and 
apply it to trigonometric functions. A binary relation on the real numbers is any set 
of ordered pairs of real numbers. Thus a real function f of one variable is a binary 
relation such that for each x, either there is exactly one y with (x, y) in for there is 
no y with (x, y) in f. (Other important relations are x < y, x .s; y, x =I= y, x = y.) 

DEFINITION 

Let S be a binary relation on the rea/numbers. The inverse relation of S is the 
set T of all ordered pairs (y, x) such that (x, y) is in S. If S and T are both 
functions they are called inverse functions of each other. 

The inverse of a function f may or may not be a function. For example, the 
inverse of y = x2 is the relation x = ± JY, which is not a function (Figure 7.3.1 ). 
But the inverse of y = x2

, x z 0, is the function x = JY (Figure 7.3.2). 

381 
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X= ±yY 

y 

X= VY 

Geometrically, the graph of the inverse relation of y = f(x) can be obtained 
by flipping the graph of y = f(x) about the diagonal line y = x (the dotted line in 
Figures 7.3.1 and 7.3.2). This flipping interchanges the x- and y-axes. This is because 
f(x) = y means (x, yj is in f, and g(y) = x means (y, x) is in g. It follows that: 

Iff and g are inverse functions then the range off is the domain of g and rice 
versa. 

Which functions have inverse functions? We can answer this question with 
a definition and a simple theorem. 

DEFINITION 

A real function f with domain X is said to be one-to-one iff never takes the 
same value twice, that is, for all x 1 i= x 2 in X we have f(x 1) i= f(x 2 ). 

THEOREM 1 

f has an inverse function if and only iff is one-to-one. 

PROOF The following statements are equivalent. 

(1) f is a one-to-one function. 
(2) For every y, either there is exactly one x with f(x) = y or there is no 

x with f(x) = y. 
(3) The equation y = f(x) determines x as a function of y. 
(4) f has an inverse function. 
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COROLLARY 

Every function which is increasing on its domain I has an inverse function. So 
does every function decreasing on its domain I. 

PROOF Let f be increasing on I. For any two points x 1 i= x2 in I, the value of .f 
at the smaller of x 1 , x2 is less than the value off at the greater, so f(x 1) i= 
f(xz). 

For example, the function y = x 2 is not one-to-one because ( -1)2 = 12
, 

whence it has no inverse function. The function y = x 2
, x ~ 0, is increasing on its 

domain [0, ctJ) and thus has an inverse. 
Now let us examine the trigonometric functions. The function y = sin x is 

not one-to-one. For example, sin 0 = 0, sin n = 0, sin 2n = 0, etc. We can see in 
Figure 7.3.3 that the inverse relation of y = sin x is not a function. 

y 

X X 

y =sin x not a function 
Figure 7.3.3 

However, the function y = sin x is increasing on the interval [- n/2, n/2], 
because its derivative cos x is ~ 0. So the sine function restricted to the interval 
[- n/2, n/2], 

y =sin x, -n/2 ~ x ~ n/2, 

has an mverse function shown in Figure 7.3.4. This mverse IS called the arcsine 

y 

X 

y =sin x, -1:5. x :5. I 
Figure 7.3.4 

X 

I 

\ ', 
' 

x =arcsin y 

y 

383 
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function. It is written x = arcsin y. Verbally, arcsin y is the angle x between -n/2 
and n/2 whose sine is y. 

The other trigonometric functions also are not one-to-one and thus do not 
have inverse functions. However, in each case we obtain a one-to-one function by 
restricting the domain to a suitable interval, either [ -n/2, n/2] or [0, n]. The resulting 
inverse functions are called the arccosine, arctangent, etc. 

DEFINITION 

The inverse trigonometric functions are defined as follows. 

x = arcsin y is the inverse of y = sin x, 

x = arccos y is the inverse of y = cos x, 

x = arctan y is the inverse of y = tan x, 

x = arccot y is the inverse of y = cot x, 

x = arcsec y is the inverse of y = sec x, 

x = arccsc y is the inverse of y = esc x, 

- n/2 :s; x :s; n/2 

O:s;x:s;n 

- n/2 :::;; x :::;; n/2 

O:s;x:s;n 

O:s;x:s;n 

- n/2 :::;; x :::;; n/2 

The graphs of these functions are shown in Figure 7.3.5. The domains of the 
inverse trigonometric functions can be read off from the graphs, and are shown in 
the table below. 

Table 7.3.1 

Function 

arcsin y 
arccos y 
arctan y 
arccot y 
arcsec y 
arccsc y 

Domain 

-l:::;:y:::;:1 

-1:::;:y:::;:1 

whole real line 
whole real line 

j' :::;: -1, y 2 1 
y:::;: -1, y 2 1 

We can prove the inverse trigonometric functions have these domains (i.e., 
the figures are correct) using the Intermediate Value Theorem. As an illustration we 
prove that arcsin y has domain [ -1, 1]. 

arcsin y is undefined outside [ -1, 1] because -1 :::;; sin x :::;; 1 for all x. 
Suppose y0 is in [ -1, 1]. Then 

sin (- n/2) = -1 :s; y0 :s; 1 = sin (n/2). 

sin x is continuous, so by the Intermediate Value Theorem there exists x0 between 
- n/2 and n/2 such that sin x0 = Yo. Thus 

arcsm Yo = X 0 

and Yo is in the domain of arcsin y. 

EXAMPLE 1 Find arccos C/2!2). From Table 7.1.1, cos (n/4) = "fi/2. Since 
0 :s; n/4 :s; n, 

arccos (fl/2) = n/4. 



7.3 INVERSE TRIGONOMETRIC FUNCTIONS 385 

X X 

y -I y 

x =arcsin y x =arccos y 

X X 

y y 

x =arctan y x = arccot y 

X X 

d_ __ 

-I y y 

x = arcsec y x = arccsc y 

Figure 7.3.5 

EXAMPLE 2 Find arcsin ( -1). From Table 7.1.1, sin (3n/2) = -1. But 3n/2 is not 
in the interval [ -n/2, n/2]. Using sin (8 + 2nn) = sine, we have 

sin (- n/2) = sin (3nj2) = - 1, 

so arcsin ( -1) = -n/2. 

EXAMPLE 3 Find arctan (:-J3). We must find a e in the interval [ -n/2, n/2] such 
that tan e = - .J3. From Table 7.1.1, sin (n/3) = j3/2, cos (n/3) = 1/2. 
Then sin (- n/3) = - J3;2, cos (- n/3) = 1/2. So 

--/312 (; 
tan ( -n/3) = 

112 
= -...; 3, 

arctan (- y'J) = - n/3. 
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EXAMPLE 4' Find cos (arctan y). Let 0 = arctan y. Thus tan e = y. Using 

sin 2 0 + cos 2 0 = 1 

sin 0 
---y 
cos e- ' 

we solve for cos e. 

Thus 

sin 0 = y cos 0, 

cosO=+~· - v y2 + 1 

(y cos 0) 2 + cos 2 e = 1, 

2 . 1 cos e = - 2--
1 

. 
)' + 

By definition of arctan y, we know that - n/2 ::;; 0 ::;; n/2. In this interval, 
cos G 2 0. Therefore 

cosO= ~· 
vl + 1 

EXAMPLE 5 Show that arcsin y + arccos y = n/2 (Figure 7.3.6). Let 8 = arcsin y. 
We have y = sin 0 = cos (n/2 - 0). Also, when - n/2 ::;; 0 ::;; n/2, we have 

n/2 2 - e 2 - n/2, n 2 n/2 - e 2 0. 

Thus n/2 - 0 = arccos y, 

arcsin)' + arccos y = 0 + (n/2 - 0) = n/2. 

() 

arccos y 

1r ----2 

y 

arcsin y 

Figure 7.3.6 

We shall next study the derivatives of the inverse trigonometric functions. 
Here is a general theorem which tells us when the derivative of the inverse function 
exists and gives a rule for computing its value. 

INVERSE FUNCTION THEOREM 

Suppose a real function f is differentiable on an open interval I and f has an 
inverse function g. Let x be a point in I where f'(x) =I 0 and let y = f(x). 
Then 
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(i) g'(y) exists, 

1 
(ii) '( ) g y = f'(x)· 

We omit the proof that g'(y) exists. Intuitively, the curve y = f(x) has a non­
horizontal tangent line, so the curve x = g(y) should have a nonvertical tangent 
line and thus g'(y) should exist. 

The Inverse Function Rule from Chapter 2 says that (ii) is true if we assume 
(i). The proof of (ii) from (i) is an application of the Chain Rule: 

g(f(x)) = x, g'(f(x))f'(x) = 1, g'(y)f'(x) = 1, g'(y) = f'~x). 
The Inverse Function Theorem shows that all the inverse trigonometric 

functions have derivatives. We now evaluate these derivatives. 

THEOREM 2 

(i) d(arcsin x) 
dx 

Jl-=7 
d( arccos x) = 

dx 

Jl-=7 
dx 

(ii) d(arctan x) = --2 · 
1 +X 

dx 
d(arccot x) = -

1 
+ x 2 • 

dx 
(iii) d(arcsec x) = ~ 

14J x 2
- 1 

(where -1 < x < 1). 

(where -1 < x < 1). 

(where lxl > 1). 

dx 
d(arccsc x) = - ~ (where lxl > 1). 

14v x 2
- 1 

PROOF We prove the first part of (i) and (iii). Since the derivatives exist we may use 
implicit differentiation. 

(i) Let y = arcsin x. Then 

x = siny, -n/2 s y s n/2, 

dx =cosy dy. 

From sin 2 y + cos2 y = 1 we get 

cosy= ±J1- sin2 y = ±Jl-=7. 
Since - n/2 s y s n/2, cos y ~ 0. Then 

cosy= Jl-=7. 
Substituting, dx = j17dy, 

(iii) Let y = arcsec x. 

d 
dx 

y= 
Jl-=7 
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Then x = sec y, 0 ::;; )' ::;; n, 

dx = sec y tan y dy. 

From tan 2 y + = sec 2 
)' we get tan y = ±y~sec2 y- 1 = ±Jx2

- 1. 

1 
Since 0 ::;; y ::;; n, tan y and sec y = --have the same sign. 

cosy 

Therefore sec y tan y ;::: 0 

and dx = lsec Ylltan .1'1 dy = lxl~ dy, 

dx 
dr=-··---. 

· lxl~ 

When we turn these formulas for derivatives around we get some surprising 
new integration formulas. 

THEOREM 3 

(i) 

(ii) 

(iii) 

dx = arcsinx + C = -arccos x + C. (Provided that lxl < 1). 
- x2 

f~ = arctan x + C = - arccot x + C. 
1+x 

f dx = arcsecx + C = -arccscx +C. (Provided that lxl > 1). 
lxk/x2 - 1 

From part (i), arcsin x and -arccos x must differ only by a constant. We 
already knew this from Example 5, 

arcsm x = -arccos x + n/2. 

Before now we were not able to find the area of the regions under the curves 

1 1 l 
\'=~=== 
·~' 

)'=---
. 1 + x 2 ' 

)' = -~== xp-=1 .. 

It is a remarkable and quite unexpected fact that these areas are given by inverse 
trigonometric functions. 

EXAMPLE 6 (a) Find the area of the region under the curve 

for - 1 ::;; x ::;; l. 

1 
y--­

- 1 + .\2 

(b) Find the area of the region under the same curve for - x < x < x. 
The regions are shown in Figure 7.3.7. 

(a) Jl 1 ll A = ---2 dx = arctan x 
_ 1 1+x _ 1 

n 1I 

4 
-
2 
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y 

I 
y = I +x 2 

Figure 7.3.7 -1 X 

(b) A = Joo ~1~2 dx = Jo ~1-2 dx + foo ~1~2 dx 
-oo 1 +X _ 00 1 +X ) 0 l +X 

fo 1 lb 1 
= lim ---2 dx + lim ---

2 
dx 

a~-x a 1 +X b~oo 0 1 +X 

= lim (arctan 0 - arctan a) + lim (arctan b - arctan 0) 
a--oo b-+oo 

= -lim arctan a + lim arctan b. 

From the graph of arctan x we see that the first limit is - n/2 and the second 
limit is n/2, so 

A = - ( -~) + ~ = n. 

Thus the region under y = 1/(1 + x 2
) has exactly the same area as the unit 

circle, and half of this area is between x = - 1 and x = 1. 

EXAMPLE 7 f
-j2 1 

Find ~dx. 
-2 x.y x 2

- 1 

The region is shown in Figure 7.3.8. Since x is negative, x = -lxl. Thus 

f-j2 1 f-j2 1 
~---dx = - dx 

-2 xJxZ=l , -2 lxiP-=1 

-arcsecxJ~: = -(arcsec(-j2)- arcsec(-2)) 

Figure 7.3.8 

-e4n- 23n) = 1~· 

-2 -fi 

I y-----xJx2=1 

\ 
\ 
\ 

' \ 
\ 

\ 

y 

X 
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PROBLEMS FOR SECTION 7.3 

In Problems 1-9, evaluate the given expression. 

I arcsin C-/J/2) 2 

3 arctan (- 1) 4 

5 arcsec 2 6 

7 sin (arccos x) 8 

9 arcsin (cos x), 0 s x s n: 

IO Prove the identity arctan ( -x) = -arctan x. 

II Prove arctan (1/x) = arccot x, for 0 < x. 

12 Prove arccos (- x) = n: - arccos x. 

13 Prove arctan x + arccot x = rr/2. 

Find the derivatives in Problems 14-25. 

I4 

I6 

I8 

20 

22 

24 

y = arcsin (x/2) 

y = (arcsin x) 2 

y = arctan fi 

y = x arcsec x 

)' = arccos x + (xf-/I _:.:- x 2
) 

u = arcsec t + .J t 2 
- 1 

26 Evaluate lim arccsc x. 

27 

28 

29 

Evaluate lim arctan x. 

. arcsin x 
Evaluate hm ---. 

s~o X 

Evaluate lim a.rccot x 
x~"' arCCSC X 

In Problems 30-47 evaluate the integrals. 

30 J dx 
1 + 4x 2 

32 J dx 
J4- x2 

34 J cos X I 
1 + sin 2 x c x 

36 J xdx 
x 4 + 1 

38 J dx 
(1 + x)fi 

40 J arctan x dx 
1 + x2 

42 Jfi dx -fi 1 + x2 

44 rl I 
-Jzxfi2-=l 

dx 

I5 

I7 

I9 

2I 

23 

25 

3I 

33 

35 

37 

39 

41 

43 

45 

arcsin (- 1/2) 

sec (arctan (- 1 )) 

arcsin (cos n:) 

cot (arcsec x) 

y = arcsec (Sx - 2) 

y = arcsin (x 2) 

s = t arcsin t 

.1' = arcsin x + Jl - x 2 

r = x arcsin x + )1 - x2 

)' = arctan (lffil 

J dx 
9 + x2 

J dx 
Jx- x 2 

J dx 
x~' 

X > 1 

J xdx 

~ 
J dx 

x..j'x- 1 

J arcsin x dx 

~ 
r I dx 
lXy~· 

f/2 1 
~dx 

o -J 1 - x2 
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46 47 foo dx 

-oo a2 + x2 

48 Find the area of the region bounded by the x-axis and the curve y = 1/}17, 
-1<x<l. 

49 Find the area of the region under the curve y = 1/(xJx~]\ 1 :<:;; x < w. 

50 Find the area of the region bounded below by the line y = ! and above by the curve 
y = 1j(x2 + 1). 

'.4 INTEGRATION BY PARTS 

One reason it is harder to integrate than differentiate is that for derivatives there is 
both a Sum Rule and a Product Rule, 

d(u + v) = du + dv, d(uv) = u dv + v du 

while for integrals there is only a Sum Rule, 

The Sum Rule for integrals is obtained in a simple way by reversing the sum 
rule for derivatives. 

There is a way to turn the Product Rule for derivatives into a rule for integrals. 
It no longer looks like a product rule, and is called integration by parts. Integration 
by parts is a basic method which is needed for many integrals involving trigonometric 
functions (and later exponential functions). 

INDEFINITE INTEGRATION BY PARTS 

Suppose, for x in an open interval I, that u and v depend on x and that du and 
dv exist. Then 

f u dv = uu - f v du. 

PROOF We use the Product Rule 

u dv + v du = d(uv), u dv = d(uv) - v du. 

Integrating both sides with x as the independent variable, 

f u dv = f(d(uv)- v du) = f d(uv) - f v du = uv - f v du. 

No constant of integration is needed because there are indefinite integrals on 
both sides of the equation. 

Integration by parts is useful whenever f v du is easier to evaluate than a 
given integral f u dv. 
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EXAMPLE Evaluate f x sin x dx. Our plan is to break x sin x dx into a product of 
the form u dv, evaluate the integrals J dv and I v du, and then use integration 
by parts to get J u dr. There are several choices we might make for u and dr, 
and not all of them lead to a solution of the problem. Some guesswork is 
required. 

First try: u = sin x, dv = x dx. I dv = J x dx = ~x 2 + C. Take r = ~x 2 

Next we find du and try to evaluate J L' du. 

dtt = cos x dx, J v du = J ~x 2 cos x dx. 

This integral looks harder than the one we started with, so we sliall start 
over with another choice of u and dr. 

Second try: u = x, dv = sin x dx. 

J dr = J sin x dx = -cos x + C. 

We take v = -cos x. This time we find dtt and easily evaluate J v du. 

du = dx, J v du = J -cos x dx = -sin x + C 1 . 

Finally we use the rule 

Ju dv = uv - f v du, 
J x sin x dx = x(- cos x) - (-sin x + C 1 ), 

or J x sin x dx = - x cos x + sin x + C. 

EXAMPLE 2 Evaluate J arcsin x dx. A choice of u and dv which works is 

tl = arcsin x, dv = dx. 

We may take v = x. Then 

Finally, 

dx du= ~· v 1 - x2 

Jvdu= fh= 
f arcsin x dx = x arcsin x - (-Jl=-7 + C 1 ), 

J arcsin x dx = x arcsin x + ~ x 2 + C. 

This integral and the similar formula for f arccos x dx are included in our 
table at the end of the book. We shall see how to integrate the other inverse trigono­
metric functions in the next chapter. 
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EXAMPLE 3 Evaluate f x 2 sin x dx. This requires two integrations by parts. 

Step 1 dv =sin x dx, 

du = 2xdx, Jdv = fsinxdx = -cosx +C. 

Wetakev = -cosx. 

J x 2 sin x dx = uv - J v du 

Step 2 Evaluate f 2x cos x dx. 

-x2 cosx + j2xcosxdx. 

dv 1 = cos x dx, 

du 1 = 2 dx, f dv 1 = f cos x dx = sin x + C. 

We take v1 = sm x. 

f 2x cos x dx = u 1 v 1 - f v 1 du 1 

= 2x sin x - f 2 sin x dx 

= 2x sin x + 2 cos x + C. 

Combining the two steps, 

J x2 sin x dx = - x2 cos x + 2x sin x + 2 cos x + C. 

Sometimes integration by parts will yield an equation in which the given 
integral occurs on both sides. One can often solve for the answer. 

EXAMPLE 4 Evaluate f sin 2 8 dB. Let 

Then 

u =sine, 

du =cos e dB, 

dv =sine dB. 

v = -cos e. 

f sin2 B dB = -sine cos e - f- cos 2 e dB 

-sin e cos B + J cos2 e dB 

-sin B cos B + fo - sin2 B) dB 

-sinBcosB + B- Jsin 2 BdB. 

We solve this equation for f sin2 B dB, 

Jsin 2 BdB = -tsinBcosB + te +C. 

393 
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Here is another way to evaluate J sin 2 B dB. Instead of using integration by 
parts, we can use the half-angle formula 

This is derived from the addition formula. 

cos (B + ¢) = cos B cos ¢- sin 0 sin¢. 

cos (28) = cos 2 0 - sin 2 8 = 1 - 2 sin 2 8. 

. ) 1 - cos (20) 
Sin- 0 = 

2 
- . 

Then Jsin 2 
() d8 = J I_-:- ~os 20 

d8 = ~ Jdo- ~ Jcos 20 dO 

1 J' [ J 1 1 . = 2 dB - 4 cos 21J d(20) = 2e - 4 sm 20 + C. 

This answer agrees with Example 4 because 

sin 20 = sin (0 + 0) = 2 sin 8 cos 0, 

1 1 1 1 
-0 - -sin 20 = -8 -?sin 0 cos e. 
2 4 2 -

so 

Integration by parts requires a great deal of guesswork. Given a problem 
J h(x) dx we try to find a way to split h(x) dx into a product f(x)g'(x) dx where we can 
evaluate both of the integrals J g'(x) dx and J g(x).f'(x) dx. 

Definite integrals take the following form when integration by parts is 
applied. 

DEFINITE INTEGRATION BY PARTS 

If u = .f(x) and r = g(x) have continuous derivatires on an open interval I, 
then for a. b in I, 

Jhf(x)g'(x) dx = .f(x)g(x)Jb - Jb g(x).f'(x) dx. 
1 a a 

PROOF The Product Rule gives 

f(x)g'(x) dx + g(x).f'(x) dx = d(.f(x)g(x)). 

Then by the Fundamental Theorem of Calculus, 

fb (f(x)g'(x) + g(x)f'(x)) dx = f(x)g(x)lb, 
a Ja 

and the desired result follows by the Sum Rule. 

If we plot u = f(x) on one axis and L' = g(x) on the other, we get a picture 
of definite integration by parts (Figure 7.4.1). The picture is easier to interpret if we 
change variables in the definite integrals and write the formula for integration by 
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v =g(x) 

/(a) f(b) u =f(x) 

Figure 7.4.1 Definite Integration by Parts 

parts in the form 

f
g(b) ff(b) 

u dv + v du = f(b)g(b) - f(a)g(a). 
g(a) f(a) 

EXAMPLE 5 Evaluate f~ x sin x dx (Figure 7.4.2). Take u = x, dv = sin x dx as in 
Example 1. Then v = -cos x and 

I' x sin x dx = - x cos x J: -I' -cos x dx 

- x cos xI + sin xI 
= ( -n( -1) + 0 ·1) + (0- 0) = n. 

y 

X 

Figure 7.4.2 

PROBLEMS FOR SECTION 7.4 

Evaluate the integrals in Problems 1-35. 

1 f xcosxdx 2 J arccos x dx 
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3 

5 

7 

9 

11 

13 

15 

17 

19 

21 

23 

25 

27 

29 

31 

33 

35 

36 

0 37 

0 38 

0 39 
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J t2 cos r dr 4 Jx arctan x dx 

J r sin (21 - 1) dt 6 Jarcsin (31) dl 

Jx 2 sin (4x) dx 8 Jx arcsec x dx 

Jx 3 arcsec x dx 10 Jx 3 sin x dx 

Jsin ,/~ dx l2 Jsin 8 tan 2 8 dO 

f arctan ,,_. :;_: dx 14 Jx tan x sec 2 x dx 

J XJ dx 16 Jcos 2 e d8 . ' 
y~:c- 1 

Jx sin x cos x dx 18 Jtsin
2

tdt 

f sin e sin (28) d8 20 Jcos x cos (3x) dx 

J sin x cos (Sx) dx 22 Jcos x cot"' x dx 

J t
3 sin (1 2

) dl 24 Jx 3 cos (2x 2 
- 1) dx 

J ~sin C-) dx 26 Jsin e cos 8 cos (sin 8) d8 
X X 

Jl 3 -..,/1 2 + 4dt 28 . 1J1 j- -- 1 dx 
x 3 X 

"1'1·2 .. 1 2 1 8cos 8d8 30 jo arcsin x dx 

f sin
2

1Jd8 
•I 

32 jo arcsin x dx 

11 

x arccot x dx 34 L" x arccot x dx 

J
1

2 

1 arcsec t dt 

Find the volume of the solid of revolution generated by rotating the region under the 
curve y = sin x, 0 :::; x :::; n, about (a) the x-axis, (b) they-axis. 

Prove that if( is a differentiable function of x, then 

Jnxl dx = .V(x) - Jx('(x) dx. 

If 11 and rare differentiable functions of x, show that 

Ju 2 dr = u2r- 2 furdu. 

Show that iff' and g are differentiable for all x, then 

J g(x)g'(x)f"(g(x)) dx = .f'(g(x))g(x) - f(g(x)) + C. 
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7.5 INTEGRALS OF POWERS OF TRIGONOMETRIC FUNCTIONS 

It is often possible to transform an integral into one of the forms 

I sin"u du, I cos"u du, I tan"u du, etc. 

These integrals can be evaluated by means of reduction formulas, which express the 
integral of the nth power of a trigonometric function in terms of the (n - 2)nd power. 
The easiest reduction formulas to prove are those for the tangent and cotangent, so 
we shall give them first. 

THEOREM 1 

Let n =F 1. Then 

(i) tan" x dx = - tan"- 2 x dx. f tan"- 1 x J 
n - 1 

f cot"-
1
x J (ii) cot" x dx = - - cot"- 2 x dx. 

n - 1 

PROOF We recall that 

tan 2 x = sec2 x- 1, d(tanx) = sec2 x dx. 

Then J tan" x dx = f tan"- 2 x tan2 x dx = f tan"- 2 x (sec2 x - 1) dx 

= J tan"- 2 x sec2 x dx- J tan"- 2 x dx 

= f tan"- 2 xd(tanx)- I tan"- 2 xdx 

tan"- 1 x f = - tan"- 2 xdx. 
n - 1 

These reduction formulas are true for any rational number n =F 1. They are 
most useful, however, when n is a positive integer. 

EXAMPLE 1 I tan 2 x dx = ta~x - f tan° x dx = tanx - x + C. 

I tan 3 x I tan 3 x 
EXAMPLE 2 tan4 X dx = -

3
-- tan 2 

X dx = -
3
-- tanx +X+ C. 

EXAMPLE 3 f tan 3 
X dx = ta~

2 

X- f tanx dx. 

We will evaluate f tanx dx in the next chapter. 



Each time we use the reduction formula the exponent in the integral goes 
down by two. By repeated use of the reduction formulas we can integrate any even 
power of tanx or cotx. We can also work the integral of any odd power of tanx or 
cotx down to an expression involving f tan x or f cot x. 

The reduction formulas for the other trigonometric functions are obtained 
by using integration by parts. 

THEOREM 2 

Let 11 i= 0. Then 

(i) sin"xdx =- -sm"- 1 xcosx + -- sm"- 2 xdx. I 1. n-li. 
11 11 

(ii) I cos"x dx = ~ cos"- 1 x sinx + 11
-

1 I cos"- 2 x dx. 
11 11 

PROOF (i) Break the term sin" x dx into two parts, 

sin" x dx = sin"- 1 x(sin x dx). 

We shall let u = sin"- 1 x, v = -cosx, 

du = (11- l)sin"- 2 xcosxdx, 

and use integration by parts. Then 

dv = sinx dx, 

I sin" x dx = I u dv = uv - I v du 

-sin"- 1 xcosx- I (11- 1)(-cosx)sin"- 2 xcosxdx. 

-sin"- 1 xcosx + (n- l)I sin"- 2 x(l- sin 2 x)dx 

-sin"- 1 xcosx + (n- l)I sin"- 2 xdx- (n- l)I sin"xdx. 

We find that f sin" x dx appears on both sides of the equation, and we solve 
for it, 

ni sin"xdx = 

I sin"xdx = 

-sin"- 1 x cosx + (n- 1) I sin"- 2 x dx, 

- ~sin"- 1 xcosx + 11
-

1 
[sin"- 2 xdx. 

11 11 

We already know the integrals 

I sinx dx = -cosx + C, I cosx dx = sinx + C. 

We can use the reduction formulas to integrate any positive power of sinx or cosx. 
Again, the formulas are true where 11 is any rational number, 11 i= 0. 
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EXAMPLE 4 f sin2 x dx = -1 sinx cosx + 1 f dx = -1 sinx cosx + 1x + C. 

J cos2 xdx = tcosxsinx + tJ dx = tcosxsinx + tx +C. 

EXAMPLE 5 J cos 3 x dx = i cos2 x sinx + ~ J cosx dx 

= icos2 xsinx + ~sinx +C. 

THEOREM 3 

Let m # 1. Then 

(i) secmxdx = ---secm- 1 xsinx + --- secm- 2 xdx. f 1 m-2s 
m-1 m-1 

(ii) 
f

cscmxdx =- --
1
-cscm- 1 xcosx + 111

-
2

fcscm- 2 xdx. 
m-1 m-1 

PROOF (ii) This can be done by integration by parts, but it is easier to use 
Theorem 2. Let n =2-m. Form# 2, n # 0 and Theorem 2 gives 

f ·2 d 1 ·1 1-ms. d Sill - m X X = ----Sill - m X COS X + --- Sill- m X X, 
2-m 2-m 

CSCm X dx = --- CSCm- 1 X COS X + --- CSCm X dx f _2 1 m- 1 f 
m-2 m-2 ' 

whence 
f

cscmxdx =- --
1
-cscm- 1 xcosx + m-

2
fcscm- 2 xdx. 

m-1 m-1 

Form= 2 the formula is already known, 

J csc2 xdx = -cotx + C = -cscxcosx +C. 

These reduction formulas can be used to integrate any even power of secx or 
cscx, and to get the integral of any odd power of secx or cscx in terms off secx or 
f cscx. We shall find f secx and f cscx in the next chapter. 

EXAMPLE 6 J sec3 x dx = 1 sec2 x sinx + 1 J secx dx. 

EXAMPLE 7 J sec4 x dx = i sec3 x sinx + ~ J sec2 x dx 

= isec3 x sinx + ~ tanx + C. 

By using the identity sin2 x + cos2 x = 1 we can evaluate any integral of the 

399 
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form J sin"' x cos" x dx where m and n are positive integers. If either m or 11 is odd we 
let u = sin x or u = cos x and transform the integral into a polynomial in u. 

EXAMPLE 8 Jsin4 
X cos 3 

X dx. Let U = sinx, du = COSX dx. 

J sin 4 x cos 3 x dx = f u4 (1 - u2
) du 

=!us- +u7 + C 

= t sin 5 x - +sin 7 x + C. 

This method also works for an odd power of sinx times any power of cosx, 
and vice versa. 

EXAMPLE 9 f../cosx sin 3 x dx. Let u = cosx, dt1 = -sinx dx. 

J ~ sin 3 x dx = J fi(l- u2
)( -1) du 

= f -u';z +us,zdu = -3-u-~z + ~u7,2 + C 

= -j(cosx) 312 + ~(cosx) 7 • 2 + C. 

EXAMPLE 10 J sin 5 x dx. Let u = cosx, du = -sinx dx. 

J sin 5 xdx = f (1- u2 f(-1)du 

-J (1 - 2u 2 + u4
) dtl = - tl + jt1

3 
- !u 5 + C 

-cos x + i cos 3 x - t cos 5 x + C. 

If m and n are both even, the integral f sin"' x cos" x dx can be transformed 
into the integral of a sum of even powers of sin x. Then the reduction formula can 
be used. 

EXAMPLE 11 J sin4 xcos4 xdx = f sin4 x(1- sin 2 x) 2 dx 

= J sin4 x- 2sin6 x + sin 8 xdx. 

We can also evaluate integrals of the form 

J tan"' x sec" x dx, 

J cot"' x esc" x dx. 
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EXAMPLE 12 When m is even use tan2 x = sec2 x - 1. 

J tan4 x secx dx = J (sec2 x - 1)2 sec x dx 

= J sec5 x- 2sec3 x + secxdx. 

Now the reduction formula for secx can be used. 

EXAMPLE 13 When m is odd use the new variable u = secx or u = -cscx. 

csc5 x csc3 x 
=---+--+c. 

5 3 

PROBLEMS FOR SECTION 7.5 

Evaluate the integrals in Problems 1-32. 

I I sin3t dt 
cas2 t 

2 I sin2 (2t) dt 

3 I cat2 x dx 4 I sin3(5u) du 

5 I cas4 x dx 6 I4dx 
Sill X 

7 I tan3 x sec4 x dx 8 I tan6 0d0 

9 I sin2 x cas3 x dx 10 I catO csc2 (}dO 

11 I cat2 a csc2 e de 12 I sinx(casx)312 dx 

13 I (tanx)312 sec4 x dx 14 I sec4 (3u - 1) du 

15 I sec2 e csc2 e de 16 I sinze de 
1 -case 

17 I 1 -:-case dO 
sm2 e 18 r2 

0 

sin3xcosxdx 

19 {

13 

tan 3 0secedO 20 r2 
0 

Jcosx sinx dx 

21 f'4 

0 

tan4 xdx 22 f'2 
0 

tan2 x dx 



I 111'-''-''"'....._..IVI'-l Ill...., I..._,,,.._..,,.._,,,......, 

23 f sin4 B dB 24 J sin3 (2u) cos 3 (2u) du 

25 J cos2 ,(; d- 26 J x tan(x 2
) sec2(x 2

) dx fix 
X 

27 J x sin 3 x dx 28 f x tan 3 x sec2 x dx 

29 f x sin 2 x cosx dx 30 J sin6 0 cos5 B dO 

31 J tan 4 0 sec6 B dB 32 J sin 2 x cos2 x dx 

In Problems 33-39, express the given integral in terms of 

33 

35 

37 

39 

40 

D 41 
42 

43 

f tanx dx, 

f sec3 x dx 

f tan 2xsecxdx 

J cot 2 x csc 3 x dx 

f sinx + cosx dx 
smx cosx 

f COLX dx, 

34 

36 

38 

f secx dx, f cscx dx. 

J cot 3 x dx 

J csc5 x dx 

J tan4 x secx dx 

Check the reduction formula for f sin" x dx by differentiating both sides of the equation. 
Do the same for f tan"x dx and f sec" x dx. 

Find a reduction formula for J x" sin x dx using integration by parts. 

Find the volume of the solid generated by rotating the region under the curve y = sin 2 x, 
0 :0: x :0: n, about (a) the x-axis, (b) they-axis. 

Find the volume of the solid generated by rotating the region under the curve 
y = sinx cosx, 0 :0: x :0: rr/2, about (a) the x-axis, (b) they-axis. 

7.6 TRIGONOMETRIC SUBSTITUTIONS 

Integrals containing one of the terms 

or 

can often be integrated by a trigono!lwtric substitution. The idea is to take x, a, and the 
square root as the three sides of a right triangle and use one of its acute angles as a 
new variable 8. The three kinds of trigonometric substitutions are shown in Figure 
7.6.L These figures do not have to be memorized. Just remember that the sides must 
be labeled so that 

(opposite)2 + (adjacent) 2 = (hypotenuse) 2
. 

These substitutions frequently give an integral of powers of trigonometric functions 
discussed in the preceding section. 



a 

X= a tan IJ 

Figure 7:6.1 
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a 

X= a sin IJ x =a sec 8 

EXAMPLE 1 Findf(a 2 + x 2)-3!2dx. 

Let e = arctan (xja). Then from Figure 7.6.2, 

x =a tan8, dx = a sec2 e d8, J a2 + x 2 
= a sec e. 

So 

J (a 2 + x 2
)-

312 dx = J (asece)- 3 asec2 8de 

= a
1
2 J (sece)- 1 d8 = : 2 J cosede 

1 . 1 tane x 
= - sm e + c = - --. + c = + c. 

a
2 

a
2 sece a2 Ja 2 + x 2 

EXAMPLE 2 Find fJx 2
- a2 dx. 

Let 8 = arcsec (xja) (Figure 7.6.3), so 

So 

X= a sec8, dx =a tane secede, 

f Jx 2
- a2 dx =fa tane a tane secede = a2 f tan 2 e secede 

= a2 I (sec2 e - 1)sec8 de 

= a2 I sec3 e de - a2 I sec e de 

= (1a2 sec2 e sine + 1a2 f sec8 de) - a2 f secede 

= 1a2 sec2 e sine - 1a2 f secede 

= txJx2
- a2 -1a2 f secede. 

This is as far as we can go on this problem until we find out how to integrate 
s secede in the next chapter. 

X 

Figure 7.6.2 a Figure 7.6.3 a 
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EXAMPLE 3 f 1 
dx. Let 0 = arcsin(x/a) (Figure 7.6.4). Then 

x1Ja1- x2 

x =a sinO, dx =a cosO dO, ~x2 = acosO. 

J
Jx2 _ a2 

EXAMPLE 4 ~~ dx. Put 8 = arcsec (x/a) (Figure 7.6.5). Then 

Figure 7.6.4 

x = asecO, dx = atan8sec0d8, Jx 1
- a2 =a tanG. 

f ~
2 

- a
2 J a tan 0 f _v ____ dx = --

0
atan8sec8d0 =a tan 2 0d0 

x a sec 

· = a J sec2 8 dB - a f dO = a tan 0 - aD + C 

= v x 2 
- a2 

- a arcsec (xja) + C. 

(I 

Figure 7.6.5 

To keep track of a trigonometric substitution, it is a good idea to actually 
draw the triangle and label the sides. 

EXAMPLE 5 

(a) 

(b) 

(c) 

The basic integrals: 

f 1 . 
-----c=== dx = arcstn x + C. 
..,_/1 - .\2 

j. dx 
---2 dx = arctanx + C. 
1 + X 

J 
dx -= = arcsec x + C. 

x~x 2 - 1 
x>l 

can be evaluated very easily by a trigonometric substitution. 

(a) 
• 1 

j ji- x2 dx. 
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X 

~ 
Figure 7.6.6 Figure 7.6.7 Figure 7.6.8 

Let e = arcsinx (Figure 7.6.6). Then x =sinO, dx = cos8d8, ~ = 
cos e. 

(b) 

f 1 dx = J cos e de = J de = e + c, 
~ cosO 

fRdx = arcsinx +C. 
1 - x 2 

f dx 

1 + x 2 

Let e = arctan X (Figure 7.6.7). Then X = tan e, dx = sec2 e dB, ~ = 
sec G. 

(c) 

f ~ = f secz e dB = f dB = e + C 
1 + x2 sec2 e , 

f dx 
---2 = arctan x + C. 
1+x 

f dx 

xp-=-t' X> 1. 

Let e = arcsec x (Figure 7.6.8). Then x = sec B, dx = tan B secB dB, 
P-=-1 =tan e. 

f dx = J tanG secB de= J dB= 8 + C, 
xP-=-1 sec (J tan e 

f dx 
~ = arcsecx + C, 

x-y"" -r '" 

x>l. 

It is therefore more important to remember the method of trigonometric 
substitution than to remember the integration formulas (a), (b), (c). 

PROBLEMS FOR SECTION 7.6 

Draw the appropriate triangle and evaluate using trigonometric substitutions. 

I dx 2 I J az - xz dx 
Jl- 4x2 

3 I~ 4 I~dx 
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5 

7 

9 

11 

13 

IS 

17 

19 

21 

23 

25 

27 

29 

31 

33 

7 TRIGONOMETRIC FUNCTIONS 

f (4- xz)-3'2dx 

f siniJdiJ 

Jz- cos2 1J 

f dx 
x 2(1 + x 2

) 

f -/::2 ~x,z 
'\ . 

f x 2 jl- x2 dx 

fJ4x-7dx 

f x arcsin x dx 

f x 2 arcsinx dx 

6 

8 

10 

12 

14 

16 

18 

20 

22 

24 

26 

28 

30 

32 

34 

J v;;;../1 - x dx 

f fi dx 
y~1-x 

f 
dx 

x3~ 

f x 3)1 + a2x2dx 

Jx~dx 

f )4- x 2 dx 

14 /xz- 2 
' dx 

2 X 

i
x X3 

~dx 
o v 1 + x2 

J x arccosx dx 

J x 3 arctanxdx 

35 Jx- 3 arcsinxdx 36 J x- 3 arctanxdx 

37 Find the surface area generated by rotating the ellipse x 2 + 4y 2 = 1 about the x-axis. 

7.7 POLAR COORDINATES 

The position of a point in the plane can be described by its distance and direction 
from the origin. In measuring direction we take the x-axis as the starting point. Let X 
be the point (1, 0) on the x-axis and let P be a point in the plane as in Figure 7.7.1. 

P(r, 8) 

Figure 7.7.1 0 X 
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A pair of polar coordinates of P is given by (r, B) where r is the distance from the 
origin toP and B is the angle XOP. 

Each pair of real numbers (r, B) determines a point P in polar coordinates. 
To find P we first rotate the line OX through an angle B, forming a new line OX', 
and then go out a distance r along the line 0 X'. If B is negative then the rotation is in 
the negative, or clockwise direction. If r is negative the distance is measured along 
the line OX' in the direction away from X' (see Figure 7.7.2). 

X 

0~ 
X' r 

P(r, IJ) P(r, IJ) 
IJ negative r negative 

Figure 7.7.2 

EXAMPLE 1 Plot the following points in polar coordinates. 

(2, n/4), ( -1, n/4), (3, 3n/4), (2, -n/4), (- 4, -n/4). 

The solution is shown in Figure 7.7.3. 

Each point P has infinitely many different polar coordinate pairs. We see in 
Figure 7.7.4 that the point P(3, n/2) has all the coordinates 

Figure 7.7.3 

(3, ·5) 

.,. 
2 

0 

Figure 7.7.4 

(3, n/2 + 2nn), } . 
(- 3, 3n/2 + 2nn), n an mteger. 

I 
I 
I 

• ( -3, 3;) 
I 
I 
I 
I 
I 
I 

}+271" 
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x = r cos e 

Figure 7.7.5 

Any coordinate pair (0, 8) with r = 0 determines the origin. As we see in 
Figure 7.7.5, the coordinates of a point Pin rectangular and in polar coordinates are 
related by the equations 

X= I' COS8, J' = I' sin e. 
The graph, or locus in polar coordinates of a system of formulas in the variables r, 8 
is the set of all points P(r, 8) for which the formulas are true. 

EXAMPLE 2 The graph of the equation r = a is the circle of radius a centered at the 
origin (Figure 7.7.6(a)). The graph of the equation 8 = b is a straight line 
through the origin (Figure 7.7.6(b)). 

EXAMPLE 3 The graph of the system of formulas 

r = e, o s e 
is the spiral of Archimedes formed by moving a pencil along the line OX 
while the line is rotating, with the pencil moving at the same speed as the 
point X. The graph is shown in Figure 7.7.6(c). 

An equation in rectangular coordinates can readily be transformed into an 
equation in polar coordinates with the same graph by using x = r cos 8, y = r sin 0. 

a 

r=a 

r=8 

(b) 

(c) 

Figure 7.7.6 
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Here are the polar equations for various types of straight lines. Examples of 
their graphs are shown in Figure 7.7.7. 

(1) Line through the origin (not vertical). 
Rectangular equation: y = mx. 
Polar equation: r sine= mr case, 

or: tane = m. 

(2) Horizontal line (not through origin). 
Rectangular equation: y =b. 
Polar equation: r sine= b, 

or: r = b esc e. 
(3) Vertical line (not through origin). 

Rectangular equation: x =a. 
Polar equation: I' case= a, 

or: r = asece. 
(4) Vertical line through origin. 

Rectangular equation: X= 0. 
Polar equation: r cose = 0, 

or: e = n/2. 
(5) Other lines. 

Rectangular equation: y = mx +b. 
Polar equation: r sin e = mr cos e + b' 

b 
or: r= 

sine- m cose· 

y y 

h r 

X X 

y = mx, tan 8 = m y = b, r = b esc 0 

y y 

a X X 

x = a, r = a sec 0 b 
y = mx + b r = ---,-----~-

' sin fJ - m cos 0 
Figure 7.7.7 
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EXAMPLE 4 The parabola J' = x 2 has the polar equation 

r sinO= (r cos0) 2
, or 

sinO 
r = -- = tanOsecO. 

cos 1 8 

EXAMPLE 5 The curve y = ljx has the polar equation 

. e I rsrn = --
r cosO' 

or r 2 = seeD esc G. 

The graph is shown in Figure 7.7.8. 

X 

y 

Figure 7.7.8 

Some curves have much simpler equations m polar coordinates than in 
rectangular coordinates. 

EXAMPLE 6 The graph of the equation 

r =a sinO 

is the circle one of whose diameters is the line from the origin to a point a 
above the origin. 

This can be seen from Figure 7.7.9, if we remember that a diameter and a 
point on the circle form a right triangle. 

As 8 increases, the point (a sin 8, G) goes around this circle once for every n 
radians. 

r =a sin 8 

0 
Figure 7. 7.9 
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Figure 7.7.10 

An equation r = j(e) in polar coordinates has the same graph as the pair of 
parametric equations 

x = f(e) cos e, y = j(e) sine 

in rectangular coordinates. This can be seen from Figure 7.7.10. 

EXAMPlE 7 

(a) The spiral r = e has the parametric equations 

x = ecose, y = esine. 

(b) The circler= a sine has the parametric equations 

X =a sine cose, 

PROBLEMS FOR SECTION 7.7 

1 Plot the following points in polar coordinates: 

(a) (2, n/3) 

{d) (-2,-n/4) 

(b) (- 3, n/2) 

(e) {t, n) 

y =a sin 2 e. 

(c) {1, 4nj3) 

(f) (0, 3nj2) 

In Problems 2~12, find an equation in polar coordinates which has the same graph as the given 
equation in rectangular coordinates. 

2 y = 3x 3 y = 5x + 2 

4 y = -4 5 X= 2 

6 

8 

10 

xy2 = 1 

xz + yz = 5 

)' = x3 

12 y=sinx 

7 

9 

11 

y = xz + I 

y = 3x2
- 2x 

)' = xz + yz 

In Problems 13~20, sketch the given curve in polar coordinates. 

13 

15 

r =cosO 

r = sin(O + n/4) 

14 

16 

r = -sec() 

,. = 0, (}-<:; 0 



17 18 
1 

r = --;--c:---

sin8 +cosO 

19 r = cotOcsce 20 r2 = -2 sec8 cscO 

In Problems 21-24, And rectangular parametric equations for the given curves. 

21 r = sin(38) 22 r = secOcscO 

23 r = 82 24 r = tan 0 

25 Prove that iff( B) = f(- 0) then the curve r = f(O) is symmetric about the x-axis. That is, 
if (x, y) is on the curve then so is (x, - y). 

26 Prove that if ./(0) = f(n + 0) then the curve r = f(O) is symmetric about the origin. 
That is, if (x, y) is on the cur\'e so is (- x, - y). 

27 Prove that iff"(O) = f(n - 8) then the curve r = f{O) is symmetric about the .r-axis. 

7.8 SLOPES AND CURVE SKETCHING IN POLAR COORDINATES 

Derivatives can be used to measure direction in polar as well as in rectangular 
coordinates. We begin with two theorems, one about the direction of a curve at the 
origin (an unusual point in polar coordinates) and the other about the direction of a 
curve elsewhere. Then we shall use these theorems for sketching curves. 

THEOREM 1 

At any value 80 where the curve r = f(8) passes through the origin, the curve 
is tangent to the line 8 = 80 . . 

More precisely, if r = 0 at 8 = 80 but r =/= 0 for all 8 =/= 80 in some neighbor­
hood of 80 , then 

. fi l' 
hm -· = tan80 , 
o~oo fix 

I
. 11x 

8 1m-;:-= cot 0 . 
o~oo o.y 

PROOF Suppose cos 00 =1= 0. so tan 00 exists. Let fiO be a nonzero infinitesimal. Then 
fir =1= 0 and r changes from 0 to fir. We compute 11yjfix. 

11y = (0 + 11r) sin (80 + 118) - 0 sin 80 

= l1r sin(80 + 118), 

11x = 11r cos ( 8 0 + 118), 

11y fir sin (8 0 + 118) (
8 

A
8

) 
- = tan 0 + o. . 

11x l1r cos(80 + fi8) 

Taking standard parts, 

Similarly, when sin 80 =I= 0, 

. 11y 
hm- =tan 80 • 
e~oo 11x 

. 11x 
8 hm- =cot 0 . 

e~oo 11y 
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Both limits were given in the theorem to cover the case where the curve is 
vertical and tan eo is undefined. 

The theorem tells us that if r = 0 at e0 , the curve must approach the origin 
from the e0 direction. Figure 7.8.1 shows two cases. 

(a) 

(a) If r has a local maximum or minimum at e0 , then r has the same sign 
on both sides of e0 . In this case the curve has a cusp at 80 . 

(b) If r has no local maximum or minimum at e0 , then r is positive on one 
side of e0 and negative on the other side. In this case the curve crosses the 
origin at eo. 

Figure 7.8.1 

We now consider points other than the origin. In rectangular coordinates, 
the slope of a curve y = f(x) at a point Pis dyjdx = tan¢ where¢ is the angle between 
the x-axis and the line tangent to the curve at P as shown in Figure 7.8.2. 

y 

dy 
dx =tan</> 

X 

Figure 7.8.2 

When r # 0 in polar coordinates, a useful measure of the direction of the 
curve at a point Pis tan l/J, where l/1 is the angle between the radius 0 P and the tangent 
line at P (see Figure 7.8.3). 

0 

Figure 7.8.3 
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The following theorem gives a simple formula for tan 1/1 when r f= 0. 

THEOREM 2 

Suppose r = .f(8) is a curve in polar coordinates and dr/dD exists at a point P 
where r f= 0. Let L be the line tangent to the curve at P and let if be the angle 
between OP and L. Then 

If drjd8 f= 0, 

1 dr 
cot 1/J = ~ dG' 

I' 
tan!/J = -­

drjd8 

DISCUSSION When r = 0, P is the origin so the line 0 P and angle 1/1 are undefined. 

Figure 7.8.4 

The formula can be seen intuitively in Figure 7.8.4. 
!!.8 is infinitesimal. As we move from the point P(r, 8) to the point 

Q(r + M, 8 + !!.8) on the curve, the change in the direction perpendicular to 0 P will 
be very close to r !!.0, so we have 

M 
r!!.8 ~ cotljJ, 

1 dr 
~ d8 = cotljJ. 

We shall postpone the proof to the end of this section. 
We can use Theorem 2 in curve sketching as follows. 

(a) In an interval where tan 1/J > 0, the curve is going away from the origin 
as e increases because dr/d8 has the same sign as/'. 

(b) Where tan 1/J < 0, the curve is going toward the origin as 8 increases 
because dr/d8 has the opposite sign as r. 

(c) Where r has either a local maximum or minimum and drjd8 exists, the 
curve is going in a direction perpendicular to the radius. This is because 
dr/d8 = 0 so cot!/J = 0. 

Each of these cases is shown in Figure 7.8.5. 
Polar coordinates are best suited for trigonometric functions, which have 

the property that f(G) = .f(G + 2n). We shall therefore concentrate on the interval 
0 s; 8 < 2n. 

Suppose that the function r = f(8) is differentiable for 0 s; 8 s; 2n. The 
following steps may be used in sketching the curve. 
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(a) 

Figure 7.8.5 

Step 1 Compute drjde. 

(b) 

Step 2 Find all points where r = 0 or drjde = 0. 

(c) 

Step 3 Sketch y = f(x) in rectangular coordinates. (A method for doing this is 
given in Section 3.9.) 

Step 4 Computer, drjde, and tan i/J = r(drjdB) at the points where r = 0 or dr/de = 0 
and at least one point between. Make a table, and test for local maxima or 
minima. 

Step 5 Draw a smooth curve using the rectangular graph of step three and the table 
of step four. 

EXAMPLE 1 Sketch the curve r = 1 + cos e. 
Step 1 drjde = -sine. 

Step 2 r = 0 when e = n. drjde = 0 when 8 = 0, n. 

Step 3 See Figure 7.8.6. 

y 

Figure 7.8.6 

Step 4 e r = 1 +case drjde tanljf 

0 2 0 
n/2 1 -1 -1 
n 0 0 
3nj2 1 1 

X 

Comments 

max 
lrl decreasing 
mm, cusp at 0 
lrl increasing 
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Figure 7.8.7 

Step 5 We draw the curve in Figure 7.8.7. The curve is called a cardioid because of its 
heart shape. 

EXAMPLE 2 Sketch the curve r = sin 28. 

Step 1 drjd8 = 2 cos28. 

n 3n n 3n Sn 7n 
Step2 r=OatfJ=0, 2,n, 2 . drjd0=0at0=4'4'4'4' 

Step 3 See Figure 7.8.8. 

y 

Figure 7.8.8 

X 

y =sin 2x 

Step 4 We take values at intervals of~ beginning at f) = 0. We can save some time 

by observing that the values from n to 2n are the same as those from 0 to n. 

e r = sin20 dr;d8 tan if; Comments 

0 and n 0 2 0 crosses origin 
n/8 and 9nj8 J2;2 J2 I/2 lrl increasing 

2n/8 and lOn/8 l 0 max 
3n/8 and 1 I n/8 ~2/2 -J2 - I/2 lrl decreasing 
4n/8 and 12n/8 0 -2 0 crosses origin 
5rr/8 and 13n/8 -J2!2 -~i I/2 lrl increasing 
6n/8 and 14n/8 -I 0 mm 
7n/8 and I 5n/8 -fi/2 J2 - I/2 lrl decreasing 

Step 5 We plot the points and trace out the curve as 8 increases from 0 to 2n. 
Figure 7.8.9 shows the curve at various stages of development. The graph 
looks like a four-leaf clover. 

If r approaches oc as 8 approaches 0 or n, the curve may have a horizontal 
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0 < 0 < 5rr 
- - 4 

Figure 7.8.9 

0 
0 < O < 2rr 

- - 4 

0 < 0 < 7rr 
- - 4 0 s. 0 s. 271" 

asymptote which can be found by computing the limit of y. At 8 = n/2 or 3nf2 there 
may be vertical asymptotes. The method is illustrated in the following example. 

EXAMPLE 3 Sketch r = tan(!8). 

Step 1 drjd8 = ! sec2 ae). 
y = r sin8 = sin!8 sin8jcod8 

· = sin!8(2 sin!8 cos!8)/cos!8 = 2 sin2 (!8). 

Step 2 r = 0 at 8 = 0. 
r is undefined at e = n. 
drfd8 is never 0. 

Step 3 See Figure 7.8.10. 

y 

Figure 7.8.10 

Step 4 e r or limr 

0 0 
n/2 1 
e--> n- w 
e--> n+ -00 

3n/2 -1 

I 
I 

X 

limy drfd8 I tanlji Comments 

1/2 crosses origin 
1 1 \r\ increasing 

2 asymptote y = 2 
2 asymptote y = 2 

1 -1 \r\ decreasing 
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Step 5 The curve crosses itself at the point x = 0, y = 1, because this point has both 
polar coordinates 

(r = 1, e = n/2), (r = -1, e = 3n/2). 

Figure 7.8.11 shows the graph for various stages of development. 

) 

----------------------------------------------------

~-'-

0 < e < J.­
- - 2 

-------------------------------------------------------

Figure 7.8.11 

PROOF OF THEOREM 2 Assume the curve is not vertical at the point P, that is, 
dx =1= 0. Since 

x = r cosO, _\' = r sinO, 

we have 
dy dyjd8 r cos 8 + (drjdO) sin 0 

dx dxjdO -r sin 0 + (dr/d8) cos 0 · 



/.l:l SLOPt:::> AND CURVE SKETCHING IN POLAR COORDINATES 419 

Figure 7.8.12 

By the definition of the tangent line L (see Figure 7.8.12), 

dy change in y along L sin(8 + 1/J) 

dx change in x along L cos(@+ 1/Jf 
Using the addition formulas, 

Thus 

dy sine cosi/J + cose sinljl 
dx cos e cos 1/1 - sin e sin 1/1 . 

r cose + (drjd8) sine 

- r sine + (drjd8) cos e 
sini/J cose + cosljl sine 

-sin I/! sine+ cosljl cose· 

Multiplying out and canceling, we get 

whence 

r cos I/J(sin 2 e + cos 2 8) = :~sin I/J(sin2 e + cos2 8), 

dr 
rcosljl = desinljl, 

1 dr 
-;:de= cotljl. 

If the curve is vertical at P we may use the same proof but with dxjdy instead 
of dyjdx. 

PROBLEMS FOR SECTION 7.8 

In Problems 1-6, find tan 1/J, where 1/J is the angle between a line through the origin and the curve. 

1 r = (} 2 r = sin (} 

3 r = cos(} 4 r = sec(} 

5 r = 1 + cos(} 6 r = sin (20) 

In Problems 7-25, sketch the given curve in polar coordinates by the method described in the 
text; 0 ::;; (} ::;; 2n unless stated otherwise. 

7 r =sin(}+ cos(} 8 r = 2 + 2 sine 

9 r = 11 +sine 10 r = 2 +cosO 

11 r = 1 + cose 12 r = cos(!(}), 0::;; (}::;; 4n 

13 r = sin(!O), 0::;; 0::;; 6n 14 r = sin 2 e 



. - - .. -

15 r = I + 3 cos2 (20) 16 r = sin 2 (3B) 

17 r =tanG 18 r =sec (!OJ, 0 < e < 4n 

r = I + secO 20 
1 

19 1"=---
1 -cosO 

21 r= 
I 

1 +sinO 
22 r = cot(20) 

23 r = n/0, 0<0<XJ 24 r = 1 + n/0, o < e < x 

25 r = ,/n!FJ, o < e < x 

In Problems 26-29, find the points where x andy have maxima and minima. 

26 r=1+cos0 27 r=1+sin 2 0 

28 r = sin (20) 29 r = ~ + cos 0 

30 Find all points where the curves r = I + cos B and r = 3 cos 8 intersect. 

31 Find all points where the curves r = ! and r = sin (20) intersect. Waming: The points 
(r, 8) and (- r, n + B) are the same. 

32 Find all points where the curves r = cos8 and r = sin(28) intersect. 

7.9 AREA IN POLAR COORDINATES 

In this section we derive a formula for the area of a region in polar coordinates. 
Section 6.3 on the length of a curve in rectangular coordinates should be studied 
before this and the following section. 

Our starting point for areas in rectangular coordinates was the formula for 
the area of a rectangle. In polar coordinates our starting point is the formula for the 
area of a sector of a circle. 

THEOREM 1 

A sector of a circle with radius r and central angle 8 has area 

A = 1r2 0. 

An arc of a circle IVith radius r and central angle 8 has length 

s = rO. 

PROOF Consider a sector PDQ shown in Figure 7.9.1. To simplify notation let D 
be the origin, and put the sector PDQ in the first quadrant with P on the 

y 

Q 

<10> 

c: 
·;;; 
... 

8 p 

0 r cos 8 r X 

Figure 7.9.1 
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x-axis. Then 

P=(r,O), Q = (r cos e, r sine). 

The arc QP has the equation 

y = Jrz- xz, 

We see from the figure that 

I" cose ~X ~ 1". 

A = tr2 sine cose + I' Jr 2 
- x2 dx. 

r cosO -

Integrating by the trigonometric substitution x = r sin¢, we get 

fr Jr 2 
- X

2 dx = tr2e - tr2 sine cos e. 
r cosO 

Therefore A = !r2e. By definition, A = !rs, so 

2A 
s =- = re. 

r 

The next theorem gives the formula for area in polar coordinates. 

THEOREM 2 

Let r = J(e) be continuous and r ;;::: 0 for a ~ e ~ b, where b ~ a + ln. 
Then the region R bounded by the curve r = f(e) and the lines e = a and 
e = b has area 

A= tf f(ef de. 

Discussion Imagine a point P moving along the curve r = j(e) from e = a toe = b. 
The line OP will sweep out the region R in Figure 7.9.2. Since b ~ a + 2n, 
the line will complete at most one revolution, so no point of R will be counted 
more than once. 

Figure 7.9.2 Figure 7.9.3 

The formula for area can be seen intuitively by considering an infinitely 
small wedge ~A of R between e and e + ~e. (Figure 7.9.3). The wedge is almost a sector 
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of a circle of radius f(O) with central angle 110, so 

11A ;:::; !f (0) 2 110 

By the Infinite Sum Theorem, 

(compared to Ml). 

The actual proof follows this intuitive idea but the area of 11A must be 
computed more carefully. 

PROOF Let 110 be positive infinitesimal and let 0 be a hyperreal number between 
a and b - 110. Consider the wedge of R with area 11A between 0 and 0 + 110. 
Since f(tJ) is continuous, it has a minimum value m and maximum value M 
between 0 and 0 + 110, and furthermore, 

m ::::o j(O), 1\il ;:::; j(O). 

The sector between 0 and 110 of radius m is inscribed in 11A while the sector 
of radius J'vl is circumscribed about 11A. 

Figure 7.9.4 

Since 

(Figure 7.9.4 shows the inscribed and circumscribed sectors for real 110 and 
infinitesimal 110.) By Theorem 1, the two sectors have areas ±m2 110 and 
±M2 110. Moreover, 11A is between those two areas, 

Taking standard parts~ 

Therefore 

±m 2 M :c; 11A :c; !1VI 2 110, 

tm 2 :c; 11A!I10 :c; tM 2
. 

t/(0) 2 :c; st(I1A/110) :c; t.f(0) 2
. 

11Ajl10 ::::: !J(Of, 

and by the Infinite Sum Theorem, 

A = tfb nw de. 
{/ 

Theorem 1 is also true in the case that r = j(O) is continuous and r :c; 0. 

A = t f .f(0)2 dO = t f ( -f(G))2 dO, 
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the region R bounded by the curve r = j(e) has the same area as the regionS bounded 
by the curve r = - j(e). Both areas are positive. As we can see from Figure 7.9.5, 
S looks exactly like R but is on the opposite side of the origin. 

r = -f(O) 

Figure 7.9.5 Figure 7.9.6 

EXAMPLE 1 Find the area of one loop of the "four-leaf clover" r = sin 2e. From 
Figure 7.9.6, we see that one loop is traced out when e goes from 0 to n/2. 
Therefore the area is 

Jrr/2 f" 
A = ~ 

0 

sin 2 (2e) de = ~ 
0 

~ sin2 ¢ d¢ 

= tf sin2 ¢d¢ = i(-~sin¢cos¢ + ~4>)J = -fJn. 
0 

As one would expect, all four loops have the same area. 

On the loop from e = n/2 to e = n, the value of r = sin 2e is negative. How­
ever, the area is again 

A = ~J" sin2 (2e) de = in. 
rr/2 

Our next example shows why the hypothesis that r has the same sign for 
a :s; e :s; b is needed in Theorem T.-

EXAMPLE 2 Find the area of the region inside the circler =sine (Figure 7.9.7). 

The point (r, e) goes around the circle once when 0 :s; e :s; n with r positive, 
and again when n :s; e :s; 2n with r negative. The theorem says that we will 
get the correct area if we take either 0 and n, or n and 2n, as the limits of 

Figure 7.9.7 
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integration. Thus 

A = r tsin 2 0 dO = i(- tsin 0 cos 0 + tol]n = ±(rr - 0) = rr/4. 
0 0 

Alternatively, 

2n J2n 
A= J !sin 2 0d0 = !(-!sinOcosO + ±al = ±(2rr- rr) = rr/4. 

n rr 

Since the curve is a circle of radius t, our answer rr/4 agrees with the usual 
formula A = rrr 2

. 

Integrating from 0 to 2rr would count the area twice and give the wrong 
answer. 

EXAMPLE 3 Find the area of the regiOn inside both the circles r = sin 0 and 
r = cosO. 

The first thing to do is draw the graphs of both curves. The graphs are shown 
in Figure 7.9.8. 

r =cos 8 
Figure 7.9.8 

We see that the two circles intersect at the origin and at 0 = n/4. The region 
is divided into two parts, one bounded by r = sin 0 for 0 ::::; 0 ::::; n/4 and the 
other bounded by r = cos 0 for n/4 ::::; 0 ::::; n/2. Thus 

A= -sin 2 0d0 + -cos 2 0d0 1"41 J~21 

0 2 nA 2 

= - - -sin 0 cos 0 + - 0 + - -sin 0 cos 0 + - 0 1( 1 1 )]rr'4 1(1 1 )]"'2 
2 2 2 0 2 2 2 rri4 

= ~[ ( - ~ - 0) + ( ~ - 0) + ( 0 - ~) + ( ~ - ~)] = ~ - ~. 

PROBLEMS FOR SECTION 7.9 

In Problems 1-13, find the area of the regions bounded by the following curves in polar co­
ordinates. 

1 r = 2a cosfJ 2 r=1 +cosO 

3 r =,!sinO 4 r = 2 + cosH 

5 The loop in r = tan(1BI 6 One loop of r = cosnAI 



7 

9 

11 

13 

14 

15 

16 

17 

18 

19 

20 

21 

7.10 LENGTH OF A CURVE IN POLAR COORDINATES 

One loop of r = sin2 e 
The small loop of r = t + cos e 
e = 0, e = JT./3, r = cos() 

r = tan 0. r = --h esc 0 . /2 

8 

10 

12 

The large loop of r = t + cos 0 

One loop of r2 = cos (28) 

() = n/6, e = n/3, r = sec 0 

Find the area of the region inside the curve r = 2 cos() and outside the curve r = 1. 

Find the area of the region inside the curve r = 2 sin() and above the line r = ~esc e. 
Find the area of the region inside the spiral r = e, 0 :<:: e :<:: 2n. 

Find the area of the region inside the spiral r = .jiJ, 0 :<:: e :<:: 2n. 

Find the area of the region inside both of the curves r = .j3 cos e, r = sin e. 
Find the area of the region inside both of the curves r = 1 - cos e, r = cos 0. 

The center of a circle of radius one is on the circumference of a circle of radius two. 
Find the area of the region inside both circles. 

Find a formula for the area of the region between the curves r = .f(l)) and r = g(O), 
a :<:: () :<:: b, when 0 :<:: .f(B) :<:: g(B). 

10 LENGTH OF A CURVE IN POLAR COORDINATES 

Consider a curve 

r = f(8), 

in polar coordinates. The curve is called smooth if f'(8) is continuous for 8 between 
a and b. In Chapter 6 we obtained a formula for the length of a smooth parametric 
curve in rectangular coordinates. We may now apply this to get a formula for the 
length of a smooth curve in polar coordinates. 

THEOREM 

The length of a smooth curve 

r = f(8), 

in polar coordinates which does not retrace itself is 

s = f ../!(8)2 +f'(8)2 d8, 

or equivalently s = f Jr 2 + (dr/d8) 2 d8. 

Discussion The formula can be seen intuitively as follows. We see from Figure 
7.10.1 that 

D..s ~ j(r D..8f + M 2 = Jr 2 + (M/6.8) 2 L'10 

~ Jr 2 + (dr/d8) 2 6.8 (compared to M). 

By the Infinite Sum Theorem, 

s = f Jr 2 + (dr/d8) 2 d8. 

425 
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Figure 7.10.1 

The length of a curve has already been defined using rectangular coordinates, 
and the theorem states that the new formula will give the same number for the length. 

PROOF The curve is given in rectangular coordinates by the parametric equation 

X = f(O) cos D, y = f(O) sin D. 

The derivatives are 

dx 

dO 
- f(O) sin 0 + f'(D) cos 0, 

dy 
dB = f(O) cos 0 + f'(D) sin D. 

Since f(O) and f'(O) are continuous, dxjdO and dy/dO are continuous. Recall 
the length formula for parametric equations: 

We compute 

u~r + (~~r = nWsin 2 o- 2f(O)f'(O)sinOcoso + f'(O)cos 2 o 
+ f(0) 2 cos 2 e + 2f(O)f'(O) sin 0 cos() + f'(()) 2 sin 2 0 

= f(Of(sin 2 0 + cos 2 0) + f'(()f(cos 2 0 + sin 2
()) 

= f(0)2 + f'(())2. 

The desired formula now follows by substitution. 

EXAMPLE 1 Find the length of the spiral r = 02 from () = n to () = 4n, shown in 
Figure 7.1 0.2. 

f
4rr 

s = rr Jr 2 + (dr/d()) 2 dO 

J
4rr J4rr 

= rr J 04 + 4()2 dO = rr v 02 + 4 0 dO. 
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Figure 7.10.2 

Let u = 02 + 4, du = 20 dO. Then 

EXAMPLE 2 Find the length of the curve r = sinO from 0 = rJ. to 0 = {3, shown in 
Figure 7.10.3. drjdO =cosO, so 

s = f Jsin2 0 + cos2 0 dO= f dO= f3- a. 

{3-a 

Figure 7.10.3 0 

The graph of r = sin 0 is a circle of radius ! which passes through 0. 
Example 2 proves that the length of an arc of the circle is equal to the angle formed 
by the ends of the arc and the origin. Note that if we take a = 0 and f3 = 211 we get 
an arc length of 211, which is twice the circumference of the circle. This is because the 
point (r, 0) goes around the circle twice, once from 0 = 0 to 0 = 11 and once from 
0 = 11 to 0 = 211. 

PROBLEMS FOR SECTION 7.10 

In Problems 1-10, find the length in polar coordinates. 

I r = 7, 0 ::;; 0 ::;; 2n 2 

3 r = secO, -n:/4::;; e ::;; n:/4 4 

5 r = 0'\ Os;Os;1 6 

7 r = 1 -cosO, o::;;e::;;n 8 

9 r = sin2 ("i8), 0::;; 0::;; 2n 10 

,. = cos e, n/4 ::;; e ::;; n/3 

r = 602
' 0 ::;; 0 ::;; .j5 

r=asinO+bcose, Os;Bs;n 

r = 2 + 2 cosO, 0 ::;; 0 ::;; 2n 

,. = sin 3 (10), 0 s; 0 ::;; 3n 

In Problems 11-14, set up an integral for the length of the curve. 

11 r=sin(28), Os;8::;;2n 12 r=tanO, Os;Os;nj4 
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13 r = 0, 0 -<; 8 -<; b 14 }' = 0", 0 -<; 8 -<; b 

0 15 Show that the surface area generated by rotating the curve r = f(I.J), a -<; 0 -<; b, about 
the y-axis is 

A = f 2nr cos 8Jr2 + (drfdW dO (about y-axis). 

(Assume 0 -<; a < b -<; n/2.) Show that the corresponding formula for a rotation about 
the x-axis is 

.(about x-axis). 

In Problems 16-21, find the surface area generated by rotating the curve about the given axis. 

16 r = sin 8, 0 -<; 8 -<; nj3, about _r-axis 

17 r =a sini.J + b cosiJ, 0::;; 0::;; n/2, about y-axis 

18 r = 1 + cos 8, 0 ::;; 0 ::;; n/2, about x-axis 

19 r = Jcos (28), 0 -<; 0 -<; n/4, about y-axis 

20 r = ~20), 0 -<; 0 -<; n/4, about x-axis 

21 r = cos2 (-!.fJ), 0 -<; 0 ::;; n;2, about x-axis 

EXTRA PROBLEMS FOR CHAPTER 7 

Find dyjdx where y = x + sinx. 2 Find dyjdx where y = sin(l(x). 

3 Find dyjd8 where y = .je cos 8. 4 Find dy(di.J where y = sin(tan8). 

. sin(41.J) 
6 

. cos(6u)- 1 
Evaluate lim -.--

8 
. Evaluate lim 2 . 

o- o sm (3 ) u-+0 ll 
5 

7 Evaluate J cos(cosi.J)sini.Jdi.J. 8 Evaluate J 3.jSTOX cosx dx 

9 r2 Evaluate _ "-'
2 

4 cos 0 dO. 10 r2 Evaluate 
0 

tan x sec x dx. 

11 An airplane travels in a straight line at 600 mph at an altitude of 4 miles. Find the rate 
of change of the angle of elevation one minute after the airplane passes directly over an 
observer on the ground. 

12 A 40 ft ladder is to be propped up against a 15 ft wall as shown in the figure. What 
angle should the ladder make with the ground if the horizontal distance the ladder 
extends beyond the wall is to be a maximum7 

13 

15 

l7 

-

Find dyjdx where J' = arccos .J x. 14 

Find dujdt where u =arctan t - t. 16 

. arctanx 
Evaluate lim---. 18 

x--->0 X 

e 

40 

15 

Find dyjdx where y = arcsec J:~. 

Find dujdt where u = arcsin (ljt). 

f dt 
Evaluate , b2 2 . 

(r + t 



19 

20 

21 

22 

23 

24 

25 

26 

27 

29 

EXTRA PROBLEMS FOR CHAPTER 7 

f dx 
Evaluate , 

• (x - l)j x 2 
- 2x 

X> 2. 

J 
sec2 x 

Evaluate / dx. 
" 1 - tan 2 

x 

Evaluate J k dx in two ways, by change of variables and by parts. 
x 2 + 1 

Evaluate J x sin(3x) dx. 

Evaluate { cosj(J de. 

Find the volume of the solid formed by rotating the region under the curve y = xJSIDX, 
0 ~ x ~ n, about the x-axis. 

Find the volume of the solid generated by rotating the region under the curve y = tanx, 
0 ~ x ~ n/4, about the x-axis. 

Evaluate J cot4 e de. 

Evaluate J tan5 e sec5 e de. 

J
J2- x 2 

Evaluate 2 dx. 
X 

28 

30 

Evaluate J (2x 2 
- 1)- 3

1
2 dx. 

Evaluate J (1 +
1 
x2)2 dx. 

In Problems 31-34, sketch the given function in (a) rectangular coordinates, (b) polar coordinates. 

31 

33 

Let 0 ~ e ~ln. 
r = 1 - cose 

1 
r = e----c--ce 

2 +sine 

32 r = cos(3e) 

34 r2 = cos(2e) 

35 Find the area of the polar region bounded by r = 1 + sin 2 e. 
36 Find the area of the polar region bounded by r = sine + cos e. 
37 Find the area of the polar region inside both the curves r = 1 - cos e and r = 1 + cos 8. 

38 Find the length in polar coordinates of the curve 

r = sin4 (te), 0 ~ e ~ n. 

39 Find the surface area generated by rotating the polar curve 

r = 1 - cose, 0 ~ e ~ n/2, 

about the x-axis. 

J 40 Use the Intermediate Value Theorem to prove that arctany has domain (- w, w). 

J 41 Use the Intermediate Value Theorem to prove that the domain of arcsec y is the set of 
all y such that y ~ - 1 or y 2 1. 

J 42 Prove that iff is a differentiable function of x then 

J f(x) dx = xf(x) - f xf'(x) dx. 

J 43 If u and v are differentiable functions of x then 

f u2 dv = u2v - 2 f uv du. 

J 44 Show that iff' and g are differentiable for all x then 

J g(x)g'(x).f"(g(x)) dx = f'(g(x))g(x) - f(g(x)) +C. 

429 
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D 46 

D 47 

048 

D 49 

D 50 

D 51 
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Use integration by parts to prove the reduction formula 

J (1 + (~~)'"+ 1 = 2~11 (1 ;'x2 )"' + ( l - 2~n) f (1 ::2 )'"' 

Hint: 
1 1 x 2 

(1 + xzyn+ 1 (1 + x2)"' (1 + x2)'11+ 1 · 

Suppose y = .f(x), a < x < b and x = g(y), c < y < d are inverse functions and are 
strictly increasing. Let y0 = f(x 0 ). Prove that: 

(a) If .f is continuous at x0 , g is continuous at y0 . 

(b) If['(x0 ) exists and .f'(x0 ) =I 0, then g'(y0 ) exists. 

Justify the following formula for the area of the polar region bounded by the continuous 
curves 

(} = .f(r), 

where 0 :<:; f(r) :<:; g(r) :<:; 2n. 

0 = g(r), a :<:; r :<:; b, 

A = f r(g(r) - .f(r)) dr. 

Justify the following formula for the mass of an object in the polar region 0 :<:; r :<:; ,[((}), 

a :<:; 0 :<:; b, with density p(O) per unit area. 

m = f 1p(8)(.f(B))2 dB. 

Justify the following formulas for the centroid of the polar region 0 :<:; r :<:; f(B), 
a :<:; B :<:; b. 

_ f 1 cos O(.f(B)) 3 dB 

X= b ' L !{f(B))2 dO 

_ f 1 sin B(.f(8))3 dB 

\' = b . L !{f(0)) 2 dO 

Hint: The centroid of a triangle is located on a median j of the way from a vertex to the 
opposite side. 

Find the centroid of the sector 0 :<:; r :<:; c, a :<:; 8 :<:; b. 

Find the centroid of the region bounded by the cardioid r = 1 + cos 8. 



EXPONENTIAL 
AND LOGARITHMIC 
FUNCTIONS 

1 EXPONENTIAL FUNCTIONS 

Any positive real number a can be raised to a rational exponent, 

a> 0. 

B 

But what does ab mean if b is an irrational number? For example, what are 2" and 2./3? 
We shall approach the problem of defining abby considering ax as a function 

of x. Given a positive real number a, the function ax is defined for all rational numbers 
x. Its graph may be·thought of as a "dotted" line as in Figure 8.1.1. 

Figure 8.1.1 

... ..... ..... ______ ,.,. .... 

, I , 

I 
I 

I 
I 

I 
I 

I 

~/ ax, x rational 

X 

Our idea is to define ax for all X by "connecting the dots." This will make ax 
into a continuous function which agrees with the original dotted curve when x is 
rational. A number such as 2" will thus be approximated by raising 2 to a rational 
exponent close ton. 23 · 14 will be close to 2" and 23

·
14159 will be even closer. 

To get the exact value of 2" we use hyperrational numbers; if r is a hyper­
rational number infinitely close ton, then 2' will be infinitely close to 2". The function 
y = ax will be called the exponential function with base a. 

Hyperintegers were introduced in Section 3.8. To get an exact value of 
2", we use hyperintegers. A quotient KfH of two hyperintegers is called a hyper­
rational number. Our idea is to take a hyperrational number K/H that is infinitely 
close to n and define 2" to be the standard part of 2KiH. 

In general, given a real number r, we can find a hyperrational number 
431 
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K/H infinitely close tor as follows. Choose a positive infinite hyperinteger H. Let K 
be the greatest hyperinteger ::;:; Hr, K = [Hr]. Then 

K::;:; Hr < K + 1. 

Dividing by H, 

K K 1 
-<r<-+-
H- H H' 

K 
-:::::::: r. 
H 

Given a positive real number a, we then define a' to be the standard part of aKiH. 
It can be proved that the value for a' obtained in this way does not depend on our 
choice of H. Thus the exponent a-' is defined for all real x. We summarize our 
procedure as a lemma and a definition. 

LEMMA 1 

Let a and r be rea/numbers, a > 0. 

(i) There is a hyperrationalnumber K/H infinitely close to r. 
(ii) The hyperrational exponent cl 1H is defined and finite. 

(iii) For any other hyperrational number L/ M ~ r, st(aK1H) = st(aL·M). 

DEFINITION 

Let a and r be real, a > 0. We define a' = st(aK!H), where KjH ~ r. 

The function y = a"', also written y = expa x, is called the exponential 
function with base a. If a < 0, we leave a-' undefined except when x = m/n, n odd. 

The following rules for exponents should be familiar to the student when 
the exponents are rational, except for inequality (vii). They can be proved for real 
exponents by forming hyperrational exponents and taking standard parts. 

RULES FOR EXPONENTS 

Let a, b be positive rea/numbers. 

(i) 
(ii) 

(iii) 
(iv) 

1-' = 1, 
ax+y = axay, 
a-'Y = (a·'Y. 
a-'b·'· = (ab )-', (a-'jbx) = (a/bY. 

INEQUALITIES FOR EXPONENTS 

Let a, b be positive rea/numbers. 

(v) If a < band x > 0, then ax < bx. 
(vi) If 1 < a and x < y, then cr' < aY. 

(vii) Ifx :;:: 1, then (a+ 1)":;:: ax+ 1. 

PROOF (vii) Since this inequality is probably new to the student, we give a proof 
for the case where xis a rational number x = q. 
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Replace a by the variable t. Let 

y = (t + 1)q - tq - 1. 

We must show that y 2 0. When t = 0, y = 0. Fort 2 0 and q 2 1, we have 

dy 
dt = q(t + 1)q-l - q 2 q • 1° - q = 0. 

Thus dyjdt 2 0, soy is increasing andy 2 0. 

THEOREM 1 

The exponential function y = ax is increasing if a > 1, constant if a = 1, and 
decreasing if a < 1. 

PROOF Inequality (vi) shows that ax is increasing if a > 1. If a < 1 and q < r then 

1/a > 1, (lja)q < (1/aY, 

so ax is decreasing. If a = 1 then ax= 1 is constant. Figure 8.1.2 shows 
graphs of y = ax for different values of a. 

X 

Figure 8.1.2 

THEOREM 2 

For each a > 0, the exponential function y = ax is continuous. 

Consider the case a > 1. Suppose x 1 and x2 are finite and x 1 ~ x 2 . Say 
x 1 < x 2 • Choose hyperrational numbers r 1 and r 2 infinitely close to x 1 and 
x 2 such that 

The inequalities for exponents hold for hyperreal x by the Transfer Principle, 

so 

But rl ~ r2, so art ~ ar 2 • Therefore aXt ~ ax2
, andy= ax is continuous. 

The case a ~ 1 is similar. 

An example of an exponential function is given by the growth of a population 
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f(t) with a constant birth and death rate. It grows in such a way that the rate of 
change of the population is proportional to the population. Given an integer 11, the 
population increase from time t to time t + 1/n is a constant times f(t). 

Then 

f(t + 1/n) - f(t) = cf(t). 

f(t + 1/n) = kf(t) 

where k = c + 1. 
Let us set f(O) = 1; that is, we choose f(O) for our unit of population. Then 

f(O) = 1, /(1/n) = k, f(2jn) = k2
, ... , f(m/n) = km. 

So if we put f(1) = a = k", we have 

f(m/n) = amln. 

We conclude that for any rational number m/n, the population at timet = mjn is a'"1". 

In reality, of course, the population is not a continuous function of time because its 
value is always a whole number. However, it is convenient to approximate the 
population by the exponential function ax, and to make ax continuous by defining it 
for all real x. 

If the birth rate of a population is greater than the death rate, the growth 
curve will be ax where a > 1 and the population will increase. Similarly, if the birth 
and death rates are equal, a = 1 and the population is constant. When the death 
rate exceeds the birth rate, a < 1 and the population decreases. 

Warning: A population grows exponentially only when the birth rate 
minus the death rate is constant. This rarely happens for long periods of time, because 
a large change in the population will itself cause the birth or death rate to change. 
For example, if the population of the earth quadrupled every century it would reach 
the impossible figure of one quadrillion, or 1015

, people in about 900 years. In the 
20th century the birth rate of the United States has fluctuated wildly while the 
death rate has decreased. Later in this chapter we shall discuss more realistic growth 
functions which grow nearly exponentially at first but then level off at a limiting 
value. 

The inequalities for exponents can be used to get approximate values for ab 

and to evaluate limits. 

EXAMPLE i Approximate ~n. We have 

~ ~ 1.4142, n ~ 3.14. 

Thus 1.414 < ~ < 1.415, 3.1 < n < 3.2. 

By the inequalities for exponents, 

(1.414) 3 ·
1 < ~n < (1.415) 3 ·

2
, 

or 2.91 < ~n < 3.06. 

Thus ~n is within ro of 3.0. 

EXAMPLE 2 If a> 1, evaluate the limit lim (r'. 

Let H be positive infinite and a= b + 1. Then b > 0 and by inequality(vii), 

aH = (b + 1)H :2:: bH + 1. 
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So aH is positive infinite. Therefore 

lim ax = X. 
x-+oo 

4x+ 1 + 5 
EXAMPLE 3 Evaluate the limit lim 

4
x-l _ 

3
. 

x~x 

Let H be positive infinite. Then 

4H+l+5 4H+l,4-H+5·4-H 4+5·4-H 

4H-1_3 4H-1,4-H-3·4-H t-3·4-H 

By Example 2, 4H is infinite, so (t)H is infinitesimal. Thus 

(
4H+l+5) _ (4+5·4-H) _4+5·0_ 

st 4H- 1 3 - st 1. 3 4-H - 1. 3 0 - 16, 
- 4- • 4- • 

PROBLEMS FOR SECTION 8.1 

In Problems 1-7, verify the inequalities. 

1 1 oJ!o < wfi < wjlo 2 

3 10Jlo < jlon < 10jl000 4 

5 1.y2" ~ 1.05 (use inequality (vii)) 6 

7 J2fi ~ 3 - .fi 

In Problems 8-23 evaluate the limit. 

8 

10 

12 

14 

16 

18 

20 

22 

lim ax if 0 < a < 1 

lim a11' ifO <a 

lim 3'- 2' 

3x- 2" + 1 
lim 4 3x 2 1 x-+co • - x -

3x+S_22x+! 
lim3x+l 22x+4 

x--+a:J -

4l+x _ 41-x 
lim 21 +x zl-x x-o -

9 

11 

13 

15 

17 

19 

21 

23 

4x+ 1 + 5 
lim 

4
x-l 

3 
16. 

x-+oo -

214 < 2.j3 < 2..y8 

3 ..J9 < nfi < 3.2 fo 
(n - 2t ~ n2 

- 3n + 1 

lim a" if a> 1 
x-- oo 

lim _ba: if 0 < b < a 
x~oo 

lim wzr-r2 

3x+1 _ 2x+4 
lim 3x 2 2x 1 6 
x~ro + + 

3 - J3x 
lim 9 3" 
x--+2 -

n"- n 
lim 2x 2 
x-l n - n 

J 24 Prove that the function y = xx, x ~ 1, is increasing. 

J 25 Prove that if a> 0 and limf(x) = L, then lim af<x> = aL. 
x-+c x-+c 

J 26 Prove that for each real number r, the function y = x', x > 0, is continuous. 
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8.2 LOGARITHMIC FUNCTIONS 

The inverses of exponential functions are called logarithmic functions. Inverse 
functions were studied in Sections 2.4 and 7.3. Given a positive real number a different 
from one, the exponential function with base a is either increasing or decreasing. 
Therefore it has an inverse function. 

DEFINITION 

Let a =1= 1 he a positire real number. The logarithmic function with base a. 

denoted b)' 

is defined as the imwse of the exponential function H"ith base a, y = a". That 
is, loga)' is defined as the exponent to which a must be raised to get y, 

loga )' = x if' and only if )' = ax. 

We see at once that 

whenever loga y is defined. 
The logarithm of y to the base 10, written logy = log 1 0 y, is called the 

common logarithm of y. Common logarithms are readily available in tables. 
Logarithmic functions underlie such aids to computation as the slide rule 

and tables of logarithms. Some of the most basic integrals, such as the integrals 
of 1jx and tan x, are functions that involve logarithms. 

THEOREM 1 

y.::::; 0. 

If 0 < a and a =/= 1, the function x = loga y is defined and continuous for 
y in the interval (0, x ). 

We skip the proof. log" y IS left undefined when either a .::::; 0, a = 1, or 

THEOREM 2 

The fimction x = loga y is increasing if a > 1 and decreasing if a < 1. 

PROOF 

Case 1 a > I. Let 0 < b < c. Then 

We cannot have log" b ~ loga c because the inequality (v) for exponents 
would then give b ~ c. We conclude that 

loga b < loga c. 

Case 2 a < 1 is similar. 

In Figure 8.2.1 we have graphs of y = cr' for a > 1 and for a < 1, and graphs 
of the inverse functions x = log" y. 
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The rules for exponents can be turned around to give rules for logarithms. 

RULES FOR LOGARITHMS 

Let a, x, and y be positive real numbers, a =I= 1. 

(i) loga 1 = 0, loga a = 1. 

(ii) loga (xy) = loga X + loga y. 

loga (~) = loga X - logaY· 

(iii) loga (x') = r loga X. 

These rules are useful because they reduce multiplication to addition and 
exponentiation to multiplication. 

Let us make a quick check to see that these rules are correct for logarithms 
to the base 10. Here is a short table of common logarithms. 

y 1 2 3 4 5 6 7 8 9 10 

log 10 y 0 0.30 0.48 0.60 0.70 0.78 0.85 0.90 0.95 

To find common logarithms of larger or smaller numbers we can use the rule 

log10 10ny = 11 + log10 Jl. 

We try a few cases to see if the answers agree, to one decimal place. We write log x 
for log 10 x below. 

2 
x3 

6 

700 
x0.3 

210 

log 2 "' 0.30 
log 3 "' 0.48 

log 2 + log 3 "' 0.78 
log 6. "' 0.78 

log(7 x 102
) 

log(3 X 10- 1) 

log(7 x 102
) + log(3 x 10 

log 210 ~ log(2 x 102
) 

log 3 ~ 0.48 
4 log 3 "' 1.92 

2 + 0.85 
"' -1 + 0.48 

1) ~ 2.33 
2.30 
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We could do the same thing with any other base. Base 10 is convenient because a 
number in decimal notation immediately can be put in the form y = 10" z where 
1 s; z s; 10. 

The slide rule was a device for quickly looking up and adding logarithms. 
Slide rules were widely used before the advent of electronic calculators and give 
an interesting illustration of the rules of logarithms. If two ordinary rulers are slid 
together in slide rule fashion they can be used to compute the sum of two numbers, 
as shown in Figure 8.2.2. 

In a slide rule, instead of marking off the distances 0, 1, 2, ... , 10, we mark 
off the distances 

0 = log 1, log 2, log 3, ... , log 10. 

The marks will be unevenly spaced, being closer together toward the right. We can 
then use the slide rule to compute the sum of two logarithms, and therefore the 
product of two numbers, as shown in Figure 8.2.3. 

We know all the numbers are logarithms, so we can make a less cluttered 
slide rule by removing all the "log" symbols, as in Figure 8.2.4. 

I ~ 

Figure 8.2.2 

r 

OJ) 
0 

Figure 8.2.3 

4 

0 2 

3 4 6 

9 

log 3 log 2 

5 

3 
I 

4 

8 

8 

9 10 

4+5=9 

~ 

"" 0 

log 6 

., 
~ 

log 3 log 2 

0 
N M 'l:j'" wr-..oocn..-

"" ti.O tl.() 0.0 b.O b.O 0.0 bD b.l) 

~ .2 ~ o .2.2.2-=:!E 

I 
,.._como 

0.0 b.D b.O b.ll OD.....-t 
0__2~~.2~ 

log 3 +log 2 = log 6 
3X2=6 

r-----''------,~ 
r---------------------------------, 

3 

3 8 9 10 

log 6 

6 8 9 10 
I I 

log 3 +log 2 = log 6 
3X2=6 



8.2 LOGARITHMIC FUNCTIONS 439 

There is a simple relationship between logarithms with two different bases. 

RULES FOR CHANGING BASES OF LOGARITHMS 

Let a, b, andy be positive and a, b i= 1. Then 

whence 

(ioga b )(Iogb y) = logaWogb Y) = loga y, 

log. y 
logby =~I b. 

oga 

Setting a = y we get the equation Iogb a = 1/(loga b). If we hold the bases a 
and b fixed and let y vary, then the rule shows that loga y and Iogb y are proportional 
to each other, with the constant ratio 

loga Y- 1 b 
1 

- oga . 
ogb Y 

Therefore a slide rule based on logarithms to the base 2, for example, would look 
exactly like a slide rule based on logarithms to the base 10 (common logarithms). If 
the same unit of length is used, all the distances would be multiplied by the constant 
factor 

1 
log2 -10 = -

1 
-- ~ 3.32. 

oglo 2 

So the slide rule would be similar but more than 3 times as big. Table 8.2.1 shows 
various logarithms with different bases. 

Table 8.2.1 

X 

: 

2 

log2 x 0 
log4 x 0 I 

2 
log112 x 0 -1 
log/2 x 0 2 

Notice that for all x > 0, 

4 8 16 
I 

2 

2 3 4 -1 
1 H 2 I 

2 
-2 -3 -4 1 

4 6 8 -2 

1 
_ log2 x _ log2 x 

og4 x- ----­
log2 4 2 ' 

log2 x 
log112 x = --1 = -log2 x, 

log2 2 

log2 x 
logj2 X = M = 2log2 X. 

log2 v 2 

Also, for each base a, log" (ljx) = -log" x. 

I fi 4 {""" 

2-J2 

-2 I 3 
2 -2 

-1 I 3 
4 4 

2 I .J -2 2 
-4 I -3 
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EXAMPLE 1 Simplify the term log" (log"( a~~'')). 

Ioga (loga (a~~'')) = Ioga (ax Ioga a) = Ioga (cr') = x. 

EXAMPLE 2 Express Iogb ( x
3 fY) in terms of Iogb x, Iogb )', and Iogb z. 

Iogb ( x
3 f 1

) = 3 Iogbx + ~ Iogb y - Iogbz. 

EXAMPLE 3 Solve the equation below for x. 

3x2- 2x _ l_ 
- 3· 

We take log 3 of both sides of the equation. 

(x 2 - 2x)log 3 3 = log 3 (3- 1 ), 

x 2
- 2x = -1, 

x 2 
- 2x + 1 = 0, 

X=l. 

The inequalities for exponents can be used to compute limits of logarithms. 

EXAMPLE 4 Evaluate the limit Jim log" x, a>l. 

Let H be positive infinite. Then 0 = log" 1 < log" H, so log" His positive. If 
log" H is finite, say log" H < 11, then 

which is impossible because His infinite. Therefore log" His positive infinite, 
so 

PROBLEMS FOR SECTION 8.2 

Simplify the following terms. 
1 Qloga X 

3 log
11
(a-x') 

5 

lin1 log" x = :r:. 
X-JoX 

2 

4 

6 

Express the following in terms of logbx, logby, etc. 

7 

9 

logb(,J?) 

logbfo 

8 

10 

( xy) Iogb -T­
z II' 
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Evaluate the following. 

12 log3 (;7) 

13 log93 14 log119 27 

Solve the following equations for x. 

15 5" = 3 16 x 5 = 3 

17 23x+5 = 8 18 log3Jx = 2 

19 logx5 = 3 20 log 10 x + log10 (x + 3) = 1 

21 2"2
+ 6 = 32" 22 6"+ 1 = 7" 

23 log2 x = log3x + 1 24 (log4 x)2 + log4 (x- 3) + 2 = 0 

25 Evaluate lim log,x when 0 < a < 1. 
x~oo 

26 Evaluate lim logx2. 
x~oo 

27 Evaluate lim log.x when 1 < a. 
x-o+ 

28 Evaluate lim log10 (log10x). 
x~oo 

29 Evaluate lim log10 (-
3 

1 
1
). 

x~oo X+ 

J 30 Prove that for each a > 0, the function y = log. x is continuous on (0, c:r., ). 

~ DERIVATIVES OF EXPONENTIAL FUNCTIONS AND 
THE NUMBER e 

One of the most important constants in mathematics is the number e, whose value is 
approximately 2.71828. In this section we introduce e and show that it has the 
following remarkable properties. 

(1) The function y = e" is equal to its own derivative. 

(2) e is the limit lim { 1 + ~) ". 
x---+co X 

Either property can be used as the definition of e. Because of property 1, it is con­
venient in the calculus to use exponential and logarithmic functions with the base e 
instead of 10. However, it is not at all easy to prove that such a number e exists. 
Before going into further detail we shall discuss these properties intuitively. 

A function which equals its own derivative may be described as follows. 
Imagine a point moving on the (x, y) plane starting at (0, 1). The point is equipped 
with a little man and a steering wheel which controls the direction of motion of the 
point. The man always steers directly away from the point (x - 1, 0), so that 

dy y - 0 
dx = x - (x - 1) = y. 

Then the point will trace out a curve y = f(x) which equals its own derivative, as in 
Figure 8.3.1. 
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y 

dy =y 
dx 

(x-1,0) x 

Figure 8.3.1 

Another intuitive description is based on the example of the population 
growth function y = a'. If the birth rate minus the death rate is equal to one, then 
the derivative of a' is a', and a is the constant e. Imagine a country with one million 
people (one unit of population) at time t = 0 which has an annual birth rate of one 
million births per million people, and zero death rate. Then after one year the popula­
tion will be approximately e million, or 2,718,282. (This high a growth rate is not 
recommended.) . 

The limit e = limx~ x (1 + 1/xt is suggested intuitively by· the notion of 
continuously compounded interest. Suppose a bank gives interest at the annual rate 
of 100%. and we deposit one dollar in an account at time t = 0. If the interest is 
compounded annually, then after t = 1 year our account will have 2 dollars. If the 
interest is compounded quarterly (four times per year), then our account will grow 
to 1 + ±dollars at timet = ±, (1 + ±)2 dollars at timet = !, and so on. After one year 
our account will have (1 + ±)4 ~ 2.44 dollars. Similarly, if our account is com­
pounded daily then after one year it will have (1 + 3LJ365 dollars, and if it is com­
pounded n times per year it will have (1 + 1/n)" dollars after one year. 

Table 8.3.1 shows the value of (1 + 1/n)" for various values of n. (The last 
few values can be found with some hand calculators.) 

Table 8.3.1 

ll = 1 
11 = 2 
ll = 3 
ll = 4 
ll = 10 
ll = 100 
ll = 1000 
ll = 10000 

(1 + 1)1 = 2 
(1 + w = 2.25 
(1 + jl - 2.370 
(1 + ±l4 

- 2.441 
(1 + fa) 10 

- 2.594 
(1 + 16 0 )

100 
- 2.705 

(1 + 1 o
1
ool 

1 000 
- 2. 717 

(1 + 1o6ool
10000 

- 2.718 

This table strongly suggests that the limit e = limx~ :c (1 + 1/xY exists. A proof will 
be given later. Thus for H positive infinite, 

( 1 + ~r ~e. 
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If the interest is compounded H times per year, then in t years each dollar will grow to 

Thus if the 100% interest is continuously compounded, each dollar in the account 
grows to I! dollars in t years. At the interest rate r, each dollar in a continuously 
compounded account will grow to e'' dollars in t years. For more information, see 
Section 8.4. We now turn to a detailed discussion of e. 

LEMMA 

The limit ( 1) X lim 1 +-
X-----J>oc X 

exists. 

We shall save the proof of this lemma for the end of the section. 

DEFINITION 

( 1)x e = lim 1 +- . 
x--tco X 

As we have indicated before, e has the approximate value 

e ~ 2.71828. 

The function y = ~ is called the exponential function and is sometimes written 
y = exp x. 

THEOREM 1 

e is the unique real number such that 

PROOF Our plan is to show that whenever t and t + !1t are finite and differ by a non­
zero infinitesimal ~t, 

(1) 

(2) 

We may assume that tis the smaller of the two numbers, so that ~tis positive. 
By the rules of exponents, 

Let 

Then 

e'+M_e' eM-1 
!1t =e'~· 

el!.'- 1 
b=-­

~t 



444 8 EXPONENTIAL AND LOGARITHMIC FUNCTIONS 

Since e' is continuous and e0 = 1, we see from Equation 2 that b l'!.t is positive 
infinitesimal. Thus H = 1/b l'!.t is positive infinite. From Equation 2, 

( 1 + ~) H = (1 + b M)l'bM = (eM)ltbt.t = el 1b. 

Taking standard parts, 

[( 
l V

1

J e = st 1 +H) 
Therefore st(b) = l, and by Equation l, 

e'+"''- e' 
----= e'b::::: e'. 

l'!.t 

We conclude that for real x, 

It remains to prove that e is the only real number with this property. Let a 

be any positive real number different from e, a =!= e. We may then differentiate 
ax by the Chain Rule. 

d(ax) 
-- = (loge a)ex loge a = (loge a)a-'. 

dx 

Since a =!= e, loge a =I= 1, so (d(a"'))/dx =I= a-'. 

Since e-' is its own derivative, it is also its own antiderivative. We thus have 
a new differentiation formula and a new integration formula which should be 
memorized. 

d(e"') x 

dx = e' d (e-') = e-' dx, 

f e-' dx = e-' + C. 

We are now ready to plot the graph of the exponential curve y = e"'. Here is a short 
table. It gives both the value y and the slope/. because y = y' = e"'. 

-2 I 
1je2 ~ 0.14 

-1 I 
1/e - 0.37 

0 
e _\.7 I 

The number e-' is always positive, andy, y', andy" all equal e-'. From this we can draw 
three conclusions. 

y=e-'>0 

y' = e-' > 0 

y" = e-' > 0 

the curve lies above the x-axis, 

increasing, 

concave upward. 

If His positive infinite, then by Rule (vii), 

eH 2: 1 + H(e - 1 ). 
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So eH is infinite, e-H = 1/eH is infinitesimal. 

Therefore, lim ex= 0. 
X_.- OC 

We use this information to draw the curve in Figure 8.3.2. 

EXAMPLE 1 Given y = esin-', find d2yjdx 2
• 

dy . - = esmx cosx 
dx ' 

d2y . . 

d~ = e5
'"-' COS 2 X- esmx sinx. 

X 

EXAMPLE 2 Find the area under the curve 

earctan X 

y = 1 + x 2 ' 
O:s;x:s;l. 

1 
Let u = arctan x, du = ---2 dx. 

1 + X 

Then ---2 dx = e" du = e" = e"/4 
- 1. 

J.

l earctan x J."/4 J rr/4 

0 1+x 0 o 

EXAMPLE 3 Find d(ax)jdx. We use the formula 

Put u = X loge a. Then ax = e", so 

d(ax) d(e") du "du . 
-d- = -d- d- = e -

1 
= (loge a)a-', 

X U X GX 

This example shows that the derivative of ax is equal to the constant loge a 
times a-' itself. Figure 8.3.3 shows the graph of y = a"' for various values of a > 0. 

y 

y = e:x. 

X X 

Figure 8.3.2 Figure 8.3.3 

445 
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The slope of the curve y = ax at x = 0 is always equal to loge a. For all values 
of a > 0, cr' is positive for all x, so the derivative has the same sign as loge a. The three 
possibilities are shown: 

-~ 

(/ = 1 I 

0 < a < 1 

loge a> 0 

loge a = 0 

loge a < 0 

cr' increasing for all x 

ax = 1 for all X 

cr' decreasing for all x 
~------------

We conclude this section with the proof of the lemma that limx~ cL (1 + 1/x)-' 
exists. We use the following formula from elementary algebra. 

GEOMETRIC SERIES FORMULA 

Ifb # 1, then 
b"+ 1 - 1 

(1 + b + b2 + ... + b") = b - 1 . 

This formula is proved by multiplying 

(1 + b + b2 + ... + b")(b - 1) 

= (b + b2 + ... + b" + b"+ 1)- (1 + b + ... + b"- 1 + b") 
=b"+1_1. 

PROOF OF THE LEMMA The function y = 2' is continuous and positive. Therefore 
the integral 

c =II 2' dt 

is a positive real number. Our plan is to use the fact that the Riemann sums 
approach c to show that (1 + ljx)"' approaches the limit 2c. 

Let H be positive infinite. We wish to prove that 

( 1 + ~r ~ 2c. 

It is easier to work with the logarithm 

log{( 1 + ~rl = H log2 (I + ~)· 
Let M = log2 (I + ~). 
M is positive and is infinitesimal because 

Moreover, 

!J.t ~ log2 I = 0. 

1 
2dl = 1 +­

H' 
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H log2 ( 1 + ~) 11t 

Let us form the Riemann sum 
1 

I2tl1t = (1 +2M+ 22M+ ... + 2(K-l)Lit)/1t. 
0 

For simplicity suppose 11t evenly divides 1, so K 11t = 1. By the Geometric 
Series Formula, 

By Equation 3, 

Taking standard parts we have 

c ~ H log2 ( 1 + ~) 

Finally, 2c~(1+~r 
The proof is the same when 11t does not evenly divide 1, except that K 11t is 
infinitely close to 1 instead of equal to 1. Therefore 

lim ( 1 + _!_) x = 2c. 
x-oo X 

We remark that in the above proof we could have used any other positive 
real number in place of 2. Notice that 2c = e, so the constant c = J~ 21 dt is just log2 e. 

PROBLEMS FOR SECTION 8.3 

In Problems 1-12 find the derivative. 

1 y = e3x+4 

3 Y = 4-x 

5 u = sin(e') 

7 tl = 2(12) 

9 u = e<e') 

11 y = 3,;.;:: 

13 Find dy if cosy= ~+y 
dx · 

15 . d dy "f e' y=fl. Fm d! x =-, 
X t 

16 Find~~ if x = e-'
2
, y=J1=7. 

2 

4 

6 

8 

10 

12 

14 

}'=X~ 

s = 3'+ 1 

y = earcsinx 

y = ellx 

y=(1+e')- 2 

Y = J3x- 2x 

Find ;~ if x + y = ~)·. 
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In Problems 17-26, evaluate the limit. 

17 lim e'/t 18 lim e'/t", n a fixed positive integer. 
r-x r-x 

19 
I' e'- 1 
1m-.- 20 lime'- x 2 
r-o smt :c--+ ;:£ 

21 lim e'- x 2 22 
y- 2' 

lim---
x-+- :x x-o X 

23 lim (1 + 1/xf' 24 lim (1- 1/xY Hint: Let u = 
x-+o: . -.:-+x 

25 lim (1 + cjxY 26 lim (1 + t) 1
' 

x-x r-o 

In Problems 27-34 use the first and second derivatives and limits to sketch the curve. 

27 )' = 2x 

29 y = xe' 

31 J'= x' e· 

33 
1 

.l' = 1 + e' 

In Problems 35-50 evaluate the integral. 

35 f e2x dx 

37 J xe-x' dx 

28 

30 

32 

34 

36 

38 

J' = 2-x 

y = e-xl 

)' = e" + e-x 

1 
y=l+e-x 

J dx 
e3x 

J 2-x dx 

-X . 

39 J e2x.jl + e2x dx 40 f e·' 
1 + e2x dx Hint: Try u = e'. 

41 f xex dx Hint: Use integration by parts. 

42 J x 2ex dx 43 f ex sinx dx 

J e-·' cosx dx 
·2 

45 1e5x dx 44 

J2 

e-x dx r 47 
0 

ex dx 
-2 

46 

48 r 0 

e-"dx 49 Loc xe-rx dx 

50 L" x2e-rx dx 

51 Find the volume generated by rotating the region under the curve .r = e', 0 :S: x :S: 1, 
about (a) the x-axis, (b) they-axis. 

52 Find the volume generated by rotating the region under the curve y = e-", 0 :S: x < x, 
about (a) the x-axis, (b) they-axis. 

53 Find the length of the curve x = e' cost, y = e' sin t, 0 :S: t :S: 2n. 

54 A snail grows in the shape of an exponential spiral, r = e"0 in polar coordinates. 
(a) Find tan 1/J, the angle between a radius and the curve at 0. 
(b) Sketch the curve for a = 1 and a = 1/}3. 
(c) Find the length of the curve where - x < 8 :o;; b. 
(d) Find the area of the snail where - x < 8 :S: b. (To avoid overlap, one should 

integrate from b - 2n to b.) 
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B.4 SOME USES OF EXPONENTIAL FUNCTIONS 

In this section we shall discuss some functions involving exponentials which come up 
in physical and social sciences. 

The hyperbolic functions are analogous to the trigonometric functions and 
are useful in physics and engineering. 

The hyperbolic sine, sinh, and the hyperbolic cosine, cosh, are defined as 
follows. 

ex- e-x 
sinh x = --

2
--, 

ex + e-x 
coshx = 

2 

A chain fixed at both ends will hang in the shape of the curve y = cosh x (the catenary). 
The graphs of y = sinhx andy= coshx are shown in Figure 8.4.1. 

y y 

X X 

y =sinh x y =cosh x 

Figure 8.4.1 

The hyperbolic functions have identities which are similar to, but different 
from, the trigonometric identities. We list some of them in Table 8.4.1. 

Table 8.4.1 

Trigonometric 

sin2 x + cos2 x = 1 
d(sinx) = cosx dx 
d(cosx) = -sinxdx 
J sin x dx = -cos x + C 

J cosx dx = sinx + C 

Hyperbolic 

cosh2 x - sinh2 x = 1 
d(sinhx) = coshx dx 
d(coshx) = sinhx dx 

I sinhx dx = coshx + C 

I coshx dx = sinhx + C 

These hyperbolic identities are easily verified. For example, 

. (ex- e-x) d(ex)- d(e-x) 
d(smhx)=d 

2 
= 

2 

(
ex_ (-e-x)) 

= 
2 

dx = coshx dx. 

Notice that 
ex + e-x + ex - e-x 

coshx + sinhx = 
2 

= eX, 

When we multiply these we get the identity cosh2 x - sinh 2 x = 1. 
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The other hyperbolic functions are defined like the other trigonometric 
functions, 

sinhx 
tanhx = --

. coshx' 

1 
sechx = --, 

coshx 

coshx 
cothx = -.--, 

smhx 

1 
csch x = -.-

1
-. 

SID 1X 

The hyperbolic functions are related to the unit hyperbola x2 
- l = 1 in 

the same way that the trigonometric functions are related to the unit circle x 2 + y 2 = 1 
(Figure 8.4.2). 

Figure 8.4.2 

If we put 

we have 

y 

X= COS() 

y =sin() 

X = COS8, y=sin8, 

y 

x =cosh 11 

y =sinh u 

so the point P(x, y) is on the unit circle x 2 + y 2 = 1. 
On the other hand if we put 

x = coshu, y =sinh u, 

we have 

so the point P(x, y) is on the unit hyperbola x 2 
- y 2 = 1. 

The hyperbolic functions differ from the trigonometric functions in some 
important ways. The most striking difference is that the hyperbolic functions are not 
periodic. In fact both sinh x and cosh x have infinite limits as x becomes infinite: 

lim sinhx = -CD, lim sinhx = CD, 
x--t- r£ 

lim coshx = oo, lim coshx = w 

Let us verify the last limit. IfH is positive infinite, then 

eH+e-H 1 1 
cosh H = = - eH + - e- H 

2 2 2 

is the sum of a positive infinite number 1 tl1 and an infinitesimal 1 e- H and hence is 
positive infinite. Therefore lim coshx = oo. 

x-oc 
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-1 X 

Figure 8.4.3 

EXAMPlE 1 Find the area of the region under the catenary y = coshx from x = -1 
to x = 1, shown in Figure 8.4.3. 

A = J1 

coshx dx = sinhx]
1 

-1 -1 

= sinh 1 - sinh( -1) 

e- 1 - e 

2 
---=e--. 

2 e 

We now give an application of the exponential function to economics. 
Suppose money in the bank earns interest at the annual rate r, compounded con­
tinuously. (To keep our problem simple we assume r is constant with time, even though 
actual interest rates fluctuate with time.) Here is the problem: A person receives money 
continuously at the rate of f(t) dollars per year and puts the money in the bank as 
he receives it. How much money will be accumulated during the time a ~ t ~ b? 
This is an integration problem. 

We first consider a simpler problem. If a person puts y dollars in the bank at 
timet= a, how much will he have at timet= b? The answer is 

ye'<b-a) dollars. 

JUSTIFICATION Divide the time interval [a, b] into subintervals of infinitesimal 
length t:.t > 0, 

a, a + t:.t, a + 2llt, ... , a + H llt = b, 

where llt = (b - a)/H. 

If the interest is compounded at time intervals of llt, the account at the above 
times will be 

y, y(1 + r llt), y(l + r llt) 2
, . •• , y(l + r llt)H. 

Let K = 1/(r llt). Then H = (b - a)/D.t = r(b - a)K. At time b the account is 

( 
1 )H ( 1 )Kr(b-a) 

y(1 + r D.t)H = y 1 + K = y 1 + K 

Since H, and hence K, is positive infinite, 

( 
1)Kr(b-a) , 

Y 1 + K ~ ye'<b-a). 

Thus when the interest is compounded infinitely often the account ai time b 



is infinitely close to ye''b-aJ. So when the interest is compounded continuously 
the account at time b is 

Now we return to the original problem. 

CAPITAL ACCUMULATION FORMULA 

ffmoney is receiz:ed continuously at the rate off(t) dollars per year and eams 
interest at the anmwl rate r, the anwunt ol capital accumulated between times 
t = a and t = b is 

C = f f(t)e''b-n dt. 

JUST/FICA TION During an infinitesimal time interval [t, t + L'H], of length L'H, the 
amount received is 

L1y ~ f(t) L1t (compared to L1t). 

This amount L1y will earn interest from time t to b, so its contribution to the 
total capital at time b will be 

(compared to L1t). 

Therefore by the Infinite Sum Theorem, the total capital accumulated from 
t = a to t = b is the integral 

c = r f(t)e'(b-t) dt. 

EXAMPLE 2 If money is received at the rate f(t) = 2t dollars per year, and earns 
interest at the annual rate of 7 ~~. how much will be accumulated from times 
t = 0 to t = 10? 

The formula gives 

f
lO 

C = 
0 

2te0 ·07oo-n dt. 

We first find the indefinite integral. 

f 2t e0.07(10-tJ dt = f 2te0.7 e-o.o7r dt 

= 2eo.7J te-o.o7rdr. 

Let u = -0.07t, dtt = -0.07 dt. Then 

2te0 ·
07

'
10

- 0 dt = 2e0
·
7 ~~e"~~du f f u 1 

-0.07 -0.07 
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Using integration by parts, 

J ue" du = ue" - J e" du = ue" - e" + Constant. 

Therefore J 2te0 ·07(Jo-o dt = 2e0 · 7(0.07)- 2(ue"- e") +Constant. 

When t = 0, u = 0 and when t = 10, u =-0.7. Thus 

C = [2e0
·
7 (0.07)- 2(ue"- e")]~ 0 · 7 

= 2e0 · 7(0.07)- 2( -0.7e- 0 · 7 - e- 0 · 7 + e0 ) 

= 2(0.07)- 2(e0 · 7 - 1.7) ~ 128.08. 

The answer is $128.08. 

Notice that if the money were placed under a mattress and earned no interest, 
the capital accumulated between times t = 0 and t = 10 would be 

s:o 2t dt = $100. 

The formula for capital accumulation also has a meaning when f(t) is negative 
part or all of the time. A negative value of f(t) means that money is being paid out 
instead of received. When f(t) is negative, money must be either withdrawn from the 
bank account or else borrowed from the bank at interest rate r. The formula 

C = f f(t) er(b-r) dt 

then represents the net gain or loss of capital from times t = a to t = b, provided that 
the bank pays interest on savings and charges interest on loans at the same rate r. 

PROBLEMS FOR SECTION 8.4 

In Problems 1-4, find the derivative. 

1 y = sinh(3x) 

3 y = sechx 

5 

7 

Evaluate lim tanhx. 

1 - coshx 
Evaluate lim ----

x~o X 

2 

4 

6 

8 

y = cosh2 x 

y = tanhx 

. sinhx 
Evaluate hm --. 

x-+0 X 

Evaluate lim (cosh x -sinh x). 
x~x 

In Problems 9-12 use the first and second derivatives to sketch the curve. 

9 

11 

y = tanhx 

y = sechx 

In Problems 13-20 evaluate the integral. 

13 I sinhx coshx dx . 

10 

12 

14 

y = cothx 

y = cschx 

I x- 2 cosh(l/x)dx 
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15 J x sinhx dx 16 J sinh 2 x dx 

17 J x cosh 2 x dx 18 11 

sinhx dx 

r J:"' sech 
2 

x dx coshx dx 20 
-y_ 

19 

21 Prove the identity tanh 2 x + sech 2 x = I. 

22 Find the length of the curve y = eosin:, -1 <:;; x <:;; I. 

23 Find the volume of the solid formed by rotating the curve y = coshx, 0 <:;; x <:;; 1, about 
(a) the x-axis, (b) they-axis. 

24 Find the surface area generated by rotating the curve y = coshx, 0 <:;; x <:;; 1, about 
(a) the x-axis, (b) they-axis. 

25 Money is received at the constant rate of 5000 dollars per year and earns interest at the 
annual rate of 10 ~'~· How much is accumulated in 20 years? 

26 Money is received at the rate of 20 - 21 dollars per year and earns interest at the annual 
rate of 8%. How much capital is accumulated between times 1 = 0 and t = 10? 

27 A firm initially loses (and borrows) money but later makes a profit, and its net rate of 
profit is 

28 

D 29 

f(t) = W(t - 1) 

dollars per year. All interest rates are at 10~{ Starting at 1 = 0, find the net capital 
accumulated after (a) 2 years, (b) 3 years. 

A firm in a fluctuating economy receives or loses money at the rate /(1) = sin t. Find the 
net capital accumulated between times t = 0 and t = 2n if all interest is at 10 ~;;;. 

The present val11e of z dollars t years in the future is the quantity y = ze-", where r is the 
interest rate. This is because y = ze-" dollars today will grow to ye'' = z dollars in t 
years. Use the Infinite Sum Theorem to justify the following formula for ·the present 
value V of all future profits where f(t) is the profit per unit time. 

V = f' f(t)e-'' dt. 

8.5 NATURAL LOGARITHMS 

DEFINITION 

Given x > 0, the natura/logarithm of x is defined as the logarithm of x to the 
base e. The symbol in is tlsed for natura/logarithm; thus 

lnx = logex, 

and J' = lnx if and only if x = eJ. 

Natural logarithms are particularly convenient for problems involving 
derivatives and integrals. When we write lnx instead oflogex, the rules for logarithms 
take the following form: 

(i) In 1 = 0, In e = 1. 
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(ii) ln(xy) = lnx + lny, 

ln(x/y) = lnx- lny. 

(iii) ln(x') = r lnx. 

The rules for changing the base become 

Using the above equations, the formulas for the derivative and integral of bx 
take the form 

(b # 1). 

Recall the Power Rule for integrals, 

f 
xn+ 1 

xndx = _-__ + c 
n + 1 ' 

11 # -1. 

It shows how to integrate xn for n # -1. Now, at long last, we are about to 
determine the integral of x- 1

. It turns out to be the natural logarithm of x. 

THEOREM 1 

(i) On the interval (0, w ), 

1 
d(lnx) = -, 

X f ~dx = lnx +C. 
X 

(ii) On both the intervals (- w, 0) and (0, w ), 

1 
d(ln Jxj) = - dx, 

X 
J ~dx = lnJxJ +C. 

PROOF (i) Let y = In x. Then x = eY, dxfdy = eY. By the Inverse Function Theorem, 

dy 1 1 

dx dxfdy er x 

(ii) Let x < 0 and let y = lnJxJ. For x < 0, Jxl = -x so 

dlxJ = -1. 
dx 

Then d(lnJxl) = d(lnJxJ)dJxl = 2._(- 1) = _1_(- 1) = ~-
dx dlxl dx Jxl -x x 

In the above theorem we had to be careful because 1/x is defined for all x # 0 
but lnx is only defined for x > 0. Thus on the negative interval (- w, 0) the anti­
derivative of 1/x cannot be In x. Since JxJ > 0 for both positive and negative x, In Jxl 
is defined for all x # 0. Fortunately, it turns out to be the antiderivative of 1/x ball 
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y 

X X 

Figure 8.5.1 y = ln lxl dx x 

cases. For x > 0, 1/x > 0 and In lxl is increasing, while for x < 0, 1/x < 0 and In lxl 
is decreasing (see Figure 8.5.1). 

We now evaluate the integral of lnx. This integral can be found in the table 
at the end of the book. 

THEOREM 2 

J lnx dx = x lnx- x + C. 

PROOF We use integration by parts. Let 

u = lnx, 

Then 

1 
du = -dx, 

X 
dv = dx, 

f lnx dx = uv- f z; du 

f x 
= x lnx- -dx 

X 

= x lnx- x + C. 

L' =X. 

Let us study the graph of y = In x. Here are a few values of y and dyjdx. 

X 
l l 2 4 4 2 

y = lnx -1.4 -0.7 0 0.7 1.4 

dyjdx = 1/x 4 2 l l 
2 4 

The limits as X---> o+ and X---> .x; (see Example 4, Section 8.2) are: 

lim (In x) = - oo, lim (lnx) = x. 
x--+O+ 

lim (1/x) = x, lim (1/x) = 0. 
x--+O+ x--+ oc 

From the sign of dyjdx and d 2 yjdx 2 we get the following information. 

dy 1 
-=-> 0 
dx x ' 

increasing 

d2 y -1 

d
-2 = -2 < 0, 

X X 
concave downward. 

We use this information to draw the curve in Figure 8.5.2. 
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y 

4 

X 

y =In x 

Figure 8.5.2 

There are two bases for logarithms which are especially useful for different 
purposes, base 10 and base e. The student should be careful not to confuse the two. 

Table 8.5.1 

Name Common Logarithms Natural Logarithms 

base 10 
log10 x, log x 

base e 
logex, lnx 

base 
symbols 
use numerical computation derivatives and integrals 

To pass back and forth between common and natural logarithm we need the constants 

Then 

and 

log 10 e ~ 0.4343, In 10 '""' 2.3026. 

lnx 
log10 x = --, 

In IO 

lnx = logloX 
log10 e' 

lnx ~ 2.3026log 10 x 

log 10 x ~ 0.4343\nx. 

Warning: Do not make the mistake of using common logarithms instead 
of natural logarithms in differentiating and integrating. 

EXAMPLE 1 F
. d d(log10 x) 
m d . 

X 

Right: 
d(log10 x) 

dx 

d(log10 x) 
Wrong: 

dx 

EXAMPLE 2 f
lO 1 

Find -dx. 
1 X 

d(0.4343lnx) 0.4343 
dx X 

1 

X 

flO 1 ]10 
Right: -;dx = lnx =In 10- In 1 ~ 2.3026. 

1 X 1 

f lO 1 ]10 
Wrong: -dx = log10 x = log10 10 -log10 1 

1 X 1 
1. 
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EXAMPLE 3 f
-l 1 

Find - dx. 
-e X 

-1 1 J-1 f -_ dx = In lxl = In I 
-e X - e 

-In e = -1. 

Note that lnx is undefined at -1 and - e but In lxl is defined there. The 
absolute value sign is put in when integrating 1/x and removed when 
differentiating In I xi-

EXAMPLE 4 Find dy!dx where y = ln[(3 - 2x)2
]. 

We have (3 - 2x) 2 = 13 - 2xl 2
, and by the rules of logarithms, 

By Theorem 1, 
dy 

dx 

y = 2 In 13 - 2xj. 

2 d(3 - 2x) 

3- 2x dx 

-4 
3- 2x 

This answer is correct when 3 - 2x is negative as well as positive. 

EXAMPLE 5 Find d(!ogax)jdx. 

EXAMPLE 6 

lnx 
logax = -, 

Ina 

1 d(ln x) 

Ina dx xlna 

Find J --1- dx. Let u = 2x - 5, du = 2 dx. 
2x - 5 

J 
1 1J1 1 1 -- dx = - - du = -In lui + C = -In 12x - 51 + C. 

2x - 5 2 u 2 2 

EXAMPLE 7 Find the improper integral J~ .!-_ dx. 
1 X 

fx ~dx = lim Jb ~dx = lim (In xjb) = lim In b = y__ 
1 X b_,oc 1 ..X b-+a; 1 b_,-:t:. 

Thus the region under the curve y = 1/x from 1 to cc, shown in Figure 8.5.3, 
has infinite area. 

y 

Figure 8.5.3 

J y=-x 

X 
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z 

Volume= 1r 

Figure 8.5.4 

EXAMPLE 8 The region R under the curve y = 1/x from 1 to oo is rotated about the 
x-axis, forming a solid of revolution. Find the volume of this solid (Figure 
8.5.4). 

The volume is given by the improper integral 

v = {cc n(~r dx = n f() x- 2 dx. 

Then V = n lim Jb x-2 dx = n lim ( - ~]b) = n lim ( 1 - ~) = n. 
b--Jo ctJ 1 b--oo X 1 b--+ co b 

Thus the solid has volume n. 

In the last two examples a region of infinite area was rotated about the x-axis 
to form a solid of finite volume. We saw another example of this kind in Section 6.7 on 
improper integrals. 

PROBLEMS FOR SECTION 8.5 

In Problems 1-12 find the derivatives. 

1 y = (lnx)3 2 y = lnl3x + 41 

3 y = ln(cosx) 4 y = ln(x4 + x - 1) 

5 s = t lnt- t 6 s = ln(t-') 

7 s = ln(jt) 8 y = ln(lnx) 

9 y = log2(3x) 10 y = logxa 

11 z = ln(yj3y+l) 12 - (()'4 + 1)2) 
z- In ( )3 y- 1 

13 Find dyfdx where x = ln(xy). 

14 Find dyfdx where y = ln(x 2y). 

15 Find dyfdx where y = ln(x + y). 

In Problems 16-25 evaluate the limit. 

16 r lnx 17 
r (lnx)2 

Jill- !ill--
x~cxo X x~ao fi 
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18 I
. lnt 
ltD-= 

r-r- j1 _ 1 
19 

20 lim ln{lnt) 21 
r-x 

22 lim x(a 1 "- 1), a > 0 
x__, x 

23 lim .y-; Hint: Find the limit of the logarithm. 
x-+x 

24 lim .y-; 
x-+0,. 

25 

26 Sketch the curve y = x - In x. 

27 Sketch the curve y = ln(x(2 - x)). 

28 Sketch the curve y = x lnx. 

In Problems 29-51 evaluate the integral. 

29 f dx 
2x + 3 

30 

f 2x 32 ---dx 
x-1 

31 

Jinx -dx 34 
X 

33 

35 f dt 
t lnt 

36 

37 rn(~x) dx 38 

39 Jx" lnx dx, ll =F -1 40 

41 J (lnx) 3 dx 42 

43 J ~cos(lnx)dx 44 

45 --dx ro X 

o X+ 1 
46 

47 f lnx dx 48 

r~~ -dx 50 
-:J:. X 

49 

51 f" lnxdx 

lim xlnx 
x__,.o-

. a' -1 
Inn--, a> 0 
r-o t 

lim x' 
x---->0 • 

s~ 5x 2 - 2 

f x - __!_ dx 
.\' + 1 

---dt J e' 
e' + 1 

J cosO dB 
1 + sm 8 

Jxlnxdx Hint: Integrate by parts. 

J (lnx) 2 dx 

f x(lnx) 2 dx 

J cos (In x) dx 

r21 -dx 
-3 X 

fl -dx 
0 X 

L1 

lnxdx 

52 The region bounded by the curve y = 1/fi, 1 .s; x .s; 4, is rotated about the x-axis. 
Find the volume of the solid of revolution. 

53 Find the volume generated by rotating the region under the curve J' = In x, 1 .s; x .s; e, 
about (a) the x-axis, (b) they-axis. 

54 Find the volume generated by rotating the region under the curve)' = - lnx, 0 < x <S; 1, 
about (a) the x-axis, (b) they-axis. 

55 Find the length of the curve y = lnx, 1 .s; x .s; e. 

56 Find the surface area generated by rotating the curve y = lnx, 0 .s; x s l, about the 
y-ax1s. 



0 57 

0 58 

0 59 

8.6 SOME DIFFERENTIAL EQUATIONS 461 

The inverse hyperbolic sine is defined by 

arcsinhx = ln(x + P+!J. 
Show that this is the inverse of the hyperbolic sine function by solving the equation 
below for y: 

. e"- e-}' 
x = smhy = 

2 

Show that d(arcsinhx) = 1/P+l'. 

Show that 

arctanhx =~In U ~ ;) , lxl < 1 

is the inverse function oftanhy, and that d(arctanhx) = 1/(1- x2
). 

1.6 SOME DIFFERENTIAL EQUATIONS 

This section contains a brief preview of differential equations. They are studied in 
more detail in Chapter 14. 

A first order d(fferential equation is an equation that involves x, y, and 
dyfdx. If d2 yfdx2 also appears in the equation it is called a second order differential 
equation. The simplest differential equation is 

(I) dyfdx = f(x) 

where the function f is continuous on an open interval I. 
To solve such an equation we must find a function y = F(x) such that 

dyfdx = f(x). Differential Equation 1 arises from problems such as the following. 
Given the velocity v = dyfdt at each time t, find the position y as a function of t. 
Given the slope dyfdx of a curve at each x, find the curve. 

Any antiderivative y = F(x) of f(x) is a solution of this differential equation. 
Remember that all the antiderivatives of f(x) form a family of functions which differ 
from each other by a constant. 

This family is just the indefinite integral off, 

(1') J f(x) dx = F(x) + C. 

The family of functions (Equation 1') is the general solution of the Differential Equation 
1. 

In this chapter we have solved the problem of finding a nonzero function 
which is equal to its own derivative. This problem may be set up as another differential 
equation, 

(2) dyfdx = y. 

We found one solution, namely y = ex. Are there any other solutions? 

THEOREM 1 

The general solution of the differential equation 

dy/dx = y 

is 



That is, the only functions ·which are equal to their own derivatives are 

PROOF Assume y is a differentiable function of x. The following are equivalent, 
where x is the independent variable. 

dy 
-= r 
dx ·' 

1 
-dy = dx, 
)' 

J tdy = Jdx, 

In [y[ = x + C 1 

[y[ = ex+C, 

r = cex 

for some C 1 , 

for some cl, 
for some C. 

In the last step, C = ec' if y is positive and C = -ec' if y is negative. 

It can be shown in a similar way that the general solution of the differential 
equation 

(3) dyjdx = ky, 

where k is constant, is 

(3') 

The constant Cis just the value of y at x = 0, 

Cek·o = C. 

In applications we often find a differential equation (3) plus an initial con­
dition which gives the value of y at x = 0. The problem can be solved by writing down 
the general solution of the differential equation and then putting in the value of C 
given by the initial condition. 

EXAMPLE 1 A country has a population of ten million at timet = 0, and constant 
annual birth rate b = 0.020 and death rate d = 0.015 per person. Find the 
population at time t. 

The population satisfies the differential equation 

dy 
dt = (b - d)y = 0.005 y. 

The initial condition is 

y = 107 at t = 0. 

The general solution is 

Since at t = 0, 10 7 = Ce0 = C. the actual solution is 
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EXAMPLE 2 A radioactive element has a half-life of N years, that is, half of the 
substance will decay every N years. Given ten pounds of the element at time 
t = 0, how much will remain at time t? 

In radioactive decay the amount y of the element is decreasing at a rate 
proportional to y, so the differential equation has the form 

dyjdt = ky. 

The general solution is 

Since y is decreasing, k will be negative. We must find the constants C and k. 
To find C we use the initial condition 

y = 10 at t = 0, c = 10. 

To find k we use the given half-life. It tells us that 

y = 1·10 = 5 at t = N. 

Therefore 

The solution is 

IOekN = 5, 

ek = CW1N, 

k = ln((J)liN) =- ln2 
N. 

y = lOe-(rtn2)/N. 

As we mentioned at the beginning of this chapter, the exponential growth 
function y = C~' is unrealistic for populations except for short periods of time. Here 
is a more realistic, but still quite simple, population growth function. 

A population often has a limiting value L at which overcrowding will 
overcome reproduction. It is reasonable to suppose that the growth rate dyjdt is 
proportional to both the population y and the difference L - y. That is, the popula­
tion satisfies the differential equation 

dy 
dt = ky(L- y) 

for some constant k. The spread of an epidemic also satisfies this differential equation, 
where y is the number of victims and L is the total population. That is, the rate of 
increase of the number of victims is proportional to the product of the number of 
victims and the remaining population. 

THEOREM 2 

The general solution of the differential equation 

is 

dy 
- = ky(L- y) 
dx 

L 
)' = 1 + C e- kLx . 

PROOF The constant functions y = L, y = 0 are trivial solutions. Suppose y =I= L, 
v =1= 0. The following are equivalent. 
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dr 
---=-- = ky(L - y), 
dx 

dr 
--· -= kdx, 
y(L - .r) 

L-r+r 
--·- · dr= kdx, 
Ly(L- y) . 

..!.(~ + -
1
-) dr = k dx, Ly L-y . 

( ~ + -
1
-) r/.r = kL dx, 

r L - r 
In l.rl - In IL - rl = kLx + c I 

In 1_.1_· -I = kLx + C P 
L-y 

I

_)_' -1 = ekLx+C,, 
L-y 

)' _ C kLx --- ,e 
L- y -

y(l + C 2ekLx) = C 2LekLx, 

for some C I, 

for some C 2 =f. 0, 

C ,J l!kl.x L 
y = 1 +- C 2 ekLx = 1 + -( 1_/_C_l_)e-_-o-kLo--x , 

L 
for some C =f. 0. J' = 1 + Ce-kLx 

The important case of this function is where C, k, and L are positive constants. 
In this case the function is called a logistic jimction. As the graph in Figure 8.6.1 shows, 
the value of the function approaches zero as t --> - x and Las t--> x; that is, 

lim y = 0, lim y = L 
(---+-X 

A population given by this function will approach but never quite reach the limiting 
value L. 

It is easy to see intuitively that a differential equation 

dr 
_d. = g(x,y) 

X 

will have a solution if the function g(x, y) behaves reasonably. We return to our 
picture of a moving point controlled by a little man with a steering wheel (Figure 
8.6.2). At x = 0 the point starts at y = C. (This is the initial condition.) At each value 
of x, the little man computes the value of g(x, y) and turns the steering wheel so that 
the slope will be dy/dx = g(x, y). Then the curve traced out by the point will be a 
solution of the differential equation. In general, there will always be a family of 
solutions which depend on the constant C of the initial condition. 

Using indefinite integrals we can solve any differential equation where 
dy/dx is equal to a product of a function of x and a function of y, 

(4) 
dr 
--=-- = f(x) h(y), 
dx 

h(y) =f. 0. 
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y 

L 

L y= -~-:-:--
l+c~-kLx 

Figure 8.6.1 

y 

(0, C) 

dy 
dx = g(x, y) 

Figure 8.6.2 

We simply separate the x andy terms and integrate, 

dy 
-
1 

) = f(x) dx, 
1()1 

J h~~) = J f(x) dx. 

X 

X 

In an equation of the form (Equation 4) the variables are said to be separable. 

EXAMPLE 3 Solve dyjdx = eY sin x. 

e-y dy =sin x dx, 

- e- l' = -cos x - C, 

e-y = cosx + C, 

- y = ln (cos x + C), 

y = -In (cos x + C). 

Second order differential equations also arise frequently in applications. As 
a rule, the general solution of a second order differential equation will involve two 
constants, and two initial conditions are needed to determine a particular solution. 
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EXAMPLE 4 Newton's law, F = ma, states that force equals mass times acceleration. 
Suppose a constant force F is applied along they-axis toano bject of constant 
mass 111. Then the position y of the object is governed by the second order 
differential equation 

F 

m 

The general solution of this equation is found by integrating twice, 

dy Ft 
dt =-;;; + Vo, 

Ft 2 

Y = - + Vot + Yo· 
2m 

Setting t = 0 we see that the constants u0 and y0 are just the velocity and 
position at time t = 0. Thus the motion of the object is known if we know 
its initial position y0 and velocity u0 . 

If the force F(t) varies with time we have the differential equation 

F(t) 

111 

The general solution can still be found by integrating twice, and the motion 
will still be determined by the initial position and velocity. Suppose for example that 
F(t) = t 2

, and y0 = 5, v0 = 1 at time t = 0. Then 

m 

dy t 3 

- =- + 1, 
dt 3m 

t4 
y = -12 + t + 5. m 

We shall now discuss an important second order differential equation whose 
solution involves sines and cosines. 

The general solution of the equation 

d2y 
dt 2 = - y 

is y = a cost + b sin t. 

We have 
d(sin t) d2(sin t) 
----cost -sin t, dt - , dt 2 

d(cos t) d1(cos t) 
-sin t, -cost. 

dt dt1 

Therefore both y = sin t andy = cos t are solutions. It then follows easily that every 
function a cost + b sin tis a solution. Notice also that if 

y = a cos t + b sin t 

then at time t = 0, y = a and dyjdt = b. 
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It can be proved that there are no other solutions, but we shall not give the 
proof here. 

More generally, given a constant w the equation 

d2y 2 
- = -(J) y 
dt2 

has the general solution 

y = a cos wt + b sin wt. 

EXAMPLE 5 When a spring of natural length Lis compressed a distance x it exerts 
a force F = - kx. The negative sign indicates that the force is in the opposite 
direction from x (Figure 8.6.3). 

F-

Figure 8.6.3 

is 

When x is negative the spring is expanded and the equation F = - kx still 
holds. 

Suppose a mass m is attached to the end of the spring and at timet = 0 is at 
position x0 and has velocity v0 • The motion of the mass follows the differential 
equation 

F = ma, 

The general solution is 

x = a cos wt + b sin wt 

k 
--x. 

m 

where w = ~- Using the initial conditions, the motion of the mass is 

Vo . 
x = x 0 cos wt + - sm wt. 

(J) 

This function is periodic with period 2njw, so as expected the mass oscillates 
back and forth. 

In the following second order equation, hyperbolic sines and cosines arise. 
The general solution of the differential equation 

d2 yjdx1 = y 

y = a cosh x + b sinh x. 
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We see that cosh x and sinh x are solutions because 

~(cosh x) = sinh x, 
dx 

d(sinh x) h 
----=COS X dx ·' 

Another solution is e'. Note that 

d2(cosh x) h 
----:-- = COS X, 

dx 

d 2(sinh x) . h 
---:--- = Sill X. 

dx 

. (e' + e-') + (e' - e-') . 
e"' = 

2 
= cosh x + smh x. 

PROBLEMS FOR SECTION 8.6 

In Problems 1-16, find all solutions of the differential equation. 

dy 
2 

dy 
2y 5 - = X\'2 dx = 

-
dx · 

3 
dy x2 dr + x2 4 _:_ = x2y2 
dx r dx 

dr 
6 

dy 
.....:.. = xeY = xy + x + y + 
dx dx 

5 

dy = e"'- r 8 
dy -
T = .Jxy dx o: 

7 

dy- y3 sin X 10 
dy 
- = B + kr dx- dx · 9 

dly 
[ 12 

d2)' -2 
p=2x+ dx2 = x ex 

11 

dly 
14 

(e_)' ex -=0 dx 3 = dx 2 13 

d2)" 
16 

dly 
-4y -=3r dx 2 = dx 2 • 

15 

I 

17 A country has a population of 10 million at time 1 = 0 and constant annual birth rate 
b = 0.025 and death rate d = O.Ql5 per person. Find the population as a function of 
time. 

18 Suppose a tree grows at a yearly rate equal to 1o of its height. If the tree is I 0 ft tall now, 
how tall will it be in 5 years? 

19 A bacteria culture is found to double in size every minute. How long will it take to 
increase by a factor of one million? 

20 If a bacteria culture has a population of B at time t = 0 and 2B at time 1 = 10, what 
will be its population at time 1 = 25? 

21 A city had a population of I 00,000 ten years ago and its current population is 115,000. 
If the growth is exponential, what will its population be in 30 years? 

22 A radioactive element has a half-life of 100 years. In how many years will 99\ of the 
original material decay? 

23 What is the half-life of a radioactive substance if 10 grams decay to 9 grams in one year? 



24 

25 

26 

27 

28 

29 

30 

31 

32 

0 33 

0 34 

0 35 

36 

37 

38 

8.7 DERIVATIVES AND INTEGRALS INVOLVING In x 

A body of mass m moving in a straight line is slowed down by a force due to air resistance 
which is proportional to its velocity, F = - kv. If the velocity at time t = 0 is v0 , find its 
velocity as a function of time. Use Newton's law, F = ma = m dv/dt. 

A particle is accelerated at a rate equal to its position on the y-axis, d2yjdt2 = y. At 
time t = 0 it has position y = 2 and velocity dy/dt = 0. Find y as a function oft. 

A mass of m grams at the end of a certain spring oscillates at the rate of one cycle every 
10 seconds. How fast would a mass of 2m grams oscillate? 

A particle is accelerated at a rate equal to its position on they-axis but in the opposite 
direction, d2yfdt2 = -y. At timet= 0 it has position y = 1 and velocity dy/dt = -2. 
Find y as a function oft. 

In Problem 27, suppose that at time t = 0 the position is y = -3 and at time t = n/2 
the position is y = 2. Find y as a function oft. 

Suppose the birth rate of a country is declining so that its population satisfies a differ­
ential equation of the form dy/dt = kyft. If y = 10,000,000 at time t = 10 and y = 
20,000,000 at time t = 40, find y as a function oft. 

Work Problem 29 under the assumption that the population satisfies a differential 
equation of the form dy/dt = ky/t2

. 

Suppose a population satisfies the differential equation dyjdt = w- 8y(l08 - y) and 
y0 = 107 at time t0 = 0 years. Find the population y at time t = 1 year. 

Suppose a population satisfies a differential equation of the form dy/dt = ky(10 8 
- y). 

At time t0 = 0 years the population is y0 = 107
, and at time t 1 = 1 year the population 

is y1 = 2 • 107
. Find y as a function oft. 

Suppose a population grows according to the differential equation dy/dt = ky(L - y), 
and 0 < y < L, 0 < k. 
(a) Show that there is a single inflection point t0 , and the growth curve is concave 

upward when t < t0 and concave downward when t > t0 . 

(b) Find the population Yo at the inflection point t0 . 

A population with a constant annual birth rate b and death rate d per person, and a 
constant annual immigration rate I, grows according to the differential equation 
dyfdt = (b - d)y +I. Suppose b = 0.025, d = O.Q15, I = 104 people per year, and the 
population at time t = 0 is ten million people. Find the population as a function of time. 

Suppose the population of a country has a rate of growth proportional to the difference 
between 10,000,000 and the population, dy/dt = k(10,000,000 - y). Find y as a function 
oft assuming that: 
(a) y = 4,000,000 at t = 0 and y = 7,000,000 at t = 1. 
(b) y = 13,000,000 at t = 0 andy = 11,000,000 at t = 1. 

Find all curves with the property that the slope of the curve through each point P is 
equal to twice the slope of the line through P and the origin. 

Find all curves whose slope at each point P is the reciprocal of the slope of the line 
through P and the origin. 

Find all curves whose tangent line at each point (x, y) meets the x-axis at (x - 4, 0). 

7 DERIVATIVES AND INTEGRALS INVOLVING In x 

Sometimes it is easier to differentiate the natural logarithm of a function y = f(x) 
than to differentiate the function itself. The method of computing the derivative of a 
function by differentiating its natural logarithm is called logarithmic differentiation. 

469 
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THEOREM 1 (logarithmic Differentiation) 

Suppose the fimction y = f(x) is dif{erentiable and not zero at x. Then 

dy d(ln lrll 
-= 1'---. 
dx · dx 

PROOF 
d(ln IYI) d(ln Ll'll dy 1 dy 

dx dy dx y dx 

Logarithmic differentiation is useful when the function is a product or 
involves an exponent, because logarithms turn exponents into products and products 
into sums. 

EXAMPLE 1 Find dy/dx where y = (2x + 1)(3x- 1)(4- x). 

lnLvl = lnl2x + 11 + lnl3x- 11 + lnl4- xl, 

dv ( 2 3 1 ) 
d~ = y 2x + 1 + 3x - 1 - 4 - x 

( 
2 3 1 ) = (2x + 1)(3x - 1)(4- x) -- + ----- . 

2x + 1 3x - 1 4 - x 

EXAMPLE 2 Find dr dx where y = x·'. 

lny = x lnx. 

dy d(x In x) ·(x.- ) - = y~~- = x'- + lnx = x'(1 + lnx). 
dx dx x 

In this example, In y = In IYI because y > 0. 

. (x 2 + 1 )3(x 3 + x + 2) 
EXAMPLE 3 Fmd dyjdx where)' = _ ~ 

(x - 1k; x + 4 

In IYI = 3ln lx 2 + 11 + ln lx 3 + x + 2j - In lx - 11 -!In lx + 41. 

dr ( 6x 3x
2 + 1 1 1 ) 

d:~ = )' x 2 + 1 + .~ 3 + x + 2 - x - 1 - 2(x + 4) 

(x 2 + 1 )3 (x 3 + x + 2) ( 6x 3x
2 + 1 1 1 ) 

= (x - 1)"; x + 4 x 2 + 1 + x 3 + x + 2 - x - 1 - 2(x + 4) · 

This derivative could have been found using the Product and Quotient Rules 
but it would take a great deal of work. 

The Power Rule d(x') = rx'- 1 dx was proved in Chapter 2 only when the 
exponent r is rational. We can use logarithmic differentiation to show that the Power 
Rule holds even for irrational r. 
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THEOREM 2 (Power Rule) 

Let b be any real number. Then 

d(xb) = bxb- 1 dx, 

f 
xb+ 1 

xb dx = b + 
1 

+ C, (b # 1). 

PROOF Let y = xb. Then In y = bIn x, and 

dy = /(In y) = y d(b In x) = xb. b • .!_ = bxb- 1• 

dx. dx dx x 

The formula f 1/x dx = In \x\ + C allows us to integrate a number of basic 
functions which we could not handle before. 

EXAMPLE 4 Find J tan e de. We have tan e =(sin ejcos e). Let u =cos e, du = 
- sin e de. Then 

f tan e de = - f 1/u du = -In \u\ + C = -In \cos e1 + C. 

Remember the absolute value sign inside the logarithm. It is needed because 
cos e may be negative. 

EXAMPLE 5 Find f secede. 

Jsec e de = f sec e (sec e + tan e) de 
sec e +tan e 

f d(sec e + tan e) 
= e e = In \sec e + tan e1 + C. sec +tan 

With the above two examples and the reduction formulas from Section 7.5 
we can integrate any power of tan e or sec e. 

These integrals often arise in trigonometric substitutions. 

EXAMPLE 6 Find f sec3 e d8. From the reduction formula in Section 7.5, 

f sec3 e de = ! sec2 e sine + ! f secede. 

Therefore f sec3 8 d8 = ! sec2 8 sin 8 + ! ln \sec e + tan e1 + C. 

-. d J xdx EXAMPLE 7 Fm 2 2 . 
a + x 

Let u = a2 + x2
• Then du = 2x dx, 

f x dx 1 J du 1 1 
a2 + x2 = 2 --;; = 2ln \u\ + C = 2 1n \a2 

+ x
2

\ + C. 
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Since a2 + x 2 is always positive 

f 
x dx 1 

2 2 = -In (a 2 + x 2
) + C 

a + x 2 

is equally correct. 

EXAMPLE 8 Find f dx 

~a2· 

Assume a > 0. We make the trigonometric substitution X = a sec e, 
illustrated in Figure 8. 7.1. 

Figure 8.7.1 a 

Then dx = a tan e secede, j x 2 
- a2 = a tan e. 

I dx de = I a tan e secede = fsec e de J x2 - (/2 a tan e 
= In lsec e + tan e1 + C' (by Example 5) 

=In I~+ Jxza_ a
21 + C' = lnlx + jx2 -a21-lna +C. 

Therefore 

The formula JJ dx = In lx + Ja 2 + x 21 + C 
az + xz 

can be derived in a similar way and is left as an exercise. 

The integrals I arctan x dx, J arcsec x dx 

can now be evaluated using integration by parts, 

Judv = uv- Jvdu. 

EXAMPLE 9 Find f arctan X dx. 

Let u = arctan x, du = dx/(1 + x 2
), v = x, dv = dx. 

Then 

From Example 7, 

J arctan x dx = I u dv = uv - J v du 

= x arctan x - I~1 x 2 dx. 
+x 
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f x dx 1 
--2 = -ln (1 + x 2

) + C. 
1 +X 2 

Therefore J arctan x dx = x arctan x-! ln (1 + x 2
) + C. 

f arccot x dx can be evaluated in a similar way. 

EXAMPLE 10 Find f arcsec x dx, when x > 1. 

1 1 
Let u = arcsec x, du = dx = dx, v = x, dv = dx. 

\x\p-=1 xp-=1 

Then J arcsec x dx = J u dv = uv - J v du = x arcsec x - J xk=tdx 

= xarcsecx- J~dx. 
x2

- 1 

From Example 8, 

Therefore 

f~dx = In \x + p-=i1 + C. 
x 2

- 1 

J arcsec x dx = x arcsec x - ln \x + p-=i1 + c. 

PROBLEMS FOR SECTION 8.7 

In Problems 1-10 find the derivatives by logarithmic differentiation. 

1 

3 

5 

7 

9 

3x - 2 
y = 4x + 3 

(x 2 + l)fo+'4 
}'=~-----'--"--;=== 

(2x- 3)p-=4 
Y = (x- l)x2+t 

y = e<e<> 

s = .fi 

2 

4 

6 y = (sin B)tane 

8 y = (2x + 1)" 

10 .J.' = x<-""> 

11 Using derivatives and limits, sketch the curve y = xX, x > 0. 

12 Using derivatives and limits, sketch the curve y = fx, x > 0. 

13 Prove the differentiation rule d(u") = u"(vju du + ln u dv), (u > 0). 

In Problems 14-38 evaluate the integral. 

14 Jtan 3 e dB 15 f cote de 

16 J esc e dB 17 Jtan (38) dB 

18 Jsech x dx 19 Jsec5 x dx 

473 
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20 J tan 5 x dx 21 J sec
2 x 1 --~X 

tanx 

f sec
3 x J tan

2 x 22 --dx 23 --dx 
tan x sec x 

24 f dx 
jaz + x2 

25 f fi2- 1 dx 

26 f 1 
xP+J 

dx 27 f l 
xj4- x2 dx 

28 f..,;4 + x2 dx 29 r ----,-_1-dx 
. :c- 4 

--

30 f I 1 
) 1 + x2 dx 31 J j1- 1 

dx x2 

32 f (xz - 1 )J 2 dx 33 fx\/l+"7dx 

34 J x2 arcsec x dx 35 Jx- 2 arcsinxdx 

36 Jx sec2 x dx 37 J arccsc x dx 

38 J arccot x dx 

39 Find the length of the parabola y = x2
, - l ::; x ::; 1. 

40 Find the surface area generated by rotating the parabola y = x 2
, 0 ::; x ::; 1 about the 

x-axis. 

41 Find the length of the spiral of Archimedes r = fJ, 0 ::; fJ ::; a, in polar coordinates. 

42 Find the volume of the solid generated by rotating the region under the curve y = 
sec2 x, 0 ::; x ::; rr/3, about (a) the x-axis, (b) they-axis. 

8.8 INTEGRATION OF RATIONAL FUNCTIONS 

A rational function is a quotient of two polynomials, 

j(x) = F(x)_ 
G(x) 

Using the Quotient, Constant, Sum, and Power Rules, one can easily find the 
derivative of any rational function. We shall now show how to find the integral of any 
rational function. This is fairly easy to do if the degree of the denominator G(x) is 
only two or three, but becomes more difficult as the degree of G(x) gets larger. Let 
us work some examples and then formulate a general procedure. 

Our first example shows how to integrate when the denominator G(x) has 
degree one. 

EXAMPLE 1 - dx. J 
x 3 + 4x 2 

- I 

X+ 2 
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The first step IS to divide the denominator into the numerator by long 
division. 

x3 + 4x2
- 1 7 

-----=-- = x2 + 2x - 4 + --. 
x+2 x+2 

We now easily integrate each term in the sum. 

f_x_3_+_4_x_z2_-_1 dx = f(xz + 2x- 4 + _7_) dx 
x+ x+2 

x3 
= 3 + x2 

- 4x + 7 In lx + 21 + C. 

EXAMPLE 2 f X3 + 2x2 - 20x - 33 dx. 
x2

- 3x- 10 

Step 1 By long division, divide the denominator into the numerator. The result is 

Step 2 

(1) 

x3 + 2x 2
- 20x- 33 Sx + 17 

2 =x+S+ z . 
x - 3x- 10 x - 3x- 10 

k h 
. d Sx + 17 . 

Brea up t e remam er 2 3 
mto a sum, 

x- x-10 

5x + 17 -1 6 
2 =--+--. 

X - 3x - 10 X + 2 X - 5 

One can readily check that Equation 1 is true, 

- 1 6 - (x - 5) + 6(x + 2) 5x + 17 -- + -- = --'----'---'---
X + 2 x - 5 (x + 2)(x - 5) x2 

- 3x - 10 · 

-1 6 
The terms -- and --

5 
are called partial fi"actions. Later on we shall 

x+2 x-
explain how they were found. Notice that the denominators of the partial 
fractions are factors of the denominator of the rational function, 

(x + 2)(x - 5) = x2 
- 3x - 10. 

Step 3 We now have 

f x
3 

+ 2x
2 

- 20x - 33 f f f 1 f 6 
2 

dx = xdx + 5dx + - --2dx + --5dx 
X - 3x - 10 X + X -

xz 
= 2 + 5x - In lx + 21 + 6 In lx - 51 + C. 

EXAMPLE 3 f x
2 

dx 
x3 + 3x2 + 3x + 1 · 

Step 1 This time the numerator already has smaller degree than the denominator, 
so no long division is needed. 

Step 2 Break the rational function into a sum of partial fractions. The denominator 
can be factored as 
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It turns out that 

x 2 1 2 I 
=--- + 

(x+1)3 x+1 (x+1)2 (x+I)3 . 

This can again be readily checked. 

Step3 f(x :21)3dx = f x ~ 1dx + f -~ 1)2dx + f(x: 17dx 

2 1 
=In lx + 11 + ---

1
), + C. 

x + 1 2(x + -

f 2x + 3 
EXAMPLE 4 -,- ---dx. 

r + x + 1 

Step 7 No long division is needed. 

Step 2 The denominator x 2 + x + 1 cannot be factored, i.e., it is irreducible. In 
this case no sum of partial fractions is needed. 

Step 3 To integrate f 2x + 3 dx 
x 2 +X + 1 -

we use the method of completing the square. We have 

x 2 + x + 1 = (x + !l2 + i · 
Let u = x + -!. Then du = dx and 

f 
2x + 3 d f 2(u - !l + 3 f 2u + 2 t x = du = ---tu 

x 2 + x + 1 · u2 + i 11 2 + i 

f 2u f 2 = -2--3du + -2--3du 
u+4 u+4 

f d(u
2 + t) I 1 = 2 3 + 2 du 

11 + 4 !12 + (j3/2)2 

! 3: 4 (2) = In! u2 + - 1 + r; arctan ~ u + C 
4 ; '\! 3 .)3 

= In lx 
2 

+ x + 11 + ~ arctan ( fi( x + 1)) + C. 

We used the trigonometric substitution illustrated in Figure 8.8.1. 

u =(f) tanO, Ju 2 + (\ar = (~3 ) sec8. 

II 

Figure 8.8.1 
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In all four examples the idea was to break the rational function into a sum 
of simpler functions which can easily be integrated. Here are three steps in the 
method. 

METHOD FOR INTEGRATING A RATIONAL FUNCTION f(x) = ~((}) 

Step 1 If the degree of F(x) is :2:: the degree of G(x), apply long division. This puts 
the quotient F(x)/G(x) in the form 

F(x) R(x) 
G(x) = Q(x) + G(x) 

where the degree of the polynomial R(x) is less than that of G(x). 

Step 2 Break the quotient R(x)/G(x) into a sum of partial ji-actions. 

Step 3 Integrate the polynomial Q(x) and each of the partial fractions separately. 

Sometimes Step 1 or 2 will be unnecessary. 

How to do Step 2: We wish to break a quotient R(x)/G(x) into a sum of partial 
fractions. First, factor the denominator G(x) into a product of linear terms of the 
form ax + b, and irreducible quadratic terms of the form ax 2 + bx + c. It can be 
proved that every polynomial can be so factored, but we shall not give the proof here. 
Two theorems from elementary algebra are useful for factoring a given polynomial. 

FACTOR THEOREM 

x - r is a factor of a polynomial G(x) if and only if r is a root of G(x) = 0. 

QUADRATIC FORMULA 

Let a =I= 0. x is a root of ax2 + bx + c = 0 if and only if 
-b ± Jb 2

- 4ac 
X= . 

2a 

If (ax + b)" appears in the factorization of G(x), the sum of partial fractions 
will contain the following terms: 

At Az A" --+ +···+ . 
ax + b (ax + b)2 (ax + b)" 

If (ax 2 + bx + c)" appears, the sum of partial fractions will include 

B1x+C1 B2x+C2 B11x+C" 
-o;-----,:--- + + ... + ---:-"---"--
ax2 + bx + c (ax2 + bx + c? (ax 2 + bx + c)". 

To find the partial fractions we must solve for the unknown constants Ai, Bi, and Ci. 
We show how this is done in the examples. 

EXAMPLE 2 (Continued) From Step 1 we obtained the remainder 
x2 - 3x- ro· 

5x + 17 
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We first factor the denominator x 2 
- 3x - 10. Since it has degree two we 

can find its roots from the quadratic formula. 

-(-3) ± j(-3) 2
- 4·1(-10) 3 ± /49 3 ± 7 

== === --
2. 1 2 2 ' 

X= 

x = S and x = - 2. 

By the Factor Theorem, x 2 
- 3x - 10 has the two factors x - S and x + 2, 

whence 

x 2 - 3x - 10 = (x + 2)(x - S). 

Now we find the sum of partial fractions. It must have the form 

Sx + 17 A B ----- = -- + --
(x + 2) (x - S) x + 2 x - S · 

The way we find A and B is to use (x + 2)(x - S) as a common denominator 
so the numerators of both sides of the equation are equal. 

Sx + 17 
(x + 2)(x - S) 

A(x - S) + B(x + 2) 

(x + 2)(x - S) 

Sx + 17 = A(x - S) + B(x + 2), 

Sx + 17 = (A + B)x + (-SA + 2B). 

The x terms and the constant terms must be equal, so we get two equations 
in the unknowns A and B. 

S =A+ B, 17 = -SA + 2B. 

Solving for A and B we have 

A= -1, B = 6, 

Sx + 17 -1 6 ---- = --- + --
x2-3x-10 x+2 x-s· 

EXAMPLE 3 (Continued} We have 

One might recognize x 3 + 3x 2 + 3x + 1 at once as (x + 1) 3
. Alternatively, 

one can see easily that x = - I is a root of x 3 + 3x2 + 3x + 1. Therefore 
x + 1 is a factor of it. Dividing by x + 1 we get the quotient x 2 + 2x + 1 = 

(x + 1) 2
. 

The sum of partial fractions has the form 

x 2 A B C --- = -- + --- + ---
(x+l)3 x+1 (x+l) 2 (x+l) 3 . 

x 2 A(x + 1)2 + B(x + 1) + C 
---
(x + 1) 3 (x + 1)3 

Then 

x 2 = A(x + 1)2 + B(x + 1) + C, 

x 2 = Ax 2 + (2A + B)x + (A + B + C). 

A = L 2A + B = 0, A + B + C = 0. 
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Solving these three equations for A, B, and C we have 

A= 1, B = -2, C=l. 

Therefore 
x 2 1 2 1 

----= = -- - + c---~ 
(x+1)3 x+1 (x+l)2 (x+1)3 • 

EXAMPLE 4 (Continued) We are given 
2x + 3 

x 2 + x + 1· 

The denominator x 2 + x + 1 has no real roots because the quadratic 
formula gives 

X=-1±~=-1±}=3 
2 2 . 

We therefore proceed immediately to Step 3. 

How to do Step 3: The rational function has been broken up into a sum of a poly­
nomial and partial fractions of the two types 

A 
(1) 

(ax+ W' 

(2) 
Bx + C 

(ax 2 + bx + c)"' 
where ax2 + bx + c is irreducible. 

Polynomials and fractions of type (1) are easily integrated using the Power Rule, 

and the rule, 

f 
un+l 

u"du = --· + C 
n + 1 ' 

n =1- -1, 

f du 
- = ln lui+ C. 
u 

Partial fractions of type (2) can be integrated as follows. 
First divide the denominator by a" so the fraction has the simpler form 

Bx + C 

a"(x 2 + b 1x + c1)". 

When we make the substitution u = x + b;, we find that 

This substitution is called the method of completing the square. Now the integral 
takes the even simpler form 

- ~=- ~+-1 f Bu + C 1 f Bu 1 f C du 
a" (uz + kz)" a" (uz + kz)" a" (uz + kz)"· 

The first integral can be evaluated by putting w = u2 + k2
, dw = 2u du. The second 

integral can be evaluated by the trigonometric substitution shown in Figure 8.8.2, 
u = k tan e. 
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il 

Figure 8.8.2 k 

Example 4 is an integral of the form 

f Bx + C dx 
ax 2 + bx + c · 

and was worked out in this way. 

PROBLEMS FOR SECTION 8.8 

Evaluate the following integrals. 

1 J d.x 
2x - 7 

2 J dx 
(2.x - 1)(.x + 2) 

3 I d.x 
3x(x- 4) 

4 J x + 5 dx 
3.x - 1 

5 I 2x-3 d J 3x
2

- 4x + 2 
X 6 

5 
dx (x - 1)(x + 4) · X-I x3 + xz + x + 1 dx 

2 2 -

8 J x +x-J 1 7 ex 
.x(x + 4) (x- 3)(x + 2) 

9 J dx 
(x + 1)3 

10 J xdx 
(2x - 1) 2 

11 J x 2
- x + 1 1 3 IX 

(x- 1) 
12 J x"' - 2--dx 

X - 1 

13 I x3 ~ xdx 14 I dx 
(x + 1)(x + 3)(x + 5) 

15 J x3- 1 
x3- xzdx 16 J dx 

4 + x 2 

17 I x
2

dx 
16 + x 2 18 J xdx 

x2 + 4x + 5 

19 J X+ 2 d X 
x 2

- 2x- 3 · 
20 I dx 

x 3 + x 

I x4 22 I ( 4 ~x~xz)z dx 21 -1--zdx +x 

23 I 1 dx 
(1 + x 2)(2 + x 2

) · 
24 I x4 

+ 3x + 1 dx 
x2 + x + 1 

25 J dx 
x4 + xz 26 I dx 

x4 - 16 

27 I dx 
x3 + 1 

28 I 3x + 6 d 
x4 - 2x 2 + 1 

X 

29 I xs + 3xz + 1 d . 
x4- 1 x 30 I dx 

x4 + 1 

31 J arctan x 1 . 
----;z-cx 32 Jx2 arctan x dx 
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8.9 METHODS OF INTEGRATION 

During this course we have developed several methods for evaluating indefinite 
integrals, such as the Sum and Constant Rules, change of variables, integration by 
parts, and partial fractions. In the integration problems up to this point, the method 
to be used was usually given. But in a real life integration problem, one will have to 
decide which method to use on his own. 

This section has two purposes. First, to review all the methods of integration. 
Second, to explain how one might decide which method to use for a given problem. 

Almost all the examples and problems in this book involve what are called 
elementary functions. A real function f(x) is called an elementary function if f(x) is 
given by a term 't(x) which is built up from constants, sums, differences, products, 
quotients, powers, roots, exponential functions, logarithmic functions, and trigono­
metric functions and their inverses. These are the functions for which we have intro­
duced names. Given an elementary function f(x), an indefinite integral J f(x) dx may 
or may not be an elementary function. For example, it turns out that the integrals 

J -x> d e x, jJl-7dx 

are not elementary functions. 
What is meant by the problem "evaluate the indefinite integral J f(x) dx"? 

The problem is really the following. 
Given an elementary function f(x), find another elementary function F(x) 

(if there is one) such that 

J f(x) dx = F(x) + C. 

This is a hard problem. Sometimes the integral is not an elementary function 
at all. Sometimes the integral is an elementary function but it can be found only by 
guesswork. There is no routine way to evaluate an indefinite integral. However, one 
can often find clues which will cut down on the guesswork. We shall point out some of 
these clues here. 

The corresponding problem for differentiation is much easier. Given an 
elementary function f(x), the derivative f'(x) is always another elementary function. 
It can be found in a routine way using the rules for differentiation and the Chain Rule. 

The starting point for evaluating indefinite integrals is a list of twelve basic 
formulas which should be memorized. 

A. BASIC FORMULAS 

Let u and v be differentiable functions of x. 

du 
I. du = dx dx, 

II. d(ku) = k du, 

III. d(u + v) = ilu + dv, 

IV. d(u') = ru'- 1 du, 

J du = u + C 

J k du = k J du 

f du + dv = f du + f dv 

f 
u'+ I 

u'du = -- + C, 
r + 1 

r i= -1 



'"+0<0 0 t:.ArUI\11::.1'\J I 11-\.L 1-\1\IU LU\..ll-\nl l niVII\...r rUI'JI,.... I IUI'I,IV 

du f du V. d(ln u) =-, -=In lui+ C 
u u 

VI. d(e") = e" du, fe"du = e" + C 

VII. d(sin u) = cos u du, J cos u du = sin u + C 

VIII. d(cos u) = -sin u du, fsinudu = -cosu + C 

IX. d(tan u) = sec 2 u dtt, j sec2 u du = tan u + C 

X. d(cot u) = -csc2 u du, J csc2 u du = - cot u + C 

XI. d(sec u) = tan u sec u du, J tan u sec u du = sec u + C 

XII. d(csc u) = -cot u esc u du, J cot u esc u du = -esc u + C 

We shall see later, when we discuss the method of integration by change of 
variables, why it is important to actually memorize these formulas. 

B. TABLES OF INTEGRALS 

The integrals of the following functions were computed in Chapters 7 and 8; they can 
be found in the table at the end of the book. These integrals are more complicated and 
need not be memorized. Instead, one should remember that their integrals are 
elementary functions which can be looked up in a table. 

Jtan x dx 

J sec x dx 

f arcsinx dx 

J arctan x dx 

J arcsecx dx 

Jln x dx 

J cot x dx 

J esc x dx 

J arccosx dx 

J arccot x dx 

J arccsc x dx 

The following integrals of powers of trigonometric functions are given by 
reduction formulas in terms of smaller powers. 

fsin" x dx fcos" x dx 



Jtan" x dx 

J sec" x dx 
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J cot" x dx 

J esc" x dx 

C. INTEGRALS OF RATIONAL FUNCTIONS 

In Section 8.8 we explained how to integrate any rational function. The only part of the 
procedure which requires guesswork is factoring the denominator into linear and 
quadratic terms. Once that is done, any rational function can be integrated in a routine 
manner. 

The integrals in lists A and B (which can be found in tables) and the rational 
integrals are easily recognized. Now we come to grips with the real problem. Given 
an integral which cannot be found in a table, we wish to transform it into either a 
rational integral or an integral which can be found in a table. We have three main 
methods for transforming integrals: using the Sum Rule, integration by change of 
variables, and integration by parts. 

D. USING THE SUM RULE 

Sometimes we can break an integral into a sum of two or more easier integrals. We 
may use algebraic identities, trigonometric identities, or rules of logarithms to do 
this. 

EXAMPLE 1 f dx 

Jx+l- Jx" 
By multiplying the numerator and denominator by Jx+l + Jx (i.e., 
rationalizing the denominator), we get the sum 

frx/i Jx = J f+:) + Jx dx = JcJx+t + jx) dx x+l- x x+ -x 

= f Jx+l dx + f Jx dx. 

EXAMPLE 2 J tan 3 x sec2 x dx. Using the identity sec2 x = 1 + tan2 x, we obtain 
a sum of integrals of powers of tan x: 

Jtan 3 x sec2 x dx = Jtan 3 x(l + tan2 x) dx = Jtan 3 x dx + Jtan5 x dx. 

EXAMPLE 3 In {__!}__) dx. Using the rules of logarithms we have 
x+l 

J In { x ·: 
1
) dx = J (2 In x - In (x + 1 )) dx = 2 J In x dx - f In (x + 1) dx. 
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EXAMPLE 4 J sin (x + a) sin (x - a)dx. Using the addition formulas, 

sin (x + a) = sin x cos a + cos x sin a, 

sin (x - a) = sin x cos a - cos x sin a, 

we have 

f sin (x + a) sin (x - a) 

= f (sin x cos a + cos x sin a) (sin x cos a - cos x sin a) dx 

= Jrsin 2 x cos 2 a - cos 2 x sin 2 a) dx 

= cos 2 a J sin 2 x dx - sin 2 a J cos 2 x dx. 

The method of partial fractions also makes use of the Sum Rule. 

EXAMPLE 5 f X 
dx, 

(x - a)(x - b) 
a i= 0, b i= 0. We have 

x A B 
------ = -- + --' 
(x-a)(x-b) x-a x-b 

a b 
A=--, B = b--, 

a-b -a 

f X -dx = _a_ I~+ _b_ f~. 
(x - a)(x - b) a - b x - a b - a x - b 

E. INTEGRATION BY CHANGE OF VARIABLES (Integration by Substitution) 

Suppose an integral has the form 

I f(g(x))g'(x) dx. 

When we make the substitution u = g(x), du = g'(x) dx, the integral becomes 
J f(u) du. This new integral is often simpler than the original one. 

EXAMPLE 6 J ~ dx. Let tl = 2x + 1, du = 2 dx. Then 

I J2x + 1 dx = I'-~ • t du. 

This can be integrated using the Constant and Power Rules, 

r.:.- du = _2- = -u3!2 = -(2x + 1)312 . f 
1 lu3i2 1 1 

.yu 2 f 3 3 

Clue If an integral has the form f(ax + b) dx, try the substitution u = ax + b, 
du = a dx. 
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EXAMPLE 7 J 1
1 

dx. Let u = ,j~. Then du = ~dx, dx = 2u du. We get 
v'X + 1 2Jx 

the rational integral 

J---c=:-C1_ dx = f _2_u_ du. 
-vx+1 u+1 

Clue ff an integral inwh·es _fi:, cry the substitution u = vf';, dx = 2u du. If an 
integral involves .:j;:, try u = .:j;:, dx = nu" -J du. 

EXAMPLE 8 5 sin (3x 2 
- 1)x dx. Let u = 3x2 

- 1, du = 6x dx. Then 

Jsin(3x 2
- 1)xdx = J(sinu)idu. 

Clue If an integral has the form J f(ax 2 + b)x dx, try u = ax 2 + b, du = ax dx. 

If the derivatives in formulas I-XII are solidly memorized, then one can often 
recognize integrals of the form J f(g(x))g'(x) dx and find the right substitution. Here 
are three more clues. 

Clue Given 5 f(a"')ax dx, put rr' = ex In a and try the substitution u = rr', du = 
(In a)ax dx. 

Clue Given J f(sin x) cos x dx, try u = sin x, du = cos x dx. 

Clue GiL· en J f(sin x, cos x) dx, try the substitution u = tan (x/2). It can be sho\\'n 
using trigonometric idelltities that 

EXAMPLE 9 

1 - l/2 
cosx = ---2, 

1 + ll 

. 2u 
Sill X = ---2 , 

1 + !I 
dx=~. 

1 + l/2 

f 1 . X 
. dx. Puttmg u = tan -

2
, we obtain the rational integral 

2 smx + cosx 

f 
1 ', __ 2_2du = f---2-----cc,du. 

4u 1 - w 1 + u 1 + 4u - w 
--+--
1 + !12 1 + !12 

F. TRIGONOMETRIC SUBSTITUTIONS 

If the simple substitutions corresponding to the basic formulas I-XII do not work. 
look for a trigonometric substitution. Trigonometric substitutions correspond to the 
formulas for derivatives of the inverse trigonometric functions. We have not asked you 
to memorize these formulas, because it is easier to remember the method of trigono­
metric substitution. The three trigonometric substitutions can be remembered by 
drawing right triangles. They are shown once more in Figure 8.9.1 They often result 
in an integral of powers of trigonometric functions of e. 
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X= a sin 0 

.ja2 - x 2 = a cos e 
Figure 8.9.1 

X 

a 

X= a tan 0 

.)a 2 + x 2 = a sec e 

X 

a 

x =a sec e 
.)x2 - a 2 =a tan(} 

Clue If an integral contains "/a2 
- x 2

, '\~ + x 2
, or .J x 2 

- a2
, draw a triangle 

and label its sides so that it can be used to find the appropriate trigonometric 
substitution. 

EXAMPLE 10 f x 2 Jx 2
- 62 dx. We draw the triangle shown m Figure 8.9.2 and 

use the substitution x = 6 sec 8. 

Figure 8.9.2 6 

Then Jx 2 
- 62 = 6 tan 0, dx = 6 tan (1 sec (J dB, and the integral becomes 

J 62 sec2 8 · 6 tan 8 • 6 tan 8 sec 8 dB 

G. INTEGRATION BY PARTS 

= J 64 tan 2 8 sec 3 8 dB= 64 J(sec 2 8- 1) sec 3 8 dB 

= 64 J sec5 8 dB - 64 J sec3 8 dB. 

When all else fails, try integration by parts. If u and v are differentiable functions of x, 
then 

J u dv = uv - J v du. 

To use the method on a given integral f f(x) dx, we must break j(x) dx into a product 
of the form u dv. u and dv are chosen by guesswork. The method works when we are 
able to evaluate both the integrals 

Jdv, J v du. 

One should therefore look for a dv whose integral is known. 
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EXAMPLE 11 f x In x dx. Try u = In x, dv = x dx. Then 

du = 1/x dx, v = x 2j2, 

J x
2 J x2 

1 x
2 

x
2 

xinxdx = -Inx- --dx = -Inx-- +C. 
2 2 X 2 4 

We give two more clues and illustrate them with examples. 

EXAMPLE 12 f (In x)2 dx. Put u = (In x) 2
, dv = dx. Then 

du = 2In x dx, 
X 

V =X, 

f(ln x)2 dx = x(ln xf - 2 fin x dx. 

Clue Sometimes u = f(x), dv = dx can be used to evaluate an integral f f(x) dx by 
parts. 

Clue Sometimes one can pe1jorm two integrations by parts and solve for the desired 
integral. 

EXAMPLE 13 f sin (In x) dx. Let u =sin (In x), dv = dx. Then 

d 
cos (In x) 

u = dx 
X ' 

V =X. 

Integrating by parts, 

J sin (In x) dx = x sin (In x) - J cos (In x) dx. 

Integrating by parts again, 

J cos (In x) dx = x cos (In x) + J sin (In x) dx. 

Then J sin (In x) dx = x sin (In x) - x cos (In x) - J sin (In x) dx, 

J sin (In x) dx = ! x sin (In x) - ! x cos (In x) + C. 

PROBLEMS FOR SECTION 8.9 

Evaluate the following integrals. 

f 3 sin x + 4 cos x dx 

3 f X d 
.jxz- 1 x 

2 

4 

Jtan (3x - 5) dx 

f xe-x dx 
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J dx f .'(3- 4 5 
)x + 2- :,;~ 

6 --
1

dx 
x+ 

L +1fi dx J sec
2 x 7 8 dx 

1 + tanx 

J x2j4.:2 + 1 dx 
f el,x 

9 10 - 2 dx 
X 

11 f sinjx /· 12 J x- 3 lnx dx fio 
X 

13 J x\/x- 3dx 14 f x3 
)1 - 9xz dx 

IS Jln (3x + 4) dx 16 f X- 2 dx 
3x(x + 4) · 

17 Jx tan 2 x dx 18 f x(x ~ 1) 3 dx 

19 Jx sin (3x2 + I) dx 20 J dx 
~+ 1 

21 Jln (x2 + x 3) dx 22 Jx 2e·' dx 

23 f sin 0 In (cos 0) dO 24 J e.;; dx 

25 f sin 0 dO 
2- coso 

26 fJ2x + 3dx 

27 J e·'(e-' + 1 )3 dx 28 J 1 dx 
x . .J1 - x 2 

29 Jsin pdx 30 J 2x 2x + 1 dx 

31 J ______2in~ dx 
1 +cosh x 32 J~-~fi 

33 J In x 1 ---(,X 
(1 + x)2 . 34 J cos 3 .'c./sin x dx 

35 Jsin 3 xj1 -cos x dx 36 Jft+ldx 

37 f 1 dx xj2+7. 38 f X- 2 d X 3x(x + 4) · 

39 j,./~~dx 40 J cos3 x sin 3 x dx 

41 J arcsin (5x - 2) dx 42 -----dO f 1 
sin 0 +cos 0 

43 J e' cos x dx 44 f 1 dx 
x(l + (In x) 2) · 

45 J x4 +I f ,z -~dx 46 p=ldx x2 +I I 

47 Jx arcsec (x 2) dx 48 Jx;;-=2dx 

49 J In (x \/4.~-=-l) dx 50 J4-'sin (4-') dx 
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51 f J4x2- 1 dx 
x2 52 

53 f arctan Jx dx 54 

55 Jxsec(4x2 + 7)dx 56 

57 f x3 
)1- 9x2 dx 58 

59 J dx 
x2~ 

60 

61 Jcos(~)dx 62 

63 f dx 
(1 _ x2)5/2 64 

65 f cos2 (In x) dx 

EXTRA PROBLEMS FOR CHAPTER 8 

1 

3 

5 

7 

9 

11 

13 

15 

16 

18 

20 

22 

Evaluate lim g..&" - 2x. 

Find dy where \1 = ecosB d() J • 

dy 
Find -d where y = csch 3 x. 

X 

Evaluate J Y sin (3x) dx. 

Evaluate f ex~dx. 

2 

4 

6 

8 

10 

Evaluate f ex sinh X dx. 12 

dy 
Find dx where y = In [(x2 - 1)4

]. 14 

. dy I (3x + 2)(5x - 4)1 
Fmd dx where y =In (2x _ 1)(x2 + 1) . 

. In t 
Evaluate hm -1 (I ) . 

•~ron nt 
17 

f sec2 B 
Evaluate 

1 
BdB. 

+tan 
19 

f
o 1 

Evaluate -dx. 
-IX 

21 

Find all solutions of dy/dx = al. 23 

f x 3 ex' dx 

f X d .j4X+1 X 

f 1 dB 
4 +sin B 

f tan B In (sin B) dB 

JJ4x
2

+1 
2 dx 

X 

Jln (1 + x2
) dx 

J dx 
1 -cos 3x 

Evaluate lim 23x-l - 32x. 

Sketch the curve y = csch x. 

Evaluate Jpax. 
1 - x 2 

f dx 
Evaluate ~· 

v eZx- 1 

Evaluate f x 2 sinh x dx. 

Find~; where s = e' In t. 

Evaluate lim (1 + t)21'. 
.~o 

Evaluate J ( 1 
b /x. 

X a+ X 

f
ro 1 

Evaluate -dx. 
o X 

Find all solutions of dyfdx = axfy. 

24 A falling object of mass m is subject to a force due to gravity of- mg and a force due to 
air resistance of - kv, where vis its velocity. If v = 0 at timet = 0, find vas a function of 
time. 
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25 

26 

27 

28 

30 

32 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

D 44 

D 45 

D 46 

D 47 

D 48 

8 EXPONENTIAL AND LOGARITHMIC FUNCTIONS 

The pressure P and volume V of a gas in an adiabatic process (a process with no heat 
transfer) are related by the differential equation 

dP 
P + kV dV = 0, 

where k is constant. Solve for Pas a function of V. 

An electrical condenser discharges at a rate proportional to its charge Q, so that 
dQ;dt = - kQ for some constant k. If the charge at time t = 0 is Q0 , find Q as a function 
oft. 

Newton's Law of Cooling states that a hot object cools down at a rate proportional to 
the difference between the temperature of the object and the air temperature. If the 
object has temperature 140° at t = 0, 100° at t = 10, and soc at t = 20, find the tempera­
ture y of the object as a function oft, and find the air temperature. 

Find ddy where y = x< 2
x

1. 
X 

Evaluate J sec (50) dO. 

Evaluate f,"(l 1x 2
)- I dx. 

Evaluate Jo tan 2 0 dO. 

29 

31 

33 

dy 
Find dt where y = (4t + 1)'(t- 3) 2 '+ 1

. 

Evaluate Jtanh x dx. 

Evaluate J (x + 1 )3
'
2 dx. 

Find the surface area generated by rotating the curve J' = sin x, 0 ::::; x ::::; rr, about the 
x-axis. 

Find the surface area generated by rotating the parabola y = x 2
, 0 ::::; x ::::; 1, about the 

y-axis. 

Approximate e0
·
03 and give an error estimate. 

Approximate In (0.996) and give an error estimate. 

Use the trapezoidal rule with Ll.x = 1 to approximate In 6 and give an error estimate. 

Find the centroid of the region under the curve y = e-', 0 ::::; x ::::; 1. 

Find the centroid of the region under the curve y = In x, 1 ::::; x ::::; 2. 

Find the length of the curve y = e-', 0 ::::; x ::::; 1. 

Find the surface area generated by rotating the curve y = ex, 0 ::::; x ::::; 1, about the 
x-axis. 

Obtain a reduction formula for J x"ex dx. 

Prove that the function y = x·", x > 0, is continuous, using the continuity of In x and 
ex. 

Let y = f(x) be a function which is continuous on the whole real line and such that for all 
u and v,f(u + v) = f(u)f(v). Prove that f(x) = ax where a = f(1). Hint: First prove it 
for x rational. 

Prove that for all x > 0, 

Hint: Use the formula 

I 
>--. 

X + I 
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EXTRA PROBLEMS FOR CHAPTER 8 

Show that the improper integral J~ ~e-x dx converges. Hint: Show that the definite 
integrals J~ ~e-x dx are finite and have the same standard part for all positive in­
finite H. 

Show that s: x e-x' dx converges. 

The inverse square law for gravity shows that an object projected vertically from the 
earth's surface will rise according to the differential equation 

d2y k 
dt2 = - y2' t::::: 0. (1) 

Here y is the height above the earth's center. If v = dyjdt is the velocity at time t, then 

d2y dv dv dy dv 
-=-=--=v-
dt2 dt dy dt dy' 

so Equation 1 may be written as 

dv k 
(2) v dy = - y2. 

Assume that at timet = 0, y = 4000 miles (the radius of the earth) and v = v0 (the initial 
velocity). Solve for velocity as a function of y. Find the escape velocity, i.e., the smallest 
initial velocity v0 such that the velocity v never drops to zero. 
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INFINITE SERIES 

9.1 SEQUENCES 

492 

DEFINITION 

An infinite sequence is a real jimction whose domain is the set of all positive 
integers. 

A sequence a can be displayed in the form 

a(1), a(2), ... , a(n), .... 

The value a(11) is called the nth term of the sequence and is usually written all. The 
whole sequence is denoted by 

Hyperintegers, which were introduced in Section 3.8, are a basic tool in this chapter. 
Since all is defined for every positive integer 11, aH is defined for every positive infinite 
hyperinteger H. 

EXAMPLE 1 If the sequence is simple enough one can look at the first few terms and 
guess the general rule for computing the nth term. For instance: 

1' 1' 1' 1' 1' ... 
-1,0,1,2,3, ... 

-2, -4, -6, -8, -10, ... 

L-l.L-Ll. ... 

I l 1 I 
1'2"3'4'5'"' 

all= 1 

all= 11- 2_ 

all= -2n 

all= (-1)"-1 

all=-
11 

The graph of a sequence will look like a collection of dots whose x-coordinates 
are spaced one apart. Some examples of graphs of sequences are shown in Figure 9. l .1. 
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Gn • 

• 

• Gn =II- 2 

2 3 4 5 6 7 11 

• 

an • • • • 
Un = ( -l)n -1 

2 3 4 5 6 7 11 

• • • 

Un • 
• Un =.!. 

• II 

2 3 4 5 6 7 II 

Figure 9.1.1 

EXAMPLE 2 The sequence 

3.1, 3.14, 3.141, 3.1415, 3.14159, ... 

is defined by the rule 

an = n to n decimal places, 

h . m h . h" hh m m+l t at IS, an = 
10

n w ere mISt e mteger sue t at 
10

n ::;; n < 10"" 

EXAMPLE 3 The number n !, read n factorial, is defined as the product of the first n 
positive integers; 

n!=1·2·····n 

(n !) is an important sequence. Its first few terms are 

1, 2, 6, 24, 120, 720, .... 

By convention, 0! is defined by 0! = 1. 

DEFINITION 

An infinite sequence (a,.) is said to converge to a real number L if aH is infinitely 
close to L for all positive infinite hyperintegers H (Figure 9.1.2). Lis called the 
limit of the sequence and is written 

L = lim an. 
n-x 

493 



494 9 INFINITE SERIES 

L --------------.-.----------------------/ 
• a 6 a; / 

• 
a3 

• 
(/2 

• {/ 1 

2 3 

lim a,=L 
II -IC() 

Figure 9.1.2 

• a5 / 
a1 / 

4 5 6 7 II 

/ 

/ 
/ 

/ 

/ 
/ 

/ 

/ 

/ 
/ 

~--------------

A sequence which does not converge to any real number is said to diverge. If 
au is positive infinite for all positive infinite hyperintegers H, the sequence is 
said to diverge to oc, and we write 

lim a"= oc. 
11- oc 

Sequences can diverge to - x, and also diverge without diverging to oo or 
to -::JJ. 

Throughout this chapter, H and K will always be used for positive infinite 
hyperintegers. One can often determine whether or not a sequence converges by 
examining the values of au for infinite H. The definition gives us some convenient 
working rules. 

(1) If au is infinitely close to L for all H, the sequence converges to L. 

(2) If we can find au and aK which are not infinitely close to each other, the 
sequence diverges. 

(3) If at least one aH is infinite, the sequence diverges. 

(4) If all the aH are positive infinite, the sequence diverges to oc. 

EXAMPLE 1 (Continued) 

lim 1 = 1, converges, because aH = 1 for all H. 
IJ-+'J) 

lim n - 2 = (f), diverges, because H - 2 is positive infinite for all H. 
JJ--+O'J 
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lim (- ln) = -OJ, diverges, because - lH is negative infinite for all H. 

lim (- 1 tis undefined, diverges, because (- 1 fH = 1 but (- 1 )2H + 1 = - 1. 

1
. 1 
1m - = 0, converges, 

n-a.oo 11 

1 
because H has standard part zero. 

EXAMPLE 2 (Continued) The sequence 

3.1, 3.14, 3.141, 3.1415, 3.14159, ... , a.,, ... 

where a., = (n to n decimal places), converges to n. That is, 

lim an= n. 
n~oo 

PROOF Let H be positive infinite. For some K, 

K K + 1 
lOH:::;;n<~. 

Then 

But 1/lOH is infinitesimal, so aH ~ n. 

EXAMPLE 3 (Continued) lim 11! = OJ. 
n~ro 

PROOF For any n > 1, we have 

(n- 1)! ~ 1, n! = n•(n- 1)! ~ n. 

Therefore for positive infinite H, H! ~ His positive infinite. 

Given a function f(x) defined for all x ~ 1, we can form the sequence 

f(l), f(l), ... , f(n), .... 

The graph of the sequence (f(n)) is the collection of dots on the curve y = f(x) where 
the x-coordinate is a positive integer (Figure 9.1.3). 

If lim f(x) = L, then lim f(n) = L because .f(H) ~ L for any positive 

infinite H. 

. 4n 2 + 1 . 4x2 + 1 
EXAMPLE 4 hm 2 = hm 2 = 4. 

n~ron + 3n x-rox + 3x 

Similarly, if lim f(x) = OJ then lim .f(n) = OJ. 

EXAMPLE 5 lim ln(n) = lim ln(x) = OJ. 
n-oo x-+co 
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f(x) 

L -------------7~~!·(7)-------------------/ 

/(5) /// 
ffl) / 

j{3) /// 
/(2) 

/ 
/ 

/ 
---+~--4--+--~4--+--r---------r<--------------

2 3 4 5 6 7 x // 
/ 

/ 

lim f(x) = L, 

lim /(n) = L 
J1-1CO 

f(H- 1)/ /(HJ 

Figure 9.1 .3 

If lim f(x) = L, then lim f(ljn) = L. If His positive infinite, then s = l/H is 
x-+Q+ n-+::o 

infinitesimal and 

f(l/H) = f(s) ~ L. 

EXAMPLE 6 lim c 1
"' = lim ex= c0 = I, if c > 0. 

n-x x-0"'" 

EXAMPLE 7 Evaluate the limits 

( 1) II lim 1 +-
fl-+ X f 

(a) where c > 0, 

(b) lim(l+~)c 
IJ-+ oc 11 

where c > 0, 

( 1) II lim 1 +- . 
n-+ x 11 

(c) 

The answers are 

( 1)" ( 1)x lim 1 + - = lim 1 + - = x. 
II__.:G C x-+oc C 

(a) 

lim (1 + ~)c = lim (1 + xr = 1. 
Jl--l'X Jl x_.O-.-

(b) 

( 1) 11 

( l)x lim 1 + - = lim 1 + -: = e. 
n-+oc J1 x-+x X 

(c) 
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The limit lim .. ~ oo (1 + 1/n)" = e is closely related to compound interest. 
Suppose a bank pays interest on one dollar at the rate of 100% per year. If the 
interest is compounded 11 times per year the dollar will grow to ( 1 + 1/n) after 
1/n years, to (1 + 1/nt after k/n years, and thus to (1 + 1/n)" after one year. Since 
lim .. ~oc (1 + 1/11)" = e, one dollar will grow toe dollars if the interest is compounded 
continuously for one year, and to e' dollars after t years. 

More generally, suppose the account initially has a dollars and the bank 
pays interest at the rate of b% per year. If the interest is compounded n times per 
year, the account will grow as follows: 

0 years 

1 
-years 
11 

k 
-years 
11 

1 year 

a 

a(l + ~.!) 
100 11 

( 
b 1) k 

a 1 + -·-
100 11 

a 1 + -·-( 
b 1)" 

100 11 

If the interest is compounded continuously the account will grow in one year to 

( 
b 1) 11 

lim a 1 + -·­
.. ~oo 100 11 

100 b 
We can evaluate this limit by setting x = b 11, 11 = 

100 
x. 

( 
b 1) 11 

lim a 1 + -·­
n~co 100 11 ( 

1) bx/100 
lim a 1 +-
x-+co X 

Thus the account grows to aeb1100 dollars after one year and to aeb'1100 dollars after 
t years. 

Sometimes we may wish to know how rapidly a sequence grows. If two 
sequences approach oo and their quotient also approaches oo, 

lim a11 = oo, 
n___..ro 

the sequence <a .. ) is said to grow faster than the sequence <b .. ). For each infinite H, 
both a8 and b8 are infinite. But a8 jb8 is still infinite, so a8 is infinite even compared 
to b8 . 

THEOREM 1 

Each of the following sequences approaches oo. 

lim 11! = oo, 

limb"= oo if b > 1, 

lim 11c = 00 if c > 0, 

lim ln (11) = oo. 
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M oreorer, each sequence in the list gro\\'s faster than the next one, 

(i) I. n! !Ill-= X; 
n-x b11 

(b > 1), 

b" 
(b > 1, (ii) lim---;:= x: c > 0), 

u--+x 11 

IJC 
(iii) lim~-= X; (c > 0). 

~~~x ln(n) 

PROOF Let H be positive infinite. We already know that lnH is positive infinite. We 
must show that each of the following are also positive infinite. 

H! bH He 
bw w· lnH· 

It is easier to show that their logarithms are positive infinite. We need the 
fact that. by !'Hospital's rule for x-fx, 

l
. lnx . 1/x 
1m-= lim-= 0 

x--+oc X x- z 1 ' 

InK 0 f I . fi . so K ~ or aIm mte K. 

H! 
(i) Let m > b. Then bH" 

In(~})= In1 + ··· + In(m- 1) + Inm + ··· + InH- Hlnb 

> (H- m) Inm- H lnh = H(lnm- In h)- mlnm. 

Since 111 > b. In m > In b, and In (H !jbH) is positive infinite. 

blf 
(ii) w 

In(~) = H lnb- c lnH = H(lnb- c I~H)· 

lnH 
Since b > 1, In b > 0. H 1s infinitesimal. Therefore ln(bHjfiC) 1s 

positive infinite. 

He 
(iii) L K l H InH· et = n . 

( 
He ) ( ln K) In In H = c In H - ln(ln H) = K c - K . 

Since c > 0, K is infinite, and (In K)/K is infinitesimal, ln(W/In H)) is 
positive infinite. 

Note: For 11 = 1, the term 1{/(lnn) 1s undefined, so we should start the 
sequence with n = 2. 
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EXAMPLE 8 From Theorem 1, the following sequences all approach :;::. 

J2J3J4 ~ 
ln2' ln3 'Jn4' · · · 'Jn(n)' · · · 

21 22 23 24 211 
'iTO' 210' 3f0' 410' ... '-;;ro· ... 

1! 2! 3! 4! n! 
100 1' 1002 ' 1003' 1004 ''''' 10011 ''''' 

If lim a11 = x, then lim 1ja11 = 0 because 1/aH will be infinitesimal. 
n-x n--+x 

COROLLARY 

(i) lim b- 11 = 0 if b > 1. 
n--+x 

(ii) lim 11-c = 0 ifc > 0. 
n~cc 

Like other types of limits, limits of sequences have an 8, N condition. It will 
be used later to prove theorems on series. 

THEOREM 2 (8, N Condition for Limits of Sequences) 

lim a"= L 
n-+co 

if and only if for every rea/number 8 > 0 there is a positive integer N such that 
the numbers 

aN) aN+l' aN+2' · · ·, aN+m' · · · 

are all within 8 of L. 

The proof is similar to that of the t:, c5 condition for limits of functions. The 
8, N condition says intuitively that a11 gets close to L as the integer n gets large. 

A similar condition can be formulated for lim 11 ~x a11 = x. 

THEOREM 3 (~>, N Condition for Infinite Limits) 

lim a11 = x 
11-00 

if and only if for every real number B, there is a positive integer N such that the 
numbers 

aN, aN+ 1, aN+l, · · ·, aN+m, · · · 

are all greater than B. 

We conclude this section with another useful criterion for convergence. 



CAUCHY CONVERGENCE TEST FOR SEQUENCES 

A sequence (an) converges if and only if 

(1) aH ~ aK for all infinite Hand K. 

PROOF First suppose (an) converges, say limn~;,-_ an = L. Then for all infinite Hand 
K, 

Now assume Equation 1 and let H be infinite. There are three cases to 
consider. 

Case 7 aH is finite. Then for all infinite K, 

st(aK) = st(aH), 

so the sequence converges to st(aH). 

Case 2 aH is positive infinite. For each finite m, aH ;:::: a111 + 1. Among the hyper­
integers { 1, 2, ... , H - 1 }, there must be a largest element M such that 
aH ;:::: a,u + 1. But this largest M cannot be finite, and since aM 9: aH, M 
cannot be infinite. Therefore Case 2 cannot arise. 

Case 3 aH is negative infinite. By a similar argument this case cannot arise. 

Therefore, only Case 1 is possible, whence (an) converges. 

PROBLEMS FOR SECTION 9.1 

In Problems l-8, find the nth term of the sequence. 

1 1 1 1 1 2 1 2 3 4 
2'4'8'16'''' 2 1 3'4'5' ... 

3 -1, 2, -3, 4, -5, 6, ... 4 2, 5, 10, 17, 26, 37, ... 

5 1, 1±, 1;i, Ii, ... 6 1, 3, 6, 10, 15, ... 

7 2, 4, !6, 256, ... 8 0.6, 0.61, 0.616, 0.6161, ... 

Determine whether the following sequences converge, and find the limits when they exist. 

9 a,= j; 10 
11+2 

an=-,~ 

1 I 
112 

(/ =11---
" II+ I 

12 a,= 11(-l)" 

13 
(-!)" 

14 
II! 

an=-~- an = 113 J11 
15 

II 
a, = {ln(n))2 16 au= -<Y~1 

17 a, = ln{ln(11)) 18 a, = .. jn2 + 11 - 11 

19 a,= (~;;-~)" 20 
3n 2 

- 2n + 4 
a, = 2t;2 - 11 + T 

/12 + 1 
22 

n3 - 2 
21 a,= 113 + 4 a=---

" 11 2 + 5 



23 

25 

27 

29 

30 

31 

32 

2" + 3" 
a .. = 2"- 3" 

a" = n! - 10" 

ln(n) 
a=---
" ln(ln(n)) 

(n + 1)" 
an=~ 
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24 

26 
n! + 2 

a=~~~-

" (n + 1)! + 1 

28 

Formulate an s, N condition for lim"~"' a .. = - x. 

Show that if lim .. ~ x a .. = L and lim .. ~"' b., = M then lim .. ~ x (a .. + b .. ) = L + M. 

Show that if lim .. ~"' a .. = L then lim .. ~ x ca .. = cL. 

~ SERIES 

The sum of finitely many real numbers a 1 , a2 , ... , a, is again a real number 
a 1 + a2 + · · · + a.,. Sometimes we wish to form the sum of an infinite sequence of 
real numbers, 

a 1 + a2 +···+a,+···. 

For example, if a man walks halfway across a room of unit width, then half of the 
remaining distance, then half the remaining distance again, and so forth, the total 
distance he will travel is an infinite sum 

In n steps he will travel 1 - ;, units, 

1 1 1 1 1 - +- +- + ... +- = 1 - -. 
2 4 8 2" 2" 

Thus he will get closer and closer to the other side of the room, and we have the limit 

lim (~ + ~ + ~ + .. · + ~) = 1. 
n~oo 2 4 8 2" 

It is natural to call this limit the infinite sum, 

1 1 1 1 1 
1=-+-+-+-+ .. ·+-+"', 

2 4 8 16 2" 

We can go from this example to the general notion of an infinite sum. When 
we wish to find the sum of an infinite sequence <a,) we call it an infinite series and 
write it in the form 

a 1 + a2 + .. · +a,+ .. ·. 

Given an infinite sequence <a,), each finite sum 



::JU.< ~ 11'-H·II\11 I 1:: ~t::KII:::O, 

is defined. This sum is called the nth partial sum of the series. Thus, with each infinite 
senes 

a1 + a2 + · .. +an+ .. ·, 

there are associated two sequences, the sequence of terms, 

al~a2,•··,an,···' 

and the sequence of partial swns, 

S1 ,S2 , ... ,S11 , ••• where S, = a1 + · · · +a,. 

For each positive hyperreal number H, the i1~finite partial sum 

SH = (/1 + ... + aH 

is also defined, by the Extension Principle. 
The sum of an infinite series will be a real number which is close to the nth 

partial sum for large n, and infinitely close to the infinite partial sums. Before stating 
the definition precisely, let us examine some infinite series and their partial sum 
sequences, and guess at their sums. 

DEFINITION 

Table 9.2.1 

Series 

1 + 0.1 + O.Ql + 0.001 + · · · 
1+t+!+t+n+· .. 
1-1+1-1+1-1+··· 
1+1+1+1+1+··· 
1+t+t+t+t+··· 
3 + 0.1 + 0.04 + 0.001 + .. 

Partial sums 

1, 1.1, 1.11, 1.111, .. . 

I, It, l;t, 1~, Hi ... . 
1, 0, 1, 0, 1, 0, .. . 
1' 2, 3, 4, 5' .. . 
1, f, 1/-, ft, 1io7

, · · · 

3, 3.1, 3.14, 3.141, ... 

Sum 

1~ 
2 
? 
% 

? 
n 

The sum of an infinite series is defined as the limit of the sequence of partial 
sums if the limit exists, 

a1 + a2 + .. · +a,.+ · .. = lim (a 1 + · · + a,.). 
11---)- 00 

The series is said to converge to a rea/number S, diverge, or diverge to ex,, if 
the sequence of partial sums converges to S, diverges, or diverges to CXJ, respec­
tively 

The sum of an infinite series can often be found by looking at the infinite 
partial sums a 1 + · · · + aH. Corresponding to our working rules for limits of 
sequences, we have the following rules for sums of series. 

(l) If the value of every infinite partial sum is finite with standard part S, 
then the series converges to S, 

a1 + · · · +a"+ · · · = S. 

(2) If there are two infinite partial sums which are not infinitely close to 
each other, the series diverges. 
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(3) If there is an infinite partial sum whose value is infinite, then the series 
diverges. 

(4) If all infinite partial sums have positive infinite values, the series 
diverges to CD, 

a 1 + · · · + a. + · · · = CD. 

Given an infinite series, we often wish to answer two questions. Does the 
series converge? What is the sum of the series? Our next theorem gives a formula for 
the sum of an important kind of series, the geometric series. 

For each constant c, the series 

1 + c + c2 + · · · + c" + · · · 
is called the geometric series for c. 

THEOREM 1 

If lei < 1, the geometric series converges and 

2 1 
1 + c + c + · · · + c" + · · · = --. 

1 - c 

PROOF For each n we have 

(1 - c)(l + c + c2 + · · · + c") 

= (1 + c + c2 + · · · + c") - (c + c2 + · · · + c" + c"+ 1
) 

= 1 - c"+ 1 . 

The nth partial sum is therefore 

1 - c"+ 1 

1 + c + c2 + · · · + c" = ----
1- c 

The infinite partial sum up to H is 

1 - CH+ 1 

1 + c + · · · + cH = ----
1 - c . 

Since lei < 1, cH+ 
1 is infinitesimal, so 

EXAMPLE 1 

1 
1 + C + · · · + CH ~ --. 

1 - c 

1 1 
1 + 0.1 + 0.01 + 0.001 + ... = = 1-

1 - 1/10 9. 

1 1 1 1 2 
1 - 2 + 4- 8 + ... = 1 - ( -1/2) = 3" 

EXAMPLE 2 Every sequence 
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is the partial sum sequence of an infinite series, namely 

For example, 
1 1 1 1 

1'2'3'4'····;···· 

is the partial sum sequence of 

1 + (~- 1) + (~- ~) + ... + (n ~ 1 - ~) + ... 

1 1 1 
or 1 - - - - - · · · - - · · · . 

2 6 n(n + 1) 

The Cauchy Convergence Test from the preceding section takes on the 
following form for series. 

CAUCHY CONVERGENCE TEST FOR SERIES 

al + a2 + · · · + a11 + ···converges !f and only if 

(1) for all infinite H < K, aH+ 1 + aH+ 2 + · · · + aK::::::: 0. 

DISCUSSION The sum in (1) is just the difference in partial sums, 

A very important consequence of the Cauchy Convergence Criterion is that 
all the infinite terms of a convergent series must be infinitesimal. We state this 
consequence as a corollary, which is illustrated in Figure 9.2.1. 

All series 

Figure 9.2.1 

COROLLARY 

If the series a1 + a2 + · · · + a, + ···converges, thenlim11 ~x a, = 0. That is, 
aK ::::::: 0 for every i11finite K. 

PROOF This is true by the Cauchy Criterion, with K = H + 1. 

Warning: The converse of this corollary is false. It is possible for a sequence 
to have limn~ co a11 = 0 and yet diverge. We shall give an example later (Example 3). 

The Cauchy Convergence Criterion and its corollary can often be used to 
show that a series diverges. Table 9.2.2 sums up the various possibilities. In this 
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table it is understood that 

a1 + az + ... +a"+ ... 

is an infinite series and H, K are positive infinite hyperintegers with H < K. 

Table 9.2.2 Cauchy Convergence and 
Divergence Tests 

Hypothesis 

allaH+I+···+aK~o 
all aK ~ 0 
someaH+I + ··· + aK ;:j:; 0 
some aK;j:; 0 

Conclusion 

Converges 
none 
Diverges 
Diverges 

We shall give many other convergence tests later on in this chapter. For 
convenience there is a summary of all these tests at the end of Section 9.6. 

THEOREM 2 

(i) If lei 2 1 the geometric series 1 + c + c2 + · · · + c" + · · · diverges. 

(1.1") 'T''h h . . 1 1 1 1 d .. , e armomc senes + - + - + · · · + - + · · · iverges. 
2 3 11 

PROOF (i) For infinite H the term cHis not infinitesimal, so the series diverges. 

(ii) Intuitively this can be seen by writing 

1 + 1 + ct + t) + c~ + i + t + k) + · · · 
2 1 + t + ct + t) + ck + k + k + k) + · · · 
= 1 + t + t + t + ... = Cf). 

Instead we can use the Cauchy Test. We see that for each n, 

1 1 1 1 1 
2" + 1 + 2" + 2 + ... + 2"+ 1 2 2". 2"+ 1 = 2" 

Therefore for infinite H, 

Since the above sum is not infinitesimal the series diverges. 

EXAMPLE 3 The harmonic series 

1 1 1 
1+-+-+···+-+··· 

2 3 n 

is the example promised in our warning. It has the property that 

1. 1" 1 
1m an= Im- = 0 

n---+oo n---+oo n 

and yet the series diverges. 
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PROBLEMS FOR SECTION 9.2 

In Problems 1-13 find the nth partial sum, determine whether the series converges, and find the 
sum when it exists. 

1 1 + t + b + ... + (!)" + ... 

2 1-t+!-···+(-tJ"+··· 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

1 + .t + -&- + ... + (,t)" + ... 

1 - 2 + 4 - 8 + ... + (- 2)" + ... 

( 1-~) + (~-~) + (~-_1_) + ... + (_!__ __ 1 ) + ... 
2 2 6 6 24 n ! (n + 1) ! 

(a 1 - a2) + (a2 -a3) +···+(a.,- a.,+ 1) +···Where lim.,_x a.,= 0. This is called a 
telescoping series. 

1 1 1 1 1 1 
-+-+ ···+ -~-+ ···. Hint:~~-=----. 
1. 2 2. 3 n(n + 1) n(n + 1) n ll + 1 

I 2 3 II 
In- + In- + In- + · · · + In-- + · · · 

2 3 4 n + I 

1 - 2 + 3 - 4 + ... + n(- 1 )"- 1 + ... 

1 l l [ 
-+-+-+···+~- +··· 
1 . 3 2. 4 3. 5 n(n + 2) 

3 5 2n + 1 2n + 1 
12 ·22 + 22 .y + ... + n2(11 + 1)2 + .... Hint: 112(n + 1)2 = ij2- (n + 1)2 

4 9 16 n2 

In- + In- + In- + · · · + In-~ + · · · 
3 8 15 11 2 - [ 

1 1 1 1 
-+-+-·+···+ +··· 
[ • 3 3 • 5 5 • 7 (211 - 1 )(2n + 1) 

In Problems 14-19, show that the series diverges. 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

1 2 3 II 
-+-+-+···+--+··· 
2 3 4 n + 1 

1 2 3 4 (-1)"- 111 
---+---+···+ +··· 
3 5 7 9 2n + 1 

1 1 1 
1 + 3 + 5 + · · · + 2n - 1 + · · · 

1 1 1 1 
-+-+-+···+--+··· 
4 7 lO 311 + l 

I +fi+.J3+···+$z+··· 
In 1 + ln2 + ln3 +···+Inn+ · · · 

A ball bounces along a street. On each bounce it goes! as far as it did on the previous 
bounce. If the first bounce is one foot long, how far will the ball go before it stops 
bouncing? 

Two students are sharing a loaf of bread. Student A eats half of the loaf, then student B 
eats half of what's left, then A eats half of what's left, and so on. How much of the loaf 
will each student eat? 

In the Problem 21, how much will each student eat if only t of the remaining loaf is eaten 
at each turn? 

Three students A, B, C take turns eating a loaf of bread, taking t of the remaining loaf 
at each turn. How much will each student eat? 
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.3 PROPERTIES OF INFINITE SERIES 

It is convenient to use capital sigmas, I, for partial sums and infinite series, as we did 
for finite and infinite Riemann sums. We write 

m 

sm = I a" = a1 + a 2 + · · · + am 
n=1 

for the mth partial sum, 

H 

SH = I an= a1 + a2 + · · · + aH 
n= 1 

for an infinite partial sum, and 

(fJ 

s = I an = a 1 + a2 + · · · + an + · · · 
n=1 

for the infinite series. Thus Sis the standard part of SH, 

Sometimes we start counting from zero instead of one. For example, the 
formula for the sum of a geometric series can be writt!'!n 

(fJ 1 
I en=--, 

n=O 1 - C 
where icl < 1. 

Infinite series are similar to definite integrals. Table 9.3.1 compares and 
contrasts the two notions. 

Table 9.3.1 

Infinite series 
00 

L an 
n=l 

Finite partial sum 

f an= a1 + ... +am 
n=l 

Infinite partial sum 
H 

L an = a1 + · · · + aH 
n=l 

Definite integral r f(x)dx 

Finite Riemann sum 
b 

Lf(x)&x = f(xd&x + · ·· + f(xm)&x 
a 

Infinite Riemann sum 
b 

Lf(x)dx =f(x1 )dx + ··· + f(xH)dx 

r f(x)dx = st (tf(x)dx) 

ib f(x) dx = lim {If(x) &x) 
a dx---+O+ a 

The difference between them is that the infinite series is formed by adding 
up the terms of an infinite sequence, while the definite integral is formed by adding 
up the values of f(x) dx for x between a and b. The definite integral of a continuous 
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function always exists. But the problem of whether an improper integral converges 
is similar to the problem of whether an infinite series converges. 

Here are some basic theorems about infinite series which are like theorems 
about integrals. 

THEOREM 1 

Suppose 2::,~= 1 a11 and I,~= 1 b" are convergent. 

(i) Constant Rule For any constant c, I,~= 1 ca" = ci~= 1 a". 

( ii) Sum Rule '\"'x ( + b ) '\"'x + '\"':r b L11=1 a" " = L11=1 a" L11~1 "' 

(iii) Inequality Rule If a"::;; b" for a/In then I,~= 1 a"::;; I,~= 1 b". 

PROOF To illustrate we prove (ii). For any H, 

(a 1 + b1) + .. · + (aH + bH) = (a 1 + .. · + aH) + (b 1 + .. · + bH). 

Taking standard parts we get the Sum Rule. 

EXAMPLE 1 For any constant b, and any lei < 1, 

b + be + bc 1 + ... + be" + ... = b(I + c + c 2 + ... + c" + .. ·) 

b 
1- c' 

The next theorem corresponds to the Addition Property for integrals, 

f f(x) dx = f f(x) dx + f f(x) dx. 

DEFINITION 

The series 

is defined as 

X 

I a11 = a111 + 1 + a111 + 2 + ... + a111 ~" + ... 
n=m+ l 

I b11 = b1 + b2 + ... + b11 + ... 
n=l 

where b" = am+"· This series is called a tail of the original series I,~= 1 a". 

THEOREM 2 

A series I;,"= 1 a" converges if and only if its tail I,~=m + 1 a11 converges for any m. 
The sum of a convergent series is equal to the mth partial sum plus the remaining 
tail, 

Ill 

I a" = I a" + I a", 
n= 1 n=l n=m+l 

or 

a1 + ... +a"+ ... = (a1 + ... +a,)+ (am+1 + ... +am+"+ .. ·). 
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PROOF First assume the tail converges. For any infinite H, we have 

a1 + · · · + aH = (a 1 + · · · + a,) +(a,+ 1 + · · · + aH), 
H m H 

or I a,= I a,+ I a,. 
n=l n=l n=m+l 

Taking standard parts, 

m oc 

I a,+ I an. 
n=l n=m+ 1 

Therefore the series converges and 

x m oc 

I a, = I a" + I a,· 
n=l n=l n=m+ 1 

If we assume the series converges we can prove the tail converges in a similar 
way. 

EXAMPLE 2 The series 1 1 1 y_ ( 1)" -=3+4+-s+···= I­
) ) 5 ll=3 5 

is a tail of the geometric series 

f (_l_)ll· 
11=0 5 

Its sum can be found in two ways. 

(a) f (~)" I (~)" I (~) ll = -
1 

1 - ( 1 + ~ + _!__) 
ll = 3 5 II= 0 5 ll = 0 5 1 - S 5 25 

"'(1)"- 1 X. (1)1l 1 1 5 1 
(b) I - - 3 I - = 125 · r - .1s = 125.4 = 1oo· ll=3 5 5 ll=O 5 

COROLLARY 1 

roo· 

If I::"= 1 all converges, then the tails I :,.c="' all approach zero as m approaches x, 

( 

X ) lim I all = 0. 
1n----l>X n=m 

PROOF If His infinite, then 

n=l n=l 

00 X H 

so I a, = I a, - I a, :::::: 0. 
n=H+ 1 n=l n=l 

COROLLARY 2 

If a series I:'= 1 an converges, then it remains convergent iffinitely many terms 
are added, deleted, or changed. 



PROOF If C/111 is the last term changed, then the tail 

:c 

L a, 
11=m+l 

is left unchanged, so it still converges. 

Warning: Although the convergence properties of a series are not affected 
by changing finitely many terms, the value of the sum, if finite, is affected. 

EXAMPLE 3 Here is a convergent geometric series. 

1111 I 1 1 5 
_56 + SI + 52 + 53 + 54 +55 + ... = I -! = 4 = 1.25. 

The following series still converges by Corollary 2. Find its sum. 

1 1 1 
3 - 8 + 53 + 54 + 55 + .... 

We have 

3 - 8 + ~ + ~ + ~ + ... = 3 - 8 + ~ (~ + ~ + ~ + .. ·) 
53 5'' 55 53 5° 51 52 

1 5 I 
= (3 - 8) + 53 • 4 = -5 + 100 

= -4.99. 

PROBLEMS FOR SECTION 9.3 

Find the sum of the following series. 

I 1 1 
72 + 73 + ... + 7"+ 2 + ... 2 

2 4 8 16 2"+ I 
-+-+-+-+···+-+··· 
1 3 9 27 3" 

3 (1 + 1) +it+ tJ + (t + rs) + ... + (3-" + 5-") + ... 

4 

6 

7 

8 

9 

10 

11 

12 

14 

15 

X ( 2) II I --
·.,~o 7 

5 

I 1 1 1 1 
1+-+-+-+-+···+-+··· 

5 7 2 73 79 7" 

62 + 6 +I+ 6- 1 + 6- 2 + · · · + 6-" + · · · 
X 3" + 4" 
I-5 .. -

n=o 

8.88888 ... = 8 + 8. 10- 1 + 8. 10- 2 + ... + 8. w-n + ... 
2.36666 ... = 2.3 + 6·!0- 2 + 6·!0- 3 + 6·10- 4 + ... 
5.434343 ... = 5 + 43 .wo- 1 + 43. wo- 2 + 43. wo- 3 + ... 
0.286286286... 13 492.315041041041041 ... 

Prove the Constant Rule I;~~~ ca, = ci,:~ 1 a,. 

Prove that the repeating decimal 0.142857142857142857 ... is a rational number. 
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3.4 SERIES WITH POSITIVE TERMS 

By a positive term series, we mean a series in which every term is greater than zero. 
For example, the geometric series 

1 + c + c2 + ... + en + ... 
is a positive term series if c > 0 but not if c s 0. We call a sequence S 1 , S 2 , ... , Sn, ... 
increasing if sm < sn whenever m < n. It is easy to see that 

a 1 + a2 + ... + an + ... 
is a positive term series if and only if its partial sum sequence is increasing. We are 
going to give several tests for the convergence of a positive term series. The starting 
point is the following theorem. 

THEOREM 1 

An increasing sequence (Sn) either converges or diverges to oo. 

Geometrically, this says that, as n gets large, the graph of the sequence either 
levels out at a limit Lor the value of Sn gets large (Figure 9.4.1). We omit the proof. 
(The proof is given in the Epilogue at the end of the book.) 

L -----------~-.----

• • 
• • • 

• • 
• 

n • II 

• • • • 
lim Sn= L • 

n-+co 

Figure 9.4.1 

Theorem 1 has an equivalent form for positive term series because the partial 
sum sequence of a positive term series is increasing. 

THEOREM 1 (Second Form) 

A positive term series either converges or diverges to oo. 

EXAMPLE 1 The harmonic series diverges to oo, 

1 1 1 1 
1 + 2 + 3 + 4 + ... + ~ + ... = oo. 

This is because it is a positive term series and we have shown that it diverges. 
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EXAMPLE 2 If 0 < a the geometric series 

1 + a + a2 + · · · + a" + · · · 
is a positive term series. It converges when a < 1 and diverges to :o when 
a 2 1. 

Remark Theorem 1 shows that to determine whether a positive term series converges, 
we need only look at one infinite partial sum. If it is timte the series converges 
and if it is infinite the series diverges to sc. 

COMPARISON TEST 

Let c be a positive constant. Suppose I;,""= 1 a" and I,~~ 1 b" are positive term 
series and a" :S: cb" for all n. 

(i) If I:'= 1 b" converges then I:= 1 a" converges. 

(ii) If I,~= 1 a" diverges then I:~= 1 b" diverges. 

PROOF {i) Suppose I,~ 1 b" converges to S. The Constant Rule gives cS =I,~--= 1 c b". 
Each finite partial sum of I,~= 1 a" is less than cS, 

m m 

I a" :S: I c b" < cS. 
n= 1 n= 1 

Therefore, an infinite partial sum I,~= 1 a" is less than cS and hence finite. 
It follows that I;;~ 1 a" converges. 

(ii) If I,~= 1 a" diverges then I;,.~:= 1 b" cannot converge by part (i). 

To use the Comparison Test we compare a series whose convergence or 
divergence is unknown with one which is known. 

EXAMPLE 3 Test the series I,~= 1 6"/(7" - 5") for convergence. Intuitively, the 7" 
should overcome the - 5", so we shall compare with 6"/7". The simplest 
approach is to factor out 7". We have 

6" 
7"- 5" 

6" 6" 7 (6)" 
7"(1 - (5/7)") :s; 7"(2/7) = 2 7 

The geometric series I,~~ 1 (6/7)" is convergent, so the given series converges. 

EXAMPLE 4 Test for convergence: I,~= 1 n2
j(11 3 + 1). We have n3 + 1 :S: 2n 3

, so 

11
2 n2 1 l 

--->-=-·-
113 + 1 - 2n 3 2 n · 

The harmonic series I,~= 1 ljn diverges, whence the given series diverges. 

Sometimes the following comparison test is easier to use. 
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LIMIT COMPARISON TEST 

Let I,:: 1 an and I,:: 1 bn be positive term series and c a positive real number. 
Suppose that 

for all infinite K. 

Then: 

(i) If I:= 1 bn converges then I:= 1 an converges. 

(ii) If I:= 1 an diverges then I:= 1 bn diverges. 

PROOF Assume I:= 1 bn converges. Let H and K be infinite. By the Cauchy Con­
vergence Test (Section 9.2). 

bH+ 1 + bH+2 + ... + bK ;::::; 0. 

Hence 0::::;; aH+ 1 + · · · + aK::::;; cbH+ 1 + · · · + cbK 

= c(bH + 1 + · · · + bK) ;::::; 0. 

It follows that aH+ 1 + · · · + aK ;::::; 0 

and I:'= 1 an converges. 

1 
EXAMPLE 5 Test I::"=z -(l ) where pis a positive constant. nnP 

We compare this series with the divergent series 

00 1 
In=2 ~· 

Let H be positive infinite. Then by Theorem 1 in Section 9.1, 

lnH < H 11P, 

(lnH)P < H, 

1 1 
(lnH)P >H. 

By the Limit Comparison Test, the given series I:=z 1/(lnn)P diverges. 

For our last test we need another theorem which is similar to Theorem 1. 

THEOREM 2 

If the function F(x) increases for x 2 1, then limx~ w F(x) either exists or is 
infinite. 

This says that the curve y = F(x) is either asymptotic to some horizontal line 
y = L or increases indefinitely, as illustrated in Figure 9.4.2. 



514 9 INFINITE SERIES 

F(x) 

L 

Figure 9.4.2 

INTEGRAL TEST 

X 

F(x) 

X 

lim F(x) = oo 
x__,co 

Suppose f is a continuous decreasing function and f(x) > 0 for all x 2:: I. 
Then the improper integral 

lexl f(x) dx 

and the infinite series 

"' L f(n) 
n=l 

either both converge or both diverge to oo. 

Discussion Figure 9.4.3 suggests that 

"t
2 

f(n) < J"~ f(x) dx < ,t f(n) 

so the series and the integral should both converge or both diverge to o'J. 

The Integral Test shows that the integral J7' f(x) dx and the series L;;"= 1 f(n) 
have the same convergence properties. However, their values, when finite, 
are different. In fact, we can see from Figure 9.4.3(c) that the integral is less 
than the series sum, 

f" f(x) dx < J
1 

f(n). 

PROOF As we can see from Figure 9.4.3, for each m we have 

J
2 

f(n) s S:" f(x) dx s '~t: f(n). 

The improper integral is defined by 

Jx f(x) dx = lim J" f(x) dx. 
1 u-x 1 

Since f(x) is always positive, the function F(u) = f~ f(x) dx is increasing, so 
by Theorem 2, the limit either exists or is infinite. Hence the improper 
integral either converges or diverges to XJ. 
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/(1) 
/(2) 

/(3) 
/(4) 

2 3 4 5 2 3 4 5 2 3 4 5 

(a) (b) (c) 

Figure 9.4.3 The Integral Test 

Case 7 j~ f(x) dx = S converges. For infinite H we have 

11

;

2 

f(n) :::::; J
1

H f(x) dx ~ S; 

thus the infinite partial sum is finite. Hence the tail L:"= 2 f(n) and the series 

:z=:;-= 1 f(n) converge. 

Case 2 ft f(x) dx diverges to oo. Since j~ f(x) dx :::::; L~=-/ f(n), the infinite partial 
sum has infinite value, whence the series "L:;o= 1 f(n) diverges to oo. 

The series :L;: 1 1/nP, where pis constant, is called the p series. 

COROLLARY 

The p series I:= 1 1fnP converges if p > 1 and diverges if p :::::; 1. 

PROOF 

Case 7 p = 1. The p series is just I:'= 1 1/n = oo. 

Case 2 p > 1. The improper integral converges, 

fw 1 J" -p dx = lim x- P dx 
1 X u~ oo 1 

1- p 1 
lim u -
u~oo 1 - p 

Therefore the p series converges. 

1- p" 

Case 3 p < 1. The improper integral diverges to 'JJ, s~ (lfxP) dx = limu~oo 
J~x-Pdx=limu~cc(u 1 -p-1)j(l-p)= 00. 

Therefore the p series diverges to oo. 

EXAMPLE 6 The p series 
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converges because 4/3 > l. The p series I.:~ 1 1/,j 11 diverges to :;_ because 

1/2 < 1. 

The p series is often used in the Comparison Tests. 

EXAMPLE 7 Test the series 

for convergence. 

If H is positive infinite then by Theorem 1 in Section 9.1, 

lnH < W. 

lnH H' 1 
Hz <Hz= Hz-,· for real c > 0. 

Now take c so that 0 < c < l. Then 2 - c > 1 so the p series I.:~ 1 1/11 2
-c 

converges. By the Limit Comparison Test, the given series I.:~ 1 (In n);n 2 

converges. 

EXAMPLE 8 Use the Integral Test to test the improper integral J; ((lnx)/.x- 2
) dx for 

convergence. 

By Example 7 the series I.~~ 3 (ln 11)j11 2 converges. For x > 1 the function 
j(x) = (In x)jx 2 is continuous. positive, and has derivative 

f'(x) = x- 3 (1 - 2lnx). 

Thus for x >" ~- f'(x) < 0 and j(x) is decreasing. Therefore the Integral 
Test applies and the improper integral converges. 

PROBLEMS FOR SECTION 9.4 

Test the following series for convergence. 

f _ _II__ 
n~o 11 + 4 

3 
i 11 + 1 
I~3· 

r1= 1 11 

5 
i 1 
I---
,~o (11 + 1)(11 + 2) 

7 
0: 11 + 3 
I~---
,~3 11(11 + 1)(11 - 2) 

9 f 11 
n~o (11 + 1){11 + 2) 

II f F+I -JI; 
n=O 

13 

2 

4 

6 

8 

10 

12 

14 

X. 2 
I-
,~~ 4n- 3 

L /J 

~ n2 + 2 n-0 

X 1 
I----=== 
Flj11(n + 1) 

f IJ 
,~ 0 (11 + l)(n2 + 1) 

"' 1 
I----r= 
,~ 1 n.J11 

I j;+i- ._/n 
n= 1 n 

f 1 
,':ofi3+4 



15 

17 

19 

21 

23 

25 

27 

29 

31 

33 

"' I n-" 
n=l 

oo sin2 n 
I-2 

n= 1 II 

00 ~7, 
I-
n=1 11 
~ 1 
I-n=o n! 
"' sn + 6n 

n~O 2n + T' 

I Inn 
n= 1 II 

00 1 
I-
n=2nlnn 

cc 1 
I-
n=2n(lnnf 

'n 1 
I-
n= 2 ln(n !) 

16 

18 

20 

22 

24 

26 

28 

30 

32 
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I: .J~ 
n=O 31! + 2 

00 1 
I-n-

n=! 2 -II 

00 112 

I-
n=o 2n 
xfn 
I -2 

n=1 II 

00 5" 

n~O 3n + 4" 
00 1 
I-
"=1 2 +Inn 

I Inn 
n=111Jn 

00 1 

n~1 ln(n2 + 1) 

Jo (I- arctann) 

Use the Integral Test to determine whether the following improper integrals converge or diverge. 

34 

36 

38 

40 

0 41 

0 42 

J
L dx 35 f'l. dx 

2 lnx 2 x 2 +~ lnx 

---dx 37 dx fx. 1 ix X+ J 

2 x + In x 1 x3 + x 2 + 1 · 

39 

Prove that if each an is positive and I;= 1 an converges, then I,;= 1 a; converges. 

Using Theorem 1 (page 539), prove that a negative term series either converges or 
diverges to - x; . 

. 5 ALTERNATING SERIES 

An alternating series is a series in which the odd numbered terms are positive and the 
even numbered terms are negative, or vice versa. An example is the geometric series 

en 

I a", a< 0. 
n=l 

Given any positive term series 
CL 

L a" = a 1 + a2 + a3 + a4 + · · ·, 
n=l 
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'"~ 
the series I ( -1)1l+1 all= a1 - az + a3- a4 + ... 

.. ~ 1 

and I ( -1)1l all = -a1 + a2 - a3 + a4- · · · 
u=1 

are alternating series. Here is a test for convergence of alternating series. 

ALTERNATING SERIES TEST 

Assume that 

(i) I,~~ 1 (- 1 )'' + 1 all is an alternating series. 

(ii) The terms all are decreasing, a1 > a2 > ···>all> · · ·. 

(iii) The terms approach zero, limll~x a, = 0. 

Then the series converges to a sum I.~~ 1 (- 1 )" + 
1 a, = S. Moreover, the sumS 

is between any two consecutive partial swns, 

s2, < s < s2,+1· 
Discussion We see from the graph in Figure 9.5.1 that the partial sums S, alternately 

increase and decrease, but the change is less each time. The value of S" 
"vibrates" back and forth and the vibration damps down around the limitS. 

PROOF The sequence of even partial sums is increasing. 

S2 < S4 < .. · < Sz, < .. ·, 

because 

The sequence of odd partial sums is decreasing, 

S1 > S3 > Ss > ... , 

for 

s 

s 

Figure 9.5.1 

n 

n 
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It follows that each even partial sum is less than S 1 , 

Theorem 1 (Section 9.4) shows that the increasing sequence of even partial 
sums converges, 

lim S2 n = S. 
n~oo 

Given any infinite H, a 2H+ 1 ~ 0 and S2 H ~ S, so 

s2H+1 = s2H + a2H+1 ~ S. 

Therefore the sequence of all partial sums converges to S, and 

00 

L ( -lt+ 1 an= lim sn = S. 
n=l n-oo 

Finally, since the even partial sums are increasing and the odd partial sums 
are decreasing, we have the estimate 

S 2n < S < S 2n + 1 · 

Figure 9.5.2 shows a graph of the partial sums. 

------------------~~-:;; 

-----------------+-----1--+-+--+----lf-----1--+-------------------------n ,.,.,.... ................... 

------

s 

Figure 9.5.2 
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EXAMPLE 1 The alternating harmonic series 

I 1 I 1 (-1)"+ 1 

1--+---+--· .. + +··· 
2 3 4 5 n 

converges by the Alternating Series Test, because - ts decreasing and 
n 

approaches zero as n -> x:. The partial sums are 

or 60 30 50 35 47 37 
60, 60, 60, 60, 60, 60, .... 

The sum S is between any two consecutive partial sums, for example 

~6 < s < ~6. 

EXAMPLE 2 The alternating series 

3 4 5 6 + 1 n+1 
2 - 2 + 3 - 4 + 5 - ... + (- 1 )" -11- + ... 

diverges. The terms (11 + 1)/11 are decreasing, but their limit is one instead of 
zero, 

lim 
11 + 1 

= 1. 
/1---fX J1 

The Cauchy Test for Divergence in Section 9.2 shows that if the terms a" do 
not converge to zero the series diverges. 

We have now built up quite a long list of convergence tests. The next section 
contains one more important test, the Ratio Test. At the end of that section is a 
summary of all the convergence tests with hints on when to use them. 

PROBLEMS FOR SECTION 9.5 

Test the following alternating series for convergence. 
'l. 'l ( -1)"+ l 
I (- 1)" . .j7; 2 I 

n=1 n=l J~l 
X f (-1)" fi 3 I (-1l"+l __ n_ 4 

n~ l lOll+ 5 n~t ll + [ 
X X 

5 I ( -1)"11- 2 6 I ( -1)"11-1;3 
11=1 /j= 1 

X X ( -1)" 
7 I (-1)".;:1 8 I 

n=l n=2 Inn 
X 11( -1)"+ 1 L 

9 I Inn 
10 I (-l)" 

n=2 n= 1 

X. (-1)"+ 111! X (-I)''+ 12" 
11 I 2" 

12 I ---

n=O 11=0 n! 
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13 
"' ( -1)" 

14 
00 (-1)" I- I-

n~3ln(lnn) n~2 fn 
I cos~nn) 16 Jl ( -1)"+ I ( 1 _ n 
n~l n 

15 

00 f (-1)"2: + 1 I c -1l"CJn+l - vlnl 18 
n=l n~o 3 - 2 

17 

19 
00 2"-2 + 1 

n~O (-1)" 2n+3 + 5 20 J
1
c-1r+ 1 (1+n-n 

21 Approximate the series I.% 1 ( -1)"+ 111-
3 to two decimal places. 

22 Approximate the series 1 - ?o + 1 ~0 - 10
4
00 + ···to four decimal places. 

23 Approximate I.%o ( -1)"/n! to two decimal places. 

24 Approximate I:'~ 1 ( -n)-" to three decimal places. 

t.6 ABSOLUTE AND CONDITIONAL CONVERGENCE 

Consider a series L,': 1 an which has both positive and negative terms. We may form 

a new series I:;:, 1 Janl whose terms are the absolute values of the terms of the given 
series. If all the terms an are nonzero, then lanl > 0 so I,;:'= 1 lanl is a positive term series. 

If I:= 1 an is already a positive term series, then I ani = an and the series is 
identical to its absolute value series I,:;:, 1 Ja.J. 

Sometimes it is simpler to study the convergence of the absolute value series 
I,;:'= 1 Jan I than of the given series I,:;:, 1 an. This is because we have at our disposal all 
the convergence tests for positive term series from the preceding sections. 

DEFINITION 

A series I:~ 1 an is said to be absolutely convergent if its absolute value series 
I:= 1 Jan I is convergent. A series which is convergent but not absolutely con­
vergent is called conditionally convergent. 

THEOREM 1 

Every absolutely convergent series is convergent. That is, if the absolute value 
series L~~ 

1 
lanl converges, then I:~ 

1 
an converges. 

Discussion This theorem shows that if a positive term series I,:'~ 1 bn is convergent, 
then it remains convergent if we make some or all of the terms b, negative, 
because the new series will still be absolutely convergent. 

Given an arbitrary series I:= 1 an, the theorem shows that exactly one of the 
following three things can happen: 

The series is absolutely convergent. 
The series is ~onditionally convergent. 
The series is divergent. 
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PROOF OF THEOREM 1 We use the Sum Rule. Assume I,~;, 1 [a.,[ converges and 
let 

Then a., = b., - [a.,[ and 

b = { 2[a.,[ 
II 0 

if a.,> 0, 

if a.,< 0. 

(See Figure 9.6.1). Both I,~;, I [a.,[ and I.~= I b., have nonnegative terms. 
Moreover, I,~;, 1 [a,.[ converges and b,. ::;: 2[a,[. By the Comparison Test, 
I.~= 1 b., converges. Then using the Sum and Constant Rules, 

X X X' 

I a,. = I b., - I ra,.r 
n::::l n=l n=l 

converges. 

II 

Figure 9.6.1 

EXAMPLE 1 The alternating series 

is absolutely convergent, because its absolute value series 

is convergent. 

EXAMPLE 2 The alternating harmonic series 

1-t+t-±+t-··· 
is conditionally convergent. It converges by the Alternating Series Test. But 
its absolute value series 

l+t+t+±+t+··· 
diverges. 

Given a series 



one can form a new series by listing the terms in a different order, for example 

a1 + a3 + a2 + a5 + a4 + · · ·. 
Such a series is called a rearrangement of I,": 1 a". The difference between absolute 
convergence and conditional convergence is shown emphatically by the following 
pair of theorems. 

THEOREM 2 

A. Every rearrangement of an absolutely convergent series is also convergent 
and has the same sum. 

B. Let L:."'= 1 an be a conditionally convergent series. 

(i) The series has a rearrangement which diverges to oo. 

(ii) The series has another rearrangement which diverges to - oo. 

(iii) For each real number r, the series has a rearrangement which con­
verges tor. 

We shall not prove these theorems. Instead we give a pair of rearrangements 
of the conditionally convergent series 

1-t+i-t+ .. ·, 
one diverging to oo and the other converging to - 1. 

The alternating series 

1-t+i-t+"· 
conditionally converges to a number between t and 1. 

To get a rearrangement which diverges to oo, we write down terms in the 
following order: 

1st positive term, 
next 2 positive terms, 
next 4 positive terms, 

next 2m positive terms, 

We thus obtain the series 

1st negative term, 
2nd negative term, 
3rd negative term, 

mth negative term, 

1 - t + t + t - t + i + ~ + /1 + /3 - i + .... 
Each block of 2m positive terms adds up to at least t, 

1 ::o: L 
t+t::0:2xt _1_ 

- 4• 

i + ~ .+ -(1 + /3 ::0: 4 X /6 = t, 
/s -f- · · · + 2

1
9 ::0: 8 X l2 = t · 

However, all the negative terms except -t and -±have absolute value :S+,. Hence 
after the mth negative term the partial sum is more than 
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m m I I m 3 
-------
4 6 2 4 12 4' 

Therefore the partial sums, and hence the series, diverge to x. 
To get a rearrangement which converges conditionally to - 1 we proceed as 

follows: 
Write down negative terms until the partial sum is below - 1, then positive 

terms until the partial sum is above - 1, then negative terms until the partial sum is 
below -1, and so on. 

The mth time the partial sum goes above - 1, it must be between - 1 and 
-1 + (1/m). The mth time it goes below -1 it must be between -1 and -1 - (1/m). 
Therefore the series converges to - 1. 

The comparison tests for positive term series give us tests for absolute con­
vergence. 

COMPARISON TEST 

If'la 11 [ ::S: c[b11 [ and I,:= 1 h11 is absolutely convergent then I,:= 1 0 11 is absolutely 
convergent. 

LIMIT COMPARISON TEST 

Let c be a positive real number. If' 

for all infinite K 

and I,;-= 1 h11 is ahsolutely convergent then I,~= 1 a11 is absolutely convergent. 

The above tests do not help to distinguish between conditional convergence 
and divergence. Theorem 2 in Section 9.2 is often useful as a test for divergence. 

There is another test which can be used either to show that a series is abso­
lutely convergent or that a series is divergent. 

RATIO TEST 

Suppose the limit of the ratio [a,+ 1 //la"l exists or is x, 

lim /all+ II = L. 
~~- z laul 

(i) If L < I, the series I;:~ 1 all converges absolutely. 

(ii) If L > 1, or L = x, the series diverges. 

(iii) If L = 1, the test gives no information and the series may converge 
absolutely. converge conditionally, or diverge. 

PROOF (i) Choose b with L < b < I. By thee, N condition, there is an N such that 
all the ratios 

laN+II lal>~+21 laN+k+ll 
~, [all'+l[''"' /aN+k/ , ... 

are less than b. Therefore with c = [a,y[. 
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The geometric series I,~= 1 b" converges, so by the Comparison Test. the 
tail I,~=N I ani converges. Therefore the absolute value series I:= 1 I ani 
converges. 

(ii) By the e, N condition there is an N such that the ratios 

laN+ll laN+n+ll 
~, ... , laN+nl , ... 

are all greater than one. Therefore 

laNI < iaN+ d < · · · < laN+nl < · · · · 

It follows that the terms an do not converge to zero, so the series I:= 1 an 
diverges. 

The Ratio Test is useful even for positive term series, and is often effective for 
series involving n! and a". 

EXAMPLE 3 Test the series I;;"= 1 ~­n. 

1
. 1/(n + 1)! 

1
. 1 

Im = Im -- = 0 
n~oo 1/n! n~oo n + 1 ' 

so by the Ratio Test the series converges. 

EXAMPLE 4 
oo ( -1)nnn 

Test I---
n=l n! 

hm = hm --- = hm 1 + - = e. . ((n + 1)"+ 
1/(n + 1)!) . ((n + 1))" . ( 1)n 

n--+x nnfn! n-co n n--+oo n 

e is greater than one, so by the Ratio Test the series diverges. 

EXAMPLE 5 The Ratio Test does not apply to either of the series 

00 1 
I-, 

n=l n 

since lim 1/(n + 1) = 1, 
"~"" 1/n 

1
. 1/(n + 1f __ 
tm 1/nz - 1. 

n--+X; 

SUMMARY OF SERIES CONVERGENCE TESTS 

A. Particular Series 

(1) Geometric Series 

I::"=oc" converges to -
1
-
1
- if lei < 1, 
-c 

diverges if lei 2::: 1. 
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(2) Harmonic Series 

I"'= 1 ~ diverges. 
II n 

(3) p Series 

1 
I;~~ 1 nP converges if p > 1, 

diverges if p :s; 1. 

B. Tests for Positive and Alternating Series 

In the tests below, assume a" ?. 0 for all n. 

(1) Convergence versus Divergence to w 

Let H be infinite. 

I,~= 1 an converges if I:= 1 all is finite, 

diverges to oo if I:= 1 all is infinite. 

(2) Comparison Test 
Suppose a11 :S:: cbll for alln. 

If I,~= 1 bll converges then I:'= 1 all converges. 

If I,~= 1 a" diverges then I,~= 1 bll diverges. 

Hint: Often a series can be compared with one of the particular series 
above: a geometric, harmonic, or p series. 

(3) Limit Comparison Test 

Suppose aK :S:: cbK for all infinite K. 

If I,~= 1 b" converges then I,~= 1 all converges. 

u I,~= 1 a" diverges then I,~:, 1 bll diverges. 

Hint: Try this test if the Comparison Test almost works. 

(4) Integral Test 

Suppose f is continuous, decreasing, and positive for x ?. 1. 

us~· f(xl dx converges, then I,~= 1 f(nl converges. 

Iff~ f(x) dx diverges, then I,~= 1 f(n) diverges. 

Hint: This test may be useful if an comes from a continuous functionf(x). 

(5) Alternating Series Test 

I,~= 1 ( -l)lla" converges if the an are decreasing and approach 0. 

Hint: This is usually the simplest test if you see a (- 1 )ll in the expression. 

C. Tests for General Series 

(1) Definition of Convergence 

I:= 1 all converges if and only if the partial sum series I~= 1 a" = Sk 
converges. 

(2) Cauchy Convergence Test 

I,~= 1 an converges if for all infinite H and K > H, 

aH+ 1 + ... + aK ~ 0, 
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diverges if for some infinite H and K > H, 

aH + 1 + · · · + aK *- 0, 
diverges iflimn~CJJ an =f. 0. 
Hint: This test is useful for showing a series diverges. 

(3) Constant and Sum Rules 

Sums and constant multiples of convergent series converge. 

(4) Tail Rule 

I:= 1 an converges if and only if I:=m an converges. 

(5) Absolute Convergence 

If I:= 1 !ani converges then I,% 1 an converges. 

Hint: Remember that I:= 1 !ani is a positive term series. Thus tests in 

group B may be appli~d to I:= 1 !ani· 
(6) Ratio Test 

S l. !an+11 uppose 1m -
1

- = L. 
n---+ ro ani 

I:= 1 a" converges absolutely if L < 1, 

diverges if L > 1. 

Hint: This is useful if an involves a factorial. Watch for ( n : 
1
)" in the 

(n+l)n ( 1)" ratio because lim -- lim 1 + - = e. 
n--+oo n n---+oo n 

If the limit L is one, try another test because the Ratio Test gives no 
information. 

PROBLEMS FOR SECTION 9.6 

Problems 1-20: For each of the first 20 problems in Section 9.5, determine whether the alternating 
series is absolutely convergent, conditionally convergent, or divergent. 

Problems 21-44: Apply the Ratio Test to the given series. Possible answers are "convergent," 
"divergent," or "Ratio Test gives no information." 

21 22 
"C 1 
I-

n=! 2n n=l 

23 24 

25 26 
a) 1 
I3 

n= 1 ll 

27 28 
-~ 5n 

n~l 6n- 5n 

29 30 
"' nn 
I-
n= 1 (2n)! 
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31 

33 

35 

37 

39 

41 

43 

I (n!)2 
,~a (2n)! 

I e"(~!) 
n=1 n 

I 3"(n!)z 
,~ 1 (2n)! 

'"- 10" 
I-
.. ~z (Inn)" 

9.7 POWER SERIES 

32 

34 

36 

38 

40 

42 

44 

"' 3"(n !) 
L~ 

n=l 

I 4"(n!f 
,~ 1 (2n)! 

X I 

~ (ln11)" n-2 

X I 

,~3 (In (Inn))" 

x I • 3 • 5 • · .. • (2n - I) 
n~1 (n!)2 

f I • 3 • 5 • · · · • (2n - I) 
,~1 1•4•7 .. ··•(311- 2) 

X I 
I~ 
,=1~11! 

So far we have studied series of constants, 

Cf. 

I a,= ao + a1 + ... +a"+ .... 
11:::;0 

One can also form a st>ries of functions 

I ;;,(.\) = foLx) + f 1(x) + · · · + f,,(x) + · · ·. 
n=O 

Such a series will converge for some values of x and diverge for others. The sum of the 
series is a new function 

X 

f(x) = I f,(x) 
t1=0 

which is defined at each point x 0 where the series converges. We shall concentrate on 
a particular kind of series of functions called a power series. Its importance will be 
evident in the next section where we show that many familiar functions are sums of 
power senes. 

DEFINITION 

A power series in x is a series offunctions of the form 

X 

I Cl 11 X" = a0 + a1x + a2x 2 + · · · + U11 X
11 + · · ·. 

t1=0 

The nth finite partial sum of a power series is just a polynomial of degree n, 

lJ 

I akxk = a0 + a1x + · · · + a"x". 
k~O 
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The infinite partial sums are polynomials of infinite degree, 

H 

I anx" = a0 + a1x + --- + aHxH_ 
n=O 

At x = 0 every power series converges absolutely, 
ro 

I anx" = a0 + a 10 + a202 +--- = a0 • 

n=O 

(In a power series we use the convention a0 x 0 = a0 .) If a power series converges 
absolutely at x = u, it also converges absolutely at x = - u, because the absolute 
value series I~o lanu"l and I:=o ian( -u)"l are the same. 

Intuitively, the smaller the absolute value !xi, the more likely the power series 
is to converge at x. This intuition is borne out in the following theorem. 

THEOREM 1 

(i) If a power series 

w 

I anx" = a0 + a1x + ·-- + anx" + -·­
n=O 

converges when x = u, then it converges absolutely whenever !xi < juj. 
(ii) If a power series diverges when x = v, then it diverges whenever jxj > jvj. 

PROOF (i) Suppose the series I,~=o anu" converges. Then for any positive infinite H, 

aHuH is infinitesimaL Let jvj < juj. The ratio b = jvjjjuj is then less than 
one. It follows that: 

(1) The positive term geometric series I,~=o b" converges, 

(2) laHvHI =I aHuH(~( I= laHuH\bH:::;; bH_ 

Now by the Limit Comparison Test, I,~=o anv" converges absolutely. 

(ii) This follows trivially from (i). Let I:=o anv" diverge and lui > jvj. 
I:=o anu" cannot converge because if it did I:'=o anv" would converge 
absolutely. Therefore I:=o anu" diverges. 

Theorem 1 shows that if a power series converges at x = u and at x = v, then 
it converges absolutely at every point strictly between u and v. We conclude that the 
set of points where the power series converges is an interval, called the interval of 
convergence. (A rigorous proof that the set is an interval is given in the Epilogue.) 
The next corollary summarizes what we know about the interval of convergence. 

COROLLARY 

For each power series I:=o anx", one of the following happens. 

(i) The series converges absolutely at x = 0 and diverges everywhere else. 

(ii) The series converges absolutely on the whole rea/line (- oo, oo ). 
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(iii) The series converges absolutely at every point in an open interval 
(- r, r) and diverges at every point outside the closed interval [- r. r]. 
At the endpoints - r and r the series may converge or diverge, so the 
interval of convergence is one of the sets 

(- r, r), [- r, r), (- r, r], [- r, r]. 

Figure 9.7.1 illustrates part (iii) of the Corollary. The number r is called the 
radius of convergence of the power series. In case (i) the radius of convergence is zero, 
and in case (ii) it is XJ. Once the radius of convergence is determined, we need only 
test the series at x = r and x = -r to find the interval of convergence. 

-r 0 /' 

diverges diverges 

Figure 9. 7.1 

converges 
absolutely 

EXAMPLE 1 Find the interval of convergence of the power series 

series. 

cc 

I b"x", where b > 0. 
n=O 

This is just the geometric series 

1 + bx + (bx) 2 + .. · + (bx)" + .. · . 
It converges absolutely when lbxl < 1, lxl < 1/b, and diverges when lbxl > 1, 
lxl > 1/b. So the radius of convergence is r = 1/b. At x = r and at x = - r 
the series diverges, because b"r" = 1. Thus the interval of convergence is 
( -1/b, 1/b). 

The Ratio Test can often be used to find the radius of convergence of a power 

EXAMPLE 2 Find the interval of convergence of 

We compute the limit 

. lx" + 1/(n + 1)1 
lim'-------'---'-----'-'-= lxllim _n_ = 14 
,4CJ) lx"/nl "4"" n + 1 

By the Ratio Test the series converges for lxl < 1 and diverges for lxl > 1, so 
the radius of convergence is r = I. 

At x = 1 the series is 

1 1 1 
1+-+-+ .. ·+-+ .. · 

2 3 n 
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which is divergent. At x = -1 the series is 

1 1 1 ( -1)" 
-1 +--- +- + ... + -- + ... 

2 3 4 n 

which converges by the Alternating Series Test. The interval of convergence 
is [ -1, 1). 

EXAMPLE 3 Find the interval of convergence of 

00 x" x2 x3 x" 
2:-=l+x+-+-+ .. ·+-+ .. ·. n=on! 2 6 JJ! 

For all x we have 

lim lx"+ 
1
/(n + 1)!l = lim~= 0 . 

.. ~oo lx"jn!j .. ~oo n 

Therefore by the Ratio Test the series converges for all x. It has radius of 
convergence oo, and interval of convergence (- oo, oo ). 

EXAMPLE 4 Find the radius of convergence of 
a) 

L n! x" = 1 + x + 2x2 + 6x3 + .... 
n=O 

For x =/= 0, 1. l(n + l)!xn+ll 1' I I 
1m = 1m n x = oo 

n-+co In! x"! n-+oo . 

By the Ratio Test the series diverges for x # 0 and the radius of convergence 
is r = 0. 

If we replace x by x - c we obtain a power series in x - c, 
a) 

L a.,(x -c)" = a0 + a1(x - c) + a2(x - c? + · · ·. 
n=O 

The power series L:'=o a.,(x - cr has the same radius of convergence as L:'=o a.,x", 
and the interval of convergence is simply moved over so that its center is c instead of 0. 
For example, if L:'=o a.,x" has interval of convergence (- r, r], then 

has interval of convergence (c - r, c + r], illustrated in Figure 9.7.2. 

Figure 9.7.2 

-r 0 r 

converges absolutely 

00 

L anxn 
n=O 

c-r c c+r 

converges absolutely 
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EXAMPLE 5 Find the interval of convergence of 

> (n !)2 1 (2 !)2 

L - (x + 5)11 = 1 + - (x + 5) + - (x + W + · · · . 
11 = 0 (2n)! 2 4! 

We have 

lun 
. 1(11 + 1)! (11 + 1)! (x + 5)11

+
1/(217 + 2)! I 

~~~x (n!)(n!)(x + 5) 11/(2n)! 

. I (11 + 1 )
2
(x + 5) I lx + 51 

= ,\~~ (211 + 1)(2n + 2) = -4-. 

By the Ratio Test the series converges for lx + 51 < 4 and diverges for 
lx + 51 > 4. The radius of convergence is r = 4, and the interval of con­
vergence is centered at -5. We note that 

_(/\!~ = ~.~.~.~..... 17 ,_!2_ >(~·~)II- (~)II 
(2k)! 1 2 3 4 (2n- 1) 2n 2 2 - 4 · 

Therefore at lx + 51 = 4, 

I (II !)z (x + 5)11 I> (~)II 411 = 1. 
(211)! 4 

Thus at x + 5 = 4 and x + 5 = -4 the terms do not approach zero and the 
series diverges. The interval of convergence is (- 9, - 1 ). 

PROBLEMS FOR SECTION 9.7 

In Problems 1-25, find the radius of convergence. 

y_ X x" 
L: 5x" 2 L:y. 

IJ=O n=O 

X X 

3 L: n11 X11 4 L: ;;7,xn 
n=l 11= 1 

x II! X " 
6 L n _n 5 L- x" IX " . 

n= 1 ll n= ln. 

x n2" x (311)! 
7 L:-x" 8 L:-,3xn 

"=I (211) I' ,=I (II.) 

x ( I) f ( 1 +If' 9 L 1-- x" 10 XII 
n=I II n= 1 II 

% x" CL x" 
11 L:- 12 ~ (Inn)" n= 21nn 11-2 

' n"x./1 ' s'l 
13 L: --- 14 J3 (ln(ln11))" ,= 2 (Inn)" 

X I· 4 • 7 • · · · • (311 + 1) " n! 
15 L: XII 16 L. - x" 

n=O II! n=O 1•3•5• .. ·•(211 + 1)' 
f_ x" T x" 

17 n~O }ln'l 
18 ~0 -;:;,; ,_ 

'l x" y XII 
19 n~O S"J~ 20 L:;, 

n= I ·v ll 



21 

23 

25 

I n!xn 

n-:::::1~11 

X) x3n 

I-
n=! 5" 

~ 1 (n') 
L.... -X 

n=l n! 
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22 

24 

00 

I 3nx2n 
n=l 

'Xi x6n 

I-
•=1 n! 

In Problems 26-45, find the interval of convergence. 

26 
"' x" Iz 

n=l n 
Qj 

28 L n3"xn 
J!=O 

30 

32 

34 
"- (x + 2)" I-

n=! 11~ 
CD 

36 I 11!(x- 3)" 
n=O 

38 
"" (x + 8)n 
L:-
n=O 2n 

X 

40 I (3n + 4n)x" 
n=O 

00 

42 L 3nx2n 
n=O 

44 
oo en(x - 4)2" 

I 2 
n=l 11 

27 

29 

31 

33 

35 

37 

39 

41 

43 

45 

Qj 

I 2x" 
n=O 

"' x" I <-1l"-·= 1 11 
"' 2"x" I-

·=2 Inn 

"' (-l)nx" 
I-
n=o n! 

"- ( -1)n(x + 2)" I ----'~---'--
·= 1 11 

r. (x - 5)" 
I-
n=o n! 

:o 2n 

I~ 
n=O 11! 

.8 DERIVATIVES AND INTEGRALS OF POWER SERIES 

In the last section we concentrated on the problem of finding the interval of conver­
gence of a power series. We shall now find the sums of some important power series. 
Our general plan will be as follows. 

First, find the sums of two basic power series : 

1 
-- = 1 + x + x2 + · · · + x" + · · ·, 
1- X 

x 2 x" 
ex=1+x+-+···+-+···. 

2! n! 

Then, starting with these basic power series, find the sums of other power 
series by differentiation and integration. (Based on Theorem 1.) 

An especially useful property of power series is that they can be differentiated 
and integrated like polynomials. If we have a power series for a function f(x), we can 
use Theorem 1 to immediately write down the power series for the derivative f'(x) and 
integral g f(t) dt. 
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THEOREM 1 

Suppose f(x) is the sum of a power series 

X 

f(x) = I a,x" 
n= 0 

with radius of conz;ergence r > 0, and let - r < x < r. Then: 

(i) f has the deriuative 

X 

f'(x) = I na,x"- 1 

tl= 1 

(ii) f has the integral 

(iii) The power series in (i) and (ii) both have radius of convergence r. 

Discussion This theorem says that a power series can be differentiated and inte­
grated term by term. Also, the radius of convergence remains the same. To 
differentiate or integrate each term of a power series we simply use the 
Power Rule. 

nth term of f(x) = a,x" 

{ 
na x"- 1 

derivative = ' 0 n 

integral= __!ln_xn+l 
11 + 1 

/J =/= 0 

ll = 0 

We postpone the proof of Theorem 1 until later. 

EXAMPLE 1 Differentiate and integrate the power series I,~=o n2 x", and find the 
radii of convergence. 

By the Ratio Test this power series has radius of convergence r = 1, for 

. l(n + 1)2 x"+ 1
1 . (n + If 

hm I 2 = lxl lim 2 = lxl. 
n-+x n X

11
1 fl-+x n 

Derivative: 

Integral: 

For convenience we rewrote the derivative as a power series in X 111 where 
m = 11 - I, and the integral as a power series in X

111 where m = n + I. Both 
the derivative and integral also have radius of convergence r = 1. 

We are now ready to prove the power series formulas for 1/(1 - x) and ex. 
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THEOREM 2 

(1.) 1 1 2 --= +x+x +···+x"+···, 
1- X 

r = 1. 

x 2 x" 
(ii) e"' = 1 + x + - + · · · + - + · · · 

2! n! ' 
r = oo. 

PROOF (i) is just the geometric series for x. We proved in Section 9.2 that it converges 
to 1/(1 - x) for lxl < 1 and diverges for lxl 2 1. 

(ii) Let 

oo x" x 2 x" 
y = I - = 1 +X+ -21 + ... +I+ .... 

n=on! . n. 

At x = 0 we have y = 1. We can find dyjdx by Theorem 1. 

dy oc nxn-1 co x"-1 00 xm 
-=I-=I =I-=Y 
dx n=l n! n=dn-1)! m=om! . 

The radius of convergence is oo, so for all x, 

dy 
dx = y. 

The general solution of this differential equation (see Section 8.6) is 

y = cex. 

At X = 0, 1 = Ce0 = c. Therefore y = ex. 

We shall now get several new power series formulas starting from the power 
series for 1/(1 - x). We shall use the following methods: 

A. 
B. 
c. 

Differentiate a power series. 
Integrate a power series. 
Substitute bu for x. 

D. Substitute uP for x. 
E. Multiply a power series by a constant. 
F. Multiply a power series by xP. 
G. Add two power series. 

Methods C, D, and G may change the radius of convergence. 
We start with 

(1) 1 1 2 n --= +x+x +···+x +···, 
1- X 

Substitute - u for x in Equation 1. 

(2) 
1 2 -- = 1 - u + u - · · · + (- 1 )"u" + · · · , 

1 + u 

r = 1. 

r = 1. 

The radius of convergence is still r = 1 because when 1- ul < 1, lui < 1. Let us instead 
substitute 2u for x in Equation 1 and see what happens to the radius of convergence. 

(3) 
1 

--- = 1 + 2u + 22u2 + · · · + 2"u" + · · · , 
1 - 2u 

1 
r = -. 

2 
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The radius of convergence in Equation 3 is r = 1 because when J2ul < 1, Jul < 1. For 
convenience we rewrite Equations 2 and 3 with x's instead of u's. Thus 

(2) 

(3) 

1 
-- = 1 - x + x2 

- · · · + ( -1)"x" + · · ·, 
1+x 

1 
--~ = 1 + 2x + 22 x2 + · · · + 2"x" + · · · 
1 - 2x 

r = 1. 

1 
/' = 2." 

By integrating 1/(1 - x) and multiplying by -1 we get a power series for ln (1 - x). 

(4) 

f
x 1 
--dt = -ln (1 - x). 

0 1 - t 

x2 x3 x" 
ln (1 - x) = -x- 2 - 3 - · · · --;;- · · ·, r = 1. 

We next use the power series Equation 2 for 1/(1 + x). Substitute x2 for x in Equation 
2. 

(5) 
1 

-
1
--2 = 1- x2 + x4 - ··· + (-l)"x2

" + ···, 
+x 

/' = 1. 

r is still 1 because if Jx2J < 1, Jxl < 1. We obtain a power series for arctan x by inte­
grating ( 5). 

f
x 1 
--dt =arctan x. 

0 1 + t2 

xJ xs ( -1)"x2"+ 1 

arctan x = x - - + - - · · · + + · · · , 
3 5 2n + 1 

(6) 

Finally let us differentiate the series (1) for 1;(1 - x). 

d ( 1 ) 1 
dx 1 - x = (1 - x) 2 · 

(7) 
1 

-------o- = 1 + 2x + 3x 2 + · · · + (n + l)x" + · · ·, 
(1 - x) 2 

Let us begin again, this time with 

x 2 x" 
(8) e-' = 1 + x + - + · · · + - + · · · , 

2! n! 
/' = XJ. 

Substitute - x for x in Equation 8. 

r = 1. 

/' = 1. 

-x x 2 
( -1)"x" 

e · =1-x+--···+ +···, 
2! n! 

(9) r = x. 

Using the formulas 

e"' + e-x 
cosh x = , 

2 

e"' - e-x 
sinhx =---. 2 

we can obtain power series for cosh x and sinh x. This is our first chance to use the 
method of adding power series. 

(10) 
xz x4 x2" 

cosh x = 1 + - + - + · · · + -~ + · .. 
2! 4! (2n)! 

I'= X. 



9.8 DERIVATIVES AND INTEGRALS OF POWER SERIES 537 

(11) 
x3 xs x2n+ 1 

sinh x = x + 3! + 5! + · · · + (2n + 1)! + · · · , r =co. 

Notice that the odd terms cancel out for cosh x and the even terms cancel out for 
sinh x. 

In Section 9.11 we shall obtain power series for sin x and cos x by another 
method. 

We can easily get new power series by multiplying by xP. For example, 
starting with the power series for In (1 - x), we obtain 

xz x3 
ln(l- x) = -x- 2 - 3 - · · ·, r = 1, 

x3 x4 
x In (1 - x) = - x2 - ~ - ~ - ... 

2 3 
r = 1, 

r =I, 

and so on. Since the series for In (1 - x) has no constant term, we may also divide by 
x to get a new power series. To cover the case x = 0, we let 

{

ln(l-x) 

f(x) = x 

-1 if X= 0. 

ifx # 0, 

Then 
x x2 x 3 

f(x) = - 1 - 2 - 3 - 4 - ... , r = 1. 

We can often get a power series formula for an indefinite integral which 
cannot be evaluated in other ways. For example, the integral 

fox e-t2 dt 

is of central importance in probability theory. It is the area under the normal (bell­
shaped) curve y = e-x2. This integral is not an elementary function at all, so the 
methods of integration in Chapter 9 will fail. However, we can easily find a power 
series for this integral. First substitute x2 for x in Equation 9. 

x4 x6 ( -l)"x2" 
e-x2 = 1 - x2 + ~ - ~ + ... + + ... ' 

2! 3! n! 
(12) r =co. 

Then integrate. 

J.
x x3 xs x7 (-1)"+1x2n+l 

(l3) 
0

e-t
2

dt=x-3+5·2!-7·3!+···+ (2n+l)n! +···, ,. =co. 

PROOF OF THEOREM 7 It is easiest to prove (iii), then (ii), and finally (i). 

(iii) The series L:"= 1 nanx"- 1 and L:"=o (anf(n + l))x"+ 1 have radius of 
convergence r. 

Let lxl < r. We may choose c with lxl < c < r. Then L:"=o anc" converges 
absolutely. For positive infinite H, Theorem 1 in Section 9.1 (page 526) 
shows that lcfxiH/H is positive infinite, so HlxfciH ~ 0. Therefore 
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(14) 

Then by the Limit Comparison Test, I;:~ 1 na11 x" - 1 converges absolutely. 

Similarly I,~~= 0 (a,/(n + 1 ))x" + 1 converges absolutely. 

Now let lxl > r. Using the same test we can show that I:=, nanx"- 1 and 
I,~=o (a,J(n + l))x"+ 1 diverge. Therefore both series have radius of conver­
gence r. 

f
x "- a 

(ii) f(t) dt = I -"-x"+ 1 . 

o n=on+l 

Let 0 < c < r. Our proof has three main steps. First, get an error estimate 
for the difference between f(t) and the mth partial sum. Second, show that 
f(t) is continuous for - c ::;: t ::;: c. Third, show that I(t) has the required 
integral. 

The series I;~=o a,c" converges absolutely. Let E, be the tail 

X 

E, = I 1aniC11
• 

n=m+ 1 

Then lim Em= 0. 
m-:x__ 

Moreover, for - c ::;: t ::;: c, 

I I a"t" I ::=;: I la,,t''l ::=;: Em. 
n=m+ 1 n=m+ 1 

Therefore Em is an error estimate for I(t) minus the partial sum, 

m 

-Em::;: I(t)- I ant"::;: E,n· 
n=O 

We now prove f is continuous on [- c, c]. Since c was chosen arbitrarily 
between 0 and r, it will follow that I is continuous on (- r, r). Let t ::::::; u in 
[ -c, c]. For each finite m, 

lf(t)- uta a,,t'' I::; Em, 

I. I a,,t'' - I a11 ll
11 I::::::; 0, 

n=O n=O 

I 
m I n~O atlu" - f(u) ::;: E,. 

Therefore stii(t) - f(u)l ::;: E"' + 0 + E,. 

Since the Em's approach zero, it follows that I(t) ::::::; I(u). Hence I is continuous 
on [- c, c]. 

To prove the integral formula we integrate both sides of Equation 14 from 
0 to x. Let 0 < x. 

f
x m a 

- E"'x ::;: I(t) dt - L ~-"-x"+ 1 
::;: E,x. 

0 u=on+l 
Again since Em approaches zero, we conclude that 
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I
x -:c a 

f(t)dt = L -"-x"+ 1
• 

0 n=O 11 + 1 

The case x < 0 is similar. 

(i) f'(x) = ~"' na x"- 1 
~ Lm= l n · 

c:o 

Let g(t) = I na,/'- 1
. 

n:::::l 

Integrating term by term, 

I
X CO 

0 
g(t) dt = 

11 

~1 a11x". 

Thus f g(t) dt = f(x) - a0 = f(x) - f(O). 

By the Fundamental Theorem of Calculus, g(x) = f'(x). 

In part (i) of the proof we needed part (iii) to be sure that the series for g(t) 
converges for - r < t < r, and part (ii) to justify the term by term integration. 

PROBLEMS FOR SECTION 9.8 

In Problems 1-10 find power series for f'(x) and for f~.f(t) dt. 

"~ '-

1 f(x) = I lO"x" 2 f(x) = I n-~~x" 
n=O n=:l 

~ 00 x" 
3 f(x) = I ~~-3Xn 4 .f(x) =I-

n=l F 2 lnn 

X, ll + 1 00 

5 f(x) = I --x" 6 f(x) = I J~Jn+lx" 
n= l n n=l 

>C n I 
.f(x) = Jo (-1)"n;. 1 x" 7 j(x) = I --i;x" 8 

n= 1 n 
'lo 00 1 

9 f(x) = I x2" 10 f(x) = I zX2n 
n=O n= I II 

In Problems 11-34 find a power series for the given function and determine its radius of conver-
gence. 

1 1 
11 f(x) = 1 + 3x 12 f(x) = -

1
--z 
-x 

13 f(x) = arctan(4x2
) 14 f(x) = In(! - 3x2

) 

15 j(x) = x ln(l + 2x) 16 f(x) = arctan x ifx #- O,J(O) = 1 
X 

17 j(x) = e-4x 18 f(x) = x 2ex 

19 f(x) = sinh(3x) 20 f(x) = cosh(x2
) 

21 f(x) =fIn(!+ 2t2 )dt 22 .f(x) = f arctan(t3
) dt 

23 f(x) = I: e''dr 24 f(x) = J: sinh(t2
) dt 
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25 

27 

29 

30 

31 

32 

33 

34 

35 

0 36 

0 37 

0 38 

0 39 

0 40 

0 41 

f(x)= ftln(l-t)dt 

f(x) = ("' ln(l + t) dt 
Jo t 

26 

28 

. 2x 
j(x) =(I + x2)2 

1 
f(x) = (1 + x2)2 

f(x)=~ 
1 + x4 

1 
f(x) = (1 - x)3 

d -I 
Hint: f(x) = -

1 
--

2
. 

~X 1 +X 

d 
Hint: f(x) = dx arctan (x2). 

f(x) = arctan x + arctan (2x) 

f(x) = sinh x + x cosh x 

f(x) = r -1 t2 2 dt 
Jo + t 

lx e'- 1 
f(x) = --dt 

0 t 

Check the formulas d(sinh x)jdx = cosh x, d(cosh x)jdx = sinh x by differentiating the 
power series. 

Prove that if the power series f(x) = I,~~ 0 a .. x" has finite radius of convergence r, then 

the power series 
X 

f(bx) = I an(bx)" 
n==O 

has radius of convergence rjb (b > 0). 

Prove that if f(x) = I~~ 0 a .. x" has finite radius of convergence r, then 

has radius of convergence -...F. 
Prove that if 

X 

f(x 2
) = I a,x2

" 
n=O 

X X 

f(x) = I a,x", g(x) = I b,x" 
n=O IJ=O 

have radii of convergence rands respectively and r :S: s, then f(x) + g(x) has a radius of 
convergence of at least r. 

Show that iff(x) = I:~o a,x" has radius of convergence r, then for any positive integer p, 

X 

xPf(x)= I a,xn+p 
n=O 

has radius of convergence r. 

Evaluate I::'~ 1 nx", lxl < I, using the derivative of the power series I,~~o x". 

Evaluate I:~~ n2
\", lxl < 1, using the first and second derivatives ofi,~~o x". 

9.9 APPROXIMATIONS BY POWER SERIES 

Power series are one of the most important methods of approximation in math­
ematics. Consider a power series 

f(x) = a0 + a1x + a2 x 2 + · · · + a11 x" + .... 
The partial sums give approximate values for the function, 

f(x) ~ a0 + a1x + a2 x 2 + · · · + a11 x", 
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and the tails En give the error in the approximation, 

f(x) = a0 + a 1x + a2 x 2 + · · · + anxn +En. 

If we can estimate the error E" we can compute approximate values for f(x) to any 
desired degree of accuracy. 

In this section we shall give two simple methods of estimating the error. 
A more general method will be given in the next section. Our first method is to use the 
Alternating Series Test. It can be applied whenever a power series is alternating. 

EXAMPLE 1 Approximate In (1!) within 0.01. 

We use the power series for In (1 - x), 

xz x3 x4 xs 
In (1 - x) = -x- l- 3 - 4 - S- · · ·, r = 1. 

Setting 1 - x = 1±, x = -t, 

In ( 1 !) = ~ - _1_ + _1_ - ~1- + ~1- - .... 
2 2 2·4 3·8 4·16 5·32 

This is an alternating series. The last term shown is less than 0.01, 

1 1 
5. 32 = 160 ~ 0"006• 

By the Alternating Series Test, the error in each partial sum is less than the 
next term. So 

( 
1) 1 1 1 1 

In 12 ~2-2·4+3·8-4-16' error:::;5·32' 

or In (1!) ~ 0.401, error ::::; 0.006. 

The actual value is In Ot) ~ 0.405. 

EXAMPLE 2 Approximate arctan t within 0.001. 

The power series for arctan x is 

x3 xs x7 x9 
arctan x = x - - + - - - + - - · · · 

3 5 7 9 ' 

Setting x = t, 
1 1 1 1 1 1 

r = 1. 

arctan- =- - -- + -- - -- + -- - · · ·. 
2 2 3·8 5·32 7-128 9·512 

This an an alternating series. The last term is less than 0.001, 

1 
9. 512 ~ 0.0002. 

Therefore 

1 1 1 1 1 
arctan- rv-- -- + ------

2 2 3 • 8 5. 32 7. 128' 
error ::::; 0.0002. 

Adding up, arctan± ~ 0.4635, error ::::; 0.0002. 
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The series 

x3 xs x7 
arctan x = x - 3 + S - 7 + · · · , r = 1 

can be used to approximate n. We start with 

n 1 
tan 6 = ,fi' 

1 n 
arctan ,fi = 6. 

Setting x = 1/ ,fi in the series, 

~= ~-H~r +H~r -H~r + .. ·, 
or ,fin = 1 _ I (I) + I (2) 

2 

_ ~(I) 
3 

+ I (2) 4 

6 33 53 73 93 

This is an alternating series, so 

fn ~ 1 - i + 4
1
5- 1~9 + 7~9' error::; 1\(~r, 

,fin ~ 0 9072 error ::; 0.0004. 6 . ' 

Dividing everything by ,/3/6 we get 

n ~ 3.1426, error ::; 0.0013. 

EXAMPLE 3 Approximate e- 1 within 0.001. 

The power series for ex is 

xz x3 x4 xs 
ex= 1 +X+ 2! + JT + 4T + 5! + · · ·, 

Setting x = -1, 

/'= w. 

e-
1 = 1 - 1 + ±- i + i4- 1io + 11o - so

1
4o + · · · · 

The series alternates and the last term is less than 0.001, so 

error ::; 50
1
40 ~ 0.0002. 

Adding up, e- 1 ~ 0.36806, error ::; 0.0002. 

The actual value is e- 1 ~ 0.36788. 

Our second method of approximation is to start with a known error estimate 
for the geometric series and carefully keep track of the error each time we make a 
new series. 

We recall the formula for the partial sum of a geometric series. 

1 - x"+ 1 

1 + x + x 2 + · · · + x" = ----
1 - X 

x"+I 

1-x 1-x 
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1 1 2 n E --= +x+x +···+x + 
1 n' -x 

x"+1 
E =--

" 1 -X 

This formula is valid for all x, but the error E" approaches zero only when x is within 
the interval of convergence ( -1, 1). 

EXAMPLE 4 Approximate 1/(1 - 0.02) to six decimal places. Take x = 0.02. 

1 
1 - 0.02 = 1 + 0.02 + (0.02)

2 + (0.02)
3 + E4 

= 1 + 0.02 + 0.0004 + 0.000008 + E4 

= 1.020408 + E4. 

The error E4 after four terms is 

E4 = (0.02)
4 

= 0.00000016 < 0.00000016 = 0.00000020. 
1 - 0.02 0.98 0.8 

So 1/(1 - 0.02) "' 1.020408 to six places. 

Suppose we wish to approximate In t within 0.01. If in the series 

xz x3 x4 
In (1 - x) = -x- l- 3 - 4 - · · ·, r = 1 

we set 1 - x = t, x = t, we get 

1 1 1 1 1 
In-=----------···. 

2 2 2·4 3·8 4-16 

We know this series converges, but to be sure of an approximation within 0.01 we 
need an error estimate. The next example shows how to get such an error estimate. 

EXAMPLE 5 Given a constant c where -1 < c < 1, find a simple error estimate for 
the power series 

(1) 

(2) 

x2 x3 x" 
ln(1- x) = -x----- · · ·--- · · · 

2 3 n 

valid for - 1 < x :s; c. 

We start with the equation 

1 ( 2 ") -- = 1 + t + t + · · · + t + E,, 
1 - t 

t"+ 1 

En= -1-. 
- t 

For -1 < t :s; c we have 

1- t ~ 1- c, 
ltl"+ 1 

\E"I :s; --. 
1 - c 

Integrating Equation 1 from 0 to x we have 

( 
x2 x3 x"+ 1 ) 

-In (1 - x) = x + - + - + · · · + --
2 3 n + 1 
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(3) 

and If E"dr\ J·'itl"+ 1 lxl"+ 2 

:::;; --dt = . 
0 I - c (I - c)(n + 2) 

Multiplying Equation 2 by -1 and setting m = n + 1 we have the following 
error estimate for In (1 - x). valid for -1 < x :::;; c. 

( 
x2 x3 x"') In (I - x) ~ -x- -2 - 3 - · · · --;;;- , 

lxl"'+l 
error :::;; . 

(I - c)(m + 1) 

EXAMPLE 6 Use Example 5 to approximate In 1 within 0.01. We set c = x = 1 in 
Equation 3. 

1 1 1 1 
In-~ 

2 
------------ ... ---

2 2 • 4 3 • 8 4 • 16 Ill • 2"' ' 

(1/2)"'+ 1 

terror! :::;; = . 
!(m + 1) (m + 1)2"' 

Table 9.9.1 shows approximate values and error estimates. 

Table 9.9.1 

Approximate value for In! Error estimate 

I I I I I 
Ill -- -----··· ---

IH• 2111 2 2·4 111• 2"' (Ill+ 1)2'" 

I 0.5000 -0.5000 

I 

0.2500 
2 0.1250 -0.6250 0.0833 
3 0.04167 -0.6667 O.Q313 
4 0.01563 -0.6823 0.0125 
5 0.00625 -0.6886 0.0052 

We see that the error estimate drops below 0.01 when m = 5. 

So In 1 ~ - 0.689, error :::;; 0.0 I. 

Since In t = -In 2, we also have 

In 2 ~ 0.689, error :::;; 0.0 I. 

A more rapidly converging series for ln 2 can be obtained in the following 
way. Any number a > I can be put in the form 

l+x 
(/ = --. 

1-x 
O<x<l. 

We simply take 
a-1 

X=--. 
a+ I 

By the rules of logarithms, 

ln --- = ln (I + x)- ln (I - x). (
I + x) 
1-x 

s 1 .. 
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x2 x3 x4 xs 
In ( 1 + x) = x - 2 + 3 - 4 + 5 - · · · , r = 1, 

x2 x3 x4 xs 
In (1 - x) = - x - 2 - 3 - 4 - 5 - · · ·, r = 1, 

In -- = 2x + - + - + · · ·, r = 1. 
(
1 + x) 2x3 2x5 

1- X 3 5 

This power series is convenient because half of the terms are zero. 

EXAMPLE 7 Find an error estimate for the power series for In ((I + x)j(l - x)) 
valid for - c S:: x S:: c. Use it to approximate In 2 within 0.00001. 

From Example 5 we have the following error estimates for In (I + x) and 
-In (1 - x) valid for - c S:: x S:: c. 

x 2 x 3 x"' 
In (I + x) - x - 2 + 3 - · · · + ( -1)"' + 1 

-;;;-, 

lxl"'+l 
error S:: -:-:---~----:-

(1 - c)(m + 1) 

x 2 x 3 x"' 
-In ( 1 - x) - x + -

2 
+ -

3 
+ · · · + -, 

IJ1 

lxl"'+l 
error S:: ----­

(1 - c)(m + 1) 

We add the two sums and error estimates, 

In-- -2x+-+-+···+---( 
1 + x) 2x3 2x5 2x2

"'-
1 

1- x 3 5 2m- 1' 

2)xl2m+ 1 

error S:: . 
(1 - c)(2m + 1) 

We wish to choose x so that (I + x)/(1 - x) = 2. Solving for x we get x = t. 
Now set c = t and x = t. The error estimate for x =tis 

(1 - c)(2m + 1) (2m+ 1)3 2
"'. 

Table 9.9.2 

Approximate value for In 2 Error estimate 

2 2 2 2 1 
Ill 

(2m - 1)32
m 

1 1.3 + 3 • 27 + ... + (2m - 1)32 m 1 (2m + 1)3 2
m 

1 0.666667 0.666667 0.037037 
2 0.024691 0.691358 0.002469 
3 0.001646 0.693004 0.000196 
4 0.000131 0.693134 0.000017 
5 0.000011 0.693146 0.000002 

The error estimate drops below 0.00001 when m = 5. Thus 

In 2 ""' 0..693146, error S:: 0.00001. 
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EXAMPLE 8 Find the sum of the alternating harmonic series 

1-1+!-:l:+· ... 
Our first guess is to set x = - 1 in the power series 

xz x3 x4 
In (1- x) = -x- l- 3 - 4 - · · ·, 

This suggests to us the sum 

In 2 = 1 - 1 + t - t + · · · · 

r = 1. 

We know the series converges to something by the Alternating Series Test. 
For -1 < x < 1 the series converges to In (1 - x). But x = -1 is an end­
point of the interval of convergence and the general theorem on integrating 
a power series does not apply. So we must go back to the beginning and use 
the equation 

1 t" +I 

-- = (1 + t + ... + t") + --. 
1-r 1-t 

Fort::::; 0, lt"+ 1/(1- t)l::::; lt"+ 1 l, whence 

1 
-- = (1 + t + · · · + t") + E 
1 - t "' 

Integrating from 0 to x, 

-In (1 - x) = (x + x
2 

+ · · · + x"+ 
1

) 
2 11 + 1 

This holds for all x ::::; 0. 

Now we set x = -1 and see that the error term IFni ::::; 1/(n + 2) approaches 
zero. This proves that In 2 really is the sum of .the alternating harmonic 
senes, 

In 2 = 1 - 1 + t - ± + · · · . 
The alternating harmonic series converges very slowly, because after n terms 
the error estimate is only 1/(n + 1 ). 

PROBLEMS FOR SECTION 9.9 

Problems 1-12 below are to be done using a power series with an error estimate. If a hand calculator 
is available they can be worked with the errors reduced by an additional factor of 1000. 

1 Approximate In (1.2) within 0.01. 

2 Approximate arctan Uol within 10- 7
. 

3 Approximate e- 1i 4 within 0.00001. 

4 Approximate { e_,, dt within 0.01. 

f.
l/2 1 

5 Approximate -
1 
--3 dt within 0.0001. 

0 + t 

6 Approximate L12 

In (I + t 2
) dt within 0.001. 
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7 f.
l/3 1 

Approximate -arctan (t) dt within 0.0001. 
0 t 

8 
11/2 

Approximate Jo arctan (t2
) dt within 0.00001. 

9 Approximate 1/(1 - 0.003) within 0.0001. 

10 Approximate In 3 within 0.1 by the method of Example 6. Hint: In 3 = -In (1 - x) 
where x = t. 

11 Approximate In 3 within 0.001 by the method of Example 7. 

12 (a) Approximate In (t!-) within 0.00001 by the method of Example 7. 
(b) Approximate In 3 within 0.00002 using the formula In 3 = In 2 + In (11). 

In Problems 13-18 find a power series approximation with an error estimate for f(x) valid for 
-1 s x s i. Then approximate f(t) within 0.01. 

13 
X 

f(x) = 1- x 14 f(x) = fIn (1 - t) dt 

15 
1 r 1 f(x) = -

1 
--2 · 16 f(x) = -

1 
~3 dt 

-X 0 - t 
Hint: x2 =!when x = 1. 

17 f(x) = rln(1- t)dt 18 f(x) = J: ln(1- t 2 )dt 
0 t 

0 19 Using the power series for arctan x at x = 1, show that 

1t 11111 
4= 1 -3+5-7+9-11+ .. ·. 

0 20 Using the power series for J~ In (1 + t) dt at x = 1, show that 

1 1 1 1 1 
2 In 2 - 1 = N - W + ~4 - W + s:6 - .... 

10 TAYLOR'S FORMULA 

If we wish to express f(x) as a power series in x - c, we need two things: 

(1) A sequence of polynomials which approximate f(x) near x = c, 

(1) ao, ao + al(x - c), ... ' ao + al(x - c) + ... + an(x - cr, .... 
(2) An estimate for the error E11 between f(x) and the nth polynomial, 

(2) f(x) = a0 + a1(x- c)+···+ a11(X- c)"+ E11 • 

In the last section the formula 

_1_ = 1 + x + · · · + x" + E 
1 "' -X 

x"+l E =~­
" 1- X 

was used to obtain power series approximations. A much more general formula of 
this type is Taylor's Formula. In Taylor's Formula the nth polynomial P11(X) is chosen 
so that its value and first n derivatives agree with f(x) at x = c. 

The tangent line at x = c, 

R_(x) = f(c) + f'(c)(x- c), 

has the same value and first derivative as f(x) at x = c. A polynomial of degree two 
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with the same value and first two derivatives as f(x) at c is 

' f"(c) 
P2(x) =/(c) + f (c)(x - c) + -

2
-(x - c) 2

. 

P1 (x) and P2(x) are the first and second Taylor polynomials of f(x) (see Figure 9.1 0.1 ). 

Figure 9.10.1 First and Second Taylor Polynomials 

I / 

! / 
I 
I 7 
I /' 
/ /" 

/?" 

X 

To continue the procedure we need a formula for the nth derivative of a 
polynomial. 

LEMMA 1 

Let P(x) be a polynomial in x - c of degree n. 

P(x) = a0 + a 1(.x- c)+ a2(x- c)+ · · · + C/11(X - ct. 

For each m s n, the mth derivative of P(x) at x = c divided by m! is equal to 
the coefficient a,, 

p(ml(c) 
--=am. 

m! 

PROOF Consider one term ak(x - ct Its mth derivative is 

k(k - I)··· (k - m + l)alx - c)k-m 

0 

At x = c, the mth derivative of ak(x - c)" is: 

0 if Ill< k, Ill! (/Ill if IJ1 = k, 

It follows that p(m1(c) = m! am. 

ifm<k, 

ifm = k, 

ifm > k. 

0 if IJ1 > k. 

This lemma shows us how to find a polynomial P(x) whose value and first 
n derivatives agree with f(x) at x = c. The mth coefficient of P(x) must be 

pml(c) 
am=--,-. 

/11. 
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DEFINITION 

Let f(x) have derivatives of all orders at x = c. The nth Taylor polynomial of 
f(x) at x = c is the polynomial 

f"(c) j<">(c) 
P (x) = f(c) + f'(c)(x - c) + -(x - c)2 + · · · + --(x - c)". 

" 2! n! 

By Lemma 1, P
11
(X) is the unique polynomial of degree n whose value and first n 

derivatives at x = c agree with f(x), 

P"(c) = f(c), P~(c) = f'(c), . .. , P,~"l(c) = f("l(c). 

The difference between f(x) and the nth Taylor polynomial is called the nth 
Taylor remainder, 

R"(x) = f(x) - P,(x). 

Thus 

j"(c) P">(c) 
f(x) = f(c) + f'(c)(x - c) + ~-(x - cf + · · · + -

1
-(x - c)" + R,lx). 

2 11. 

EXAMPLE 1 Find the first five Taylor polynomials of sin x at x = 0. We work them 
out in Table 9.10.1. 

Table 9.10.1 

k flk>(x) fCkl(O) Pk(x) 

0 sin x 0 0 
1 cosx 1 X 

2 -sinx 0 .X 

3 -cosx -1 x- x3/3! 
4 sinx 0 x- x3j3! 
5 cosx 1 x- x3/3! + x5/5! 

Since the even degree terms are zero, the 2nth Taylor polynomial is the same 
as the (2n - 1)st. Figure 9.10.2 compares the first and third Taylor poly­
nomials with sinx. 

y 

Figure 9.10.2 

\ X 
\ 
\ 
\ 

\ sin x 
\ 
I 
1 x3 
1 x-3! 
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We can easily find the Taylor polynomials off(x) by differentiating. Let us 
now try to find a formula for the Taylor remainders. The Mean Value Theorem gives 
a formula for the Taylor remainder. R0 (x). 

MEAN VALUE THEOREM (Repeated) 

Suppose f(t) is differentiable at alit bet\\'een c and d. Then 

for some point t 0 strictly between c and d. 

When we replace d by x, this gives the formula 

f(x) = f(c) + R0 (x). R 0 (x) = /'(t 0 )(x - c). 

Taylor's Formula is a generalization of the Mean Value Theorem which gives the 
nth Taylor remainder. 

TAYLOR'S FORMULA 

Suppose rhe (11 + l)st di!rimtiri! P"T 1 '(1) i!Xis1s for all 1 hi!1\\'i!en c and x. 
Thi!n 

. . , ["(c) , f 1" 1(c) 
j(x) = j(c) + f (c)(.\- c)+-· --(x- c)-+···+ "--(x- c)"+ R (x) . . . 2! /)! II 

where /
"(11+ 1)(1 ) 

R (x) = -· ~--" (x- c)"+ 1 

II (n + 1)! 

for some point t" strictly between c and x. 

Notice that the remainder term looks just like the (11 + I )st term of a Taylor 
polynomial except that P" + 1 1(c) is replaced by J<" + 1 1(t 11 ). 

When c = 0 Taylor's Formula is sometimes called MacLaurin's Formula. 
Taylor's Formula can be used to get an estimate of the error R)x) between 

f(x) and the Taylor polynomial Pufx). For example if 

II'"+ 11(t)[ s jvfll+ I 

for all t between c and x. then we obtain the error estimate 

J\1"+ I + J IR (x)[ s [x - c[" . 
" (n + 1)! 

Taylor polynomials with the error estimate are of great practical value in obtaining 
approximations. In the next example we use Taylor's Formula to approximate the 
value of e. 

EXAMPLE 2 Find MacLaurin's Formula for f(x) = r/. 

The nth derivative is / 1" 1(x) = e-".f1"
1(0) = 1. MacLaurin's Formula is 

x2 xJ x" 
e-" = I + x + - - + - + · · · + - + R (x). 

2! 3! /)! II 
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for some t11 between 0 and x. For t between 0 and x the value of e' is always 
less than or equal to 31x1, for 

We therefore have the formula 

x 2 X11 
e-' = 1 + x + - + · · · + - + R (x) 

2 1 f II~ ' . 11 . 

lxiii+I 
IR (x)l S 3ixl • . 

II (/1 + I)! 

The formula (3) can be used to approximate e-'. Let us set x = 1 and approxi­
mate e. The error estimate is now 

II 

2 
3 
4 
5 
6 
7 
8 

1/n! 

0. 500000 
0.166667 
0.041667 
0.008333 
0.001389 
0.000198 
0.000025 

lxiii+I 3 
31-'l. =---

(11 + 1)! (n + 1)! · 

Approximate value for e 

1 1 1 
1+1+-+-+···+-

2! 3! n! 

2.500000 
2.666667 
2.708333 
2.716667 
2.718056 
2.718254 

Error estimate 

3 
(n +I)! 

0.500000 
0.125000 
0.025000 
0.004167 
0.000594 
0.000075 

This compares withe = 2.718282. 

EXAMPLE 3 Find MacLaurin's Formula for f(x) = sin x. The derivatives are 

f(x) = sin x 

f'(x) = cos x 

f"(x) = -sin x 

j<3 >(x) = -cos x 

j<4 >(x) = sin x 

j< 5>(x) = cos x 

MacLaurin's Formula for 2n terms is 

.f(O) = 0 

f'(O) = 1 

f"(O) = 0 

.f(3 )(0) = - 1 

J<4l(O) = 0 

f( 5 )(0) = 1 

x3 xs x7 x211-1 
sinx = x- ~! + 5! - 7 ! + ··· + (-1)"-

1
( 211 _ I)!+ R211(X), 

X211+ I 

R 211(X) = (-I)" cost (211 + 1)!. 

For all t, Ieos tl s 1, so we have the error estimate 

lxl211+l 
IRzn(x)l S (211 + I)!" 
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MacLaurin's Formula can be used to approximate sin x (with x in radians) 
when xis close to zero. We approximate sin (18°) as follows. 

x = 18° = 
1
n
0 
~ 0.31415927 radians. 

Error estimate 
lxl 2"+ 1/(2n + 1)! n I (-I)"- 1 (2/~~-l ~ 1 ! Approximate value of P211(X) 

-1-~----0-.3-14-1-592G-~_-J 0.3141--59_2_7_ 0.00516771 

2 ! -0.00516771 0.30899156 0.00002550 
__3_j ___ ~0002550 0_.3_09_0_1_70 __ 6 ___ _,___0.00000006 

Thus sin (18°) ~ 0.3090171 to seven places. 
The proof of Taylor's Formula uses the following generalized form of the 

Mean Value Theorem. 

GENERALIZED MEAN VALUE THEOREM 

Suppose f and g are differentiable at all t between c and d, and that g'(t) #- 0 
.for t strictly between c and d. Then 

I'Uol f(d)- /(c) 
-----

g'(t 0 ) g(d) - g(c) 

for some point,t0 strictly between c and d. 

This theorem can be illustrated graphically by plotting the parametric 
equations x = g(t), y = .f(t) in the (x, y) plane, as in Figure 9.10.3. 

If f(c) = 0 and g(c) = 0, the formula in the theorem takes on the simpler 
form 

f'(t 0 ) .f(d) 

g'(to) g(d) 

This is the form which will be used in the proof of Taylor's Formula. 

y 

t = d 

I 
f(d)- /(c) 

~-------' __L 
~g(d)- g(c)----j 

X 

X = g(t), Y = f(t) 

Figure 9.10.3 
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PROOF OF THE GENERALIZED MEAN VALUE THEOREM Introduce the new 
function 

h(t) = f(t)(g(d) - g(c)) - g(t)(f(d) - f(c)). 

Then h(t) is also differentiable at all points between c and d. Furthermore, at 
the endpoints c and d we have 

h(c) = f(c)g(d) - f(d)g(c) = h(d). 

We may therefore apply Rolle's Theorem, whence there is a point t0 strictly 
between c and d such that h'(t0 ) = 0. Differentiating h(t), we get 

h'(t) = f'(t)(g(d) - g(c)) - g'(t)(f(d) - f(c)). 

Therefore at t = t0 , 

0 = .f'(t0 )(g(d) - g(c)) - g'(t0 )(f(d) - f(c)). 

g'(t) is never zero. Also, g(c) # g(d) because otherwise Rolle's Theorem would 
give a t with g'(t) = 0. We may therefore divide out and obtain the desired 
formula 

f'(to) f(d) - f(c) 

g'(t0 ) g(d) - g(c) · 

PROOF OF TAYLOR'S FORMULA Let F(x) = R11(x), G(x) = (x- c)''+ 1
. 

Then F(x) = f(x) - P11(X). f(x) and the nth Taylor polynomial P,,(x) have the 
same value and first n derivatives at x = c. Therefore 

F(c) = F'(c) = F"(c) = · · · = f<"l(c) = 0. 

We also see that 

G(c) = G'(c) = G"(c) = · · · = G<"l(c) = 0. 

Using the Generalized Mean Value Theorem n + 1 times, we have 

F'(to) 

G'(to) 

F"(td 

G"(td 

p<ll+ !)(til) 

G<"+ ll(t") 

It follows that 

Either 

F(x) 

G(x) 

F'(to) 

G'Cto) 

p<"l(tll_l) 

G<"l(t"_!) 

for some t 0 strictly between c and x; 

for some t 1 strictly between c and t 0 ; 

for some t11 strictly between c and t 11 _ 1 . 

f(11 +I l(t") 

G<" + I)( t,.) 
F(x) 
G(x)· 

x < t0 < t 1 < · · · < t11 < c or x > t0 > t 1 > · · · > t" > c, 

so t
11 

is strictly between c and x. The (n + 1 )st derivatives of F(t) and G(t) are 

pCn+ll(t) = pn+1)(t) _ 0, G(n+1)(t) = (n + 1)! 
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Substituting, we have 

j<"+ l)(t") 

(n + 1)! (x- c)"+ 1 ' 

and Taylor's Formula follows at once. 

PROBLEMS FOR SECTION 9.10 

In Problems 1-8. find MacLaurin's Formula for f(x). and use it to approximate j"ft) within 0.0 I. 
(If a hand calculator is available, the approximations should be found within 0.0001.) 

I f(x) = cos x 2 f(x) = sinh x 

3 f(x) = sin (2x) 4 f(x) = lOOe' 

5 

7 

.f(x) = sin x cos x 

f(x) = (4 + x)-3i2 

6 

8 

f(x)= jl+~ 
.f(x) = (I - x)l/3 

In Problems 9-18 find the first two nonzero terms in MacLaurin's Formula and use it to approxi­

mate./(±). 

9 .f(x) = tanx 10 f(x) = secx 

f(x) = sin (ex) 

f(x) = Jx2 + 1 

II 

13 

15 

17 

f(x) = arcsin x 

f(x) = In (1 + sin x) 

f e''dt 

f sin (In(!+ t))dt 

12 

14 

16 

18 

f sin (1 2
) dt 

f arcsin (1 2
) dt 

19 Find Taylor's Fonnula'for f(x) = e·' in powers of x - 2. 

20 Find Taylor's Formula for f(x) = In x in powers of x - 10. 

21 Find Taylor's Formula for f(x) = xP in powers of x - I, where p is a constant real 
number. 

22 Find Taylor's Formula for f(x) = sin x in powers of x - n. 

9.11 TAYLOR SERIES 

DEFINITION 

If we continue the Taylor polynomial (by adding three dots at the end) we 
obtain a power series 

{"(c) j<"l(c) 
f(c) + f'(c)(x - c) + -· -(x - cf + · · · + --(x - c)" + · · · 

2! n! 

:f~ f'"l(c) 
= I --(x - c)". 

II= 0 /1! 

This series is called the Taylor series for the function f(x) about the point 
X= C. 
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The Taylor series about the point x = 0 is called the MacLaurin se1·ies, 

f"(O) j<">(O) 
f(O) + f'(O)x + --x2 + · · · + --x" + · · ·. 

2! n! 

At x = c the Taylor series about the point c converges to f(c). But we have 
no assurance that the Taylor series converges to f(x) at any other point x. There are 
three possibilities and all of them arise : 

(1) The Taylor series diverges at x. 

(2) The Taylor series converges but to a value different than f(x). (For an 
example, see Problem 28 at the end of this section.) 

(3) The Taylor series converges to f(x); i.e., f(x) is equal to the' sum of its 
Taylor series. 

Theorem 1 shows that if we already know a functionf(x) is the sum of a power 
series, then that power series must be the Taylor series of f(x). 

THEOREM 1 

Suppose f(x) is equal to the sum of a power series with radius of convergence 
r > 0, 

f(x) = L a"(x - c)". 
n:::::O 

Then the power series is the same as the Taylor series for f about c. In other 
words, a11 is just j<">(c)jn! for n = 0, 1, 2, .... 

Discussion A function which is equal to the sum of a power series in x - c (with 
nonzero radius of convergence) is called analytic at c. The theorem shows that 
every analytic function is equal to the sum of its Taylor series. 

PROOF Since power series can be differentiated term by term within its interval of 
convergence, all the nth derivatives j<">(c) exist Let us compute j<">(x) and 
set x =c. 

f(x) = L a"(x - c)", f(c) = ao 
n=O 

% 

f'(x) = L na
11
(X - c)"- 1

, f'(c) = a 1 
n=l 

% 

f"(x) = L n(n- l)a11(X- c)"- 2, f"(c) = 2!a2 
n=2 

X 

f'"(x) = L n(n- l)(n- 2)a11(X- c)"- 3
, f"'(c) = 3 !a 3 

n=3 
'l) 

j<k>(x) = L n(n - 1) · · · (n - k + l)a11(x - c)"-\ 
n=k 

Thus for each n, 
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and the original power series is the same as the Taylor series off(x), 

cL "- Jf">(c) I a"(x - c)" = I -
1
-(x - c)". 

n=O n=O 11. 

EXAMPLE 1 Let f(x) be a polynomial in x - c, 

f(x) = a0 + a 1(x -c)+ · · · + a"(x- c)". 

This is just a power series with all but the first 11 + 1 coefficients equal to 
zero. So by Theorem 1, the Taylor series of the polynomial is just the poly­
nomial itself followed by infinitely many zeros, 

a0 + a1(x -c)+ · · · + a"(x- c)"+ 0 + 0 + · · ·. 

We can also see this directly from Lemma 1 of the last section, namely 

Jfml(c) 
--

1
- =am form::;; 11. 

m. 

Here is a review of the power series obtained earlier in this chapter. By 
Theorem 1, they are all MacLaurin series. 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

1 
-- = 1 + x + x2 + x3 + x4 + ... , 
1 - X 

1 
-- = 1 - x + x 2 - x 3 + x4 - ... , 
1 + X 

JxJ < 1 

Jxl < 1 

xz x3 x4 
In (1 - x) = -x- 2 - 3 - 4 - · · ·, Jxl < 1 

1 
--- = 1 - x2 + ),A - x 6 + x8 Jxl < 1 
1 + x2 

x3 xs x7 xg 
arctan x = x- 3 + S - 7 + 9 - · · ·, Jxl < 1 

1 

JxJ < 1 

-,----~ = 1 + 2x + 3x2 + 4x3 + 5x4 + · ·. (1 - x)2 . . , JxJ < 1 

xz x3 x4 
ex = 1 + X + - + - + - + · · · 

2! 3! 4! 
x2 x3 x4 

e-x = 1 - X + - - - + :___ - · · · 
2! 3! 4! 

x2 x4 x6 xs 
cosh x = 1 + - + - + - + - + ... 

2! 4! 6! 8! 
. x3 xs x7 xg 

smh x = x + - + - + - + - + · .. 
3! 5! 7! 9! 
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(14) 

list: 

(15) 

(16) 

(17) 
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-t2 f.
x x3 xs x7 x9 

0 
e dt = x - 3 + 5 · 2! - 7 • 3 ! + 9 • 4! - ... 

ln -- =2x+-+-+-+-+··· 
(
1 + x) 2x3 2x5 2x7 2x9 

1-x 3 5 7 9 
lxl < 1 

At the end of this section we shall add three important power series to our 

x3 xs x7 xg 
sin x = x - - + - - - + - - · · · 

' 3! 5! 7! 9! 
xz x4 x6 xs 

COS X = 1 - - + - - - + - - · · · 
2! 4! 6! 8! 

(1 + x)P = 1 + px + p(p- 1)x2 + p(p -1)(p- 2)x3 + ... 
2! 3! ' 

where pis constant. 

lxl < l, 

The last series is called the binomial series. 
It is interesting to observe that the derivatives of an analytic function at 

zero can be read directly from the MacLaurin series. Sometimes it is quite hard to 
compute the derivative directly but easy to take it from the MacLaurin series. 

EXAMPLE 2 Find the sixth derivative of f(x) = 1/(1 + x2
) at x = 0. 

If we try to differentiate directly we will be hopelessly bogged down at about 
the third derivative. But from the MacLaurin series we see that 

1 2 4 6 ---=1-x +x -x +··· 
1 + x2 

' 

p 6>(0) 6 6 
-

6
-
1
-x = -x, 

JC6l(O) 
_6_!_ = -1, 

jC6l(O) = -6! = -720. 

Suppose we are given a function f(x) and a point c, and we wish to represent 
f(x) as the sum of a power series in x - c. This will be possible for some functions 
(the analytic functions), but not for all. Theorem 1 shows that if there is such a power 
series it is the Taylor series for f(x). Thus we use the following steps to represent 
f(x) as a power series. 

Step 1 Compute all the derivatives f(">(c), n = 0, 1, 2, .... If these derivatives do 
not all exist, f(x) is not the sum of a power series in powers of x - c. 

Step 2 Write down the Taylor series of f(x) at x = c and find its radius of con­
vergence r. 

Step 3 If possible, show that f(x) is equal to the sum of its Taylor series for 
c- r < x < c + r. 

We shall now use Steps 1-3 to obtain the power series for sin x, cos x, and 
(1 + x)P. 
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THE POWER SERIES FOR sin x 

Step 1 This step was carried out in the preceding section. The values of P"'(OJ for 
11 = 0, 1, 2 .... are 

0. 1. 0, - 1' 0, 1' 0, - 1 ' .... 

Step 2 The MacLaurin series for sin x is 

x3 xs x7 x9 
1 

x2u-l 
X - - + - - - + - - · · · + (- 1 )"- --- + .. · 

3! 5! 7! 9! (2n- 1)! · 

x2n-l . 
Let b" = ( -1)"- 1

---. We use the Ratio Test, 
(211- 1)! 

I. ibn+lj ]' x2 0 
1m 

1
--, = 1m-----= . 

n-·" I b ' n~x 2n(2n + 1) 

Therefore the series converges for all x and has radius of convergence x. 

Step 3 We use MacLaurin's Formula, 

Let us show that the remainders approach zero. We have 

. lxlzn+ I 
lim = 0, lim R 211 (X) = 0. 
n~x(2n+l)! n-x 

Since the even terms are zero, R 211 _ 1(x) = R 211(X). Therefore 

lim R,Jx) = 0. 
II-X 

Concht;,ion: Since the remainders approach zero, the MacLaurin poly­
nomials approach sin x. So for all x, 

. x3 xs x7 xg 
Sll1 X = X - - + - - -- + - - · · · . 

~ . 3! 5! 7! 9! 

THE POWER SERIES FOR cos x 

This power series can be found by the same method as was used for sin x. However, 
it is simpler to differentiate the power series for sin x. 

d(sin x) 
---=COS.\'. 

dx 
3x 2 5x4 7x 6 9x 8 

COSX = --+-----+---··· 
3! 5! 7! 9! ' 

.\'2 .\'4 .\'6 .\8 
COS X = 1 - - + - - -- + - - · · · . 

2! 4! 6! 8! 

THE BINOMIAL SERIES FOR (1 + x)P 

Let us first consider the case where pis a nonnegative integer m, whence (1 + x)'" is a 
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polynomial. The Binomial Theorem states that for nonnegative integers m, 

m(m - 1) 
(a+ bt' =a"'+ ma"'- 1b + a"'- 2b2 

2! 
m(m - 1) · · · (111 - k + 1) + ... + a"'-kbk + · · · + b"' k! . 

Setting a = 1 and b = x we obtain a finite power series for (1 + x)"', 

m(m- 1) 
(1 + x)'" = 1 + mx + x 2 

2! 

m(m - 1) · · · (m - k + 1) 
+ · · · + xk + · · · + x"' k! . 

When p < 0, and when p > 0 but pis not an integer, we shall see that (1 + x)P 
is the sum of a similar power series but with infinitely many terms. Let g(x) = ( 1 + x)P. 

Step 1 By differentiation we see that 

g'(x) = p(1 + x)P- 1
, 

g"(x) = p(p- 1)(1 + x)P- 2
, 

g(">(x) = p(p- 1) · · · (p- 11 + 1)(1 + x)P-". 

Thus at x = 0, g(O) = 1, 

g'(O) = p, 

g"(O) = p(p - 1), 

g("l(O) = p(p - 1) · · · (p - n + 1). 

Step 2 The MacLaurin series is 

p(p - 1) l p(p - 1) " ' (p - /J + 1) II 

f(x) = 1 + px + x + · · · + x + · · ·. 
2! 11! 

We use the Ratio Test. 

l
an+ll = lp(p- 1)···(p- n)/(11 + 1)!11xl = IP -nllxl. 

a, p(p - 1) · · · (p - n + 1 )/n ! 11 + 1 

I. I a,+ 11 I' IP - nl. I I I 1m-- = Im--\X =X. 
n~ X (/ 11 11~ :c IJ + 1 

Therefore the series converges for lxl < 1, diverges for lxl > 1, and has 
radius of convergence r = 1. We denote the sum by f(x). 

Step 3 We wish to show that the sumf(x) is equal to (1 + x)P for I x 1 < 1. In this case, 
the MacLaurin Formula does not give the needed information (see Problem 
27 at the end of this section). Instead we show that the quotientf(x)/(1 + x)P 
has derivative zero for I xI < 1. We have 

~[((x)( 1 + x)-P] = .f'(x)(l + x)- pf(x) 
dx (1 + x)P+ 1 

It suffices to show that 

.f'(x)(I + x) = pf(x) or f'(x) + x.f'(x) = pf(x). 

Let us compute f'(x) and xf'(x). 



560 9 INFINITE SERIES 

p(p - 1)(p - 2) 
f'(x) = p + p(p- 1)x + 

21 
x 2 

p(p - 1)(p - 2)(p - 3) 3 
+ X + ···. 3! . 

p(p - 1)(p - 2) 
xf'(x) = px + p(p- 1)x2 + 

21 
x 3 + · · ·. 

Adding the power series, we have 

. p(p - 1) 
j'(x) + xj'(x) = p + p[(p- 1) + l]x + 

21 
[(p- 2) + 2]x 2 

+ p(p- l){p- 2)[(p- 3) + 3]x3 + ... 
3! 

= p[l + px + p(p- l)x2 + p(p- l)(p- 2)x3 + .. ·] 
2! 3! 

= pf(x). 

Thus f'(x) + xf'(x) = pf(x), 
d 

-
1 

[f(x)(l + x)-P] = 0. 
(.X 

We conclude that for some constant C, 

.f(x)(l + x)-p = C. 

At x = 0, f(x) = I =(I + x)-P. Hence C = I. This shows that (I + x)P = 
f(x) for lxl < 1. 

Thus we have the binomial series 

(1 + x)P = 1 + px + p(p - 1) x2 + p(p - l)(p - 2) x3 + ... 
2! 3 !· , lxl < 1. 

EXAMPLE 3 Find the power series for arcsin x. 

Recall that for lxl < 1, 

arcsin x = J"' dt = J"' (1 - t2
)-

1
1
2 dt. 

0 -}1 - t 2 
0 

We start with the binomial series with p = -!- and obtain the following 
power series by substitution and integration. They are valid for lxl < 1. 

(1 + x) = 1 - -x + -- -- ~x - · · · - 112 1 ( I ) ( 3) I 2 
. 2~ 2 2 2!~ 

1 • 3 •...• (211 - 1) 
+(-1)" x" + ··· 

2"n! 

. I 3 I· 3 • · · · · (2n- I) 
(1 - x)-lt2 = 1 + -x + -x2 + ... + x" + ... 

2 8 2"11! 

1 3 1 • 3 • · · · • (2n - 1) (1 _ x2)-112 = I + -x2 + -x4 + ... + x2" + ... 
2 8 2"n! 

. 1 3 1 • 3 • · · · • (2n - I) 
arcsm x = x + -x3 + -x5 + ... + x 2"+ 1 + .... 

6 40 2"n!(2n +I) 
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PROBLEMS FOR SECTION 9.11 

1 Find j<4 >(0) where f(x) = 1/(1 - 2x2
). 

2 Find j<5>(0) where f(x) = x/(1 + x2
). 

3 Find j<6 >(0) where f(x) = xex. 

4 Find j<8 >(0) where f(x) = cos (x2
). 

5 Find j 17>(0) where f(x) = x 2 In (1 + x). 

6 Find J<6>(0) where j(x) = (arctan x)/x if x =I 0, and f(O) = 1. 

In Problems 7-24, find a power series converging to f(x) and determine the radius of convergence. 

7 f(x) = exfl 8 f(x) = x2e' 

9 f(x) = ~ 10 f(x) = (1 - 4x),- 113 

11 f(x) = cos Jx 12 f(x) = arcsin (x3
) 

sin x .f f O) 13 j(x) = - I X =ft 0, ( = 1 
X 

14 f(x) = 1
- ~osx ifx =I 0, f(O) = i. 

X 

15 

17 

19 

21 

23 

25 
26 

D 27 

D 28 

f(x)=~ 16 
X 

f(x) = (1 + 4 

f(x) = J: sin (t3
) dt 18 f(x) = J: t- 1 sin t dt 

f(x) = J:t- 2 sinh (t 2
) dt 20 f(x) = I: In (1 + t2

) dt 

f(x) = J: (1 + t 2
)
113 dt 22 f(x) = I: j1=7 dt 

f(x) = f arcsin t dt 24 f(x) = J: arcsin (t2
) dt 

0 t 

Find the Taylor series for In x in powers of x - 1. 

Find the Taylor series for sin x in powers of x - n/4. 

Use Taylor's Formula to prove that the binomial series converges to (I + x)P when 
-i :S x < 1. (The proof in the text shows that it actually converges to (1 + x)P for 
-1 <X< 1.) 

Let 
f(x) = { ~-ltx> if X= Q, 

if X =ft 0, 

Show that J<">(O) = 0 for all integers n; so for x =I 0 the MacLaurin series converges but 
to zero instead of to f(x). 

EXTRA PROBLEMS FOR CHAPTER 9 

Determine whether the sequences 1-5 converge and find the limits when they exist. 

1 an = ( 1 + :2 r 2 an = ( 1 + ~r 
3 an = (1 + n)lfn 4 an=n!-10" 

:J 5 an = n"jn! (Hint: Show that an+ 1 ? 2an.J 
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Determine whether the series 6-12 converge and find the sums when they exist. 

6 

7 

I + t + -/g + · · · + (tJ" + · · · 
1- 1.1 + 1.11- 1.111 + 1.1111- ... 

8 ( 1 - ~) + (~ - _2_) + (_2_ - __1_) + ... + (__1_ - ~1 ) + ... 
8 8 27 27 64 n3 (n + 1)3 

9 6 + 19 + 3 + n + ,~, + Ns + · · · + W" + · · · 

10 11 
X 7' 5" 
I-6" n=O 

12 
x_ 2n- 3 
I-
,~a 5n + 6 

Test the series 13-23 for con vergence. 

13 
"- 3n- 7 X 5 
I~ 14 ,,S:, 6n2 + 11 - 1 n~o !On+ 9 
X fi "' I 16 L ne-n 

n~l I+ 2p + 311 n=l 
15 

X X 

17 I (In (n))~" 18 L 12 -lnn 

1J=2 11::::2 

X X 

I lnn~lnn 20 I ( -1)"/v'mn 19 
n=2 n=3 

x ( I) 
X 

I (-ll" '- 2 22 I (-l)"n~lfn 
n~ l 11 11= 1 

21 

x 1/n 

I (-1t-ll 
n = 1 ll 

23 

24 Test the integral fife~Fdx for convergence. 

25 Test the integralj} (In x)~·' dx for convergence. 

26 Approximate the series I:'~ 1 ( -1)''(1/11 3
) to three decimal places. 

Test the series 27-30 by the Ratio Test. 

27 
x nn 
I-( 1)2 

u=l n. 

29 

28 

30 

x 2"(n!) 
I~ 

11=1 

I I00"(11!)3 

,~t (3n)! 

Find the radius of convergence of the power series in Problems 31-35. 

31 32 

33 34 I x")n!/11" 
IJ=l 

X I 

35 \ 11 · 211 
~ nx 

n=l n 

36 Find the interval of convergence of I,~~ 2 (x + 10)"/(ln 11). 

37 Find the power series and radius of convergence for f'(x) and J~ j(t) dt where 
X 

f(x) = I n"(n + l)b2"x". 
n= 1 

38 Find a power series for .f(x) = 1/(1 + 2x 3
) and determine its radius of convergence. 
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39 Find a power series for 

40 

41 

42 
43 

44 

45 

046 

0 47 

0 48 

0 49 

0 50 

0 51 

0 52 

0 53 

054 

:J 55 

J 56 

f(x) = I: arct:~ (t2) dt 

and determine its radius of convergence. 

1
112 arctan (t 2

) 
Approximate 2 dt within 0.0001. 

0 t 

Approximate fb14 tIn (1 - t) dt within 0.001. 

Approximate e 115 within 10- 7
. 

Approximate fb12 
esinr dt within O.Dl. 

Find a power series for (1 + x3
)-

312 and give its radius of convergence. 

Find a power series for J~ (1 + 2t2
)- 213 dt and determine its radius of convergence. 

Prove that any repeating decimal 

0. blb2 ... bnblb2 ... bnblb2 ... bn ... 

(where each ofb 1 , ... , b11 is a digit from the set {0, 1, ... , 9}) is equal to a rational number. 

Approximately how many terms of the harmonic series 1 + ~ + t + · · · + 1/n + .. · 
are needed to reach a partial sum of at least 50? Hint: Compare with J~ (1/t) dt. 

Suppose I:'~ 1 an = w and I:'~ 1 bn is either finite or w. Prove that I:~ 1 (a, + bn) = XJ. 

Suppose I::'~ 1 an is a convergent positive term series and I;'~ 1 bn is a rearrangement of 

I~ 1 a .. Prove that I:~ 1 bn converges and has the same sum. Hint: Show that each 

finite partial sum of I:~ 1 an is less than or equal to each infinite partial sum of I;~ 1 b,, 
and vice versa. 

Give a rearrangement of the series 1 - i + t- t + ···which diverges to - w. 

Suppose I:~ I an = I:~ I bn = S, and an ::;; en ::;; bn for alln. Prove that I;~= I e, = S. 

Prove the following result using the Limit Comparison Test. 
Let I::'= 1 an and I:~ 1 bn be positive term series and suppose lim (aJb,) exists. If 

n---+ -y_ 

I:~ 1 bn converges then I;= 1 an converges. If I:= 1 an diverges then I:~ 1 bn diverges. 

Multiplication of Power Series. 
Prove that if f(x) = I:~o anx" and g(x) = I:=o bnx" then f(x)g(x) =I:~ a enx" where 

en= aobn + albn-1 + ... + a,-lbl + anbo. 

Hint: First prove the corresponding formula for partial sums, then take the standard 
part of an infinite partial sum. 

Suppose f(x) is the sum of a power series for lxl < rand let g(x) = f(x 2
). Prove that for 

each n, 

{

0 
{n) - I 

g (0)- _ 11 ·_pnt2l(Q) 
(n/2)! 

if n is odd, 

if n is even. 

Show that if p :s; - 1 then the binomial series 

1 + px + p(p - 1) xz + p(p - 1)(p - 2) x3 + ... 
2! 3! ' 

diverges at x = 1 and x = - 1. Hint: Cauchy Test. 

If p;:::: l, the series converges at x = l and x = -I. Hint: Compare with I:.·= 1 l/11 2
• 

Note: The cases - 1 < p < 1 are more difficult. It turns out that if - 1 < p < 0 the 
series converges at x = 1 and diverges at x = -1. If p ::::: 0 the series converges at 
x = 1 and x = - 1. 

Prove that e is irrational, that is, e =f. afb for all integers a, b. Hint: Suppose e = afb, 
e- 1 = bfa. Lete = e- 1

- I~= 0 (-1)n/n!. Then lei::::: 1/a! but lei :s; 1/(a + 1)!. 

563 
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Figure 10.1.1 shows a directed line segment from the point P to the point Q. 

Figure10.1.1 p 

We pictorially represent a directed line segment as an arrow from P to Q, and use the 
----> 

symbol PQ. Mathematically, a directed line segment is most easily represented as an 
ordered pair of points. 

----> 
The directed line segment from P to Q, in symbols PQ, is the ordered pair of 

points (P, Q). Pis called the initial point, and Q, the terminal point, of the directed line 
segment. _, ----> ----> 

The directed line segments PQ and QP are considered to be different. QP 
has initial point Q and terminal point P. If P(p 1 , p2 ) and Q(q 1 , q2 ) are two points in 

----> 
the plane, the x-component of PQ is the increment q1 - p1 of x from P to Q, and the 
y-component is the increment q2 - p2 of y, as shown in Figure 10.1.2. 

Figure 10.1.2 

x-component of PQ = Ch - p1 . 
--> 

y-component of PQ = q2 - P2. 

qz- Pz = 
y-component 

r---------------- Q(q~o q2) 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I ________________ J 

P(pr, Pz) 

qt - P1 = x-component 
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Usually we are not really interested in the exact placement of a directed 
line segment PQ on the (x, y) plane, but in the length and direction of PQ. These can 
be determined by the x andy components of PQ. We are thus led to the notion of a 
vector. 

DEFINITION 

The family of all directed line segments with the same components as PQ will 
...... 

be called the vector ji-om P to Q. We say that PQ represents this vector. 

Since all directed line segments with the same components have the same 
length and direction, a vector may be regarded as a quantity which has length and 
direction. 

Vectors arise quite naturally in both physics and economics. Here are some 
examples of vector quantities. 

Position If an object is at the point (p 1 , p2 ) in the plane, its position vector is the 
vector with components p1 and p 2 . 

Velocity If a particle is moving in the plane according to the parametric equations 

X= f(t), y = g(t), 

the velocity vector is the vector with x and y components dxjdt and dyjdt. 

Acceleration The acceleration vector of a moving particle has the x and y com­
ponents d2 xjdt2 and d2 yjdt2

. 

Force In physics, force is a vector quantity which will accelerate a free particle in 
the direction of the force vector at a rate proportional to the length of the 
force vector 

Displacement (change in position) If an object moves from the point P to the point 
Q, its displacement vector is the vector from P to Q. 

Commodity vector In economics, one often compares two or more commodities 
(such as guns and butter). If a trader in a market has a quantity a1 of one 
commodity and a2 of another, his commodity vector has the x and y com­
ponents (a 1 , a2 ). 

Price vector If two commodities have prices p1 and p2 respectively, the price vector 
has components (p 1 , p2 ). The components of a commodity or price vector 
are always greater than or equal to zero. 

EXAMPLE 1 Find the components of the vectors represented by the given directed 
line segments. 

(a) (3, 2), (5, 1). 

x-component = 5 - 3 = 2, 

(b) (0, -2), (2, -3). 

x-component = 2 - 0 = 2, 

y-component = 1 - 2 = - 1. 

y-component = -3 - (- 2) = -1. 

Notice that both of these directed line segments represent the same vector. 
They are shown in Figure 10.1.3. 
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y· 

2 

X 

(0, -2) 

-1 

2 
(2, - 3) 

Figure 10.1.3 

Vectors are denoted by boldface letters, A. A vector is represented by a whole 
family of directed line segments. However, given a vector A and an initial point P. 
there is exactly one point Q such that the directed line segment PQ represents A. 
To find the x-coordinate of Q we add the x-coordinate of P and the x component of A; 
similarly for they-coordinate. 

EXAMPLE 2 Let A be the vector with components -4 and 1, and let P be the point 
( l. 2). Find Q so that PQ represents A. 

Q has the x-coordinate 1 + ( -4) = -3 and the y-coordinate 2 + 1 = 3. 
Thus Q = (- 3, 3 ), as shown in Figure 10.1.4. 

We shall now begin the algebra of vectors. In vector algebra, real numbers are 
called scalars. We study two different kinds of quantities, scalars and vectors. 

---+ 
The length (or norm) of a vector A is the distance between P and Q where PQ 

represents A. The length is a scalar, denoted by IAI. If A has components u1 and u2 , 

then the length, shown in Figure 10.1.5, is given by the distance formula, 

IAI = Jaf +a~. 

The length of a position vector is the distance fi'om the origin. The length of a 

y 

Q(-3, 3) 

X 

Figure10.1.4 

IQ 
I 
I 
I 
I (/o 
I -
I 
I 
I 

___________________ j 

P ar 

Figure 10.1.5 Length of a Vector 
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velocity vector is the speed of a particle. The length of a force vector is the magnitude 
of the force. The length of a displacement vector is the distance moved. For price or 
commodity vectors, the notion of length does not arise in a natural way. 

EXAMPLE 3 ThevectorAwithcomponents3and -4haslength1AI =J32 +(-4)2 

= 5. 

The vector with components (0, 0) is called the zero vector, denoted by 0. The 
zero vector is represented by the degenerate line segments PP. It has no direction. The 
length of the zero vector is zero, while the length of every other vector is a positive 
scalar. 

The sum A + B of vectors A and B is defined as follows. Let PQ represent A 
--+ 

and let QR represent B. Then A + B is the vector represented by P R. More briefly, if A 
is the vector from P to Q and B is the vector from Q to R, then A + B is the vector 
from P toR: Figure 10.1.6 shows two ways of drawing the sum A+ B. 

p 

Figure 10.1.6 Sum of Two Vectors 

R 

p 

-------------I R 

I 
I 

I 

I 
I 

I 

If an object in the plane originally has the position vector P and is moved by a 
displacement vector D, its new position vector will be the vector sum P + D. If an 
object is moved twice, first by a displacement vector D and then by a displacement 
vector E, the total displacement vector is the sum D + E. 

If two forces F and G are acting simultaneously on an object, their combined 
effect is the vector sum F + G (Figure 10.1.7). The combined effect of three or more 
forces acting on an object is also the vector sum, e.g., (F + G) + H. Newton's first 
law of motion states that if an object is at rest, the vector sum of all forces acting on 
the object is the zero vector. 

R 

p F 

Changes in position Forces 

Figure 10.1.7 

In economics, if a trader initially has a commodity vector A and buys a 
wmmodity vector B (i.e., he buys a quantity b1 of commodity one and b2 of commodity 
two), his new commodity vector will be the vector sum A+ B. 

The vector sum is also useful in discussing an exchange between two or more 
traders. Suppose traders A and B initially have commodity vectors A1 and B1 . 

After exchanging goods, they have new commodity vectors A2 and B2 . Since the 
total amount of each good remains unchanged, we see that A1 + B1 = A2 + B2 . 
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Vector sums obey rules similar to the rules for sums of real numbers. 

THEOREM 1 

Ler A, R and C he rectors. 

(i) Identity Law 

(ii) Commutative Law A + B = B + A. 

(iii) Associative Law (A + B)+ C =A+ (B + C). 

(iv) Triangle Inequality lA + Bl <:::; IAI + IBI. 

We shall skip the proofs, which use the corresponding laws for real numbers. 
The Commutative and Associative Laws are illustrated by Figure 10.1.8. 

A 

A 

Commutative law Associative law 

Figure10.1.8 

The Triangle Inequality says that the length of one side of a triangle is at most 
the sum of the lengths of the other two sides. This is because the vectors A, B, and 
A + Bare represented by sides of a triangle. The proof of the Triangle Inequality is 
left as a problem (with a hint). It is illustrated in Figure 10.1.9. 

The sum of three or more vectors is formed in the same way as the sum of two 
vectors, as in Figure 10.1.10. 

Figure 10.1.9 

\ 
\ 
\ 
I 
\ 

A+B+C\ 
I 
I 
\ 
\ 
I 
I 
\ 

Figure 10.1.10 Sum of Vectors 

B 

A 

Triangle inequality 

I 
I 
J 

A+B+C+D+E/ 
J 
I 
J 
I 
I 
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A 

Figure 10.1.11 A+B+C=O A+B+C+D+E=O 

~ ~ 
p p 

Vector negative 
Figure 10.1.12 

The sum of the vectors (clockwise or counterclockwise) around the perimeter 
of a triangle or polygon is always the zero vector (Figure 10.1.11). 

We next define the vector negative, -A, and the vector difference, B - A. 
If A is the vector from P to Q, then -A is the vector from Q to P (Figure 10.1.12). 
B - A is the vector which, when added to A, gives B; i.e., 

A+ (B- A)= B. 

Thus if A is the vector from P to Q and B is the vector from P to R, then B - A 
is the vector from Q toR (Figure 10.1.13). 

Vector difference 

Figure 10.1.13 

If a trader initially has a commodity vector A and sells a quantity b1 of the first 
commodity and b2 of the second, his new commodity vector will be the vector 
difference A - B. 

Given a force vector F, - F is the force vector of the same magnitude but 
exactly the opposite direction. 

If an object initially has position vector P, then Q - P is the displacement 
vector which will change its position to Q. 

THEOREM 2 

Let A and B be vectors. 

(i) -0 = 0, 
(ii) -(-A)= A, 

(iii) A - A = 0, 
(iv) B - A = B + (-A). 

Rule (iv) is illustrated in Figure I 0.1.14. 

B --A 
I 

' ' I \-A 
\ 
\ 

-----------------.! 
B+(-A) 

Figure 10.1.14 
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If A is a vector with components a 1 and a2 and cis a scalar, then the scalar 
multiple cA is the vector with components ca 1 , ca2 • Notice that the product of a scalar 
and a vector is a vector. Geometrically, for positive c, cA is the vector in the same 
direction as A whose length is c times the length of A (Figure 10.1.15). (-c)A is the 
vector in the opposite direction from A whose length is c[A[. We sometimes write 
Ac for cA, and A/c for (1/c)A. 

Figure 10.1.15 Scalar Multiples 

In physics, Nell'ton's second Ia\\' o{ motion states that 

F = mA 

where F is the force vector acting on an object, A is the acceleration vector, and the 
scalar m is the mass of the object. 

In economics, if all prices are increased by the same factor c due to inflation, 
then the new price vector Q will be a scalar multiple of the initial price vector P, 

Q = cP. 

THEOREM 3 

Let A and B he t•ectors and s, t be sculars. 

(i) OA = 0. JA =A. ( -s)A = -(sA). 

(ii) Scalar Associative Law s(t A) = (st)A. 

(iii) Distributive Laws {s + t)A = sA + tA, 

s{A + B)= sA + sB. 

(iv) [sA[=[s[[A[. 

We shall prove only part (iv) which says that the length of sA is !sf times the 
length of A. 

Let A have components a 1 , a2 . Then sA has components sa 1 , sa2 . 

Thus [sA[ = ~2 + (sa 2 )
2 = ,js2ai + s 2ai 

·- ;-·- ---

= ,js2 
'vi a~ + a~ = lsf[A[. 

A unit vector is a vector U oflength one. The two most important unit vectors 
are the basis vectors i and j. i, the unit vector along the x-axis, has components (1, 0). 
j, the unit vector along !hey-axis, has components (0, I). Figure 10.1.16 shows i and j. 

Figure 10.1.16 

""'' """" j L 
i 
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A vector can be conveniently expressed in terms of the basis vectors. 

COROLLARY 1 

The vector with components a and b is ai + bj. 

PROOF ai is the vector from (0, 0) to (a, 0), bj is the vector from (0, 0) to (0, b). Therefore 
the sum ai + bj is the vector from (0, 0) to (a, b) (Figure 10.1.17). 

bj 

Figure 10.1.17 i 

Sums, differences, scalar multiples, and lengths of vectors can easily be 
computed using the basis vectors and components. The necessary formulas are given 
in the next corollary. 

COROLLARY 2 

Let A = a1i + az.i and B = b1i + b:J be vectors and let c be a scalar. 

(i) A + B = (a 1 + b1)i + (a 2 + b2)j. 

(ii) A - B = (a 1 - b1)i + (a 2 - b2 )j. 

(iii) cA = (cadi + (ca 2)j. 

(iv) IAI=Jai+a~. 

For example, (i) is shown by the computation 

A+ B = (a 1i + a:J) + (b1i + b:J) 

= (a 1i + b 1i) + (a:J + bz.i) = (a 1 + b 1)i + (a 2 + b2)j. 

It is illustrated in Figure 10.1.18. 

bl 
r-------
1 
I 

hz i 
I i (az + b2)j 

r-------------
1 

a2 1 
I 

Figure 10.1.18 (a, +h1 li 

EXAMPLE 4 Let A = 2i - 5j, B = i + 3j. 

(a) Find A+ B, A- B, -A, and 6B. 
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A+ B = (2 + 1)i + ( -5 + 3)j = 3i- 2j. 

A- B = (2- l)i + (- 5 - 3)j = i- 8j. 

-A= (-I)A = (-1)2i + (-l)(-5)j = -2i + 5j, 

68 = 6(i + 3j) = 6i + 18j. 

(b) Find the vector 0 such that 3A + 50 = B. 

50= -3A + B, 

0 = !(- 3A + 8). 

= t( - 3 . 2 + 1 )i -t- t( :_ 3 ( - 5) + 3 )j' 

= -i+ 'n 

EXAMPLE 5 A triangle has vertices (0, 0), (2, -1 ). and (3, 1) (Figure 10.1.19). Find 
the vectors counterclockwise around the perimeter of the triangle and check 
that their sum is the zero vector. 

y 

(3, l) 

(2, -l) 
Figure 10.1.19 

The three vectors are 

Their sum is 

A = (2 - O)i + (- 1 - O)j = 2i - j, 

B = (3 - 2)i + (1 - ( -1))j = i + 2j, 

C = (0 - 3)i + (0 - I )j = - 3i - j. 

X 

A + B + C = (2 + l - 3)i + ( -1 + 2 + (- 1 ))j = Oi + Oj. 

We need a convenient way of describing the direction as well as the magnitude 
of a vector. First we define the angle between two vectors (Figure 1 0.1.20). 

B 

Figure 10.1.20 
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DEFINITION 

Let A and B be two nonzero vectors in the plane, and let 0 be the origin. 

The angle between A and B is either the angle AOB or the angle BOA, ll'hichaer 
is in the interval [0, n]. (The angle between A and the zero vector is undefined.) 

Notice that if AOB is between 0 and n, then BOA is between nand 2n, and vice 
versa. So exactly one is between 0 and n. The angle 0 between A and B can be computed 
by using the Law of Cosines from trigonometry, illustrated in Figure 1 0.!.2!. 

Figure 10.1.21 ~ a 

LAW OF COSINES 

In a triangle with sides a, b, c, and angle 0 opposite side c, 

c2 = a2 + b2 
- 2ab cos 0. 

Notice that when e = n/2, cos 0 = 0 and the Law of Cosines reduces to the 
familiar Theorem of Pythagoras, c2 = a2 + b2

. 

Given vectors A and B with angle e between them, we form a triangle with 
sides IAI, IBI, and IB - AI. Then by the Law of Cosines, 

IB - Al 2 = IAI2 + IBI2 
- 21AIIBI cos 0. 

Solving for cos 0, 
IAI 2 + IBI 2 

- IB - Al 2 

cos 0 = 2IAIIBI 

Since the arccosine is always between 0 and n, 

(
IAI2 + IBI2 

- IB- Al 2
) 

0 = arccos 2IAIIBI . 

EXAMPLE 6 Find the angle between A = 3i - 4j c.nd B = i + j. 

IAI = ~( -4)2 = j25 = 5, 
IBI = j 12 + 1 2 = fi, 

IB- AI = j(3 - 1)2+ ( -4- 1)2 = ft+ls = ..)2.9, 
IAI 2 + IBI 2 

- IB - Al 2 25 + 2 - 29 
cos 

0 
= 2IAIIBI 2 . 5 . Ji 

2 fi 
-10.}2 = -10. 

fJ =arccos (-~)· 

The direction of a vector can be described in one of three closely related ways: 
by its direction angles, its direction cosines, or its unit vector. 



Let A be a nonzero vector. The angles a between A and i, and fJ between A and 
j, are called the direction angles of A. The cosines of these angles, cos a and cos fJ, are 
called the direction cosines of A. 

The vector U = A/IAI is called the unit vector of A. U has length one, 
lUI = IAI/IAI = 1. 

y 

A 

cos J)j 

Figure 10.1.22 cos ai X 

We can see from Figure 10.1.22 that the components ofU are the direction 
cosines of A, 

u = cos 'l.i + cos [Jj. 

A vector A is determined by its length and its direction cosines, 

A = /AI U = IAI cos cd + /AI cos {Jj. 

The sum of the squares of the direction cosines is always one, for 

lUI = cos 2 a + cos 2 fJ = 1. 

EXAMPLE 7 Find the unit vector and direction cosines of the given vector. 

First find the length, then the unit vector, and then the direction cosines. 

(a) A = 2i + j /AI = J2.2 + 12 = , '5 
. A 2i + j 

Umt vector=-=--~-
/AI /5 

Direction cosines = (Js' )s) 
(b) B = 5i- 12j /BI = ft+( -12)2 = ./I69 = 13 

B 5i - 12j 
Unit vector = IBJ = 

13 

Direction cosines = (/3 , -1 ~). 
(c) C = ±j IC/ = J62 + (tJl = t ,. 

U 
. 4.1 • 

mt vector = 1 = J 
4 

Direction cosines = (0, 1). 
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EXAMPLE s Find the vector A which has length 6 and direction cosines 
( -1/2, }3/2). 

A = 6(- 1/2)i + 6(j3/2)j = - 3i + 3}3j. 

PROBLEMS FOR SECTION 10.1 

In Problems 1-4 find the vector represented by the directed line segment PQ. 
1 P=(3,1), Q=(4,3) 2 P=(-1,-1), Q=(2,-2) 

3 p = (3, 4), Q = (0, 0) 4 p = (0, 0), Q = (0, 3) 

In Problems 5-8 find the point Q such that A is the vector from P to Q. 

5 P = (1, -1), A = i - 3j 6 P = (0, 0), A = 3i - Sj 

7 P = (4, 6), A= -Si + 6j 8 P = (3, 3), A= 2j 

In Problems 9-32, find the given vector or scalar, where 

9 

11 

13 

15 

17 

19 

21 

23 

A+B 

A+B+C 

3A 

B-A 

A- 2B + 3C 

IBI 

lA -BI 

I6AI 

A= i- 2j, B = -4i + 3j, 

10 

12 

14 

16 

18 

20 

22 

24 The vector D such that A + 2D = B. 

25 The vector D such that 2A + 4D = C - 38. 

26 The unit vector and direction cosines of A. 

27 The unit vector and direction cosines of B. 

28 The unit vector and direction cosines of C. 

29 The angle between A and B. 

30 The angle between A and C. 

31 The angle between B and C. 

32 The angle between - B and C. 

c = 3i. 

A+C 

-A 

A-B 

3A + 4B 

IAI 

lA+ Bl 

IAI + IBI 

33 An object initially has position vector P = 3i + Sj and is displaced by the vector 
A = 4i - 2j. Find its new position vector. 

34 An object is displaced first by the vector A = - i - 2j and then by the vector B = 4i - j. 
Find the total displacement vector. 

35 Find the displacement vector necessary to change the position vector of an object 
from P = - 3i + 6j to Q = Si + 4j. 

36 Three forces are acting on an object, with vectors 

F = i + 3j, 

Find the total force on the object. 

G = 2i, H = -2i- j. 
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37 Three forces are acting on an object which is at rest. The first two forces arc 

F 1 = -6i + 9j. F 2 = lOi- 3j. 

Find the third force F 3 . 

38 An object of mass 10 is being accelerated so that its acceleration vector is A = Si - 6j. 
Find the total force acting on the object. 

39 , An object is displaced by the vector 3i - 4j. Find the distance it is moved. 

40 An object has the velocity vector V = i - j. Find its speed. 

41 A trader initially has the commodity vector A = 3i + j and buys the commodity vector 
B = i + 2j. Find his new total commodity vector. 

42 Two traders initially have commodity vectors A0 = 4i + j. B0 = 3i + 6j. After trading 
with each other. trader A has the commodity vector A 1 = 3i + 3j. Find the new com­
modity vector B1 of trader B. 

43 A trader initially has the commodity vector A = 15i + 12j and sells the commodity 
vector 5i + I Oj. Find his new commodity vector. 

44 A pair of commodities initially has the price vector P = 6i + 9j. Due to inflation all 
prices are increased by 10° 0 . Find the new price vector. 

45 Find the vector with length 4 and direction cosines (- .J2,2., :2. :2). 

46 Find the vector with length 4 and direction cosines (-I, 0). 

47 Find the vector with length 10 and direction cosines(~.~). 

In Problems 48-50 find the vectors counterclockwise around the perimeter of the polygon with 
the given vertices. 

48 (0. 0). ( l. 0). (0. 1 ). 

49 (1. 1~(3.0~(5.2~(Q4~ 

50 The regular hexagon inscribed in the unit circle x 2 + y 2 = I with the initial vertex ( l. 0). 

51 Use the Triangle Inequality to prove the following. 

lA - Bl :<=: IAI + IB. 
IAI - IBI :<=: lA + Bl. 

lA + B + Ci :<=: IAI + IBI + 1q 

0 52 Prove that for every nonzero vector A and positive scalars. there are exactly two scalar 
multiples tA of lengths. 

0 53 

0 54 

0 55 

056 

Prove that two nonzero vectors A and B have the same direction cosines if and only if 
B = rA for some positive 1. 

Prove the Commutative Law for vector addition. 

Prove the Distributive Laws for scalar multiples. 

Prove the Triangle Inequality. Hint: Assume 

,·(0-h 1)
2 + (a2 + hJl >/~if+ a~+ ,/hf +I;~ 

and get a contradiction. This is done by squaring both sides. simplifying. and then 
squaring and simplifying again. 

10.2 VECTORS AND PLANE GEOMETRY 

In this section we apply the algebra of two-dimensional vectors to plane geometry. 
Given a point P(p 1 • pJ in the plane. the position vector of P is the vector P 

from the origin toP (Figure 10.2.1). P has components p 1 and p2 • so 
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y 

X 

Figure 10.2.1 The position vector 

p = pli + pz.i. 
If A and B are two points in the plane with position vectors A and B, then the 

vector from A to B is the vector difference B - A. This can be seen from Figure 
10.2.2. 

y 

A 

B 

0 X 

Figure 1 0.2.2 

In Section 1.3, we saw that a line in the plane may be defined as the graph 
of.a linear equation 

ax+ by= c 

where a and b are not both zero (Figure 10.2.3). We shall call the above equation a 
scalar equation of the line. 

y 

X 

Figure 1 0.2.3 
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y 

------

X 

Figure 10.2.4 

The position vector of any point P on a line Lis called a position vector of L. 
If P and Q are two distinct points on L, the vector D from P to Q is called a direction 
l'ector of L. Thus D = Q- P (Figure 10.2.4). 

Theorem 1 will show how to represent a line by a vector equation. Let us use 
the symbol X for the variable poillt X(x, y), and the symbol X for the variable vector 
X = xi + yj. (see Figure 1 0.2.5). 

y 

yj 

xi X 

Figure 10.2.5 

THEOREM 1 

A line Lis uniquel\' determined h\' a position vector Panda direction vector D. 
L has the scalar equation 

and the L'ector equation 

X= P + tD. 

The vector equation means that L 1s the set of all points X such that 
X = P + tD for some t. 

PROOF Let L be any line with position vector P and direction vector D. We must 
show that: 



(1) 
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(i) L has the scalar equation given in Theorem 1. 
(ii) If X = P + tD for some t then X is a point of L. 
(iii) If X is a point of L then X = P + tD for some t. 

(i) D is the vector from A to B where A and B are points on L. Since L 
is the line through A and B, it has the scalar equation 

(x- a1)(b2 - a2) = (y- a2)(b1 - a1), 

(x- a1)d2 = (y- az)dl, 

xd2 - yd 1 = a1d2 - a2d1. 

This equation holds for the point P of L, 

P1d2 - Pzd1 = a1dz - azd1. 

Combining the last two equations we get the required equation: 

xd2 - yd 1 = p1d2 - p2d1 . 

(ii) Let X be a point such that X = P + tD for some t. Then 

x = p 1 + td 1 , y = p2 + td2, 

d2x- d1y = d2p1 + d2td 1 - d1p2 - d1td2 = d2p1 - d1p2 , 

so X is a point of L. 

(iii) Let X be a point of L. If d1 i= 0 we set t = (x - pd/d 1 , and using 
Equation 1 we get X = P + tD. The case d2 i= 0 is similar. Therefore 
X = P + tD is a vector equation for L (Figure 10.2.6). 

y 
---

1l ""1'_~~--------

X 

Figure 1 0.2.6 

The line with position vector P 
and direction vector D 

The vector equation X = P + tD can be put in the form 

xi + yj = {p1 + td 1)i + (pz + td2 )j. 

It can also be written as a pair of parametric equations 

y = Pz + tdz. 

EXAMPLE 1 Find a vector equation for the line through the two points A(2, 1) 
and B(- 4, 0), shown in Figure 10.2.7. 

The vector D = B - A from A to B is given by 

D = (- 4 - 2)i + (0 - 1 )j = - 6i - j. 
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y 

X 

Figure 1 0.2. 7 

Since A is a position vector and D a direction vector of the line, the line has 
the vector equation 

X= A+ tD 

= 2i + j + t(- 6i - j). 

In general, the line L through points A and B has the vector equation 
X = A + t(B - A) because A is a position vector and B - A is a direction vector of L. 

y 

X 

Figure 10.2.8 

EXAMPLE 2 Find a vector equation for the line in Figure 10.2.8: 

2x - 3r = 1. 

Step 1 Find two points on the line by taking two values of x and solving for_\'. 

X = 0, 0 - 3y = 1. _\' = 1 (0, -±l--3· 

X = I, 2 - 3y = 1. _\' = 1 (I, ±l. 3· 

Step 2 Find a position and direction vector. 

P = Oi + ( -±H = -±j. 
D = (1 - O)i + (± - ( -±Jlj = i + :H­

Step 3 Use Theorem 1. The vector equation is 

X= P + tD 

= -±j + t(i + 1jJ. 
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Figure 10.2.9 

A' 
"" I +I 

,Q;I 
I 

II I 
~I 

I 

I 
I 
I 
I 
I 
I 

y 

EXAMPLE 3 Find a scalar equation for the line in Figure 10.2.9: 

X = - 4i + j + t(i + 6j). 

First method By Theorem 1, the line has the equation 

Xdz- yd1 = Prdz - Pzd1, 

6x - y = (- 4) · 6 - 1 • 1, 

6x- y = -25. 

X 

Second method We convert the vector equation to parametric equations and then 
eliminate t. 

X= -4 + t, y = 1 + 6t, 

t =X+ 4, y = 1 + 6(x + 4), 

y = 25 + 6x. 

This is equivalent to the first solution. 

EXAMPLE 4 Determine whether the three points 

A(1, 3), B(2, 5), C(3, 10) 

are on the same line. 

The line L through A and B has the vector equation 

X= A+ t(B- A) 

= i + 3j + t(i + 2j) = (1 + t)i + (3 + 2t)j. 

The only point on L with x component 3 is given by 

3 = 1 + t, t = 2, p = 3i + 7j. 

Since C is another point with x component 3, C is not on L. Therefore 
A, B, and Care not on the same line, as we see in Figure 10.2.10. 

Some applications of vectors to plane geometry follow. 
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y 

• I 
C(3, 10) I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

/ 8(2, 5) 
I 

I 
I 

/ A(l, 2) 
I 

I 

I 
I 

I X I 

Figure 10.2.10 I 
I 

EXAMPLE 5 Let A and B be two distinct points. Prove that the midpoint of the 
line segment AB is the point P with position vector P = 1A + 1B. 

PROOF We shall prove that the point P is on the line AB and is equidistant from 
A and B (see Figure I 0.2.11 ). The line through A and B has the direction 

8 

A 

Figure 10.2.11 0 

vector D = B - A. The vector P has the form 

P = ~A + 18 = A + 1(B - A) = A + to. 
Therefore by Theorem 1, Pis on the line AB. To prove that Pis equidistant, 
we show that the vector from A to P is the same as the vector from P to B 

P -- A = 1A + ±B - A = ±B - tA. 
B - P = B - ±A - ±B = ±B - tA. 

EXAMPLE 6 Find the midpoint of the line segment from A(- L 2) to B(3, 3) (Figure 
10.2.12). 

The points have position vectors 

A= -i + 2j. B = 3i + 3j. 

The midpoint P has the position vector 

P =±A+ ±B = ±t -i + 2j) + t(3i + 3j) = i + tj. 
Therefore Pis the point (L ~l 
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y 

8(3, 3) 

A(- I, 2) 

X 

Figure 10.2.12 

A four-sided figure whose opposite sides represent equal vectors is called a 
parallelogram. 

EXAMPLE 7 Prove that the diagonals of a parallelogram bisect each other. 

PROOF We are given a parallelogram ABCD, shown in Figure 10.2.13. 

c 

Figure 10.2.13 A 

(2) 

Since the opposite sides represent equal vectors, we have 

B- A= C-D. 

The diagonal A C has midpoint !A + !C and the other diagonal BD has 
midpoint !B +!D. We show that these two midpoints are equal. The 
Equation 2 gives 

C = B- A+ D. 

Then !A + !C = !A + !(B - A + D) = ~B + !D. 

Thus the two diagonals meet at their midpoints. 

EXAMPLE 8 Prove that the lines from the vertices of a triangle ABC to the mid­
points of the opposite sides all meet at the single point P given by 

P = j-A + }B + }C. 

PROOF We are given triangle ABC, shown in Figure 10.2.14. Let A', B', C' be the 
midpoints of the opposite sides. We prove that all three lines AA', BB', CC' 
pass through the point P. 

The point A' has position vector 

A'= 1B + 1C. 
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c 

Figure 10.2.14 A 

The line AA' has the direction vector A' - A. AA' has the vector equation 

X = A + t(A' - A). 

The computation below shows that Pis on the line AA' 

P = !A + (!B + !C) = !A + tA' = A + t(A' - A). 

A similar proof shows that P is on BE' and CC'. 

PROBLEMS FOR SECTION 10.2 

In Problems 1-14, find a vector equation for the given line. 

The line through P(3, -I) with direction vector D = -i + j. 
2 The line through P(O, 0) with direction vector D = i + 2j. 

3 The line with parametric equations x = 3 - 2t, y = 4 + St. 

4 The line with parametric equations x = 41, y = I + 1. 

5 The line through the points P(1, 4) and Q(2. - 1 ). 

6 The line through the points P(S, 5) and Q(- 6, 6). 

7 The vertical line through P(2, 5). 

8 The horizontal line through P(4, I). 

9 The line y = 2 + 5x. 

10 The line x + y = 3. 

II The line y = 3. 

12 The line x = y. 

13 The line through P(6, 5) with slope -3. 

14 The line through P(l, 2) with slope 4. 

15 Find a scalar equation for the line X = 3i - 4j + t(i - 2j). 

16 Find a scalar equation for the line X = 2i + I(- i + 4j). 

17 Find a scalar equation for the line X = i + 3j + 4ti. 

18 Find a scalar equation for the line with parametric equations x = 3 - 4t, y = I + 2t. 

In Problems 19-24, determine whether the given three points arc on a line. 

19 

21 

23 

A(!, 1), B{2,4). C{-l, -2). 

A(4, 0). B{O, I), C(l2, - 2). 

A(5, -I). B(5. 2). C(5, 6). 

20 

22 

24 

A(!, 3), B(2, 5), C( -1, -1 ). 

A(6, 3), B(5, 7), C{4, !0). 

A{- 3, 2), B(- 3, 3), C(O. 0). 



25 

26 

27 

28 

29 

30 

31 

0 32 

0 33 

0 34 

0 35 

0 36 
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Find the midpoint of the line AB where A = (2, 5), B = (- 6, 1 ). 

Find the midpoint of the line AB where A = ( -1, -4), B = (9, 16). 

Find the midpoint of the line AB where A = (5, 10), B = ( -1, 10). 

Find the point of intersection of the diagonals of the parallelogram A(1, 4), B(6, 4), 
C(6, 6), D(l, 6). 

Find the point of intersection of the diagonals of the parallelogram A(2, 0), B(5, 1), 
C(6, 6), D(3, 5). 

Find the point of intersection of the lines from the vertices to the midpoints of the 
opposite sides of the triangle ABC, where A = (1, 4), B = (2, -1), C = (6, 3). 

Prove that the slope of a line with direction vector D = d 1 i + d:J ism = d2 /d 1 (vertical 
if dl = 0). 

Prove that if the diagonals of a four-sided figure bisect each other then the figure is a 
parallelogram. (Converse of Example 7.) 

Prove that if the opposite sides of a four-sided figure are scalar multiples of each other 
then the figure is a parallelogram (i.e., the opposite sides are equal as vectors). 

Let ABC be a triangle and let A 1 , B 1 , C1 be the midpoints of the sides opposite A, B, C 
respectively. Show that the line AA 1 bisects the line B 1 C 1 . 

Show that the midpoints of the sides of any four-sided figure are the vertices of a paral­
lelogram. 

Given a triangle ABC, let D be the midpoint of AB and E the midpoint of AC. Show 
that DE is parallel to BC and DE has half the length of BC. Hint: Show that E-D= 
-!(c- B) . 

. 3 VECTORS AND LINES IN SPACE 

In the preceding section, we used the algebra of vectors to prove some facts from 
plane geometry. This approach really comes into its own in solid geometry. Without 
using vectors, it is quite hard to define such basic concepts as a straight line, or the 
angle between two lines, in space. In this section we shall develop geometry in three­
dimensional space with vectors as our starting point. The notions of a straight line 
and an angle in space will be defined using vectors, and we shall use vector algebra 
to solve problems about lines and angles. Later on in this chapter we shall continue 
our development of solid geometry, using vectors to study planes in space. 

Vectors in space are developed in the same way as vectors in the plane. 
Three-dimensional space has three perpendicular coordinate axes, x, y, and z, as 
shown in Figure 1 0.3.1. This is called a right-handed coordinate system, because the 

z 

Figure 1 0.3.1 X 
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right thumb, forefinger, and middle finger can point in the direction of the positive 
x, y, and z axes respectively. 

A point in space has three coordinates, one along each axis. We thus identify 
a point in space with an ordered triple of real numbers, as in Figure 10.3.2. 

Given two points P(p 1 , p2 , p3 ) and Q(q 1 , q2 , q3 ) in space, the directed line 
segment PQ has the x-component q1 - p1 , y-component q2 - p2 , and z-component 
113 - p3 (Figure 10.3.3). 

z 
X(x 0 , )'o, zo) 

y 

Xo 

Figure 10.3.2 X 

z 

y 

X 

Figure 10.3.3 A Directed Line Segment 

The family of all directed line segments in space which have the same three 
---7 

components as PQ is called the vector in three dimensions, or the vector in space, 
---7 

represented by PQ. 
The examples of vectors which we discussed in the plane also arise naturally 

in space. In space, position, velocity, acceleration, force, and displacement are 
vector quantities with three dimensions. In an economic model with three com­
modities, the commodity and price vectors have three dimensions. 

Vectors in 11 dimensions arise quite naturally in economics, as commodity 
and price vectors in an economic model with 11 commodities. They also arise in 
more advanced parts of physics, such as quantum mechanics. 

Sums, negatives, differences, and scalar multiples of vectors in three dimen-



sions are defined exactly as in two dimensions. The length, or norm, of a vector A 
with components a 1 , a2 , a 3 is defined by 

IAI = Jaf + a~ + a~. 

THEOREM 1 

All the rules for vector algebra given in Section 10.1 hold for vectors in three 
dimensions. 

These rules are in Theorems 1, 2, and 3 of Section 10.1, and include the 
Triangle Inequality. 

In space, there are three basis vectors, denoted by i, j, and k. i has components 
(1, 0, 0), j has components (0, 1, 0), and k has components (0, 0, 1). i, j, and k are shown 
in Figure 10.3.4. As in the case of two dimensions, we see that 

ai + bj + ck is the vector in three dimensions with components a, b, and c. 

The rules for computing vectors by their components take the following form in 
three dimensions. 

z 

k 

y 

Basis vectors 

Figure 1 0.3.4 X 

COROLLARY 1 (Three Dimensions) 

Let A= a 1 i +a~+ a 3k and B = b1i + b~ + b3k be vectors in three dimen­
sions and let c be a scalar. 

(i) A+ B = (a 1 + b1)i + (a 2 + b2 )j + (a3 + b3)k. 

(ii) A - B = (a 1 - b1)i + (a 2 - b2 )j + (a3 - b3)k. 

(iii) cA = (ca 1)i + (ca2 )j + (ca 3)k. 

EXAMPLE 1 Given A= i- j + 2k and B = 2i- 2k, find A+ B, A- B, IAI, and 
3A. 

A + B = (1 + 2)i + (- 1 + O)j + (2 - 2)k = 3i - j. 

A - B = (1 - 2)i + (- 1 - O)j + (2 - (- 2))k = - i - j + 4k. 

IAI = j12 + (-1)2 + (22
) =-fl. 

3A = 3i - 3j + 6k. 
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The Law of Cosines gives us a formula for the angle between two vectors 
in space. In fact, we shall use the Law of Cosines to define the angle between two vectors. 

DEFINITION 

Let A and B be two nonzero vectors in space. The angle between A and B is 
the angle 0 between 0 and rr such that 

One can prove from the Triangle Inequality that the above quantity is 
always between -1 and 1, and therefore is the cosine of some angle 0 (Problem 42 
at the end of this section). 

EXAMPLE 2 Find the angle between A = i - j - k and B = 2i + j + k. 

IAI = ,/12+(.:_1)~(.:_ D2 = jJ 
IBI = /22 +7.+12 = .)6. 

IB- AI= /(2~1-)2+-(l =-(.:=-i)J2 +(1 =-(-1)) 2 

= j1 2 + 22+i2 = 3. 

3+6-9 
cos 0 = 2jij6 = 0. 

rr 
0 = arccos 0 = .2. 

The direction angles of a nonzero vector A in space are the three angles 
'Y.. [J, ~· between A and i, j, k respectively. The cosines of the direction angles are called 
the direction cosines of A. Let us compute the direction cosines in terms of the com­
ponents of A. 

IAI 2 + IW - li - Al 2 

COS'Y. = · 
21Aliil 

af +a~ +a~ + 1 - ((1 - ad 2 + ai +a~) 
2IAI 

ai + ai + a~ + 1 - 1 + 2a 1 - ai - a~ - a~ 

21AI 

IAI 

The computations for [J and;· are similar. Thus 

al 
COS'Y. =-

!AI' 

The unit vector of A is defined as 

(/2 

cos [3 = TAl' (/3 
cos··=-. 

I IAI 

u = ~ = ~i ~1_2__. ~k 
IAI IAI + IAI1 + !AI . 

As in the two-dimensional case, the components of U. shown in Figure 1 0.3.5, are 
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z z 

k 

j 

y y 

X X 

(a) (b) 

Figure 1 0.3.5 

the direction cosines of A, 

u = cos et.i + cos /Jj + cos jk. 

Again, A is determined by its length and direction cosines, and the sum of 
the squares of the direction cosines is one, 

A = \A\ cos et.i + \A\ cos f3j + \A\ cos ~·k, 

cos 2 
'l. + cos 2 {i + cos2 1 = I. 

EXAMPLE 3 Find the unit vectors and direction cosines of the vector A = 2i + j -
2k. 

We first find the length, then the unit vector, then the direction cosines. 

\A\ = )22 + 12 + (- 2)2 = j9 = 3. 

A 2i + j- 2k 
U =\A\= 3 

Direction cosines = C~, ~, -1). 

The position vector of a point P(p 1 , p2 , p3 ) in space is the vector 

P = P1i + Pzi + P3k. 

X denotes the variable vector 

X = xi + yj + zk. 

We shall now define the notion of a line in space. The simplest way to 
describe a line in space is by a vector equation. 

DEFINITION 

Let P be a vector and D a nonzero vector in space. The line with the vector 
equation X = P + tD is the set of all points X sllch that X = P + tD for 
some scalar t. 
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The vector equation can also be written as a set of parametric equations 

If tis time, the line is the path of a moving particle in space given by these parametric 
equations. 

The three coordinate axes are lines with the following vector equations. 

x-ax1s: X = ti, 

y-ax1s : X = tj, 

z-axis : X = rk. 

EXAMPLE 4 Find a vector equation for the line L with the parametric equations 

.\' = 3t + 2. _r = Ot- 4. ;: = t + 0 . 

Let p = 2i- 4j, D = 3i + k. 

then L has the vector equation 

X = P + tD, or X = (2i - 4j) + t(3i + k). 

L is shown in Figure 1 0.3.6. 

L z 

y 

Figure 1 0.3.6 X 

If A is a point on L. let us call A a position uector of L. A vector D is said 
to be a direction vector of L ifD is the vector from one point of L to another point of L. 
Thus if A and B are distinct position vectors of L, then B - A is a direction vector 
of L (Figure I 0.3. 7). 

The next theorem shows that a line in space is uniquely determined by a 
position vector and a direction vector. That is, if two lines Land M have a position 
vector and direction vector in common, then Land M must be the same line. 

THEOREM 2 

Given a vector P and a nonzero uector D. the line X = P + tD is the unique 
line with position vector P and direction vector D. 
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y 

Figure 10.3.7 X 

PROOF Let L be the line X = P + tD. Setting t = 0 and t = 1 we see that P and 
P + D are position vectors of L, so D is a direction vector of L. 

Let X = Q + sE be any line M with position vector P and direction vector 
D. We show X= Q + sE is another vector equation for L. For some s0 , 

p = Q + soE. 

Also, D = B- A for some position vectors of M, 

A= Q + s1E, B = Q + s2E. 

Thus D = (Q + s2E)- (Q + s1E) = (s 2 - sdE. 

Since D =ft 0, s2 - s1 =ft 0. Thus the following are equivalent: 

COROLLARY 2 

X= P + tD 

X = Q + s0E + t(s2 - sdE 

X = Q + (s0 + ts2 - ts 1)E 

X= Q + sE 

for some t, 

for some t, 

for some t, 

for somes. 

Two points in space determine a line. The line through A and B has the vector 
equation 

X= A+ t(B- A). 

PROOF A line L passes through A and B if and only if A is a position vector of L 
and B - A is a direction vector of L. By Theorem 2, this happens if and only 
if L is the line with the vector equation X = A + t(B - A). 

EXAMPLE 5 Find a vector equation of the line through the points 

A(3, -4, 2), B(O, 8, 1). 

The line has the equation 

X = 3i - 4j + 2k + t((O - 3)i + (8 - ( -4))j + (I - 2)k), 

X= 3i- 4j + 2k + t(-3i + 12j- k). 
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The formula 1(A + B) for the midpoint of the line segment AB holds for 
three as well as two dimensions. 

EXAMPLE 6 Find the midpoint of the line segment AB where 

A = (1, 4, -6), B = (2, 6, 0). 

The midpoint C has position vector 

c = 1W + 4j - 6kl + (2i + 6j)] = 1i + 5j - 3k. 

Thus C = (1, 5, -3). 

PROBLEMS FOR SECTION 10.3 

In Problems 1-3, find the vector represented by the directed line segment PQ. 
1 p = (0, 0, 1), Q = (5, -1, 8) 

2 p = (5, 10, 0), Q = (4, 10, 1) 

3 p = (7, -2,4), Q = (7, -2,3) 

In Problems 4-6. find the point Q such that A is the vector from P to Q. 

4 P = (4. 6, -4), A = i + j + k 

5 P = ( 1, - 2. 3 ). A = - i + 2j - 3k 

6 P = (0, 0, 0), A = - 3i - 4j + 2k 

In Problems 7-22. find the given vector or scalar where 

A = i - 2j + 2k, 

7 

9 

II 

13 

15 

A+8 

8-A 

-8 

lA I 

lA + 81 

17 The angle between A and B 

18 The angle between A and A + B 

19 The angle between A and 3A 

20 The angle between A and - 2A 

8 

10 

12 

14 

16 

21 The unit vector and direction cosines of A 

22 The unit vector and direction cosines of B 

8 = 2i + 3j- 6k 

A-8 

4A 

-3A + 48 

181 

IB- AI 

23 Find the vector with length 6 and direction cosines ( -1/2, 1/2. 1!,/2). 
24 Find the vector with length ,/3 and direction cosines (ljj3, I/..,/3. 1JJ3). 

25 If! and~ arc two of the direction cosines of a vector, what are the two possible values 
for the third direction cosine'J 

26 If the three forces 

F 1 = i + 2j + 3k. F 2 = 3i - j - k, 

arc acting on an object. find the total force. 

27 If a force F = 6i - I Oj + 2k is acting on an object of mass 20, find its acceleration vector. 
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28 If a trader has the initial commodity vector A = lSi + 20j + 30k and buys the com­
modity vector B = 2i + k, find his new commodity vector. 

29 If three commodities have the original price vector P = lOOi + 200j + 500k and all 
prices increase 25%, find the new price vector. 

In Problems 30--35, find a vector equation for the given line. 

30 The line with parametric equations x = - t, y = 1 + J2t, z = 6 - 8t. 

31 

32 

33 

34 

35 

36 

37 

38 

39 

D 40 

D 41 

D 42 

The line with parametric equations x = 1 + t, y = 3, z = 1 - t. 

The line through the points P(O, 0, 0), Q(l, 2, 3). 

The line through the points P( -1, 4, 3), Q(- 2, - 3, 6). 

The line through the point P(4, 4, 5) with direction cosines (l/.j6, J2; fi, .j3;.j6). 

The line through the origin with direction cosines ( -~, 0, !). 
Find the midpoint of the line segment AB where A = (- 6, 3, 1 ), B = (0, -4, 0). 

Find the midpoint of AB where A = (1, 2, 3), B = ( -1, 2, 7). 

Find the midpoint of AB where A = ( 6, 8, 1 0), B = (- 6, - 8, - 1 0). 

Prove that if two sides of a triangle in space have equal lengths, then the angles opposite 
them are equal. 

Prove that if 8 is the angle between A and B then rr - 8 is the angle between A and -B. 
Hint: Show that the sum of the cosines is zero. 

Prove the Triangle Inequality for three dimensions. 

Use the Triangle Inequality to prove that if A and B are two nonzero vectors then 

IAI 2 + IBI 2 
- IB - Al 2 

-1< <1 - 2IAIIBI - . 

1.4 PRODUCTS OF VECTORS 

In the preceding sections we studied the sum of two vectors and the product of a 
scalar and a vector. We shall now define the inner product (or scalar or dot product) 
of two vectors A and B, denoted by A • B. 

The inner product arises in quite different ways in physics and economics. 
We first discuss an example from economics. 

If the price per unit of a commodity is p, the cost of a units of the commodity 
is the product pa. Similarly, if a pair of commodities has price vector 

P = P1i + Pzj, 

the cost of a commodity vector 

A= a 1i + azj 

is found by adding the products of the prices and quantities, 

cost= p1 a1 + p2 a2 . 

If three commodities have price vector 

P. = P1i + pzj + p3k, 

the cost of a commodity vector 
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is the sum of products, 

cost= PtUt + pzaz + p3a3 · 

Notice that the cost is always a scalar. The quantity 

is the inner product of the vectors P and A. 

DEFINITION 

Two Dimensions The inner product of A = a 1 i + a2 j and B = h 1 i + h2 j is 
I he scalar 

A·B = a1h 1 + a2b2 • 

Three Dimensions The inner product o/ A = a 1 i + a 2j + a 3 k and B = h 1 i + h2 j + 
b3 k is the scalar 

Thus the cost of a commodity vector A at the price vector P is equal to the 
inner product of P and A, cost = P ·A. 

EXAMPLE 1 Compute the inner product of i - j + 3k and j + k. 

(i - j + 3k) • (j + k) = 1 • 0 + (-I)· I + 3 • I = 2. 

EXAMPLE 2 Find the cost of one unit of commodity a, 3 units of commodity b. 
and 2 units of commodity c if the prices per unit are 6, 4. and I 0 respectively. 

cost= (6i + 4j + IOk) ·(i + 3j + 2k) 

=6·I +4·3+ I0·2=38. 

EXAMPLE 3 Suppose a trader buys a commodity vector 

A = 40i + 60j + I OOk 

at the price vector 

p = 3i + 2j + 4k 

and then sells it at the new price vector 

Q = 2i + 5j + 3k. 

Find his profit (or loss). 

Since the trader pays P ·A and receives Q ·A. his profit is given by 

profit = Q ·A - P ·A. 

Thus profit= (2 • 40 + 5 · 60 + 3 · IOO)- (3 • 40 + 2 · 60 + 4 · IOO) 

= 40. 

A positive number indicates a profit and a negative number indicates a loss. 
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EXAMPLE 4 A buyer has $7500 and plans to buy a commodity vector B in the 
direction of the unit vector 

u = !i + !i + tk. 

Find the largest such commodity vector B which he can buy if the price 
vector is 

p = 2i + 5j + k. 

We must have B = tU for some positive t, and also 

P · B = 7500. 

We solve for t. 

7 500 = P · B = P · tV = t(P · U). 

7500 7500 7500 
t = -- = 2 2 1 = -- = 1500. 

P·U 2·3+5·3+1·3 5 

Thus B = tU = 1000i + lOOOj + 500k. 

Another illustration of an inner product is the notion of work in physics. 
Suppose a force vector F acts on an object which moves in a straight line with a 
displacement vector S. If the force F has the same direction as the displacement S, 
i.e., the angle e between F and Sis zero, work is simply the product of the magnitudes 
ofF and S; 

W= !FilS! ife = 0. 

In general, work depends on the component of the force in the direction of the dis­
placement, that is, the product IF! cos e. The geometric meaning of this component 
is shown in Figure 10.4.1. 

Work is defined as the product of the component of force in the direction of 
S and the length of S, so 

W = !FilS! cos e. 
Work is thus a scalar quantity. It is positive if the angle e is less than 90°, zero if 
e = 90°, and negative if e > 90°. Our first theorem shows that work is equal to the 
inner product ofF and S, 

Figure 1 0.4.1 

The component 
ofF in the 

direction of S 

X 

W=F·S. 

z 

y 
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THEOREM 1 

I( 0 is the angle bet\\'een t\\'o non:ero rectors A and B, then A · B = IAIIBI cos 0. 

PROOF We give the proof in two dimensions. By the Law of Cosines. 

IAI 2 + IBI 2 
- IB - Al 2 

cos () = - -- ---~- - -- -
21AIIBI 

(af +a~)+ (hi+ hi)- [(b 1 - a1 )
2 + (b 2 - a2 )

2
] 

- --- ----------------

2IAIIBI 

2h 1a 1 + 2b2 a2 A· B 
--~--

2IAIIBI IAIIBI 

Multiplying through by IAIIBI, we have 

A· B = IAIIBI cos 0. 

EXAMPLE 5 A lawnmower is moved horizontally (in the x direction) a distance of 
10 feet. Find the work done if the lawnmower is pushed by a force F where 

(a) IFI = 15 pounds. 0 = 30°. (Sec Figure 10.4.2a.) 
(b) F = 8i - 5j. in pounds. (See Figure 10.4.2b.) 

y y 

s 

(al (b) 

Figure 1 0.4.2 

(a) cosO= ±v~l. lSI = 10. 

W= IFIISicosO = 15·10·±~3 = 75jJftlbs. 

(b) W = F · S = 8 · 1 0 + (- 5) · 0 = 80 ft l bs. 

s 
X 

The angle between two vectors can be easily computed using the inner 
product. 

COROLLARY 

I( A and Bare non:ero rectors, the angle 0 hetl\'een them has cosine 

A·B 
cos()=-~-. 

IAIIBI 
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EXAMPLE 6 Find the angle between the vectors 

A = 3i + j - k, B = - i + 5j + k. 

cosO = _A_· _B = --r==3(=-=1~)=+=1 ~· 5~+=o=(=-=1~) ·=1= 
IAIIBI J3 2 + 12 + 12J1 2 +5 2 + 12 

1 e = arccos ~­
v 11.27 

~-

Here is a list of algebraic rules for inner products. All the rules are easy to 
prove in either two or three dimensions. 

THEOREM 2 (Algebraic Rules for Inner Products) 

(i) A·i = a1, A·j = a2 , A·k = a3. 

(ii) A·O = O·A = 0. 

(iii) A· B = B ·A (Commutative Lall'). 

(iv) A· (B + C) = A· B + A· C (Distributive Lmr). 

(v) (tA) • B = t(A ·B) (Associative Law). 

(vi) A· A = IAI 2
-

PROOF Rule (vi) is proved as follows in three dimensions. 

A· A= a1a1 + a2a2 + a3a3 = af + a~ + a~ = IAI2
-

Inner products are useful in the study of perpendicular and parallel vectors. 

DEFINITION 

Two nonzero vectors A and B are said to be perpendicular (or orthogonal), 
A .l B, if the angle between them is n/2. A and Bare said to be parallel, A II B, 
!f the angle between them is either 0 or n. 

TEST FOR PERPENDICULARS 

Let A and B be nonzero vectors. Then A .l B if and only !fA· B = 0. 

PROOF The following are equivalent: 

A·B = 0, 

TEST FOR PARALLELS 

A·B 
IAIIBI = O, cos e = o, e = n/2. 

Given two nonzero vectors A and B, the following are equivalent: 

(i) A II B. 
(ii) lA · Bl = IAIIBI-

(iii) A is a scalar multiple of B. 



PROOF To show that (i) is equivalent to (ii). we note that the following are equivalent. 

All B. 

cos{) = ±I. 
A·B 
--- = + 1. 
IAIIBI -

A·B = ±IAIIBI. 

lA 'Bl = IAIIBI. 

We now show that (i) implies (iii), and (iii) implies (i). Assume (i), AIIB. 

Case 1 0 = 0. Let U and V be the unit vectors of A and B. By the Law of Cosines. 

IUI 2 + IVI 2 
- IV - Ul 2 

cos 0 = 21UIIVI ' 

2- IV- Ul 2 

[ =-~--
2 

IV- Ul = 0. 

A B 
IAI = u = v = IBT' 

A =~B. 
IBI 

Case 2 0 = 1r. We see, by a similar proof. that A = -:::B. In either case, A is a 

scalar multiple of B. 

Finally, assume (iii). say A = tB. Then 

cosO= A· B = !B · B = t(B ·B) = ~ = + 1 
IAIIBI ltBIIBI ltiiBIIBI lti1BI 2 

- . 

Therefore 0 = 0 or 0 = n, so AI\B. 

EXAMPLE 7 Test for A _L Band A II B using the inner product. 

{a) A = 3i + j - k. B = i - 3j + k. 

We compute A· Band IAIIBI. 

A·B = -1, 

Since A · B f= 0, not A _L B. 

Since A · B f= ± IAIIBI, not AIIB 

!AliBI= II. 

{b) A= 2i- ,J3j + k. B = --/Si + ,_(6j- j2k. 

Thcrcfme A II B. 

(c) A = 3i + j - k. 

A· B = - 8,_.·2. IAIIBI = s,/2. 

B = i- 3j. 

A· B = 0. Therefore A _L B. 

Figure I 0.4.3 illustrates this example. 
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z 

B 

X 

(a) 

Figure 10.4.3 

z 

y 

X 

z 

B 

y 

X 

(b) (c) 

We conclude this section with a theorem about perpendicular vectors, 
first in the plane and then in space. 

THEOREM 3 

Let A = a 1 i + a :J be a nonzero vector in the plane. 

(i) The vector B = a 2i - a 1j is perpendicular to" A. 
(ii) Any vector perpendicular to A is paraUel to B. 

PROOF (i) We compute A· B = a 1a2 + a2 ( -a1) = 0. 
(ii) If C .l A, then both B and C make angles of n/2 with A, so the angle 

between B and C is either 0 or n. Therefore B II C. 

EXAMPLE 8 Find a vector perpendicular to A= 4i- 7j. 

Answer B = - 7i - 4j (Figure 10.4.4). 

y 

X 

Figure 1 0.4.4 

Theorem 3 raises the following problem about vectors in space. Given two 
n:ctors A and B which are neither zero nor parallel, find a third vector C which is 
perpendicular to both A and B. For example, if A is i and B is j, then the vector k is 
perpendicular to both i and j. So is any scalar multiple of k. In general it is not easy 
to see how to find a vector perpendicular to both A and B. In fact, to solve the problem 
we need a new kind of product of vectors, the vector product 

Ax B. 



600 10 VECTORS 

DEFINITION 

Given two vectors 

in space, the vector product (or cross product) is the nell' cector 

A x B = (a 2b3 - a 3b2 )i + (a 3 b1 - a 1b3 )j + (a 1b2 - a2 h 1)k. 

This definition can be remembered by writing down the determinant 

k 

bl b2 b3 

The positive and negative terms of A x B are the products of the diagonals shown 
in Figure I 0.4.5. 

Figure 1 0.4.5 Positive terms Negative terms 

EXAMPLE 9 Find A x B where 

A= 4i- j + k, B = 2j- k. 

k 

AxB= 4 -1 

0 2 -1 

= ( ( - I) ( - 1) - 1 • 2 )i + (1 • 0 - 4( - I) )j + ( 4 · 2 - ( - I) • 0 )k 

= -i + 4j + 8k. 

A, Band A x B are shown in Figure 10.4.6. 

The vector products of the unit vectors i, j, and k are 

X j = 0, 

X j = k, 

X j = -k, 

j X j = 0. 

j X k = i, 

k X j = -i, 

Notice that A· B is a scalar but A x B is a vector. 

k X k = 0, 

k X j = j, 

j X k = -j. 
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z 

y 

Figure 1 0.4.6 X 

THEOREM 4 

Let A and B be two vectors in space which are not zera and not parallel. 

(i) A x B is perpendicular to both A and B. 
(ii) Any vector perpendicular to both A and B is parallel to A x B. 

PROOF (i) We compute the inner products. 

A· (A x B)= a1(a 2b3 - a3b2) + a2(a3b1 - a 1b3 ) + a3(a 1b2 - a2bd 

= a1a2b3 - a1a3b2 + aza3b1 - a1a2b3 + a1a3bz - aza3hi 
= 0. 

Similarly B ·(A x B) = 0. 

It remains to prove that A x B =I- 0. At least one component of A, say a 1 , 

is nonzero. Lett= b1/a 1 and let C = A x B. When we solve the equations 

for b2 and b3 , we get 

Since B is not parallel to A, B =I- tA. Therefore at least one of c2 , c3 is nonzero, 
so c =I= 0. 

(ii) Let C = A x B and let D be any other vector perpendicular to both 
A and B. Then 

A·D = a 1d1 + a2d2 + a3d3 = 0. 

B·D = b 1d 1 + b2d2 + b3d3 = 0. 

At least one component ofD, say d 1 , is nonzero. We may then solve the above 
equations for a 1 and b1 , 

a2 d2 + a3d3 
al =-

d1 

Lets= ctfd 1 . Then c1 = sd 1 . Also, 
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a3(b 2d2 + h3d3 ) b3(a 2d2 + a3d3) 
Cz=a3bt-atb3=- I + I 

( l ~ l 

= (a2b3- a3bz)d2 = ctdz = sdz. 
dl dl 

Similarly, c3 = sd3 . Therefore C = sD, and Cis parallel to D. 

Waming: The Commutative Law and the Associative Law do not hold for 
the vector product. For example, 

i X j = k, j X i = -k 

X (j X j) = 0, (i X j) X j = - i. 

However, vector products do satisfy the Distributive Laws 

(sA + tB) x C = s(A x C) + t(B x C), 

C x (sA + tB) = s(C x A) + t(C x B). 

The proof is left as an exercise (Problem 36 at the end of this section). 
Here is a brief summary of the operations on scalars and vectors. 

Addition: s + t is a scalar 

A + B is a vector 

s + A is undefined 

!VI ultiplication: st is a scalar 

sA is a vector 

Division: 

A · B is a scalar 

A x B is a vector 

s/t is a scalar 

A/t is a vector 

s/B and A/B are undefined 

Absolute value and length : lsi is a scalar 

IAI is a scalar 

One must be careful in forming longer expressions. For example, 

A · (B + C) is a scalar, 

(A· B) + Cis undefined, 

(A· B)C is a vector. 

PROBLEMS FOR SECTION 10.4 

In Problems l-11, (a) compute A· B, (b) test whether A is perpendicular or parallel to B, and 
(c) find the cosine of the angle between A and B using A ·B. 

A = i - 3j, B = 2i - 6j 

2 A = 4i - j, B = i - j 

3 A = i + j + k, B = i - k 
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4 A= i + k, B = j 

5 A = 6i - j, B = 2i - 12j 

6 A = Si - j + k, B = - Si + j - k 

7 A= i + 4j- !Ok, B = 4i + j + 10k 

8 A = i + 2j + 3k, B = 2i - 3j + k 

9 A = j2i + fij + k, B = j2i - ,/3j + k 

10 A = fii + flj - k, B = ,j3i - ,/6j - 3k 

11 A = i - J5j + jik, B = Jsi - Sj + jJOk 
12 Which of the following are vectors, which are scalars, and which are undefined? 

(a) s(A +B) (b) (s + t)A 

(c) (sA)· (tB) (d) s + (tA) 

(e) s(A·B) (f) A+ (B·C) 

(g) Ax(B+C) (h) A X (B ·C) 

(i) A·(B X C) ( j) (A X B)+ c 
13 Find the cost of the commodity vector A = I Si + 4j + 6k at the price vector P = i + 

2j + 3k. 

14 Find the profit or loss if a trader buys the commodity vector A = 3i + I 6j + 4k at 
the price vector P = 2i + 4j + 6k and sells it at the price vector 3i + 2j + 1 Ok. 

15 A trader initially has the commodity vector A = i + 3j + 6k. He sells his whole com­
modity vector at the price P = 3i + j + 2k and uses the revenue from this sale to buy 
an equal amount of each commodity. Find his new commodity vector. 

16 Find the amount of work done by the force vector F = 3i - j - 4k acting along the 
displacement vector S = Si + 3j + k. 

17 Find the work done by a force vector of magnitude 10 acting along a displacement of 
length 40 if the angle between the force and displacement is 45°. 

18 Prove that the basis vectors i, j, k are perpendicular. 

19 Find a vector in the plane perpendicular to A = i + j. 
20 Find a vector in the plane perpendicular to A = 2i - 9j. 

21 Compute A x B where A= i- 3j + k, B = -i- j + k. 

22 Compute A x B where A = i - j + k, B = i + j + k. 

23 Compute A x B where A = i + k, B = j - k. 

24 Find a vector perpendicular to both A = i + j - k, B = i - j + k. 

25 Find a vector perpendicular to both A = i + 2j + 3k, B = i + 3j + 4k. 

26 Find a vector perpendicular to both A = - i - 4j + k, B = j - 2k. 

27 Find a unit vector in the plane perpendicular to A = 3i - 4j. 

28 Find a unit vector in the plane perpendicular to A = 2i - j. 

29 Find a unit vector perpendicular to both A = i + j, B = k. 

30 Find a unit vector perpendicular to both A = 2i + 3k, B = - i + j - k. 

31 Find the angle between two long diagonals of a cube. 

32 Find the angle between a long diagonal and a diagonal along a face of a cube. 

33 Find the angle between the diagonals of two adjacent faces of a cube. 

34 Show that the inner product of two unit vectors is equal to the cosine of the angle 
between them. 

35 Use inner products to prove that the diagonals of a rhombus (a parallelogram whose 
sides have equal lengths) are perpendicular. 
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604 
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0 37 
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0 39 

0 40 
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Prove the Distributive Law for vector products. 

(sA + tB) x C = s(A x C) + t(B x C). 

Prove the Anticommutative Lm for vector products. 

B X A = -(A X B). 

Prove that A II B if and only if A x B = 0 (where A, B are nonzero). 

Show that the length of A x B is equal to the area of the parallelogram with sides A and 
B, in symbols 

lA x Bl = IAIIBI sin 0. 

Prove that the "scalar triple product" A· (B x C) is equal to the volume of a parallelo­
piped with edges A, B. and C. 

10.5 PLANES IN SPACE 

DEFINITION 

A plane in space is the graph of an equation oft he form 

ax + by + c:: = d 

where a, b, c are not all zero. 

The simplest planes are those where two of the numbers a, b, c are zero. 

The plane x = d is parallel to the yz-plane. 

The plane y = d is parallel to the xz-plane. 

The plane z = d is parallel to the .\\'-plane. 

These three cases are illustrated in Figure 10.5.1. 

z z 

y 

X X X 

Figure 10.5.1 

z 

y 
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The examples below show how to draw sketches to help visualize other 
planes. The idea is to use the points where the plane cuts the coordinate axes, and 
to draw a triangular or rectangular portion of the plane. 

EXAMPLE 1 (For sketching a plane where a, b, c and dare nonzero.) Sketch the plane 
X+ 2y + Z = 2. 

Step 1 Find the points where the plane crosses the coordinate axes. 

x-ax1s: When y = z = 0, x = 2. 

The plane crosses the x-axis at (2, 0, 0). 

y-axis: When x = z = 0, y = I. 

The plane crosses they-axis at (0, 1, 0). 

z-axis: When x = y = 0, z = 2. 

The plane crosses the z-axis at (0, 0, 2). 

Step 2 Draw the triangle connecting these three points, as shown in Figure 10.5.2. 
This triangle lies in the plane. 

EXAMPLE 2 (For sketching a plane where two of a, b, c are nonzero and d i= 0.) 
Sketch the plane 2x + z = 4. 

Step 1 Find the points where the plane crosses the x- and z-axes. 
The plane crosses the x-axis at (2, 0, 0). 
The plane crosses the z-axis at (0, 0, 4). 

Step 2 The plane is parallel to the y-axis. Draw a rectangle with two sides parallel 
to the y-axis and two sides parallel to the line segment from (2, 0, 0) to 
(0, 0, 4), as in Figure 10.5.3. This rectangle lies in the plane. 

EXAMPLE 3 (For sketching a plane with d = 0.) Sketch the plane x + 2y - z = 0. 

z 
z 

(0, 0, 2) 
(0, 0, 4) 1-----------, 

(0, I, 0) y 

y 

x+ 2y + z = 2 
(2, 0, 0) 

2x-t-z=4 
X X 

Figure 10.5.2 Figure 1 0.5.3 
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Step 1 The plane passes through the ongm because (0, 0, 0) is a solution of the 
equation. Find another point where x = 0 and a third point where y or z = 0, 

X= 0, 

X= I, 

r=l . , 
y = 0, 

z = 2, 

z = I. 

Step 2 Connect the points (0, 0, 0), (0, 1, 2), (1, 0, 1) to form a triangle which lies 
in the plane, as in Figure 1 0.5.4. 

z 

(l, 0, I) 

y 

x+ 2y -z = 0 
Figure 10.5.4 X 

A position vector of a plane pis a vector P such that Pis a point on the plane. 
A direction vector of p is a vector D from one point of p to another. A normal recror 
of p is a vector N which is perpendicular to every direction vector of p. These vectors 
are illustrated in Figure 10.5.5. 

z 

)! 

Figure 1 0.5.5 Position, Direction, and Normal Vectors 

We shall often find it convenient to write a scalar equation 

ax + by + cz = d 

for a plane in vector form, 

(ai + hj + ck) ·X = d. 

We call this a t:ector equation for the plane. 
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THEOREM 1 

(i) A vector is normal to a plane N ·X = d if and only if it is parallel to N. 

(ii) There is a unique plane with a given normal vector N and position vector 
P, and it has the vector equation 

PROOF (i) Call the plane p. For any direction vector D = Q - P of p, we have 

N • D = N · (Q - P) = N · Q - N • P = d - d = 0. 

Let M be parallel to N, say M = sN. 

M • D = (sN) • D = s(N ·D) = 0. 

Hence M _l_ D and M is normal to p. 

Now suppose M is normal to p. Let C and D be two nonparallel direction 
vectors of p. Then both M and N are perpendicular to C and D. Therefore 
M and N are parallel to C x D and hence parallel to each other. 

(ii) Set d = N • P. The plane p with the equation N · X = d has position 
vector P and normal vector N by (i). 

To show p is unique let q be any plane with position vector P and normal 
vector N. q has a vector equation M ·X = e. By (i), N is parallel to M, say 
N = sM. Then the following equations are equivalent for all X: 

It follows that q equals p. 

N ·X= N ·P =d. 

(sM) · X = (sM) · P. 

s(M • X) = s(M • P) . 

M·X = M·P =e. 

EXAMPLE 4 The plane 2x + 3y - z = 5 has the normal vector 

N = 2i + 3j- k 

and the vector equation 

(2i + 3j - k) ·X = 5. 

EXAMPLE 5 Find the vector and scalar equations for the plane with position and 
normal vectors 

p = 3i- j- 2k, 

We first compute N · P, 

N = i + j + 4k. 

N. P = 1 · 3 + 1 · ( -1) + 4 • (- 2) = -6. 

A vector equation is 

A scalar equation is 

(i + j + 4k) ·X = -6. 

x + y + 4z = -6. 

The plane is shown in Figure 10.5.6. 
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z 

y 

Figure 10.5.6 

The vector product can sometimes be used to find a normal vector of a plane. 

COROLLARY 

If C and D are two nonparallel direction vectors of a plane p, then C x D is a 
normal vector of p. 

PROOF p has some normal vector N. N is perpendicular to both C and D, and hence 
parallel to C x D, so C x D is a normal vector of p. 

EXAMPLE 6 Find the plane with position vector P = k and direction vectors 
C = -2i + j + k D = -j. 

First we find a normal vector of the plane, 

N = c X D = (1 • 0 - 1 • ( -1))i + (1 • 0 - (- 2). O)j + ((- 2)( -1) - 1 • O)k 

= i + 2k. 

Then N · P = 1 · 0 + 0 • 0 + 2 · 1 = 2. 

The plane has the vector equation (i + 2k) ·X = 2 

and the scalar equation x + 2z = 2. 

The plane is shown in Figure 10.5.7. 

EXAMPLE 7 Find the plane through the three points 

P(-1,3,1), Q(l, 2, 3). S( - 1. - I, 0). 

The plane has position vector 

p = -i + 3j + k 

and the two direction vectors 

c = Q - p = 2i - j + 2k, 

D = S- P = -4j - k. 



10.5 PLANES IN SPACE 609 

z 

I 
y 

Figure 1 0.5.7 

A normal vector of the plane is 

N = c X D = (( -1)( -1)- 2( -4))i + (2·0- 2( -1))j + (2( -4)- ( -1)·0)k 

= 9i + 2j- 8k. 

Then N·P=9(-1)+2·3+(-8)·1 = -11. 

The plane has the vector equation (9i + 2j - 8k) • X = - 11 

and the scalar equation 9x + 2y - 8z = -11. 

The plane is shown in Figure 10.5.8. 

z 

Figure 1 0.5.8 

Two planes are said to be parallel if their normal vectors are parallel. A line 
Lis said to be parallel to a plane p if the direction vectors of L are perpendicular to the 
normal vectors of p. 

Two planes are said to be perpendicular if their normal vectors are per­
pendicular. A line L is said to be perpendicular to a plane p if the direction vectors of 
L are normal top. Figure 10.5.9 illustrates these definitions. 

EXAMPLE a Determine whether the plane 3x - 2y + z = 4 and the line 
X = (3i - j + k) + t(i + j - k) are parallel. 

The plane has the normal vector N = 3i - 2j + k. 

The line has the direction vector D = i + j - k. 
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r I I N 
p ;- r I 

(a) Parallel planes (b) A line /. parallel lo a plane p 

N 

I 
p 

L 

(c) Perpendicular planes 

Figure 1 0.5.9 

(d) A line L perpendicular to a plane p 

We compute N · D = 3 · 1 + (- 2) • 1 + 1(- 1) = 0. 

Therefore the plane and line are parallel (Figure 1 0.5.10). 

EXAMPLE 9 Find the line L through the point P(l, 2, 3) which is perpendicular to 
the plane 3x - 4y + z = 10. 

The plane has the normal vector N = 3i - 4j + k. 

Therefore N is a direction vector of L, and L has the vector equation 

X= P + tN, 

= i + 2j + 3k + t(3i - 4j + k) 

(see Figure 10.5.11). 

EXAMPLE 1 o Find the plane p containing the line X = i + t(j + k) which ts per­
pendicular to the plane x + 3y - 2z = 0. 

The given plane q has the normal vector M = i + 3j - 2k, 

and the given line L has the direction vector D = j + k. 

The required plane p must have a normal vector N which is perpendicular to 
both M and D, so we take 



z 

Figure 10.5.10 

y 

j 

N=MxD= 1 3 

0 
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z 

y 

X 

Figure 10.5.11 

N = 5i- j + k. 

The vector P = i is a position vector of L and therefore a position vector of p. 
So p has the vector equation 

and the scalar equation 

Figure 10.5.12 

N·X = N·P, 

(5i - j + k) ·X = 5, 

5x- y + z = 5 

z 

(see Figure I 0.5.12). 

L 

y 



612 10 VECTORS 

A line which is not parallel to a plane will intersect the plane at exactly one 
point. 

EXAMPLE 11 Find the point at which the line X = i- j + k + t(3i- j - k) 
intersects the plane 3x - 2y + ::: = 4. 

The line has the parametric equations 

x = I + 3t. .\'=-I-t, :::=l-1. 

We substitute these in the equation for the plane and solve fort. 

3(1 + 3t) - 2(- I - t) + (I - t) = 4, 

6 + lOt= 4, 

t = -t. 
Therefore the point of intersection is given by the parametric equations for 
the line at t = ±; 

X=~. .r= 
(see Figure 10.5.13). 

z 

L 

Figure 10.5.13 X 

Two planes which are not parallel intersect at a line. 

EXAMPLE 12 Find the line L of intersection of the planes 

4x- Sr +::: = 2, 

X+ 2::: = 0. 

y 

Step 1 To get a position vector of L, we find any point on both planes. Setting::: = 0 
and solving for x and r. we obtain the point S(O. -~. 0) on both planes. Thus 
S = -~j is a position vector of L. 
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Step 2 To get a direction vector D of L we need a vector perpendicular to the normal 
vectors of both planes. The normal vectors are 

We take 

Thus Lis the line 

M = 4i- Sj + k, N = i + 2k. 

j k 
D = M X N = 4 -5 

0 2 

- 1 Oi - 7j + Sk. 

X = -ti + t(- lOi - 7j + 5k). 

PROBLEMS FOR SECTION 10.5 

In Problems 1-12 find the points, if any, where the plane meets the x, y, and z azcs. and sketch 
the plane. 

1 x+y+z=l 2 lOx + Sy + z = 10 

3 2x- 2y + z = 2 4 -x + 3y + 3z = -3 

5 x+y=l 6 y + 3z = 1 

7 x-z=2 8 x+y+z=O 

9 4x- y + 2z = 0 10 tx- y- z = 0 

11 x-y=O 12 2y + z = 0 

13 Find a normal vector to the following planes. 

(a) x- 3y + 6z = 4 (b) X+ 2y = Q 
(c) -3x + 4y + z = 0 (d) x + 6z = 8 
(e) y=4 (f) -y+z=5 

Find a scalar equation for the plane described in Problems 14-32 

14 The plane with normal vector N = i + j - k and position vector P = 2i + k. 

15 The plane with normal vector N = j + 2k and position vector P = i + 3j - 6k. 

16 The plane through the point (1, 5, 8) with normal vector N = Si + j - k. 

17 The plane through the origin with normal vector N = i + j + 2k. 

18 The plane with position vector P = i - j and direction vectors C = i + j + k, 
D = i- j- k. 

19 The plane through the point (1, 2, 3) with direction vectors C = i, D = j + k. 

20 The plane through the points A(O, 4, 6), B(S, 1, - 1 ), C(2, 6, 0). 

21 The plane through the points A(S, 0, 0), B(O, 1, 0), C(O, 0, -4). 

22 The plane through the points A(4, 9, -6), B(6, 6, 6), C(l, 10, 0). 

23 The plane through the point A(l, 2, 4) containing the line 

X = 2i + 3j + k + t(i - k). 

24 The plane through the point A(O, 5, 1) containing the line 

X = i + t(3i - j + k). 

25 The plane through the point A(5, 0, 1) perpendicular to the line 

X= i + j + k + t(2i + j + 3k). 
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26 

27 

28 

29 

30 

31 

32 
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The plane through the origin perpendicular to the line 

X = t(Si - j + 6k). 

The plane through the point A(4, 10, -3) parallel to the plane x + .r- 2:: = I. 

The plane through the origin parallel to the plane 4x + .r + :: = 6. 

The plane containing the line X = i + j - k + t(3i + k) and perpendicular to the plane 
2x- .r +:: = 3. 

The plane containing the line X = 3j + t(5i + j - 6k) and perpendicular to the plane 
X-\-.\'-\- Z = 0. 

The plane containing the line X = 3i + j + k + t(i - 6k) and parallel to the line 
X = i + j + t(3i + 4j + k). 

The plane containing the x-axis and parallel to the line X = t(i + 2j - k). 

In Problems 33-36, test for perpendiculars and parallels. 

33 The planes x - 3_r + 2z = 4, - 2x + 6y - 4:: = 0. 

34 The planes 4x -1- 3y - :: = 6, x + y + 7:: = 4. 

35 The plane - x + y - 2::: = 8 and the line X = 2i -1- k + t(3i - j + k). 

36 The plane x + y + 3:: = 10 and the line X = 3j + t(i + 2j - k). 

In Problems 37--42 find a vector equation for the given line. 

37 The line through P(5, 3, -1), perpendicular to the plane x - y + 3:: = I. 

38 The line through the origin, perpendicular to the plane x - y + :: = 0. 

39 The line of intersection of the planes x + y + :: = 0, x - y + 2z = I. 

40 The line of intersection of the planes 2x + 3y - 4z = I, x + :: = 4. 

41 The line of intersection of the planes x + y = I, y - :: = 2. 

42 The line of intersection of the planes x - 2y -1- 3:: = 0, z = -2. 

In Problems 43-49, find the coordinates of the given point. 

43 The point where the line X = 3i + j + k + r(- i + 3j - k) intersects the plane 
x + 2r-:: = 4. 

44 

45 

46 

47 

48 

The point where the line X = i + k + t(j + k) intersects the plane x + 2,r = -3. 

The point where the line X = t(i - 2k) intersects the plane x - 3.r + 2:: = 4. 

The point P on the plane x + 3y + 6z = 6, nearest to the origin. Hint: The line from 
the origin to P must be perpendicular to the plane. 

The point P on the plane x + y + z = I, nearest to the point A(- I, 2, 3). 

The point P on the line X = i + 2j + 3k + t(i - j + k) nearest to the origin. Hillt: P 
must be on the plane through the origin perpendicular to the line. 

49 

D 50 

D 51 

The point P on the line X= j + t(i + 3k) nearest to the point A(l, 2, 3). 

Prove that any three points which are not all on a line determine a plane. 

Prove that if a line and plane arc parallel and have at least one point in common then 
the line is a subset of the plane. 

D 52 

D 53 

D 54 

Prove that if two parallel planes have at least one point in common then they are equal. 

Let p be a plane with normal vector N. Prove that every vector D perpendicular to N is 
a direction vector of p. 

Given a plane p and a line L not perpendicular top, prove that there is a unique plane q 

which contains L and is perpendicular to p. 
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).6 VECTOR VALUED FUNCTIONS 

A vector valued function is a function F which maps real numbers to vectors. We shall 
study vector valued functions in either two or three dimensions. Here is the exact 
definition. 

DEFINITION 

A vector valued function in two dimensions is a set F of ordered pairs (t, X) 
such that for every real number t one of the following occurs. 

(i) There is exactly one vector X in two dimensions for which the ordered 
pair (t, X) belongs to F. In this case F(t) is defined and F(t) = X. 

(ii) There is no X for which (t, X) belongs to F. In this case F(t) is said to be 
undefined. 

The definition of a three-dimensional vector valued function is similar. 
A vector valued function in two dimensions can be written as a sum 

F(t) = / 1 (t)i + f 2(t)j. 

The functions f 1 and f 2 are real functions of one variable, called the components of F. 
The vector equation X = F(t) can also be written as a pair of parametric equations 

X = ft(t), 

As t varies over the real numbers, the point X(x, y) traces out a parametric curve in the 
plane. The vector valued function F(t) is called the position vector of the curve. 

The line with the vector equation X = P + tC is a parametric curve with 
position vector F(t) = P + tC and components 

EXAMPLE 1 Find the vector equation for a particle which moves counterclockwise 
around the unit circle, and is at the point (1, 0) at timet = 0, shown in Figure 
10.6.1. 

y 

f = Q X 

Figure 10.6.1 
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The motion is given by the parametric equations 

x =cost, y=sint, 

and the vector equation X= costi + sintj. 

EXAMPLE 2 A ball thrown at timet = 0 with initial velocity of vi in the x direction 
and v2 in they direction will follow the parabolic curve 

x = vit, y = ~; 2 t- 16t2
. 

The curve (Figure 10.6.2) has the vector equation X= viti+ (v 2t- 16t2)j. 

Figure 10.6.2 

y 

I= 0 

I 
I 

FU) 

\ X 
\ 

EXAMPLE 3 A point on the rim of a wheel rolling along a line traces out a curve called 
a cycloid. Find the vector equation for the cycloid if the wheel has radius one, 
rolls at one radian per second along the x-axis, and starts at t = 0 with the 
point at the origin. 

As we can see from the close-up in Figure 10.6.3, the parametric equations are 

x = t- sint, y = 1 - cost. 

The vector equation is X= (t- sint)i +(I - cost)j. 

A vector valued function in three dimensions can be written in the form 

F(t) = fi (t)i + .f~(t)j + j 3 (t)k 

and has the three components .f~, .f~, and .f~. The equation X = F( t) can be written 
as three parametric equations 

z = .f~(t), 

and as t varies over the reals we get a parametric curve in space. 

EXAMPLE 4 The space curve 

X= costi + sinrj + tk 

is a circular helix. The point (x, y) goes around a horizontal circle of radius 
one whose center is rising vertically at a constant rate (Figure 10.6.4). 

EXAMPLE 5 In economics the price vector may change with time and thus be a 
vector valued function of t. Find the price vector function P(t) for three 
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!=0 t = "Tr/3 

t = 27r 

y 

Close-up 

X 

Figure 10.6.3 

z 

t = 57r/2 

t = h/2 

t = "ff/2 

y 

Figure 1 0.6.4 X 

commodities such that the first commodity has price t 2
, the second has price 

t + 1, and the price of the third commodity is the sum of the other two 
(t :2:: 0). The answer is 

P(t) = t 2i + (t + l)j + (t 2 + t + l)k. 
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PROBLEMS FOR SECTION 10.6 

Find the vector equations for the motion of the given point in the plane. The positions at 1 = 0 
and t = I are as shown in the figures. 

A point moving along the parabola .r = x 2 in such a way that x = 3r. 

2 A point moving along y = x 2 so that xy = r. 

3 A point moving upward along the line y = 2_\ so that its distance from the origin at 
time 1 is 13

. 

4 A wheel of radius one is turning at the rate of one radian per second. At the same time its 
center is moving along the x-axis at one unit per second. Find the motion of a point on 
the circumference of the wheel. 

5 The point at distance one from the origin in the direction of the point (1, I). 

6 The point where the parabola _r = x 2 intersects the line through the origin which makes 
an angle t with the x-axis. 

7 The point halfway between a point P going around the circle x 2 + y2 = I at one radian 
per second and a point Q going around the same circle at 3 radians per second. 

8 A wheel of radius one rolls along the x-axis at one radian per second. Find the motion 
of a point on the circumference of a concentric axle of radius~_ 

9 A circle of radius one rolls around the outside of the circle x 2 + y2 = 9 at one radian 
per second. Find the motion of a point on the circumference of the smaller circle. 

lO Find the motion of the point in Problem 9 if the small circle rolls around the inside of 
the large circle. 

II A string is unwound from a circular reel of radius one at one radian per second. The 
string is held taut and forms a line tangent to the reel. Find the motion of the end of the 
string. 

1. 2. :3. 

I= I 

4. 5. 6. 

I= I 
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7. 8. 

t = I 

1=0 

9. 10. 11. 

t = 0 

In Problems 12-23, find the vector equation for the motion of the given point in space. 

12 A point moving so that at time t its position vector has length t 2 and direction cosines 
(t, ~. ~). 

13 A point X moving at one radian per second counterclockwise around a horizontal 
unit circle whose center is at (0, 0, t 2

) at timet. (At t = 0, X = i.) 

14 The point which at timet is at distance one from the origin in the direction of the vector 
ti + j + t 2k. 

15 The point at distance one from the point P(l, 2, I) in the direction of the vector 
t 2j + ( t2 

- I )k. 

16 The point where the line through the origin in the direction of i + rj + t 2 k intersects 
the plane x + 2 y + 3z = I. 

17 The point halfway between a point P going around the circle x2 + y2 = I in the (x, y) 
plane at one radian per second and a point Q going around the circle x2 + z2 = I in 
the (x, z) plane at 2 radians per second. (At t = 0, P = Q = i. Both motions are counter­
clockwise.) 

18 The point at distance .f(t) from the point P(t) in the direction of the vector D(t). 

19 The point on the plane x + y + z = I which is nearest to the point 

cos ri + sin tj + 6k. 

20 The point where the rotating plane x cost + .\'sin t = 0 intersects the line through 
(1. I, I) and (2, 3. 4). 

21 The point on the rotating plane x cost + .\'sin 1 = 0 which is nearest to the point 
ri + 2tj + 3tk. 

22 Find the price vector P(t) for three commodities such that the first has price 1/r. the 
second has double the price of the first, and the sum of the prices is 4 11 2 I). 

23 Find the price vector P(t) of three commodities such that the product of the three prices 
is one. the first commodity has price 21, and the third commodity has price 1 + I (I 2 I). 

61!:1 



10.7 VECTOR DERIVATIVES 

The derivative of a vector valued function is defined in terms of its components. We 
shall state the definitions for three dimensions. The two-dimensional case is similar. 

DEFINITION 

Given a vector valued jimct ion 

F(t) = Idt)i + ./~(t)j + ./~(t)k, 
the del'ivative F'(t) is defined by 

F'(t) = f 1'(t)i + ./~(t)j + J;(t)k. 

F'(t) exists !I' and only if'f~'(t), .f~(t), and J;(t) all exist. 

When we use the notation X = xi + yj + zk, the derivative is written 

dX dx, dy. dz k 
df = dt I + dt J + dt . 

EXAMPLE 1 Find dXjdt where 

X= t 113 i + -
1
--j + 2tk, 

l + 1 

dXjdt = 1t- 213 i- (I+ 1)- 2 j + 2k. 

dX/dt is undefined at t = 0 and t = - 1. 

t=/=-1. 

If X is the position vector of a line L, X = P + tC, then the derivative of X is 
the constant direction vector C dX/dt = C. For 

dX d(p 1 + c1 t), d(p 2 + c2 t). d(p 3 + c3 t)k 
df = dt I + dt J + dt 

= c 1 i + c2j + c 3k =C. 

The next two theorems show the geometric meaning of the vector derivative. 

THEOREM 1 

PROOF 

Given a curve X = F(t) in the plane, if F'(t 0 ) =I= 0 then F'(t0 ) is a direction vector 
of the line tangent to the curve at t 0 • 

Case 1 The curve is not vertical at t 0 . The tangent line has slope 

d)' dyjdt .t;u ol 
dx dxjdt fj'(t 0 ) 

at I. Therefore the vector 

is a direction vector of the tangent line. 
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Case 2 The curve is vertical at t0 . Then f~ (t 0 ) = 0, so F'(t0 ) = f~(t 0 )j is a direction 
vector of the vertical tangent line. F'(t0 ) is shown in Figure 10.7.1 for a curve 
X= F(t). 

For curves in space we can use the vector derivative to define the tangent line. 

DEFINITION 

If X = F(t) is a curve in space and F'(t0 ) # 0, the tangent line of the curve at t0 

is the line with position vector F(t0 ) and direction veCtor F'(t0 ). 

A vector parallel to F'(t0 ) is said to be a tangent vector of the curve at t0 . 

EXAMPLE 2 Find the vector equation of the tangent line for the spiral 

F(t) = cos ti + sin tj + -!:tk 

at the point t = n/3. 

The derivative is F'(t) = -sinti + costj + ;tk. 

At t = n/3 the tangent line has the equation 

X = F(n/3) + tF'(n/3) 

or X = 0 i + f j + ;2 k) + t(- f i + ~ j + ~ k). 
The tangent line is shown in Figure 10.7.2. 

We have seen that the direction of the vector derivative is tangent to the 
curve. We next discuss the length of the vector derivative. 

Suppose all the derivatives dxjdt, dyjdt, and dzjdt are continuous on an 
interval a :5: t :5: b. Recall that in two dimensions the length of the curve is defined as 

z 

y 

F'(to) X F'(rr/3) 

)' 

X 

FiaurP. 10.7.2 
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the integral 

s = Jb j(dxjdt)2 + (dyjdt)2 dt. 
{/ 

The length of a curz;e in space is defined in a similar way, 

s = r . .j(dxjdt)2 + (dyjdt) 2 + (dzjdt) 2 dt. 

EXAMPLE 3 Find the length of the helix 

X= costi + sintj + -.\:tk, 

dy dz 
-

from t = a to t = b. 

dx 

dt 
-sint, -=cost, 

dt dt 4 

s = Jb Jsin2 t + cos 2 t + /6 dt 
{/ 

J
b l - Jb ji7 - fo 

= a J 1 + !6 dt - a -
4
- dt - -

4
- (b - a). 

THEOREM 2 

Let X = F(t) be a curve in space such that all the derivatives dxjdt, dyjdt, and 
dzjdt are continuous .for a :<;; t :<;; b. Then the vector derivative dX/dt has 
length ds/dt, where s is the length of the cw·ve .fi'om a to t. That is, 

ldXjdtl = dsjdt . 

PROOF We have . _ J' i(dx) 
2 

(dy) 
2 

(dz) 2 s - J - + - + - dt, 
• dt dt dt 

dX dx . dy. dz k 
-=-I+-J+-. 
dt dt dt dt 

Therefore ds = l(dx)
2 

+ (dy)
2 

+ (~!_)
2 =I dxl· 

dt y dt dt dt dt 

If a particle moves in space so that its position vector at time t is S = F(t), 
the vector derivative is called the Delocity Dector, 

dS 
v = dr' 

The length of the velocity vector is called the speed of the particle. Theorems 1 
and 2 show that: 
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The velocity vector V is tangent to the curve. 

The speed lVI is equal to the rate of change of the length of the curve, 

ds 
lVI = dt" 

The second derivative is called the acceleration vector 

EXAMPLE 4 Find the velocity, speed, and acceleration of a particle which moves 
around the unit circle with position vector 

S = costi + sintj. 

Velocity: V = -sinti + costj. 

Speed: lVI = Jsin2
t + cos2

t = 1. 

Acceleration: A= -costi- sintj. 

As Figure 10.7.3 shows, the velocity Vis tangent to the circle and the accelera­
tion A points to the center of the circle. 

EXAMPLE 5 Find the velocity, speed, and acceleration of a ball moving on the 
parabolic curve 

Velocity: 

Speed: 

Acceleration: 

V = v1i + (v 2 - 32t)j. 

lVI = Jvi + (v 2 - 32t)2
. 

A= -32j. 

We see in Figure 10.7.4 that the velocity vector is tangent to the parabola, 
while the acceleration vector points straight down. 

EXAMPLE 6 Find the position vector of a particle which moves with velocity 

y 

y 

X 

A 

Figure 10.7.3 Figure 10.7.4 

X 
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V = -sinti + cosrj + sint cosrk 

and at time t = 0 has position F(O) = i + 2k. 

We find each component separately by integration. 

J;'(t) = -sint. / 1(0) = I. 

t; (t) = cos t + c 1 • 

1 = cosO + C 1 , C 1 = 0. 

f1 (t) = cost . 

.t;U) =cost, Ji(O) = 0. 

j~(l) = sint + C2 . 

0=sin0+C2 , C2 =0. 

fi(t) = sin t. 

f{(t) = sint cost. f~(O) = 2. 

/1(1) = ±sin 2 t + C3 . 

2 = ± sin 2 0 + C 3 • 

j~(t) = t sin 2 t + 2. 

F(t) = costi + sintj + (hin 2 t + 2)k. 

The path of the particle is shown in Figure 10.7.5. 

z 
I= -rr 

f = 3rr/2 I = -rr/2 

y 

Figure 10.7.5 X 

Let us briefly consider the derivative P'(t) of a price vector P(t). P'(t) is the 
marginal price vector with respect to time. It represents the rates at which the prices 
of all the commodities are changing. In a time of pure inflation, prices will increase 
but the ratios between prices of different commodities will stay the same, hence P'(t) 
will have the same direction as P(t). In a time of pure deflation P'(t) will have the 
opposite direction from P(t). Usually P'(t) is not parallel to P(t) at all, because the 
prices of some commodities are changing relative to others. 

THEOREIVI 3 (Rules for Vector Derivatives) 

Let u = h(t) be a real .fimction and let X = F(t), Y = G(t) be vector valued 
jimctions whose deriratives at t exist. 
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(i) Constant Rules 
d(cX) dX 
--=e-

dt dt' 
d(Cu) = C du 

dt dt" 

(ii) Sum Rule d(X + Y) dX + dY 
dt = dt Tt· 

(1
.
1
.
1
.) d(X • Y) X dY dX y 

Inner Product Rule -- = ·- + - · 
dt dt dt . 

PROOF We prove (iii). 

COROLLARY 

X • Y = fl(t)gl(t) + fz(t)gz(t) + j3(t)g3(t). 

d(Xd~ Y) = f 1 (t)g'1 (t) + f1(t)g~(t) + f3(t)g3(t) 

+ f{(t)g 1(t) + f~(t)g2(t) + J;(t)g 3(t) 

dY dX 
= F(t). G'(t) + F'(t) • G(t) = X· dt + dt · Y. 

Suppose X = F(t) is a curve whose distance IF(t)l fi·mn the origin is a constant 
r0 . Then the derivative F'(t) is perpendicular to F(t) whenever F'(t) i= 0. 

PROOF We use the Inner Product Rule. For all t, 

r~ = F(t) • F(t). 

0 = d(F(t). F(t)) = F(t) • F'(t) + F'(t) • F(t) 
dt 

= 2F(t) • F'(t). 

Therefore F(t) • F'(t) = 0, so F(t) .l F'(t), as shown in Figure 10.7.6. 

We see from the corollary that if a particle moves with constant speed 
lVI = v0 , then its acceleration vector is always perpendicular to the velocity vector 
(Figure 10.7.7). 

y 

y 

A 

X 

Figure 10.7.6 Figure 1 0.7.7 Motion with Constant Speed 
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PROBLEMS FOR SECTION 10.7 

In Problems 1-9 find the derivative. 

I 

3 

5 

X = 5(sinri + cos rj) 

X= cos(e')i + sin(e')j 

X= -6(1i- lntj + e'k) 

7 11 = (cos ti + sin tj) ·(sin ti + cos tj) 

8 Ll = (2'i + 3'j + 4'k). (2ti + 3tj + 4tk) 

9 u = lcosti + sintj + tkl 

2 

4 

6 

X = cos (2t)i + sin (3t)j 

X = t 2 i + [3 j - tk 

X = 4t3 (2i - 3j + k) 

IO Find the line tangent to the curve X = sin 2 ti + cos2 tj + sin t cos tk at t = n/3. 

II Find the line tangent to the curve X= ti + t2j + t 3k at the point (I, I, 1). 

I2 Find the line tangent to the cycloid X = (t - sin t)i + (1 - cos t)j at t = n/4. 

In Problems 13-25 find the velocity, speed, and acceleration. 

13 s = 2ti + 3tj - 4tk 

I4 S = r2 i + rj + k 

I5 S = cos ti + sin rj + rk 

16 The cycloid S = (t- sint)i +(I- cost)j 

17 S = cos(e')i + sin(e')j 

18 S = cos ti + sin tj + t2 k 

19 s = (t2 + l)i + (2t 2 + l)j + (-t 2 + l)k 

20 A point on the rim of a wheel of radius one in the (x, y) plane which is spinning counter­
clockwise at one radian per second and whose center at timet is at (I, 0). (At t = 0, S = i.) 

2I A bug which is crawling outward along a spoke of a wheel at one unit per second while 
the wheel is spinning at one radian per second. The center of the wheel is at the origin, 
and at t = 0, the bug is at the origin and the spoke is along the x-axis. (A spiral of 
Archimedes.) 

22 The point at distance one from the origin in the direction of the vector 

i + tj + JTtk, t > 0. 

23 A car going counterclockwise around a circular track x2 + y 2 = I with speed 12tl at 
timet. At r = 0 the car is at (1, 0). 

24 A point moving at speed one along the parabola y = x 2
, going from left to right. (S = 0 

at t = 0.) 

25 A point moving at speedy along the curve y = e" going from left to right. (S = j at t = 0.) 

In Problems 26--33 find the length of the given curve. 

26 X = cos ti + sin tj + t 2k, 0 :::;; t :::;; 2 

27 

28 

29 

30 

31 

32 

33 

X = cos ti + ~ sin tj - %sin tk, 0 ::S: r :::;; 2n 

X = 6ti - 8tj + t2 k, 0 :::;; t :::;; 5 

X = 2ti + 3t2j + 3t3 k, 0 :::;; t :::;; 1 

. 1 2• 1 3k 0 1 
X = n + J

2 
t J + :3 t , :::;; t :::;; 

X= cos 2 ti + sin 2 tj + 2sintk, 0:::;; t:::;; n 

X = cosh ti + sinh tj + tk, 0 ::S: t ::S: 1 

X = Inti + firj + 1r 2 k, 1 ::S: t :::;; 2 
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In Problems 34-37 find the position vector of a particle with the given velocity vector and initial 
position. 

34 V = e'i + e2 'j + e3 'k, F(O) = 0 

35 V = ti + t 2j + t 3 k, F(l) = i + 2j + 3k 

36 

37 

38 

39 

J 40 

J 41 

J 42 

J 43 

J 44 

J 45 

] 46 

V = ~~ + ~~ + k, F(O) = i + j + k 
t + t -

i j k 
V =-- + -- +--, F(O) = 0 

t-1 t-2 t-3 

Find the position vector of a particle whose acceleration vector at time t is 
A = i + tj + e'k, if at t = 0 the velocity and position vectors are both zero. 

Find the position vector S if A = sin ti + cos tj + k, and at t = 0, V = 0 and S = 0. 

Show that ifU is the unit vector of X, then 

diXI = dX ·U 
dt dt . 

Show using the Chain Rule that if X is the position vector of a curve and sis the length 
from 0 to t, then dX/ds is a unit vector tangent to the curve. 

Suppose a particle moves so that its speed is constant and its distance from the origin 
at timet is e'. Show that the angle between the position and velocity vectors is constant. 

Prove that if F(t) is perpendicular to a constant vector C for all t, then F'(t) is also per­
pendicular to C. 

Prove that ifF(t) is parallel to a constant vector C for all t, then F'(t) is also parallel to C. 

Prove the following differentiation rule for scalar multiples: 

d(uX) _ dX duX 
dt - u dt + dt . 

Prove the vector product rule d(X x Y) = X x dY + dX x y 
dt dt dt . 

3 HYPERREAL VECTORS 

This section may be skipped without affecting the rest of the course. We introduce 
hyperreal vectors and use them to give an infinitesimal treatment of vector derivatives. 
We shall concentrate on three dimensions; the theory for two dimensions is similar. 

A hyperreal vector in three dimensions is a vector 

A= a 1i + a2i + a3k 

whose components a1 , a2 , and a3 are hyperreal numbers. The algebra of hyperreal 
vectors is in many ways similar to the algebra of hyperreal numbers. It begins with 
the notions of infinitesimal, finite, and infinite hyperreal vectors. 

A hyperreal vector A is said to be infinitesimal, .finite, or infinite if its length 
IAI is an infinitesimal, finite, or infinite number, respectively. Two hyperreal vectors A 
and B are said to be infinitely close, A ~ 8, if their difference B - A is infinitesimal 
(Figure I 0.8.1 ). 

EXAMPLE 1 Let E be a positive infinitesimal and H be a positive infinite hyperreal 
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y y 

X X 

A infinitesimal 

Figure 10.8.1 

vectors. 

number. The vector 5ei + e2 k is infinitesimal. Its length is 

"/25<:~0 + 8
4 = ~:}25-+ 8

2 ~ 0. 

The vector ei + j + k is finite but not infinitesimal. Its length is 

f~T+~+-7 = le2 +l ~ '2 
"/ 0 \! ~ "/ L.. 

The vector i + ej + Hk is infinite. Its length is 

Our first theorem shows how these notions depend on the components of the 

THEOREM 1 

Let A and B be hypel'l'ectl vectors. 

(i) A is infinitesimal it' and only it' all of' its components are infinitesimal. 

(ii) A is .finite it' and only if' all of its components are .finite. 

(iii) A is infinite if' and only if' at least one oj' its components is infi1iite. 

(iv) A~ B!f'andonlyif'a 1 ~ b 1 ,a2 ~ h2,anda3 ~ b3. 

PROOF (i), (ii), and (iii) are proved using the inequalities 

I I I > 2 2 a2 :S "I a[+ a2 + a3, 

r-y- 2 2 
.. .jal + a2 + a3 :S la1l + la2l + la31 .. 

and (iv) follows easily from (i). We prove (i). Suppose A is infinitesimal. This 
means that its length 

IAI = ~ af + a~ + a~ 
is infinitesimal. The inequalities show that Ia d .. la21 .. and la31 are all between 
0 and I AI. Therefore all the components a1 , a2 • and a3 are infinitesimal. On 
the other hand .. if all the components are infinitesimal.. then Ia 11 + la 21 + la31 
is infinitesimal, and by the last inequality. the length IAI is infinitesimal. 
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The following facts are obvious from the definitions. 

The only infinitesimal real vector is 0. 

Every real vector is finite. 

Every infinitesimal vector is finite. 

A is infinitesimal if and only if A ::::::· 0. 

Here is a list of algebraic rules for hyperreal vectors. Suppose the scalars 
and vectors e, (), are infinitesimal, c, A, are finite but not infinitesimal, and H, K are 
infinite. 

Negatives: 

- () is itifinitesimal. 
-A is finite but not itifinitesimal. 
- K is ilifinite. 

Sums: 

01 + b 2 is itifinitesimal. 
A + () is finite but not itifinitesimal. 
A 1 + A2 is finite (possibly ilifinitesimal). 
K + () and K + A are itifinite. 

Scalar multiples: 

e(), c(), and eA are it!finitesimal. 
cA is finite but not irifinitesimal. 
cK, HA, and HK are itifinite. 

Inner products: 

b1 • b2 and ()·A are itifinitesimal. 
A 1 ; A2 is finite (possibly infinitesimal). 

Each of these rules can be proved using Theorem 1. For example eA is 
infinitesimal because each of its components w 1 , w 1 , and ea 3 is infinitesimal. 

Other combinations, such as eK and H(), can be either infinitesimal, finite, or 
infinite. 

As in the case ofhyperreal numbers, our next step is to introduce the standard 
part. If A is a finite hyperreal vector, the standard part of A is the real vector 

st(A) = st(a 1)i + st(a1 )j + st(a3 )k. 

Since each component of A is infinitely close to its standard part, A is infinitely close 
to its standard part. Thus 

st(A) is the real vector infinitely close to A. 

The standard part of an infinite hyperreal vector is undefined. 
Here is a list of rules for standard parts of vectors. A and B are finite hyperreal 

vectors and c is a finite hyperreal number. 

st(- A) = - st(A) 

st(A + B) = st(A) + st(B) 

st(cA) = st(c)st(A) 

st(A • B) = st(A) • st(B) 



st(A x B) = st(A) x st(B) 

st(IAI) = lst(A)I 

As an example we prove the equation for inner products, 

st(A ·B)= st(a 1b 1 + a2 b2 + a3b3 ) 

= st(a 1)st(btl + st(a2 )st(b2 ) + st(a3 )st(b 3 ) 

= st(A) • st(B). 

Given a nonzero hyperreal vector A, we may form its unit vector U = A/I AI. 
The three components of U are the direction cosines of A. As in the case of real vectors, 
U has length one and is parallel to A. 

Two new concepts which arise in the study of hyperreal vectors are vectors 
with real length and vectors with real direction. We say that A has rea/length if IAI is 
a real number. We say that A has real direction if the unit vector of A is real, or 
equivalently, the direction cosines of A are real. 

There are four types of hyperreal vectors: 

(a) Vectors with real length and real direction. 
(b) Vectors with real length but nonreal direction. 
(c) Vectors with nonreallength but real direction. 
(d) Vectors with nonreallength and nonreal direction. 

THEOREM 2 

A vector is raal if and only if it has both real length and real direction. 

PROOF A has real length and direction if and only if IAI and U = A/IAI are both real 
if and only if A = IAIU is real. 

EXAMPLE 2 Here are some vectors of type (b), (c), and (d), illustrated in Figure 10.8.2. 

(b) The vector B = sinei + cosej has real length but nonreal direction 
(where e is a positive infinitesimal). B has length one. 

IBI = Jsin 2 e + cos 2 e = 1. 

However, B is its-own unit vector and is not real, so it has nonreal direction. 
(c) The following vectors have nonreallengths but real directions. 

3ei + 4ej, infinitesimal length 5c, 
(6 + 3c)i + (8 + 4c)j, finite length 5(2 + c), 
3Hi + 4Hj, infinite length SH. 

All three of these vectors are parallel and have the same real unit vector 

u = !i + ~j. 
(d) The vector D = i + cj has nonreal length and nonreal direction. Its 
length is jl+?, and its unit vector is 

U 
1 . £ • 

= I+ J. 
jl+? jl+? 



(b) real length only 
B = sin d +cos ej 

infinitesimal 
length 5E 

(c) real direction only 
3ei + 4ej 
3Hi + 4Hj 
(6 + 3E)i + (8 + 4E)j 

(d) neither 
D = i+ Ej 

Figure 10.8.2 

finite 

y 

D 
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X 

infinite 
/length 5H 

infinite 

631 
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Two hyperreal vectors A and B with unit vectors U and V are said to be 
almost parallel if either U ;:::: V or U ;:::: - V. 

EXAMPLE 3 The vectors 

A= 2i, B = 2i + sj, 

are almost parallel to each other (Figure I 0.8.3). Their unit vectors are 

i, 
2 . £ • . 

---:=== I + J ;:::: I, 
j4'+? J4 + £2 

v 

Figure 10.8.3 

Let A i= 0 be a hyperreal vector with unit vector U = A/IAI. A is almost 
parallel to the real unit vector st(U). Thus every nonzero hyperreal vector is almost 
parallel to a real vector. 

Now let us consider a vector valued function 

Each of the real functions;;, f 2 , f 3 has a natural extension to a hyperreal function. 
Thus the real vector valued function F can be extended to a hyperreal vector valued 
function. When t is a hyperreal number, F(t) is defined if and only if all of j 1 (t), f 2(t), 
and j 3(t) are defined, and its value is 

F(t) = ft(t)i + .f~(t)j + f3(t)k. 
We shall now return to the study of vector derivatives. 

THEOREM 3 

The vector valued function F(t) has derivative V at t if and only !f 

V = st (F(t + ~~~ - F(t)) 

for every nonzero infinitesimal M. 

This theorem is exactly like the definition of the derivative of a real function 
in Chapter 2, except that it applies to a vector valued function. 
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PROOF OF THEOREM 3 Suppose first that F'(t) = V. This means that 

f{(t)i + J;(t)j + fi(t)k = v1 i + vz.i + v3k. 

Then J;(t) = v2 , fi(t) = V3. 

Let /1t be a nonzero infinitesimal. Then 

v
1 

= st (f1(t + ~;- f1(t)) 

and similarly for v2 , v3 . It follows that 

V = (F(t + !1t) - F(t)) 
st !1t . 

By reversing the steps we see that if the above equation holds for all nonzero 
infinitesimal !1t, then V = F'(t). 

We shall now discuss the increment and differential of a vector function. 
Given a curve 

X= F(t), 

tis a scalar independent variable and X a vector dependent variable. We introduce a 
new scalar independent variable !1t and a new vector dependent variable !1X with the 
equation 

!1X = F(t + !1t) - F(t). 

/1X is called the increment of X. /1X depends on both t and !1t, and is the vector from 
the point on the curve at t to the point on the curve at t + !1t (Figure 10.8.4). 

X 

Figure 1 0.8.4 The Increment of X 

Now suppose the vector derivative F'(t) exists. We introduce another vector 
dependent variable dX with the equation 

dX = F'(t) !1t. 

dX is called the differential of X. It is customary to write dt for !1t, so we get the familiar 
quotient formulas 

dX = F'(t) dt, 
dX 
dt = F'(t). 
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The relationship between the vector increment and differential may be 
summarized as follows. At each value t where F'(t) exists and is not zero, and for each 
nonzero infinitesimal M, we have: 

dX is an infinitesimal vector tangent to the curve X = F(t). 
Ll.X is an infinitesimal vector which is almost parallel to dX. 

dX and Ll.X are infinitely close compared to Ll.t, i.e, 

Ll.X dX 
fu~dt 

as shown in Figure 10.8.5. 

Figure 10.8.5 

PROBLEMS FOR SECTION 10.8 

In Problems 1-20, determine whether the given vector or scalar is infinitesimal, finite but not 
infinitesimal, or infinite. (E, ii are infinitesimal but not zero and H, K are infinite.) 

2ii 1 - 5ii2 2 Sii - 3K 

3 H(2i - j) 4 e(Si + j) 

5 (2 + F.)i + (3 - E)j 6 
Si + 6j + k 
~--~ 

E 

7 r.i- 4j + Hk 8 K/IKI 
9 K·K 10 Siijjiij 

11 (H 1i) ·(H2j) 12 (i + ii d. u + ii2) 

13 (Hi+ j) .(i + r.j) 

14 (.jH_+_li + .jilj) ·C/if+-li- .jHjJ 

15 (Hi+ H 2j)·(H- 2i + H- 1j) 16 ii 1 x ii2 

17 (2i + 3j - k) X ii 18 (i + ii 1) X U + ii 2) 

19 (Hii) X (H2j) 20 (Hi) x (j + li) 

In Problems 21-30, compute the standard part. Assume A, Bare real. 

21 
cos(x + ,/l.x)i + sin(x + i'o.x)j- (cosxi + sinxj) 

D.x 



22 

24 

26 

27 

28 

29 

30 

(2 + e)i + (3 - e)j 

2Ei + 4e2j + 6e3k 
1: + 1:2 + 1:3 

EXTRA PROBLEMS FOR CHAPTER 10 

23 

25 

(5 + 6e)(2i - 4j + k) 

(2H -i- 1 )i + (3H - 1 )j - Hk 

H+4 

(A + ii)-(B + ii) - A· B 

I ill where st (
1
!

1
) = U 

IHi + jl- H 

IHi+ JHjl- H 

lA + iii - IAI ( ii ) 
liil where sr ~ = U 

(x + L'l.x)2(A + L'l.xB) - x 2 A 
L'l.x 

In Problems 31--40 determine whether or not the vector has (a) real length, (b) real direction. 

31 Hi + JHj 32 i + ej + e2k 

33 (2i + 2jHj + Hk)j(H + 2) 34 2Hi - 3Hj 

35 cos(2 + e)i + sin(2 + e)j 36 fi i + e j -
2
e k 

~ fi+? ~ 
37 

38 

39 

40 

41 

42 

43 

44 

45 

1 . 1: • 1: k 
----;o==I+ ]+---
~ ~ fi+? 

e . 2e . 3e k 
~~~I+ ]-~~= 

~ ~ .JT+7 
5 cos(! + e)i + 3 sin(! + e)j + 4 sin(! + e)k 

5 cos(! + e)i + 3 cos(! + e)j + 4 cos(! + e)k 

Prove that st(A + B) = st(A) + st(B). 

Prove that st(A x B) = st(A) x st(B). 

Prove that if A is infinite and A - B is finite, then A is almost parallel to B. 

Prove that if A is finite but not infinitesimal and A - B is infinitesimal, then A is almost 
parallel to B. 

Prove that a vector which is parallel to a real vector has a real direction. 

The following problems use the notion of a continuous vector valued function. F(t) is said to be 
continuous at t0 if each of the components j 1 (t), j 2(t), and j 3(t) is continuous at t0 . 

046 

0 47 

0 48 

Prove that F(t) is continuous at t0 if and only if whenever t :::::: t0 , F(t) :::::: F(t0 ). 

Assume F(t) and G(t) are continuous at t0 . Prove that the following functions are 
continuous at t0 . 

F(t) + G(t), F(t) • G(t), IF(t)l, F(t) x G(t). 

Prove that if F(t) and h(t) are continuous at t0 , so is h(t)F(t). 

EXTRA PROBLEMS FOR CHAPTER 10 

1 Find the vector represented by the directed- line segment PQ where P = (4, 7), 
Q = (9, -5). 

2 Find the vector A/IBI where A = 5i - lOj, B = 3i - 4j. 

3 If A = 7i + 2j, B = - 4i + j, find a vector C such that A + B + C = 0. 
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4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

10 VECTORS 

An object originally has position vector P = 12i - 5j and is displaced twice, once by 
the vector A = 3i + 3j and once by the vector B = 6j. Find the new position vector. 

Two traders initially have commodity vectors A 0 = 18i + 2j, B0 = 20j. They exchange 
in such a way that their new commodity vectors are equaL A 1 = B 1 . Find their new 
commodity vectors. 

Find a vector equation for the line through ?(2, 4) with direction vector D = i. 

Find a vector equation for the line 3x + 4y = - l. 

Find the midpoint of the line AB where A = (0, 0), B = (- 4, 2). 

Find the point of intersection of the diagonals of the parallelogram A(- 1, - 3), B(O, -3 ), 
C(5, 8), D(4, 8). 

Find the vector represented by PQ where P = (4. 2, 1 ), Q = (9, 6, 0). 

Find the direction cosines of A = i - I Oj + 2k. 

If an object at rest has three forces acting on it and two of theforces are F 1 = i + 3j - k, 
F 2 = 4i - 3j + 2k. find the third force F 3 . 

Find the force required to cause an object of mass 100 to accelerate with the acceleration 
vector A = i - 5j + 3k. 

If a trader has the commodity vector A = 5i + lOj + 15k and sells the commodity 
vector B = 5i + 5j + 5k, find his new commodity vector. 

Find the vector equation of the line through P( I, 4. 3) and Q( 1. 4, 4 ). 

Find the vector equation of the line through P(l. 1. 1) with direction cosines (1;2, -1/2, 
1;..,/2). 

Determine whether the vectors A = 3i - 4j + 5k, B = lOi + 5j - 2k, are perpendicu­
lar. 

Find the cost of the commodity vector A = 8i + 20j + lOk at the price vector 
p = 6i + 12j + 15k. 

Find the amount of work done by a force vector F = IOi - 20j + 5k acting along the 
displacement vector S = 2i + 3j + 4k. 

Find a vector in the plane perpendicular to A = - 2i + 3j. 

Find a vector in space perpendicular to both 

A= i + j + 2k, B = 2i + j + k. 

Find two vectors in space perpendicular to each other and to A = i + j + k. 

Sketch the plane x + 2y + 3: = 6. 

Sketch the plane 3x - :: = 0. 

Find a scalar equation for the plane through the point ( 1, 3, 2) with normal vector 
N = -i- j + 2k. 

Find a scalar equation for the plane through the points A(4, 1, 1), 8(2, 3. 4), C(5. l. 6). 

Find the point where the line X = 2i - 2j + 4k + li intersects the plane x + y + z = 1. 

A bug is crawling along a spoke of a wheel towards the rim at a inches per second. At 
the same time the wheel is rotating counterclockwise at b radians per second. The center 
of the wheel is at (0, 0) and at time 1 = 0, the bug is at (0, 0). Find the vector equation for 
the motion of the bug, 0 :::;; 1 :::;; 1/a. 

29 The sphere x 2 + y2 + ::2 
= 1 is rotating about the z-axis counterclockwise at one 

radian per second. A bug crawls south at one inch per second along a great circle. At 
timet = 0 the bug is at (0, 0, 1) and the great circle is in the (x, :) plane. Find the vector 
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equation for the motion of the bug, 0 ~ t ~ n. (There are two possible answers.) 

30 Find the velocity, speed, and acceleration of the bug in Problem 28. 

31 Find the velocity, speed, and acceleration of the bug in Problem 29. 

32 Find the derivative of X= (cosht)i + (sinht)j. 

33 Find the line tangent to the curve 

i j k 
X=--+--+-- att=O. 

t+l t+2 t+3 

34 Find the length of the curve 

X= (cosh2 t)i + (sinh2 t)j + (.)Ssinht)k, 0 ~ t ~ 1. 

35 Find the position vector of a particle which moves with velocity 

V = (e' sin e')i + (e' cos e')j + e'k, 

if the particle is at the origin at t = 0. 

36 If c > 0 is infinitesimal, determine whether or not the vector (sin e)i + (I - cos e)j is 
infinitesimal. 

37 Determine whether or not the vector in Problem 36 has real direction. 

38 If c > 0 is infinitesimal, find the standard part of the vector 

D 39 

D 40 

D 41 

D 42 

D 43 

044 

D 45 

D 46 

D 47 

(sine)i + £
2j + (e' - l)k 

c 

Let D be a direction vector of a line L in the (x, y) plane. Prove that the set of all direction 
vectors of L is equal to the set of all scalar multiples of D. 

Let U and V be perpendicular unit vectors in the plane. Prove that for any vector A. 

JAJ 2 =(A ·Uf +(A· V) 2
• 

Let U and V be perpendicular unit vectors in the plane. Prove that for any vector A, 

A = (A· U)U + (A· V)V. 

Hint: Let B =(A·U)U+ (A·V)V and show that B·U = A·U and B·V = A·V. 
A • U and A · V are called the U and V components of A. 

Let A and B be two vectors in the plane which are not parallel. Prove that every vector C 
in the plane can be expressed uniquely in the form C = sA + tB. 

Prove the Schwartz ineyuality JA • BJ :S; JAJJBJ for vectors A, B in space. 

Prove that if s and t are positive scalars, then the angle between two vectors A and B 
in space is equal to the angle between sA and tB. 

Let p be a plane in space with position vector P and nonparallel direction vectors C and 
D. Prove that Q is a position vector of p if and only if Q = P + sC + tO for some scalars 
sand t. 
Hint: If E is a direction vector of p, then E x D is zero or parallel to C x D, so 
E x D = s(C x D) for somes, (E-sC) x D.= 0, and hence E-sC is parallel to D. 

Let A, B, C be three distinct points in space whose plane does not pass through the origin. 
Prove that any vector P may be expressed uniquely in the form P = sA + tB + uC. 
Hint: Consider the point where the line X = sA intersects the plane with position 
vector P and direction vectors B and C. 

Let C 'be a curve represented by the vector equation X = F(s), 0 :S; s ~ b. Assume that 
the length of the curve from F(O) to F(s) equals s, and that no tangent line crosses the 
curve. A string is stretched along the curve, attached at the end b, and carefully un-
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y 

........ ___ ....... 

b 

/ 
/ 

P(s) 

X 

wrapped starting at 0 as shown in the figure. Show that the point at the end of the string 
has the position vector P(s) = F(s) + sF'(s). 

A ball is thrown with initial velocity vector V 0 = h(cos cd + sin o:j) and position vector 
S0 = 0 at time I= 0. Its acceleration at time 1 is A= -32j. Find its position at timer. 
its maximum height, and the point where it hits the ground. 
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PARTIAL 
DIFFERENTIATION 

.1 SURFACES 

The rectangular coordinate axes in (x, y, z) space are drawn as in Figure 11.1.1. 
Points in real space are identified with triples (x, y, z) of real numbers, and points in 
hyperreal space with triples (x, y, z) of hyperreal numbers. The set of all points for 
which an equation is true is called the graph, or locus, of the equation. The graph of an 
equation in the three variables x, y, and z is a surface in space. We have seen in the last 
chapter that the graph of a linear equation 

ax+ by+ cz = d 

is a plane. The graphs of other equations are often curved surfaces. The simplest 
planes are: 

11.1.2. 

The vertical planes x = x0 perpendicular to the x-axis. The plane x = 0 is 
called the (y, z) plane. 

The vertical planes y = y0 perpendicular to the y-axis. The plane y = 0 is 
called the (x, z) plane. 

The horizontal planes z = z0 perpendicular to the z-axis. The plane z = 0 is 
called the (x, y) plane. 

Examples of the planes x = x 0 , y = Yo and z = z0 are pictured in Figure 

z 

y 

Figure 11.1.1 X 

639 
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I 

z 

I 
I 
I 
I 
;--------

1 
I 

I 

Xo~'-----' 

X 

X= Xo 

Figure 11.1.2 

y 

X 

z 

y 

X 

y =yo z= z11 

By the graph of a function f of two variables we mean the graph of the 
equation z = f(x, y). Recall that a real function of two variables is a set of ordered 
triples (x, y, z) such that for each (x, y) there is at most one z with z = .f(x, y). Geo­
metrically this means that the graph of a function intersects each vertical line through 
(x, y) in at most one point (x, y, z). The value of z is the height of the surface above 
(x, y). Figure 11.1.3 shows part of a surface z = f(x, y). 

z 

y 

Figure 11.1.3 X 

Whenever one quantity depends on two others we have a function of two 
variables. The height of a surface above (x, y) is one example. A few other examples 
are: the density of a plane object at (x, y), the area of a rectangle oflength x and width y, 
the size of a wheat crop in a season with rainfall r and average temperature t, the 
number of items which can be sold if the price is p and the advertising budget is a, and 
the force of the sun's gravity on an object of mass mat distance d. 

A rough sketch of the graph can be very helpful in understanding a function 
of two variables or an equation in three variables. In this section we do two things. 
First we describe a class of surfaces whose equations are simple and easily recognized, 
the quadric surfaces. After that we shall give a general method for sketching the 
graph of an equation. Graph paper with lines in the x, y, and z directions is available 
in many bookstores. 

The graph of a second degree equation in x, y, and z is called a quadric 
swface. These surfaces correspond to the conic sections in the plane. There are several 
types of quadric surfaces. We shall present each of them in its simplest form. 
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Quadric Cylinders If z does not appear in an equation, its graph will be a cylinder 
parallel to the z-axis. The cylinder is generated by a line parallel to the z-axis 
moving along a curve in the plane z = 0. 

The graph (in space) of;: + ;~ = 1 is an elliptic cylinder. 

It intersects any horizontal plane z = z0 in an ellipse. 

The graph of y = ax2 + bx + c is a parabolic cylinder. 

xz yz 
The graph of a2 - b2 = c is a hyperbolic cylinder. 

Cylinders parallel to other axes are similar. The three types of quadric 
cylinders are shown in Figure 11.1.4. 

z 

X 

(a) Elliptic cylinder 
Figure 11.1.4 

y 

z z 

X 

(b) Parabolic cylinder (c) Hyperbolic cylinder 

The Sphere The sphere of radius r and center P(a, b, c) has the equation 

(x - a)2 + (y - bf + (z - c)2 = r 2
. 

y 

It is the set of all points at distance r from P (Figure 11.1.5). A sphere intersects 
any plane in a circle (possibly a single point or no intersection). 

z 

y 

Sphere 
Figure 11.1.5 X 
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x2 yl 2 2 
The Ellipsoid 2 + 2 + 2 = 1. 

a b c 

This egg-shaped surface intersects a plane perpendicular to any coordinate 
axis in an ellipse (Figure 11.1.6). It is inscribed in the rectangular solid 

-a:::; x:::; a, -b:::; y:::; b, -c:::; z:::; c. 

x2 y2 2 2 
The Elliptic Cone :-_ + _ = _ 

al bl c2' 

This surface intersects a horizontal plane z = z 0 in an ellipse, and the vertical 
planes x = 0 and y = 0 in two intersecting lines (Figure 11.1. 7). 

z 
z 

y y 

Elliptic cone 

X X 

Ellipsoid 
Figure 11.1.6 Figure 11.1.7 

x2 Y2 z 
The Elliptic Paraboloid a 2 + b2 = ~ · 

This surface intersects a horizontal plane z = z0 in an ellipse and a vertical 
plane x = x 0 or y = y0 in a parabola. It is shaped like a bowl if c is positive 
and a mound if c is negative (Figure 11.1.8). 

z z 

y 

y 

X 

X 

Figure 11.1.8 (a) (b) 
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xl yl 2 2 
The Hyperboloid of One Sheet 2 + b

2 
- 2 = 1. 

a c 

The intersection of this surface with a horizontal plane z = z0 is an ellipse. 
The intersection with a vertical plane x = x 0 or y = Yo is a hyperbola 
(Figure 11.1.9). 

xl yl 2 2 
The Hyperboloid of Two Sheets - - - - + - = 1. 

al bz cz 

The surface has an upper sheet with z 2: c and a lower sheet with z ::::; -c. 
It intersects a horizontal plane z = z0 in an ellipse if \z0 \ > c. It intersects a 
vertical plane x = x0 or y = y0 in a hyperbola (Figure 11.1.10). 

z 

Hyperboloid of one sheet 

Figure 11.1.9 

xz yl 
The Hyperbolic Paraboloid a2 - b2 

z 
c 

y 

z 

Hyperboloid of two sheets 
Figure 11.1.10 

y 

This surface has the shape of a saddle. It intersects a horizontal plane z = z0 

in a hyperbola, and a vertical plane x = x0 or y = y0 in a parabola (Figure 
11.1.11). 

z 

y 

Figure 11.1.11 X Hyperbolic paraboloid 
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We shall describe a method for sketching cylinders and then other graphs in 
space. We concentrate on a finite portion of (x, y, z) space. 

EXAMPLE 1 Sketch the portion of the cylinder x2 + y2 = 1 where 1 :S: z :S: 2 
(Figure 11.1.12). 

Step 1 Draw the curve x 2 + y 2 = 1 in the (x, y) plane. The curve is a circle of radius 
one. 

Step 2 Draw the three coordinate axes and the horizontal planes z = 1, z = 2. 

Step 3 Draw the circles x2 + y2 = 1 where the surface intersects the two planes 
z = 1, z = 2. 

Step 4 Complete the sketch by drawing heavy lines for all edges which would be 
visible on an "opaque" model of the given surface. This surface is called a 
circular cylinder. 

y 

I 
I 

I 
I 

X 
I 

Step 1 

z 

y 

X Step 3 

Figure11.1.12 

z 

r--f-------r z = 2 

,-- -------
1 

I 
I 

I 
I 
I • I 
I 

z=l 

}------·)-----
1 y 

X Step 2 

z 

y 

X Step 4 

EXAMPLE 2 Sketch the part of the cylinder z = x 2 where 0 :S: y :S: 2, 0 :S: z :S: 1. 
This is a parabolic cylinder parallel to the y-axis, because y does not appear 
in the equation. The four steps are shown in Figure 11.1.13. 

For sketching the graph of a function z = f(x, y), a topographic map, or 
contour map, can often be used as a first step. It is a method of representing a surface 
which is often found in atlases. In a topographic map, the curves f(x, y) = z0 are 
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z 

X 

Step 1 

Figure 11.1.13 

z 

X 

Figure 11.1.14 

z 

y 

Level Curves 

z 

y 

c B 

X 

A 

sketched in the (x, y) plane for several different constants z0 , and each curve is 
labeled (Figure 11.1.14). These curves are called level curves, or contours. 

EXAMPLE 3 Sketch the part of the surface z = x2 + y2 where - 1 :S; z :S; 1. This 
is an elliptic paraboloid (Figure 11.1.15). 

Step 1 Draw the topographic map. The level curves are circles. 

Step 2 Draw the axes and the planes z = -1, z = 1. 

Step 3 Draw the intersections of the surface with the planes z = -1, z = 1 and also 
the planes x = 0 and y = 0. 

z = -1: 
z = 1: 
X= 0: 
y = 0: 

No intersection. 
The circle x2 + y2 = 1. 
The parabola z = y2

. 

The parabola z = x2
. 

Step 4 Complete the figure with heavy lines for visible edges. 
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y 

Step I 

z 

X 
Step 3 

Figure 11.1.15 

EXAMPLE 4 Graph the function 

I 
4 
I 
2 

X 

z 

z = 1 

y 

X Step 2 

z 

y y 

X 

Step 4 

where -3 ::::; x ::::; 3, -2 ::::; y ::::; 2, -1 ::::; z s 1. This is a hyperbolic parabo­
loid (Figure 11.1.16). 

Step 1 Draw a topographic map. The level curves are hyperbolas. 

Step 2 Draw the axes and rectangular solid. 

Step 3 Draw the curves where the surface intersects the faces and also the planes 
x = 0, y = 0. The topographic map gives the curves on z = - 1, z = 0, and 
z = I. The curves on x = 0 and y = 0 are parabolas. 

Step 4 Complete Figure 11.1.16. 

EXAMPLE 5 Sketch the surface 

)'2 2 
-xz - 4- + z 

where -2 ::::; z ::::; 2. This is a hyperboloid of two sheets (Figure 11.1.17). 



Figure 11.1.16 

Step 1 

Figure 11.1.17 

y 

y 

Step 1 

z 

Step 3 

z= ±2 

z= ±yl1 

X 

z= ±1 
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z 

z=l 

X y 

z 

y y 

Step 4 

z 

y 

Although it is not a function, it can be broken up into two functions 

I y2 
z = - J 1 + x 2 + 4 . 

Step 1 Draw topographic maps for z = Jl + x2 + y2j4 and z = -Jl + x 2 + y2j4. 
The level curves are ellipses. 
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Step 2 Draw the axes and the planes z = 2, z = -2. 

Step 3 Draw the intersections of the surface with the planes 

z = -2, z = 2, X= 0, y = 0. 

The surface intersects x = 0 and y = 0 in the hyperbolas 

-b·2 + z2 = I, 

Step 4 Complete Figure 11.1.17. 

EXAMPLE 6 Graph the sum fimction z = x + y. The graph is a plane. A topographic 
map and sketch of the surface are shown in Figure 11.1.18. 

.v z 
3 

2 X v 

X 

Figure 11.1.18 

EXAMPLE 7 Sketch the graph of the product function z = xy, where 

-2:::;: X:::;: 2, -2:::;: y:::;: 2, -l:::;:z:::;:I. 

The surface is saddle shaped. It intersects the horizontal plane z = z0 in the 
curve y = z0 /x. It intersects the vertical planes x = x 0 andy = Yo in the lines 
z = x 0 y and z = xy0 . The surface is shown in Figure 11.1.19. 

y z 

X y 

X 

Figure 11.1.19 
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EXAMPLE B Graph the function z = Jx + y 2 where 

0:::;; X:::;; 1, -1 :::;; y:::;; 1, 

Step 1 The topographic map has level curves 

Jx + y2 = c, x = (c - y 2
)
2 with y2 

:::;; c. 

The derivative dxjdy = 4y(c - y2
) has zeros at y = 0 andy = ±Jc. The 

table shows that the curves are bell shaped. 

y X dxjdy 

-Jc 0 0 Min 
0 cz 0 Max 

Jc 0 0 Min 

Step 2 Draw the rectangular solid. 

Step 3 The surface intersects the plane x = 0 in the parabola z = y2
, and intersects 

the plane y = 0 in the curve z = Jx. It intersects the plane z = 1 in the 
curve x = (1 - y2f. 

Step 4 The surface, shown in Figure 11.1.20, is shaped like a beaker spout. 

y z 

X y 

X 

Figure11.1.20 

PROBLEMS FOR SECTION 11.1 

Sketch the following graphs in (x, y, z) space. 

1 x 2 + y2 = 4, - 1 :0:: z :0:: 1 

2 x2 + z2 = 1, 0 :0:: y :0:: 2 

3 (x - 2)2 + (y - 1)2 = 1, -1 :0:: z :0:: 1 

4 (y- 1f + (z + 1)2 = 1, 0 :0:: x :0:: 3 

5 .)'2 + Z = I, 0 :0:: Z, 0 :0:: X :0:: 2 
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6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 
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_r = x 2 
- X, _r S 0, 0 S 2 S 2 

x 2 + ±J"2 = 1, 0 s :: s 3 

y 2
- x 2 = L -2 s x s 2, 0 s z s 4 

x = sin y, 0 s y s rr, 0 s :: s 2 

Z = e-x, 0 S X S 2, Q S J' S 2 

x2 + _\'2 + ::2 = 4 

(X - 1 )2 + _\"2 + (:: + 1)2 = 1 

(X - [ )
2 + (J' - 2) 2 + (Z - 3JZ = 9 

x 2 + (J' + 4) 2 + (z - 2)2 = 4 

xz + ±Yz + ~22 = 1 

±xz + BYz + ::2 = 1 

Make contour maps and sketch the following surfaces. 

17 x 2 +_r2 =z2
, -4s::s4 

18 x 2 + / = 4z 2
, -1 s z s 1 

19 x 2 + tJ'2 
= z2

, -4 s z s 4 

20 z=~x2 +y2 , -4s::s4 

21 z = -x2
- y2

• -4 s z s 4 

22 2z=-x2 -tJ'2
, -4SzS4 

23 x 2 +±J•2
-::

2 =1, -4szs4 

24 x 2 + y2 - 9z2 = L -2 s z s 2 

25 -x 2 -y 2 +z 2 =1, -4szs4 

26 -4x 2 -y 2 +4z 2 =1, -2szs2 

27 Z = X
2 

- l, - 2 S X S 2, - 2 S J' S 2 

28 Z = y2 
- x 2

, - 2 S X S 2. - 2 S J' S 2 

Make contour maps of the following surfaces. 

29 Z =X-)' 

30 z = y- 2x 

31 z = (x 2 + y 2 + l)- 1
, -4 s x s 4, -4 s y s 4 

32 
x2 + \'2 

Z = -
2 2 . - 4 S X S 4, - 4 S )' S 4 

X+)' +1' 

33 z=x+y2
, -2sxs2, -2sys2 

34 Z = X_\,2, -2 S X S 2. -2 S )' S 2 

35 

36 

37 

38 

39 

40 

41 

7 = x· !\~ - ,; . ' - 2 S X S 2, 0 S ,\' S 4 

Z = J;; + Jy, 0 S X S 4, 0 S J' S 4 
X 

Z = ? - 2 S X S 2, - 2 S )' S 2, -4 S Z S 4 

z=(x+y)- 1
, -2sxs2, -2sys2. -4szs4 

z = cosx + siny, -n/2 s x s rr/2, 0 s y s n 

z = cosx · siny, -rr/2 s x s rr/2, 0 s y s n 

z=ex+.r, -2sxs2, -2sys2 

42 z=e-x'-,.', -2sxs2, -2sys2 

43 z = x", 0 < x s 4, - 2 s y s 2, - 4 s z s 4 

44 z = logJ, 0 < x s 4. 0 < y s 4, - 4 s z s 4 
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2 CONTINUOUS FUNCTIONS OF TWO OR MORE VARIABLES 

Two points (x 1 , y 1) and (x2 , Yz) in the hyperreal plane are said to be infinitely close, 
(x1 , y 1 ) ~ (x2 , y2 ), if both x 1 ~ x2 and Y1 ~ Yz. If 

Lly = Y2- Yr, 

then the distance between (x1 , y 1) and (x2 , y2 ) is 

LEMMA 1 

Two points are infinitely close to each other if and only if the distance between 
them is infinitesimal. 

This lemma can be seen from Figure 11.2.1. (An easy proof of the lemma in 
terms of vectors was given in Section 10.8.) 

y 

X 

Figure 11.2.1 

The definition of a continuous function in two variables is similar to the 
definition in one variable. 

DEFINITION 

A real function f(x, y) is said to be continuous at a real point (a, b) if whenever 
(x, y) is infinitely close to (a, b),f(x, y) is infinitely close to f(a, b). In other words, 

if st(x) = a and st(y) = b, then st(f(x, y)) = f(a, b). 

Figure 11.2.2 shows (a, b) and f(a, b) under the microscope. 

Remark It follows from the definition that if f(x, y) is continuous at (a, b), then f(x, y) 
is defined at every hyperreal point infinitely close to (a, b). In fact, it can even 
be proved that f(x, y) is defined at every point in some real rectangle 
a1 < x < a2 , b1 < y < b2 containing (a, b). 
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z f(x, y) 

j1·b+ b.x I 

X 
Figure 11.2.2 

:b.y 
I 
I 
I 

I 
I 
I 
I 
I 
I 

(aLib)l 
b.x 

b.y 
(x, y) 

EXAMPLE 1 Show that f(x, y) = 2x + xy2 is continuous for all (a, b). Let st(x) = a 
and st(y) = b. Then 

st(2x + xy2
) = st(2x) + st(xy 2

) = 2st(x) + st(x)st(y2
) = 2a + ab 2

. 

Here is a list of important continuous functions of two variables. 

THEOREM 1 

The following are continuous at all real points (x, y) as indicated. 

(i) The Sum Function .f(x, y) = x + y. 

(ii) The Difference Function .f(x, y) = x - y. 

(iii) The Product Function f(x, y) = xy. 

(iv) The Quotient Function f(x, y) = xfy, (y =F 0). 

(v) The Exponential Function .f(x, y) = xY, (x > 0). 

(iHiv) follow at once from the corresponding rules for standard parts, 

st(x + y) = st(x) + st(y), 

st(x - y) = st(x) - st(y), 

st(xy) = st(x)st(y), 

st(~) = st(x) 
y st(y) 

if st(y) =F 0. 

(v) is equivalent to the new standard parts rule 

st(xY) = st(xyrcyJ if st(x) > 0. 

We prove this rule using the fact that e" and In u are continuous functions of one 
variable. 

st(xY) = st(eylnx) = est()'lnx) = est()•)st(lnx) = est(y)lnst(x) = st(x)''(Yl. 

The next theorem shows that most functions we deal with are continuous. 
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THEOREM 2 

(i) If f(x, y) is continuous at (a, b) and g(u) is continuous at .f(a, b), then 

h(x, y) = g(.f(x, y)) 

is continuous at (a, b). 

(ii) Sums, differences, products, quotients, and exponents of continuous 
functions are continuous. 

PROOF (i) If (x, y) ~ (a, b) then .f(x, y) ~ .f(a, b), hence g{.f(x, y)) ~ g(.f(a, b)), and 
thus h(x, y) ~ h(a, b). 

(ii) Let .f(x, y) and g{x, y) be continuous at (a, b). As an illustration we show 
that if .f{x, y) > 0 then 

h(x, y) = .f(x, y)g(xsl 

is continuous at (a, b). Let (x, y) ~ (a, b). Then 

st(h(x, y)) = st(f(x, y)g(x.yl) = st(f(x, y))''(g(.x.y)l = .f(a, b)g(a,bl = h(a, b). 

EXAMPLE 2 By (i), h(x, y) = sin(x + y) is continuous for all (x, y). 

EXAMPLE 3 By (ii), h(x, y) = sinx cosy is continuous for all (x, y). 

A function is said to be continuous on a set S of points in the plane if it is 
continuous at every point in S. Thus the quotient function f(x, y) = xjy is con­
tinuous on the set of all (x, y) such that y -=F 0. The function .f(x, y) = xY is continuous 
on the set of all (x, y) such that x > 0. 

EXAMPLE 4 Find a set on which h(x, y) = ln(x + y) is continuous. 

By Theorems 1 and 2, 

x + y is continuous for all (x, y), 
lnu is continuous for u > 0, 
ln(x + y) is continuous for x + y > 0. 

Answer ln(x + y) is continuous on the set of all (x, y) such that x + y > 0, shown in 
Figure 11.2.3. 

Figure 11.2.3 
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EXAMPLE 5 Find a set on which h(x, y) = xY + cos )x2 
- y is continuous. 

xY is continuous for x > 0. 
x 2 is continuous for all x. 
x 2 - y is continuous for all (x, y). 

J x 2 
- y is continuous for x 2 

- y > 0. 

cosJx2 
- y is continuous for x 2 

- y > 0. 

xY + cos ,j x 2 - y is continuous for x > 0 and x 2 - y > 0. 

Answer h(x, y) is continuous on the set of all (x, y) such that x > 0 and x 2 - y > 0. 
The set is shown in Figure 11.2.4. 

EXAMPLE 6 Find a set on which h(x, y) = logxy is continuous. 

lny 
We use the identity logxy = -

1 
-. 

nx 

In y is continuous for y > 0. 

In x is continuous for x > 0. 

lnyjlnx is continuous for x > 0, lnx =!= 0, y > 0, 
that is, x > 0, x f. 1, y > 0. 

logxy is continuous for x > 0, x =I= 1, y > 0. 

Answer !ogxy is continuous on the set of all (x, y) such that x > 0, x =I= 1, y > 0 
(Figure 11.2.5). 

Figure 11.2.4 

\ y 
I 
I 
I 
I 
\ 
\ 
I 
\ 

\ .. 

I 
I 
I 
I 
I 
I 
I 
I 

{ 
I 

I 
I 

/ 

y 

X X 

Figure 11.2.5 

Continuous functions of three or more variables are defined in the natural 
way, and Theorem 2 holds for such functions. 

EXAMPLE 7 Find a set where the function 

is continuous. 

xzy 
h(x, y, z) = ~~~­

x+y+z 

x 2 is continuous for all x. 

x 2y is continuous for all (x, y). 
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x + y is continuous for all (x, y). 

(x + y) + z is continuous for all (x, y, z). 

x2y . . 
--=--- 1s contmuous for x + y + z i= 0. 
x+y+z 

Answer h(x, y, z) is continuous on the set of all (x, y, z) such that x + y + z i= 0. 

PROBLEMS FOR SECTION 11.2 

Find the largest set you can in which the following functions are continuous. 

1 
1 f(x,y) = 2x- 3y 2 f(x, Y) = 1 + xz + y2 

f(x, y) = ex'-r 4 
1 

3 f(x, y) = 2 + . ( ) sm xy 
xy 1 

5 f(x,y) = x + Y 6 f(x,y) = xz + yz 

x3 
8 f(x,y) = x + y 7 f(x,y) = Y + 2 xy 

9 
1 

f(x, y) = (x - 2)(y + 1) 10 f(x,y) = Jx + JY 

11 f(x, y) = JX+Y 12 f(x,y)=JXZ+7 

13 f(x,y)=~ 14 f(x,y) = JY 
Jx + 2y 

15 j(x, y) = xx+y 16 j(x, y) = ysinx 

17 f(x, y) = (x2 - YY 18 f(x,y) = yllx 

f(x,y) = x}~ 
1 

19 20 f(x, y) = -
1 
-}. 
-X 

21 j(x, y) = In (x2 - y) 22 f(x, y) = ln(xy) 

23 
1 

f(x y) = 
' lnx + lny 

24 f(x, y) = ln(ln(x - y)) 

25 j(x, y) = logx+ Y (xy) 26 f(x, y) = log2x-y (x + 3y) 

J7-=x 28 
1 

27 X- 4y sinx cosy 

29 Jcosx + y 30 JN+jYj 
31 lnlx- Yl 32 X}"+ yz 

33 ~ 34 
y-z x + 2y + 3z 

35 xz + yz + 22 36 logx(Y + z) 

37 (x + y)l/z 

38 Let j(x,y) = {~ if xy = 0, 

if xy =ft 0. 

Show that f is not continuous at (0, 0). 



656 11 PARTIAL DIFFERENTIATION 

0 39 

0 40 

Suppose f(x, y) is continuous at (a, b). Prove that g(x) = f(x, b) is continuous at x = a. 

Prove that if/(x) andg(x)are continuous at x =a and ifh(u, v) is continuous at (f(a), g(a)), 

then 

k(x) = h(f(x), g(x)) 

is continuous at x = a. 

0 41 Prove that if((x, y) and g(x, y) are both continuous at (a, b) and if h(u, v) is continuous at 
(f(a, b), g(a, b)), then 

k(x, y) = h(f(x, y), g(x, y)) 

is continuous at (a, b). 

The notation lim f(x,y) = L 
(x,y)-->(a,b) 

means that whenever (x, J') is infinitely close to but not equal to (a, b),f(x, y) is infinitely close to L. 
xz + 1,2 

0 42 Evaluate lim :____._ 
tx.rJ-to.o, lxl + IYI 

0 43 Evaluate lim (1 + x 2 + y2 ) 1!1x'+r'J. 
[x,y)-[0,0) 

044 

0 45 Evaluate lim - ------=-~. 
1x.rJ-tO.Oi v xz + y2 

0 46 Show that lim - x - does not exist. 
txsJ-!O.Oi ,/x2 + )'2 

11.3 PARTIAL DERIVATIVES 

Partial derivatives are used to study the rates of change of functions of two or more 
variables. In general the rate of change of z = f(x, y) will depend both on the rate 
of change of x and the rate of change of y. Partial derivatives deal with the simplest 
case, where only one of the independent variables is changing and the other is held 
constant. 

Given a function z = f(x, y), if we hold y fixed at some constant value b we 
obtain a function 

g(x) = f(x, b) 

of x only. Geometrically the curve z = g(x) is the intersection ofthe surface z = f(x, y) 
with the vertical plane y = b. The rate of change of z with respect to x with y held 
constant is the slope of the curve z = g(x). This slope is called the partial derivative 
of f(x, y) with respect to x (Figure 11.3.l(a)). There is also a partial derivative with 
respect toy (Figure 11.3.l(b)). 

Here is a precise definition. 

DEFINITION 

The partial derivatives of f(x, y) at the point (a, b) are the limits 

f (- b) = 
1
. f(a + L'lx, b) - f(a, b) 

, a, 1m 
- t>x-o L'lx ' 
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z 

(a) 

X 

z 

(b) 

X 

Figure 11.3.1 Partial Derivatives 

z 

z=f(x,y) 

z 

z =f(x, y) 

a 

f(x, h)= g(x) 
fx(a, h)= g'(a) 

h 

f(a, y) = h(y) 
/y(a, b)= h'(b) 

rc b)= 1" f(a, b + .1.y)- f(a, b) 
Jy a, rm A • 

t.y~o LlY 

A partial derivative is undefined if the limit does not exist. 

When fx(a, b) exists, it is equal to the standard part 

fx(a, b) = st (f(a + .1.x:; - f(a, b)) 

for any nonzero infinitesimal!J..x. Similarly when fy(a, b) exists, 

fy(a, b)= st (f(a, b + ~; - f(a, b)) 

for any nonzero infinitesimal .1.y. 

X 

y 

Just as the one-variable derivative f'(x) is a function of x, the partial deriva­
tives fx(x, y) and /y(x, y) are again functions of x andy. At each point (x, y), the partial 
derivative fxCx, y) either has exactly one value or is undefined. 



Another convenient notation for the partial derivatives uses the Cyrillic 
lower case D, o, called a "round d". If z = f(x, y), we use: 

oz oz of 
for f)x, y), -::;- (x, y), 

ox 
, or 

ox ox 

GZ oz of 
for fy(x, y). -::;- (x, y), 

oy 
, or 

oy oy 

Partial derivatives, like ordinary derivatives, may be represented as quotients 
of infinitesimals. 

In ozjox, ox means Llx and oz means j~(x, y) Llx. 

In ozjoy, oy means Lly and oz means .f;.(x, y) Lly. 

Notice that oz has a different meaning in oz/ox than it has in ozjoy. For this 
reason we shall avoid using the symbol oz alone. 

Partial derivatives are easily computed using the ordinary rules of differentia­
tion with all but one variable treated as a constant. 

EXAMPLE 1 Find the partial derivatives of the function 

f(x, y) = x 2 + 3xy - 8y 

at the point (2, - 1 ). 

To find f,(x, y), we treat y as a constant, 

f.(x, y) = 2x + 3y. 

To find .f;.(x, y), we treat x as a constant, 

J;.(x, y) = 3x - 8. 

Thus fx(2, -1) = 2·2 + 3(-1) = 1, }~(2, -1) = 3·2- 8 = -2. 

Figure 11.3.2 shows the surface z = f(x, y) and the tangent lines at the point 
(2, -1). 

EXAMPLE 2 A point P(x, y) has distance z = J x 2 + y2 from the origin (Figure 
11.3.3). Find the rate of change of z at P(3, 4) if: 

(a) P moves at unit speed in the x direction. 
(b) P moves at unit speed in they direction. 

In this problem the round d notation is convenient. 

OZ X 
(a) -::;- (x, y) = / , 

ox ' x2 + y2 

az (3, 4) = 3 
ax )32 + 42 

3 
-

5 

oz y 
(b) -;-(x,y)=Jz 2' 

uy X + Y 

az (3,4) = 4 
oy J 32 + 4z 

4 
-

5 



z 

Figure 11.3.2 

z 

Figure 11.3.3 X 
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/ 
I 

I 

(2, -1) 

I 
I 
I 
I 
I 
I 
I 

Functions ofthree or more variables cannot easily be represented graphically. 
However, they can be given other physical interpretations. For example, w = f(x, y, t) 
may be pictured as a moving surface in (x, y, w) space where t is time. Alternatively, 
w = f(x, y, z) may be thought of as assigning a number to each point of (x, y, z) space 
where it is defined; for example, w could be the density of a three-dimensional object 
at the point (x, y, z). 

Partial derivatives of functions of three or more variables are defined in a 
manner analogous to the two-variable case. 

DEFINITION 

The partial derivatives of f(x, y, z) at the point (a, b, c) are the limits 

f ( b ) 
= 

1
. f(a + ilx, b, c) - f(a, b, c) 

x a, , c 1m A , 
&x~o LlX 
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, ( b ) _ 
1
. f(a, b + ~y, c) - f(a, b, c) 

Jv a, 'c - lill ' 
. t.y~O ~}' 

f b ) 
_ 

1
. f(a, b, c + M) - f(a, b, c) 

. ja, , c - un ~ . 
,..z~o Z 

A partial derivative is undefined if the limit does not exist. 

When fAa, b, c) exists we have 

f 
b _ (f(a + ~x, b, c) - j(a, b, c)) 

x(a, , c) - st b.x 

for nonzero infinitesimal b.x. 
Thus fAx, y, z) is the rate of change of j(x, y, z) with respect to x when y and 

z are held constant. 
We also use the round d notation. If w = f(x, y, z), we use: 

0\V ow of 
for f,Jx, y, z), ~(x,y,z), 

ox ' 
or 

ax OX 

0\V 0\V ar 
~ (x, y, z), 

ay ' 
or ay for J;,(x, y, z), 

oy 

ow OW rf 
oz (x, y, z), 

oz 
, or 

cz 
for .fz!x, y ,z). 

EXAMPLE 3 Find the partial derivatives of 

f(x, y, z) = sin(x 2y - z) 

at the point (1, 0, 0). 

To find f~(x, y, z) we treat y and z as constants. 

Thus 

j~(x, y, z) = 2xy cos(x 2y ·- z). 

J;.(x, y, z) = x 2 cos(x 2y- z). 

f~(x,y,z) = -cos(x 2y- z). 

j~(l, 0, 0) = 2 • 1 • 0 cos(1 2 
• 0 ·- 0) = 0. 

.t;.(l, 0, 0) = 12 cos(l 2 
• 0- 0) = I. 

fzll,O,O)= -cos(1 2 ·0-0)'= -1. 

PROBLEMS FOR SECTION 11.3 

In Problems 1-28, find the partial derivatives. 

I 

3 

5 

7 

z = 4x- 3y 

z = xy 2 + x 3y 

Z=---
X2 + )'2 

f(x, y) = xy 

2 

4 

6 

8 

::=I+ 3x + 5y 

::; = .\'3\'2 

---
xy + I 

f(x,y) = xjy 
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9 f(x, y) = ax + by 10 f(x, y) = eax+b,· 

11 f(x, y) = ex'-y2 12 f(x, y) = sin x cosy 

13 f(x,y) = Jx + 2y 14 f(x,y) = JXY + fi + JY 

15 z = xr 16 z = Xl/y 

17 z = ln(xy) 18 z = ln(ax +by) 

19 z = logxy 20 z = tan x arctan y 

21 z = arcsin (x2 y) 22 w = xyz 

23 w = J xz + y2 + zz 24 f(x, y, z) = xer-z 

25 f(x,y,z) =ax+ by+ cz 26 f(x, y, z) = x"lz' 

27 \V = Z COSX + Z siny 28 w = z coshx + z sinhy 

In Problems 29-40 find the partial derivatives at the given point. 

29 f(x, y) = xy2, x = 1, y = 2 

30 f(x, y) = xJY, x = 2, y = 4 

31 f(x, y) = 1/xy, x = - 1, y = 1 

32 
1 1 

f(x, y) = - + -, x = 3, y = 4 
X )' 

33 Z = exy, X= 0, )' = 2 

34 Z = ex+ Y, X = 0, )' = 2 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

Z = ex COS)', X= 1, )' = 0 

Z = ex siny, X = 1, )' = 0 
1 

Z = - 2--3 , X = 2, )' = 3 
X + )' 

z = Jx 2 + xy + 2y2
, x = 1, y = 1 

f(x, y, z) = x 2 + y2 + z2
, x = 1, y = 2, z = 3 

X X 
f(x, y, z) =-- -, x = 1, y = 1, z = 1 

y z 

A point P(x, y) at (1, 2) is moving at unit speed in the x direction. Find the rate of change 
of the distance from P to the origin. 

A point P(x, y) at (1, 2) is moving at unit speed in they direction. Find the rate of change 
of the distance from P to the point ( 5, - 1 ). 

A point P(x, y, z) is moving at unit speed in the x direction. Find the rate of change of 
the distance from P to the origin when P is at (1, 2, 2). 

A point P(x, y, z) is moving at unit speed in the z direction. Find the rate of change of 
the distance from P to the origin when P is at (3, .j3, 2). 

Find b and c if for all x and y, 

z = x 2 + bxy + cy2 and 
az az 

ax ay· 

Find b if for all x and y 

az az 
z = sinx siny + b cosx cosy and 

ax ay 

It is found that the cost of producing x units of commodity one andy units of commodity 
two is 

C(x,y) = 100 + 3x + 4y- FY-
Find the partial marginal costs with respect to X andy, iJCjax and ac;ay. 

661 
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When a certain three commodities are produced in quantities x, y, and z respectively, 
it is found that they can be sold at a profit of 

P(x, y, z) = lOOx + lOOy + yz - xy - z2
. 

Find the marginal profits with respect to x, y and z; i.e., oPjox, 8Pjoy, and oPjcz. 

11.4 TOTAL DIFFERENTIALS AND TANGENT PLANES 

Most of the functions we encounter have continuous partial derivatives. To keep 
our theory simple we shall concentrate on such functions in this chapter. 

DEFINITION 

A function f(x, y) is said to be smooth at (a, b) if both of its partial derivatives 
exist and are continuous at (a, b). 

The definition for three or more variables is similar. 
The Increment Theorem for a differentiable function of one variable shows 

that the increment L'l.z is very close to the differential dz, and leads to the notion of a 
tangent line. In this section we introduce the increment and total differential for a 
function of two variables. Then we state an Increment Theorem for a smooth function 
of two variables, which leads to the notion of a tangent plane. 

Let z depend on the two independent variables x and y, z = f(x, y). Let L'l.x 
and L'l.y be two new independent variables, called the increments of x and y. Usually 
L'l.x and L'l.y are taken to be infinitesimals. 

We now introduce two new dependent variables, the increment L'l.z and the 
total differential dz. 

DEFINITION 

When z = f(x, y), the increment of z is the dependent variable L'l.z given by 

L'l.z = f(x + L'l.x, y + L'l.y) - f(x, y). 

The increment L'l.z depends on the four independent variables x, y, L'l.x, L'l.y, 
and is equal to the change in z as x changes by L'l.x andy changes by L'l.y. Thus 

L'l.z = L'l.f(x, y, L'l.x, L'l.y), 

where L'l.l is the function 

L'l.j(x, y, L'l.x, L'l.y) = f(x + L'l.x, y + L'l.y) - f(x, y). 

DEFINITION 

When z = f(x, y), the total dijfe1·ential of z is the dependent variable dz given by 

dz = fAx, y) dx + ~.(x, y) dy, 

GZ GZ 
dz = -dx + -dy. 

?x Dy 
or equivalently 
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When x andy are independent variables, dx and dy are the same as L1x and 
L1y. The total differential dz depends on the four independent variables x, y, dx, and dy. 
Thus 

dz = df(x, y, dx, dy), 

where df is the function 

df(x, y, dx, dy) =fAx, y) dx + fy(x, y) dy. 

Figure 11.4.1 shows L1z under the microscope. 

z f(x + ~x,y + ~y) 

Increments 

(x + ~x. y + ~y) 

Figure 11.4.1 

EXAMPLE 1 Find the increment and total differential of the product function z = xy 
(Figure 11.4.2). 

Increment: L1z = (x + L1x)(y + L1y) - xy = y L1x + x L1y + L1x L1y. 

oz oz 
Total differential: dz = OX dx + oy dy = y dx + X dy. 

~Y x 6y i'>x ~Y 
~--------------~~ 

y xy yi'>x 

Figure 11.4.2 X 

EXAMPLE 2 Find the increment and total differential of z = x2 
- 3x/. 

Increment: 

!1z = [(x + !1x)2 
- 3(x + !1x)(y + !1yf] - [x2 

- 3xy2
] 

= [x2 + 2x !1x + !1x2 
- 3xy2 

- 6xy L1y - 3x !1y2 
- 3 !1xy2 

-6 !1xy L1y - 3 !1x L1y2
] - [x2 

- 3xy2
] 
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dz. 

= 2x fix + flx 2 
- 6xy fly - 3x fly 2 

- 3 flxy 2 
- 6 flxy fly - 3 fix fll 

= (2x- 3y2
) fix- 6xy fly+ flx 2 

- 3x fly 2 
- 6y fix fly- 3 fix fly 2

. 

Total differential: 

~ "' 

c:: 
cy -6xy. 

c;z cz 
dz = -:;---- dx + -:::-- dy = (2x - 3y 2

) dx - 6xy dy. 
ex cy 

We shall now state the Increment Theorem. It shows that flz is very close to 

INCREMENT THEOREM FOR TWO VARIABLES 

Suppose z = .f(x, y) is smooth at (a, b). Let fix and fly be hifinitesimal. Then 

flz = dz + c: 1 fix + c:2 fly 

for some il!finitesimals s1 and 82 which depend on fix and fly. 

Before proving the Increment Theorem, let us check it for Examples 1 and 2. 

EXAMPLE 1 (Continued) The product function z = xy is smooth for all (x, y). 
Express flz in the form 

We have 

Thus 

flz = dz + 8 1 fix + c: 2 fly. 

flz = y fix + x fly + fix fly, 

dz = y fix + x fly. 

flz = dz + L1x • L1y. 

The problem has more than one correct answer. One answer is c: 1 = 0 
and 8 2 = L1x, so that 

M = dz + 0 • L1x + L1x • L1y = dz + c: 1 fix + c: 2 fly. 

Another answer is 8 1 = fly and 82 = 0, so that 

L1z = dz + L1y • L1x + 0 · L1y = dz + e1 L1x + c: 2 fly. 

EXAMPLE 2 (Continued) The function z = x 2 
- 3xy3 is smooth for all (x, y). 

Express flz in the form 

flz = dz + e1 fix+ e2 fly 

at an arbitrary point (x, y) and at the point (5, 4). We have 

flz = (2x - 3y2
) fix - 6xy fly + flx 2 

- 3x L1y2 
- 6y L1x L1y - 3 fix L1y2

, 

dz = (2x - 3y2
) fix - 6xy fly. 

Then flz = dz + L1x 2 
- 3x fly 2 

- 6y L1x fly - 3 L1x fly 2
. 

Each term after the dz has either a L1x or a fly or both. Factor L1x from 
all the terms where fix appears and fly from the remaining terms. 
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where 
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~z = dz + (~x - 6y ~y - 3 ~y2) ~x + (- 3x ~y) ~y. 

~z = dz + t:: 1 ~x + t::z ~y, 

t:: 1 = ~x- 6y ~y- 3 ~y2 , t:: 2 = -3x ~y. 

At the point (5, 4), 

where t:: 2 = -15~y. 

PROOF OF THE INCREMENT THEOREM We break ~z into two parts by going 
first from (a, b) to (a+ !!.x, b) and then from (a + !!.x, b) to (a+ ~x, b + !!.y), 
as shown in Figure 11.4.3, 

y (a+ ..1x, b + t.y) 

(a, h) (a+ t.x, b) 

(a, b) 

X 

Figure 11 .4.3 

!!.z = [j(a + !!.x, b + !!.y) - f(a + !!.x, b)] + [J(a + !!.x, b) - f(a, b)]. 

Our plan is as follows. First, we regard f(a, b) as a one-variable function of a 
and show that 

(1) f(a + !!.x, b) - f(a, b) = fx(a, b) !!.x + t:: 1 !!.x for some infinitesimal 1:: 1 . 

(2) 

Second, we regardf(a + !!.x, b) as a one-variable function of band show that 

f(a + !!.x, b + !!.y) - f(a + !!.x, b) =~.(a, b) !!.y + t: 2 !!.y 

for some infinitesimal t:: 2 . 

Once Equations 1 and 2 are established the proof will be complete because 
by adding Equations 1 and 2 we get the desired result 

!!.z = fx(a, b) !!.x + fy(a, b) !!.y + t:: 1 !!.x + t:: 2 !!.y = dz + t: 1 !!.x + t:: 2 Liy. 

Equation 1 follows at once from the one-variable Increment Theorem since 
fx( a, b) exists. 

We now prove Equation 2. We regardf(a + !!.x, y) as a one-variable function 
of y. For ally between band b + !!.y, the point (a + !!.x, y) is infinitely close 
to (a, b), so ~.(a + !!.x, y) is defined. By the one-variable Mean Value Theorem 
on the interval [b, b + !!.y], there is a y1 between band b + !!.y such that 

f(a + !!.x, b + !!.y) - f(a + !!.x, b) na + !!.x, Yd = !!.y . 

Since~. is continuous at (a, b), 
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J;.(a + f..x, Ytl = ~.(a, bj + e2 , 

where e2 is infinitesimal. Then 

f(a + t\.x,b + Lly)- f(a + t\.x,b) _ r b 
,'\. - .~y(a, ) + c2 , 

y 

and Equation 2 follows. 

The following corollary is analogous to the theorem that a differentiable 
function of one variable is continuous. 

COROLLARY 1 

If a function z = f(x, y) is smooth at (a, b) then it is continuous at (a, b). 

PROOF Let (x, y) be infinitely close to (a, b) and let 

f..x = x - a, t\.y = y - b. 

Then 

Since f..x and t\.y are infinitesimal, M is infinitesimal, so f(x, y) ~ .f(a, b). 

Some examples of what can happen when the function is not smooth are 
given in the problem set. 

If a function z = f(x, y) is smooth at (a, b), the curve z = .f(x, b) has a tangent 
line L 1 on the plane y = b, and the curve z = .f(a, y) has a tangent line L 2 on the 
plane x =a. 

L 1 has the equation z - f(a, b)= j,(a, b)(x- a) 

and L 2 has the equation z- .f(a, b)= J;.(a, b)(y- b). 

The plane determined by the lines L 1 and L2 is called the tangent plane. It has the 
equation 

z- .f(a, b)= f.(a, b)(x- a)+ .~,(a, b)(y- b), 

because the graph p of this equation is a plane and intersects the plane y = bin L 1 and 
the plane x = a in L 2 (Figure 11.4.4). 

DEFINITION 

The tangent plane of a smooth function z = .f(x, y) at (a, b) is the plane with 
the equation 

z - f(a, b) = .f.(a, b)(x - a) +.~.(a, b)(y - b). 

If we set x =a andy= bin this equation we get z = f(a, b). If we set x- a= dx 
andy - b = dy we get z - f(a, b) = dz. Therefore: 

The tangent plane touches the sw:face at (a, b). 
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y 

Figure 11 .4.4 X Tangent plane p 

Llz = change in z on the swface. 
dz = change in z on the tangent plane. 

Figure 11.4.5 shows Llz and dz. 

z 

!5Ji~ dz 

(a, b) 

I Y 
I 

X 
<1z and dz 

Figure 11.4.5 

Our second corollary to the Increment Theorem shows that the tangent 
plane closely follows the surface. 

COROLLARY 2 

Suppose z = f(x, y) is smooth at (a, b). Then for every point (x, y) at an in­
finitesimal distance 
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fi'om (a, h), the change in z on the tangent plane is infinitely close to the change 
in z along the surlace compared to ~s. i.e., 

~z dz 

~s ~s 

PROOF We have ~z = dz + e1 ~x + e2 ~y. Both ~xj~s and ~yj~s are finite, so 

~z dz ~x ~y 
A=-:< + 8 1 A + 82 A' 
L1S L1S L1S L1S 

~z dz ~x ~\' 
- - - = £ 1 - + e2 -'-- :::::: 0. 
~s ~s ~s ~s 

In Figure 11.4.6, we see that the piece of the surface seen through an infinitesi­
mal microscope aimed at (a, h, f(a, h)) is infinitely close to a piece of the tangent plane, 
compared to the field of view of the microscope. 

z 

: y 
I 

X 

Figure 11.4.6 

EXAMPLE 3 Find the equation of the tangent plane to 

z = 1 + sin (2x + 3 y) 

at the point (0, 0). 

We have 

oz 
-::;- (x, y) = 2 cos(2x + 3y), 
ox 

cz 
-::;-(x, y) = 3 cos(2x + 3y). 
oy 

At the point (0, 0), z = 1 + sin(O + 0) = I, 

Oz 
-::;-(0, 0) = 2 cos (0 + 0) = 2, 
OX 

Cz 
-::;- (0, 0) = 3 cos (0 + 0) = 3. 
oy 

The equation of the tangent plane is z - I = 2(x - 0) + 3(y - 0), or 
z = 2x + 3y + I. 
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EXAMPLE 4 Find the tangent plane to the sphere 

xz + y2 + z2 = 14 

at the point (1, 2, 3) (Figure 11.4.7). 

The top hemisphere has the equation z = J14- x2 
- y2

. 

Then 
oz X X 
ox (x, y) = 

Jt4- x 2
- y2 

, 
z 

oz y y 
-;;;- (x, y) = 
oy Jt4- x 2

- y 2 z 

z 

y 

Figure 11.4.7 X 

At (1, 2), z = 3, 
oz 
OX (1, 2) = 3' 

oz 2 
o/1, 2) = - 3' 

Then the tangent plane has the equation 

oz oz 
z - 3 =- (x - 1) + - (y - 2), 

ox oy 

z - 3 = - ~ (x - 1) + ( - ~) (y - 2), 

or x + 2y + 3z = 14. 

The total differential of a function w = f(x, y, z) of three variables is the 
dependent variable dw given by 

dw =fAx, y, z) dx + J;,(x, y, z) dy + fz(x, y, z) dz, 

ow ow ow 
dw = -dx + -dy + -dz. 

ox oy az 
or equivalently 

The following Increment Theorem has a proof like the Increment Theorem 
for two variables. 
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INCREMENT THEOREM FOR THREE VARIABLES 

Suppose IV = f(x, y, z) is smooth at (a, b, c). Let ~x, ~y, and ~z be infinitesimal. 
Then the increment ~IV is equal to 

~w = dw + ~: 1 ~x + ~: 2 ~y + ~: 3 ~z 

for some irifinitesimals ~: 1 , c2 , ~: 3 which depend on ~x, ~y, and ~z. 

EXAMPLE 5 Given w = xyz, express the increment ~win the form 

~w = dw + ~: 1 6.x + ~: 2 ~y + ~: 3 ~z. 

We first find ~wand dw, 

~w = (x + ~x)(y + ~y)(z + M)- xyz 

= yz ~x + xz ~y + xy ~z + x ~y ~z + y ~x ~z + z ~x ~y + ~x ~y ~z 
aw 
-=yz ax ' 

aw 
---;::;- = xz, 
oy 

aw 
az = xy. 

dw = yz ~x + xz ~y + xy ~z. 

Thus ~IV = dw + (y 6.z + z ~y) ~x + (x ~z) ~y + (~x ~y) M. 

tlx 

Figure 11.4.8 pictures dw and ~w. 

Liz 

I 
I 
I 
I 
)------

/ 
I 

/ 
I 

x,_'----..r 

IV 

Figure 11.4.8 

PROBLEMS FOR SECTION 11.4 

x Lly Liz 

dw t.lw-dw 

In Problems 1-16, find the increment and total differential. 

z = 1 + 3x- 2y 2 z = x2- y2 

3 Z = X2)'2 4 Z = x 3y 

5 z = 1/xy 6 z = ex+)· 

7 z = e3x-4y 8 z = cosx + siny 

9 z = cosx siny 10 :: = ln(x + 2y) 

II z = x lny 12 z = .jxy 

13 IV= X+ 2y + 3z 14 IV = x2 + yl + zz 
15 IV = X)' + j"Z 16 w=.,;';;+.Jy+Jz 
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In Problems 17-22, express l'lz in the form l'lz = dz + e1 l'lx + e2 1'ly. 

17 z = x 2 + y2 18 z = x 3 + y3 

19 z = x 2y 20 z = 3xy - 2x2 + y2 

21 
X 

Z=-
)' 

22 z = yfi 

In Problems 23-40 find the tangent plane at the given point. 

23 z=2x2 +y2 at(1,2) 24 z=x2 -4y2 at(-2,1) 

25 z=2x2y+y2 +3at(L1) 26 z=x2/+xy3 +2at(-1,2) 

27 z = fo + 1 at (1, 1) 28 z = fi- 2}Y at (4, 1) 

29 z=ex
2
'"at(l,3) 30 z=e-'2 +"'at(-l,-l) 

31 

33 

35 

z = sinx siny at (n/3, n/4) 

z = xy1 
- 2 at (0, 1) 

z = cosx cosy at (0, 0) 

32 

34 

36 

z = tan(xy) at (n, 1/4) 

z = x2y1 + 2 at (0, 0) 

z = arctan(2x - y) at (1, 4) 

37 x2 +/+z2 =9at(1,-2,2) 

38 x2 + 2y2 + 3z2 = 6 at (- 1, 1, -1) 

39 

D 41 

D 42 

D 43 

044 

D 45 

x2 + y1 
- z2 = 1 at (1, 1, 1) 40 - x 2 

- y 2 + z2 = 1 at (2, - 2, 3) 

Show that if z is a linear function of x andy, z = ax + by + c, then l'lz = dz at every 
point (x, y). 

{ 
0 if xy = 0 

Letf(x,y) = 1 ifxy # 0. 

Show that at (0, 0) 
(a) f(x, y) is not continuous; 
(b) f)O, 0) and f,.(O, 0) exist; 
(c) f(x, y) is not smooth. 

Let f(x, y) = fxY. Prove that at the point (0, 0), 
(a) f(x, y) is continuous; 
(b) fx(O, 0) and f,.(O, 0) exist; 
(c) f(x, y) is not smooth; 
(d) l'lz is not infinitely close to dz compared to l'ls = J l'lx1 + l'ly1

. 

Let f(x, y) = lxyl. Show that at (0, 0), 
(a) f(x, y) is continuous; 
(b) fiO, 0) andf,,(O, 0) exist; 
(c) f(x, y) is not smooth; 
(d) l'lz is infinitely close to dz compared to l'ls. 

Let f(x, y) = lxl + IYI- Show that at (0, 0), 
(a) f(x, y) is continuous; 
(b) fx(O, 0) and /y(O, 0) do not exist. 

. 5 CHAIN RULE 

The Chain Rule is useful when several variables depend on each other. A typical case 
is where z depends on x andy, while x andy depend on another variable t. We shall 
call t the independent variable, x and y the intermediate variables, and z the dependent 
variable. Figure 11.5.1 shows which variables depend on which. 
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z dependent 

/~ 
intermediate X y 

~/ 
independent Figure 11.5.1 I 

CHAIN RULE 

If z is a smooth function of x and y, while x and y are differentiable functions 
oft, then dz/dt exists and 

dz 3z dx 3z dy 
-=--+--. 
dt 3x dt cy dt 

Discussion If z = F(x, y) and x = g(t), y = h(t), then z as a function oft is 

z = f(t) = F(g(t), h(t)). 

We can give a more precise statement of the Chain Rule using functional 
notation: 

If g(t) and h(t) are differentiable at t0 , and F(x, y) is smooth at (x0 , y0 ) where 
x0 = g(t0 ) and Yo = h(t0 ), then j"(t0 ) exists and 

I'fto) = FAxo, Yo)g'(to) + Fy(xo, Yo)h'(tol· 

We shall give some examples and then prove the Chain Rule. 

EXAMPLE 1 A particle moves in such a way that 

dx = 6 dt , 
dy 

dt 
-2. 

Find the rate of change of the distance from the particle to the origin when 
the particle is at the point (3, - 4) (Figure 11.5.2). 

y 

X 

\ 
z 

Figure 11.5.2 
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oz X oz y 

ox Jx2 + y2' oy Jx2 + y2 

dz oz dx az dy 6x 2y 
- = -- + -- = -----r~='7 
dt ox dt oy dt J x2 + y2 J x2 + y2 

6. 3 2. ( -4) 26 

J32 + 42 J32 + 42 5 

EXAMPLE 2 Find the derivative of z = ~/sint, using the Chain Rule. (This can also 
be done by logarithmic differentiation.) 

Let 

Then 

x = sint, 

z = x}'. 

1 
y = -. 

t 

oz _ }'_ 1 ?z 
-;;-- - yx ' oy = (lnx)x\ 
ox 

dx dy 1 
dt = cost, dt -f.· 

dz oz dx az dy 
-=--+--
dt ex dt oy dt 

= yxy-l cost+ (lnx)xl'(- ~) 

= yrsifitcost 
t sin t 

In (sin t )yrsifit 
t2 

EXAMPLE 3 Suppose the price z of steel is proportional to the population x divided 
by the supply y, 

ex 
z =-. 

y 

x andy depend on time in such a way that 

dx 
dt = 0.01x, ~~ = -Jx. 

Find the rate of increase in the price z when x = 1,000,000, y = 10,000. 

oz e 

ax y' 

az 

ay 

ex 
--z. 

y 

dz oz dx az dy e ( ex) ~ 
- = - - + -- = - (0.01x) + - - (- v' x) 
dt ax dt oy dt y y 2 

= e. 10- 4 • w-z. 106 + e. 106 • oo- 4 ) 2 • (106 ) 112 

= e(l + 10) = 11e. 
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PROOF OF THE CHAIN RULE We use the Increment Theorem. Let b.t be a non­
zero infinitesimal, and let fix, fly, and liz be the corresponding increments of 
x, y and z. Then !'!.x and !'!.y are infinitesimal, and 

ez ez 
!'!.z = ~l'!.x + -;;-!'!.y + £1 l'!.x + £2 !'!.y, 

ex cy 

where c1 and £ 2 are infinitesimal. Dividing by !'!.t, 

liz az fix cz fly fix !'!.y 
-=--+--+£ -+£­
!'J.t ex !'J.t Cjl !'J.t I !'J.t 2 /J.t. 

Taking standard parts, we see that 

dz ez dx ez dy 
-=--+--
dt ex dt ay dt . 

There is a Chain Rule for any number of independent and intermediate 
variables. We state the simplest cases here. 

The Chain Rules for two or more independent variables follow from the 
Chain Rules for one independent variable. 

If z depends on x and x depends on s and t, we have the diagram in Figure 
11.5.3. The Chain Rule for this case is: 

If z is a differentiable function of x and x is a smooth function of s and t, then 

az dz ex ez dz ax 
as dx as, ct dx at' 

This follows from the ordinary Chain Rule in Chapter 2 by holding s or t 
constant. 

If z depends on x and y while x and y depend on s and t, we have the diagram 
in Figure 11.5.4. The Chain Rule for this case is: 

If z is a smooth function of x andy while x andy are smooth functions of sand 
t, then 

z 

I 
X 

/~ 
.1' I 

Figure 11.5.3 

az cz ox az ay 
-=--+--
as ex as ay as' 

dependent 

intermediate 

independent 

oz az ax cz cy 
-=--+--­
at ax at ay at · 

z 

,/~, 
!><! 
Figure 11.5.4 

dependent 

intermediate 

independent 
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The Chain Rule for three intermediate variables is proved like the Chain 
Rule for two intermediate variables. We have the diagram in Figure 11.5.5. 

If w is a smooth function of x, y, and z, which are in turn differentiable functions 
oft, then 

Figure 11.5.5 

dw ow dx cw dy cw dz 
-=--+--+-­
dt ox dt cy dt az dt · 

dependent 

intermediate 

independent 

EXAMPLE 4 Use the Chain Rule to compute ozjcs and ozjot where 

x2 
Z=­

y' 
x = st, 

oz 2x oz x 1 

ox y oy y1. 

OX 
OS= t, 

oy 
os = 2s. 

ax at= s, 
oy 

ot 
-2t. 

oz = az ox + az ay = 2x t - X
2 

2s 
OS ax as ay OS y y 1 

2st1 2s3 t1 

s2 _ t1 - (s2 _ t1)1 · 

oz = oz ox + oz oy = 2x s - X
2 
(- 2t) 

ot ax at ay at y y2 

2s1t 2s1t3 

=---+~------o-~ 
s2- t2 (s1- t1f' 

As a check, we compute ozjos and ozjot directly without the Chain Rule. 

oz 

OS 

oz 

at 

x2 s1t1 
z=-=---

y s2 - t1. 

(s2 - t1)2st1 - (2s)s1t1 2st1 2s3 t1 

(s2 _ t1)1 = s2 _ t1 - (s2 _ t1)1 · 

(s2
- t1)(2s2t)- ( -2t)s1t1 2s1t 2s1t3 

----,--=o-----------+ ~-~~ (s1 _ t1)1 - s2 _ t2 (s2 _ t2)2 · 
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EXAMPLE 5 Let z depend on X and y and let X = I' cos 0, y = I' sin e. Use the Chain 
Rule to obtain formulas for ozjor and oz/oO. 

ox 
-;:;- = cos 0, 
Cl' 

ex 
-rsin8, 

co 

ey . 
-
0 

= smO. 
/' 

ay 
""0 =I' case. 
c 

ez cz ex cz oy cz oz . 
-;:;- = -;:;- -;:;- + -

0 
-;:;- = :;- cos 0 + -;:;- sm 0. 

cr ex or y cr ux oy 

cz cz ex cz cy cz oz 
- = - - + - - = - - /' sin 0 + -;:;- /' cos e. 
ao ex ao ey ao ax oy 

EXAMPLE 6 A rectangular solid has sides x, y, and z. Find the rate of change of the 
volume V = xyz if 

We have 

so 

X= J, y = 2, z = 3 (in feet), 

dx dy 
-5, dz = 2 (in feet per second). -=I 

dt ' dt dt 

av av 
--;:;-- = yz, 
OX 

cy = xz, 

dV av dx av dy av dz 
~=~-+~-+~-

dt ax dt ay dt az dt 

av 
a;= xy, 

dx dy dz 
=2·3-+ 1·3-+ 1·2-

dt dt dt 

= 2 . 3 . 1 + 1 . 3 . (- 5) + 1 . 2 . 2 = - 5. 

Thus the volume is decreasing at -5 cubic feet per second (Figure 11.5.6). 

3 ft.jse~ 

Figure 11.5.6 X 

z 

/' 

I 
I 
I 
I 
I 
I 
I 

. J----­
/ y 

-5 ft./sec. 
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PROBLEMS FOR SECTION 11.5 

In Problems 1-6, calculate dzjdt by the Chain Rule and check by a direct calculation. 

1 z = x2 
- y2

, x = e', y = e- 1 

2 z = x2y2
, x = cost, y = sint 

3 1 . (t) . (t) z =ax+ by' x = sm ~ , y = sm b 

4 
- 1 

Z = eax+br, X= ,/t, )' = .ji 

5 
lnx 

z = lny' x = cosh(2t), y = sinh(2t) 

6 z = lnx lny, x = tan(3t), y = sec(3t) 

In Problems 7-14, calculate dzjdt by the Chain Rule. 

7 z = (t + 1)11' 8 z=(1+~)' 
9 Z = sintCOSI 10 z = .ji/i 

11 z = log(t2+ 11 (t
2 

- 1) 12 z = logsint (cost) 

13 z = 3x- 2y, dx _ .)1="? dt- -t, dy=~ 
dt 

14 Z =X+ 2y + 3, 
dx 1 dy . 1 
-=cos-, -=Sill-
dt t dt t 

In Problems 15-20, find ozjos and ozjot by the Chain Rule. 

15 z=y3
, y=scost 16 z=siny, y=st2 

17 z = lnx, x = s2 
- t2 18 z = eX, x = cos(2s) + sin(3t) 

19 z =ax+ by, 
1 

X = S + t' y = S- t 

20 z = x2 - y2
, x = s cost, y = s sin t 

21 If z = f(ax + by) and f is differentiable, show that b ~: = a ~;. 
22 If z = f(x + at, y + bt) and f is smooth, show that 

oz- oz b oz 
ot- a ox+ oy" 

23 If z = f(x, y), x = r cose, y = r sine, and f is smooth, show that 

(~:r + ~ (~~r = (rxr + (~r-
24 If z = f (~), where f is differentiable, show that 

X + y 
oz oz 

x ox+ Y oy = o. 

25 Find dwjdt where w = x cosz + y sinz, x = e', y = e- 1
, z = .ji. 

26 Find dw/dt where w = xy2z3
, x = 2t + 1, y = 3t - 2, z = 1 - 4t. 

In Problems 27-30, find formulas for dzjdt. 

27 z = Jx2 + y2
, x = f(t), y = g(t) 
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28 

29 

30 

I I t"AH llAL Ult-t-t:.HI:.I\J I lA IIUN 

:: = xal, X = f(t), Y = g(t) 

:: = x', x = f(t), y = g(t) 

:: = 1ogxy, X = f(t), y = g(t) 

In Problems 31-36, find formulas for czjcs and czjct. 

31 

33 

35 

:: = f{u), u = as + bt 

:: = e", u = f(s, t) 

z = g(s)h(t) 

32 

34 

36 

z = f(u), u = st 

:: = f(u), u = g(s) + h(t) 

:: = f(x, y), x = g(s), y = h(t) 

37 A particle moves in the (x, y) plane so that dx/dt = 2, dyjdt = -4. Find dz/dt, where z 
is the distance from the origin, when the particle is at the point (3, 4). 

38 A particle moves in the (x, y) plane so that 

dx 1 1 
·-=--+-
dt X y' 

dy 
dt = 2x + y. 

Find dz/dt, where z is the distance of the particle from the point (1, 2), when the particle 
is at (2, 3). 

39 A particle moves in space so that 

dx = 3 dt , 
dy 
dt = 4, 

dz 

dt 
-2. 

Find the rate of change of the distance from the origin when x = 1, y = -2, z = 2. 

40 Find the rate of change of the area of a rectangle when the sides have lengths x = 5 
andy = 6 and are changing at rates dx/dt = 3, dy/dt = -4. 

41 Find the rate of change of the perimeter of a rectangle when the sides are x = 2, y = 4 
and are changing at the rates dx/dt = -2, dyjdt = 3. 

42 The per capita income of a country is equal to the national income x divided by the 
population y. Find the rate of change in per capita income when x = $10 billion, 
y = 10 million, dx/dt = $10 million per year, dy/dt = 50,000 people per year. 

43 The profit of a manufacturer is equal to the total revenue x minus the total cost y. As 
the number of items produced, u, is increased, the revenue and cost increase at the rates 
dx/du = 500/u and dy;du = 1/Ju. Find the rate of increase of profit with respect to u 
when u = 10,000. 

44 When commodities one and two have prices p and q respectively, their respective 
demands are D 1 (p, q) and D2(p, q). The revenue at prices p and q is the quantity 

R(p, q) = pD 1(p, q) + qDz(p, q), 

since a quantity D 1(p, q) can be sold at price panda quantity D 2(p, q) at price q. Find 
formulas for the partial marginal revenues with respect to price, 3Rj3p and 3R/3q. 

11.6 IMPLICIT FUNCTIONS 

In many applications of the Chain Rule, one or more of the independent variables 
is also used as an intermediate variable. The simplest case where this occurs is when 
z depends on x and y while y depends on x, 

Y = g(x), z = F(x, y). 

Figure 11.6.1 shows which variables depend on which. 
Assuming F(x, y) is smooth and dyjdx = g'(x) exists, the Chain Rule gives 

dz az dx az dy dz az az dy 
-=--+-- or -=-+--
dx 3xdx 3ydx' dx ax 3ydx" 
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dependent 

intermediate 

independent 

Figure 11.6.1 

Here dzjdx stands for f'(x) where z = f(x) = F(x, g(x)), and azjax stands for Fx(x, y). 
The round d, a, is useful in telling the two apart. 

EXAMPLE 1 If z = 2x + 3y, y = sinx, 

find azjax and dzjdx When X = 0. 

Whenx = 0, 

az = 2 
ax . 

dz oz az dy 
dx =ax+ ay dx = 2 + 3 cosx. 

dz 
dx = 2 + 3 cos 0 = 5. 

As a check, we find dzjdx directly. 

When x = 0, 

z = 2x + 3 y = 2x + 3 sin x. 

dz 
dx = 2 + 3 cos x. 

dz 
- = 2 + 3 cosO= 5. 
dx 

EXAMPLE 2 Use the Chain Rule to obtain a formula for dzjdx where z = xY andy 
depends on x. 

az - y-1 
ax- yx ' 

az 
ay = (lnX)XY. 

dz az oz dy dy 
- =- + -- = yxy-l + (lnx)xl' __ 
dx ax ay dx dx 

The Chain Rule can also be used in problems where dz/dx is known and dyjdx 
is to be found. 

In many problems we are given a relationship between x and y which can be 
expressed by an equation of the form F(x, y) = 0, and we wish to find dy/dx. The 
graph of F(x, y) = 0 is usually a curve in the (x, y) plane. If we put z = F(x, y) = 0, 
then dzjdx = 0 while dy/dx is the slope of the curve. Ordinarily such a curve can be 
divided into finitely many pieces each of which is the graph of a function y = g(x). 

For example, the top and bottom halves of the circle 

x 2 + y2
- 1 = 0 
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are the functions 

shown in Figure 11.6.2. 

y 

(a) x 2 +y 2 - I =0 

Figure 11.6.2 

DEFINITION 

J'=-Jl--=7 

y 

X X 

(b) y = /1- x 2 

y 

X 

(c) y= -/1=7 

An implicit fimction of" tlw curve F(x, y) = 0 at (a, b) is a function y = g(x) 
such that: 

(i) g(a) = b; 

(ii) The domain of g(x) is an open interval containing a; 

(iii) The graph of y = g(x) is a subset of the graph of F(x. y) = 0. 

If every implicit function of F(x, y) = 0 has the same slopeS at (a, b), we call 
S the slope of the curve. 

Figure 11.6.3 shows an implicit function y = g(x) of a curve F(x, y) = 0. 
It is often hard or impossible to express an implicit function in terms of known 
(or elementary) functions. However, the next theorem gives an easy test for showing 
that there is an implicit function and finding its slope. 

IMPLICIT FUNCTION THEOREM 

Suppose that at the point (a, h), z = F(x, y) is smooth, F(a, b) = 0, and ozjcy =1= 0. 

y y 

X {/ X 

Figure 11.6.3 
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Then the curve F(x, y) = 0 at (a, b) has an implicit function and the slope 

dy az;ax 
---

dx azjay· 

There are three things to prove : 

(1) There exists an implicit function y = g(x) at (a, b). 
(2) The slope dyjdx = g'(a) exists. 
(3) dyjdx has the required value. 

Instead of proving the whole theorem, we give an intuitive argument for (1) 
and (2) and then prove (3). The surface z = F(x, y) has a tangent plane at (a, b, 0). If 
we intersect the surface and tangent plane with the plane z = 0 we get the curve 
0 = F(x, y) and a line L. Through an infinitesimal microscope aimed at the point 
(a, b), the curve looks like the graph of a function y = g(x) which has the tangent line 
Land thus has a slope at (a, b) (Figure 11.6.4). 

z 

Figure 11.6.4 

PROOF OF (3) . h h 1 ~ . . 1 Gtven t at t e s ope dx exists, we compute tts va ue. 

dz az az dy 
-=-+--. 
dx ax ay dx 

By the Chain Rule, 

But F(x, g(x)) is identically zero, so dz/dx = 0 and 

. az 0 Smce-- # , 
ay 

0 = az + az dy_ 
ax ay dx 

dy azjox 
dx - ozjay· 

y 
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The best way to remember the minus sign in the above equation is to derive 
the equation yourself. Start with the Chain Rule for dzjdx = 0 and solve for dyjdx. 
One way to understand the minus sign is as follows: if ozjox and ozjoy are positive, 
an increase in x must be offset by a decrease in y to keep z constant, so dyjdx should 
be negative. 

Waming: The two oz's have different meanings and cannot be cancelled. 

EXAMPLE 3 Find the slope dyjdx of the circle 

x2 + y2- 4 = 0 

at the point ( 1, j3) (see Figure 11.6.5). 

y 

Figure 11.6.5 

Put z = x 2 + ;/ - 4 = 0. 

At a point (x, y), 

az 
-::;- = 2x, 
ox 

At the given point (1, j3), 

az 
- = 2y ay , 

dy 

dx 

dy ozjox 
---

dx azjoy 

1 

...,13' 

X 

X 

y 

In this problem we can solve for y as a function of x and check the answer 
directly. 

y=J4-x2
. 

dy -2x -2 

dx 2}4-=-? 2...,!4-1 

The Implicit Function Theorem gives us a convenient equation for the 
tangent line to the curve F(x, y) = 0 at (a, b). 

dy 
y - b = - (x - a), 

dx 

az;ax 
y - b = - ~ (x - a), 

oz;oy 
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and finally 

Tangent Line: 
oz oz 
-::,-(x- a)+ -(y- b)= 0. 
OX oy 

EXAMPLE 3 (Continued) Find the equation for the tangent line in Example 3. 

At the point (1, j3), 

oz 
-:::,- = 2x = 2, 
ox 

oz (; 
oy = 2y = 2v' 3, 

and the tangent line is 

2(x- 1) + 2j3(y- j3) = 0. 

EXAMPLE 4 Find the tangent line and slope of the curve 

y + lny + x 3 = 0 

at the point ( -1, 1) (Figure 11.6.6). 

Figure 11.6.6 

Put 

Then 

At ( -1, 1), 

Tangent Line: 

Slope: 

z = y + lny + x 3
. 

az 2 
ox= 3x , 

oz 
OX= 3' 

az 1 
- = 1 + -. oy Y 

az = 2 
oy . 

3(x + 1) + 2(y- 1) = 0. 

dy 3 
dx - 2· 

X 

EXAMPLE 5 Find the tangent line and slope of the level curve of the hyperbolic 
paraboloid 

at the point (a, b) (where h =f. 0) (Figure 11.6.7). 
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y 

Figure 11.6.7 Level curves of z = x2 - y2 

The level curve has the equation 

Put 

Then 

At(a,b), 

Tangent Line: 

Slope: 

xz _ yz = az _ bz, 

xz - l - (az - bz) = 0. 

ow 
2x, 

ow 
= -2y. 

ox cy 
ow 

2a, 
0\V 

-2b. = 
ox cy 

2a(x - a) - 2b(y - b) = 0. 

dy 

dx 
2a a 

-2b b' 

X 

Let us next consider the case where w depends on x, y, and z, while z depends 
on x andy, 

w = F(x, y, z), z = g(x, y). 

Figure 11.6.8 shows which variables depend on which. 
If F(x, y, z) is smooth and ozjox, ozjoy exist, the Chain Rule gives 

ow ow ox ow ~ OW .~ 
-::;- (x, y) = -::;- (x, y, z) ;;--- + -;-- (x, y, z) ;;--- + ;;- (x, y, z) ;;---, 
ex ex ux uy uX uz ux 
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dependent 

intermediate 

independent 
Figure 11.6.8 

or 
ow ow ow oz 
~ (x, y) = ~ (x, y, z) + --::;- (x, y, z) -;;---. 
OX OX OZ OX 

Similarly, 
~ ow ~ & 
-~ (x,y) = ;;-(x,y,z) + ~(x,y,z)~. 
oy uy uz cy 

We used the fact that for the independent variables x andy, 

ox oy 
-;;--- =- = 1, 
OX 0}' 

ex= oy = 0. 
oy ex 

Notice that in this case ow/ex alone is ambiguous so we had to use the more complete 
notation 

EXAMPLE 6 

ow 
~(x,y, z) 
OX 

for FAx, y, z), 

ow 
;;- (x, y) 
uX 

for fx(x, y), where f(x, y) = F(x, y, g(x, y)). 

ow ow 
Find ox (x, y) and oy (x, y) where 

OW 
--;;- (x, y, z) = 2x, 
ex 

ow 
--;;- (x, y, z) = 4y, 
oy 

OZ 5 5x+v --;::;--- = e -, 
ox 

ow 

ow 
02 

(x, y, z) = 6z. 

Then ~ (x, y) = 2x + 6z • Se 5 x+ Y = 2x + 30ze5 x+ Y 
ex 

= 2x + 30e2 (Sx+yl. 

ow (x, y) = 4y + 6z • esx+ Y = 4y + 6e2(5x+ Yl. oy 

The graph of an equation 

F(x, y, z) = 0 

is a surface in space. The Implicit Functi9n Theorem can be generalized to this case. 
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Figure 11.6.9 X 

z 

I 
I 
I 

tangent plane 

I ' /)- _______________ ;._;,-+' ------y 

I 
I 

I 

We shall skip the details, but the end result is an equation for the tangent plane of 
the surface, pictured in Figure 11.6.9. 

THEOREM 

Suppose the function w = F(x, y, z) is smooth at the point (a, b, c), and 
F

2
(a, b, c) =I= 0. Then the implicit surface F(x, y, z) = 0 has the partial deriua­

tives 

oz 
ox 

Fx(a, b, c) 

Fz(a, b, c)' 

oz 
oy 

Fy(a, b, c) 

Fz(a, b, c) 

and the tangent plane 

Fx(a, b, c)(x - a) + Fy(a, b, c)(y - b) + Fzla, b, c)(z - c) = 0. 

The equation for the tangent plane is obtained as follows. 

oz oz 
z - c = - (x - a) + -;:;- (y - b), ox oy 

FAa, b, c)( Fy(a, b, c) ( b) z - c = - x - a) - y -
Fz(a, b, c) Fz(a, b, c) ' 

and finally FAa, b, c)(x- a)+ F)'(a, b, c)(y- b)+ F.(a, b, c)(z- c)= 0. 

EXAMPLE 7 Find the tangent plane to the ellipsoid 

x2 + 2y2 + 3z 2 = 6 

at the point (1, 1, 1) (see Figure 11.6.10). 

Put 

Tnen 

F(x, y, z) = x 2 + 2y2 + 3z2 
- 6. 

Fx(x, y, z) = 2x, 

Fx(l, 1, 1) = 2, 

Fy(x, y, z) = 4y, 

Fy(1, 1, 1) = 4, 

The tangent plane has the equation 

Fz(X, y, z) = 6z. 

Fzl1, 1, 1) = 6. 

2(x- 1) + 4(y- 1) + 6(z- 1) = 0. 
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z 

y 

Figure 11.6.10 X 

Find ozfox and ozfoy at (1, 1, 1). 

oz FA1, 1, 1) 2x X 

ox Fz(l, 1, 1) 6z 3z' 

oz Fy(1, 1, 1) 4y 2y 
oy Fz(l, 1, 1) 6z 3z. 

At (1, 1, 1), 
oz 1 oy 2 
-

3' 
--

ox oy 3 

PROBLEMS FOR SECTION 11.6 

In Problems 1-8, find ozjox and dzjdx by the Chain Rule. 

1 z = 3x - 4y, y = ex 2 

3 z = cosx + siny, y = 3x 4 

5 z = xY, y=x 6 

7 z = arctan(xy), y =e-x 8 

In Problems 9-14, find dyjdx. 

9 x2 + 2xy- y 2 = 2 10 

11 x2 + 2xy3 + y = 2 12 

13 sinxy + x + 2 = 0 14 

z = xy, y = lnx 

1 
z =-2-3-, y = Jx X+ )' 

z = x", y = Jx 
z = sinx siny, y = 2x 

Jx+.Jx.Y+JY= 1 
e">' + 3x + 2 y2 = 1 

lnx + 2lny + xy = 1 

In Problems 15-22, find the tangent line and the slope of the curve at the given point. 

15 (x + 1)2 + (y + 2)2 = 25 at (2,2) 

16 x2 +4y2 =4at(J3,1l 17 x2 -3xy-y2 =3at(l,-1) 

18 Jx + JY = 2 at (1, 1) 19 x3 + y3 = 2 at (1, 1) 

20 x + .JxY- 2y = 8 at (8, 2) 21 cosx siny = 1 at (n/4, n/4) 

22 y + ex lny = 1 at (2, 1) 
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0 0 ow ow 
In Problems 23-26 find -;:;--- (x, y) and -;:;- (x, y). 

OX Oj' 

23 w = 3x - 4y + 6z, z = 2x - Sy 

24 \V = Z COSX + Z siny, Z = p-:t7 

25 IV= jx2 + y 2 + z2
, z = -3x + 2y 

26 IV= zfxy, z = ylnx 

In Problems 27-32, find the tangent plane to the surface at the given point. 

27 3x2 + 5 y2 + 4z 2 = 21 at (- 2, I, - I) 

28 2x2
- 4y 2 + z2 = 2at(1, I, -2) 

29 xyz + x 2 + ;/ + z2 = 4 at (1, 1, 1) 

30 xy + xz + yz = 3 at (1, 1, 1) 

31 xer + ye' + ze"' = 0 at (0, 0, 0) 

32 sinx cosy tanz = 1 at (n/2, 0, n/4) 

In Problems 33-38, find ozjox and ozjoy. 

33 

35 

37 

x2y+z2=1 

sinxy + cosyz = 1 

xylz3 + 2 = 0 

34 

36 

38 

x 2 + 2y2 
- 3z2 = 4 

e"'+eY+ez=1 

x2 + y 3 + In z = 2 

39 Suppose that x items can be bought at a price of y dollars per item, where y depends on x 
in such a way that dyfdx = -1/(1 + .;:;:). Find the rate of change of the total cost 
z = xy with respect to x. 

40 A point moves along the parabola y = x 2
. Find the rate of change with respect to x of 

the distance from the origin. 

41 Suppose w depends on x, y, and z, and both y and z depend on x. Find a formula for 
dw/dx using the Chain Rule. 

42 Suppose z depends on x and y, while y depends on x and t. Use the Chain Rule to find a 
oz 

formula for "OJ (x, t). 
ux 

11.7 MAXIMA AND MINIMA 

The theory of maxima and minima for functions of two variables is similar to the 
theory for one variable. The student should review the one-variable case at this time. 

DEFINITION 

Let z = .f(x, y) be a fimction with domain D. f is said to have a maxinunn 
at a point (x 0 , y0 ) in D il 

f(xo, J'ol 2 f(x, y) 

for all (x, y) in D. The value f(x 0 , y0 ) is called the maximwn value of" f. 
A minimwn and the minimlOII value off are defined analogously. 
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We shall first study functions defined on closed regions, which correspond 
to closed intervals. By a closed region in the plane we mean a set D defined by 
inequalities 

a:::::: x:::::: b, f(x) :::::: y :::::: g(x), 

where f and g are continuous and f(x) :::::: g(x) on [a, b]. D is called the region between 
f(x) and g(x)for a:::::: x:::::; b (Figure 11.7.1). 

y y=g(x) 

D 

a b X 

Figure 11.7.1 A closed region 

The points of D on the four curves 

x =a, X= b, y = f(x), y = g(x) 

are called boundary points. All other points of D are called interior points. 

EXTREME VALUE THEOREM 

Suppose z = f(x, y) is continuous at every point of a closed region D. Then 
the function f with its domain restricted to D has a maximum and a minimum. 

The proof is similar to the corresponding proof for one variable. 

CRITICAL POINT THEOREM 

Suppose the domain of z = f(x, y) is a closed region D and f is smooth at every 
interior point of D. Iff has a maximum or minimum at (x0 , y0 ), then either 

(i) fx(x 0 , Yo) = 0 and fy(x 0 , Yo) = 0, or 

(ii) (x0 , y0 ) is a boundary point of D. 

Figure 11.7.2 illustrates the two cases when f has a maximum at (x0 , y0 ). 

An interior point where both partial derivatives are zero is called a critical point. 
Thus a critical point is a point where the tangent plane is horizontal. On the graph 
of a surface, an interior point looks like a mountain summit if it is a maximum and 
a valley bottom if it is a minimum. The theorem states that every interior maximum 
or minimum is a critical point. An interesting kind of critical point which is neither 
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z 

y 

I 

~ 
(xo, Yo) 

D 
X 

Case (i) Interior Maximum 
Figure 11.7.2 Critical Point Theorem 

z 

X 

Case (ii) Boundary Maximum 

a maximum nor a minimum is a saddle point, which looks like the summit of a pass 
between two mountains. Table 11.7.1 gives three simple examples of critical points, 
one maximum, one minimum, and one saddle point. They are illustrated in Figure 
11.7.3. 

Table11.7.1 

Function 

z = -(x2 + yz) 

z = xz + Yz 

z = xz- Yz 

z 

X 

(a) Maximum 
Figure 11.7.3 

y 

Partials 

oz oz 
ex 

-2x, -= -2y 
oy 

oz oz 
- = 2x - = 2y 
ax ' oy 
(Jz oz 
-:;- = 2x, 

oy 
-2y 

ox 

z 

y 

X 

(b) Minimum 

Critical 
Point Type 

(0, 0) Maximum 

(0,0) Minimum 

(0, 0) Saddle Point 

z 

y 

(c) Saddle point 
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PROOF OF THE CRITICAL POINT THEOREM Suppose .f has a maximum at an 
interior point (x0 , y0 ) of D. (x0 , y0 ) is not a boundary point so we must prove 
(i). The function 

g(x) = .f(x, Yo) 

is differentiable and has a maximum at x0 . By the Critical Point Theorem 
for one variable, g'(x0 ) = fx(x 0 , y0 ) = 0. Similarly .h.(x0 , y0 ) = 0. 

METHOD FOR FINDING MAXIMA AND MINIMA ON A CLOSED REGION 

When to Use z = f(x, y) is continuous on a closed region D and smooth on the interior 
of D. 

Step 1 Set the problem up and sketch D. 

Step 2 Compute azjax and azjay. 

Step 3 Find the critical points off, if any, and the value off at each critical point. 

Step 4 Find the maximum and minimum off on the boundary of D. This can be done 
by solving for z as a function of x or y alone and using the method for one 
variable. 

CONCLUSION The largest of the values fi"mn Steps 3 and 4 is the maximum value, 
and the smallest is the minimum value. 

It is convenient to record the results of Steps 3 and 4 on the sketch of D. 

EXAMPLE 1 Find the maximum and minimum of z = x 2 + y2 
- xy- x on the 

closed rectangle 0 :::;; x :::;; 1, 0 :::;; y :::;; 1. 

Step 1 The region Dis sketched in Figure 11.7.4. 

Figure 11.7.4 

az 
Step 2 - = 2x- y- 1, 

ax 

Step 3 2x - y - 1 = 0, 

y 

az 
ay = 2y- x. 

2y- X= 0. 

Solving for x and y we get one critical point 

y = t, x=l 

X 
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The value of z at that point is 

:: = (i)2 + (!)2 - ~ • t - ~ = 1 
3· 

Step 4 We make a table. 

Boundary Line z Maximum 
~~--~ 

X= 0, o::;y::; I \'2 I at(O, I) 

1. o::;y::; I 
? 0 at corners X= y- - y 

y = 0, o::;x::; I x2 -X 0 at corners 

y= I, o::;x::; I x2 + I - 2x 1 at (0, 1) 
~-----·-----

Minimum 
~------

0 at {0, 0) 

-±at(!,~) 

-±at (1,0) 

0 at (I, I) 
---

The values from Steps 3 and 4 are also shown on the sketch of D in Figure 
11.7.5. 

y 

max z = I +-------- z = 0 

z=O 

Figure 11.7.5 

CONCLUSION 

Maximum: z = 1 at (0, I) 
Minimum: z=-tat{~,t). 

• . I 
mm z = - 3 

z = _ _!_ 
4 

z= _ _!_ z=O 
4 

X 

The maximum is at a boundary point and the minimum at an interior point. 

In many problems we are to maximize a function of three variables which 
are related by a side condition. We wish to find the maximum or minimum of 

w = F(x, y, z) 

given the side condition 

g(x, y, z) = 0. 

To work a problem of this type we use the side condition to get tv as a function of 
just two independent variables and then proceed as before. 

EXAMPLE 2 For a package to be mailed in the United States by parcel post, its 
length plus its girth (perimeter of cross section) must be at most 84 inches. 
Find the dimensions of the rectangular box of maximum volume which 
can be mailed by parcel post. 
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Step 1 Let x, y, and z be the dimensions of the box, with z the length. We wish to 
find the maximum of the volume 

V= xyz 

given the side condition 

length + girth = z + 2x + 2y = 84. 

We eliminate z using the side condition and express Vas a function of x andy. 

z = 84 - 2x - 2y, 

V = xy(84 - 2x - 2y). 

Since x, y, and z cannot be negative the domain is the closed triangle 

0:::;; X, 0:::;; y, 0 :::;; 84 - 2x - 2y. 

This is the same as the closed region 

0:::;; X:::;; 42, 0:::;; y:::;; 42- X. 

The region is sketched in Figure 11.7.6. 

Figure 11.7.6 

av 2 Step 2 ~ = 84y - 4xy - 2y , 
ox 

av 2 ~ = 84x - 2x - 4xy. 
oy 

Step 3 84y - 4xy - 2y 2 = 0, 

84x - 2x2 
- 4xy = 0. 

y 

42 

X 

Since x > 0 andy > 0 at all interior points, we have 

There is one critical point 

84- 4x- 2y = 0, 

84 - 2x - 4y = 0. 

X= 14, y = 14, 

v = (84 - 28 - 28). 14. 14 = 2(14)3
. 

Step 4 On all three of the boundary lines 

X= 0, y = 0, 84- 2x- 2y = 0 
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we have V = (84 - 2x - 2y)xy = 0. 

Therefore the maximum value of Von the boundary of D is 0. 

CONCLUSION The maximum of Vis at x = !4, y = 14, where V = 2(14)3 (Figure 
l 1. 7. 7). The box has dimensions 

X= 14. y = 14. : = 28. 

, 
' ' 28 I 
I 

o max I 
I 

II (14, 14) 
"' 

I 
I 
I 
I • 
J-----

I 
I 

I 
14 I 

X I U=O 
14 

Figure 11.7.7 (a) (b) 

We shall now develop a method for finding maxima and minima of functions 
defined on open regions. 

A bounded open region Dis a set of points given by strict inequalities 

U <X < b, f(x) < J' < g(x) 

where f and g are continuous and f(x) < g(x) on (a, b). A closed regwn with its 
boundary removed is a bounded open region. 

We shall also consider unbounded open regions, which are given by strict 
inequalities where one or more of a, b,f(x), g(x) are replaced by infinity symbols. 
For example, the following are unbounded open regions: 

(1) -% < x < %, .f(x) < y < g(x). 
(2) 0 <X < X, 0 < y < X. 

(3) The whole plane - x < x < -x, - -x < y < x. 

Unbounded open regions are pictured in Figure 11.7.8. 
A smooth function whose domain is an open region may or may not have 

a maximum or minimum. Many problems have at most one critical point, and we 
shall concentrate on that case. The method can readily be extended to the case of 
two or more critical points. The Critical Point Theorem holds for open regions as 
well as closed regions. The corollary below shows how it can be used in maximum 
or minimum problems. 

COROLLARY 

Suppose the domain of' the .fimction : = f(x, y) is an open region D, and f is 
smooth on D. 

(i) !f'f has no critical points it has no maximum or minimum. 
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y 

X 

(a) -oo<x<oo, f(x)<y<g(x) 

y 

X 

(b) O<x<oo, O<y<oo 
Figure 11.7.8 Unbounded Open Regions 

(ii) Let f have exactly one critical point (x0 , y0 ). If f has a maximum or 
minimum, it occurs at (x0 , y0 ). 

This corollary can be used to show certain functions do not have a maximum 
or minimum. If we are sure a function has a maximum or minimum, the corollary 
can be used to find it. 

EXAMPLE 3 Show that the function z = ex In y has no maximum or minimum. 

The domain is the open region 

- CIJ < X < CIJ, 

The partial derivatives are 

oz 
- = exlny OX , 

0 < y < CfJ. 

oy Y 

There are no critical points because cz/cy is never zero. Therefore there is 
no maximum or minimum. 

EXAMPLE 4 Show that the function z = x 2 + 2y2 has no maximum. 

The domain is the whole plane. 

We have 

oz 
ox= 2x, 

cz 
-=4y. cy 

There is one critical point at (0, 0). At this point, z = 0. This is not a maximum 
because, for example, z = 3 at (1. l). Hence z has no maximum. 
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z 

y 

Figure 11.7.9 X 

Notice that : has a 1mmmum at (0, 0) because x 2 + 2y2 1s always ~0 
(Figure 11.7.9). 

EXAMPLE 5 Find the point on the plane 4x - 6y + 2: = 7 which 1s nearest to 
the origin. 

Step 1 The distance from the origin to (x, y, :) is ,J x 2 +- y 2 + : 2. It is easier to 
work with the square of the distance, which has a minimum at the same point 
that the distance does. So we wish to find the minimum of 

given that 4x - 6y + 2z = 7. 

We eliminate z using the plane equation. 

: = }(7 - 4x + 6y), 

11· = x 2 + y 2 + !(7 - 4x + 6d. 

The domain is the whole (x, y) plane. 

Step 2 
cw I 
-::;--- = 2x + 2·-(-4)(7- 4x + 6y) = -14 +!Ox- 12y, 
ex 4 

2\v 1 
-::;--- = 2y + 2 ·- · 6(7- 4x + 6y) = 21 - 12x + 20y. 
Cj' 4 

Step 3 - 14 + I Ox - 12y = 0, 

21 - 12x + 20y = 0. 

Solving for x and y we get one critical point 

X=}, .r= -;1. 

CONCLUSION We know from geometry that there is a point on the plane which 
is closest to the origin (the point where a perpendicular line from the origin 
meets the plane). Therefore w has a minimum and it must be at the critical 
point 

.\ = }, ,1'= 3 
4· 
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The value of z at this point is 

z = 1(7- 4x + 6y) = ±. 
The answer is (t, - i, ±J. The plane is shown in Figure 11.7.10. 

z 

y 

Figure 11.7.10 X 

If we know a function has a maximum or minimum, we can find it simply 
by finding the critical point. But usually we are not sure whether a function has a 
maximum or minimum. Here is a method that can be used when a function has a 
unique critical point in an open region. It is based on the fact that the Extreme 
Value Theorem holds for closed regions of the hyperreal plane as well as the real 
plane (because of the Transfer Principle). 

Given a real open region D we can find a hyperreal closed region E which 
contains the same real points as D (Figure 11.7.11). 

For example, if D is the real region 

a< x < b, 

we can take for E the hyperreal region 

a + e :s; x :s; b - e, 

where e is positive infinitesimal. 

(a) 

Figure 11.7.11 Hyperreal Closed Regions 

f(x) < y < g(x), 

f(x) + e :s; y :s; g(x) - e 

(b) 

infinite 

I 
I 
I 

Yl 
I 

E 

infinite 
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If D is the whole real plane we can take for E the hyperreal region 

-H.:;; x.:;; H, 

where His positive infinite. 

METHOD FOR FINDING MAXIMA AND MINIMA ON AN OPEN REGION 

When to Use z = f(x, y) is a smooth function whose domain is an open region D, and 
f has exactly one critical point. 

Step 1 Set up the problem and sketch D if necessary. 

Step 2 Compute ozjox and ozjoy. 

Step 3 Find the critical point (x 0 , y0 ) and the value f(x 0 , y0 ). If we already know 
there is a maximum (or minimum), it must be (x 0 , y0 ) and we can stop here. 

Step 4 Find a hyperreal closed region E ·with the same real points as D. 

Step 5 Compare f(x 0 , y0 ) with the values off on the boundary of E. 

CONCL US/ON f has a maximum at (x0 , y0 ) if f(x 0 , y0 ) ?: f(x, y) for every boundary 
point (x, y) of E. Otherwise f has no maximum. 

A similar rule holds for the minimum. 

EXAMPLE 6 Find the maximum and minimum, if any, of the function 

1 
z = ----~~------~----

(x + y)2 + (x + 1)2 + y2. 

Step 1 The domain is the whole (x, y) plane because the denominator is always 
positive. 

Cz 
Step 2 

ox 
oz 
ay - [2(x + y) + 2y] [(x + y)z + (x + 1)2 + y2] -2. 

Step 3 The partial derivatives are zero when 

or 

2(x + y) + 2(x + 1) = 0, 

2x + y + 1 = 0, 

The critical point is 

2(x + y) + 2y = 0, 

X+ 2y = 0. 

X= Y = 1, and z = 3. 

Step 4 Let E be the hyperreal region 

-H.:::; X.:::; H, 

where His positive infinite. 

-H .:;;y.:;; H 

Step 5 At a boundary point of E where x = ± H, (x + 1? is infinite so z is infini­
tesimal. At a boundary point where y = ± H, y2 is infinite so again z is 
infinitesimal. 
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0 

22 
N 

Figure 11.7.12 

H 
I 
I t: 

X H 

0 

?2 

"' 

CONCLUSION z has a maximum of3 at the critical point ( -~, t). z has no minimum. 
The region E is sketched in Figure 11.7.12. 

EXAMPLE 7 Find the dimensions of the box of volume one without a top which has 
the smallest area (if there is one). The box is sketched in Figure 11.7.13. 

Step 1 Let x, y, and z be the dimensions of the box, with z the height. We want the 
minimum of the area 

A = xy + 2xz + 2yz 

given that xyz = 1. 

Eliminating z, we have 1 
z=­

xy' 

2 2 
A= xy +- + -. 

y X 

The domain is the open region x > 0, y > 0 (see Figure 11.7.14). 

oA 2 
Step 2 ox = y - x2 , 

/ 

,.."' 
,"' 

I 
I 
I 
I 
I )_ __________ _ 

y 

Figure11.7.13 

aA 2 
-=X--
oy y2' 

y 

Figure11.7.14 

X 
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2 
Step 3 Y - -;2 = 0, 

2 
X- 2 = 0. 

.l' 

The critical point is 

where A = 2213 + 2 . 2 -1 3 + 2 . 2 -1;3 = 22;3 + 25n. 

Step 4 ·Take for E the hyperreal region e :S: x :S: H, e :S: y :S: H where t: is positive 
infinitesimal and His positive infinite. 

Step 5 Let (x, y) be a boundary point of E. As we can see from Figure 11.7.15, there 
are four possible cases. 

case 1: 
x;:::oO 

case I & 2: 
x;:::oO, y~O 

Figure 11 . 7.15 

I 
I 

01 

(( : 

case 3: y infinite 

H 

E 

case 4: 
x infinite 

Case 1 x is infinitesimal. Then A is infinite because 2/x is. 

Case 2 y is infinitesimal. A is infinite because 2jy is. 

case 2: 
y;:::oO 

Case 3 x is not infinitesimal and y is infinite. A is infinite because xy is. 

Case 4 y is not infinitesimal and x is infinite. A is infinite because xy is. 

CONCLUSION A is infinite and hence greater than 2213 + 2 513 on the boundary 
of E. Therefore A has a minimum at the critical point 

X= fi, y =fl. 
The box has dimensions 

x=fi, y =fi, 1 1 
z=-=-

xy J4" 
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PROBLEMS FOR SECTION 11.7 

In Problems 1-10, find the maxima and minima. 

1 x 2 + xy + y 2
, - 1 ::;; x ::;; 1, -1 ::;; y ::;; 1 

2 -X2 - 2/ +X-}'+ 2, -1::;; X::;; 1, -1::;; }'::;; 1 

3 x2 +2y2 -2x+8y+3, -3s;x::;;3, -3::;;y::;;x 

4 X- X}'+ 2y, -4::;; X::;; 4, -4::;; }'::;; X 

5 x 2 - l - 2x + 2 y + 3, 0 ::;; x ::;; 2, 0 ::;; y ::;; 2x 

1 8 1 
6 xy + - + -, -

4 
::;; x ::;; 4, 1 ::;; y ::;; 8 

X }' 

7 sin x + sin y, 0 ::;; x ::;; n, 0 ::;; y ::;; n 

8 sin x sin y, 0 ::;; x ::;; n, 0 ::;; y ::;; n 

9 x 2 + y 2 
- y, -1 ::;; x ::;; 1, x 2 

::;; y::;; 1 

10 4- x 2 
- y2

, -../1 - x 2 
::;; y::;; ~ 

In Problems 11-16, find the maximum and minimum subject to the given side conditions. 

11 z(x - y), x + y + z = 1, 0 ::;; x ::;; 1, 0 ::;; y ::;; 1 

12 xyz, z = x + y, -1 ::;; x ::;; 1, -1 ::;; y ::;; 1 

13 x + y + z, z = x2 + y2
, z ::;; 1 

14 x + y + z, z = ../3 - x 2 
- y 2 

15 x 2 + .l + z2
, z = xy, -1 ::;; x ::;; 1, -1 ::;; y ::;; 1 

16 xy + yz + xz, xyz = 1, ;l- ::;; x ::;; 4, ;l- ::;; y ::;; 4 

In Problems 17-26, determine whether the maxima and minima exist, and if so, find them. 

17 

18 

19 

20 

21 

22 

23 

24 

25 

x2 + 4x + l 
-x2 - y2 + 2x- 4y 

1/xy, 0 <x, 0 < y 

x3 + 2x + l- Yz 

1 8 
xy + - + -, 0 < x, 0 < y 

X }' 

1 1 
X + 4y + - + -, 0 < X, 0 < }' 

X }' 

../1 - xz- yz' 

xz- 4yz 

26 xr, 0 < x 

27 Find three positive numbers x, y, and z such that x + y + z = 8 and x 2 yz is a maximum. 

28 Find three positive numbers x, y, and z such that x + y + z = 100 and x 2y 2 z is a 
maximum. 

29 A package can be sent overseas by the air mail small packet rate if its length plus girth 
is at most 36 inches. Find the dimensions of the rectangular solid of maximum volume 
which can be sent by the small packet rate. 

30 Find the volume of the largest rectangular solid which can be inscribed in a sphere of 
radius one. 



31 Find the volume of the largest rectangular solid with faces parallel to the coordinate 
planes which can be inscribed in the ellipsoid x 2/4 + / + z2/9 = 1. 

32 A triangle with sides a, b, c and perimeter p = a + b + c has area 

A = .j2p(2p -- a)(2p - b)(2p- c). 

Find the triangle of maximum area with perimeter p = 1. 

33 Find the point on the plane x + 2y - z = 10 which is nearest to the origin. 

34 Find the point on the plane x + y + z = 0 which is nearest to the point (1, 2. 3). 

35 Find the points on the surface xyz = 1 which are nearest to the origin. 

36 Find the point on the surface z = xy + I which is nearest to the origin. 

37 Show that the rectangular solid with volume one and minimum surface area is the unit 
cube. 

38 Show that the rectangular solid with surface area six and maximum volume is the 
unit cube. 

39 A rectangular box with volume V in. 3 is to be built with the sides and bottom made of 
material costing one cent per square inch, and the top costing two cents per square 
inch. Find the shape with the minimum cost. 

40 A firm can produce and sell x units of one commodity andy units of another commodity 
for a profit of 

P(x, y) = JOOx + 200y - !Oxy - x 2 
- 500. 

Due to limitations on plant capacity. x s 10 and y s 5. Find the values of x and y 
where the profit is a maximum. 

41 x units of commodity one and y units of commodity two can be produced and sold 
at a profit of 

P(x, y) = 400x + 500y - x 2 
- l - xy - 20000. 

Find the values of x and y where the profit is a maximum. 

42 x units of commodity one can be produced at a cost of 

43 

044 

C 1(x) = 1000 + 5x, 

and y units of commodity two can be produced at a cost of 

C2(y) = 2000 + 8y. 

Moreover, x units of one and y units of two can be sold for a total revenue of 

R(x,_r) = 100.)~ + 200.j_j. + !Ov~· 
Find the values of x and y where the profit is a maximum. 

Suppose that with x man hours of labor and y units of capital, z = f(x, y) units of a 
commodity can be produced. The ratio z/x is called the average production per man 
hour. Show that cz/ox = z/x when the average production per man hour is a maximum. 

(Method o{ Least Squares) A straight line is to be fit as closely as possible to the set of 
three experimentally observed points (1, 6), (2, 9), and (3, 10). The line which /Je.11 jils 
these points is the line y = mx + h for which the sum of the squares of the errors, 

E = [(m ·I +b)- 6f + [(m • 2 +h)- 9f + [(m· 3 +b)- !Of, 

is a minimum. Find m and b such that E is a minimum. 

11.8 HIGHER PARTIAL DERIVATIVES 

Given a function z = f(x, y) of two variables, the partial derivatives .f)x, y) and 
.f;.(x, y) may themselves be differentiated with respect to either x or y. Thus there are 
four possible second partial derivatives. Here they are. 
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Twice with respect to x : fxx' or 

Twice with respect to y: ayz· 

First with respect to x and then with respect to y: 

First with respect to y and then with respect to x: 

(~.)x = fyx, or :x ( ~~) = a~
2

;y" 
Similar notation is used for three or more variables and for higher partial 

derivatives. 

EXAMPLE 1 Find the four second partial derivatives of 

z = esiny + xy2
. 

oz 
oy = ex cosy + 2xy. 

a2 z a ( x . z) X • -::;-z = -
0 

e sm y + y = e sm y, 
OX X 

o2z a 
oy2 = oy(ex cosy+ 2xy) = -ex sin y + 2x. 

o2z a 
-a a = -;;-(ex sin y + y2) = ex cosy + 2y, 

y x oy 

a2z a 
ox ay = ox(ex cosy + 2xy) = ex cosy + 2y. 

Notice that in this example the two mixed second partials o2zjoy ox and 
o2 zjox oy are equal. The following theorem shows that it is not just a 
coincidence. 

THEOREM 1 (Equality of Mixed Partials) 

Suppose that the first and second partial derivatives of z = f(x, y) are con­
tinuous at (a, b). Then at (a, b), 

Discussion This is a surprising theorem. o2zjoy ox is the rate of change with respect 
to y of the slope ozjox, while o2zjox ay is the rate of change with respect to 
x of the slope ozjoy. There is no simple intuitive way to see that these should 
be equaL 

As a matter of fact, there are functions f(x, y) whose mixed second partial 
derivatives exist but are not equal. One such example is the function 
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f(x, y) = { 0 xz - yz 
xy 2 ' 

x + r 

if (x, y) = (0, 0). 

if (x, y) #- (0, 0). 

We have left the computation of the second partials of .f(x, y) as a problem. It turns 
out that at (0, 0), 

o~f'/ox oy = 1, 

How can this be in view of Theorem 1? The answer is that in this example the second 
partial derivatives exist but are not continuous at (0, 0), so the theorem does not apply. 
We shall only rarely encounter functions whose second partial derivatives are not 
continuous, so in all ordinary problems it is true that the mixed partials are equal. 
We shall prove the theorem later. We now turn to some applications. Our first ap­
plication concerns mixed third partial derivatives. 

If the third partial derivatives of z = .f(x, y) are continuous, then 

OX ox oy ex ay OX cy OX ox, 
~3 

so we write ~; ~ for each of them. Similarly, 
c x cy 

axayoy ayoxcy aycyox 

c3z 
and we write ~ for each of them. 

cxoy 

We prove the first equation as an illustration. 

ax oy ex' 

EXAMPLE 2 Find the third partial derivatives of z = e2
x sin y. 

GZ 
~- = e2 x cosy, 
ay 

ay3 
(:3 2 

ax cy2 

-e2 x sin y, 

- e2 x cosy, 

- 2e2 x sin y. 

If a function has continuous second partial derivatives we may apply the 
Chain Rule to the first partial derivatives. For one independent variable, 
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d (oz) o2 z dx o2 z dy 
=--+---

dt ox ox2 dt oy ox dt, 

d (oz) o2z dx o2 z dy 
=---+--

dt oy ox oy dt oy2 dt · 

EXAMPLE 3 If z = f(x, y) has continuous second partials, x = r cos e, and y = 
r sine, find 82 zfor2

• 

We use the Chain Rule three times. 

oz oz ox oz oy oz i)z . 
;;- = ~ ~ + ;;- -;;- = ~cos e + -a sm e. ur ux ur uy or uX y 

022 
= a (cos 8°

2
) + i(sin 8°

2
) or2 or OX or oy 

= cos e 8 (az) + sin ei(~z) 
or OX or oy 

(
8

2
z ox o

2
z oy) ( o

2
z OX 8

2
z oy) . 

= ox2 or + oy ox or cos e + ox oy or + oy2 or sm e 
c2::. o2z o2z o2z 

= --;;-z cos2 e + -:;-::;--sine cos e + -a- cos e sine + ~ sin 2 e 
OX oy OX X OJ' 0)' 

a~ ~z ~z 
= ~cos2 8 + 2~sin8cose +-

0 2 sin2 8. 
OX uy uX y 

By holding one variable fixed in Theorem 1, we get equalities of mixed 
partials for functions of three or more variables. 

COROLLARY (Equality of Mixed Partials, Three Variables) 

Suppose that the first and second partial derivatives of w = f(x, y, z) are 
continuous at (a, b, c). Then dt (a, b, c), 

PROOF OF THEOREM 1 The plan is to prove a corresponding result for average 
slopes and then use the Mean Value Theorem, which states that the average 
slope of a function on an interval is equal to the slope at some point in the 
interval. 

Let !!.x and !!.y be positive infinitesimals. We hold !1x and !!.y fixed. The 
first and second partial derivatives of f(x, y) exist for (x, y) in the rectangle 

a:::; x:::; a+ !!.x, b:::; y:::; b + !!.y. 

We shall use the following notation for average slopes in the x andy directions: 

( ) 
f(a + !!.x, y) - f(a, y) 

gy = !!.x , 
I()= f(x,b + !!.y)- f(x,b) 
1X A . 

uy 

Label the corners of the rectangle A, B, C, and D as in Figure 11.8.1. 



_I' 

(a, b + -'1y) (a+ ~x. b+ ~y) 

D 
(a,b) (a+~x.b) 

(a, h) 

X 

Figure 11.8.1 

We first show that the following two quantities are equal: 

1::!. 2f g(b + l::!.y)- g(b) 1::!. 2j h(a + l::!.x) - h(a) 
l::!.y l::!.x l::!.y l::!.x l::!.y l::!.x 

1::!. 2f/l::!.y l::!.x is the average slope in they direction of the average slope in the 
x direction of f. 

g(b + l::!.y) - g(b) 

l::!.y 

f(D)- f(C) f(B)- f(A) 

l::!.x l::!.x 

l::!.y 
f(D)- f(B) .f(C)- f(A) 

f(D) - f(C) - f(B) + f(A) l::!.y 

l::!.xl::!.y l::!.x 

h(a + L1x) - h(a) 1::!. 2f 
L1x l::!.x L1y' 

By the Mean Value Theorem, 

t:..~t = g(b + t:..y)- g(b) = g'Cvd, 
l::!.y l::!.x L1y 

where b < y1 < b + l::!.y. Using the Mean Value Theorem again, 

a ( f(a + l::!.x, y) - f(a, y)) 
- l::!.x 

g'(yd = · ----'-(a, .h) ay 
a.r a.r 
~(a+ l::!.x, Yd- ~(a, Y1) 
oy oy 

l::!.x 

l::!.y 
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where a< x 1 <a+ Lh. Since a2fjax ay is continuous at (a, b), 

A similar computation gives 

( 
,1.~ ) o2f 

St -A- =-a a (a, b). 
Llx LlY y x 

Therefore 
c2f o2f 

-;::----
0 

(a, b) = -a ,., (a, b). 
ox y yox 

We conclude this section by stating a Second Derivative Test for maxima 
and minima of functions of two variables. In practice the test often fails except on 
small regions D. We therefore have emphasized the tests in the preceding section 
rather than the Second Derivative Test. 

SECOND DERIVATIVE TEST 

Suppose z = f(x, y) has continuous first and second partial derivatives on a 
rectangle D, and (a, b) is a critical point off in D. 

(i) f has a minimum at (a, b) if 

a2z a2z - (_!2_)2 > 0 
ax2 oy2 ax ay ' 

at every point of D. 

(ii) f has a maximum at (a, b) if 

a2z a2z - (_!2_) 2 > 0 
ox2 oy2 ax ay ' 

at every point of D. 

(iii) f has a saddle point at (a, b) if 

a2z a2z - (_!2_) 2 < 0 
ax2 oy2 ax ay 

at (a, b). 

For an indication of the proof of the Second Derivative Test, see Extra 
Problem 55 at the end of this chapter. 

PROBLEMS FOR SECTION 11.8 

In Problems 1-12, find all the second partial derivatives. 

1 z = x2 + 2y2 2 z = -3xy 

3 z = ax2 + bxy + ci 4 z = (ax + by + c)" 

5 z = xex+y 6 z = cos(x + y) + sin(x- y) 

7 z = ln(ax +by) 8 z = Jx2 + y2 

9 z = X
0
/' 10 w = xyz 
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11 

In Problems 13-16, find all the third partials. 

13 

15 z = eax+by 

12 

14 

16 

w = z cos x + z sin y 

.:=y'~ 
z =cos x sin y 

17 If z = f(x. y), x = r cos 0, y = r sin 0, find c 2 zjc02 

18 If z =fix, y), X = /'cos 0, )' = /'sin 0, find c 2zjc0 ?r. 

In Problems 19-24, find c2 zjcx 2
, chlcy 2

, and c2zj?x r~y. 

19 z = f(u), u = ax + by 20 

21 z = g(x) + h(y) 22 

23 z = u'', u = f(x,y) 24 

In Problems 25-28 find c2zjcs 2
, c2zjct 2

, and c2 zjcs ct. 
25 z = ax + by, x = f(s, t), y = g(s, t) 

26 z = xy, x = f(s, t), y = g(s. t) 

27 z = f(x), x = g(s) + h(t) 

28 z = f(x, y), x = g(s), y = h(t) 

Z = f(u), II = X)' 

;; = g(x)h(y) 

z = e", u = f(x, y) 

29 Suppose z = f(x + at) + g(x - at) where f and g have continuous second derivatives. 
Show that z satisfies the wave equation 

30 Show that if 

z = Ax2 + Bxy + Cy 2 + Dx + Ey + F 

then all the second partial derivatives of z are constant. 

0 31 Let f(x, y) be the function 

f(x,y)={O xz-.\·z, 
xy----
• xz + Yz 

if (x, y) = (0, 0), 

if (x, y) =J (0, 0), 

Find the first and second partial derivatives off. Show that 

(a) c2f fox cy =I c2f!cy ox at (0, 0), 
(b) c2(/cx cy is not continuous at (0, 0). 
Hint: All the derivatives must be computed separately for the cases (x, y) = (0, 0) and 
(x, y) =J (0, 0). 

EXTRA PROBLEMS FOR CHAPTER 11 

In Problems 1-4, make a contour map and sketch the surface. 

I tx2 +y2 =z2,-4szs4 

2 2 = x 2 + iJ'2
, -4 ::::: ;; ::::; 4 

3 Z = X - J'2
, - 2 S X :<=: 2, - 2 S )' S 2 

4 ;; = .Jxy, -4 s x s 4. -4 ::=: y::::: 4 

5 Find the largest set you can on which f(x, y) = y + I /x 2 is continuous. 

6 Find the largest set you can on which .f(x, y) = ...,/x2 
- yjx is continuous. 

7 Find the largest set you can on which f(x, y) = In ( ljx + 1/y) is continuous. 
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8 Find the largest set you can on which f(x, y, z) = (In (x + y))/z is continuous. 

9 Find the partial derivatives of f(x, y) = ax - by. 

10 Find the partial derivatives of f(x, y) = a 1 sin (b 1x) + a2 cos (b 2 y). 

11 Find the partial derivatives of z = In x/ln y. 

12 Find the partial derivatives of w = (x - y)ez. 

13 Find the increment and total differential of z = 1/x + 2/y. 

14 Find the increment and total differential of z = fx+J. 
15 Find the tangent plane of z = x 3y + 4 at (2, 0). 

16 Find the tangent plane of z = arcsin (xy) at (3, t). 
17 Find dz/dt by the Chain Rule where z = log,2,+ 11 (3t + 2). 

18 Find ozjos and ozjot where z = xjy, X = e·'+', y = as + bt. 

19 A particle moves in space so that dxfdt = z cos x, dy/dt = z sin y, dzjdt = 1. Find the 
rate of change of the distance from the origin when x = 0, y = 0, z = 1. 

20 A company finds that it can produce x units of item 1 at a total cost of x + IOOfi 
dollars, and y units of item 2 at a total cost of 20y - h dollars. Moreover, x units of 
item 1 and y units of item 2 can be sold for a total revenue of lOx+ 30y- xy/100 
dollars. If z is the total profit (revenue minus cost), find ozfox and ozjoy, the partial 
marginal profit with respect to items 1 and 2. 

21 Find the tangent line and slope of x4 + y4 = 17 at (2, 1). 

22 Find the tangent plane to the surface x4 + y4 + z2 = 18 at (1, 2, I). 

23 Find the maxima and minima of 

24 

25 

26 

27 

28 

29 

D 30 

D 31 

D 32 

D 33 

D 34 

z = x 2 + y2
- 2x- 4y + 4, 

Find the maxima and minima of 

l l 
Z =X+ 4y +- + -, 

X }' 

0 :S; X :S; 3, 

l 
-<x<4 4- - ' 

X :S; )' :S; 3. 

l 
-<}'<4 4- - . 

Determine whether the surface z = logx y, x > l, y > 0 has any maxima or minima. 

Find the dimensions of the rectangular box of maximum volume such that the sum of 
the areas of the bottom and sides is one. 

Find all second partial derivatives of z = arctan (xy). 

Find all second partial derivatives of w = (x2 
- y2)z. 

Find o2 zjor1 if z = f(x, y), X = r cosh e, y = r sinh e. 

Let f(x) be continuous for a < X < b. Prove that the function F(u, v) = s~ j(x) dx 
is continuous whenever u and v are in (a, b). 

Prove that f(x, y) is continuous at (a, b) if and only if the following 8, b condition holds. 
For every real 8 > 0 there is a real (j > 0 such that whenever (x, y) is within (j of (a, b), 
f(x, y) is within 8 of j(a, b). 

Let f(x, y) = { 
1 

. '0 
if both x and y are rational, 
otherwise. 

Prove that f is discontinuous at every point. 

Prove that 

lim f(x, y) = L 
(x.y)~(a.b) 

if and only if for every real e > 0 there is a real b > 0 such that whenever (x, y) is different 
from but within (j of (a, b),.f(x, y) is within 8 of L. (See Problems for Section 11.2.) 

Prove that the following are equivalent. 
(a) f,(x, y) = 0 for all (x, y). 
(b) The value of f(x, y) depends only on y. 
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D 35 

D 36 

D 37 

D 38 

D 39 

D 40 

11 PARTIAL DIFFERENTIATION 

Prove that the following arc equivalent. 
(a) nx, y) = 0 and ;;.(x, y) = 0 for all (x, y). 
(b) f is a constant function. 

A function z = f(x, y) is said to be dijferemiable at (x, y) if it satisfies the conclusion of 
the Increment Theorem. That is, whenever £o.x and £o.y are infinitesimal, 

£o.z = dz + £ 1 £o.x + £ 2 £o.y 

for some infinitesimals £ 1 and £ 2 which depend on Ax and £o.y. Prove the Chain Rule 

tl~ c;; tlx cz dy 
-=--+--
dt ex dt cy dt 

assuming only that the functions z = f(x, y), x = g(t), and y = h(t) are differentiable. 

Prove that the function f(x, y) = lxyl is differentiable .but not smooth at (0, 0). 

A smooth function z = f(x, y) is said to be homogeneous of degree n if 

(1) f(tx, ty) = t"f(x, y) 

for all x, y, and t. Prove that if z = f(x, y) is homogeneous of degree n then 

Oz Cz 
X-;;- + J'c:;- = liZ. 

ex cy 

Hint: Differentiate Equation 1 with respect tot and set t = 1. 

Suppose f(x, y) has continuous second partial derivatives and that o2f/ox oy is identi­
cally zero (i.e., zero at every point (x, y)). Prove that f(x, y) = g(x) + h(y) for some 
functions g and h. 

Find all functions f(x, y) all of whose second partial derivatives are identically zero. 
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INTEGRALS 

12 

The first seven sections of this chapter develop the double and triple integral. They 
depend on Sections 11.1 and 11.2 on surfaces and continuous functions, but are 
independent of Chapter 10 on vectors. 

Sections 8 through 10 of this chapter discuss the relationship between 
multiple integrals, line integrals, and surface integrals. Chapters 10 on vectors and 11 
on partial derivatives are prerequisites . 

. 1 DOUBLE INTEGRALS 

The double integral is the analogue of the single integral (definite integral) suggested 
by Figure 12.1.1. Figure 12.l.l(a) shows the area A bounded by the interval [a, b] and 
the curve y = j(x), and corresponds to the single integral 

A= r j(x)dx. 
a 

Figure 12.1.1 (b) shows the volume V bounded by the plane region D and the surface 
z = f(x, y), and corresponds to the double integral 

V =I I j(x,y) dx dy. 
D 

Our development of double integrals will be similar to our development of 
single integrals in Chapter 4. Before going into detail, we give a brief intuitive preview. 

Instead of closed intervals [u, v] in the line, we deal with closed regions D 
in the plane. A volume function for f(x, y) is a function B, which assigns a real number 
B(D) to each closed region D, and has the following two properties: Addition Property 
and Cylinder Property. 
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A 

y 

a b 

(a) Area (b) Volume 
Figure 12.1.1 

ADDITION PROPERTY 

If D is divided into two regions D 1 and D2 which meet only on a common 
boundary curve, then 

B(D) = B(D 1) + B(D2 ). 

(Intuitively, the volume over Dis the sum of the volumes over D 1 and D2 .) 

This property is illustrated in Figure 12.1.2(a). 

CYLINDER PROPERTY 

Let m and M be the minimum and maximum values off(x, y) on D and let A be 
the area of D. Then 

mA s B(D) s M A. 

(Intuitively, the volume over D is between the volumes of the cylinders over 
D of height m and M. This corresponds to the Rectangle Property for single 
integrals.) 

This property is illustrated in Figure 12.1.2(b). 

We shall see at the end of this section that the double integral 

J J f(x, y) dx dy 
D 

is the unique volume function for a continuous function f(x, y). The double integral 
will be constructed using double Riemann sums, just as the single integral was 
constructed from single Riemann sums. 

We now begin the construction of the double integral, starting with a careful 
discussion of closed regions in the plane. 

A closed region in the (x, y) plane is a set D of real points (x, y) given by 
inequalities 
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(a) Addition Property (b) Cylinder Property 
Figure 12.1.2 

where b1(x) and b2 (x) are continuous and b1(x) ~ b2(x) for x in [a 1 , a2 ] (Figure 
12.1.3(a)). The boundary of Dis the set of points in D which are on the curves 

x = a2 , 

The simplest type of closed region is a closed rectangle 

shown in Figure 12.1.3(b). 

Remark In this course we are restricting our attention to a very simple type of closed 
region, sometimes called a basic closed region. In advanced calculus and 
beyond, a much wider class of closed regions is studied. 

An open region is a set of real points defined by strict inequalities of the 
form 

c1 < x < c2 , 

y y 

D D 

X X 

(a) Closed region (b) Closed rectangle 
Figure 12.1.3 
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We shall usually be working with closed regions. So from now on when we 
use the word region alone we mean closed region. 

To simplify our treatment we shall consider only continuous functions. 

PERMANENT ASSUMPTION FOR CHAPTER 12 

Whenever we refer to a .fimction f(x, y) and a region D, we assume that f(x, y) 
is continuous on some open region containing D. 

If{(x, y) 2 0 on D, the double integral is intuitively the volume of the solid 
over D between the surfaces z = 0 and z = .f(x, y); i.e., the solid consisting of all 
points (x, y, z) where (x, y) is in D and 

0 s z s .f(x, y). 

lf.f(x, y) s 0 on D the double integral is intuitively the negative of the volume 
of the solid under D between the surfaces z = .f(x, y) and z = 0. Thus volumes above 
the plane z = 0 are counted positively and volumes below z = 0 are counted 
negatively (Figure 12.1.4). 

z 

Figure12.1.4 X 

/ y 
I 

I 

We now define the double Riemann sum and use it to give a precise definition 
of the double integral. We first consider the case where Dis a rectangle 

shown in Figure 12.1.5. 
Let L'.x and L'.y be positive real numbers. We partition the interval [a 1 , a 2 ] 

into subintervals of length L'.x and [b1 , b2 ] into subintervals of length L'.y. The partition 
points are 

x 0 = a 1 , x 1 = a 1 + L'.x, x 2 = a 1 + 2L'.x, ... ,x" = a 1 + ni'.x, 

Yo= bl, Y1 = h1 + L'.y, J'2 = h1 + 2L'.y, ... ,J'p = h1 + pi'.y 

where X" < (/ l S X11 + i'.X, 



•.c..•• ...,......,....,..,.,_~II'II~\,;Jn-.L->:::1 FlO 

y 

D 

X 

Figure 12.1.5 

If flx and fly do not evenly divide a2 - a 1 and b2 - b 1 , there will be little 
pieces left over at the end. We have partitioned the rectangle D into flx by fly sub­
rectangles with partition points 

0::;; k::;; 11, 0::;; l::;; p, 

as in Figure 12.1.6. 

~ 

Xo X[ Xz 

Figure 12.1.6 

The double Riemann sum for a rectangle D is the sum 

p 

II f(x, y) flx fly = I I f(xk, y1) flx fly. 
D k=Ol=O 

This is the sum of the volume of the rectangular solids with base flx fly and height 
f(xk, Y1). 

As we can see from Figure 12.1.7, 

IIJ(x, y) L'lx fly 
D 

approximates the volume of the solid over D between z = 0 and z = f(x, y). 
Now let D be a general region 

The circumscribed rectangle of D is the rectangle 
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z Double Riemann Sum 

y 

Figure12.1.7 X 

where B 1 =minimum value of bdx). 

B2 = maximum value of b2 (x). 

It is shown in Figure 12.1.8. 

y 
The circumscribed rectangle 

B~ 

X 

Figure12.1.8 

Given pos1tlve real numbers Llx and Lly. we partition the circumscribed 
rectangle of D into Llx by Lly subrectangles with partition points 

0 -::; k -::; n, 0 -::; I -::; p. 

DEFINITION 

The double Riemann sum Ol'er D is defined as the sum o( 1he rolumcs o( the 
rectangular solids with base Llx Lly and height j'(xk. y1) corresponding to 
partition points (xk, y1) which belong 10 D. In symbols. 

,L_Lf(x, y) Llx Lly = LL j(xk. _1'1) Llx Lly. 
D (XJ.:,)'tl in D 

Notice that in the double Riemann sum over D. we only use partition points 
(xk. y1) which belong to D (Figure 12.1.9). 
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y 

y 

X 
X 

Figure 12.1.9 Double Riemann Sum 

EXAMPLE 1 Find the double Riemann sum 

where D1 is the square 

0:::; X:::; 1, 0:::; y:::; 1, 

and 

Ax= t, 

The partition of D1 is shown in Figure 12.1.10 and the values of x 2 y at the 
partition points are shown in the table. 

x2y Yo= 0 Y! 
_.l 

Yz =% Y3 = t I Y4 =% - 5 

x0 = 0 0 0 0 0 I 0 

X1 = t 0 1 2 3 4 
80 80 80 80 

X2 = t 0 4 _IL 12 16 
80 80 80 80 

X3 = i 0 I 
9 18 

I 
27 36 

80 80 80 80 

The double Riemann sum is 

=(I + 2 + 3 + 4 + 4 + 8 + 12 + 16 + 9 + 18 + 27 + 36hfo·t·i = 0.0875. 

A similar computation with Ax = /0 , Ay = /0 gives 

IL.>2y Ax Ay = 0.12825. 
D, 
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EXAMPLE 2 Find the double Riemann sum 

v 

1 

4 
5 

3 
5 
2 
5 

[ 

5 
0 

0 

II x 2 y Llx Lly, 
D, 

where D2 is the region 

O:S:x:S:I, 

and 

fly=~· 

The circumscribed rectangle of D 2 is the unit square. The partition and D 2 

are shown in Figure I 2.1. I 1 and the partition points which actually belong to 
D2 are circled. The table shows the values of x 2y at the partition points which 
belong to D2 . It is a part of the table from Example I. 

x 0 = 0 0 

l 2 
80 80 

8 12 
80 80 

27 36 
80 80 

The double Riemann sum is 

- (_!_ _3_ _! g 27 36
) ~ .~ = 86 = 005375 

- 80 + 80 + 80 + 80 + 80 + 80 4 5 80 . 4 . 5 . . 

A similar computation with Llx = /0 , fly = /0 gives 

II x 2y Llx Lly = 0.04881. 
D, 

y 

4 
5 

3 

Dt 
5 

2 
5 

[ 

5 
0 

[ 2 3 1 
X 

4 4 4 
0 [ 

4 
2 
4 

3 
4 

X 

Figure 12.1.10 Figure 12.1.11 
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Given the function f(x, y) and the region D, the double Riemann sum 

LLf(x, y) .1x .1y 
D 

is a real function of 11x and 11y. When we replace 11x and .1y by positive infinitesimals 
dx and dy (Figure 12.1.12), we obtain (by the Function Axiom) the infinite double 
Riemann sum 

LLf(x, y) dx dy. 
D 

The infinite double Riemann sum is in general a hyperreal number. Intuitively, it is 
equal to the sum of the volumes of infinitely many rectangular solids of infinitesimal 
base dx dy and height f(xK, YL). The double integral is defined as the standard part of 
the infinite double Riemann sum. The following lemma, based on our Permanent 
Assumption for Chapter 12, shows that this sum has a standard part. 

y 

Infinite Double Riemann Sum 
Figure12.1.12 x 

LEMMA 

For any positive iiifinitesimals dx and dy, the double Riemann sum 

LL f(x, y) dx dy 
D 

is a finite hyperreal number and thus has a standard part. 

We omit the proof, which is similar to the proof that single Riemann sums 
are finite. We are now ready to define the double integral. 

DEFINITION 

Given positive infinitesimals dx and dy, the double integral of a continuous 
function f(x, y) over D is the standard part of the double Riemann sum· 

J J f(x, y) dx dy = st ( "'InL:f(x, y) dx dy). 
D 
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Here is a list of properties of the double integral. Each property is analogous 
to a property of the single integral given in Chapter Four and has a similar proof. 

INDEPENDENCE OF dx AND dy 

The value of the double integral JJv f(x, y) dx dy does not depend on dx and dy. 
That is, !l dx, d1x, dy, and dd' are positive infinitesimals then 

J J j(x, y) dx dy = J J.nx, y) d 1x dJJ'· 
D D 

This theorem shows that the value of the double integral depends only on 
the function f and the region D. From now on we shall usually use the simpler notation 
dA = dx dy for the area of an infinitesimal dx by dy rectangle, and 

Jff(x, y) dA for J J j(x, y) dx dy. 
D D 

ADDITION PROPERTY 

Let D be divided into two regions D 1 and D 2 which meet only on a common 
boundary as in Figure 12.1.13. Then 

J Jf{x, y) dA = J J.nx. y) dA + J Jf(x, y) dA. 

D D 1 D, 

y y 

X X 

Figure 12.1.13 (a) (b) 

Interpreting the double integral as a volume, the Addition Property says that 
the volume of the solid over D is equal to the sum of the volume over D 1 and the 
volume over D 2 , as shown in Figure 12.1.14. 

A continuous function z = f(x, y) always has a minimum and maximum 
value on a closed region D. The proof is similar to the one-variable case. 
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z z 

y y 

X X 

(a) (b) 

Figure 12.1.14 Addition Property 

CYLINDER PROPERTY 

Let m and M be the minimum and maximum values of f(x, y) on D and let A be 
the area of D. Then 

mA::::; J jf(x,y)dA::::; MA. 
D 

This corresponds to the Rectangle Property for single integrals. The solid 
with base D and constant height m is called the inscribed cylinder, and the solid with 
baseD and height M is called the circumscribed cylinder. The inscribed cylinder and 
the circumscribed cylinder are shown in Figure 12.1.15. Intuitively, the volume of a 
cylinder is equal to the area ofthe base A times the height. Thus the Cylinder Property 
states that the volume of the solid is between the volumes of the inscribed and circum­
scribed cylinders. 

Here are two consequences of the Cylinder Property. 

inscribedm{ 
cylinder 

Figure 12.1.15 Cylinder Property 

circumscribed 
cylinder 
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COROLLARY 1 

The area of D is equal to the double integral of the constant function I over D, 
(Figure 12.1.16): 

A= f fdA. 
D 

y 

A= jjD dA 
---+------------------------------

X 

Figure 12.1.16 

PROOF Both m and lvf are equal to 1, so 1 . A s J J dA s I ·A. 

D 

COROLLARY 2 

If f(x., y) :2: 0 on D then JJD f(x., y) dA :2: 0. If f(x, y) s 0 on D then 

JJDf(x., y) dA S 0. 

To really be sure that the double integral corresponds to the volume, we 
need to know that it is the only operation that has the Addition and Cylinder 
Properties. To make this precise, we introduce the notion of a volume function. 

we· suppose f(x, y) is continuous at every point of an open region D0 , and 
consider subregions D of D0 . A volume function for f is a function B which assigns 
a real number B(D) to each subregion D of D0 and has the Addition Property 

B(D) = B(Dd + B(D 2 ) 

and the Cylinder Property 

mA s B(D) s M A, 

where m is the minimum and M the maximum value off on D. 

UNIQUENESS THEOREM 

The double integral JJD f(x, y) dA is the only volume function for f. That is, 
if B is a function which has the Addition and Cylinder Properties, then 

B(D) = J J f(x., y) dA for every D. 

D 
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Given a continuous function f such that f(x, y) ~ 0 for all (x, y), the function 

V(D) = volume over D 

certainly has the Addition and Cylinder Properties. Thus we are justified in defining 
the volume as the double integral. 

DEFINITION 

Let f(x, y) ~ 0 for (x, y) in D. Then the volume over D between z = 0 and 
z = f(x, y) is the double integral 

V = J jf(x,y)dA. 

D 

When f(x, y) is the constant 1, we have 

A= J J dA = V. 
D 

That is, the area of Dis equal to the volume of the cylinder with baseD and height 1, 
as in Figure 12.1.17. 

Given any unit of length (say meters), if the height is one meter then the area 
is in square meters and the volume has the same value but in cubic meters. 

Volume fln l dA =A 

Height= 1 

Figure 12.1.17 

PROBLEMS FOR SECTION 12.1 

Compute the following double Riemann sums. 

II(3x+4y)~x~y. ~x=±, ~y=±, D:O:-s:x:-s: L 0:-s::y::;: 1 
D 

2 II(4+2x-5y)~x~y. ~x=t, ~Y=!, D:-2:-s:x:-s:2, -1:-s::y:-s::l 
D 

3 II(x2 +y2)~x~y. ~x=t. ~y=t, D:-2:-s:x:-s:2, -2:-s:y:-s:2 
D 

4 II (I + xy) ~x ~y. ~x = :\. ~y =!, D: 0 ::;: x ::;: 2. 0::;: y ::;: I 
D 

5 II~ ~X ~y. ~X=±. ~y = t. D: 1 ::;: X ::;: 2, 1 ::;: y ::;: 2 
D }' 



6 
n n 

II(cosx + sinr)L1xL1y. L1x = 6' L1y = 6' 
/) 

7 
n n 

II(cosxsin1·)L1xL1y. L1x = 6' L1_r = 6' 
D 

8 II xe' L1x L1_r. L1x = ~. L1y = l, D: 0 <::; x <::; 2. - 2 <::; y <::; 3 
IJ 

9 IIe2x-'6xL1y. L1x = l. L1y =I, D: -2 <::; x <::; 2. -2 <::; y <::; 2 
D 

10 II(x + 2y)6xL1y. 6x = ±. 6_r = 1. D:O <::; x <::; l. 0 <::; _r <::; x 
D 

11 II (2 + x + 3r) L1x 6y. 6x = ±. L1y = ±. D: 0 <::; x <::; l. x <::; y <::; 1 
D 

12 II(x2 +,y)L1xL1y. 6x=±. 6_r=±, D:-l<::;x<::;J. O<::;y<::;x 2 

/) 

13 II_rsinxL1x6y. 6x = ~· 6_r = ~· D:O <::; x <::; n. sin 2 x <::; y <::; 2sitn 
D 

14 II(e' + e')L1x6y. L1x = l. 6y =I, D: -3 <::; x <::; 3, -x <::; _r <::; x 
D 

15 II46x6_r. 6x =I. 6_r =I, D:x 2 + y 2 <::; 9 
/) 

16 II-l06x6_r. 6x=l. 6_r=l, D:-3<::;x<::;3, x2 <::;y<::;18-x 2 

D 17 

D 18 

D 19 

D 

Show that if Dis a region with area A and cis constant, then JJD c dA = cA. 

Prove the Constant Rule: 

II c/(x, y) 6x 6y = cl:If(x, y) 6x 6y, 
/) /) 

J J cj'(x, y) dx dy = cf jf(x, y) dx dy. 
D JJ 

Prove the Sum Rule: 

IIf(x. y) + g(x. _r) 6x 6y = IIf(x, y) 6x 6y + II g(x. y) 6x 6y, 
D D D 

I jf(x. y) + g(x. y) dx dy = J J.t(x. y) dx dy + JJ g(x, y) dx dy. 

/) /) D 

12.2 ITERATED INTEGRALS 

In this section we shall learn how to evaluate double integrals. A double integral 
can be evaluated by two single integrations. The Iterated Integral Theorem gives the 
key formula. 

The iterated integral 

f"' lib,(x) J f(x, y) d~y dx 
a1 bJ(x) 

is an integral of an integral of((x, y). It is evaluated in two stages. First evaluate the 
inside integral 

rb,(x) 
g(x) = J

1 

f(x, y) dy 
bdx\ 



by ordinary definite integration, treating x as a constant. This gives us a function of x 
alone. Second, evaluate the outside integral 

J
a2 J"> [Jb2(x) J g(x) dx = f(x, y) dy dx 

Ut U[ bt(X) 

by a second definite integration. 
We shall usually drop the brackets around the inside integral and write the 

iterated integral as 

f
a2 f.b2(x) 

at htCx> f(x, y) dy dx. 

ITERATED INTEGRAL THEOREM 

Let D be a region 

The double integral over D is equal to the iterated integral: 

JJ fa> f.b2(x) 
f(x, y) dA = f(x, y) dy dx. 

D at bt(x) 

Discussion For a fixed x0 , Jg~~~~l f(x 0 , y) dy is the area of the cross section shown 
in Figure 12.2.1. The Iterated Integral Theorem states that the volume is 
equal to the integral of the areas of the cross sections. 

The proof of the Iterated Integral Theorem is given at the end of this section. 
When using iterated integrals we must be sure that: 

(1) a 1 :s; a2 and b1(x) :s; b2(x). 

(2) The differentials dx and dy appear in the right order. 
(3) The outer integral sign has constant limits. 

Figure 12.2.1 X 



While the order of the differentials, dx dy or dy dx, does not matter in a 
double integral, it is important in an iterated integral. The inside integral sign goes 
with the inside differential, and is performed first. 

fa2 ibl(X) 
f(x, y) dy dx 

a 1 b!(x) ' 

do first 

do second 

When the region Dis a rectangle, there are two possible orders of integration, 
because all the boundaries are constant. Thus there are two different iterated integrals 
over a rectangle. Integrating first with respect to y we have 

f
al rbl 

j, f(x, y) dy dx, 
at b1 

and integrating first with respect to x we have 

i
b2f"2 

f(x, y) dx dy. 
bt a, 

Using the Iterated Integral Theorem twice, we see that both iterated integrals must 
equal the double integral. 

f 2 f 2 

f(x, y) dy dx = J J f(x, y) dA, 
Dt bt D 

f, r, f(x, y) dx dy = f f f(x, y) dA. 

D 

Therefore the two iterated integrals are equal to each other. We have proved a 
corollary. 

COROLLARY 

The two iterated integrals over a rectangle are equal: 

f
fl2ib2 ib2fU2 

j(x, y) dy dx = f(x, y) dx dy. 
a, b, bt a1 

Discussion This corollary is the simplest form of a result known as Fu bini's Theorem. 
Remember that by our Permanent Assumption,f(x, y) is continuous on D. 
For an idea of the difficulties that arise when f(x, y) is not assumed to be 
continuous, see Problem 49 at the end of this section. 

There are also other regions besides rectangles over which we can integrate 
in either of two orders, such as Example 5 in this section. 

In the following two examples we evaluate the double integrals which were 
approximated by double Riemann sums in the preceding section. 
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EXAMPLE 1 Evaluate 

where D 1 is the unit square 

0::::;; X::::;; 1, o::;;ysl. 

The limits of the outside integral are given by 0 s x s 1, and those of the 
inside integral are given by 0 s y s 1. The iterated integral is thus 

I I x 2
ydA = ff x 2

ydydx. 
D, 

The inside integral is 

Jl xzy dy = ~x2y2Jr= I = ~xz. 
0 y=O 

Then I I x 2
y dA = f ~x2 

dx = ixi = i ~ 0.16667. 
D, 

Since D1 is a rectangle we may also integrate in the other order, and should 
get the same answer. 

Jix
2
ydA = ffx 2

ydxdy. 
D, 

f x 2 ydx = tx3yi = ty. 

I I X 2
Y dA = f ty dy = h~~ = i,...., 0.16667. 

D, 

The Riemann sums in Section 12.1 were 0.0875, 0.12825. 

EXAMPLE 2 Evaluate Hv
2 

x 2y dA where D2 is the region in Figure 12.2.2: 

0 S X S 1, 

The limits on the outside integral are given by 0 s x s 1, and those on the 
inside integral by x2 s y s Jx, so the iterated integral is 

y 

0 X 

Figure 12.2.2 
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J J x 2
ydA = Li: x 2

ydydx. 

]~; x'y dy ~ tx'J>t: ~ ix'- Jx' 

JJ x 2
y dA = f (-!x 3 

- -!x6
) dx = -kx4

- / 4xi 
D2 

= l6 ~ 0.05357. 

The Riemann sums in Section 12.1 were 0.05375, 0.04881. 

In many applications the region Dis given verbally, and part of the problem 
is to find inequalities which describe D. 

EXAMPLE 3 Let D be the region bounded by the curve xy = 1 and the line y = J - x. 
Find inequalities which describe D. and write down an iterated integral 
equal to Sfo f(x, y) dA. 

Step 1 Sketch the region D as in Figure 12.2.3. 

Figure 12.2.3 

Step 2 The line and curve intersect where 

x(J- x) = 1. 
x2

- !x + 1 = 0, 

(x - ±Hx - 2) = 0. 

x=-!, X= 2. 

X 

For 1/2 s x s 2, the curve y = 1/x is below the line y = 5/2 - x. Therefore 
D is the region 

± S X S 2, 1/x s y s!- x. 

Step 3 The inequalities for x give the limits of the outside integral, and those for y 
give the limits of the inside integral. Thus 

f Jf{x, y) dA = r r5121

-x f(x, y) dy dx. 
D 112 ! 1x 
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EXAMPLE 4 Find the volume of the solid bounded by the surfaces z = 0, z = y - x 2 , 

y=l. 

Step 1 Sketch the solid and the region D, as in Figure 12.2.4. 

z y 

y 

X 

X 

Figure 12.2.4 

Step 2 Find the inequalities describing the region D. 

This is the hardest step, and gives us the limits of integration. The surfaces 
z = 0 and z = y - x2 intersect at the curve y = x2

• We see from the figure 
that Dis the region between the curves y = x2 andy = 1, soD is given by 

-1 :S; X :S; 1, 

Step 3 Set up the iterated integral and evaluate it. 

V = J J y - x
2 

dA = f Jx> -x
2 

dy dx. 
D 

J1 y - x2 dy = t_v2 - x2) 1 

x2 J x2 

= (t. 12 - x2. 1) - (-!(x2f - x2. xz) 

= t- xz + ±x4. 

V = J1 

t - x 2 + rx4 dx = ~g. 
-1 

Multiple integration problems can be solved by a three-step process as shown 
in Examples 3 and 4. 

Step 1 Sketch the problem. 

Step 2 Find the inequalities describing the region D. 

Step 3 Set up the iterated integral and evaluate. 

We can also integrate over a region in the (y, x) plane instead of the (x, y) 
plane. A region D in the (y, x) plane has the form 

as shown in Figure 12.2.5. 
The double integral over D is equal to the iterated integral with dy on the 

outside and dx inside, 
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y 

X 
Figure 12.2.5 

JJ J
b,Ja2()') 

f(x, y) dA = f(x, y) dx dy. 
D bl GJ()') 

Some regions, such as rectangles and ellipses, may be regarded as regions in either 
the (x, y) plane or the (y, x) plane (Figure 12.2.6). 

y y 

X X 

(a) D as an (x, y) Region (b) D as a (y, x) Region 

Figure 12.2.6 

EXAMPLE 5 Let D be the region bounded by the curves 

X = y 2
, X = y + 2. 

Evaluate the double integral JfD xy dA. 

Step 1 The region Dis sketched in Figure 12.2.7. 

X 

Figure 12.2.7 
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Step 2 Find inequalities for D. To do this we must find the points where the curves 

x=y+2 

intersect. Solving for y and then x, we see that they intersect at 

(1, -1), (4,2). 

We see from the figure that Dis a region in either the (x, y) plane or the (y, x) 
plane. However, the boundary curves are simpler in the (y, x) plane. Dis the 
regiOn 

-1:::;; y:::;; 2, 

Step 3 Set up the iterated integral and evaluate. 

If f2 fy+2 
xy dA = xy dx dy. 

D -1 y2 

fy+ 
2 

xy dx = ~x2}y+ 
2 

}'2 Jy2 
= ~y + 2fy - ~y2)2y 

= h3 + 2y2 + 2y- tys. 

f f xy dA = f 1 h3 + 2y2 + 2y - tys dy = 1{1. 
D 

PROOF OF THE ITERATED INTEGRAL THEOREM For any region D, let B(D) be 
the iterated integral over D. Our plan is to prove that B has the Addition and 
Cylinder Properties, so that by the Uniqueness Theorem B(D) will equal the 
double integral. 

PROOF OF ADDITION PROPERTY 

Case 1 Let D be divided into D1 and D2 as in Figure 12.2.8(a). By the Addition 
Property for single integrals, 

Case 2 Let D be divided into D1 and D 2 as in Figure 12.2.8(b). Then 

B(D) = faz rb2(X) f dy dx 
a, Jb,(x) 

= Ja2[ ~bJ(X) f dy + ~b2(X) f dy]dx 
a, Jb,(x) Jb3(x) 

= Ja2Jb3(x) f dy dx + Ja2Jb2(x) J dy dx 
a, b,{x) a, b3(x) 

= B(D 1) + B(D 2 ). 
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X X 

(a) (b) 
Figure 12.2.8 

PROOF OF CYLINDER PROPERTY Let 111 be the mm1mum value and M the 
maximum value of f(x, y) on D For each fixed value of x, 

Integrating from a 1 to a2 , 

But 

Therefore 

By a similar argument, 

mA :::;: B(D). 

B(D):::;: MA. 

Since B has both the Addition and Cylinder Properties, 

B(D) = J J f(x, y) dA. 
D 

The Constant, Sum, and Inequality Rules for double integrals follow easily 
from the corresponding rules for single integrals, using the Iterated Integral Theorem. 

CONSTANT RULE 

J Jcf'(x, y) dA = cf jf(x, y) dA. 
D D 

SUM RULE 

J jf(x, y) + g(x, y) dA = J Jrrx, y) dA + J J g(x, y) dA. 
f) f) f) 



INEQUALITY RULE 

If f(x, y) S: g(x, y) for all (x, y) in D, 

J J f(x, y) dA S: J J g(x, y) dA. 
D D 

PROOF As an illustration we prove the Sum Rule. 

JJ f
a2 rb2(X) 

f + g dA = J, f + g dy dx 
D a, b,(x) 

The Iterated Integral Theorem gives another proof that the area of Dis equal 
to the double integral of 1 over D. 

By definition of area between two curves, 

Using iterated integrals, 

JJ f
a2 rb2(X) 

dA = j, dydx 
D a, bdx) 

f
a2 

= (b2(x) - b1(x)) dx = A. 
a, 

PROBLEMS FOR SECTION 12.2 

In Problems 1-16, evaluate the double integrals (compare these with the problems from Section 
12.1). 

1 J J (3x + 4y) dA, D: 0 s; x S:: 1, 0 s; y S:: 1 

D 

2 JJ(4+2x-5y)dA, D:-2S::xS::2,-lS::yS::l 

D 

3 JJ(x2 +y2 )dA, D:-2S::xS::2,-2S::yS::2 

D 

4 J J (1 + xy) dA, D: 0 S:: x s; 2, 0 S:: y :s; 1 

D 



5 I I sdA. D: 1 :::::X::::: 2. 1 ::::: y::::: 2 

D 

6 J J(cosx + siny)dA, D: -n;2::::: x::::: n;2, 0::::: y::::: n 

/) 

7 I I(cosx sin_r) dA, D: -n/2::::: x::::: n/2,0::::; y::::; n 

D 

8 I J xe' dA, D: 0::::: x ::::: 2, -2 ::::; y::::; 3 

D 

9 IIe2x-'dA, D:-2:Sx:S2,-2:Sy:S2 

D 

10 I J (x + 2rJ dA, D: o ::::: x ::::: L 0 ::::: y ::::: x 

D 

11 I I (2 + X + 3y) dA, D: 0 ::::; X ::::; L X ::::; y ::::; 1 

D 

12 IJ(x 2 +vJ')dA, D:-1:Sx:S1,0:Sy:Sx2 

D 

13 IIysinxdA, D:O:Sx:Sn,sin 2 x:Sy:S2sinx 

D 

14 II(e-'+e')dA, D:-3:Sx:S3,-x:Sy:Sx 

D 

15 I I 4 dA, D: x 2 + y 2 
::::; 9 

D 

16 JI-!OdA, D:-3:Sx:S3,x2 :Sy:S18-x2 

D 

In Problems 17-24, evaluate the iterated integral. Then check your answer, by evaluating in the 
other order. 

17 J1J1 

(x 2y- 3x_r2 + 5)dydx 18 r r xy(2y + 1) dydx 
0 0 0 0 

19 rr dydx 20 rr 3xdydx 3 -2 2 1 r;2r;2 r r y 21 sin(x + y) dy dx 22 ---
2 

dydx 
0 • 0 -1 o 1 +X 

J3r v 1

X + ydydx rr 1 
23 24 --dydx 

0 1 1 0 X+ J' 

In Problems 25-30 evaluate the iterated integral. 

25 fife' 
dydx 

0 0 

26 rr dydx 
0 Sin X 
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fJ)4=X2 rsjl-x2 
27 ydydx 28 x2 + y2 dydx 

0 0 0 -Jl-x2 
rry rr 2 

29 x 2y dx dy 30 dxdy 
0 y2 o o)1=7 

In Problems 31-38, find inequalities which describe the given region D, and write down an 
iterated integral equal to SJv f(x, y) dA. 

31 The triangle with vertices (0, 0), (5, 0), (0, 5). 

32 The triangle with vertices (1, - 2), (1, 4), (5, 0). 

33 The circle of radius 2 with center at the origin. 

34 The bottom half of the circle of radius 1 with center at (2, 3). 

35 The region bounded by the parabola y = 4 - x2 and the line y = 3x. 

36 The region above the parabola y = x 2 and inside the circle x 2 + y2 = 1. 

37 The region bounded by the curves x = f and x = 1/(1 + y2). 

38 The region bounded by the curves x = 12 + y2 and x = y4
. 

39 Find the volume of the solid over the region x 2 + y2 ::s; 1 and between the surfaces 
z = 0, z = x2

• 

40 Find the volume of the solid over the region 

41 

42 

43 

44 

D 45 

046 

D 47 

D 48 

::J 49 

D: 1 ::s; x ::s; 2, x ::s; y ::s; x 2 

and between the surfaces z = 0, z = yjx. 
Find the volume of the solid between the surfaces z = 0, z = 2 + 3x - y, over the 
region 0 ::s; x ::s; 2, 0 ::s; y ::s; x. 
Find the volume of the solid between the surfaces z = 0, z = ~. over the region 
0 :S; X :S; 1, X :S; }' :S; 1. 
Find the volume of the solid bounded by the plane z = 0 and the paraboloid 

xz yz 
z = 1- az- bz· 

Find the volume of the solid bounded by the three coordinate planes and the plane 
ax+ by+ cz = 1, where a, b, and care positive. 
Show that 

f
a2J,b2 fa2 

f(x) dy dx = (b 2 - bd f(x) dx. 
at bt a1 

Show that 

f
a2J,b2 fa2 J,b2 f(x) + g(y) dy dx = (b 2 - b1) f(x) dx + (a 2 - ad g(y) dy. 

01 bt Ot bt 

Show that 

Show that 

Let 

Show that: 

(a) 

f1~
2 

f(x)g(y) dy dx = ( r2 

f(x) dx) (f2 

g(y) dy). 

J
bfg(x) 

ydydx = 0. 
a -g(x) 

f(x, y) = {y 
1- y 

if x is rational, 
if x is irrational. 

f f f(x,y)dydx = f tdx = t. 

(b) For each constant y0 =f. t, the function g(x) = f(x, y0 ) is everywhere discontinuous, 
so that the iterated integral gg f(x, y) dx dy is undefined. 

735 
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12.3 INFINITE SUM THEOREM AND VOLUME 

The double integral, like the single integral, has a number of applications to geometry 
and physics. The basic theorem which justifies these applications is the Infinite Sum 
Theorem. It shows how to get an integration formula by considering an infinitely 
small element of area. 

An element of area is a rectangle 11D whose sides are infinitesimal and parallel 
to the x andy axes. Given an element of area 11D, we let 

(x, y) = lower left corner of t1D, 
11x, 11y = dimensions of t1D, 

11A = 11x 11y = area of t1D. 

t1D is illustrated in Figure 12.3.1. 

y 

Figure 12.3.1 

INFINITE SUM THEOREM 

(x,y) 

L'I;·EI 
(x, y) L'lx 

An element of area 
X 

Let h(x, y) be continuous on an open region D0 and let B be a function which 
assigns a rea/number B(D) to each region D contained in D0 . Assume that 

(i) B has the Addition Property B(D) = B(D 1) + B(D 2 ). 

(ii) B(D) 2 0 for every D. 

(iii) For every element of area 11D, B(t1D) :::::; h(x, y) 11A (compared to 11A). 

Then B(D) = f f h(x, y) dA. 
D 

We shall use the notation 

11B = B(t1D). 

Given (i) and (ii), the theorem shows that if we always have 

11B :::::; h(x, y) 11A (co·mpared to 11A) 

then B(D) :::::; II h(x, y) 11A. 
D 

The proof is simplest in the case that D is a rectangle. 
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PROOF WHEN D IS A RECTANGLE Choose positive infinitesimal Ax and Ay and 
partition D into elements of area AD (Figure 12.3.2). Since B has the Addition 
Property, B(D) is the sum of the AB's. Let c be any positive real number. For 
each !>.D we have 

AB ~ h(x, y) AA 

!>.B 
AA ~ h(x,y), 

(compared to AA), 

!>.B AB 
- - c < h(x y) < - + c 
AA ' AA ' 
AB - c AA < h(x, y) AA < AB + c AA. 

Letting A be the area of D and adding up, 

B(D) - cA < II h(x, y) AA < B(D) + cA. 
D 

Taking standard parts, 

B(D) - cA :::;; f f h(x, y) dA :::;; B(D) + cA, 

D 

so B(D) = f f h(x, y) dA. 

D 

z 

X 

Figure 12.3.2 

The proof in the general case is similar except that some of the elements of 
area AD will overlap the boundary of D and thus be only partly within D. (See Figure 
12.3.3.) The method of proof is to changeD to include all instead of part of each !>.D, 
use hypothesis (ii) to show that the new B(D) is infinitely close to the old one, and 
then show as above that the new B(D) is infinitely close to the double integral 
Hv h(x, y) dA. 

In most applications of the Infinite Sum Theorem, hypotheses (i) and (ii) arc 
automatic. To get a formula for B(D) in practice, we take an element of area AD and 
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y 

Figure 12.3.3 

find an h(x, y) such that 

f..B ::::: h(x, y) f..A (compared to f..A). 

Our first application is to the volume between two surfaces. 

DEFINITION 

Let j(x, y) s g(x, y) for (x, y) in D and let E be the set of all points in space 
such that 

(x, y) is in D, f(x, y) s z s g(x, y). 

The volume of E is 

V = J J g(x, y) - f(x, y) dA. 

D 

Vis called the volume over D between the surfaces z = j(x. y) and z = g(x, y) 
(Figure 12.3.4). 

z 

X 

Figure 12.3.4 Volume between two surfaces 
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JUSTIFICATION The part 11£ of the solid E over an element of area l:l.D is a rectangu­
lar solid with base 11A and height g(x, y) - f(x, y), except that the top and 
bottom surfaces are curved (Figure 12.3.5). Therefore the volume of 11£ is 

11 V ~ (g(x, y) - f(x, y)) /:o..A 

By the Infinite Sum Theorem, 

(compared to 11A). 

V = J Jg(x, y) - f(x, y) dA. 
D 

z 

g(x, y) 

[:,£ 

X 
Figure 12.3.5 

EXAMPLE 1 Find the volume of the solid 

0 :::;; X :::;; 1, · 0 :::;; y :::;; X, 

Step 1 D is the triangle shown in Figure 12.3.6. 

Step 2 D is the region 0 :::;; x :::;; 1, 0 :::;; y :::;; x. 

y 

Figure 12.3.6 

[:,£ 

t:,D 

X 



740 12 MULTIPLE INTEGRALS 

Step 3 V = f f ex+y- (x + y) dA 

D 

({"' 
= Jo Joe<+-"- (x + y)dydx. 

f ex+y- (x + y)dy = ex+y- xy- t.l'i = e2x- ex- ~x2. 

V = {' e2
x - e" - ~x 2 dx = te 2 

- e. 

EXAMPLE 2 Find the volume of the solid bounded by the four planes 

X= 0, y = 0, Z =X+ y, Z = 1 -X- J'. 

Step 1 Sketch the planes. We see from Figure 12.3.7 that z = x + y ts below 
z = I -X- y. 

z 

z=l-x-y 

y 

X 

Figure 12.3.7 

Step 2 Find inequalities for the region D. Since the two planes 

Step 3 

meet at the line 

D is the region 

Z =X+ y, z=1-x-y 

2x + 2y = 1, y = ! - x, 

0 ::; X ::; i, 0 ::; Y ::; t - X. 

v = J Jo -x- y)- (x + y) dA = J J 1 - 2x - 2y dA 

D D 
rl/2 rl/2-x 

= Jo Jo 1- 2x- 2ydydx. 

X 
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(12-x ~ 1!2-x 

Jo 1 - 2x- 2y dy = y- 2xy- yJ
0 

= ~- x- 2x(~- x)- (~- x)2 = t- x + x 2
. 

(12 
V = Jo t- x + x2 dx = 214· 

EXAMPLE 3 Find the volume of the solid bounded by the plane z = 2y and the 
paraboloid z = 1 - 2x2 

- y 2
• 

Step 7 The surfaces and the region D are sketched in Figure 12.3.8. 

z 

z = 1- 2x2 - y 2 
y 

y 
X 

Figure 12.3.8 

Step 2 The two surfaces intersect on the curve 

2y = 1 - 2x2 
- y2, 

or solving for y, y = -1 ± )2- 2x2
• 

Therefore D is the region 

-1 S X :S 1, -1- )2- 2x2 s y s -1 + )2- 2x 2
. 

Step 3 We see from the figure that the plane is the lower surface and the paraboloid 
is the upper surface. 

V = J J (1 - 2x2 
- y2) - 2y dA 

D 1 s-1 +J2- 2x
2 

= f_1 -1-j2-2x2 (l-2x2-y2-2y)dydx. 
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f
-1+)2-=2x' (1 r j2-2x

2 

- 2x 2 - y2 - 2y)dy = (2- 2x 2
- u2 )du 

- l - )2- 2x' • - /2- 2x 2 

= 8J2 (1 _ x2)312. 
3 

V = Jt 8)2 (1 - x2)3!2 dx. 
-! 3 

Put X = sin 0, Jl_:_ x 2 = cos e, dx = cos e dO (Figure 12.3.9). 

X 

e 

Figure 12.3.9 

gfi fn/2 
V = -- cos4 0 dO 

3 - n/2 

8j2 ( 1 3 ( 1 1 ) ) ]nil = -
3
- 4cos 3 0sin0 + 4 2cos0sin0 + 2e -n/

2 

8fl 3 1 
= -·-·-n = J2n. 

3 4 2 
r;. 

Answer V = ...; 2n. 

PROBLEMS FOR SECTION 12.3 

Find the volumes of the following solids in Problems 1-8. 

I 0 -<; x -<; I, 0 -<; y -<; I, xy -<; z -<; I 

2 

3 

4 

5 

0-<; X-<; 2, 

0-<;x-<; I, 

0-<; X-<; 4, 

0-<; X-<; 2, 

0-<; y-<; 2, x2 + .i-<; z-<; 8 

I -<; y-<; 2, x-<;z-<;y 

0-<;y-<; I, x-<; z-<; xeY 

0-<; )'-<;X, y-<;z-<;x 

6 I -<; x -<; 4, x-<; y-<; 4, y-<; x -<; xy 

7 -I -<; x -<; I, x2 -<; y-<; I, xJY-<; z -<; y 

8 0-<; x-<; rr, -sinx-<; y-<; sinx, -sinx-<; z-<; sinx 

In Problems 9-.16, find the volume of the solid bounded by the given surfaces. 

9 The planes y = 0, x + y = 2, z = - x, z = x 

to The planes x = 0, y = 0, 2x + 3y + z = 4, 6x + y- z = 8 



11 

13 

15 

17 

18 

z = x 2 + y2
, z = 4 

y = 0, z = x 2 + y, z = 1 

xz + yz = 9, xz + zz = 9 

12 

14 

16 
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z = x2 + y2 + 1, z = 2x + 2 y 

x = 0, x = y, z2 = I - y 

z = x 2 + y 2
, z = 2 - x2 

- y 2 

xz yz zz 
Find the volume of the ellipsoid 2 + b2 + 2 = 1. 

a c 

Find the volume of the solid bounded by the paraboloid z = x 2/a 2 + y 2/b 2 and the 
plane z = c, where c is positive . 

. .4 APPLICATIONS TO PHYSICS 

In this section we obtain double integrals for mass, center of mass, and moment of 
inertia. 

DEFINITION 

If a plane object fills a region D and has continuous density p(x, y), its mass is 

m = f f p(x, y) dA. 
D 

On an element of area D.D, the density is infinitely close to p(x, y) (Figure 
12.4.1). Therefore the mass is 

D.m ;:::: p(x, y) D.A (compared to ~A). 

By the Infinite Sum Theorem m = Hv p(x, y) dx dy. 

y 

Figure 12.4.1 

(Xo. Yo)B 
mass !:1m 

X 

In Chapter 6 we were able to find the mass of a plane object whose density 
p(x) depends only on x by a single integral, 
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f
az 

m = p(x)(b 2(x) - bdx)) dx. 

"' 
Our new formula for mass reduces to the old formula in this case, for by the Iterated 
Integral Theorem, 

m= JJp(x)dA 

D 

J
uzfbz(x) 

= p(x) dy dx 
a, bdx) 

J
Ul 

= p(x)(b 2 (x) - b1(x)) dx. 
a, 

Now we can find the mass of a plane object whose density p(x, y) depends on both x 
and y instead of on x alone. 

EXAMPLE 1 Find the mass of an object in the shape of a unit square whose density 
is the sum of the distance from one edge and twice the distance from a second 
perpendicular edge. 

Step 1 The region D is shown in Figure 12.4.2. 

y 

f) 

X 

Figure 12.4.2 

Step 2 Place the object so the first two edges are on the x and y axes. Then D is the 
reg10n 

o:::;x:s;J, o:::;y:s;l. 

Step 3 The density is p(x, y) = y + 2x. 

m = J J y + 2x dA = { {

1 

y + 2x dy dx. 
D 

{

1 

y + 2x dy = ±l + 2:qi = ± + 2x. 

m = { ± + 2x dx = i. 

DEFINITION 

A plane object which fills a region D and has continuous density p(x, y) has 
moments about the x and y axes given by 
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Mx = f f yp(x, y) dA. 
D 

My= J J xp(x, y) dA. 
D 

M x and MY are sometimes called first moments to distinguish them from 
moments of inertia (which are called second moments). 

The center of mass of the object is the point (x, y) with coordinates 

J J xp(x, y) dA 
- My D 

x = -;;;-- = _J_I_p_(_x,-y-) d-A-, 

D 

J I yp(x, y) dA 
- Mx D y=-=-----

m J I p(x,y)dA 
D 

JUSTIFICATION The piece of the object on an element of area 11D has mass 

11m ~ p(x, y) 11A (compared to 11A). 

A point mass m at (x, y) has moments 

Mx = ym, 

Therefore the piece of the object at 11D has moments 

11M x ~ y 11m ~ yp(x, y) 11A 

11My ~ x 11m~ xp(x, y) 11A 

(compared to 11A), 

(compared to 11A). 

The double integrals for Mx and MY now follow from the Infinite Sum 
Theorem. 

An object will balance on a pin at its center of mass (Figure 12.4.3). The 
center of mass is useful in finding the work done against gravity when moving the 

y Center of mass 

X 

Figure 12.4.3 
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object. The work is the same as if the mass were all concentrated at the center of mass, 
and is given by 

W= mgs 

where s is the distance the center of mass is raised and g is constant. 

EXAMPLE 2 A triangular plate bounded by the lines x = 0, x = y, y = I has 
density p(x, y) = x + y. Find the moments and center of mass. 

Step 1 Sketch the region D, as in Figure 12.4.4. 

Figure 12.4.4 

y 

0 
II 
}.( 

y=l 

D 

X 

Step 2 We see from the figure that D is the region 

0 ::S: X ::S: 1, x::S:y::S:l. 

Step 3 Set up and evaluate the iterated integrals for the mass m and moments Mx 
and My. 

111 = f f X + Y dA = f f X + y dy dx. 
D 

f X + }' dy = X + J - ix2
• 

111 = f x + i- ix
2 

dx = t. 

M x = J J y(x + y) dA = { f yx + y2 dy dx. 
D 

f yx + y
2 

dy = ix + t- ~x 3 . 

Mx = { JX + 1- ~x 3 dx = {4 . 

MY= J J x(x + y)dA = {f x 2 + xydydx 
D 

f x 2 + xy dy = x 2 + tx - ix3
. 

My= 1' xz + !x - ix3 dx = 2s4· 



,......, 1 ._,....,.,........, 1\JI'IIV I Urn TVII...oV /'+/ 

The answers are 
9 

M=-
x 24' 

_ M}. 5/24 5 
X = ---;;;- = 1/2 = 12. 

_ Mx 9/24 9 
y = ---;;;- = 1/2 = 12. 

The point (x, y) is shown in Figure 12.4.5. 

EXAMPLE 3 The object in Example 2 is lying horizontally on the ground. Find the 
work required to stand the object up with the hypotenuse of the triangle on 
the ground (Figure 12.4.6). 

We use the formula W= mgs. 

From Example 2, m = t. We must finds. 

s = minimum distance from (~. ~) to the line x = y. 
12 12 

s = minimum value of z = J ( x -
1
5
2

) 
2 

+ ( x - :
2

) 
2

• 

2 28 106 
2x --x +-

12 144. 
Z= 

dz = (4x- 28) ~z-112 
dx 12 2 · 

dz 28 
- = 0 at 4x =­
dx 12' 

7 
X= 12" 

The second moment, or moment of inertia, of a point mass m about the origin 
is the mass times the square of the distance to the origin, 

y y 

• 
(:X, y) 

X X 

Figure 12.4.5 Figure 12.4.6 



I = m(x 2 + y2
). 

The moment of inertia is related to the kinetic energy of rotation. A mass m moving at 
speed v has kinetic energy 

KE = 1mv2
. 

Hence if m is rotating about the origin with angular velocity w radians per second, 
its speed is v = wjx2 + / and 

KE = tm(wJx2+_0)2 = tfw 2
. 

Thus moment of inertia is the rotational analogue of mass. 

DEFINITION 

Given a plane object on the region D with continuous density p(x, y), the 
moment of inertia about the origin is 

I = f f p(x, y)(x 2 + yZ) dA. 
D 

JUSTIFICATION On an element of volume !!J.D, the moment of inertia is 

(compared to I!J.A). 

The integral for I follows by the Infinite Sum Theorem. 

EXAMPLE 4 Find the moment of inertia about the origin of an object with constant 
density p = 1 which covers the square shown in Figure 12.4.7: 

If f1/2 J1/2 
I = (x 2 + y 2

} dA = x 2 + y2 dy dx. 
D -1/2 -1/2 

y 
l 
2 

D 

l l X - 2 2 

l 
-2 

Figure 12.4.7 
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PROBLEMS FOR SECTION 12.4 

In Problems 1-10, find (a) the mass, (b) the center of mass, (c) the moment of inertia about the 
origin, of the given plane object. 

1 -a:c:;x:c:;a, -b:::;y:c:;b, p(x,y)=k 

2 0 :::; x :::; a, 0 :::; y :::; b, p(x, y) = k 

3 0 :::; x :::; 1, x2 
:::; y :::; 1, p(x, y) = k 

4 0 :::; x :::; a, 0 :::; y :::; bx, p(x, y) = k 

5 0 ::,; X S 2, X S y S 2x, p(X, y) = X + y + 1 

6 0 S X ::,; 1, 0 S y S X, p(X, y) = X - y 

7 0 s x s 1, 0 s y :::; x2
, p(x, y) = Jx + JY 

8 1 :::; x s 2, x s y s x2
, p(x, y) = 1/py 

9 0 S X S 2, e-x ::,; y ::,; ex, p(x, y) = 1 

10 -1 s x s 1, 0 :::; y :::; 1/~, p(x, y) = y 

11 Find the mass of an object in the shape of a unit square whose density is the sum of the 
four distances from the sides. 

12 Find the mass of an object in the shape of a unit square whose density is the product of 
the distances from the four sides. 

13 An object on the triangle 0 s x :::; 1, 0 s y :::; x has density equal to the distance from 
the hypotenuse y = x. Find the amount of work required to stand the object up (a) on 
one of the short sides, (b) on the hypotenuse. 

14 An object in the shape of a unit square has density equal to the distance to the nearest 
side. Find the mass and the amount of work needed to stand the object up on a side. 

15 An object on the plane region -1 s x s 1, x2 s y:::; 1 has density p(x, y) = 1 + x + JY. 
Find the mass and the work needed to stand the object up on the flat side. 

16 An object on the unit square 0 s x s 1, 0 s y s 1 has density p(x, y) = ax + by + c. 
Find the mass and center of mass. 

17 The moment of an object of density p(x, y) in the region D about the vertical line x = a 
is defined as 

M,..x~a = f f (x - a)p(x, y) dA. 
D Show that 

M,..x~a = M,.- a·m 

where M,. is the moment about the y-axis and m is the mass. 

J 18 The moment of inertia of an object in the region D of density p(x, y) about the point 
P(a, b) is defined as 

Ip = J J p(x,y)((x- a)2 + (y- Wl dA. 
D Show that 

Ip =I - 2aMx- 2bM,. + m(a2 + b2
) 

where I is the moment of inertia about the origin, M x and M,. are the first moments, and 
m is the mass. 

5 DOUBLE INTEGRALS IN POLAR COORDINATES 

A point with polar coordinates (8, r) has rectangular coordinates 

(x, y) = (r cos 8, r sin 8). 
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DEFINITION 

A polar region is a region D in the (x, y) plane given by polar coordinate 
inequalities 

!X :S 0 :S [3, a(8) :S r :S b(8), 

where a(8) and b(8) are continuous. To avoid overlaps, we also require that 
for all (0, r) in D, 

0 :S 0 :S 2n and 0 :S r. 

The last requirement means that the limits rx and f3 are between 0 and 2n, 
while the limits a(O) and b(O) are 2 0. Figure 12.5.1 shows a polar region. 

The simplest polar regions are the polar rectangles 

Cl. :S 0 :S [3, a :S r :S b. 

We see in Figure 12.5.2 that the 0 boundaries are radii and the r boundaries are 
circular arcs. 

Figure 12.5.1 
A polar region 

D 

{3 

Figure 12.5.2 
A polar rectangle 

The polar rectangle 

!X :S 0 :S /3, O:Sr:Sb 

is a sector of a circle of radius b (Figure 12.5.3(a)). 
The polar rectangle 

0 :S 0 :S 2n, O:Sr:Sb 

is a whole circle of radius b (Figure 12.5.3(b)). 
Less trivial examples of polar regions are the circle with diameterji·om (0, 0) to 

0 b 
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(a) sector: (bl circle: 

Figure 12.5.3 

and the cardioid 

a 5 e 5 {3, 0 5 r 5 b 

0 :::;; (} :::;; n, 

0 :::;; (} :::;; 2n, 

0 :::;; r :::;; b sin e, 
0 :::;; r :::;; 1 + cos (}. 

Both of these regions are shown in Figure 12.5.4. 

0 5 e 5 271", 0 5 r 5 b 

We shall use the Infinite Sum Theorem to get a formula for the double 
integral over a polar region. In the proof we take for !lD an infinitely small polar 
rectangle. 

POLAR INTEGRATION FORMULA 

Let D be the polar region 

ct. :::;; (} :::;; f3, a((}) :::;; r :::;; b( e). 

The double integral of f(x, y) over D is 

II f
fJ lb(8) 

f(x, y) dA = ), f(x, y)r dr de 
D a a(8) 

ffJ fb(8) 
= f(r cos e, r sin e)r dr de. 

a a(8) 

Notice that in the iterated integral for a polar region we do not integrate 
f(x, y) but the product of f(x, y) and r. Intuitively, the extra r comes from the fact 
that a polar element of area is almost a rectangle of area r !le !lr (see Figure 12.5.6(b)). 

PROOF We shall work with the rectangular (e, r) plane. Let C be the region in the 
(e, r) plane given by the inequalities 

ct. :::;; e :::;; f3, a( e) :::;; r :::;; b( e). 

Thus C has the same inequalities as D but they refer to the (e. r) plane instead 
of the (x, y) plane. D and Care shown in Figure 12.5.5. 

We must prove that 

I J f(x, y) dx dy = I J f(x, y)r d(} dr. 
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h 

(a) circle: (b) cardioid: 
0 s:. I) s:. 7r, 0 s:. r s:. b sin e 0 S:. I) S:. 21r, 0 S:. r S:. I +cos 6 

Figure 12.5.4 

r .1' 

\ / 

\/ 

(3 I) X 

Figure 12.5.5 

Our plan is to use the Infinite Sum Theorem in the (0, r) plane. Assume 
first that f(x, y) > 0 for all (x, y) in D. 

For any (0, r) region C 1 corresponding to a polar region D1 m the (x, y) 
plane, let 

B( C 1) = J J f(x, y) dx dy. 

D, 

Then B has the Addition Property and is always ?. 0. Consider an element of 
area ~C in the (0, r) plane with area ~0 M. ~C corresponds to a polar 
rectangle ~D in the (x, y) plane. As we can see from Figure 12.5.6, ~D is 
almost a rectangle with sides r ~0 and ~,. and area r MJ ~r. 

The volume over ~D is almost a rectangular solid with base of area r ~() ~r 
and height 

f(x, y) = f(r cos 8, r sin 0). 

Therefore B(~C) :::::; j(x, y)r ~0 ~r (compared to ~eM). 

By the Infinite Sum Theorem 

B( C) = f J f(x, y)r dO dr, 

c 

and by definition B(C) = J J .f(x, y) dx dy. 

D 



0 

0 

Figure 12.5.6 
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y 

EJ 
(r, 0) 

(r, 0) 

r 

(a) Under microscopes 

y 

EJ 
(r, 0) 

r 

(b) Exaggerated scale 

/::;0 
1':5(.;/D.r 
I~ <J6l/ 

I 1 
I I 

,'D.~; r 
I I 

I I 
I I 

I I 
1/ 

X 

X 

Finally we consider the case where j(x, y) is not always positive. Pick a 
real constant k > 0 such that j(x, y) + k is always positive for (x, y) in D. 
By the above proof, 

J J (f(x, y) + k) dx dy = J J (f(x, y) + k)r dO dr, 
D C 

f f k dx dy = f f kr dO dr. 
D C 

When we use the Sum Rule and subtract the second equation from the first, 
we get 

f f f(x, y) dx dy = f f j(x, y)r dO dr. 
D C 

In a double integration problem where the region D is a circle or a sector 
of a circle, it is usually best to take the center as the origin and represent D as a polar 
r~ctangle: 

EXAMPLE 1 Find the volume over the unit circle x2 + y2 ~ I between the surfaces 
z = 0 and z = x 2

. 

Step 1 Sketch D and the solid, as in Figure I 2.5.7. 
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y z 

X 

X 

Figure 12.5.7 

Step 2 D is the polar region 0 :S:: e ::;; 2n, 0 ::;; r ::;; 1. 

Step 3 V = J J x 2 dx dy = J
0

2

" J
0

1 

x 2r dr de = 12

" f (r cos e) 2r dr dG 
D 

f.
21t f.l 

= 
0 0 

r 3 cos 2 e dr de 

f21t ~21t 
= t cos 2 e de = t(f sin 0 cos e + fe) = n/4. 

0 - 0 

y 

For comparison let us also work this problem in rectangular coordinates. 
We can see that it is easier to use polar coordinates. 

Dis the region - 1 ::;; x ::;; 1, 

JJ J
1 Jj!=Xl Jl V= x2 dxdy = _·_ x2 dydx = 2x 2~dx. 

D -1 -j1-x2 -1 

We make the trigonometric substitution shown in Figure 12.5.8: 

x =sin¢, ~=cos¢, dx =cos¢ d¢. 

X 

Figure 12.5.8 

Then¢= -n/2 at x = -1 and¢= n/2 at x = 1, so 

f
n/2 

V = _,
12 

2 sin 2 ¢ cos 2 ¢ d¢ 

= J"/ 2 
2( 1 - cos 2¢) ( 1 + cos 2¢) d¢ 

-~2 2 2 
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J
n/2 

= i(l - cos2 2¢) d¢ 
-n/2 

= r" t(l - cos
2 

u) du 

= i(u - 1 cos u sin u -1u~~" = n/4. 

EXAMPLE 2 Find the mass and center of mass of a flat plate in the shape of a semi­
circle of radius one whose density is equal to the distance from the center 
of the circle. 

Step 1 The region Dis sketched in Figure 12.5.9. 

Step 2 Take the origin at the center of the circle and the x-axis as the base of the 
semicircle. D is the polar region 0 ~ e ::;; n, 0 ::;; r ::;; 1. 

Step 3 The density is 

Answer 
n 

m=-3' 

p(x,y) = Jx 2 + y2 = r. 

m = J J J x 2 + y2 
dA = f S: r • r dr dB 

D 

= r 2 dr dB = - dB = -. f" J
1 J" 1 n 

0 0 0 3 3 

M X = J J yJ x2 + y2 dA = f f r sin e • r . r dr dB 
D 

= f f r3 sin B dr de = f t sin e de = 1-

My = J J xJ x
2 + y2 

dA = L" .C r cos B • r • r dr dB 
D 

= fa" i 1 

r
3 

cos e dr de = L" * cos B de = o. 

My x =-= 0, 
m 

Mx 3 0 y = - = -2 "' .477. 
m n 

The point (x, y) is shown in Figure 12.5.10. 

y y 

X 

Figure 1 2.5.9 Figure 12.5.10 

X 



EXAMPLE 3 Find the moment of inertia of a circle of radius b and constant density 
p about the center of the circle. 

Step 1 Draw the region D (Figure 12.5.11). 

y 

b X 

Figure 12.5.11 

Step 2 Put the origin at the center, so D is the polar region 

0 s (} s 2n, 0 s r s b. 

Step 3 x 2 + y 2 = r 2
, so 

I = J J p • (x 2 + y 2
) dA = rn f pr 2 

• r dr dfJ 
D 

= p fn I: r3 dr d(} = p f" ±b4 dO 

pb4 n 
2 . 

PROBLEMS FOR SECTION 12.5 

In Problems 1-16, find the volume using polar coordinates. 

x 2 + y 2 <:; 1, 0 "'S: z "'S: 6 

2 x 2 + y2 <:; 1, 0 <:; z <:; x 2 + y2 

3 x 2 + y 2 <:; 4, 0 <:; z <:; x + 2 

4 

5 

6 

7 

8 

9 

lO 

11 

12 

13 

xz + )'z <:; 4, 

xz + yz <:; 9, 

x 2 + y 2 <:; 25. 

r-c>-
0 "'S: Z "'S: yX

2 + y2 

x 2 + y2 <:; z <:; 9 
0 <:; z <:; e-x'-y' 

1 -s; xz + yz -s; 4, (xz + },2)-1 -s; 2 -s; (xz + yz)- 1,2 

1 <:; x 2 + y2 <:; 9, 1/p+J? "'S: z "'S: 1 

0 <:; x <:; I, 0 <:; y <:; j1 - x 2
, 0 <:; z <:; x,,/\­

-2 <:; x "'S: 2, 0 <:; y <:; F-x2 , x <:; z s y + 2 

n/4 s 0 s n/3, 0 <:; r s 1, 0 <:; z s r2 

0 <:; 0 s n/6, I <:; r s 2, 0 s z s ,/9~2 
0 s 0 s n, 0 .g r s 2 sin 0, 0 s z s r 

14 0 s 0 <:; n/2. 0 <:; r s cos 0. r3 s z <:; r2 

IS 0 s 0 s 2n, 0 <:; r s 0. 0 s z s r2
() 3 + 2r0 

16 0 <:; 0 <:; 2n, 0 s r s e0
, 0 s z s ,fi 
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17 Find the volume of the solid over the cardioid r = 1 + cos B between the plane z = 0 
and the cone z = r. 

18 Find the volume of the solid over the cardioid r = 1 + cos e between the paraboloids 
z = r2 and z = 8 - r2

. 

19 Find the volume of the solid over the circle r = sine between the plane z = 0 and the 
hemisphere z = ~-

20 Find the volume of the solid over the circle r = 2 cos B between the plane z = 0 and the 
cone z = 2- r. 

21 Find the volume of the solid over the polar rectangle rx s; B s; {3, a s; r s; b, between the 
plane z = 0 and the cone z = r. 

22 Find the volume of the portion of the hemisphere 0 s; z s; ~ over the polar 
rectangle (J. s; e s; {3, a s; r s; b (assuming b s; 1). 

23 A circular object of radius b has density equal to the distance from the outside of the 
circle. Find (a) the mass, (b) the moment of inertia about the origin. 

24 A circular object of radius b has density equal to the cube of the distance from the center. 
Find (a) the mass, (b) the moment of inertia about the origin. 

25 Find the moment of inertia about the origin of a circular ring a s; r s; b, 0 s; B s; 2n, 
of constant density k. 

26 Find the moment of inertia of a circular object of radius b and constant density k about 
a point on its circumference. (The center can be put at (0, b), so the object is on the polar 
region 0 s; r s; 2b sine, 0 s; e s; n.) 

27 An object has constant density k on the circular sector 0 s; x s; 1, 0 s; y s; ~­
Find (a) the center of mass, (b) the moment of inertia about the origin. 

28 An object of constant density k covers the cardioid r S: 1 + cos B, 0 s; B s; 2n. Find 
(a) the center of mass, (b) the moment of inertia about the origin. 

29 An object of constant density k covers the region inside the circle r = 2b sin B and 
outside the circler = b. Find (a) the center of mass, (b) the moment of inertia about the 
origin. 

30 An object of constant density k covers the polar region 

0 s; e s; n/2, 0 s; r s; b sin 28. 

Find (a) the center of mass, (b) the moment of inertia about the origin. 

] 31 (a) Usepolarcoordinatestoevaluate s:,s:x e-x'-,-'dydx. 

(b) Show that s:oo rx e-x'-y' dydx = u:x e-x' dx) (f:, e_,., d+ 

(c) Now evaluate the single integral 1"""' e-x' dx. 

TRIPLE INTEGRALS 

A closed region in space, or solid region, is a set E of points given by inequalities 

where the functions b1(x), b2(x) and c1(x, y), c2(x, y) are continuous. 

The boundary of E is the part of E on the following surfaces: 

The planes x = a 1 , x = a2 . 

757 



The cylinders y = b1(x), y = b2(x). 

The surfaces z = c1(x, y), z = c2(x, y). 

The simplest type of closed region is a rectangular solid, or rectangular box, 

Figure 12.6.1 shows a solid region and a rectangular box. 

z z 

y y 

X X 

Region in space Rectangular box 
Figure 12.6.1 

An open region in space is defined in a similar way but with strict inequalities. 
As in the two-dimensional case, the word region alone will mean closed region. 

PERMANENT ASSUMPTION 

Whenever we refer to a function f(x, y, z) and a solid region E, we assume that 
f(x, y, z) is continuous on some open region containing E. 

The triple integral f f f .f(x, y, z) dx dy dz 

E 

is analogous to the double integral. 
The first step in defining the triple integral is to form the circumscribed 

rectangular box of E (Figure 12 .6.2). This is the rectangular box 

where B 1 =minimum value of b1(x), 

B2 = maximum value of b2(x), 

cl =minimum value of cl(x, y), 

C 2 = maximum value of c2 (x, y). 
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z 

y 

X 

Figure 12.6.2 The circumscribed rectangular box 

Our next step is to define the triple Riemann sum. Given positive real 
numbers L1x, L1y, and L1z, we partition the circumscribed rectangular box of E into 
rectangular boxes with sides L1x, L1y, and L1z (Figure 12.6.3). The partition points of 
this three-dimensional partition have the form 

0:::;; k:::;; n, 0:::;; I:::;; p, 0:::;; m:::;; q. 

The triple Riemann sum of f(x, y, z) L1x L1y L1z over E is defined as the sum 

IIIf(x, y, z) L1x L1y L1z = III f(xk, Y1, zm) L1x L1y L1z. 
E (Xk.YloZm) in E 

When we replace L1x, L1y, L1z by positive infinitesimals dx, dy, dz we obtain an infinite 
triple Riemann sum 

LLif(x, y, z) dx dy dz. 
E 

z 

~X I ILl/ I I I I 
i /_/ I I I I I I I 

V; 
1/ I 
Vi 
v 

y 

A partition 

Figure 12.6.3 X 
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LEMMA 

For all positive infinitesima/s dx, dy, and dz, the triple Riemann sum 

LLLf(x, )', z) dx dy dz 
E 

is afinite hyperrealnumber and therefore has a standard part. 

We are now ready to define the triple integral (see Figure 12.6.4). 

z 

y 

Figure 12.6.4 x 

DEFINITION 

Given positive il?finitesimal dx, dy, and dz, the triple integral of a continuous 
.fimction f(x, y, z) over E is 

J J J f(x, y, z) dx dy dz = st( LtLf(x, y, z) dx dy dz). 
E 

We shall now briefly state some basic theorems on triple integrals, which 
are exactly like the corresponding theorems for double integrals. 

INDEPENDENCE OF dx, dy, AND dz 

The value of JJS E f(x, y, z) dx dy dz does not depend on dx, dy, or dz. 

We shall usually use the notation dV = dx dy dz for the volume of an 
infinitesimal dx by dy by dz rectangular box, and write 

J J J .f(x, y, z) dV for J J J f(x, y, z) dx dy dz. 

E E 

ADDITION PROPERTY 

If E is divided into two regions E 1 and £ 2 which meet only on a common 
boundary then 

J J jf(x,y,z)dV = J J Jt'(x,y,z)dV + J J Jf(x,y,z)dV. 
E E1 ~ 
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ITERATED INTEGRAL THEOREM 

If E is the region 

then f f f f(x, y, z) dV = f 2 fAx) r2

(x,y) f(x, y, z) dz dy dx. 
E at bt(x) Ct(x,y) 

If the region E is a rectangular box 

there are six different iterated integrals over E, corresponding to six different orders 
of integration. Here they are (in "alphabetical" order). 

f'f'f' f'f'f' (1) f(x, y, z) dz dy dx (2) f(x, y, z) dy dz dx 
a1 b1 Ct a, c1 bt 

f'f'f' f'flf' (3) f(x, y, z) dz dx dy (4) bt c

1 01 

f(x, y, z) dx dz dy 
b1 a, c1 

fZf'f' f'f'f' (5) f(x, y, z) dy dx dz (6) f(x, y, z) dx dy dz. 
Ct Ut bt c1 b 1 a 1 

The Iterated Integral Theorem shows that each of these iterated integrals is equal to 
the triple integral 

J J J f(x, y, z) dV. 
E 

EXAMPLE 1 Evaluate J J J xy1z3 dV where E is the rectangular box 
E 

0::;; X::;; 2, 0::;; y::;; 1, 0::;; z::;; 4. 

There are six iterated integrals which all have the same value. We compute 
one of them, and then another to check our answer. 

FIRST SOLUTION f f f xy
2
z

3 
dV = s: f f xy

2
z

3 
dz dy dx. 

E 

The inside integral is 

The second integral is 

The final answer is 
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SECOND SOLUTION J I J xy2z3 dV = 1412 

{ xy2z3 dy dx dz. 
E 

The inside integral is 

11 xy2z3 dy = !-xy3z~: = 1xz3 

The second integral is 

The final answer is 

J4 ±z3 (/7 - .!.74]4- 12.2. - 1.1.§. 
6 - - 6- - 6 - 3 . 

0 0 

Triple integrals can be evaluated by iterated integrals. 

EXAMPLE 2 Evaluate J I J y + z dV where E is the region shown in Figure 12.6.5, 

E 

Figure 12.6.5 

SOLUTION 

0:::;; x:::;; n/2, 

X 

0:::;; y:::;; sin x, 

z 

\ 
\ 
I 
\ 
I 

0:::;; z:::;; y cos x. 

y 

J J J Y + zdV= f/2 fnx fcosx Y + zdzdydx. 

E 

We first evaluate the inside integral. 

fcosx y + z dz = yz + !-zJ~ cos X = y2 cos X + ty2 COS 2 X. 

Now we evaluate the second integral. 

Iinx y2 cos x + ty2 cos 2 x dy = ty 3(cos x + !- cos 2 x)I" x 

= t sin 3 x(cos x + !- cos 2 x). 

Finally we evaluate the outside integral. 
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J J J y + z dV = {'
12 

1- sin3 x(cos x +! cos2 
x) dx 

E 

= {'
12 

1-(1 - cos2 x)(cos x + 1 cos2 x) sin x dx 

= r -t(l - u2 )(u + 1u2
) du 

= f t(u + !u2 
- u3 -!u4

) du = /io· 

The volume of a region E in space is equal to the triple integral of the constant 1 
over E as illustrated in Figure 12.6.6, 

v = f f f dV. 
E 

z 

y 

Figure 12.6.6 X 

PROOF E is the solid over the plane region D given by 

between the surfaces z = c1(x, y) and z = cix, y). By definition of the 
volume between two surfaces, 

V = J J c2 (x, y) - c1(x, y) dA. 
D 

Using the Iterated Integral Theorem, 

Iff f
az rbz(x) JCz(X.}') 

dV= J, dzdydx 
E a 1 b,(x) Ct(X,}') 

J
az ibz(x) 

= [cix, y) - c1(x, y)] dy dx = V. 
a, b,(x) 

We now come to the Infinite Sum Theorem for triple integrals, which is, 
again, the key result for applications. 
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We shall use Lix, Liy, and Liz for positive infinitesimals. By an element of 
volume we mean a rectangular box LiE with sides Lix, Liy, and Liz (Figure 12.6.7). 
The volume of LiE is 

L1 V = Lix Liy Liz. 

z 

Figure 12.6. 7 X 
An element of volume 

INFINITE SUM THEOREM 

Let h(x, y, z) be continuous on an open region E0 and let B be a jimction which 
assigns a real number B(E) to each region E contained in E0 . Asswne that: 

(i) B has the Addition Property. 

(ii) B(E) :?. 0 for every E. 

(iii) For every element of' volume LiE, 

B(LiE) :::::::: h(x, y, z) L1 V (compared to L1 V). 

Then B(E) = J J J h(x, y, z) dV. 
E 

Here are some applications of the triple Infinite Sum Theorem. Perhaps 
the simplest physical interpretation of the triple integral is mass as the triple integral 
of density. 

DEFINITION 

The mass of an o~jectfilling a solid region E with continuous density p(x, y, z) is 

m = J J J p(x, y, z) dV. 
E 

JUST/FICA !ION At every point of an element of volume LiE the density is infinitely 
close to p(x, y, z), so the element of mass is 

Lim :::::::: p(x, y, z) L1 V (compared to L1 V). 

(See Figure 12.6.8.) By the Infinite Sum Theorem, 

m = J J J p(x, y, z) A V. 
E 
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z 

y 

Figure 12.6.8 x 

EXAMPLE 3 Find the mass of an object in the unit cube 

0:::;; X:::;; 1, 0:::;; y:::;; 1, o::=;;z::=;;l 

with density p(x, y, z) = x + y + z. 

m = f f f x + y + z dV 
E 

= {I {I 1l X + J.' + Z dz dy dx 

= f f x + y + ! dy dx = f x + ! + t dx = l 

An object in space has a moment about each coordinate plane. 

DEFINITION 

If an object in space .fills a region E and has continuous density p(x, y, z), its 
moments about the coordinate planes are 

Mx)• = f f f zp(x, y, z)dV. 
E 

Mxz = f f f yp(x, y, z) dV. 
E 

Myz = I I I xp(x, y, z) dV. 
E 

The cente1· of mass of the object is the point(.\', y, z), where m is mass and 

- Myz 
X=--, 

m 
- Mxz y=--, 

m 
- Mxy 
z=--. 

m 

JUSTIFICATION A point mass m has moment Mxy = mz about the (x, y) plane 
(Figure 12.6. 9). In an element of volume f..E, the object has moment 

f..Mxy ~ z 11m~ zp(x, y, z) f..V (compared to 11 V). 



z 

z !lm 

y 

Figure 12.6.9 X 

By the Infinite Sum Theorem. 

M." = J J J :::p(x, .\'. z) dV. 
E 

EXAMPLE 4 An object has constant density and the shape of a tetrahedron with 
vertices at the four points 

(0, 0, 0), (1, 0, 0), (0, 1, 0). (0, 0, 1). 

Find the center of mass. 

Step 1 The region is sketched in Figure 12 .6.1 0. 

z 

(0,1,0) y 

(I, 0, 0) 

Figure 12.6.10 X 

Step 2 The region E is the solid bounded by the coordinate planes and the plane 
x + y + ::: = I which passes through (I. 0, 0), (0, I. 0), (0, 0, 1). Solving for 
z, the plane is 

:: = I -X-)'. 

This plane meets the plane ::: = 0 at the line I - x - .r = 0, or .r = I - x. 
Therefore E is the region 

O-s;x-s;!, 0 .,:;; )' .,:;; [ - .\, 0 .,:;; z .,:;; I - X - )'. 
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Step 3 Let the density be p = 1. 

Similarly 

m = f f f dV= f f-x f-x-ydzdydx 

E 

= Il fal-x 1- X- ydydx 

= J)c1 - x)2 dx = i. 

Myz = f f f xdV 
E 

= ll ll -x Ll -x- Y x dz d y dx 

= f Ll-x x(l- x- y)dydx 

= f !x(1 - x)2 dx = 2
1
4 . 

_ Myz 1/24 1 
.\ = ---;;;- = 1/6 = 4" 

- 1 
Z=-

4" 

The center of mass is 

(- - -) ( 1 1 1) 
x,y,z = 4'4'4 · 

An object in space has a moment of inertia about each coordinate axis. 
Intuitively, the moment of inertia about an axis is the analogue of mass for rotations 
about the axis. 

DEFINITION 

If an nhject in space fills a region E and has continuous density p(x, y, z), 

its moments of inertia about the coordinate axes are 

Ix = f f f (y2 + z2 )p(x, y, z) dV, 

E 

Iy = f f f (x2 + z2 )p(x, y, z) dV, 

E 

Iz = f f f (x 2 + y2
)p(x, y, z) dV. 

E 

JUSTIFICATION A point mass m has a moment of inertia about the x-axis of 

Ix = (yz + zz)m. 
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On an element of volume !1E, the object has moment of inertia 

(compared to !1 V). 

The triple integral for I, follows by the Infinite Sum Theorem. 

EXAMPLE 5 Find the moments of inertia about the three axes of an object with 
constant density 1 filling the cube shown in Figure 12.6.11, 

0 :S: x :S: a, 0 :S: y :S: a, 0 :S: 2 :S: a. 

lx = f f f Y2 + 2
2 

dV = L { L y2 + 2
2 

d2 dy dx 
E 

Similarly, 

z 

a Y 

Figure 12.6.11 X 

PROBLEMS FOR SECTION 12.6 

In Problems 1-8, evaluate the iterated integral. 

{ l 4 l 3 

xyzdzdydx 

2 J2 f.2 J4 

(x- 2y + 4z)dzdydx 
l 0 -1 

3 

4 121214 ex+z dz dy dx 

f.
1 j'" f1 

(x2 + yz) dz dy dx 
0 0 xy 

5 

J
1 J1 J1 

2x 2z dz dydx 
Q X }' 

6 

7 f f"' rnx Jy;dzdydx 

8 f.
n/2 f.cos.< f.rsin.< 

0 0 0 

(x + 2z) dz dy dx 
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In Problems 9-16, evaluate the triple integral. 

9 J J J (x + 2y) dV, E: 0 :S x :S 2, 1 :S y :S 3, 2 :S z :S 4 
E 

10 JJJ x 2 yz3 dV, E:O:Sx:S 1,0:Sy:S l,O:Sz:S 1 
E 

11 J J J (4xy + yz)dV, E:O :S x :S 10,0 :S y :S x2,0 :S z :S xy 
E 

12 JJJ(~+~+~)dv, E:1:Sx:Se,l:Sy:Sx,l:Sz:Sx 
E 

13 J f J ex+l)·+ 3zdv, E: -1 :S X :S 1,x :S y :S l,x :S z :S y 

E 

14 Iff xey+zdV, E:l :Sx:S2,0:Sy:Slnx,O:Sz:Sy 
E 

15 JJJ Jx+y+zdV, E:O:Sx:S l,O:Sy:Sx,y:Sz:S2y 
E 

16 J J J dV, E: 0 :S x :S 1, x2 :S y :S x, x 2y :S z :s; xJy 
E 

In Problems 17-26, find (a) the mass, (b) the center of mass, (c) the moments of inertia about the 
three coordinate axes, of an object with density p(x, y, z) filling the region E. 

17 E: 0 :S x :S 1, 0 :S y :S 1, 0 :S z :S 1 p(x, y, z) = x + 2y + 3z 

18 E:O :S x :S 1,0 :S y :S 1,0 :S z :S 1 p(x,y,z) = x2 + y 2 + z2 

19 E:O :S x :S 1,0 :S y :S x,O :S z :S x + y p(x,y,z) = 2 

20 E: -1 :S x :S 1,x2 :S y s 1,x2 s z s 1 p(x,y,z) = z 

21 E:O :S x :S 1,0 s y :S 1,FY :S z s 1 p(x,y,z) = xyz 

22 E: 0 :S x :S 1, x s y s 1, x s z s y p(x, y, z) = 10 

23 E is the tetrahedron with vertices at (0, 0, 0), (a, 0, 0), (0, b, 0), (0, 0, c), p(x, y, z) = k. 

24 E is the tetrahedron with vertices (0, 0, 0), (1, 0, 0), (1, 1, 0), (1, 0, 1), p(x, y, z) = x + y + z. 
25 E is the rectangular box 0 s x :S a, 0 s y :S b, 0 s z :S c, p(x, y, z) = k. 

26 E is the rectangular box -a :S x s a, - b :S y :S b, - c :S z :S c, p(x, y, z) = k. 

7 CYLINDRICAL AND SPHERICAL COORDINATES 

In evaluating triple integrals it is sometimes easier to use cylindrical or spherical 
coordinates instead of rectangular coordinates. 

A point (x, y, z) has cylindrical coordinates (8, r, z) if 

X = r COS 8, y = r sin 8, z = z. 

That is, as we see in Figure 12.7.1, (8, r) is a polar coordinate representation of (x, y), 
and z is the height above the (x, y) plane. 

The name cylindrical coordinates is used because the graph of the cylindrical 
coordinate equation r = constant is a circular cylinder as shown in Figure 12.7.2. 
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z 

(6, r, z) 

z 

y 
e r 

X 

Cylindrical coordinates 

Figure 12.7.1 

DEFINITION 

z 

v y 

v r = const v ant 

1'--

X 

Figure 12.7.2 

A cylindrical region is a region E in (x, )', z) space given by cylindrical co­
ordinate inequalities 

a( G) :S r :S b( 0), 

\Vhere all the jimctions are continuous. To avoid overlaps we also require 
that for (8, r, z) in E, 

0 :S fJ :S 2n and 0 :S r. 

A cylindrical region is shown in Figure 12.7.3. 
The simplest kind of cylindrical region is the cylindrical box 

(/ ::; r ::; b, 

This is a cylinder whose base is a polar rectangle and whose upper and lower faces 
are horizontal, as in Figure 12. 7.4. 

z 

c1(6, r) 

A cylindrical region 

Figure 12. 7.3 

y 

z 

X 

A cylindrical box 
Figure 12.7.4 

y 
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The cylinder box 

0 s e s 2n, 0 s r s b, 

is a cylinder whose base is a circle of radius b and whose top and bottom faces are 
horizontal (Figure 12.7.5). 

The cylindrical box 

0 s e s 2n, as r s b, 

is a circular pipe with inner radius a and outer radius b (Figure 12.7.6). 

z 

X 

Figure 12.7.5 

0 :s. IJ :s. 27r 
O:S.r:S.b 

Ct :S. z :S. c2 

y 

z 

X 

Figure 12.7.6 

0 :s. IJ :s. 27r 
a:S.r:S.b 

Ct :S. z :S. c2 

y 

To get a formula for the triple integral over a cylindrical region E, we use 
the Infinite Sum Theorem but take for L':!E an infinitely small cylindrical box instead 
of rectangular box. 

CYLINDRICAL INTEGRATION FORMULA 

Let E be the cylindrical region 

as e s {3, a(8) s r s b(8), 

The triple integral of f(x, y, z) over E is 

JJJ l
p lb(8) lcz(8,r) 

f(x, y, z) dV = f(x, y, z)r dz dr d8. 
" a(8) Ct(8,r) 

E 

To evaluate the triple integral we substitute 

f(x, y, z) = f(r cos e, r sine, z). 

This is like the Polar Integration Formula but has an extra variable z. 
In the iterated integral we do not integrate f(x, y, z) but the product of f(x, y, z) and r. 

PROOF Let C be the region in the rectangular (8, r, z) space given by 

as e s {3, a(8) s r s b(8), 

The region Cis shown in Figure 12.7.7. 
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z z 

y 

IJ X 
D 

Figure 12.7.7 

We must prove that 

J J J .f(x, y, z) dx dy dz = J J J .f(x, y, z)r dB dr dz. 
E C 

Assume first that .f(x, y, z) > 0 on E. For any (8, r, z) region C 1 corresponding 
to a cylindrical region E 1 , define 

B(C 1) = J f f .f(x, y, z) dx dy dz. 
El 

B has the Addition Property and is ~ 0. An element of volume !'J.C in the 
(8, r, z) space has volume 1'!.0 !'!.r !'!.z. As we can see from Figure 12.7.8, !'!.C cor­
responds to a cylindrical box 11£. !'!.E is almost a rectangular box with sides 
r 1'!.0, !'!.r, and !'J.z, and volume r 1'!.8 !'!.r !'!.z. 

At any point of !'!.E, .f has value infinitely close to 

.f(x, y, z) = .f(r cos e, I' sin 0, z). 

Therefore B(!'!.C) :::::; .f(x, y, z)r 1'!.8 !'!.r !'!.z (compared to 1'!.8 M !'!.z). 

z 

IJ 

Figure 12. 7.8 

t,C 

I I I I 
I I I : 1 I I I !H 
lcJ!t11J 
t:.r 

I' 

X 

z 
6.£ 

y \', I II I 
\ ', II I I 
' ' r l \~ t' 1 I I 

t,(J/\~1-I 'I I 
I 

t:.r I r t,(J 
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By the Infinite Sum Theorem 

B(C) = J J J f(x, y, z)r de dr dr, 

c 

and by definition 

B(C) = J J J f(x, y, z) dx dy dz. 

E 

The general case where f(x, y, z) is not always positive is dealt with as in the 
Polar Integration Formula proof. 

When integrating over a solid region E whose base is a circle or polar 
rectangle, it is often easier to use cylindrical instead of rectangular coordinates. 

EXAMPLE 1 Find the moment of inertia of a cylinder of height h, base a circle of 
radius b, and constant density 1, about its axis. 

Step 1 Draw the region as in Figure 12.7.9. 

Step 2 The problem is greatly simplified by a wise choice of coordinate axes. Let 
the z-axis be the axis of the cylinder and put the origin at the center of the 
base. Then the region E in rectangular coordinates is 

-b 5 x 5 b, -Jb2 - x 2 5 y 5 Jb2 - x2
, 0 5 z 5 h, 

and in cylindrical coordinates is 

0 5 e 5 2n, 0 5 r 5 b, 0 5 z 5 h. 

Step 3 The problem looks easier in cylindrical coordinates. 

x2 + y2 = r2. 

Iz = I J I (x2 + y2
) dV = f" S: S: r2

r dz dr de 
E 

= f" S: J: r 3 
dz dr de 

= 12" rbr3hdrde= r21t~b4hde=nb4h. 
Jo Jo )0 4 2 

z 

y 

Figure 12.7.9 X 
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EXAMPLE 2 Find the center of mass of a cone of constant density with height h 
and base a circle of radius b. 

Step 1 The region is sketched in Figure 12.7 .I 0. 

Step 2 Put the origin at the center of the base and let the z-axis be the axis of the 
cone. E is the cylindrical region 

0 :'S () :'S 2n, 0 -s; I' -s; b, 

Step 3 Let the density be I. 

h 
0 -s; z -s; h - -1'. 

b 

m = JJ Jew= rn f (-"rib r dz dr dO 

E 

z = MX)' = ~h, 
111 4 

The point('\, .v. z) is shown in Figure 12.7.1 I. 

X 

Figure 12.7.10 

y 

X 

Figure 12.7.11 

ex, .Y, z) 

y 
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To express a point P(x, y, z) in spherical coordinates we let p (rho) be the 
distance from the origin to P, let e be the same angle as in cylindrical coordinates, 
and let </J be the angle between the positive z-axis and the line OP. Note that <jJ can 
always be chosen between 0 and n. 

Figure 12.7.12 

/f 

..,.~ 

Q. 

z 

.... ~-------"' 
y = p sin cp sin (} 

X 

(c/>, 0, p) 

y 

We see from Figure 12.7.12 that a point (x, y, z) has spherical coordinates (8, ¢, p) if 

X = p sin </J COS 8, y = p sin <P sin e, z = p cos¢. 

The graph of the equation p = constant is a sphere with center at the origin (hence 
the name spherical coordinates). The graph of </J = constant is a vertical cone with 
vertex at the origin. The graph of e = constant is a half-plane through the z-a.xis. 
These surfaces are shown in Figure 12.7.13. 

z z 

y y y 

X 
p =constant 

X 
cp =constant 

X (}=constant 
Figure 12.7.13 

DEFINITION 

A spherical region E is a region in (x, y, z) space given by spherical coordinate 
inequalities 
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where all the functions are continuous. To avoid overlaps we also require 
that for (0, ¢, p) in E, 

0 s 8 s 2n, 0 s ¢ s n, 0 s p. 

A spherical box is a spherical region of the simple form 

The 0-boundaries are planes, the ¢-boundaries are portions of cone surfaces, and 
the p-boundaries are portions of spherical surfaces. Figure 12.7.14 shows a spherical 
box. 

z 

y 

Figure 12.7.14 X 
A spherical box 

The spherical box 

0 s 8 s 2n, 0 s ¢ s n, O.Sp.Sc 

is a sphere of radius c with center at the origin. 
The spherical box 

0 s 8 s 2n, 0 s ¢ s fJ, Ospsc 

is a cone whose vertex is at the origin and whose top is spherical instead of !lat. 
(See Figure 12.7.15.) 

z 

X 

Figure 12.7.15 

0~8~27r 

0S.¢S.7r 

OS.pS.c 

y 

X 

z 

0 ~ (] s. 211" 
0S.¢S.(3 
OS.pS.c 

y 

Cone with spherical top 
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Another important example is the spherical region 

0 :::; e :::; 2n, 0 :::; ¢ :::; n/2, 0 :::; p :::; c cos ¢, 

which is a sphere of radius tc whose center is on the z-axis at z = tc (Figure 12.7.16). 

z 

c 

0 ~ 8 ~ 21T 
0 ~ ¢ ~ 1r/2 
0 ~ p ~ c cos¢ 

y 

Sphere 
Figure 12.7.16 X 

When integrating over a solid region E made up of spheres or cones, it is 
often easiest to use spherical coordinates. 

SPHERICAL INTEGRATION FORMULA 

Let E be a spherical region 

The triple integral of f(x, y, z) over E is 

Iff rl JP2(8) fc2(4>,8) 
f(x, y, z) dV = ), f(x, y, z)p 2 sin¢ dp d¢ de. 

E a, p,(8) c,(<J>,8) 

In practice we make the substitution 

f(x, y, z) = f(p sin¢ cos e, p sin¢ sine, p cos¢) 

before integrating. 

PROOF Let C be the region in the rectangular (e, ¢, p) space which has the same 
inequalities as E. We prove 

J J J f(x, y, z) dx dy dz = J J J f(x, y, z)p2 sin¢ de d¢ dp. 
E C 

As usual we let f(x, y, z) > 0 on E and put 

B(Cl) = J J f f(x, y, z) dx dy dz. 

Consider an element of volume AC. As we see from Figure 12.7.17, AC 
corresponds to a spherical box AE. AE is almost a rectangular box with 
sides 
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p 

c.c 

f) 

X 

Figure 12.7.17 Spherical Element of Volume 

!'J.p, p 1'1¢, p sin¢ M 

and volume p 2 sin ¢ MJ 1'1¢ !'J.p. 

Thus B(!'J.C) ::::::: f(x, y, z)p 2 sin¢ 1'181'1¢ !'J.p (compared to 1'181'1¢ !'J.p). 

By the Infinite Sum Theorem 

B(C) = f J J f(x, y, z)p 2 sin¢ d8 d¢ dp, 
c 

and by definition 

B(C) = f f J f(x, y, z) dx dy dz. 
E 

The triple integral for volume, 

v = f f f dV 
E 

gives us iterated integral formulas for volume m rectangular, cylindrical, and 
spherical coordinates. 

Rectangular f
a2 fb,(x) fc,(x.y) 

V = dz dy dx. 
a 1 b 1(x) c,(x,y) 

f
{J fb(B) fc2(B, r) 

V = r dz dr d8. 
a a(B) cdB, r) 

Cylindrical 

(>' fjJ,(U) fc,(U,</>) 
V = 1 p 2 sin ¢ dp d¢ dO. 

•> 1 {J 1(0) c,(O,<J>) 

Spherical 

The rectangular formula is really equivalent to the double integral for the 
volume between two surfaces. Similarly, the cylindrical formula is equivalent to the 
double integral in polar coordinates for the volume between two surfaces. 
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On the other hand, the volume formula in spherical coordinates is something 
new which is useful for finding volumes of spherical regions. 

EXAMPLE 3 Find the volume of the region above the cone ¢ = f3 and inside the 
sphere p =c. 

The region, shown in Figure 12.7.18, is given by 

0::;; e::;; 2n, 0::;; ¢::;; {3, 0::;; p::;; c. 

f
2tt fp fc 

v = 
0 0 0 

p2 sin ¢ dp d¢ de 

f2" JP c3 
= -sin¢d¢de 

0 0 3 

f
2

" c3 2n 
= 

0 

(1 - cos {3)3 de = 3 (1 - cos {3)c3
. 

z 

1>={3 

y 

Figure 12.7.18 X 

EXAMPLE 4 A sphere of diameter a passes through the center of a sphere of radius 
b, and a > b. Find the volume of the region inside the sphere of diameter a 
and outside the sphere of radius b. 

Step 1 The region is sketched in Figure 12.7.19. 

Figure 12.7.19 X p=b 
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Step 2 We let the z-axis be the line through the two centers and put the origin at 
the center of the sphere of radius b. The two spheres have the spherical 
equations 

p = a cos r/J, p =b. 

They intersect at 

Thus E is the region 

0 s 0 s 2n, 

b 
cos rP = -. 

a 

b 
0 s rjJ s arccos-, 

a 

f
2n Jarccos(b/a) Jacos¢ 

Step 3 V = p2 sin rjJ dp drjJ dO 
0 0 b 

f 
2rr Jarccos (b/a) 1 

= -(a 3 cos 3 rjJ - b3
) sin rjJ drjJ dO. 

0 0 3 

Put u = cos rjJ, du = -sin rjJ drjJ. Then 

b s p s a cos rjJ. 

EXAMPLE 5 Find the mass of a sphere of radius c whose density is equal to the 
distance from the surface. The sphere is shown in Figure 12.7.20. 

c y 

Figure 12.7.20 X 

Put the center at the origin. The sphere is then given by 

0 s 8 s 2n, 

The density at (8, rjJ, p) is 

0 s rjJ s n, 

density = c - p. 

0 s p s c. 
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The mass is 

PROBLEMS FOR SECTION 12.7 

In Problems 1-6, evaluate the integral using cylindrical coordinates. 

1 fffJx2+y2zdV, Eisthecylinderx2 +;/:S1,0:Sz:S2 
E 

2 J J J x 2 + z dV, E is the cylinder x 2 + y2 
::; 9, 0 ::; z ::; 6 

E 

3 JJJ x 2 + /dV, Eistheconex2 + y2
::; 1,0::; z::; 1- Jx 2 + i 

E 

4 J J J 4 + Jz dV, E is the cone x 2 + y2 ::; 1, Jx2 + y2 ::; z ::; 1 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

E 

J J J (x + y)z dV, E is the region 0 ::; x ::; 2, 0 ::; y ::; J 4 - x 2
, 0 ::; z ::; x2 + y2 

E 

JfJ z dV E is the region 1 :S x 2 + y 2 :S 4, 0 :S z :S Jxl 
E Jx2 + y2 , 

Find the mass of an object in the shape of a cylinder of radius b and height h whose 
density is equal to the distance from the axis. 

Find the mass of an object in the shape of a cylinder of radius b and height h whose 
density is equal to the distance from the base. 

Find the mass of an object in the shape of a cone of radius b and height h whose density 
is equal to the square of the distance from the axis. 

Find the mass of an object in the shape of a cone of radius b and height h whose density 
is equal to the sum of the distance from the base and the distance from the axis. 

Find the center of mass of an object of constant density filling the region above the 
paraboloid z = x 2 + ;/ and below the plane z = 1. 

Find the center of mass of an object of constant density filling the region 

x2 + y2 
::; b, 0 :S z :S Jx2+7. 

Find the moment of inertia of an object of constant density k in the cylinder 0 :S r ::; b, 
- c :S z :S c, about the x-axis. 

Find the moment of inertia of an object of constant density k in the cylindrical shell 
a :S r :S b, -c :S z :S c, about the z-axis. 

781 
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16 
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Find the moment of inertia of an object of constant density kin a cone of radius b and 
height h about its axis. 

Find the moment of inertia of an object of constant density k in a cone of radius b and 
height h about a line through its apex and perpendicular to its axis. 

In Problems 17--24, evaluate the integral using spherical coordinates. 

17 J J J x 2 + y 2 + 2
2 d V, E is the sphere x2 + y2 + z2 

:S b
2 

E 

18 f JJ yx2 + y2 ~2 dV, E is the sphere x2 + y2 + z2 
:S b2 

E 

19 f JJ x 2 dV, E is the sphere x 2 + y
2 + 2

2 
:S I 

E 

20 J f J 2
2 dV, E is the sphere x 2 + y 2 + 2

2 
:S I 

E 

21 J J I 2 dV, E is the sphere p :S 2b cos cjJ 

E 

22 I J J (x 2 + y 2 + 2
2

)
312 dV, E is the intersection of the spheres p :S 2b cos¢, p :S b 

E 

23 J f J 2)x2 + );2 + z2 dV, E is the region above the cone cjJ = CL and inside the sphere 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

E 

p=b 

ffj. 
1 

dV E is the spherical shell a :S p :S b 
xz + Yz + 2 2 , 

E 

Find the volume of the spherical shell a :S p :S b. 

Find the volume of the spherical box eLl :S e :S :Xz, /31 :S cjJ :S f3z, cl :S p :S Cz. 

Find the volume of the region above the cone cjJ = {3 and inside the sphere p = b cos¢. 

Find the volume of the spherical region 0 :S e :S 2n, 0 :S cjJ :S n, 0 :S p :S sin¢. 

Find the mass of an object in the shape of a sphere of radius c whose density is equal 
to the distance from the center. 

Find the mass of a spherical shell a :S p :S b whose density is equal to the reciprocal 
of the distance from the center. 

Find the moment of inertia of a spherical object of radius b and constant density k 
about a diameter of the sphere. 

Find the moment of inertia of a spherical shell a :S p :S b of constant density k about 
any diameter. 

A hole of radius a is bored through a sphere of radius b, and the surface of the hole 
passes through the center of the sphere, a = -!b. Find the volume removed. 

A hole of radius a is bored through a cone of height h and base of radius b, and the 
axis of the cone is on the surface of the hole (a :S !b). Find the volume removed. 

Find the center of mass of a hemisphere of constant density and radius b. 

Find the moment of inertia of an object of constant density kin the ellipsoid 
xz yz 2 2 

2 + b2 +" = 1 a c· 

about the z-axis. Hint: Change variables x 1 = xja, y 1 = yjb, z1 = zlc and use spherical 
coordinates. 
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EXTRA PROBLEMS FOR CHAPTER 12 

1 Compute the Riemann sum 

LL x 2 
- y2 ~x ~y, ~x = 1, ~y = 1, D: - 2 :<S; x :<S; 2, - 2 :<S; y :<S; 2. 

D 

2 Compute the Riemann sum 

LLx2
- JY~x~y,~x = t,~y = i, D: -1 :<S; x $ 1,0 :<S; y $ 1- x 2

. 

D 

3 Evaluate if x 2
- y2 dA, D: -2 :<S; x :<S; 2,-2 S: y :<S; 2. 

n 

4 Evaluate J f x 2
- jYdA, D: -1 :<S; x :<S; 1,0 :<S; y S: 1- x 2

. 

D 

i
./l/2 fj!- 2x2 

5 Evaluate ~- x dy dx. 
0 -)1-2x2 

6 Evaluate f
1J ~ yex dy dx. 

Jo Jx 
7 Find the volume of the solid over the region - 1 S: x :<S; 1, 0 :<S; y :<S; 1 - x2 and between 

the surfaces z = 0, z = 1 - y. 

8 Find the volume of the solid over the region x2 + y2 = 4 and between the surfaces 
z = 0 and z = y2 + x + 2. 

9 Find the volume of the solid 1 :<S; x S: 2, 0 :<S; y S: in x, yjx S: z S: 1/x. 

10 Find the volume of the solid x2 + y 2 s: 1, x 2y3 s: z :<S; 1. 

11 Find the volume of the solid bounded by the planes 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

X= 1, X=)', Z =X+)', Z =X+ 2. 

Find the volume of the solid bounded by the cylinders 

xz + yz = 1, xz + z2 = 1. 

Find the mass, center of mass, and moment of inertia about the origin of the plane 
object 

0 :<S; x :<S; n, 0 S: y :<S; sin x, p(x, y) = k. 

Find the mass, center of mass, and moment of inertia about the origin of the plane object 

0 S: x :<S; 1, x $ y :<S; 1, p(x, y) = x 2y. 

A circular disc filling the region x2 + y2 S: r2 has density p(x, y) = y2
. Find the mass, 

center of mass, and moment of inertia about the origin. 

A semicircular object on the region 

- r S: x S: r, 0 S: y :<S; ~ 

has density p(x, y) = y. Find the work required to stand the object up on its flat side. 

Using polar coordinates, find the volume of the solid 

x2 + y2 :<S; 9, y :<S; z :<S; x + 5. 

Find the volume of the solid over the region 0 S: r :<S; 3 + cos 8 between the plane 
z = 0 and the cone z = r. 

Find the volume of the solid over the circle 0 :<S; r S: a between the plane z = 0 and the 
surface z = 1/r. 

Find the mass and the moment of inertia about the origin of a semicircular object 
0 s: r :<S; 1, 0 :<S; 8 :<S; n whose density is p(r, 8) = re. 
A plane object covers the circle 0 :<S; r :<S; a and its density depends only on the distance 
r from the center, p(r, 8) = f(r). Show that the center of mass is at the origin. 

{n rn/2 rl 
Evaluate Jo Jo Jo z sin x + z cosy dz dy dx. 

783 
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23 fl r ,2 J}'2 
Evaluate x + y + zdzdydx. 

0 • 0 0 

24 Evaluate the triple integral 

Iff y +X zdV, E: 1 ::; X :::; 4, 1 ::; y ::; X, 1 ::; z ::; y. 
E 

25 An object has constant density k in the region 

E: 0::; x s 1, 0 s y::; 1 - x, 0::; z s xy. 

Find its center of mass and its moments of inertia about the coordinate axes. 

26 Use cylindrical coordinates to evaluate fSJE z dV, where E is the region inside the cylinder 
x 2 + y2 = 1 which is above the plane z = 0 and within the sphere x 2 + ;/ + z2 = 9. 

27 An object of constant density k has the shape of a parabolic bowl 

0 ::; IJ ::; 2n, 0 ::; r s b, r2 
::; z ::; r2 + c. 

Find its center of mass and its moment of inertia about the z-axis. 

28 Use spherical coordinates to evaluate the integral 

29 

0 30 

0 31 

0 32 

0 33 

0 .34 

0 35 

f J f X + y + z dV, 
E 

E is the spherical octant 

x 2 + y2 + z2 
::; 1, 0::; x, 0::; y, 0::; z. 

A spherical shell a ::; p ::; b has density equal to the distance from the center. Find its 
mass and its moment of inertia about a diameter. 

Prove that the double Riemann sum LLnf(x, y) dx dy is finite whenever f(x, y) is 
continuous, D is a closed region, and dx, dy are positive infinitesimals. 

Suppose a plane object is symmetric about the x-axis, that is, it covers a region D of 
the form 

D: a ::; x ::; b, - g(x) ::; y s g(x) 

and has density p(x, y) = p(x, - y). Prove that the center of mass is on the x-axis. 

The moment of inertia about the x-axis of a point in the plane of mass m is 1, = my 2
. 

Use the Infinite Sum Theorem to show that the moment of inertia about the x -axis 
of a plane object with density p(x, y) in the region Dis Ix = fSn p(x, y)y2 dA. 

The kinetic energy of a point of mass m moving at speed vis KE = tmv2
. A rigid object 

of density p(x, y) in the plane region D is rotating about the origin with angular velocity 
w (so a point at distanced from the origin has speed wd). Use the Infinite Sum Theorem 
to show that the kinetic energy of the object is 

KE = J J tw2(x 2 + y 2)p(x, y) dA = tw2 I. 
D 

Suppose a plane object is symmetric about the origin; that is, it fills a polar region 
0 ::; r ::; g(IJ), - n ::; 8 ::; n:, such that g(IJ ± n) = g(8), and its density has the property 
p(r, 8) = p(r, 8 ± n:). Show that the center of mass is at the origin. 

Use the Infinite Sum Theorem to show that if D is a polar region of the form a ::; r ::; b, 
o:(r) ::; 0 ::; {3(r), then 

JJ f
b JP(r) 

f(x, y) dA = f(r, O)r dfJ dr. 
D a :x(r) 
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VECTOR CALCULUS 

.1 DIRECTIONAL DERIVATIVES AND GRADIENTS 

The partial derivatives 8zj8x and 8zj8y are the rates of change of z = f(x, y) as the 
point (x, y) moves in the direction of the x-axis and they-axis. We now consider the 
rate of change of z as the point (x, y) moves in other directions. 

Let P(a, b) be a point in the (x, y) plane and let 

U = cos cd + sin o:j 

be a unit vector, o: is the angle from the x-axis to U (see Figure 13.1.1). The line through 
P with direction vector U has the vector equation 

X= P +tV 

or in parametric form, 

(1) x = a + t cos o:, y = b + t sin ex. 

y 

X 

Figure 13.1.1 The unit vector 

At t = 0 we have x = a and y = b. If we intersect the surface z = j(x, y) with the 
vertical plane through the line (Equation 1), we obtain the curve 

z = f(a + t cos ex, b + t sin ex) = F(t). 

785 



The slope dz/dt = F'(O) of this curve at t = 0 is called the slope or derivative off in 
the U direction and is writtenfu(a, b) (Figure 13.1.2). 

z The directional derivative 

y 

Figure 13.1.2 X 

Here is the precise definition. 

DEFINITION 

Given a function z = .f(x, y) and a unit vector U = cos cd + sin aj, the 
derivative of .fin the U direction is the limit 

r b) 
1
. f(a + t cos ct., b + t sin a) - .f(a, b) 

;u(a, = 1m . 
t~o t 

.fu(a, b) is called a directional derivative of .fat (a, b). 

The partial derivatives of .f(x, y) are equal to the derivatives of f(x, y) in the 
i and j directions: 

f ( b 
_ 

1
. .f(a + Llx, b) - f(a, h) 

X a, ) - lffi ----------~----
8x~ o Llx 

= lim f(a + t cos 0, b + t sin 0) - .f(a, b)= .f;(a, h). 
t~O ( 

1
.( b) = 1. .f(a, b + Lly) - f(a, b) 
Ya' 1m 

. t.y~O L'l.y 

f(a, b) l (a + t cos ~, b + t sin ~) 
I
. . 2 2 

= 1m ------- = .f;(a, h). 
t~O 

EXAMPLE 1 Find the derivative of f(x, y) = xy + y 2 in the direction of the unit 
vector 

u = .J\ + ~j. 
2 2 
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There is an easier way to find the directional derivatives of f(x, y) using the 
partial derivatives. It is convenient to combine the partial derivatives into a vector 
called the gradient of f. 

DEFINITION 

The gradient of a function z = f(x, y), denoted by grad z or grad f, is defined by 

az. az. 
gradz =ax·+ ay]. 

In functional notation, 

grad f =f) a, b)i + fy(a, b)j. 

Thus gradf is the vector valued function of two variables whose x and y 
components are the partial derivatives fx and fY (Figure 13.1.3). Sometimes the 
notation V for V z is used for the gradient. 

Figure 13.1.3 

THEOREM 1 

cz. 
-J oy 

Suppose z = f(x, y) is smooth at (a, b). Then for any unit vector U = cos o:i + 
sin aj, the directional derivative fu(a, b) exists and 

az az . 
fu(a, b)= U • gradf = OX COS 0: + oy Sill fl.. 
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PROOF Let U = cos cd + sin aj. Write x, y, and z as functions oft, 

x = a + t cos et, y = a + t sin u., 

z = j(a + t cos (J., b + t sin u.). 

Then by the Chain Rule, 

. b dz oz dx oz dy oz oz . 
iu(a ) = - = - - + - - = "'x cos u. + "'y sm u.. 

• dt ax dt ay dt u u 

EXAMPLE 2 Find the gradient of f(x, y) = xy + y 2 and use it to find the derivative 
in the direction of 

U j3, I, 
= 2 1 + 2J. 

})x, y) = _II, ~.(X, y) = X + 2y. 

grad f(x, y) = yi + (x + 2y)j. 

fu(x, y) = f y + ~ (x + 2y) = ~ x + ( f + 1 k 
We can use Theorem 1 to give a geometric interpretation of the gradient 

vector. Let us assume that f(x, y) is smooth at a point (a, b), and see what happens 
to the directional derivatives fu(a, b) as the unit vector U varies. If both partial 
derivatives fy;(a, b) and ~,(a, b) are zero, then the gradient vector and hence all the 
directional derivatives are zero. Suppose the partial derivatives are not both zero, 
whence grad f # 0. Then 

fu = u. grad/= /gradf/ cos e 
where 8 is the angle between U and grad f. Therefore j~ is a maximum when cos 0 = I 
and 8 = 0, a minimum when cos e = -1 and 0 = n, and zero when cos 0 = 0 and 
0 = n/2. We have proved the following corollary. 

COROLLARY 1 

Suppose z = f(x, y) is smooth and grad f # 0 at (a, b). Then the length of 
grad f is the largest directional derivative off, and the direction of grad f 
is the direction of the largest directional derivative of f. 

On a surface z = j(x, y), the direction of the gradient vector is called the 
direction of steepest ascent, and the direction opposite the gradient vector is called 
the direction of steepest descent (Figure 13.1.4). 

COROLLARY 2 

Suppose z = f(x, y) is smooth and ozjoy # 0 at (a, b). Then grad/ is normal 
(perpendicular) to the level curve at (a, b). That is, gradf is perpendicular 
to the tangent line of the level curve (Figure 13.1.5). 



I..:S.l UIHt:.L IIUI\JAL Ut:.HIVAIIVt:::S AI\IU l.JHAUit:l\11::;:, /lY::J 

z 

Figure 13.1.4 X 

Figure 13.1.5 

l y 
I 
I 
I 
I 
I 

~I ~d/ 
y 

PROOF By the Implicit Function Theorem, the level curve 

f(x, y) - f(a, b) = 0 

has the tangent line 

az (x - a) + az (y - b)= 0. 
ax ay 

X 

(a, b) is on this line. Let (x0 , y0 ) be any other point on the line. Then 

D = (x0 - a)i + (y0 - b)j 

is a direction vector of the line, and 

az az 
D · gradf = (x0 -a)-;;-+ (y0 - b)-= 0. 

ox ay 

Thus grad f is perpendicular to the direction vector D. 

Water always flows down a hill in the direction of steepest descent. Thus 
on a topographic map, the course of a river must always be perpendicular to the 
level curves, as in Figure 13.1.6. 
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Figure 13.1.6 

EXAMPLE 3 A ball is placed at rest on the surface z = 2x 2 
- 3/ at the point 

(2, 1, 5) (Figure 13.1.7). Which direction will the ball roll? 

The ball will roll in direction of steepest descent, given by -grad z. 

"' "' oz. oz. . 8' 6' gradz =-;;-I+ -.:;-J = 4xt- 6yj = 1- J. 
OX CJ' 

-gradz = -8i + 6j. 

z 

y 

'Z 
(2, 1) 

X 

Figure 13.1.7 X 

The unit vector in this direction is 

u = ----;=8=:=i =+=6~j 
J82 + 62 

8 . 6 . 
--I+ -J 

10 10 

y 

Directional derivatives and gradients for functions of three variables are 
similar to the case of two variables. 

DEFINITION 

Given a real function w = f(x, y, z) and a unit vector 

U = cos cti + cos fJj + cos yk 
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in space, the derivative off in the direction U and the gradient off at (a, b, c) 
are defined as follows. 

I" ( b _ 
1
. f(a + t cos rx, b + t cos [3, c + t cosy) - f(a, b, c) 

Ju a, , c) - 1m , 
t->0 t 

ow. ow. ow 
grad W = OX I + Oy J + OZ k. 

THEOREM 2 

Suppose w = f(x, y, z) is smooth at (a, b, c). Then for any unit vector 

U = cos rxi + cos {3j + cos yk, 

the directional derivative fv(a, b, c) exists and 

ow ow ow 
fu(a, b, c)= u •grad/ = ox cos(/.+ ay cos {3 +a; cosy. 

Corollaries 1 and 2 also hold for functions of three variables. In Corollary 2, 
grad/ is normal to the tangent plane of the level surface f(x, y, z) - f(a, b, c)= 0 
at (a, b, c). 

EXAMPLE 4 Given the function 

w = z cos x + z sin y 

at the point (0, 0, 3), find the gradient vector and the derivative in the direction 
of 

u = ~i- ~j + ~k 
3 3 3 . 

ow. aw. ow 
grad w = -1 + -J + -k 

ax oy az 
= - z sin xi + z cos yj + (cos x + sin y)k 

= -3 ·sin Oi + 3 ·cos Oj + (cos 0 + sin O)k 

= 3j + k. 

2 1 2 1 
fu(O, 0, 3) = U ·grad w = 3 · 0- 3 · 3 + 3 · 1 = -3. 

EXAMPLE 5 Find a unit vector normal to the surface 

z = x 2 + 2y2 + 1 

at (1, 2, 10) shown in Figure 13.1.8. 

Let f(x, y, z) = - z + x 2 + 2y2 + 1. 

By Corollary 2, grad f is normalto the given surface - z + x 2 + 2 y2 + 1 = 0. 
We compute 

gradf = 2xi + 4yj - k. 
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y 

Figure 13.1.8 X 

At {1, 2, 10), grad/= 2i + 8j- k. The required unit vector ts found by 
dividing grad I by its length, 

u = 2i + 8j- k 
)22 + 82 + 12 

PROBLEMS FOR SECTION 13.1 

2i + 8j - k 

J69 

In Problems 1-14, find the gradient vector, grad f, and the directional derivative fu. 

2 

3 

4 

5 

6 

7 

8 

9 

10 

f(x, y) = x2 + yl, u = i +j 

fi 
i- j 

U=-
fi 

f(x, y) = x2y3, U = 3i - 4j 
5 

f(x, y) = x2y3, U = 3i + 4j 
5 

. i + 2j 
f(x,y) = cosxsmy, U = fi 

r( ) ax+b;• u ai + bj x, v = e ~ = ----. . P+P 
~ i-j 

f(x,y) = y'x 2 + yl, U =-
j2 

f(x,y) = jx2- yz, U = 4i- 3j 
5 

i + 2j- 2k 
f(x,y,z) = xyz, U = 

3 

f(x, y, z) = xz + yz + zz, U = i + j + k 
fi 



11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

D 24 
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1 2 3 i-k 
f(x, y, z) =- +- + -, U = r-;

2 X )' Z yL. 

1 2 3 i-j+k 
f(x, y, z) =- + - + -, U = -~~ 

X )' Z -/3 
f(x, y, z) = Jx 2 + y2 + z2

, U = cos cd + cos flj +cos yk 

f(x, y, z) = Ax + By + Cz, U = cos ai + cos flj + cos yk 

Find the derivative of z = Jx;y at the point (1, 1) in the direction U = (i - 3j)/ji0. 

Find the derivative of z = 1/(x + y) at the point (2, 3) in the direction U = (- i - j)/ J2. 
Find the derivative of z = 2x2 + xy -l at the point (2, 1) in the direction U = ai + bj. 

Find the derivative of w = ~ at (1, 1, 1) in the direction U = (2i + j + 2k)/3. 

Find the derivative of w = J4- x2 
- y2 

- z2 at (1, 1, 1) in the direction U = 

(i - j + k)/-/3. 
Find the direction of steepest ascent on the surface z = 2x2 + 3y2 at the point (1, -1). 

Find the direction of steepest descent on the surface z = J 4 - x2 
- y2 at the point 

(1, 1 ). 

Find a unit vector nonlial to the sphere x2 + y2 + z2 = 9 at the point (1, 2, 2). 

Find a unit vector normal to the ellipsoid ix2 + y2 + tz2 = 3 at the point (2, 1, 3). 

Given a unit vector U = ai + bj and a function z = f(x, y) with continuous second 
partials, find a formula for the second directional derivative fuu{x, y), i.e., the derivative 
Of }u(X, y) in the direction U. 

D 25 Given unit vectors U = u1 i + u~ and V = v1 i + v~, and a function z = f(x,y) with 
continuous second partials, find a formula for the mixed second directional derivative 
Uulv(x, y). 

2. LINE INTEGRALS 

There are two ways to generalize the integral to functions of two or more variables. 
One way is the line integral, which we shall study in this section. The other is the 
multiple integral, which was studied in Chapter 12. 

The line integral can be motivated by the notion of work in physics. The 
work done by a constant force vector F acting along a directed line segment from 
A to B is the inner product 

W=F·S 

where Sis the vector from A to B (Figure 13.2.1). 

y 

B 

A 

X 

Figure 13.2.1 
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If 

the force vector )i + Q(x, y)j . S the work 
F(x v) = P(x, y traight !me ' 

, . . tead of a s 2 2) 
a curve C ms (Figure 13. . . d acts along the curve C . h x and y an I ofF along varies Wit be the line integra turns out to 

Figure 13.2.2 

. a! is an integral f the line mtegr · · idea o 
The intUitive J . dS 

b't of work of infinitesimal 1 s 

W= F 
c 

dW = F, dS . definition. 
. a prec1se We now gJve 

. ieces dS of th~ cur~~h~· plane of the form . finitesimal p . . regiOn o 

along m pen •·ectangle "a h < y < b, . e 13.2.3). 

An o o, < x <a,, ' . finhy symbols (Flgur 
bers or m . h real num d b's are eit er 'san where the a 

Figure 13.2.3 

y 

h, ----

aJ 

Pen rectangle An o 

1 

X 
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DEFINITION 

A smooth curve fi·mn A to B is a curve C given by parametric equations 

where: 

x = g(s), y = h(s) 0 ::::; s ::::; L, 

A = (g(O), h(O)), B = (g(L), h(L)), 

L = length of curve, 

s = length of the curve from A to (x, y), 

dxjds and dyjds are continuous for 0 ::::; s ::::; L. 

We call A the initial point and B the terminal point of C. A smooth curve from 
A to B is also called a directed curve, and is drawn with arrows. 

Given s and an infinitesimal change !'!.s = ds, we let, 

!'!.x = g(s + l'!.s) - g(s), 

!'!.y = h(s + !'!.s) - h(s), 

!'!.S = !!.xi + !'!.yj, 

dx = g'(s) ds, 

dy = h'(s) ds, 

dS = dxi + dyj. 

Thus !'!.Sis the vector from the point (x, y) to (x + !'!.x, y + !'!.y) on C, and dS is an 
infinitesimal vector tangent to Cat (x, y) (Figure 13.2.4). 

y 

B 

c 
A 

X 
A smooth curve 

Figure 13.2.4 

DEFINITION 

Let F(x, y) = P(x, y)i + Q(x, y)j 

be a continuous vector valued function on an open rectangle D and let C be a 
smooth curve in D. The line integral of F along C, 

t F • dS = t P dx + Q dy, 

is defined as the definite integral 



796 13 VECTOR CALCULUS 

S
L ( dx . d\') P- + Q---"- ds. 

0 ds ds 

Notice that the inner product ofF and dS is 

F. dS = (Pi + Qj) · (dxi + dyj) = P dx + Q dy. 

This is why we use both notations Jc F · dS and Jc P dx + Q dy for the line integral. 

DEFINITION 

The work done by a continuous force vector F(x, y) along a smooth curve C 
is given by the line integral 

W= L F·dS. 

JUST/FICA TION We can justify this definition by using the Infinite Sum Theorem 
from Chapter 6. Let W(u, v) be the work done along C from s = u to s = v 
(Figure 13.2.5). Then W(u, v) has the Addition Property, because the work 
done from u to v plus the work done from v to w is the work done from u tow. 
On an infinitesimal piece of C from s to s + L'ls, the work done is 

L'l W::::: F(x, y) • L'lS ::::: F(x, y) • dS (compared to L'ls). 

But F(x, y) • dS = P dx + Q dy = (pdlx + Qdy) ds. 
GS ds 

y 

F 

A B 

X 
Figure 13.2.5 Work W 

By the Infinite Sum Theorem, 

J.
L ( dx dy) r 

W = o p ds + Q ds ds = Jc F, dS. 

The next theorem is useful for evaluating line integrals. It shows that any 
other parameter t can be used in place of the length s of the curve. Figure 13.2.6 
illustrates the four parts of this theorem. 
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y 

A(xo~ Yol ·z 
F 

{i) Horizontal 

.. 

y 

X 

F 

t = c0 
A t = c 1 

(iii) Parametric curve 

y y 

y 

A(xo, Yo) 

(ii) Vertical 

X 

I~ ~ A C 

X 

fc F·dS 

(iv) Reversing the curve direction 

Figure 13.2.6 

THEOREM 

Let Jc F · dS be a line integral. 

X 

(i) If C is a horizontal directed line segment x0 :::; x :::; x 1 , y = Yo, then 

f F · dS = ·fx
1 

P(x, y0 ) dx. 
c xo 

(ii) If C is a vertical directed line segment x = x 0 , Yo :::; y :::; y 1 , then 

f F • dS = fYt Q(x0 , y) dy. 
C Yo 

(iii) If C is traced by a parametric curve 

X= g(t), y = h(t), 

where dxjdt and dy/dt are continuous, then 

X 
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L F·dS = 1:· (p~~ + Q~) dt. 

(iv) Reversing the curve direction changes the sign of a line integral. That is, 
if C 1 is the curve C with its direction reversed, then 

L. F·dS =- L F·dS. 

Remark The integrals fx, P(x, y
0

) dx, 
xo Jy, Q(x

0
, y) dy 

)'O 

are sometimes called partial integrals. 

PROOF (i) and (ii) are special cases of (iii). (iii) is proved by a change of variables, 

L F·dS = LL (p~; + Q~~) ds 

= Jc' (Pdx + Q dy) ds dt 
co ds ds dt 

J
c, ( dx dy) = P- + Q- dt. 

co dt dt 

(iv) is true because reversing the limits changes the sign of an ordinary 
integral. 

EXAMPLE 1 Find the line integral of 

F(x, y) = sin x cos yi + exyj 

along 

(a) The horizontal line C 1 : 0 :::; x :::; n, y = n/3 (Figure 13.2.7(a)). 

(b) The vertical line C2 : 0:::; y:::; 1, x = 2 (Figure 13.2.7(b)). 

y .v 

X 

Figure 13.2.7 (a) (b) 

We use partial integrals. 

(a) f F • dS = fn sin x cos!!. dx 
c, 0 3 

= f !sinxdx = -!cosxJ: -!(-1- 1) = 1. 

X 
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(b) J F·dS = J1 
e2Ydy = !e2YJ

1 
= !(e2- 1). 

c2 o o 

Given two points A and B, there are infinitely many different smooth curves 
C from A to B. In general the value of a line integral will be different for different 
curves from A to B. 

EXAMPLE 2 Let the force vector F be F = - yi + xj. 

y 

F is perpendicular to the position vector xi + yj but has the same length 
as xi + yj. Find. the work done by F along the following curves, shown in 
Figure 13.2.8, from (0, 0) to (1, 1): 

(a) cl: The line y = X, 0 :::; X :::; 1. 

(b) c2: The parabola y = x2, 0 :::; X :::; 1. 

(c) C3 : The curve y = ..y-;:, 0 :::; x :::; 1. 

y 

(l, 1) (!, I) 

X 0 

(a) (b) 

y 

(l' 1) 

X 0 X 

(c) 

Figure 13.2.8 

(a) Put x = t, y = t. 

W1 = J F · dS = J - y dx + x dy 
c, c, 

= f (- t + t) dt = 0. 

The work is zero because the force F is perpendicular to dS along C1 . 

(b) Put x = t, y = t 2
• 

W2 = J - y dx + x dy 
c2 

= f (- t
2 + t • 2t) dt = f t 2 dt = t. 

(c) Put x = t 3
, y = t. 

w3 = f -ydx + xdy = fl (-t·3t2 + t 3 )dt 
. ~ 0 

= f -2t3 dt = ! . 
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A piecewise smooth curve is a curve C that can be broken into finitely many 
smooth pieces Cl> C2 , ... , C" where the terminal point of one piece is the initial 
point of the next (Figure 13.2.9). For example, a curve formed by two or more sides 
of a rectangle or a polygon is piecewise smooth. The line integral of F(x, y) over a 
piecewise smooth curve C is defined as the sum 

f F . dS = f F · dS + f F · dS + · · · + f F · dS. 
C Ct C2 Cn 

y 

A 

X 

Figure 13.2.9 A Piecewise Smooth Curve from A to 8 

EXAMPLE 3 Find the line integral 

L xydx + x 2ydy 

where C is the rectangular curve from (2, 5) to ( 4, 5) to ( 4, 6). 

We see in Figure 13.2.10 that C is a piecewise smooth curve made up of a 
horizontal piece 

y = 5 

and a vertical piece 

C2 :x = 4, 5:::;; y:::;; 6. 

The line integral is the sum of two partial integrals, 

y 
(4, 6) 

__jc2 
(2, 5) (4 5) 

Ct · 

X 

Figure 13.2.10 
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f F • dS = f F · dS + f F • dS = f4 

x • 5 dx + f6 

4
2 

• y dy 
c c, c2 2 s 

= 5·!x2 J: + 16·!J
2I = 30 + 88 = 118. 

A simple closed curve is a piecewise smooth curve whose initial and terminal 
points are equal and that does not cross or retrace its path. Examples of simple 
closed curves are the perimeters of a circle, a triangle, and a rectangle. The value 
of a line integral around a simple closed curve C depends on whether the length s 
is measured clockwise or counterclockwise, but does not depend on the initial point 
(Figure 13.2.11). The clockwise and counterclockwise line integrals ofF around a 
simple closed curve C are denoted by 

~c F·dS. 

F 

f/2 F· dS c 

F 

¢, F·dS c 
Figure 13.2.11 Integrals around Simple Closed Curves 

THEOREM 2 

If C is a simple closed curve, then 

~c F • dS = - ~c F · dS 

and the values do not depend on the initial point of C. 

</) F·dS 
c 

d> F·dS Y6 

F 

F 

PROOF The equation in Theorem 2 holds because reversing the direction of the 
curve changes the sign of the line integral. Suppose C has the initial point A, 
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and its direction is clockwise. Let A 1 be any other point on C, and let C 1 

and C2 be as in Figure 13.2.12. 

With the initial point A, 

1 F . dS = f F · dS + f F · dS. Jc c, c2 

With the initial point A 1 , 

1 F . dS = f F · dS + f F · dS. Jc c2 c, 

These are equal as required. 

Figure 13.2.12 

EXAMPLE 4 Find the line integral 

£ -ydx + xdy 

where Cis the circle x 2 + y 2 = 4, shown in Figure 13.2.13. 

y 

(2, Q) X 

Figure 13.2.13 

We may start at any point of C. Take (2, 0) as the initial point. Then C has 
the parametric equations 

X= 2 COS 0, y = 2 sinG, 0::;; G::;; 2n. 

As G goes from 0 to 2n, (x, y) goes around C once counterclockwise as 
required. 
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J.. f 2
" ( dx dy) Jc - y dx + x dy = Jo - y de + x de de 

f2" 
= Jo (-2sine(-2sine) + 2cose(2cose))de 

f2" f2" 
= Jo 4 sin

2 
e + 4 cos 2 

e de = Jo 4 de = 8n. 

Line integrals in space are developed in a similar way. Instead of an open 
rectangle we work in an open rectangular solid. A smooth curve C in space has three 
parametric equations with continuous derivatives, 

x = g(s), y = h(s), z = l(s), 0:::;; s:::;; L. 

Given a continuous vector valued function 

F(x, y, z) = P(x, y, z)i + Q(x, y, z)j + R(x, y, z)k 

and a smooth curve C in space, we define the line integral ofF along C, in symbols, 

{ F·dS = L Pdx + Qdy + Rdz, 

as rL ( dx dy dz) 
)

0 
p ds + Q ds + R ds ds. 

EXAMPLE 5 Find the line integral 

f (x + y) dx + !._ dy + xy dz 
c X 

along the spiral C .given by 

X= COSt, y = sin t, z = 2t, 

The line integral is 

n 
0:::;; t:::;; -. 

2 

f"
12 2t 

(cost + sin t) d(cos t) + -- d(sin t) + (cost sin t) d(2t) 
0 cost 

f"/2 
= Jo (-costsint- sin 2t + 2t + 2costsint)dt 

= -- sin 2 t - - t - - sin t cos t + t 2 + sin 2 t 1 ( 1 1 ) J tt/2 

2 2 2 0 

1 1 1 J "12 

= 2 sin2 t - 2t + 2 sin t cost + t 2 

0 

1 n n 2 

=---+-
2 4 4. 
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PROBLEMS FOR SECTION 13.2 

Evaluate the following line integrals. 

1 fcxerdx + x 2 ydy, C:O:::; x:::; 2,y = 3 

2 fcxe>'dx + x 2 ydy, C:O:::; y:::; 4,x = 4 

3 L xeYdx + x 2 ydy, C:x = 3t,y = 12 ,0:::; t:::; 1 

4 fcxerdx + x2ydy, C:x = e',y = e', -1:::; t:::; 1 

5 L (cos xi + sin yj) • dS, C: x = t, y = t, 0 :::; t :::; 1 

6 

7 

8 

L ( L + X ~ }') • dS, 

L vy + X ! yl . dS. 

L (:)'+X!)'). dS, 

Cis the rectangular curve from (1, 1) to (3, 1) to (3, 6). 

C.' X = 2t, )' = 51, 1 :s:; t :s:; 4 

C: X = t, y = t 2
, 1 :s:; t :s:; 4 

9 Pcydx- xdyand~cydx- xdy, C:x
2 + y2 = 1 

10 Pc x2y dx + xy2 dy, C: x 2 + y2 = 4 

11 Pc(x + y)dx- 3xydy, C:x2 + y2 
= 4 

12 Pc (e' cos yi + e' sin yj) • dS, C is the square with vertices (0, 0), (1, 0), (1, 1 ), (0, I). 

13 i. (fiyi + x 2y2j) • dS, Cis the triangle with vertices (0, 0), (1, 1), (1, 0). 

14 ( yzdx + xzdy + xydz, C:x = t,_l' = t2.z = t 3 ,0:::; t:::; 1. 
Jc 

15 L yz dx + xz dy + xy dz. C: x = cost. y = sin t, z = tan t, 0 :::; t :::; n/4. 

16 L (xi+ yj + :k) • dS, C is the rectangular curve from (0, 0, 0) to (1, 0, 0) to (1, 1, 0) 

to (1. 1, 1). 

17 Find the work done by the force F = (xi + yj)/(x2 + y 2
) acting along a straight line 

from (L 1) to (2, 5). 

18 Find the work done by the force F = (i/(y + 1)) - (jj(x + 1)) acting along the parabola 
X = l, }' = t 2

, 0 :s:; t :s:; J. 

19 Find the work done by the force F = x2i + y2 j + z2k acting along a straight line from 
(0, 0, 0) to (3, 6, 10). 

20 Find the work done by the force F = yi + zj + xk along the curve x = Jt, y = 1//r, 
z = t, 1 :::; t :::; 4. 
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3 INDEPENDENCE OF PATH 

For functions of one variable, the Fundamental Theorem of Calculus shows that 
the integral is the opposite of the derivative. In this section we shall see that the line 
integral is the opposite of the gradient. 

By a vector field we mean a vector valued function 

F(x, y) =:= P(x, y)i + Q(x, y)j 

where P and Q are smooth functions on an open rectangle D. 
For example, if f(x, y) has continuous second partials on D then its gradient 

grad f is a vector field. 
Many vector fields are found in physics. Examples are gravitational force 

fields and magnetic force fields, in which a force vector F(x, y) is associated with each 
point (x, y). Another example is the flow velocity V(x, y) of a fluid. A vector field in 
economics is the demand vector 

D(x, y) = D1(x, y)i + DAx, y)j, 

where D1 (x, y) is the demand for commodity one and DAx, y) is the demand for 
commodity two at the prices x for commodity one and y for commodity two. All of 
the examples above have analogues for three variables and three dimensions (and 
the demand vector for n commodities has n variables and n dimensions). 

DEFINITION 

f(x, y) is a potential function of the vector field Pi + Qj if the gradient off is 
Pi+ Qj. 

Not every vector field has a potential function. Theorem 1 below shows 
which vector fields have potential functions, and Theorem 2 tells how to find a 
potential function when there is one. 

Using the equality of mixed partials, we see that if the vector field Pi + Qj 
has a potential function, then aPjay = aQjax. Iff is a potential function of Pi+ Qj, 
we have 

df af. af. p· Q' 
gra = ~ 1 + -a J = 1 + J, 

ox y 

aP a2f rPf aQ 

ay ay ax ax ay ax. 

EXAMPLE 1 The vector field - yi + xj has no potential function, because 

aP ac- y) 
-=-~= -1 
ay ay ' 

aQ ax 
ax =ax= 1. 

THEOREM 1 

A vector field Pi + Qj has a potential function if and only if ~p = oa"Q. 
oy x 
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We have already proved one direction. We postpone the proof of the other 
direction until later. 

By definition, grad.f = Pi+ Qj if and only if df = P dx + Q dy. In general, 
an expression P dx + Q dy is called a differential form. A differential form is called 
an exact d~fferential if it is equal to the total differential df of some function f(x, y). 

Using this terminology, Theorem 1 states that: P dx + Q dy is an exact 
differential if and only if oPjoy = oQjox. 

EXAMPLE 2 Test for existence of a potential function: 

x 2yi + sin x cos yj. 

cP o(x 2y) 2 ----::::;--=-..,-=X, 
cy oy 

oQ O(sin X COSy) 

ex ex =COS X COSy. 

There is no potential function. 

EXAMPLE 3 Test for existence of a potential function: 

3x2y2i + (y2 + 2x3y)j. 

oP o(3x2y2
) 

___:___~ = 6x 2y 
ay oy ' 

oQ o(y2 + 2x3 y) 
;:;- = ~ = 6x 2y. 
ux ex 

There is a potential function. 

THEOREM 2 (Path Independence Theorem) 

Let Pi + Qj be a vector field such that cPjoy = oQjox and let A and B be 
two points of D. 

(i) Let f be a potential function for Pi + Qj. For any piecewise smooth 
curve C from A to B, 

L P dx + Q dy = f(B)- f(A). 

Since the line integral in this case depends only on the points A and B and 
not on the curve C (Figure 13.3.1), we write 

J 
8 

P dx + Q dy = f P dx + Q dy. 
A C 

(ii) g is a potential fimction for Pi + Qj if and only if g has the form 

g(x, y) = fql P dx + Q dy + K 

for some constant K. 
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y 

B 

A 

B ft P dx+Q dy 
X 

Figure 13.3.1 Independence of path 

Theorem 2 is important in physics. A vector field of forces which has a 
potential function is called a conservative force field. The negative of a potential 
function for a conservative force field is called a potential energy function. Gravity, 
static electricity, and magnetism are conservative force fields. Part (i) of the theorem 
shows that the work done by a conservative force field along a curve depends only 
on the initial and terminal points of the curve and is equal to the decrease in potential 
energy. 

Mathematically, Theorem 2 is like the Fundamental Theorem of Calculus. 
It shows that the line integral of gradf along any curve from A to B is equal to the 
change in the value off from A to B. When A = B, we have an interesting con­
sequence: 

If f(x, y) has continuous second partials then the line integral of the gradient 
off around a simple closed curve is zero, 

Tc gradf • dS = 0. 

Using part (ii), we can find a potential function f(x, y) for a vector field 
Pi + Qj in three steps. 

When to Use 

Step 1 Choose an initial point A(a, b) in D. 

Step 2 Choose and sketch a piecewise smooth curve C from A to an arbitrary 
point X(x0 , y0 ). 

Step 3 Compute f(x 0 , y0) by evaluating the line integral 

f(x 0 , Yo) = L P dx + Q dy. 

We postpone the proof of Theorem 2 to the end of this section. 

EXAMPLE 3 (Continued) Find a potential function for the vector field 

3xzyzi + (yz + 2x3y)j. 
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aP aQ 
We have already shown that -

0 
= -;-· 

y OX 

Step 1 Pick (0, 0) for the initial point. 

Step 2 Let C be the rectangular curve from (0, 0) to (0, y0 ) to (x 0 , y0), shown in 
Figure 13.3.2. 

y' 

(0, Yo).___, _____ _. (xo, Yo) 

c 
c 

(0, 0) X 

Figure 13.3.2 

Step 3 A potential function is 

f(Xo,J'0) = L 3x2y2 dx + (y2 + 2x3y) dy 

= J:'o (l + 2 • 03y) dy + fo 3x2y6 dx 

= h6 + x6y6 · 
j(x, y) = !l + x3y2. 

As a check we may compute grad f. 

gradf =of i + ~rj = 3x2y2j + (y2 + 2x3y)j. ax oy 
We can get the same answer by choosing another curve in Step 2. 

FIRST ALTERNATE SOLUTION 

Step 2 Let C 1 be the rectangular curve from (0, 0) to (x 0 , 0) to (x 0 , y0 ), shown in 
Figure 13.3.3. 

y 

(xo, Yo) 

(0, 0) (xo, 0) X 

Figure 13.3.3 
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Step 3 f(x 0 , y0 ) = f 3x2y2 dx + (y2 + 2x3y) dy 
c, 

= J:o 3x2 
• 02 dx + J:o (y2 + 2x6y) dy 

= 0 + (!J'6 + x6y6), 
f(x, y) = !J!3 + x3y2. 

SECOND ALTERNATE SOLUTION 

Step 2 Let C2 be the straight line from (0, 0) to (x0 , y0 ), shown in Figure 13.3.4. 
It has parametric equations 

X= tx0 , 0 .::; t .::; 1. 

y 

• (xo, Yo) 

X 

Figure 13.3.4 

Step 3 f(x 0 , y0 ) = f 3x2 y2 dx + (y2 + 2x 3y) dy 
c2 

= {' [3(tx0f(ty0 )
2]x0 + [(ty0f + 2(tx0 )

3(ty0 )]y0 dt 

= {' 3x6y6t4 + t2y6 + 2t4 x6y6 dt 

= !x6y6 + h6 + ~x6.v6 = x6y6 + h6, 
f(x, y) = x3y2 + 1J!3. 

EXAMPLE 4 An object at the origin (0, 0) has a gravity force field with magnitude 
proportional to 1/(x2 + y2

) and the direction of -xi - yj. Show that this 
force field is conservative and find a potential function. 

The force vector is 

(
-xi- yj) k 

F(x,y) = Jx2 + y2 x2 + l 
= -kx(x2 + y2)-3/2j _ ky(x2 + ll-3f2j, 

for some constant k. F (x, y) is undefined at (0, 0) but is a vector field on the 
open rectangle 0 < x. 



oP 

oy 

oQ 

ox 

-kx(2y)( -~}(xz + yz)-s;z = 3kxy(xz + yz)-s;z. 

-ky(2x)( -~}(xz + yz)-s;z = 3kxy(xz + yz)-s;z. 

Therefore F is conservative. 

Step 1 Take the initial point (1, 0). 

Step 2 Let C be the rectangular curve from (1, 0) to (1, y0 ) to (x0 , y0 ), shown in 
Figure 13.3.5. 

y 

(I, Yo) 

c (xo, Yo) 

c 

(I' 0) X 
Figure 13.3.5 

Step 3 f(x 0 , y0 ) = fo -ky( 1 + y2)- 312 dy + J''o - kx(x2 + Y6r 312 dx 

= k(l + y2)-112 I'+ k(x2 + Y6l-1;2 I" 

= k(l + Yo)- 112 - k + k(x6 + Y6)- 1
'
2 

- k(l + Y6)- 112 

= k(x6 + Y6)- 112 + constant, 

. k 
f (x y) - + constant. · ' - I 2 2 

yX + y 

Any choice of the constant will give a potential function. The same method 
works on the open rectangle x < 0. 

An exact differential equation is an eq uatior of the form 

P(x, y) dx + Q(x, y) dy = 0, 

where oPjoy = oQ/ox. Exact differential equations can be solved using Theorem 2. 

EXAMPLE 5 Solve the differential equation 

(x2 + sin y) dx + (x + 1) cosy dy = 0. 

First we test for exactness. 

o(x2 + sin y) 
=cosy, ay 

o((x + 1) cosy) 
=cosy. ax 

Next we find a function with the given total differential. That is, we find a 
potential function for the vector field 

(x 2 + sin y)i + (x + 1) cos yj. 
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Step 1 Take (0, 0) for the initial point. 

Step 2 Let C be the rectangular curve from (0, 0) to (0, y0 ) to (x 0 , y0 ), shown in 
Figure 13.3.6. 

Figure 13.3.6 

y 

(0, Yo)~-------<---- (Xo, Yo) 
c 

c 

(0, 0) 

Step 3 f(x0 , y0 ) = S:o (0 + 1) cosY dy + fa (x2 + sin y0 ) dx 

= sin Yo + tx6 + x 0 sin y0 , 

f(x, y) = sin y + tx3 + x sin y. 

X 

Step 4 f(x, y) is a constant k because df = 0. The general solution is 

tx3 + x sin y + sin y = k, 

. k- tx3 

smy = x + 1 , 

k - lx3 
y = arcsin 3 

, k constant. 
X + 1 

We conclude this section with the proofs of Theorems 1 and 2. The proof 
of Theorem 1 uses a lemma about derivatives of partial integrals. 

LEMMA 

Suppose P(x, y) is smooth on an open rectangle containing the point (a, b). Then 

a Jx OX a P(t, y) dt = P(x, y), 

o lx Jx oP 
8 P(t, y) dt = a(t, y) dt. 

Y a a Y 

PROOF The first formula follows at once from the Fundamental Theorem of 
Calculus. For the second formula, let Lly be a nonzero infinitesimal and let 

z = r P(t. y) dt. 
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As y changes toy + L1y, we have 

Liz r P(t, y + L1y) dt - f P(t, y) dt 

Lly Lly 

= Jx P(t, y + Lly) - P(t, y) d ""' Jx ap( 1) d 
t --- a t, J t. 

a L).y a Y 

az Jx ap 
Taking standard parts, ay = a ay (t, y) dt. 

PROOF OF THEOREM 1 We must find a potential function for Pi + Qj. 

Assume aPjay = aQ;ax. Pick a point (a, b) in D, and letf(x0 , y0 ) be the line 
integral of Pi + Qj on the rectangular curve C from (a, b) to (a, y0 ) to (x 0 , y0 ) 

(Figure 13.3.7). Thus 

f(x 0 , Yo) = L P dx + Q dy 

= ro Q(a, y0 ) dy + f" P(x, Yo) dx. 

(a, Yo) ______ .., (xo, Yo) 

c 

c 

(a, b) 

X 

Figure 13.3.7 

By the Lemma, 

Thus 

and 

aj " ( ry Jx ) 
ax = ;x jb Q(a, y) dy + a P(x, y) dx = P(x, y). 

af a (Jy Jx ) --a.=~ Q(a,y)dy + P(x,y)dx 
y oy b a 

f
xap 

= Q(a, y) + a(x, y) dx 
a Y 

J
x aQ 

= Q(a, y) + a ax (x, y) dx 

= Q(a, y) + [Q(x, y) - Q(a, y)] = Q(x, y). 

aj 
ax= P(x, y), 

aj 
~ = Q(x,y), 
oy 

df = P dx + Q dy. 
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PROOF OF THEOREM 2 

(i) Let C have the parametric equations 

X = g(t), y = h(t), 

Then A = (g(c1 ), h(c 1)) and B = (g(c2 ), h(c2 )). By the Chain Rule, 

dz = oz dx + oz dy = Pg'(t) + Qh'(t). 
dt ox dt oy dt 

Then J P(x, y) dx + Q(x, y) dy = Jc
2 

Pg'(t) + Qh'(t) dt 
C C! 

= Jc2 dz dt 
Cj dt 

= f(g(c 2), h(c 2))- f(g(cd, h(cl)) 

= f(B) - f(A). 

A similar computation works for piecewise smooth curves. This proves (i). 

(ii) Define f(x, y) by 

f(X) = I: P dx + Q dy, 

where A = (a, b), X = (x, y). Let C be the rectangular curve from (a, b) 
to (a, y) to {x, y). Then 

f(x,y) = L Pdx + Qdy. 

We already showed in the proof of Theorem 1 that this function 
f(x, y) is a potential function for Pi + Qj. To complete the proof we 
note that the following are equivalent. 

grad g = Pi + Qj, 

og = of and Jg = of ' 
ox ox oy oy 

o(g - f) - o d o(g - f) - o 
~--'-- - an - , 

ox oy 

g - f depends only on y and only on x, 

g(x, y) - f(x, y) = constant, 

g(x, y) = I: P dx + Q dy + constant. 

Theorems 1 and 2 also hold for three variables. For three variables a vector 
field has the form 

F(x, y, z) = P(x, y, z)i + Q(x, y, z)j + R(x, y, z)k. 

Theorem 1 for three variables reads as follows. 
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THEOREM 1 (Three Variables) 

A vector field Pi + Qj + Rk has a potential function if and only !f' 

oP oQ oP oR oQ oR 
oy ox' oz ox' oz oy · 

Theorem 2 is modified in the same way. 

PROBLEMS FOR SECTION 13.3 

Test the following vector fields for existence of a potential function and find the potential function 
when there is one. 

(2x + y 2 )i + (x 2 + 2y)j 

2 x3 i - y4j 

3 yi + 2xj 

4 xe''i + yexj 

5 Jxl+?(i +j) (x > O,y > 0) 

6 y cos xi + y sin xj 

7 y cos xi + sin xj 

8 ex+ ''(i + j) 
9 -2i + 6j 

10 yJxl+?i + xjx2 + y2j (x > 0, y > 0) 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 
21 

xzii + xy4j 

)' X 
-i + -j (x > 0, y > 0) 
X J' 

(3x + Sy)i + (5x - 2y)j 

Yz. . 
-1 + 2y In XJ (x > 0) 
X 

sinh x cosh yi + cosh x sinh yj 

JYF:i + .J:ZiYj (x > 0, y > 0) 

Show that every vector field of the form P(x)i + Q(y)j has a potential function. 

Show that every vector field of the form J(x + y)(i + j) has a potential function. 

Show that every vector field of the form f(x 2 + y 2)(xi + yj) has a potential function. 

Show that every vector field of the form f(xy) (yi + xj) has a potential function. 

Show that the sum of two conservative force fields is conservative. 

In Problems 22-31 solve the given exact differential equation. 

22 ex dx + sin y dy = 0 

23 (3x + 4y) dx + (4x - 2y) dy = 0 

24 (x 3 + 2xy + y2
) dx + (x 2 + 2xy + y3

) dy = 0 

25 (fi + ,jy) dx + (xj2jY) dy = 0 



26 

27 

28 

29 

30 

31 

32 

33 

34 

2x sin y dx + (y + x 2 cosy) dy = 0 

~~ dx + (y2 + arctanx)dy = 0 
X + 
(ax+ by)dx + (bx + cy)dy = 0 

sinxsinydx- cosxcosydy = 0 

arcsin yd In x d 
0 --- x+ y= 

X Jl=-7 
(x + Jx+""Y) dx + (y + Jx+""Y) dy = 0 

13.4 GREEN'S THEOREM 815 

Find a function Q(x, y) such that Jxl dx + Q(x, y) dy is an exact differential. 

Find a function P(x, y) such that P(x, y) dx + sin2 x cosy dy is an exact differential. 

The gravity force field of a point mass in three dimensions has magnitude proportional 
to 1/(x2 + y2 + z2

) and the direction of -xi - yj - zk. Show that the force field is 
conservative. 

!1- GREEN'S THEOREM 

Green's Theorem gives a relationship between double integrals and line integrals. 
It is a two-dimensional analogue of the Fundamental Theorem of Calculus, 

F(b) - F(a) = f F'(x) dx, 

and shows that the line integral of F(x, y) around the boundary of a plane region D 
is equal to a certain double integral over D. 

Let D be a plane region 

The directed curve which goes around the boundary of D in the counterclockwise 
direction is denoted by aD and is called the boundary of D (Figure 13.4.1). 

y 

aD 

X 

Figure 13.4.1 The boundary of D 

If b 1 (x) and b2(x) have continuous derivatives, aD will be a piecewise smooth 
curve and thus a simple closed curve (see Section 13.1). 

GREEN'S THEOREM 

Let P(x, y) and Q(x, y) be smooth functions on a region D with a piecewise 
smooth boundary. Then 
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~ ff aQ aP 
Pdx + Qdy = -~ - ~dA, 

cD ex cy 
D 

J JJaP oQ j,D- Qdx + Pdy = ox+ aydA. 
D 

(See Figure 13.4.2.) 

Y P dx + Q dy 

i:Q- ~P dA 
r!x r!y 

Figure 13.4.2 X 

The second formula follows at once from the first formula by replacing 
P by - Q and Q by P. We shall prove the theorem only in the simplest case, where 
D is a rectangle. 

PROOF FOR D A RECTANGLE Dis shown in Figure 13.4.3. 

y 

'· ~~-~~D 
b[ I I 

I I 

X 

Figure 13.4.3 

The line integral around oD is a sum of four partial integrals, 

P J"' ib' P dx + Q dy = P(x, btl dx + Q(a2 , y) dy 
( .... D a, h1 

By the Fundamental Theorem of Calculus, 

{"' oQ 
Q(a 2 , y)- Q(a 1 , y) = 1 ~ dx, 

... a 1 OX 
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Therefore 

= fa2 [b2 oQ - oP dx dy = If cQ - ~p dA. 
a Jb OX oy ex oy 

1 1 D 

We may apply Green's theorem to evaluate a line integral by double 
integration, or to evaluate a double integral by line integration. 

EXAMPLE 1 Compute the line integral 

1 x 2 ydx + (x + y)dy 
Joo 

by Green's Theorem, where D is the rectangle shown in Figure 13.4.4, 

0 S X S 2, Osysl. 

y 

av 

D 

0 2 X 

Figure 13.4.4 

By Green's Theorem, 

J If o(x + y) a(x
2
y) Jon x

2
y dx + (x + y) dy = ox - ----ay dA 

n 

= f f (1 - x
2

) dA = r L 1 - x
2 

dy dx 
n 

2 • 

= i 1 - x 2 dx = -i. 

As a check, we also compute the line integral directly. 

~0 x2ydx + (x + y)dy = {

2 

x 2 ·Odx + f 2 + ydy 

+ 1° x 2 
• 1 dx + {

0 

0 + y dy 

= 0 + ~- t- t = -~. 

EXAMPLE 2 Evaluate by Green's Theorem the line integral 

1 _Y_dx + 2xydy Jan x + 1 



010 1.5 Vt:L..I UH C:ALI,.;ULU::S 

where D is the region bounded by the curve y = x2 and the line y = x, 
shown in Figure 13.4.5. 

y 

X 

Figure 13.4.5 

D is the region 0 ~X~ 1, 

1 ~)'- dx + 2xy dy = If o(2xy) - o(y/: + 1) dA 
~x+l ~ cy 

D 

=If 2y- _l_dA 
x+1 

D 

[ X 1 
= J J 2y - -- dy dx 

o x2 X + 1 

J.
t x x2 

= o x2 - x4 - x + 1 + x + 1 dx 

= 2 In 2- jb. 

As a corollary to Green's Theorem we get a formula for the area of D. 

COROLLARY 

If D has a piecewise smooth boundary, then the area of D is 

A = 1 x dy = 1 - y dx. 
'f~n Jan 

PROOF By Green's Theorem, 

1 If ox oo JJ X dy = -;- - - dA = dA = A, 
cD UX C)' 

D D 

~ If oo c(- y) JJ - y dx = - - -~- dA = dA = A. 
an ox oy 

D D 

EXAMPLE 3 Use Green's Theorem to find the area of the ellipse shown in Figure 
13.4.6, 
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y 

h 

a x 

Figure 13.4.6 

The boundary of the ellipse is the parametric curve 

x =a cost, y = b sin t, 0 s t s 2n. 

By the corollary, 

~ f 2n: dy f2" 
A= xdy= x-d dt= (acost)(bcost)dt 

aD o t o 

{2" 
= ab Jo cos2 t dt = nab. 

Green's theorem has a vector form which is convenient for physical applica­
tions. We define two new functions obtained from a vector field, the curl and the 
divergence. 

DEFINITION 

Given a vector field F(x, y) = P(x, y)i + Q(x, y)j in the plane. 

oQ oP 
curlF=---. ox oy The curl ofF is 

The divergence ofF is d. F _ oP oQ 
IV -OX+ oy. 

On the boundary oD, the differential forms P dx + Q dy and - Q dx + P dy 
may be written in the vector form 

where 

and 

P dx + Q dy = F • T ds, 

-Q dx + P dy = F • N ds, 

T = unit tangent vector to oD, 
T ds = dxi + dyj, 

N = unit outward normal vector to oD, 
N ds = dyi- dxj. 

T and N are shown in Figure 13.4.7. 



y 
N 

cJD 

X 

Figure 13.4.7 

Substituting the vector notation into the original form of Green's Theorem, 
we get the following. 

GREEN'S THEOREM (Vector Form) 

Giz:en a L'ector field F(x, y) = Pi + Qj on a region D with a piecell'ise smooth 
boundary, 

iv F · T ds = J J curl FdA, 
D 

1~'D F · N ds = J J div FdA. 
D 

The physical meaning of Green's theorem can be explained in terms of the 
flow of a fluid (a liquid or gas). Let the vector field F(x, y) represent the rate and 
direction of fluid flow at a point (x, y) in the plane. Consider a plane region D and 
element of area f..D containing (x, y) (Figure 13.4.8). 

y 

X 

Figure 13.4.8 

We first explain the formula 

f F·Tds = f f curl FdA. 
•cD D 

The line integral ~v F · T ds of the flow component in the direction tangent to the 

boundary is called the circulation of F around oD. Green's Theorem states that the 
circulation ofF around the boundary of D equals the integral of the curl ofF over D 
(Figure 13.4.9). 
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y 

X 

Figure 13.4.9 

When we apply Green's theorem to an element of area 11D we get 

l F . T ds ~ cur 1 F 11A 
JcaD 

(compared to 11A). 

Thus the curl ofF at (x, y) is equal to the circulation per unit area at (x, y). 
If curl F is identically zero, the fluid flow F is caUed irrotational. By the 

Exactness Criterion, F is irrotational if and only if P dx + Q dy is an exact differential. 
The circulation of an irrotational field around any oD is zero. 

Next we explain the formula 

iv F · N ds = f f divF dA. 
D 

The line integral ~D F • N ds of the flow component in the direction of the outward 

normal vector is called the flux across oD. The flux is the net rate at which fluid is 
flowing from inside D across the boundary and is therefore equal to the rate of 
decrease of the mass inside D. Green's Theorem states that the flux ofF across the 
boundary of D equals the integral of the divergence of F over D (Figure 13.4.10). 

y 

Figure 13.4.1 0 

When we apply this to 11D we get 

1 F. N ds ~ divF 11A 
JaaD 

X 

(compared to 11A). 



Therefore the divergence ofF at (x, y) is the net rate of flow of fluid away from (x, y), 
and is equal to the rate of decrease in density at (x, y). Positive divergence means that 
the density is decreasing, and negative divergence means that the density is increasing. 

If div F is identically zero, the fluid flow is called solenoidal, or incompressible. 
By the Exactness Criterion, F is incompressible if and only if - Q dx + P dy is an 
exact differential. The flux of an incompressible field across any oD is zero. 

EXAMPLE 4 A fluid is rotating about the origin with angular velocity w radians 
per second. Find the curl and divergence of the velocity field F{x, y). 

As we can see from Figure 13.4.11, the velocity at a point (x, y) is 

F{x, y) = w(- yi + xj) = -wyi + cvxj. 

Figure 13.4.11 

Then I 
- o(cvx)- o( -wy)- 2 

cur F - "' 
0 

- w, 
ux ,y 

div F = o( -WJ2 + o(cvx) = 0. 
ox oy 

Thus a purely rotating fluid is incompressible and its curl at every point is 
equal to twice the angular velocity. 

EXAMPLE 5 A fluid is flowing directly away from the origin at a rate equal to a 
constant b times the distance from the origin (Figure 13.4.12). Find the 
curl and divergence of the flow field. 

v 

\I~ 
X 

I 

Figure 13.4.12 
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We have xi + yj J 2 2 b . b . F(x, y) = bJ x + y = XI + YJ. 
x2 + y2 

curl F = o(by) - o(bx) = 0. 
ox oy 

div F = o(bx) + o(by) = 2b. 
ox oy 

The fluid flow field is irrotational and the divergence at every point is 2b. 

PROBLEMS FOR SECTION 13.4 

In Problems 1-12, find the line integral by Green's Theorem. 

1 1 2ydx + 3xdy, D:O :5 x :5 1,0:5 y :51 
Jav 

2 1 xy dx + xy dy, D: 0 :5 x :5 1, 0 :5 y :5 1 
Jav 

3 1 e2x+Jydx + exydy, D: -2:5 x :52,-1 :5 y :51 
Jav 

4 1 y cos x dx + y sin x dy, D: 0 :5 x :5 n/2, 1 :5 y :5 2 
JiJD 

5 1 x 2ydx+xy2 dy, D:0:5x:51,0:5y:5x 
JiJD 

6 1 x}Ydx + fi+"Ydy, D: 1 :5 x :5 2,2x :5 y :54 
JiJD 

7 1 (xjy) dx + (2 + 3x) dy, D: 1 :5 x :5 2, 1 :5 y :5 x 2 

JiJD 
8 1 sinydx + sinxdy, D:O :5 x :5 nj2,x :5 y :5 n/2 

Jvv 
9 J, X In y dx, D : 1 :5 X :5 2, ex :5 y :5 ex2 

Jav 
10 J, ~ dy, D: - 1 $ X :5 1, x 2 :5 y :5 1 

Jav 

11 1 x 2ydx- xy2 dy, D:x2 + y 2 :51 
Jav 

12 1 y3 dx + 2x3 dy, D: x 2 + y 2 :5 4 
JiJD 

Hint: Use polar coordinates. 

In Problems 13-18, find (a) curl F, (b)1 F • T ds, (c) div F, (d) 1 F • N ds. 
Jav Juv 

13 F(x, y) = xyi - xyj, D: 0 :5 x :5 1, 0 :5 y :5 1 

14 F(x, y) = ax2i + by2 j, D: 0 :5 x :5 1, 0 $ y :5 1 

15 F(x, y) = ay2i + bx2j, D: 0 :5 x :5 1, 0 :5 y :5 x 

16 F(x, y) = sin x cos yi + cos x sin yj, D: 0 :5 x :5 n/2, 0 :5 y :5 x 

17 F(x, y) = yi - xj, D: x 2 + y2 :5 1 

18 F(x,y) =xi+ yj, D:x2 + y 2 :51 



OL't 

19 

20 

0 21 

0 22 

0 23 

024 

0 25 

026 
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Use Green's Theorem to find the area inside the curve r =a + cos 8, (a~ 1). 

Use Green's Theorem to find the area inside the ellipse x 2/a 2 + y2/b 2 
= 1 and above 

the line y = c (0 < c < b). 

Show that if D has a piecewise smooth boundary, the area of Dis A = !J - y dx + x dy. 
'fvn 

Show that for any continuous function f(t) and constants a, b, c, 

J af(x2 + y2
) dx + bf(x2 + y2

) dy = 0 
'fvD 

where D is the circle x 2 + y2 s; c2
. 

Find the value of the line integral 

J (a 1x + b1y) dx + (a 2x + b2y) dy 
Jc/D 

where D is a region with area A. 

Show that any vector field of the form 

F(x, y) = xf(x2 + y2 )i + :xf(x2 + yl)j 
is irrotational. 

Show that any vector field of the form 

F(x, y) = yf(x2 + y2 )i - xj(x 2 + yl)j 

is incompressible. 

Show that any vector field of the form 

F(x, y) = f(x)i + g(y)j 

is irrotational. 

13.5 SURFACE AREA AND SURFACE INTEGRALS 

In Chapter 6 we were able to find the area of a surface of revolution by a single 
integral. To find the area of a smooth surface in general (Figure 13.5.1), we need a 
double integral. 

We call a function f(x, y), or a surface z = f(x, y), smooth if both partial 
derivatives off are continuous. 

z 

y I I 1 I 
I I I I 

@
1111 

I I 
I D I 
I I 

Figure 13.5.1 X 
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DEFINITION 

The area of a smooth surface 

z = f(x, y), (x, y) in D 

(oz) 2 (oz)2 ox + oy + 1 dx dy. is s = JJ 
D 

JUSTIFICATION Let S(D 1) be the area of the part of the surface with (x,y) in D1. 

S(D 1) has the Addition Property, and S(D 1) ;;::: 0. Consider the piece of the 
surface /!.S above an element of area /!.D (Figure 13.5.2). !!.S is infinitely close 
to the piece of the tangent plane above /!.D, which is a parallelogram with 
sides 

Figure 13.5.2 

. oz 
U = /!.x1 + -;-- !!.xk, 

ux 

z 

X 

oz v = l!.yj + -;;:- !!.yk. 
cy 

:;:::z 
~AD 

fly 

The quickest way to find the area of this parallelogram is to use the vector 
product formula (Section 10.4, Problem 39), 

Area= IU x VI. 

k 

Then Area= !!.x 0 
oz 
-!!.x 
ox 

0 !!.y 
oz 
-!!.y 
oy 

1
- !!.y ~z !!.xi - !!.x oz !!.yj + !!.x l!.yk I 

ox oy 

- + - + 1 /!.x !!.y. (oz)
2 

(02
)
2 

ox oy 
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Therefore l!.S ::::::: (az) 2 

+ (az) 2 

+ 1!1xl!.y ax ay (compared to l!.x fly), 

and by the Infinite Sum Theorem, 

s =If 
D 

(cz) 2 (82
)

2 

ex + ay + 1 dx dy. 

EXAMPLE 1 Find the area of the triangle cut from the plane 2x + 3 y + z = 1 
by the coordinate planes. 

Step 1 Sketch the region as in Figure 13.5.3. 

z 
y 

y 

Figure 13.5.3 x 

Step 2 The plane intersects the (x, y) plane on the line 

2x + 3y = 1, 

Thus D is the region 

o:s:;x:s:;!, 

Step 3 On the surface, 

z = 1 - 2x- 3y, 

1 - 2x 
y=-3-. 

1 - 2x 
0 :s;;y :s;;----. 

3 

az 
ax -2, 

az 
ay 

Then s = f f J(::r+ (::r + 1 dxdy 
D 

= f f }4+9+1 dxdy = jl4 f f dxdy 
D D 

X 

-3. 

fl/2 f(l-2x)/3 1,112 1 _ 2x ji4 
= ji4 dydx = j14 --dx = -

2
. 

0 0 ·0 3 1 

EXAMPLE 2 Find the area of the portion of the hyperbolic paraboloid z = x 2 
- y2 

which is inside the cylinder x 2 + l = 1. 
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Step 1 Sketch the region (Figure 13.5.4). 

z 

y 

Figure 13.5.4 x 

Step 2 D is the region 

-1 _::;;X_::;; 1, 

or in polar coordinates, 

Step 3 oz = 2x ox ' 

Then 

oz 
ay 

0.::::; e.::::; 2n, 0.::::; r.::::; 1. 

-2y. 

=If j4x2 + 4y2 + 1dxdy. 
D 

It is easier to use polar coordinates, where 

Put 

j4x2 + 4y2 + 1 = j4r2 + 1. 

S = 12

" f j 4r 2 + 1 r dr de. 

u = 4r2 + 1, du = 8r dr, 

s = f" f ~Judude 
= f" 1~(53/2 - 1) de = i(s3/2 - 1). 

The line integral has an analogue for surfaces called the surface integral. 
The form of the line integral which is most easily generalized to surfaces is the vector 
form 

L F · N ds = L -Q dx + P dy 

where N is the unit normal vector of C. This is convenient because surfaces also have 
unit normal vectors. 
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Before stating the definition we motivate it with a fluid flow interpretation. 
Remember that in the plane the line integral 

( F ·N ds 
Jc 

is equal to the flux, or net rate of fluid flow across the curve C in the direction of the 
normal vector N. 

Consider a fluid flow field 

F(x. y, z) = Pi + Qj + Rk 

and a surface S in space. Call one side of S positive and the other side negative, and 
at each point of S let N be the unit normal vector on the positive side of S. The surface 
integral 

will be the flux, or net rate of fluid flow across the surface S from the negative to the 
positive side (Figure 13.5.5). 

With this interpretation in mind we shall define the surface integral and then 
justify the definition. First we need the notion of an oriented surface. 

DEFINITION 

An oriented smface S is a smooth swface 

z = g(x, y) 

over a plane region D with a piecewise smooth boundary, together with an 
orientation that designates one side of the swface as positive and the other 
side as negative. (See Figure 13.5.6.) 

z 

X 

Figure 13.5.5 

DEFINITION 

y 

z 

X 

An oriented surface 

Figure 13.5.6 

Let S be an oriented surface z = g(x, y) over D and let 

F(x, y, z) = Pi + Qj + Rk 

y 
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be a vector field defined on S. The surface integral ofF overS is defined by 

f f F · N dS = ± f f -P :: - Q !: + R dA, 
S D 

+ if the top side of S is positive, - if the top side of S is negative. 

Thus a change in orientation of S changes the sign of the surface integral. 

JUSTIFICATION We show that this definition corresponds to the intuitive concept 
of flux, or net rate of fluid flow, across a surface. Suppose S is oriented so 
that the top surface of S is positive. 

Let B(D) be the flux across the part of S over a region D. Consider an element 
of area f'lD and let /'iS be the area of S over !'iD. Then /'iS is almost a piece of 
the tangent plane. The component of fluid flow perpendicular to /'iS is 
given by the scalar product F • N where N is the unit normal vector on the 
top side of /'iS (Figure 13.5.7). Thus the flux across /'iS is 

(compared to !'iA). 

z 

I 

X 
§£ 

Figure 13.5.7 

(1) 

This suggests the surface integral notation 

f f F·N dS. 
s 

Let us find F, N, and /'iS. The vector Fat (x, y, z) is 

F(x,y,z) =Pi+ Qj + Rk. 

From Section 13.1, one normal vector at (x, y, z) is 

oz. oz. 
--1- -] + k. ax ay 

The unit normal vector N on the top side of /'iS has positive k component 
and length one, so 



(2) 

(3) 

?7 (lz 
~i- -'-j + k ex oy 

N = ~===~=c==.o== 

(~~)z+ (az)z+ 1 ex ay 
From our study of surface areas, 

- + - + 1 LlA (az)2 (az) 2 

ax oy (compared to LlA). 

When we substitute Equations 1·-3 into F · N LlS, the radicals cancel out and 
we have 

cz cz 
( " " ) LlB :::::: - P -;;- - Q -.:;- + R LlA 

ex cy 
(compared to LlA). 

Using the Infinite Sum Theorem we get the surface integral formula 

JJ 
oz oz 

B(D) = - P-;;-- Q- + R dA. 
ox ay 

D 

EXAMPLE 3 Evaluate the surface integral 

s 

where Sis the surface z = ex-y over the region D given by 

0 :-s; X :-s; 1, X :-s; J' :-s; 1, 

Sis oriented with the top side positive, and 

F(x, y, z) = 2i + j + z2 k. 

The region is sketched in Figure 13.5.8. The first step is to find ozjox and 
ozjoy. 

Oz 
oy 

y 

D 

X 

Figure 13.5.8 

By definition of surface integral, 
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J J F oN dS = J J - 2 ;~ - ~~ + z2 
dA 

S D 

= J I -2ex-y + ex-y + e2x-2y dA 
D 

= fo1 11 - ex- Y + eJx- 2y dy dx 

= f- t + ex-1- !e2x-2dx = i- e-1 + ie-2. 

The same surface integral with S oriented with the top side negative has 
minus the above value. 

PROBLEMS FOR SECTION 13.5 

1 Find the area of the triangle cut from the plane x + 2y + 4z = 10 by the coordinate 
planes. 

2 Find the area cut from the plane 2x + 4y + z = 0 by the cylinder x 2 + y2 = 1. 

3 Find the area of the surface of the paraboloid z = x 2 + y 2 below the plane z = 1. 

4 Find the area of the surface of the cone z = J x 2 + y2 below the plane z = 2. 

5 Find the surface area of the part of the sphere x 2 + y2 + z2 = a2 which lies in the 
first octant; i.e., x ~ 0, y ~ 0, z ~ 0. 

6 Find the surface area of the part of the sphere x 2 + y 2 + z2 = a2 which is above the 
circle x2 + y 2 

::; b2 (b ::; a). 

7 Find the surface area cut from the hyperboloid z = x 2 
- y2 by the cylinder x2 + y2 = a2

• 

8 Find the area cut from the surface z = xy by the cylinder x 2 + l = a2
. 

9 Find the surface area of the part of the sphere r2 + z2 = a2 above the circler = a cos e. 
10 Find the surface area of the part of the cone z = cr above the circler = a cos e. 
11 Find the area of the part of the plane z = ax + by + c over a region D of area A. 

12 Find the surface area of the part of the cone z = cJ x2 + l over a region D of area A. 

13 Find the surface area of the part of the cylinder x 2 + z2 = a2 cut out by the cylinder 
xz + yz ::; az. 

14 Find the surface area of the part of the cylinder x 2 + z2 = a2 above and below the 
square -b ::; x::; b, -b ::; y::; b (b::; a). 

15 Evaluate the surface integral 

f f (2i - 3j + 4k) oN dS, 
s 

where S is the surface z = x 2 + y2
, -1 ::; x ::; 1, -1 ::; y ::; 1, oriented with the top 

side positive. 

16 Evaluate the surface integral 

f f (xi + yj + 3k) • N dS 
s 

where Sis the surface z = 3x - 5y over the rectangle 1 ::; x ::; 2, 0 ::; y ::; 2, oriented 
with the top side positive. 
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Evaluate the surface integral 

J J (xi + yj - 2k) • N dS 
s 

where Sis the surface z = 1 - x 2 
- y2

, x 2 + y2 s I, oriented with the top side positive. 

18 Evaluate the surface integral 

J J (xyi + yzj + zxk) • N dS 
s 

where S is the surface z = x + y 2 + 2, 0 s x s 1, x s y s I, oriented with the top 

side positive. 

19 Evaluate the surface integral 

J J (exi+ e'j + zk) • N dS 
s 

where S is the surface z = xy, 0 s x :S 1, - x s y s x, oriented with the top side 

positive. 

20 Evaluate the surface integral 

J J xzi + yzj + zk 
s 

where S is the surface z = J a2 
- x 2 

- ?. x 2 + y 2 s h, oriented with the top side 
positive (h < a). 

D 21 Show that if Sis a horizontal surface z = c over a region D, oriented with the top side 
positive, then the surface integral overS is 

J J (P(x, y, z)i + Q(x, y, z)j + R(x, y, z)k) • N dS = J JR(x, y, c) dA. 

S D 

13.6 THEOREMS OF STOKES AND GAUSS 

Both Stokes' Theorem and Gauss' Theorem are three-dimensional generalizations 
of Green's Theorem. To state these theorems we need the notions of curl and 
divergence in three dimensions. The curl of a vector field in the plane is a scalar field, 
while the curl of a vector field in space is another vector field. However, the divergence 
in both cases is scalar. 

DEFINITION 

Given a vectorjield F(x,y,z) =Pi+ Qj + Rk 

in space. The curl of" F is the new vector{ield 

curiF = (~R.- ~Q)i + (~P- oR)j + (~Q- ~P)k. 
cy cz cz ex ex C)' 

This can be remembered by writing the curl as a "determinant" 

k 
c a c 

curlF = Ox oy Oz ~ · 

p Q Ri 
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The divergence ofF is the real valued function 

. aP aQ oR 
d1vF =ox+ oy + ~-

EXAMPLE 1 Find the curl and divergence of the vector field 

F(x, y, z) = xyi + yzj + zxk. 

j k 
a a a 

curiF = ox oy oz 

xy yz zx 

= (a~zx) - o(yz)) i + (a~y) - o(zx))j + ( o(yz) - a~xy))k 
oy az oz ax ax oy 

= - yi - zj - xk. 

div F = o(xy) + o(yz) + o(xz) = y + z + X. 

ax oy oz 

Two interesting identities are given in the next theorem. 

THEOREM 1 

Assume the function f(x, y, z) and vector field F(x, y, z) have continuous second 
partials. Then 

curl(grad f) = 0, div(curl F) = 0. 

PROOF We use the equality of mixed partials. 

curl (grad f) 

of". of". of 
gradf =a/+ ai +a/· 

j k 
a a a 

ax oy oz 

of of of 

ax ay az 

( 
82f a2f } . ( 82f a2f } . ( 82f 82f ) 

= ay oz - oz ay J + az ax - ex oz J + ax oy - oy ax k 

= 0. 

The other proof is similar and is left as a problem. 

Stokes' Theorem relates a surface integral over S to a line integral over the 
boundary of S. It corresponds to Green's Theorem in the form 

fn F • T ds = J J curl FdA. 
D 



834 13 VECTOR CALCULUS 

Let S be an oriented surface over a region D. The boundary of S, as, is the 
simple closed space curve whose direction depends on the orientation of S as shown 
in Figure 13.6.1. 

The notation 

J F ·Tds 'fas or A-~ P dx + Q dy + R dz, 
Jes 

denotes the line integral around as in the direction determined by the orientation of S. 

z z 

y 

X X 

Figure 13.6.1 The Boundary of S 

STOKES' THEOREM 

Given a vector field F(x, y, z) on an oriented swface S, 

fcs F · T ds = J J curl F · N dS. 
s 

(See Figure 13.6.2.) 

z 

y 

Figure 13.6.2 X 

To put this equation in scalar form, let 

F = Pi + Qj + Rk, curlF =Hi + Lj + Mk. 

Then F·Tds = Pdx + Qdy + Rdz, 

and if Sis oriented with the top side positive, 

curlF·NdS= -H-;:;:--L-_:::-+M dA. ( 
az 3z ) 
OX 0)1 

y 
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Thus Stokes' Theorem has the scalar form 

1 Pdx + Qdy + Rdz =JJ (-H 82
- Laz + M) dA. 

~ ~ ~ 
D 

Stokes' Theorem has two corollaries which are analogous to the Path 
Independence Theorem. 

COROLLARY 1 

If f(x, y, z) has continuous second partials, then the line integral of grad f 
around the boundary of any oriented swface is zero, 

(See Figure 13.6.3.) 

PROOF curl(grad f) = 0, so 

1 grad f · T ds = 0. JilS 

~as gradf · T ds = J I curl(gradf) • N dS = J J 0 dS = 0. 
s s 

COROLLARY 2 

The swface integral of curl F over an oriented surface depends only on the 
boundary of the swface. That is, if 8S1 = 8S2 then 

J J curl F • N 1 dS 1 = I J curl F · N 2 dS 2 . 

s, s2 

(See Figure 13.6.4.) 

z 

z grad/ 

T 

y y 

X 
Pas gradf·T ds = 0 X 

Figure 13.6.3 Figure 13.6.4 

PROOF By Stokes' Theorem, both surface integrals are equal to the line integral 

_j, F · T ds = f F · T ds. hs, •oS 2 
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For fluid flows, Stokes' Theorem states that the circulation of fluid around 
the boundary of an oriented surface S is equal to the surface integral of the curl 
overS. 

We shall not prove Stokes' Theorem, but will illustrate it in the following 
examples. 

EXAMPLE 2 Let S 1 be the portion of the plane 

z = 2x + 2y - 1 

and s2 the portion of the paraboloid 

z = x2 + y2 

bounded by the curve where the plane and paraboloid intersect. Orient both 
surfaces with the top side positive, so they have the same boundary 

c = 8S 1 = as2. 
Let F(x, y, z) = zi + xj + yk. 

Evaluate the integrals 

(a) J J curl F · N 1 dS 1 • 

s, 

(b) J J curl F · N 2 dS 2 . 

s2 

(c) ~c F ·Tds. 

By Stokes' Theorem, all three answers are equal, but we compute them 
separately as a check. 

The regions are drawn in Figure 13.6.5. First we find the plane region D 
over which S 1 and S2 are defined. The two surfaces intersect at 

Figure 13.6.5 

2x + 2y - 1 = x 2 + y 2
, 

(x - 1)2 + (y - 1? = 1. 

z 

X 

y 



13.6 THEOREMS OF STOKES AND GAUSS 837 

So D is the unit circle with center at (1, 1) shown in Figure 13.6.6; that is, 

0 :::;; x :::;; 2, 1 - Jl - (x - 1)2 
:::;; y :::;; 1 + j1 - (x - 1)2

• 

y 

X 

Figure 13.6.6 

Next we compute curl F. 
j k 

a a a 
=i+j+k. curlF = 

ox ay " cz 

z X y 

(a) On the surface z = 2x + 2y - 1, 
oz az 
ox= 2' oy = 

2· 

Thus f J curl F · N 1 dS 1 = f J - 2 - 2 + 1 dA = - 3 f f dA = - 3n. 
S 1 D D 

(b) On the surface z = x 2 + y 2
, 

az oz 
ox = 2x, oy = 2y. 

Thus J J curl F · N 2 dS2 = J J - 2x - 2y + 1 dA 
S, D 

-- f2 fl +JI-(x-1)2 
- 2x - 2y + 1 dy dx 

0 I -JI-(x-1)2 

f
2 ]1+)1-(x-1)2 

= -2xy-y2 +y dx 
0 1-)1-(x-1)2 

= f- 4xjl- (x- 1)2
- 2j1- (x- 1f dx 

= -3n. 

(c) The boundary curve C = oS1 = oS2 is a space curve on the plane 

: = 2x + 2y - 1 and over the circle 

(x- if+ (y- 1)2 = 1. 

Thus C has the parametric equations 

x = 1 + cos 0, y = I + sin 0, z = 2 cos 0 + 2 sin 0 + 3, 0 :S: (} :S: 2n. 

Then dx = -sine de, dy =cos e de, 

dz = (- 2 sin 0 + 2 cos 0) dO. 
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'~ F · T ds = +. z dx + x dy + y dz fc. Jc 
= rrr [(2 cos e + 2 sin 0 + 3)(- sin 0) + (I + cos 0) cos 0 

+ (I + sin 0) (- 2 sin (} + 2 cos 0)] dO 

= frr (1 + 3 cos 8 - 5 sin 0 - 5 sin 2 8) d8 = - 3n. 

Notice that (a) was much easier than (b) or (c). 

Gauss' Theorem shows a relationship between a triple integral over a region 
E in space and a surface integral over the boundary of E. It corresponds to Green's 
Theorem in the form 

iv F · N ds =I I div FdA. 
D 

Before stating Gauss' Theorem, we must explain what is meant by the surface 
integral over the boundary of a solid region E. In general, the boundary of E is made 
up of six surfaces corresponding to the six faces of a cube (Figure 13.6.7). Sometimes 
one or more faces will degenerate to a line or a point. 

Figure 13.6.7 X 

The top and bottom faces of E are (x, y) surfaces, that is, they are given by equations 
z = c(x, y). However, the left and right faces of E are (x, z) surfaces y = b(x, z), while 
the front and back faces of E are (y, z) surfaces of the form x = a(y, z). Surface integrals 
over oriented (x, z) and (y, z) surfaces are defined exactly as for (x, y) surfaces except 
that the variables are interchanged. 

In the following discussion E is a solid region all of whose faces are smooth 
surfaces. 

DEFINITION 

The boundary of E, oE, is the union of the six faces of E oriented so that 
the outside surfaces are positive. The surface integl'al of a vector field F(x, y, z) 
over oE, 

fE 

is the sum of the swjace integrals ofF over the six faces of E. (See Figure 
13.6.8.) 
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z z 

N 

aE 

y y 

X X 

Boundary of E 
Figure 13.6.8 

We are now ready to state Gauss' Theorem. 

GAUSS' THEOREM 

Given a vectorfield F(x, y, z) and a solid region E, 

J J F · N dS = J J J div F dV. 
BE E 

This equation may also be written in the form 

Jf Iff oP oQ oR 
F. N dS = ox + oy + az dV. 

i1E E 

Gauss' Theorem is sometimes called the Divergence Theorem. 
For fluid flow, Gauss' Theorem states that the outward rate of flow across 

the boundary of E is equal to the integral of the divergence over E (Figure 13.6.9). 
As in the two-dimensional case, the divergence is the rate at which the density is 
decreasing. 

y 

Figure 13.6.9 X 

The following corollary rs another analogue of the Path Independence 
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COROLLARY 3 

If F(x, y, z) has continuous second partials, the swface integral of curl F 
over the boundary of E is zero.}n symbols, 

J J curlF • N dS = 0. 
?E 

PROOF Since div(curl F) = 0, 

f f curl F · N dS = J J J div(curl F) dV = f f J 0 dV = 0. 
<'E E E 

EXAMPLE 3 Use Gauss' Theorem to evaluate the surface integral 

f f F · N dS, 
i"L 

where F(x, y, z) = e-'i + e)j + xyzk 

and E is the unit cube in Figure 13.6.10. 

0 _::;;X_::;; 1, 0::;; y::;; 1, 0 ::;; z ::;; 1. 

z 

y 

Figure 13.6.10 X 

By Gauss' Theorem, 

f f F · N dS = f f f div F dV 
cE E 

= f f f e-' + eY + xy dV 
E 

= 11 Ll Ll ex + e)' + xy dz dy dx 

= 11 11 

ex + e)' + xy dy dx 

= f ex + e - 1 + tx dx 

= 2e- f. 
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PROBLEMS FOR SECTION 13.6 

In Problems 1-6, find the curl and divergence of the vector field. 

1 F(x, y, z) = x2 i + y2 j + z2k 

2 F(x, y, z) = x cos zi + y sin zj + zk 

3 F(x, y, z) = (x + y + z)i + (y + z)j + zk 

4 F(x, y, z) = yzi + xzj + xyk 

5 F(x, y, z) = xe'·+zi + yex+zj + zex+yk 

6 F(x,y,z) = yi + xj + k 

7 Prove that for every vector field ·F(x, y, z) with continuous second partials, 
div(curl F) = 0. 

8 Given a function f(x, y, z) with continuous second partials, show that 

. fP! 82f 82f 
div(gradf) = ax2 + ay2 + az2. 

9 Use Stokes' Theorem to evaluate the surface integral JJs curl F · N dS where S is the 
portion of the paraboloid z = 1 - x2 

- y 2 above the (x, y) plane and F(x, y, z) = 
xy2i - x 2yj + xyzk. (Sis oriented with the top side positive.) 

10 Use Stokes' Theorem to evaluate the line integral 

J. (yi + zj - xk) • T ds res 
where Sis the portion of the plane z = 2x + 5y inside the cylinder x 2 + y 2 = 1 oriented 
with the top side positive. 

11 Use Stokes' Theorem to evaluate the line integral 

~s (ax + by + cz)(i + j + k) • T ds 

where Sis the portion of the plane z = px + qy + rover a region D of area A, oriented 
with the top side positive. 

12 Use Stokes' Theorem to show that the line integral 

fs (P(x)i + Q(y)j + R(z)k) • T ds = 0 

for any oriented surface S. 

13 Use Gauss' Theorem to compute the surface integral 

J J (x2 i + y2j + z2
k) • N dS 

8E 

where E is the rectangular box 0 :o;; x :o;; a, 0 :o;; y :o;; b, 0 :o;; z :o;; c. 

14 Use Gauss' Theorem to compute the surface integral 

J J (2xyi + 3xyj + zex+yk) • N dS 

8E 

where E is the rectangular box 0 :o;; x :o;; 1, 0 :o;; y :o;; 1, 0 :o;; z :o;; 1. 

15 Use Gauss' Theorem to evaluate 

ff (xi+ 2yj + 3zk) • N dS 

cE 

where E is the region 0 :o;; x :o;; 1, 0 :o;; y :o;; x, 0 :o;; z :o;; x + y. 



16 Use Gauss' Theorem to evaluate 

J J(x3 i + y3j + z3 k) • N dS 

tE 

where E is the sphere x 2 + l + z2 :S: 4. 

17 Use Gauss' Theorem to evaluate 

J f ()x 2 + y2 + z2
)(i + j + k) · N dS 

t'E 

where E is the hemisphere 0 :S: z :S: )1 - x 2 
- y 2

. 

18 Use Gauss' Theorem to evaluate 

J f (xyli + yzj + .'<hk) • N dS 
CE 

where Sis the cylinder x2 + y 2 :S: 1, 0 :S: z :S: 4. 

19 Use Gauss' Theorem to evaluate 

J J (x cos2 zi + y sin2 zj + J x 2 + y 2 zk) • N dS 
<'E 

where E is the part of the cone z = I - Jx2+7 above the (x, y) plane. 

EXTRA PROBLEMS FOR CHAPTER 13 

Find the derivative of z = cos x + sin y in the direction of the unit vector U = cos cd 
+sin aj. 

2 Find grad f and .fu if 

f(x, y) = cosh x sinh y, 
-i+j 

U=--~-· 
.J2 

3 Find grad f and .fu if 

f(x, y) = exy, U = cos ai + sin aj. 

4 Find the derivative of z = In (x2 + .ll at the point (- 1, 1) in the direction of the unit 
vector U = ai + bj. 

5 Find a unit vector normal to the surface z = xy at the point (2, 3, 6). 

6 Evaluate the line integral 

L (cos xi - sin yj) • dS 

where Cis the curve x = t 2
, y = t 3

, 0 :S: r :S: 1. 

7 Evaluate the line integral 

L (x~, 2 + 2x j+ y) 'dS 

where C is the rectangular curve from (1, 2) to (4, 2) to (4, 4). 

8 Evaluate the line integral 

L (xi + yj + zk) • dS 

where Cis the line x = 2r,y = 3t,z = -t,O :S: t :S: I. 

9 Find the work done by the force F = .1/i + x2j acting once counterclockwise around 
the circle x2 + y2 = 1. 

10 Find a potential function for y cosh xi + sinh xj. 



11 Find a potential function for (yIn y + In x)i + (x In y + x)j. 

12 Solve the differential equation 

(2x- 6x2y + y 3 )dx + (-2x3 + 3xy2 + l)dy = 0. 

13 Solve the differential equation e-,. sin x dx + (e-,. cos x + 3y) dy. 

14 Use Green's Theorem to evaluate the line integral 

1 sinxsinydx + cosxcosydy, 
JaD 
D: n/6 :::; x :::; n/3, n/6 ::S: y :::; n/3. 

15 Use Green's Theorem to evaluate the line integral 

1 2xy2 dx + 3x2y3 dy, D: 0 :::; x :::; 1, x 2 :::; y :::; 2x. 
JilD 

16 Use Green's Theorem to find the area of the region bounded by the parametric curve 

X= a COS 3 8, }'=a sin3 8, 0 ::S: 8 ::S: 2n. 

17 Find the area of the part of the surface z = x 2 + y which lies over the triangular region 
0 ::S: X ::S: 1, 0 ::S: }' ::S: X. 

18 Find the area of the part of the surface z = xy which is inside the cylinder x 2 + y 2 = 4. 

19 Evaluate the surface integral 

J J (xi + yj + zk) • N dS, 
s 

where S is the upper half of the sphere x 2 + y2 + z2 = 1, oriented with the top side 
positive. 

20 Find the curl and divergence of the vector field 

F(x, y) = xe}'i + ye"j. 

21 Find the curl and divergence of the vector field 

F(x, y, z) = xyzi + xy2z3j + x 2yzk. 

22 Use Gauss' Theorem to evaluate the surface integral 

f J (xy2 i + yz2j + x 2yk) • N dS 
aE 

where E is the region x 2 + y2 
:::; 1, x2 + y2 

:::; z :::; 1. 

23 The gravitational force of a point mass m1 acting on another point mass m2 has the 
direction of the vector D from m

2 
to m

1 
and has magnitude proportional to the inverse 

square of the distance IDI. Thus 

where c is constant. Use the Infinite Sum Theorem to show that the gravitational force 
of an object with density h(x, y, z) in a region E on a point mass m at (a, b, c) is 

F = Pi + Qj + Rk, 

where _ Iff cmh(x, y, z)(x - a) dV. 
p - [(x - af + (y - W + (z - c)2]3i2 , 

E _ Iff cmh(x, y, z)(y - b) dV. 
Q - [(x - af + (y - W + (z - c)2f 12 ' 

E _ Iff cmh(x, y, z)(z - c) dV 
R - [(x - a)2 + (y - W + (z - c)2f 12 · 

E 
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Suppose z = f(x, y) is differentiable at (a, b). Prove that the directional derivatives 
fu(a, b) exist for all U. (See also extra Problem 36 in Chapter 11.) 

Let U = cos o:i + sin o:j. Suppose that z = f(x, y) has contmuous second partial 
derivatives. Prove that the second directional derivative off in the direction U is given 
by 

. a2j 2 a2j . ()2J . 2 
fuu(x, y) = ·a2 cos o: + 2-

0 0 coso: sm o: + ~ sm o:. 
x x oy oy 

Second Derivative Test for two variables. Suppose 
(a) j'(x, y) has an interior critical point (a, b) in a rectangle D. 

c2f elf a2t . 
(b) Throughout D, -~.-' 2 , ~.-a ·" are contmuous and 

ex C\' ,Xc\' 

elf e2f elf elf ( c2f ) 2 
~>0, ~>0, ~~- ~ >0. 
ex cr ex cy oxoy 

Prove that I has a minimum in D at (a, b). Hint: Use the preceding problem to show 
that all the second directional derivatives .fuu(x, y) are positive so that the surface 
z = f(x, y) has a minimum in every direction at (a, b). In the case coso: sino: > 0, 
use the inequality 

( 
'o2/ h2j ) 1 

O::S: j~· 2 coso:- (1~2 sino:, 
" ex ...,. cy 

and use a similar inequality when coso: sino: < 0. 

Given a sphere of mass m1 and constant density, and a point mass m1 outside the 
sphere at distanceD from the center. Show that the gravitational force on m1 is the same 
as it would be if all the mass of the sphere were concentrated at the center. That is, 
F points toward the center and has magnitude 

IF! = cn~~n1 • 

Hint: For simplicity let the center of the sphere be at the origin and let m1 be at the 
point (0, 0, D) on the z-axis. Let the sphere have radius band density h, so 

h = m1jvolume = 3md4nb3
, b < D. 

By symmetry the i and j components of the force are zero. Use spherical coordinates 
to find the k component, 

R - fff cm2h, (z - D) dV 
- • [xl + y2 + (z _ D)2]3i2 

J: 

_ i2n ib in cm2h(p cos¢ - D)p 2 sin¢ 
- 2 ' 3/2 d¢ dp d(J. 

o o o [p + D-- 2Dpcos¢) 

A region Din the plane has a piecewise smooth boundary aD and area A. Use Green's 
Theorem to show that an object with constant density k in D has center of mass 

.x =- x 1 dy, v = __ J, y 2 dx. I ~ I ' 
2A i'D . 2A JiiD 

Show that the object in the preceding exercise has moment of inertia about the origin 

I = ~3 1. - y3 dx + x 3 dy. 
J;D 

Use the Infinite Sum Theorem to show that the mass of a film of density p(x, y) per unit 
area on a surface z = f(x, y), (x, y) in D, is 

r---,--,---,--...,-,---

m =If (~·2 )
2 

+ (~2,)
1 

+I p(x,y)dxdy. 
D ex q 
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EXTRA PROBLEMS FOR CHAPTER 13 

Show that the volume of a region E is equal to the surface integral 

V = t I I (xi + yj + zk) • N dS. 
aE 

Show that the gravity force field of a mass mat the origin, 

m xi+ yj + zk 
F(x, y, z) = 2 + 2 + 2 J 2 2 2' 

X y Z X + y ,+ Z 

is irrotational (except at the origin). Use Stokes' Theorem to show that 

.J: F(x, y, z) • T ds = 0 
~s 

where S is any oriented surface not containing the origin. 

Show that for any smooth closed curve C around the origin, 

f -y X 
- 2--2 dx + - 2--2 dy = 2n. 

cx+y x+y 

Assume for simplicity that C has the parametric equation 

C: r = f(B), 0 ::::; () ::::; 2n where 0 < f(B), f(O) = f(2n). 

845 



DIFFERENTIAL 
EQUATIONS 

14.1 EQUATIONS WITH SEPARABLE VARIABLES 

14 

A first order dUJerential equation is an equation involving an independent variable t, 
a dependent variable y, and the derivative dyjdt. In many applications, the independent 
variable t is time. A first order differential equation can be put in the following 
form, wheref(t, y) is continuous in both t andy. 

FIRST ORDER DIFFERENTIAL EQUATION 

(1) 
dy 
dt = f(t, y). 

For instance, if tis time and y is the position of a particle at time t, the differential 
equation (1) gives the velocity of the particle in terms of time and position. A 
differential equation gives information about an unknown function y(t). The general 
solution of a first order differential equation is the family of all functions y(t) that 
satisfy the equation. Each function in this family is called a particular solution of 
the differential equation. In most cases, the family of functions will depend in some 
way on a constant C, and the graphs of these functions will form a family of curves 
that fill up the (t, y) plane but do not touch each other, as in Figure 14.1.1. 

Some examples of first order differential equations were solved in Section 8.6. 
For instance, it was shown that the general solution of the differential equation 

IS 

dy 
- = y(1 - y) 
dt 

1 
y(t) = 1 + ce-'' y(t) = 0. 

There is one particular solution for each value of the constant C, and one additional 
particular solution y(t) = 0. The graph of this general solution is shown in Figure 
14.1.2. 
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y 

Figure 14.1.1 

y 

Figure 14.1.2 

In most applications, a first order differential equation will describe a 
process that starts at .some initial time t0 . In order to determine a particular solution, 
we need both the differential equation and the value of y(t) at the initial time t 0 . A 
first order initial value problem is a pair of equations consisting of a first order 
differential equation and an initial value. 
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FIRST ORDER INITIAL VALUE PROBLEM 

(2) 
dy 
dt = f(t, y), y(to) =Yo· 

An initial value problem usually has just one solution, which will be a particular 
solution of the differential equation. This can be seen intuitively as follows. Figure 
14.1.3 shows a moving point controlled by an infinitesimal driver with a steering 
wheel. At t = t0 , the moving point starts at (t 0 , y0 ). At each t > t0 , the infinitesimal 
driver measures his position (t, y), computes the value ofj(t, y), and turns the steering 
wheel so that the slope will be j(t, y). The curve traced out by this point will be the 
solution of the initial value problem. 

Ay = j(t, y) 

X 

dy 
dt =f (1, y) 

Figure 14.1.3 

The general problem of solving a differential equation is difficult. In Section 
8.6, we gave a method for solving differential equations of an especially simple 
type, called equations with separable variables. As a starting point in this chapter, 
we take another look at these differential equations. 

FIRST ORDER DIFFERENTIAL EQUATION WITH SEPARABLE VARIABLES 

(3) 
dy 
dt = g(t)h(y). 

In an equation with separable variables, dy/dt is a product of a function oft and a 
function of y. In particular, dyjdt = g(t) is a differential equation with separable 
variables in which h(y) is the constant 1. Similarly, dy/dt = h(y) is a diflerential 
equation with separable variables in which g(t) is the constant 1. An equation with 
separable variables can be solved by separating the variables and integrating both 
sides of the equation. 

METHOD FOR SOLVING A DIFFERENTIAL EQUATION WITH SEPARABLE VARIABLES 

dy 
dt = g(t)h(y). 



14.1 EUUATIUNS WITH SI::PARABLE VARIABLES !!4\::1 

Step 1 Find all points y1 where h(y 1) = 0. For each such point, the constant function 
y(t) = y 1 is a particular solution. 

Step 2 Separate the variables by dividing by h(y) and multiplying by dt, 

1 
h(y) dy = g(t) dt, 

then integrate both sides of the equation. That is, find antiderivatives of each 
side. 

K'(y) = h(~)' G'(t) = g(t), 

so that K(y) = G(t) + C. 

If possible, solve for y as a function oft. 

Step 3 The general solution is the family of all solutions found in Steps 1 and 2. It 
will usually depend on a constant C. 

Step 4 If an initial value y(t0 ) = y0 is given, use it to find the constant C and the 
particular solution of the initial value problem. 

Remark The cases h(y) = 0 and h(y) =F 0 must be done separately in Steps 1 and 2, 
because the division by h(y) in Step 2 cannot be done when h(y) = 0. 

The general solution of a differential equation dyjdt = g(t), where dyjdt 
is a function oft alone, is just the indefinite integral 

y = J g(t) dt = G(t) + C. 

In this case, Cis the familiar constant of integration, which is added to a particular 
solution. For example, the general solution of the differential equation dyjdt = 1/t 
is y = In It I + C. 

In the examples that follow, the constant C appears in a more complicated 
manner. 

EXAMPLE 1 Solve the initial value problem 

dy 
dt = - 2y, y(l) = -5. 

Step 1 - 2y = 0 when y = 0. Thus the constant y(t) = 0 is a particular solution. 

Step 2 Separate the variables and integrate both sides. 

dy=-2dt 
y ' 

In I y I = - 2t + B, 

IYI = e8 e- 2
', 

y = ce- 2', 

where C = e8 if y > 0, and C = -e8 if y < 0. 
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Step 3 General solution: 

y(t) = ce- 2
', 

where Cis any constant (C can be 0 from Step 1). 

Step 4 Substitute 1 for t and -5 for y, and solve for C. 

-5 = ce- 2 ' 1 , 

Particular solution: 

y(t) = -5e2e-2' = -se<2-2t). 

The graph of the solution is shown in Figure 14.1.4. 

Figure 14.1.4 Example 1 

EXAMPLE 2 Find the general solution of the differential equation 

dy 
dt = y

2 sin t. 

Then find the particular solution with y(O) = t. 
Step 1 y 2 = 0 when y = 0. Thus y(t) = 0 is a constant solution. 

Step 2 

Step 3 General solution: 

y- 2 dy =sin t dt, 

-y- 1 =-cost+ C, 

y = (cos t - C)- I. 

y(t) = 0 and y(t) =(cost- C)- 1
. 

Step 4 y(O) = t =(cos 0- C)- 1 = (1 _ C)-1, 

2 = 1 - C, C = -1. 



Particular solution: 

y(t) =(cost+ 1)- 1
. 

The particular solution to Example 2 is illustrated in Figure 14.1.5. It is 
defined only for -n ::::;; t <nand approaches oo as t approaches n. It is said to have 
an explosion at t = n. 

y 

(0, ~) 

Figure 14.1.5 Example 2 

To avoid errors, the general solution can be checked by differentiating. 
The solution for Example 2 is checked as follows. 

as required. 

y(t) =(cost- C)- 1
. 

dy = -(cost- C)- 2 ( -sin t) 
dt 

=(cost - c)- 2 (sin t) 

= l sin t, 

PROBLEMS FOR SECTION 14.1 

In Problems 1-12, find the general solution of the given differential equation. 

1 y' = t • sin (t2) 2 

3 y' = e-,· 4 

5 y' = y2- 1 6 

7 y' = y2t 8 

9 y' = (1 + y2)e' 10 

11 y' = ytan t 12 

In Problems 13-18, solve the initial value problem. 

13 y'=y2 t 3
, y(1)=2 14 

y' = e-3• 

y' = }'3 

y' = ty(y + 1) 

2t + 1 
y'=--

2y - 1 

y' = J1--=-_yz cos t 

y' = ysin t 

y' = t,J;: y(O) = 3 



15 

17 

18 

In t 
y' = -, y(l) = -2 16 y' = t }' - }' + 2t - 2, 

)' 

y' = (y 2 
- 3y + 2).jl, y(l) = 2 

y' = eY(y - 4) sin t, y(2) = 4 

14.2 FIRST ORDER HOMOGENEOUS LINEAR EQUATIONS 

In this section we study the following special type of differential equation. 

y(O) = 0 

FIRST ORDER HOMOGENEOUS LINEAR DIFFERENTIAL EQUATION 

(1) y' + p(t)y = 0. 

It is understood that t varies over some interval in the real line, and p(t) is a con­
tinuous function of t in the interval. The equation is called linear because y and y' 
occur only linearly and homogeneous because the right side of the equation is zero. 
The equation 

y' = ky, or y'- ky = 0, 

for exponential growth (see Section 8.6) is an example. The first order homogeneous 
linear differential equation (1) has separable variables, because it can be written as 

dy 
dt = -p(t)y. 

Its solution is given by the next formula. 

METHOD FOR SOLVING FIRST ORDER HOMOGENEOUS LINEAR DIFFERENTIAL 

EQUATION (1) 

The general solution is 

y(t) = Ce- P<n, 

where P(t) is an antiderivative ofp(t). That is, 

y(t) = ce- f p(t) dt. 

This formula is obtained by the procedure described in Section 14.1 for differential 
equations with separable variables, as follows. First write the equation in the form 

dy 
dt = -p(t)y. 

Step 1 There is a constant solution y(t) = 0. 

Step 2 Separate the variables and integrate: 

y- 1 dy = -p(t) dt. 

In IYI =- J p(t)dt +B. 



Now solve for y. 

IYI = e-fp<tJdt+B, 

y = ce-)p(t)dt, 

where C = en if y > 0, and C = - eB if y < 0. 

Step 3 Combining Steps 1 and 2, we get the general solution 

y(t) = Ce- s pftl dt. 

Remark The case C = 0 gives the constant solution y(t) = 0 of Step 1. 

Discussion The constant of integration in the indefinite integral 

f p(t) dt 

will be absorbed in the constant C. 

The particular solution for the initial value y(t0 ) = y0 is found by substituting 
and computing C. Notice that any two particular solutions of the same 
homogeneous linear differential equation differ only by a constant factor. 
If x(t) is any nonzero particular solution, then the general solution is Cx(t). 

EXAMPLE 1 

(a) Find the general solution of the equation y' + y cos t = 0. 
(b) Find the particular solution with initial value y(O) = !. 
(c) Find the particular solution with initial value y(2) = !. 

SOLUTION 

(a) First evaluate the integral 

J cos t dt = sin t + B. 

General solution: 

y(t) = ce-sin t. 

(b) First substitute and solve for C. 

y(O) =! = ce-sin o = Ceo = C. 

Particular solution: 

y(t) = !e-sin t. 

(c) Substitute and solve for C. 

y(2) =! = ce-sin 2, 

C = !esin 2 = 1.2413. 

Particular solution: 

y(t) = 1.2413e-sint. 

The solution to this example is shown in Figure 14.2.1. 
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Figure 14.2.1 Example 1 

EXAMPLE 2 

(a) Find the general solution of the equation ty' + 3y = 0 fort > 0. 
(b) Find the particular solution with the initial value y(l) = 2. 

SOLUTION 

(a) We first put the equation into the homogeneous linear form (1) by 
dividing by t: 

y' + 3t- 1 J' = 0. 

Next evaluate the integral, 

J 3t- 1 dt = 3ln t + B. 

The constant of integration B is absorbed into the constant C, and the 
general solution is 

y(t) = ce-3lnr = Ct-3. 

(b) The particular solution with initial value y(l) = 2 is 

y(t) = 2t- 3
. 

The solution to this example is shown in Figure 14.2.2. 

Figure 14.2.2 Example 2 
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The coefficient 3t- 1 in the equation 

y'+3t- 1y=O 

of Example 2 is discontinuous at t = 0. However, it is continuous on the interval 
t > 0 and on the interval t < 0. An initial value at a positive time t0 > 0 will 
determine a particular solution only for the interval t > 0, while an initial value 
at a negative time t0 < 0 will determine a particular solution for the interval t < 0. 
Each interval must be solved separately. The next example is like Example 2 but 
on the negative time interval. 

EXAMPLE 3 

(a) Find the general solution of the equation y' + 3t- 1y = 0 from Example 
2, but for the interval t < 0 instead of t > 0. 

(b) Find the particular solution of the initial value problem withy(- 2) = 1. 

SOLUTION 

(a) This time we integrate with a negative t, 

J 3t- 1 dt = 3ln It I + B = 3ln (- t) + B. 

The general solution for t < 0 is thus 

y(t) = ce-3ln(-t) = C(-t)-3 = -ct-3, 

or y(t) = At- 3
, 

where A is the constant -C. 

(b) The particular solution with the initial value y(- 2) = 1 is found by 
solving for A: 

A= -8, 

The solution to this example is shown in Figure 14.2.3. 

y 

Figure 14.2.3 Example 3 

For some purposes, it is useful to describe the solution of a differential 
equation using a definite integral from some point a to t, instead of using an indefinite 
integral. In the definite integral form, the general solution of the linear homogeneous 
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differential equation 

(1) 

is 

y' + p(t)y = 0 

y(t) = ce-fh p(s)ds, 

where a is any point in the interval I, and Cis any real number. This formula is helpful 
in a problem where one cannot evaluate the integral of p(t) exactly and must use a 
numerical approximation. The formula holds because the integral 

Lp(s)ds 

is an antiderivative of p(t) by the Fundamental Theorem of Calculus. The choice 
of the endpoint a does not matter because a change in the value of a will be absorbed 
by a change in the value of the constant C. If we are given an initial value y(t 0 ) = y0 , 

the particular solution can again be found by substituting and solving for C. If we 
take a = t 0 , the constant C will be equal to y0 , 

Yo= y(a) = Ce-lffp<slds =Ceo= C. 

Thus the particular solution of the initial value problem (1) with y(a) = y0 is given by 

y(t) = Yo e -IJ p(S) ds. 

PROBLEMS FOR SECTION 14.2 

In Problems 1-4, find the general solution of the given differential equation. 

y' + 5y = 0 2 y' - 2y = 0 

3 
y 

r'+~- =0 
. 1 + t2 

4 

In Problems 5-12, find the particular solution of the initial value problem. 

5 

7 

9 

y' + )' = 0, y(O) = 4 

y' + y sin t = 0, y(n) = 1 

y' + yfl+? = 0, y(O) = 0 

10 y' + y cos (e') = 0, y(O) = 0 

11 ty' - 2y = 0, y(1) = 4, t > 0 

6 

8 

y'- 3y = 0, 

y' + _re' = 0, 

12 t 2 y'+y=0, y(l)=-2, t>O 

13 

14 

t 3y' = 2y, 

r3 r' = 2y, 

y(1) = I, 

y(l) = 0, 

t > 0 

t > 0 

15 A function y(t) is a solution of the differential equation 

y' + ky = 0 

y(1) = -2 

y(O) = e 

for some constant k. Given that y(O) = 100, and y(2) = 4, find k and find y as a function 
oft. 

16 A function y(t) is a solution of the differential equation 

y' + lk)' = 0 

for some constant k. Given that y(O) = 1, and y(l) = e- 1 3
, find k and find y as a function 

oft. 

17 A bacterial culture grows at a rate proportional to its population. If it has a population 
of one million at time 1 = 0 hours and 1.5 million at timet = 1 hour, find its population 
as a function oft. 
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18 A radioactive element decays with a half-life of 6 years. Starting with 10 lb of the element 
at time t = 0 years, find the amount of the element as a function oft. 

3 FIRST ORDER liNEAR EQUATIONS 

We shall now give a method for solving a differential equation of the following type. 

FIRST ORDER LINEAR DIFFERENTIAL EQUATION 

(1) y' + p(t)y = f(tj. 

Both p(t) andf(t) are continuous functions oft, where t varies over some interval I 
in the real line. When f(t) is the constant function with value 0, the equation is a 
homogeneous linear differential equation of the type studied in Section 14.2. 

First order linear differential equations arise in models of population 
growth with immigration. Suppose a population y(t) has a net birthrate of b(t) and 
net immigration rate off(t). The net birthrate b(t) is the excess of births over deaths 
per unit of population in one unit of time. In a small period of time of length At, 
the difference of births and deaths is b(t) • y(t) • L1t, and the net immigration is 
f(t) • M. Then the population will be a solution of the differential equation 
y' = b(t)y + f(t), which is the same as equation (1) with p(t) = - b(t). 

The size of a bank account that earns interest and also changes due to 
deposits and withdrawals can be described by a first order linear differential equation. 
If the account earns interest at the rate of r(t) at time t, and the net deposit per unit 
oftime isf(t), then the account size y(t) will be a solution of the differential equation 
(1) with p(t) = -r(t). 

The next theorem will be helpful in solving an equation of the type (1). 

THEOREM 1 

(1) 

(2) 

Suppose that y(t) is a particular solution of the first order linear differential 
equation 

y' + p(t)y = f(t), 

and x(t) is a nonzero particular solution of the corresponding homogeneous 

equation 

x' + p(t)x = 0. 

Then the general solution of the original equation (1) is 

y(t) + Cx(t). 

We already know from Section 14.2 how to solve the homogeneous linear 
equation (2). So if we can find one particular solution of the linear equation (1), we 
can use Theorem 1 to find the general solution. We postpone the proof of Theorem 1 
to the end of this section. 

A particular solution of a linear equation (1) can be found by the method 
called variation of constants. Start with a particular solution x(t) of the corresponding 
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homogeneous equation (2). For any constant C, Cx(t) is also a solution of (2). Now 
replace the constant C by a variable v(t), and see what happens. Let y(t) = v(t)x(t). 
We shall compute the left side of equation (1), y' + p(t)y. If it turns out to be equal to 
f(t), then y(t) will be a particular solution of (1) as required. We carry out the com­
putations using the Product Rule for derivatives. 

y = vx. 

y' + py = (vx)' + pvx 

= v' x + vx' + pvx 

= v'x + v(x' + px). 

Since x is a solution of the homogeneous equation (2), 

x' + px = 0. 

Therefore y' + py = v'x. 

Thus if we can find a function v(t) such that 

v'(t)x(t) = f(t), 

then y(t) = v(t)x(t) 

is a particular solution of the linear equation (1). 
Putting all the ideas together, we have a method for solving a first order 

linear differential equation. 

METHOD FOR SOLVING A FIRST ORDER LINEAR DIFFERENTIAL EQUATION 

(1) y' + p(t)y = f(t). 

The corresponding homogeneous linear differential eqttation is 

(2) x' + p(t)x = 0. 

Step 1 Find a nonzero particular solution x(t) of the corresponding homogeneous 
linear differential equation (2). By the method of Section 14.2, we may take 

x(t) = e- f p(tl dt. 

Step 2 Find a function v(t) whose derivative is given by 

This is done by integration, 

Step 3 The general solution of(1) is 

v'(t) = f(t). 
x(t) 

v(t) = J f(t) dt. 
x(t) 

y(t) = v(t)x(t) + Cx(t). 

Step 4 If an initial value is given, the partictdar solution for the initial value problem 
is found by substituting and solving for the constant C. 

Discussion Step 2 gives us a function v(t) for which v'(t)x(t) = f(t). Therefore, by 
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our previous discussion, v(t)x(t) is a particular solution of the linear 
equation (1). 

Step 3 is then justified by Theorem 1. 

EXAMPLE 1 Find the general solution of the equation 

t > 0. 

Then find the particular solution with the initial value y(l) = f. 
Step 1 The corresponding homogeneous equation is 

x' + 3t- 1x = 0. 

Step 2 

From Example 2 in Section 14.2, a particular solution is 

X= t- 3. 

Step 3 The general solution is 

or 

Step 4 

y = vx + Cx, 

y = (t)t3 + Ct-3. 

y(l) =! = (t)I3 + cr-3, 

C=l 
The required particular solution (Figure 14.3.1) is 

y = (t)t3 + (j-)t -3. 

Figure 14.3.1 Example 1 

EXAMPLE 2 A population has a net birthrate of 2% per year and a net annual 
immigration rate of 100,000 sin t. At time t = 0 years, the population is 
1,000,000. Find the population as a function oft. 
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The given verbal problem can be expressed as the initial value problem 

y' = 0.02y + 100,000 sin t, y(O) = 1,000,000. 

We first put the equation in the usual form with all the y terms on the left 
side, 

y' - 0.02y = 100,000 sin t, y(O) = 1,000,000. 

Step 1 The corresponding homogeneous equation is 

x' - 0.02x = 0. 

Step 2 

The particular solution is 

100,000 sin t _ . _ 0 .02 , 
v' = 0 021 - 100,000 Sill te . e . 

v can now be found by integration by parts. With u = sin t and dw = 
e-o.ozr dt, we have w = -50e- 0 ·02 ' and 

J sin te- 0
·
02

' dt = -50 sin te- 0
·
02

' + 50 J cos te- 0
·
02

' dt. 

Similarly, 

J cos te- 0
·
02

' dt = -50 cos te- 0
·
02

' - 50 J sin te- 0
·
02

' dt. 

Combining the last two equations and solving for the integral of sin te- 0 ·
02

', 

we get 

J. sin te- 0 ·
02

' dt = --=_1__ e- 0 ·02 '[50 sin t + 2500 cost] + K 
2501 ' 

-100,000 0 02 . 
r(t) = e- · '[50 Sill t + 2500 cost] 

2501 . 

Step 3 The general solution is y = vx + Cx, or 

100,000 . J 0 02t 
y(t) = -

2501 
[50 Sill t + 2500 cost + Ce · 

Step 4 Substitute at t = 0. 

100,000 [ . 0 0] c 0 1,000,000 = -
2501 

50 Sill 0 + 25 0 cos + e 

= - 100,000 [2 00] c 
2501 

5 + ' 
c = 1,099,960. 

The particular solution (Figure 14.3.2) is then 

100,000 . J 1 099 960 0 021 y(t) = - [50 Sill t + 2500 cost + , , e · . 
2501 
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Figure 14.3.2 Example 2 

EXAMPLE 3 Find the general solution of the equation 

y' - sy = Ke't, 

where r, s, and K are constants. 

Step 1 The corresponding homogeneous equation is 

Step 2 

x'- sx = 0. 

It has the particular solution 

x(t) = est. 

Ke't 
v'(t) = -- = Ke<r-s>t. 

est 

There are two cases, r ¥= s and r = s. 

Step 3 (Case 1) r ¥= s. 

v(t) = J Ke<r-s)t dt, 

K v(t) = -- e<r-s)t. 
r- s 

The general solution y = vx + Cx in this case is 

K 
y(t) = -- e't + cest. 

r- s 

100 

Step 3 (Case 2) r = s. In this case v'(t) = K, and v(t) = Kt. The general solution 
in this case is 

y(t) = Ktest + Cest. 



We now return to the general first order linear differential equation (1 ). 
Using definite integrals, we can get a single formula for the solution of equation 

(1) y' + p(t)y = f(t) 

by combining Steps 1 to 4. For Step 1, choose an initial point a, and get a particular 
solution of the corresponding homogeneous equation, 

x(t) = e-n, p(s) ds. 

For Step 2, write v(t) as a definite integral from a to t, 

v(t) = - ds = f(s)ef~p(rl dr ds. f' f(s) f' 
a x(s) a 

Step 3 shows that the general solution is y = vx + Cx, and the final formula is 
found by substituting for v and x. 

GENERAL SOLUTION OF EQUATION (1). DEFINITE INTEGRAL FORM 

y(t) = e-f.p(r)dr [Lf(s)ef3p(r)dr ds + c J. 
By taking t = a in the above equation, we find that C = y(a). Thus the particular 
solution of equation (1) with the initial condition y(a) = y0 is obtained by replacing 
C by y0 . This formula is useful when one or both of the integrals cannot be evaluated. 
In a simple problem, it is better to use Steps 1 to 4, which break the solution process 
into smaller parts. 

In the following example, we are able to evaluate the first integral but not 
the second, so the solution is left in a form with one definite integral. 

EXAMPLE 4 Find the general solution of the equation 

y' + y cos t = t. 

Step 1 From Example 1 in Section 14.2, the corresponding homogeneous equation 
has the particular solution 

Step 2 The function v(t) is expressed by an integral. 

t . 
v' = -----=-siO'! = feSln z, 

e 

v = fsesin s ds. 

We cannot evaluate the integral, so we leave it in this form. It does not 
matter which value is chosen for the lower endpoint in the integral, so we 
take the lower endpoint zero. 

Step 3 The general solution is 

y = vx + Cx, 

or y(t) = e-sinl Lsesins ds + ce-sin·. 
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EXAMPLE 5 Find the solution of the initial value problem 

y' + yIn (2 + cost) = t, y(l) = 4. 

We are not able to evaluate the integral of In (2 + cos t), so we shall use 
the definite integral form of the solution. With the initial point a = 1, the 
solution is 

y(t) = e-nln(2+cosr)dr[fseffln(2+cosr)drds + 4]. 

We conclude this section with a proof of Theorem 1. The proof uses the 
Principle of Superposition. 

PRINCIPLE OF SUPERPOSITION {First Order) 

Suppose x(t) and y(t) are solutions of the two first order linear differential 
equations 

x' + p(t)x = f(t), 

y' + p(t)y = g(t). 

Then for any constants A and B, the function 

u(t) = Ax(t) + By(t) 

is a solution of the linear differential equation 

u' + p(t)u = Af(t) + Bg(t). 

Notice that all three differential equations have the same p(t). The Principle 
of Superposition follows from the Constant and Sum Rules for derivatives: 

u' + p(t)u = (Ax + By)' + p(t)(Ax + By) 

= Ax' + By' + Ap(t)x + Bp(t)y 

= A(x' + p(t)x) + B(y' + p(t)y) 

= Af(t) + Bg(t). 

PROOF OF THEOREM 1 We are given that y and x are solutions of 

(1) 

(2) 

(3) 

y' + p(t)y = f(t) 

and 

x' + p(t)x = 0. 

We must prove that a function u(t) is a solution of 

u' + p(t)u = f(t) 

if and only if u = y + Cx for some constant C. 

Assume first that u = y + Cx. By the Principle of Superposition, 

u' + p(t)u = f(t) + C • 0 = f(t), 

so u is a solution of (3). 
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Now assume that u is a solution of (3). Using the Principle of Superposition 
again, 

(u - y)' + p(t)(u - y) = f(t) - f(t) = 0. 

Thus u - y is a solution of the homogeneous linear equation (2). The 
general solution of equation (2) is Cx. Therefore for some constant C, 

tt-y= Cx and u = y + Cx. 

PROBLEMS FOR SECTION 14.3 

In Problems 1~10, find the general solution of the given differential equation. 

1 y' + 4y = 8 2 y' - 2y = 6 

y' + ty = 5t 4 y' + e'y = -2e' 

y' - )' = t2 6 2y' + )' = t 

3 

5 

7 ty' - 2y = ljt, t > 0 8 ty' + )' = ,jt, t > 0 

9 y'cost+ysint=l, -n/2<t<n/2 

10 y'+ysect=tant, -n/2<t<n/2 

In Problems 11~14, find the general solution using the definite integral form when the integral 
cannot be evaluated. 

11 

13 

y' + y sin t = t 

y' + y cos ( e') = 1 

12 

14 

y' + yt2 = tan t, 

y' + ye 1
'' = 2e', 

-n/2 < t < n/2 

t>O 

15 A population has a net birthrate of 2.5% per year and a net annual immigration equal 
to 10,000t - 40,000, where t is measured in years. At time t = 0, the population is 
y(O) = 100,000. Find the population as a function oft. 

16 Work Problem 15 if the net annual immigration is 1,000(cos t- 1). 

17 A bank account earns interest at the rate of 10% per year, and money is deposited con­
tinuously into the account at the rate of 5t2 dollars per year. The earnings due to interest 
are also left in the account. If the account had $5000 at timet = 0 years, find the amount 
in the account at timet = 10 years. 

18 Work Problem 17 if there are no deposits but money is withdrawn continuously from 
the account at the rate of 5t 2 dollars per year. 

19 Use differential equations to prove the capital accumulation formula in Section 8.4. 
The formula says that if money is deposited continuously in an account at the rate 
of f(t) dollars per year, and the account earns interest at the annual rate r, and there 
are zero dollars in the account at time t = a, then the value of the account at time 
t = b will be 

y(b) = rf(t)e'(b-1) dt. 
a 

14.4 EXISTENCE AND APPROXIMATION OF SOLUTIONS 

This section deals with arbitrary first order differential equations. It is optional and 
therefore can be omitted if desired. Most first order differential equations cannot 
be solved explicitly. However, it is possible to approximate a solution by a method 
similar to the Riemann sum for the definite integral. The Euler approximation 
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starts by dividing the interval [a, m) into small subintervals of length !'!.t. When 
!'!.t is real, it gives an approximate solution that can be computed numerically. When 
!'!.t is infinitesimal, it leads to a precise solution and is useful because it shows that 
a solution exists. 

Throughout this section, we shall work with a first order differential equation 
with an initial value 

(1) y' = f(t, y), y(a) =Yo· 

We assume once and for all thatf (t, y) is continuous for all t andy. 

DEFINITION 

Let !'!.t be positive, and partition the interval [a, oo) into subintervals of 
length !'!.t. The Euler approximation for the initial value problem (1) is the 
function Y(t), a :-:::;; t, defined as follows. Start the graph of Y(t) at the point 
(a, y0 ). Then move from (a, y0 ) to (a + !'!.t, Y(a + !'!.t)) along a straight line 
with slope f(a, Y(a)). Once the value Y(t) is computed for a partition point 
t = a + k t!.t, movefi"om (t, Y(t)) to the next partition point (t + !!.!, Y(t + !!.!)) 
along a straight line with slope f(t, Y(t)). 

The graph of Y(t) is the broken line shown in Figure 14.4.1. Each piece has 
the slope required by the differential equation (1) at the beginning of the subinterval. 
If !'!.t is small, then since f(t, y) is continuous, the slope of Y(t) should be close to 
the correct slope. Thus we would expect Y(t) to be close to a solution of (1). 

Figure 14.4.1 

The values of Y(t) at the partition points can be computed by an iteration 
that can easily be carried out on a computer. The first three values are 

Y(a) =Yo, 

Y(a + !'!.t) = Yo + f(a, Yo) !'!.t, 

Y(a + 2 !'!.t) = Y(a + t!.t) + f(a + t!.t, Y(a + t!.t)) t!.t. 
Given the value Y(t) for a partition point t = a + k t!.t, the next value Y(t + !'!.t) is 
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given by the rule 

Y(t + L).t) = Y(t) + f(t, Y(t)) M. 

Using the sigma notation, the (k + l)sr value of Y(t) can be written as 
k-! 

Y(a + k M) = Yo + I f(a + 11M, Y(a + 11 L).t)) L).t. 
11=0 

This equation may also be written in the manner of a Riemann sum with b = a + k M: 

b 

Y(b) = Yo + I f(t, Y(t)) M. 

In the simple case 

y'(t) = f(t), 

the Euler approximation is just y0 plus the Riemann sum, 

b 

Y(b) = Yo + I f(t) M, 

which is approximately equal to y0 plus the integral 

y(b) = Yo + f f(t) dt. 

EXAMPLE 1 Compute the Euler approximation to the initial value problem 

y(O) = 0 

for 0 ::::; t ::::; 1, with L).r = 0.2. 

Notice that the differential equation is not linear because of the y2
, and the 

variables are not separable, so we cannot solve the equation by the methods 
of the preceding sections. Given Y(t), the next value Y(t + M) is computed 
by the rule 

Y(t + L).t) = Y(t) + (t - Y(t) 2
) L).t. 

We record the values in a table. The third column gives the change in Y(t). 
The graph of Y(t), shown in Figure 14.4.2, is obtained by connecting the 
points (t, Y(t)) in the table by straight lines. 

0.0 
0.2 
0.4 
0.6 
0.8 
1.0 

8.£ = 0.2 

Y(r) Y(t + L'!t) - Y(t) = (t - Y(t) 2
) L'1t 

0.0 
0.0 
0.04 
0.1197 
0.2368 
0.3856 

0.0 
0.04 
0.0797 
0.1171 
0.1488 
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Figure 14.4.2 Example 1 

Work the same problem with At = 0.1. 

t'!.t = 0.1 

Y(t) Y(t + t'!.t) - Y(t) = (t - Y(t) 2
) t'!.t 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

0.0 
0.0 
O.Ql 
0.03 
0.0599 
0.0995 
0.1486 
0.2063 
0.2721 
0.3447 
0.4228 

0.0 
0.01 
0.02 
0.0299 
0.0396 
0.0490 
0.0578 
0.0657 
0.0726 
0.0781 

We now consider Euler approximations with infinitesimal At. These approxi­
mations cannot be computed directly but are useful in showing that a differential 
equation has a solution. 

The Euler approximation Y(t) depends on both t and the increment size At. 
Now let At be positive infinitesimal. By the Transfer Principle, Y(t + At) is still 
given by the rule 

Y(t + At) - Y(t) = f(t, Y(t))At. 

Intuitively, the graph of Y(t) as a function of t is formed from infinitesimal line 
segments, and the segment from t to t + At has slope f(t, Y(t)), as in Figure 14.4.3. 

The next theorem shows that the Euler approximation for infinitesimal At 
is infinitely close to a solution of the initial value problem. 

EXISTENCE THEOREM 

(1) 

Let At be positive infinitesimal and let Y(t) be the Euler approximation of 
the initial value problem 

y' = f(t, y), y(a) =Yo 
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-''I 

Figure 14.4.3 

with increment /'it. Let b be a real number greater than a, and suppose that 
Y(t) is finite for all t between a and b. Then for rea/numbers t in the interval 
[a, b], the function y(t) given by 

y(t) = st( Y(t)) 

is a solution of the initial value problem (1). 

Discussion The theorem shows that the initial value problem (1) has a solution 
as long as Y(t) remains finite. The solution is found by taking the standard 
part of Y(t). When Y(t) becomes infinite, we say that an explosion occurs 
(see Example 2 in Section 14.1 and Example 3 in this section). 

PROOF OF THE EXISTENCE THEOREM At t =a, y(a) = st(Y(a)) =Yo· Let M 
be the largest value of lf(t, Y(t)) I for t, a partition point between a and b. 
Then M is finite. Since Y(t) never changes by more than M /'it from one 
partition point to the next, we always have 

I Y(t)- Y(s)l s Mit- sj. 

Taking standard parts, we see that for real sand tin the interval [a, b], 

Jy(t)- y(s)l s Mit- sj. 

By the Transfer Principle, this also holds for all hyperreal s and t between 
a and b. Then for any a s t s b, 

Y(t) ~ Y(st(t)) ~ y(st(t)) ~ y(t) 

and hence, becausef(t, z) is continuous in z, 

f(t, Y(t)) ~ f(t, y(t)). 

Let h(t) be the real function 

h(t) = f(t, y(t)). 

Since Y is an Euler approximation, 
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t 

Y (t) = Yo + L f(s, Y(s)) !'it 
s=a 

for each real point t between a and b. But h(s) = f(s, y(s)) ~ f(s, Y(s)), so 

I 

Y(t) ~ Yo + L h(s) M. 
s=a 

This is just the Riemann sum of h. Taking standard parts, we get the integral 
ofh: 

y(t) =Yo + S:h(s) ds. 

Finally, by the Fundamental Theorem of Calculus, 

y'(t) = h(t) = f(t, y(t)). 

Thus y(t) is a solution of (1) as required. 

To apply the Existence Theorem, we need a way of checking that Y(t) is 
finite. Here is a convenient criterion. 

LEMMA 

Let Y(t) be an Euler approximation of the initial value problem (1) with 
infinitesimal !'it, and let M and b be finite. 

(i) If I f(t, y) I :::;; M for all a :::;; t :::;; b and all y, then Y(t) is finite for all 
a :::;; t :::;; b. 

(ii) If I f(t, y) I :::;; M for all a :::;; t :::;; b and all y within M • (t - a) of Yo, 
then Y(t) is finite for all a :::;; t :::;; b. 

PROOF (i) Since Y(t) cannot change by more than M !'it from one partition point 
to the next, we have 

I Y(t) - Yo I :::;; M • (t - a) :::;; M • (b - a). 

M • (b - a) is finite, so Y(t) is finite. 

The proof of (ii) is similar. 

Discussion The lemma is illustrated in Figure 14.4.4. Choose a positive real number 
M. Part (i) of the lemma says that iff(t, y) is between - M and M, everywhere 
in the vertical strip between t = a and t = b, then Y(t) is finite for a :::;; t:::;; b. 
Part (ii) of the lemma says that iff(t, y) is between - M and M, everywhere 
in the shaded triangle, then Y(t) is finite for a :::;; t :::;; b. Part (ii) is stronger 
because the shaded triangle is a subset of the vertical strip. The proof shows 
that Y(t) stays within the shaded rectangle for a :::;; t :::;; b. 

The lemma and the Existence Theorem combined show that if we can find 
an M such thatf(t, y) is continuous andf(t, y) is between -M and M every­
where in the shaded triangle, then the initial value problem (1) has a solution 
y(t) for a :::;; t :::;; b. The proof also shows that the solution y(t) is within the 
shaded triangle for a :::;; t :::;; b. 
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(a, Yo) 

l. = b 

t=a 

Figure 14.4.4 

EXAMPLE 2 Show that the initial value problem 

y' = t- y2, y(O) = 0 

from Example 1 has a solution for 0 ::;; t ::;; 1. 

Let tit be infinitesimal and form the Euler approximation Y(t) with increment 
tit. Apply the lemma with M = 1, b = 1. In this example, 

if(t,y)i = iY2
- ti :5: 1 

whenever 0 ::;; t ::;; 1 and -1 ::;; y ::;; 1. Therefore, by the lemma, Y(t) is 
finite for 0 ::;; t ::;; 1. By the Existence Theorem, the standard part of Y(t) is a 
solution for 0 ::;; t ::;; 1. 

Here is another theorem that shows that in most cases the solution is unique 
and is close to the Euler approximations for small real increments tit. In this theorem, 
we shall write Y6 ,(t) instead of Y(t) to keep track of the fact that Y(t) depends on tit 
as well as on t. 

UNIQUENESS THEOREM 

Assume the hypotheses of the Existence Theorem and also that f(t, y) is 
smooth; that is, the partial derivatives off are continuous. Then the initial 
value problem (1) has only one solution y(t) for t in [a, b]. Furthermore, the 
Euler approximations Y61(t) approach y(t) as the real number tit approaches 
zero; that is, 

lim Y6 ,(t) = y(t) 
~~-o + 

for each t in [a, b]. 
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We shall not give the proof. The Uniqueness Theorem tells us two important 
things about differential equations in which f(t, y) is smooth. First, it tells us that a 
particular solution of such a differential equation will depend only on the initial 
condition. Thus if an experiment is accurately described by a differential equation 
with f(t, y) smooth, then repeated trials of the experiment with the same initial 
condition will give the same outcome. Second, it tells us that the Euler approximations 
will approach the solution of the differential equation as fit approaches zero. Thus 
we can get better and better approximations of the solution by taking fit small. 

EXAMPLE 2 (Continued) The function f(t, y) = t - y 2 is smooth. The Uniqueness 
Theorem shows that the initial value problem of Example 1 has just one 
solution y(t) for 0 ::; t ::; 1. Moreover, the Euler approximations Y(t) get 
close to y(t) as the real increment fit approaches zero. Thus the approxima­
tions computed in Example 1 really are approaching the solution. 

We conclude with an example of an explosion and an example with more 
than one solution. 

EXAMPLE 3 (An Explosion) The initial value problem 

y(O) = 1 

may be solved by separation of variables: 

y- 2 dy = dt, 

-1 
y(t) = t + c, 

y(t) = -(t + C)- 1 

1 = -(O+C)- 1
, C= -1, 

y(t) = c1- o- 1 

(general solution), 

(particular solution). 

The graph, shown in Figure 14.4.5, approaches infinity as t approaches 1 
from the left. The function y(t) = (1 - t)- 1 is a solution for 0 ::; t < 1, 
and the solution has an explosion at t = 1. 

Figure 14.4.5 Example 3 
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The Euler approximation Y(t) with a real increment l'!.t can be computed 
even for t greater than 1, but will approach y(t) only for 0 s t < 1. For 
infinitesimal Lit, the Euler approximation will be finite and infinitely close 
to y(t) when t is in the real interval [0, 1). Y(t) will keep on increasing and 
will be infinite for all t with standard part :2: 1. 

Continuing the example, compute the Euler approximation Y(t) for l'!.t = 0.2 
and 0 ::;; t ::;; 2, and compare the values with the solution y(t) = (I - t)- 1 

for 0 s t < 1. The results are shown in the next table and are graphed in 
Figure 14.4.5. 

M = 0.2 

y(t) Y(t) Y(t) 2 t..t 

0.0 1.0 1.0 0.2 
0.2 1.25 1.2 0.288 
0.4 1.6667 1.4488 0.4428 
0.6 2.5 1.9309 0.7456 
0.8 5.0 2.6764 1.4327 
1.0 oc 4.1091 3.3770 
1.2 7.4861 11.2084 
1.4 18.6945 69.8966 
1.6 88.5910 1569.6736 
1.8 1658.26 549968.3 
2.0 551627.6 

EXAMPLE 4 (Nonuniqueness) The initial value problem 

y(O) = 0 

has infinitely many solutions. The graphs split apart, as shown in Figure 
14.4.6. 

Figure 14.4.6 Example 4 
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One solution is the constant solution y(t) = 0. A second solution is found 
by separating variables: 

ty- 213 dy = dt, 

y 113 = t + c, c = 0 
y = t3. 

This solution can be checked by differentiation: 

y' = 3t2 = 3(t3f 13 = 3y213 • 

The other solutions go along the line y(t) = 0 in some interval and branch 
off the line y(t) = 0 to the right and left of the interval. The full list of solu­
tions is: 

{

(t- a) 3 

y(t) = 0 

(t - b) 3 

for t s;; a 

for a< t < b 

for b s;; t 

Here a is either a real number or - oo, b is either a real number or + oo) 
and a s;; 0 s;; b. In the case that a = - oo and b = + oo, the solution is the 
constant function y(t) = 0. 

These solutions all have the same initial value y(O) = 0. The Uniqueness 
Theorem does not apply in this example because the functionf(t, y) = 3y213 

has no derivative at y = 0, so thatf(t, y) is not smooth at y = 0. 

PROBLEMS FOR SECTION 14.4 

In Problems 1-4, compute the Euler approximation to the given initial value problem with 
tu = 0.1 for 0 :5: t :5: 1. 

1 

3 

y' = tjy, y(O) = 1 

y' = cos (t + y), y(O) = 1 

2 

4 

5 Show that the initial value problem 

y' = 1 + ty2
, 

has a unique solution y(t) for 0 :5: t :5: t. 
6 Show that the initial value problem 

2 

'=t+~+~ y 2 4, 

has a unique solution y(t) for 0 :5: t :5: t. 
7 Show that the initial value problem 

8 

y' = arctan (t + e}'), 

has a unique solution y(t) for 0 :5: t < oo. 

Show that the initial value problem 

y' = t + exp (- y2
), 

has a unique solution y(t) for 0 :5: t < oo. 

J 9 Show that the initial value problem 

y' = t + y3, 

y' =tiny, 

y(O) = 0 

y(O) = 0 

y(O) = 4 

y(O) = 1 

y' = yl/3, y(O) = 0 

has infinitely many solutions for 0 :5: t < oo. 

y(O) = 1 

y(O) = 2 
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010 Show that the initial value problem 

y' = t(ll -ll)li2, y(O) = 1 

has infinitely many solutions for 0 :::; t < CJJ. 

0 11 Suppose thatj(t, y) is continuous for all t andy. Prove that for each point (a, y0 ), the 
initial value problem 

y' = cos (f(t, y)), y(a) =Yo 

has a solution y(t), a :::; t < CJJ. 

0 12 Suppose that f(t, y) and g(t) are continuous for all t and y and that I f(t, y) I :::; g(t) 
for all t and y. Prove that for each point (a, y0 ) the initial value problem 

y' = f(t, y), 

has a solution y(t) for a :::; t < CJJ. 

y(a) =Yo 

0 13 Suppose thatf(t, y) is continuous for all t andy. Prove that for each point (a, y0 ) there 
is a number b > a such that the initial value problem 

y' = f(t, y), y(a) =Yo 

has a solution y(t), a :::; t :::; b. 

14.5 COMPLEX NUMBERS 

This section begins with a review of the complex numbers. Complex numbers are 
useful in the solution of second order differential equations. The starting point is 
the imaginary number i, which is the square root of -1. The complex number system 
is an extension of the real number system that is formed by adding the number i 
and keeping the usual rules for sums and products. The set of complex numbers, or 
complex plane, is the set of all numbers of the form 

Z =X+ iy 

where x and y are real numbers. The number x is called the real part of z, and y is 
called the imaginary part of z. A complex number z can be represented by a point 
in the plane, with the real part drawn on the horizontal axis and the imaginary part 
on the vertical axis, as in Figure 14.5.1. The sum of two complex numbers is computed 
in the same way as the sum of two vectors, 

Figure 14.5.1 

(a+ ib) + (c + id) =(a+ c)+ i(b +d). 

iy 

----------------... X + iy 

X 

I 
I 

I 
I 
I 
I 
I 



14.5 COMPLEX NUMBERS 875 

The product of two complex numbers is computed using the basic rule f = - 1 
and the rules of algebra: 

(a+ ib) • (c + id) = ac + ibc + iad + i2bd = (ac - bd) + i(bc + ad). 

EXAMPLE 1 Compute the product of 3 + i6 and 7 - i. 

(3 + i6). (7 - i) = (3 • 7 - 6. ( -1)) + i(6. 7 + 3 • ( -1)) = 27 + i39. 

The complex conjugate z of z is formed by changing the sign of the imaginary part of z: 

a+ ib =a- ib. 

The product of a complex number with its conjugate is always a nonnegative real 
number, computed as follows. 

(1) (a + ib)(a - ib) = a2 
- iab + iab + b2 = a2 + V 

The quotient oftwo complex numbers can be computed by multiplying the numerator 
and denominator by the conjugate of the denominator, as follows. 

a+ ib (a+ ib)(c- id) ac + bd . -ad+ be 
~~ = = + !-=--~~ 
c + id (c + id)(c - id) c2 + d2 c2 + d2 

EXAMPLE 2 Compute the quotient (1 + i)/(1 - i2). 

1+i 
1- i2 

(1 + i) • (1 + i2) 

(1 - i2) • (1 + i2) 

(1 • 1 - 1 • 2) + i(l. 2 + 1 • 1) 

1 + 4 

-1 + i3 1 3 
--~= --+i-. 

5 5 5 

In the real number system, a positive real number b has two square roots, 
Jb and :Jb, and negative real numbers have no square roots. In the complex 
number system, a negative real number -b has two imaginary square roots, ijb 
and - iyfb. The quadratic formula gives the roots of any second degree polynomial 
in the COll}plex number system. 

QUADRATIC FORMULA 

The roots of the polynomial 

az2 + bz + c where a f= 0 

in. the complex number system are given by 

Z= 
-b ± Jb 2

- 4ac 

2a 

The number b2 - 4ac is called the discriminant. If a, b, and c are real, there 
are three cases : 

Case 1 If b2 
- 4ac > 0, there are two real roots. 

Case 2 If b2 
- 4ac = 0, there is one real root. 
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Case 3 If b2 
- 4ac < 0, there are two complex roots, which are complex conjugates 

of each other. 

EXAMPLE 3 Find the roots of the polynomial z 2 + z + 2 in the complex number 
system. 

-1±J1-4·1·2 -1±'\/-7 1 .fi 
Z= = =--+!-. 

2 2 2- 2 

It is often useful to represent a complex number in polar form. A point 
(x, y) in the plane has polar coordinates (r, e) where X = I' cos e, y = I' sin e. The 
complex number x + iy may be written in the polar form 

X + iy = I'( COS e + i sin e). 

The coordinates r and e can always be chosen so that r ~ 0 and - n < e ~ n. The 
number r, which is the distance of the point (x, y) from the origin, is the absolute value 
of the complex number x + iy: 

r = [x + iy[ = (x2 + y2)1;2. 

The formula (1) for the product of a complex number and its conjugate may now 
be written in the short form 

zz = [z[ 2
. 

The real number e is an angle in radians and is called the argument of x + iy. The 
argument can be computed by using the formula 

y 
tan-= e, 

X 

and then choosing e in the correct quadrant. The polar form of a complex number 
is illustrated in Figure 14.5.2. This figure is sometimes called the Argand diagram 
of the complex number. The complex number with absolute value one and argument e 
is sometimes called cis e: 

Figure 14.5.2 

cis e = cos e + i sin e. 

z 

r cos e 

I 
I 

1 ir sine 
I 
I 
I 
I 
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In Figure 14.5.3, we see that in the complex plane, cis 8 is on the unit circle at an 
angle 8 counterclockwise from the x-axis. Using the symbol cis 8, the polar form 
can be written 

X+ iy = r cis 8. 

Figure 14.5.3 

EXAMPLE 4 Write the complex number z = -2 + i2 in polar form. 

The absolute value of z is I z 1 = (22 + (-2)2
)

112 = JS. To find the argument 
8, we use tan 8 = 2/(- 2) = - 1. Since z is in the second quadrant (x negative 
andy positive), 8 must be 3nj4. Thus 

z = J8 cis 3:. 

cis 8 is helpful in computing products, quotients, and powers of complex 
numbers. Using the addition formulas for sines and cosines, we can prove the product 
formula 

(2) (r cis 8) • (s cis¢) = rs cis (8 + ¢). 

In words, this formula states: To multiply two complex numbers, multiply the absolute 
values and add the arguments. There is a similar formula for quotients: 

r cis e r 
-.- = -cis(8- ¢). 
S CIS cp S 

(3) 

To divide two complex numbers, divide the absolute values and subtract the arguments. 

EXAMPLE s Using the polar form, find the quotient (1 + i)/(1 - i). 

In polar form, 

1 + i = J2 cis ~ , 1- i = Jlcis(- ~). 

~ = J2 cis(~ - - n) = cis(~) 
1-i J2 4 4 2 

n . n 
= cos 2 + i sm 2 = i. 
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Using the product formula (2) n times, we get a formula for the n'h power of a complex 
number, 

(4) (r cis 8)" = r" cis (n8). 

This formula in the case r = 1 is called De M oivre's Formula, 

(cos 8 + i sin 8)" = cos (n8) + i sin (n8). 

We can see from the power formula (4) that the complex number r cis 8 has the 
square root ~cis (8/2). In fact, each complex number except zero has two square 
roots, 

(5) 

EXAMPLE 6 Find the square roots of i. 

By the computation in Example 3, the polar form of i is i = cis (n/2). 

i1
1
2 

= ±Jl cis~=± (cos~+ isin~) 

= + (.fi + i.fi). - 2 2 

The two square roots of i are shown in Figure 14.5.4. 

Figure 14.5.4 

Yio + i) 
2 

We now turn to complex exponents, which are useful in the study of differ­
ential equations. In order to give a meaning to an exponent ez, we consider infinite 
series of complex numbers. The sum of an infinite series of complex numbers is 
defined by summing the real and imaginary parts separately. If Z11 = x" + iy11 , and 
the series L: X 11 and L: y" both converge, the sum of the series L: z" is defined by the 
formula 

00 co 00 

2: z,l = L x" + i L Yr~· 
n~o n~o 11~0 

In Chapter 9, we found that for real numbers z the exponent ez is given by the power 
senes 
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z2 z3 z4 
ez=l+z+-+-+-+···. 

2! 3! 4! 

When z is a complex number, this formula is taken as the definition of ez. It can be 
shown that the power series converges for every z and that the exponential rule 
eu+z = e"ez holds for complex exponents. In the case that z is a purely imaginary 
number z = iy, the power series takes the form 

2 3 4 5 
i•• 1 . y . y + y + . y e'= +ry-

21
-r3! 

41 
r

51
-··· 

= [l _ y2 + y"· _ .. ·] + i [y _ y3 + ys _ .. ·] 
2! 4! 3! 5! . 

Using the power series for cosy and sin y, we obtain Euler's Formula: 

eiy = cosy + i sin y = cis y. 

When z is a complex number z = x + iy, the exponent ez is given by the formula 

ex+iy = exeiy =ex( cosy+ i sin y). 

EXAMPLE 7 Find e- 2 +irr/3. 

e- 2 +irr/3 = e- 2 [cos~ + isin~] = e- 2(! + ij3) 3 3 2 2 . 

In Chapter 8, the hyperbolic cosine and hyperbolic sine were defined in 
terms of ex by the equations 

ex+ e-x 
coshx = 

2 
, 

. ex-e-x 
smhx = 

2 

Euler's Formula leads to similar equations for the cosine and sine. 

eiy = cos y + i sin y, 
eiy + e-iy 

cosy= -----=-2--

e- iy = cos y - i sin y, 
eiy- e-iy 

sin y = ----=-­
i2 

In the next section we will make use of complex valued functions, that is, 
functions f(t) that assign a complex number z = f(t) to each real number t. The 
derivative of a complex valued function is obtained by differentiating the real and 
complex parts separately. Thus, if h(t) = f(t) + ig(t), where g and hare real functions, 
then h'(t) = f'(t) + ig'(t). 

For example, if h(t) = e•t, where r = a + ib is a complex constant, then 

h(t) = eat(cosbt + isinbt), 

h'(t) = aeat(cosbt + isinbt) + beat(-sinbt + icosbt) 

= (a + ib)eat(cos bt + i sin bt) = re•t. 

Summing up, the usual rule (e't)' = re•t still holds when r is a complex 
constant. We can also consider complex valued differential equations. The example 
we shall need is the homogeneous linear differential equation 

z' + rz = 0, 
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where r is a complex constant. The general solution of this equation is 

z(t) = ce-'1
, 

where C is a complex constant. This solution can be checked by differentiation as 
before. 

EXAMPLE 8 Solve the complex initial value problem 

z' + (3 + i4)z = 0, 

The general solution is 

z(t) = ce-(3+i4)1• 

Substituting the initial value at t = 0, e1 + ;2 = C. The particular solution 
is then 

The solution may also be written in polar form using Euler's Formula, 

z(t) = e 1 -
31 cis (2 - 4t). 

PROBLEMS FOR SECTION 14.5 

In Problems 1-6, put the complex number in the form a + ib. 

n-~+O+~ 2 ~-~-~-o 

3 (-4+i2)·(1-i2) 4 (3+i)·(-2-i6) 

5 c1 - i2)/C3 + o 6 n + i3)/C2 - ;s) 

In Problems 7-12, find the roots of the given equation. 

7 z2 
- 8z + 16 = 0 8 

9 

11 

z2 + 25 = 0 

z2 + 2z + 5 = 0 

10 

12 

z2 + 6z + 9 = 0 

z2 + 100 = 0 

z2 + z + 3 = 0 

In Problems 13-18, put the complex number into the polar form r cis 8. 

13 i5 14 -i3 

15 -3- i3 16 -4 + i4 

17 J3- i 18 2 + i2j3 

In Problems 19-24, use the polar form to simplify the given expression. 

19 (2 + i2)/( -3 + i3) 20 ( -4- i4);(5- i5) 

21 cJ3 + i)iO - i) 22 c1 + o;o - ij3) 

23 (1 - i) 5 24 (1 + ij3)6 

In Problems 25-28, compute both square roots of the given complex number using the polar form. 

25 I + i 26 - 1 + i 
27 - i4 28 - 1 - ;j3 

In Problems 29-32, put the given exponent in the form a + ib. 

29 e-3+irrt2 30 e2-irr 
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31 

In Problems 33-36, find the derivative. 

33 

35 

z = e<s-i3Jt 

z = e<2-i7J+<3+i2Jt 

32 

34 

36 

z = e<4+i2Jt 

z = e5+(-1+i4)r 

In Problems 37-40, find the general solution of the complex differential equation. 

37 z' + (2 - i3)z = 0 38 z' - i4z = 0 

39 z' + (- 3 + i5)z = 0 40 z' + (- 2 - i)z = 0 

In Problems 41-44, solve the given complex initial value problem. 

41 z' + ( -2 + i)z = 0, z(O) = ei 

42 z' + (3 + i4)z = 0, z(O) = e2+ i4 

43 z' + (- 2 + i)z = 0, z(O) = 4 

44 z' + (3 + i4)z = 0, z(O) = -1 

45 Show that for any complex number z, z + z is a real number. 

46 Prove that the conjugate of a complex number r cis e is r cis (-e). 

47 Prove that for any nonzero complex number z, zfz = cis (2e), where e is the argument 
of z. 

48 Prove that for any two complex numbers u and z, the sum of the conjugates of u and z 
is equal to the conjugate of the sum of u and z, and similarly for products. In symbols, 

u + z = u + z, (u) · (z) = u · z. 

49 Prove that for any two complex numbers u and z, 

lu + zl::; lui+ lzl. 
50 Use De Moivre's Formula with n = 2, 

cos (2e) + i sin (2e) =(cos e + i sin w. 
to obtain expressions for cos (2e) and sin (2e) in terms of cos e and sin e. 

51 Use De Moivre's Formula with n = 3, 

cos (3e) + i sin (3e) =(cos e + i sin W, 
to obtain expressions for cos (3e) and sin (3e) in terms of cos e and sin e. 

52 Find the solution of the initial value problem 

z' +(a+ ib)z = 0, 

where a, b, c, and d are real numbers. 

z(O) = ec+id 

53 Show that every solution of the differential equation z' + ibz = 0 has constant absolute 
value (where b is a real number). 

SECOND ORDER HOMOGENEOUS LINEAR EQUATIONS 

A second order differential equation is an equation involving an independent variable t, 
a dependent variable y, and the first two derivatives y' andy". The general solution 
of a second order differential equation will usually involve two constants. Two initial 
values are needed to determine a particular solution. A second order initial value 
problem is a second order differential equation together with initial values for y and y'. 
This section gives a solution method for second order equations of the following 
very simple type. 
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SECOND ORDER HOMOGENEOUS LINEAR DIFFERENTIAL EQUATION 
WITH CONSTANT COEFFICIENTS 

(1) ay" + by' + cy = 0, 

where a, b, and c are real constants and a, c i= 0. 

Discussion If a = 0, the equation is a first order differential equation by' + cy = 0. 
If c = 0, the change of variables u = y' turns the given equation (1) into a 
first order differential equation au' + bu = 0. In each of these cases, the 
equation can be solved by the method of Section 14.1 or 14.2. (After finding 
u, y can be found by integration because y' = u.) 

In Section 14.2 we found that the first order homogeneous linear differential 
equation with constant coefficients, y' + cy = 0, has the solution y = e-cr. To get 
an idea of what to expect in the second order case, let us try to find a solution of 
equation (1) of the form y = e'1 where r is a constant. Differentiating and substituting 
into equation (1), we see that 

a(e'1
)" + b(e'1

)' + ce'1 = ar 2err + bre'1 + cerr 

= (ar 2 + br + c)e'1• 

This shows that y(t) = err is a solution of equation (1) if and only if 

m·2 + br + c = 0. 

We should therefore expect that the solutions of the equation (l) will be built up 
from the functions y(t) = err where r is a root of the polynomial az2 + bz + c. We 
shall state the rule for finding the general solution of the equation (1) now and 
prove the rule later on. 

METHOD FOR SOLVING A SECOND ORDER HOMOGENEOUS DIFFERENTIAL 

EQUATION WITH CONSTANT COEFFICIENTS 

(1) ay" + by' + cy = 0, a i= 0. 

Step 1 Form the characteristic polynomial 

az 2 + bz +c. 

Find its roots by using the quadratic equation or by factoring. 

Step 2 The general solution is described by three cases. 

Case 1 Two distinct real roots: z = 1', z = s. 

y = Ae'1 + Be•1
• 

Case 2 One rea/root: z = 1'. 

y = Ae'1 + Bte'1
• 

Case 3 Two complex conjugate roots: z = (/. ± i/3. 

y = ea1[A cos (f3t) + B sin (f3t)]. 

Step 3 If initial values for y and y' are given, solve for A and B, and substitute to 



obtain the particular solution. The two initial values will specify the position 
and velocity at one time: 

Y = Yo and y' = Vo at t = t 0 • 

Discussion The general solution in Case 3 is sometimes written in the same form 
as Case 1 by using complex exponents, 

y = Cert + Desr, 

where 1' =IX+ i/3, S =IX- i/3, 

C = !CA- iB), D =!(A+ iB). 

To show that the two forms of the solution are really the same, use the 
complex exponent formula 

ea+ifJ = ea(cos f3 + i sin /3) 

from the preceding section. 

EXAMPLE 1 Find the general solution of 

y"- OJ2y = 0, OJ =1- 0. 

Step 1 The characteristic polynomial is z2 
- OJ

2
• It has two real roots, z = w and 

z =-OJ. 

Step 2 The general solution is 

where OJ is constant. 

EXAMPLE 2 Find the solution of the initial value problem 

y"- y'- 2y = 0, y(O) = 5, y'(O) = 0. 

Step 1 The characteristic polynomial z2 
- z - 2 has two real roots, z = - 1 

and z = 2. 

Step 2 The general solution is 

y = Ae-' + Be2
'. 

Step 3 The initial value y(O) = 5 gives the equation 

5=A+B. 

To get a second equation, we differentiate the general solution and substitute 
the initial value for y'(O). 

0 = -A+ 2B. 

The solution of the two equations for A and B is 



The particular solution of the initial value problem, shown in Figure 14.6.1, is 

y 
(0, 5) 

Figure 14.6.1 Example 2 

EXAMPLE 3 Find the solution of the initial value problem 

y"- 4y' + 4y = 0, y(O) = -3, y'(O) = 1. 

Step 1 The characteristic polynomial z2 
- 4z + 4 has one real root, z = 2. 

Step 2 The general solution is 

y = Ae2
' + Bte 2

'. 

Step 3 Substitute 0 for t and -3 for y. 

-3 = Ae0 + B • 0 • e0
, A = -3. 

Compute y' for the general solution. 

y' = 2Ae2
' + 2Bte2

' + Be2
'. 

Substitute 0 for t and 1 for y'. 

1 = 2Ae0 + 2B • 0 • e0 + Be0 = 2A + B, 

The particular solution, shown in Figure 14.6.2, is 

y = - 3e2
' + 7te 2

'. 

EXAMPLE 4 Find the solution of 

B = 7. 

2y" + 18y = 0, y(O) = 2, y'(O) = 15. 

Step 1 The characteristic polynomial is 2z 2 + 18, and its roots are z = ± i3. 

Step 2 The general solution is 

y = A cos (3t) + B sin (3t). 

Step 3 Substitute 0 for t and 2 for y. 

2 =A cos 0 + B sin 0 =A. 
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y 

(0, -3) 

Figure 14.6.2 Example 3 

Compute y'(t) for the general solution. 

y' = - 3A sin (3t) + 3B cos (3t). 

Substitute 0 for t and 15 for y'. 

15 = - 3A sin 0 + 3B cos 0 = - 3 • 0 + 3 • B, 

The particular solution, shown in Figure 14.6.3, is 

y = 2 cos (3t) + 5 sin (3t). 

y 

Figure 14.6.3 Example 4 

B = 5. 

GRAPHS OF SOLUTIONS OF SECOND ORDER HOMOGENEOUS LINEAR EQUATIONS 

Our next topic is graphs of solutions of second order homogeneous linear equations. 
Several cases arise, including simple, damped, and overdamped oscillations. 

Consider the second order homogeneous linear differential equation 

(1) ay" + by' + c = 0. 
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We shall concentrate on the case that 

a> 0, b ?:: 0, c > 0. 

(We can always make a positive by changing all the signs if a is negative. The cases 
with negative b or c are considered in the problem set at the end of the section.) 
The equation has the characteristic polynomial 

az 2 + bz +c. 

Let d be the discriminant of this polynomial, 

d = b2
- 4ac. 

Simple Oscillation This type of solution arises when b = 0. Since a and care assumed 
to be positive, the discriminant d = - 4ac is negative, and the characteristic poly­
nomial has two purely imaginary roots, ± if3. The general solution of equation (1) is 

y(t) = A cos (f3t) + B sin (f3t). 

It is helpful to put this equation in a different form. The point (A, B) is on the circle 
with center at the origin and radius C = (A 2 + B 2

)
112

. There is thus an angle 8 
for which 

A= c cos 8, B = C sin 8, 

as in Figure 14.6.4. The angle 8 can be computed as follows: 

Figure 14.6.4 

!!._ = c sin 8 = tan 8, 
A c cos 8 

A = C cos (J 

8 = arctan (~) . 

(A, B) 

B = C sin (J 

Using the formula for the cosine of the difference of two angles, cos (rjJ - 8) = 
cos (r/J) cos (8) +sin (r/J) sin (8), we find that 

y(t) = C cos (f3t) cos (8) + C sin (f3t) sin (8) = C cos (f3t - 8), 

so that 

y(t) = c cos (f3t - 8). 

The number C is called the amplitude, because the cosine curve oscillates between 
C and -C. The number f3 is called the fi"equency, because the curve will complete 
f3 cycles each 2n units of time. The number 2n/f3 is called the period, because each 
cycle is 2n/f3 units long. The angle e is called the phase shift. Thus the graph of each 
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particular solution is a cosine wave with amplitude C, period 2nj(J, and phase shift e, 
as illustrated in Figure 14.6.5. 

Figure 14.6.5 

Damped Oscillation This case arises when b is positive and the discriminant is 
negative, b > 0 and d < 0. Here b is in the range 0 < b < ~· The roots of the 
characteristic polynomial are complex conjugates, a ± i(J. The real part a = - b/2a 
is negative. The general solution is 

y(t) = ea1[A cos ((Jt) + B sin ((Jt)]. 

Each particular solution oscillates with period 2nj(J, but the amplitude dies down 
exponentially as t increases, as in Figure 14.6.6. 

y 

Figure 14.6.6 

As in the case of simple oscillation, the solution may be written in the form 

y(t) = eatc cos ((Jt - 8), 

where C = (A 2 + B2
) 112 and e is a constant angle. The amplitude at timet will then 

be ea1C, which is decreasing because (/. is negative. 

Critical Damping This case arises when b is positive and the discriminant is zero, 
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so· that b = .J 4ac. The characteristic polynomial has one negative real root, 
r = - bj2a. The general solution is 

y(t) = Ae" + Bte". 

Each particular solution will approach 0 as t approaches infinity and will never 
complete one oscillation. A solution can cross the x-axis once, but never more than 
once. See Figure 14.6.7. 

Figure 14.6.7 

Overdamping This case arises when b is positive and the discriminant is positive, 
so that b > ~- The characteristic polynomial has two real roots, r and s. Since 
a, b, and c are positive, the characteristic polynomial cannot have any positive or 
zero roots. Therefore both roots r and s are negative. The general solution is 

y(t) = Ae" + Besr. 

Again, each particular solution approaches zero as t approaches infinity and will 
never complete one oscillation, as in Figure 14.6.7. 

The differential equations of this section provide simple models for a variety 
of physical systems that oscillate, such as mass-spring systems and electrical networks. 
When a horizontal spring of natural length L is compressed a distance x, it exerts a 
force of approximately F = - kx. k is called the spring constant and depends on the 
particular spring. The negative sign indicates that the force is in the opposite direction 
from x, as in Figure 14.6.8. A mass m is attached to the end of the spring. From 
Newton's Law, 

F = ma = mx", 

we obtain a second order differential equation for the position x(t), 

mx" = -kx, 

or mx" + kx = 0. 

F-

FiclUre 14.6.8 
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Both constants k and m are positive, and the solution is the simple oscillation 

x(t) = A cos (f3t) + B sin (f3t) 

where f3 = (k/m) 111. 

A mass-spring system immersed in oil (such as an automobile shock 
absorber) is subject to a damping force bx'(t), which is proportional to the velocity 
x'(t) but in the opposite direction. This additional force will slow down the motion 
of the spring and lead to a damped oscillation. The force is approximately 

F = -bx'- kx 

and thus satisfies the differential equation 

mx" + bx' + kx = 0. 

When the damping constant b is between 0 and (4mk) 111
, the solution will be a damped 

oscillation. The greater the value of b, the more quickly the oscillation will be damped 
down. When b is equal to (4mk) 111

, the solution will be critically damped; when b 
is greater than (4mk)112, the solution will be overdamped. 

EXAMPLE 5 Suppose a mass-spring system 

mx" + bx' + kx 

has spring constant k = 5, damping constant b = 4, and mass m = 1. At 
time t = 0, the position is x(O) = 1 and the velocity is x'(O) = 2. Find the 
position x(t) as a function of time. 

The differential equation is 

x" + 4x' + 5x = 0. 

Step 1 The characteristic polynomial z2 + 4z + 5 has roots -2 - i and -2 + i. 
(These roots can be found using the quadratic equation.) 

Step 2 The general solution is 

x(t) = e- 1'[A cost + B sin t]. 

Step 3 Find A and B using the given initial values. 

1 = e0 [A cos 0 + B sin 0], A=l. 

Compute x'(t) and substitute to find B. 

x'(t) = -2e- 21[A cost+ B sin t] + e- 2
'[ -A sin t + B cost], 

2 = -2e0 [cos0 + BsinO] + e0
[ -sinO+ BcosO], 

B = 4. 

The particular solution is 

x(t) = e- 21[cost + 4sint]. 

This is a damped oscillation with period 2n. 

Let us now justify the solution method given at the beginning of this section. 
We may take the coefficient of y" to be one and consider the second order differential 
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(2) y" + by' + cy = 0. 

Let r and s be the roots of the characteristic polynomial, so that 

z2 + bz + c = (z - r)(z - s) = z 2 
- rz - sz + rs. 

If rands are distinct (either two different real numbers or complex conjugates), we 
must show that the general solution is 

If r = s, we must show that the general solution is 

y = Aert + Btert. 

The plan is to break the second order equation (2) into a pair of first order differential 
equations. It is useful to use the symbol D for the first derivative and D2 for the second 
derivative with respect to t. Thus 

Dy = y', 

The differential equation (2) can then be written in the form 

(3) (D 2 + bD + c)y = 0. 

We now wish to "factor" the expression D2 + bD + c as if it were a polynomial. 
It is to be understood that (D - r)(D - s)y means (D - r)u where u is the function 
(D - s)y = y' - sy. Thus, using the Sum and Product Rules for derivatives, 

(D - r)(D - s)y = (y' - sy)' - r(y' - sy) = y" - sy' - ry' + rsy 

= y" + by' + cy = (D 2 + bD + c)y. 

This shows that the second order equation (3) is equivalent to the pair of first order 
equations 

(4) 

(5) 

(D- r)u = 0, 

(D- s)y = u. 

Equation ( 4) is a homogeneous linear equation whose general solution is 

Equation (5) may now be put in the form 

(6) y'- sy = Kert. 

This first order linear equation was solved in Example 3 in Section 14.3. In the case 
r =f. s, the general solution came out to be 

K y = __ ert +Best. 
I'- s 

Putting A = Kj(r - s), we get the general solution 

Y = Aert + Best. 

In case r = s, the general solution is 

where A = K. In each case we have the required formula for the general solution 
of the original equation (2). 
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PROBLEMS FOR SECTION 14.6 

In Problems 1-8, find the general solution of the given differential equation. 

1 y" + y' - 6y = 0 2 y" - 4y' + 3y = 0 

3 y"- lOy'+ 25y = 0 4 y" + 2.j2y' + 2y = 0 

5 

7 

y" + 16y = 0 

y" - 2y' + 2y = 0 

6 

8 

y" + 2y = 0 

y"- 6y + 13 = 0 

In Problems 9-16, find the particular solution of the initial value problem. 

9 y" + 6y' + 5y = 0, y(O) = 1, y'(O) = 0 

10 y" - y' - 12y = 0, y(O) = 0, y'(O) = 14 

11 y" + 12y' + 36y = 0, y(O) = 5, y'(O) = -10 

12 y" - 8y' + 16y = 0, y(O) = -3, y'(O) = 4 

13 y" + 5y = 0, y(O) = -2, y'(O) = 5 

14 y"+y=O, y(n/4) = 0, y'(n/4) = 2 

15 y" + 12y' + 37y = 0, y(O) = 4, y'(O) = 0 

16 y" + 6y' + 18y = 0, y(O) = 0, y'(O) = 6 

In Problems 17-20, solve the initial value problem and find the amplitude, frequency, and phase 
shift of the solution. 

17 

18 

19 

20 

21 

22 

23 

]24 

J 25 

y" + 4y = 0, y(O) = j3, y'(O) = 2 

y" + lOOy = 0, y(O) = 5, y'(O) = 50 

y" + 2y' + lOy = 0, y(O) = 1, y'(O) = 1 

y"- 8y' + 25y = 0, y(O) = 3, y'(O) = 0 

A mass-spring system mx" + bx' + kx = 0 has spring constant k = 29, damping 
constant b = 4, and mass m = 1. At timet = 0, the position is x(O) = 2 and the velocity 
is x'(O) = 1. Find the position x(t) as a function of time. 

A mass-spring syste~ mx" + bx' + kx = 0 has spring constant k = 24, damping 
constant b = 12, and mass m = 3. At time t = 0, the position is x(O) = 0 and the velocity 
is x'(O) = -1. Find the position x(t) as a function of time. 

Show that if y(t) is a solution of a differential equation ay" + by' + cy = 0, such that 
y(t0 ) = 0 and y'(t0) = 0 at some time t0 , then y(t) = 0 for all t. 

In the differential equation ay" + by' + cy = 0, suppose that a is positive and c is 
negative. Show that the characteristic equation has one positive real root and one 
negative real root, so that the general solution has the form y = Ae'' + Besz where r 
is positive and s is negative. 

In the differential equation ay" + by' + cy = 0, suppose that a and c are positive 
and b is negative. Show that there are three cases for the general solution, depending 
on the sign of the discriminant d: 

Case 1 If d is positive, the genera} solution has the form y = Ae" + Besz where r 
and s are positive. 

Case 2 If d is zero, the general solution has the form y = Ae" + Bte" where r is 
positive. 

Case 3 If dis negative, the general solution has the form y = e"'[A cos (f3t) + B sin (f3t)] 
where a is positive, so that the graph is an oscillation whose amplitude is 
increasing instead of decreasing. 
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14.7 SECOND ORDER LINEAR EQUATIONS 

This section contains a method for solving nonhomogeneous second order differential 
equations. As in the previous section, we deal only with linear equations with constant 
coefficients. We consider equations of the following type. 

SECOND ORDER LINEAR DIFFERENTIAL EQUATION WITH CONSTANT 
COEFFICIENTS 

(1) ay" + by' + cy = f(t) 

where a, b, and c are real constants and a, c =I 0. 

A differential equation of this form describes a mass-spring system where an outside 
force f(t) is applied to the mass. The functionf(t) is called the forcing term. 

As before, if a = 0 the equation is a first order linear differential equation 
in y, and if c = 0 it is a first order linear differential equation in y'. In each of these 
cases, the equation should be solved by the methods of Section 14.3. Hereafter we 
assume a, c =1 0. 

To get started, let us review the first theorem on first order linear differential 
equations. Theorem 1 in Section 14.3 states that the general solution of a first order 
linear differential equation is the sum 

y(t) + Bx(t), 

where y(t) is a particular solution of the given equation and x(t) is a particular . 
solution of the corresponding homogeneous equation. Here is a similar theorem 
for second order equations. 

THEOREM 1 

(1) 

(2) 

Suppose that y(t) is a particular solution of the second order linear differential 
equation 

ay" + by' + cy = f(t), 

and Ax 1 (t) + Bx 2(t) is the general solution of the corresponding homo­
geneous linear differential equation 

ax" + bx' + ex = 0. 

Then the general solution of the original equation (1) is 

y(t) + Ax 1(t) + Bx 2(t). 

As in the first order case, this theorem is proved using the Principle of 
Superposition. 

PRINCIPLE OF SUPERPOSITION (Second Order) 

Suppose x(t) and y(t) are solutions of the two second order linear differential 
equations 

ax" + bx' + ex = f(t), 

ay" + by' + cy = g(t). 
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Thenfor any constants A and B, the function 

u =Ax+ By 

is a solution of the linear differential equation 

au" + bu' + cu = Af(t) + Bg(t). 

Theorem 1 breaks the problem of finding the general solution of the equation 
(1) into two simpler problems. 

First problem: Find the general solution of the corresponding linear homogeneous 
equation 

ax" + bx' + c = 0. 

Second problem: Find some particular solution of the given equation 

ay" + by' + cy = f(t). 

The first problem was solved in the preceding section. We now present a method for 
solving the second problem. This method is sometimes called the method of judicious 
guessing, or the method of undetermined coefficients. The method works only when 
the forcing termf(t) is a fairly simple function, of the form 

(3) p(t)ear cos ({Jt) + q(t)ear sin ({Jt), 

where p(t) and q(t) are polynomials. However, when it works it is a very efficient 
method of solution. Oftenf(t) will be of an even simpler form, such as a polynomial 
alone, or a single exponential or trigonometric function. In the case of a homogeneous 
equation, where f(t) = 0, the zero function y(t) = 0 is a particular solution. The 
idea for solving a linear equation is to guess that the differential equation has a 
particular solution, which looks like the forcing termf(t) but has different constant 
coefficients. By working backwards, it is possible to find the unknown constants 
and discover a particular solution. We illustrate the method with several examples. 

EXAMPLE 1 A mass of one gram is suspended from a vertical spring with spring 
constant k = 100, as in Figure 14.7.1. At time t = 0, the mass is at position 
y(O) = 2 em and has velocity y'(O) = 50 em/sec. Find the equation of motion 
of the mass. It is understood that there is no damping, and the origin is at 
the point where the spring is at its natural length. 

I 
y 

Figure 14.7.1 l 
In this problem there are two forces, the force of the spring and the force of 
gravity. The force of gravity is a constant and is equal to mg dynes, always 
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(4) 

in the downward direction. The system is described by a second order linear 
differential equation with a constant forcing term, 

my"+ ky = -mg. 

In this case k = 100, m = 1, and g = 980, so the differential equation is 

y" + lOOy = -980. 

To solve the problem, we first find some particular solution of the differential 
equation ( 4), then use Theorem 1 to find the general solution, and finally 
substitute to find the particular solution for the given initial values y(O) = 2 
and y'(O) = 50. 

Since the forcing term is a constantf(t) = -980, we guess that the differ­
ential equation ( 4) has a particular solution, which is a constant. In this 
example it is easy to see by inspection that the constant function 

980 
u(t) = - = -9.8 

100 

is a particular solution of the differential equation ( 4). By the method of 
the preceding section, the characteristic polynomial z2 + 100 has roots 
± ilO, and the corresponding homogeneous differential equation x" + lOOx 
= 0 has the general solution 

A cos (lOt) + B sin (lOt). 

According to Theorem 1, the general solution of the original differential 
equation ( 4) is the sum of the particular solution of the original equation 
and the general solution of the homogeneous equation. Thus the general 
solution of equation ( 4) is 

y(t) = A cos (lOt) + B sin (lOt) - 9.8. 

Use the initial value y(O) = 2 to find A. 

2 = A cos (0) + B sin (0) - 9.8 = A - 9.8, A= 11.8. 

Now compute y'(t), and substitute the given initial value y'(O) = 50 to 
find B. 

y'(t) = -lOA sin (lOt) + lOB cos (lOt). 

50 = -lOA sin (0) + lOB cos (0) = lOB, B ~ 5.0. 

The required particular solution is thus 

y(t) = 11.8 cos (lOt) + 5.0 sin (lOt) - 9.8, 

shown in Figure 14.7.2. 

In the remaining examples we shall concentrate on the first part of the 
problem, finding some particular solution of the given differential equation. In 
each case we could then find the general solution by solving the corresponding 
homogeneous equation and applying Theorem 1 as we did in Example 1. 

EXAMPLE 2 Find a particular solution of the differential equation 

y" - y' - 6y = 5 + 18t2
. 
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\' 

(0,2) 

Figure 14.7.2 Example 1 

Since f(t) is a polynomial of degree two, we guess that some particular 
solution y(t) is a polynomial of degree two, 

y(t) = K + Lt + Mt2
• 

First we find the first and second derivatives of y(t). 

y' = L + 2Mt, y"= 2M. 

Next we substitute these derivatives into the given differential equation. 

y"- y'- 6y =2M- (L + 2Mt)- 6(K + Lt + Mt 2
) 

=(2M- L- 6K) +(-2M- 6L)t- 6Mt2 

= 5 + 18t2
. 

In the last equation the coefficients for each power oft must be equal. There 
are three equations, for units, t, and t2

• 

units: 2M- L- 6K = 5 

t: -2M- 6L = 0 

t 2
: -6M = 18. 

We can now solve the three equations for the three unknowns K, L, and M. 

K= -2, L = 1, M= -3. 

The required particular solution is then 

y(t) = -2 + t- 3t2
. 

It can be shown that whenever the forcing term f(t) is a polynomial of 
degree n, the differential equation (1) will have a particular solution that is a poly­
nomial of degree n. When f(t) is a polynomial of degree n, the guess y(t) should be a 
polynomial of degree n with unknown coefficients, 

y(t) = Ao + Alt + · · · + Antn. 



896 14 DIFFERENTIAL EQUATIONS 

EXAMPLE 3 Find a particular solution of the differential equation 

y" + 7y' + lOy = e31
• 

We guess that there is a particular solution that is a constant times e31
, 

y(t) = Me 31
• 

The first two derivatives of y(t) are 

y'(t) = 3Me 31
, 

Substitute these into the original differential equation. 

9Me 3
' + 21Me 3

' + l0Me 31 = e31
• 

Cancel the e3
', and solve for the unknown constant M. 

9M +21M+ 10M= 1, 
1 

M =- = 0.025. 
40 

The required particular solution is 

y(t) = 0.025e 31
. 

Here is the rule for guessing a particular solution of the differential equation 
of the form (1) when the forcing termf(t) is an exponential functionf(t) = ek1

• We 
first should find the roots of the characteristic polynomial az2 + bz + c. If k is not 
a root of the characteristic polynomial, there is a particular solution of the form 
y(t) = M ek' (as in Example 3 above). If k is a single root of the characteristic poly­
nomial, there is a particular solution of the form y(t) = Mtek 1

• If k is a double root of 
the characteristic polynomial, there is a particular solution of the form y(t) = Mt 2 ek'. 

EXAMPLE 4 Find a particular solution of the differential equation 

y" + 7y' + lOy= e- 2
'. 

The characteristic polynomial z2 + 7 z + 10 has roots -2 and - 5. Since 
- 2 is a single root of the characteristic polynomial, our guess at a particular 
solution should be 

y(t) = Mte- 21
. 

The first two derivatives of y(t) are 

y'(t) = Me- 2
'- 2Mte- 21

, 

y"(t) = -4Me- 21 + 4Mte- 21
• 

Now substitute into the original differential equation. 

e-2r = y" + 7y' + lOy 

= -4Me- 21 + 4Mte- 21 + 7Me- 21
- l4Mte- 21 + lOMte- 2

' 

= 3A1e- 2
'. 

Then M = 1/3, and the required particular solution is 

y(t) = G)te-2r. 
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In this example the simpler guess Le- zr would not have worked. The trouble 
is that Le- zr is a solution of the corresponding homogeneous equation, so it cannot 
also be a solution of the original differential equation. To see what happens, let us 
try to use the method with the guess u(t) = Le- 2 r. Computing the first two derivatives 
and substituting, we get 

u'(t) = -2Le- 2r, u"(t) = 4Le- 2 r, 

e- 2 r = u" + 7u' + lOu= 4Le- 2r- l4Le- 2 r + lOLe- 2 r. 

The right side of the above equation adds up to zero, so we cannot solve for the 
unknown constant L. 

In a physical system, the forcing term is often a simple oscillation that can 
be represented by a function of the formf(t) = G cos (wt) + H sin (wt). Here is the 
rule for guessing a particular solution of the differential equation (1) when the 
forcing term is f(t) = G cos (wt) + H sin (wt). If z = iw is not a root of the charac­
teristic polynomial, then the differential equation will have a particular solution of the 
form y(t) = K cos (wt) + L sin (wt). On the other hand, if z = iw is a root of the 
characteristic polynomial, then there is a particular solution of the form y(t) = Kt cos(wt) 
+ Lt sin (wt). 

EXAMPLE 5 Find a particular solution of the differential equation 

y" + 16y = -sin (4t). 

The characteristic polynomial has roots ±i4. Then cos (4t) and sin (4t) are 
already solutions of the homogeneous equation, so our guess must have an 
extra factor oft. The guess for a solution is then 

y(t) = Kt cos (4t) + Lt sin (4t). 

Compute the first two derivatives of y(t). 

y'(t) = K[- 4t sin ( 4t) + cos (4t)] + L[ 4t cos (4t) + sin ( 4t)], 

y"(t) = K[ -l6t cos (4t)- 8 sin (4t)] + L[ -16t sin (4t) + 8 cos (4t)]. 

Now substitute into the original differential equation. 

K[( -16t + 16t) cos (4t)- 8 sin (4t)] 

+ L[(-16t + 16t)sin(4t) + 8cos(4t)] = -sin(4t). 
-8Ksin(4t) + 8Lcos(4t) = -sin(4t). 

From the sine terms we get - 8K = - 1, so K = t. From the cosine terms we 
get 8L = 0, so L = 0. The particular solution is therefore 

y(t) = 0.125t cos (4t). 

In Example 5, the particular solution oscillates more and more wildly as 
t approaches infinity, as shown in Figure 14.7.3. This happens because the forcing 
term cos (4t) has the same frequency as the solutions of the homogeneous equation, 
A cos (4t) + B sin (4t). In this case the forcing term causes the oscillation to build up. 
This phenomenon is called resonance. 

If, instead, the forcing term in Example 5 had a different frequency, - sin(wt) 
where w is not equal to 4, then the particular solution of the differential equation 
would be a simple oscillation of the form K cos (wt) + L sin (wt), whose amplitude 
does not chan e with time. 
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, I 

r(T) = 0.1251 cos(41) 

Figure 14.7.3 Exercise 5 

EXAMPLE 6 Find a particular solution of the differential equation 

y" + 6y' + 25y =cos (4t). 

The characteristic polynomial z2 + 6z + 25 has roots - 3 ± i4. Since i4 
itself is not a root, the proper guess is 

y(t) = K cos (4t) + L sin (4t). 

Both a cosine term and a sine term are required, because the derivative of 
a· sine is a cosine. Compute the first two derivatives of y(t). 

y'(t) = - 4K sin ( 4t) + 4L cos ( 4t), 

y"(t) = -16K cos (4t)- 16L sin (4t). 

Now substitute into the original differential equation. 

cos (4t) = [ -16K cos (4t) - 16L sin (4t)] + 6[ -4K sin (4t) + 4L cos (4t)] 

+ 25[K cos (4t) + L sin (4t)] 

= ( -16K + 24L + 25K) cos (4t) + ( -16L- 24K + 25L) sin (4t). 

Both the sin ( 4t) coefficients and the cos ( 4t) coefficients must be the same 
on both sides of the equation. Thus we have two equations in the two un­
knowns K and L. 

Solve for K and L. 

sin (4t) terms: 0 = -24K + 9L. 

cos ( 4t) terms: 1 = 9K + 24L. 

8 
L=-

219' 

The required particular solution is 

y(t) = G
3
)cos(4t) + (2~9)sin(4t). 
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In Example 6, the particular solution is a simple oscillation, while the 
general solution of the corresponding homogeneous equation is a damped oscillation. 
The general solution is their sum: 

y(t) = e- 3 '[A cos (4t) + B sin (4t)] + [ (;
3
) cos (4t) + (2~9) sin (4t) J. 

The first term, e- 3'[Acos(4t) + Bsin(4t)], approaches zero as t--> oo and is called 
the transient part of the solution. The second term, [(1/73) cos (4t) + (8/219) sin (4t)], 
is called the steady part of the solution. The constants A and B, which depend on 
the initial conditions, appear only in the transient part and not in the steady state 
part of the solution. No matter what the initial conditions are, every particular 
solution will approach the steady state part of the solution as t --> oo. The effect of 
the initial conditions dies out as t --> oo. 

The same thing happens in any mass-spring system with damping where 
the forcing term is a simple oscillation. Let us consider a mass-spring system 

(5) my" + by' + ky = cos (wt), 

where m, b, and k are positive and the forcing term cos (wt) has frequency w. A 
particular solution can be found of the form 

K cos (wt) + L sin (wt). 

The constants K and L can be computed as in Example 6. The general solution of 
equation (5) is 

y(t) = e-"'[A cos (f3t) + B sin (fJt)] + [K cos (wt) + L sin (wt)]. 

As in Example 6, the first term approaches 0 as t --> oo and is called the transient part 
of the solution, and the second term is called the steady state part of the solution. 
Again, every particular solution of the mass-spring system will approach the steady 
state part of the solution as t--> oo. 

PROBLEMS FOR SECTION 14.7 

In Problems 1-12, find a particular solution of the given differential equation. 

1 y" - lOy'+ 25y =cost 2 y" + 2fiy' + 2y = 10 

3 

5 

7 

9 

11 

y" + 16y = 8t2 + 3t - 4 

y" - 2y' + 2y = e2
' 

y" + y'- 6y = e-3r 

y" + 16y = cos (4t) 

y" + 12y' + 36y = 6e- 6
' 

4 y" + 2y = cos (5t) + sin (5t) 

6 y"- 6y + 13 = 1 + 2t + e-' 

8 y" - 4y' + 3y = e3
' 

10 y" + 9y = 3 sin(3t) 

12 y" - 8y' + 16y = - 2e4
' 

In Problems 13-16, find the general solution of the given differential equation. 

13 y" + 6;>' + 5y = 4 14 y" - y' - 12y = t 

15 y" + 5y = 8 sin (2t) 16 y"- 4y = 4e2
' 

In Problems 17-20, find the particular solution of the initial value problem. 

17 y" - y = 3t + 5, y(O) = 0, y'(O) = 0 
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18 y" + 9y = 4t, y(O) = 0, y'(O) = 0 

19 y" + 12y' + 37y = lOe - 4
', y(O) = 4, y'(O) = 0 

20 y" + 6y' + 18y = cost - sin I, y(O) = 0, y'(O) = 2 

21 

22 

A mass-spring system mx" + bx' + kx = 689 cos (21) has an external force of689 cos (21) 
dynes, spring constant k = 29, damping constant b = 4, and mass m = 1 gm. Find the 
general solution for the motion of the spring and the steady state part of the solution. 

A mass-spring system mx" + bx' + kx = 2 sin t has an external force of 2 sin t dynes, 
spring constant k = 24, damping constant b = 12, and mass m = 3 gm. Find the 
general solution for the motion of the spring and the steady state part of the solution. 

0 23 In the mass-spring system 

0 24 

(5) my" + by' + ky = cos (wt), 

where m, b, and k are positive, show that the steady state part of the solution has 
amplitude 

.J K 2 + L z = --;=====:o=~==oc 
.j(k - mw2

)
2 + b2 

In Problem 23, show that the frequency ('J in the forcing term for which the steady 
state has the largest amplitude is 

and the largest amplitude is 1/b. This frequency w is called the resonant frequency. 

25 Using Problem 24, find the resonant frequency for the mass-spring system 

y" + 6y' + 25y = cos (wt). 

EXTRA PROBLEMS FOR CHAPTER 14 

1 Find the general solution of y' = y2 cos 1. 

2 Find the general solution of y' = Jy. 
3 Solve .r' = e'"jt, y(l) = 2. 

4 Solve y' = t 3 j(y + 1 ), y(O) = 1. 

5 Find the general solution of y' + !Oty = 0. 

6 Find the general solution of y' + e-'y = 0. 

7 Solve y' + 6y = 0, y(O) = I. 

8 Solve y' - y,jt = 0, y(O) = 2. 

9 Find the general solution of y' + 3y = 2t. 

10 Find the general solution of y' - ty = t 2
. 

11 A population has a net birthrate of 2% per year and a constant net immigration rate 
of 50,000 per year. At time t = 0, the population is one million. Find the population y 
as a function of t. 

12 Repeat Problem 11 for a net immigration rate of -50,000 per year (that is, emigration 
exceeds immigration by 50,000 per year). 

13 Show that the initial value problem y' = cos (y2 + r), y(O) = 1, has a unique solution 
for 0::;; t < x. 

14 Show that the initial value problemy' = 1/(2 + sin y), y(O) = 1, has a unique solution 
for 0::;; t < x. 

15 Find the general solution of y" - 5y' + 4y = 0. 



I::X I HA 1-'HUtsLI::M::i t-UH CHAt-' I t:H 14 "u 1 

16 Find the general solution of y" + 400y = 0. 

17 Find the general solution of y"- 4y' + 8y = 0. 

18 Find the general solution of y"- 14y' + 49y = 0. 

19 Solve y" + 4y' - 5y = 0, y(O) = 0, y'(O) = 1. 

20 Solve y" - 20y' + 100y = 0, y(O) = 1, y'(O) = 0. 

21 A mass-spring system mx" + bx' + kx = 0 has mass m = 2 gm and constants b = 6 
and k = 5. At time t = 0, its position is x(O) = 10 and its velocity is x'(O) = 0. Find 
its position x as a function oft. 

22 Work Problem 21 if the system is subjected to constant external force of 3 dynes. 

23 Find the general solution of y" - 5y' + 4y = 2 + t. 
24 Find the general solution of y" + 400y = e'. 

25 Find the general solution of y" - 4y' + 8y = cost. 

26 Find the general solution of y" - 14y' + 49y = t2
. 

27 Solve y" + 4y' - 5y = 26 sin t, y(O) = 0, y'(O) = 0. 

28 Solve y" - 20y' + lOOy = e10
', y(O) = 0, y'(O) = 0. 
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EPILOGUE 

How does the infinitesimal calculus as developed in this book relate to the traditional 
(or e, 3) calculus? To get the proper perspective we shall sketch the history of the 
calculus. 

Many problems involving slopes, areas, and volumes, which we would today 
call calculus problems, were solved by the ancient Greek mathematicians. The 
greatest of them was Archimedes (287-212 B.C.). Archimedes anticipated both the 
infinitesimal and thee, 3 approach to calculus. He sometimes discovered his results 
by reasoning with infinitesimals, but always published his proofs using the "method of 
exhaustion," which is similar to thee, 3 approach. 

Calculus problems became important in the early 1600's with the develop­
ment of physics and astronomy. The basic rules for differentiation and integration 
were discovered in that period by informal reasoning with infinitesimals. Kepler, 
Galileo, Fermat, and Barrow were among the contributors. 

In the 1660's and 1670's Sir Isaac Newton and Gottfried Wilhelm Leibniz 
independently "invented" the calculus. They took the major step of recognizing the 
importance of a collection of isolated results and organizing them into a whole. 

Newton, at different times, described the derivative of y (which he called the 
"fluxion" of y) in three different ways, roughly 

(1) The ratio of an infinitesimal change in y to an infinitesimal change in x. 
(The infinitesimal method.) 

(2) The limit of the ratio of the change in y to the change in x, l'ly/ l'lx, as l'lx 
approaches zero. (The limit method.) 

(3) The velocity of y where x denotes time. (The velocity method.) 

In his later writings Newton sought to avoid infinitesimals and emphasized the 
methods (2) and (3). 

Leibniz rather consistently favored the infinitesimal method but believed 
(correctly) that the same results could be obtained using only real numbers. He 
regarded the infinitesimals as "ideal" numbers like the imaginary numbers. To justify 
them he proposed his law of continuity: "In any supposed transition, ending in any 
terminus, it is permissible to institute a general reasoning, in which the terminus may 
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also be included." 1 This "law" is far too imprecise by present standards. But it was a 
remarkable forerunner of the Transfer Principle on which modern infinitesimal 
calculus is based. Leibniz was on the right track, but 300 years too soon! 

The notation developed by Leibniz is still in general use today, even though 
it was meant to suggest the infinitesimal method: dyjdx for the derivative (to suggest 
an infinitesimal change in y divided by an infinitesimal change in x), and s~ f(x) dx 
for the integral (to suggest the sum of infinitely many infinitesimal quantities f(x) dx). 

All three approaches had serious inconsistencies which were criticized most 
effectively by Bishop Berkeley in 1734. However, a precise treatment of the calculus 
was beyond the state of the art at the time, and the three intuitive descriptions (1H3) 
of the derivative competed with each other for the next two hundred years. Until 
sometime after 1820, the infinitesimal method (1) of Leibniz was dominant on the 
European continent, because of its intuitive appeal and the convenience of the 
Leibniz notation. In England the velocity method (3) predominated; it also has in­
tuitive appeal but cannot be made rigorous. 

In 1821 A. L. Cauchy published a forerunner of the modern treatment of 
the calculus based on the limit method (2). He defined the integral as well as the deriva­
tive in terms of limits, namely 

f
b b 

f(x) dx = lim If(x) Llx. 
a Ax-o+ a 

He still used infinitesimals, regarding them as variables which approach zero. From 
that time on, the limit method gradually became the dominant approach to calculus, 
while infinitesimals and appeals to velocity survived only as a manner of speaking. 
There were two important points which still had to be cleared up in Cauchy's work, 
however. First, Cauchy's definition of limit was not sufficiently clear; it still relied on 
the intuitive use ofinfinitesimals. Second, a precise definition of the real number system 
was not yet available. Such a definition required a better understanding of the 
concepts of set and function which were then evolving. 

A completely rigorous treatment of the calculus was finally formulated by 
Karl Weierstrass in the 1870's. He introduced the~>,[) condition as the definition of 
limit. At about the same time a number of mathematicians, including Weierstrass, 
succeeded in constructing the real number system from the positive integers. The 
problem of constructing the real number system also led to development of set theory 
by Georg Cantor in the 1870's. Weierstrass' approach has become the traditional or 
"standard" treatment of calculus as it is usually presented today. It begins with the 
e, (3 condition as the definition of limit and goes on to develop the calculus entirely in 
terms of the real number system (with no mention of infinitesimals). However, even 
when calculus is presented in the standard way, it is customary to argue informally in 
terms of infinitesimals, and to use the Leibniz notation which suggests infinitesimals. 

From the time of Weierstrass until very recently, it appeared that the limit 
method (2) had finally won out and the history of elementary calculus was closed. 
But in 1934, Thoralf Skolem constructed what we here call the hyperintegers and 
proved that the analogue of the Transfer Principle holds for them. Skolem's construc­
tion (now called the ultraproduct construction) was later extended to a wide class of 
structures, including the construction of the hyperreal numbers from the real numbers. 

1 See Kline, p. 385. 

hjkeisler
Typewriter
Boyer, p. 217.
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Boyer, p. 217.
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The name "hyperreal" was first used by E. Hewitt in a paper in 1948. The hyperreal 
numbers were known for over a decade before they were applied to the calculus. 

Finally in 1961 Abraham Robinson discovered that the hyperreal numbers 
could be used to give a rigorous treatment of the calculus with infinitesimals. The 
presentation of the calculus which was given in this book is based on Robinson's 
treatment (but modified to make it suitable for a first course). 

Robinson's calculus is in the spirit of Leibniz' old method of infinitesimals. 
There are major differences in detail. For instance, Leibniz defined the derivative as 
the ratio fly/ tlX where flx is infinitesimal, while Robinson defines the derivative as 
the standard part of the ratio flyjflx where flx is infinitesimal. This is how Robinson 
avoids the inconsistencies in the old infinitesimal approach. Also, Leibniz' vague law 
of continuity is replaced by the precisely formulated Transfer Principle. 

The reason Robinson's work was not done sooner is that the Transfer 
Principle for the hyperreal numbers is a type of axiom that was not familiar in mathe­
matics until recently. It arose in the subject of model theory, which studies the 
relationship between axioms and mathematical structures. The pioneering develop­
ments in model theory were not made until the 1930's, by Godel, Malcev, Skolem, and 
Tarski; and the subject hardly existed until the 1950's. 

Looking back we see that the method of infinitesimals was generally preferred 
over the method of limits for over 150 years after Newton and Leibniz invented the 
calculus, because infinitesimals have greater intuitive appeal. But the method of 
limits was finally adopted around 1870 because it was the first mathematically precise 
treatment of the calculus. Now it is also possible to use infinitesimals in a mathemati­
cally precise way. Infinitesimals in Robinson's sense have been applied not only to 
the calculus but to the much broader subject of analysis. They have led to new results 
and problems in mathematical research. Since Skolem's infinite hyperintegers are 
usually called nonstandard integers, Robinson called the new subject "'nonstandard 
analysis." (He called the real numbers "standard" and the other hyperreal numbers 
"nonstandard." This is the origin of the name "standard part.") 

The starting point for this course was a pair of intuitive pictures of the real 
and hyperreal number systems. These intuitive pictures are really only rough sketches 
that are not completely trustworthy. In order to be sure that the results are correct, 
the calculus must be based on mathematically precise descriptions of these number 
systems, which fill in the gaps in the intuitive pictures. There are two ways to do this. 
The quickest way is to list the mathematical properties of the real and hyperreal 
numbers. These properties are to be accepted as basic and are called axioms. The 
second way of mathematically describing the real and hyperreal numbers is to start 
with the positive integers and, step by step, construct the integers, the rational 
numbers, the real numbers, and the hyperreal numbers. This second method is 
better because it shows that there really is a structure with the desired properties. 
At the end of this epilogue we shall briefly outline the construction of the real and 
hyperreal numbers and give some examples of infinitesimals. 

We now turn to the first way of mathematically describing the real and hyper­
real numbers. We shall list two groups of axioms in this epilogue, one for the real 
numbers and one for the hyperreal numbers. The axioms for the hyperreal numbers 
will just be more careful statements of the Extension Principle and Transfer 
Principle of Chapter 1. The axioms for the real numbers come in three sets: the 
Algebraic Axioms, the Order Axioms, and the Completeness Axiom. All the familiar 
facts about the real numbers can be proved using only these axioms. 



EPILOGUE 905 

I. ALGEBRAIC AXIOMS FOR THE REAL NUMBERS 

A Closure laws 0 and 1 are real numbers. If a and b are rea/numbers, then 
so are a + b, ab, and -a. If a is a real number and a # 0, then 1/a is a real 
number. 

B Commutative laws a + b = b + a ab = ba. 

C Associative Jaws a + (b + c) = (a + b) + c a(bc) = (ab)c. 

0 Identity Jaws 

E Inverse Jaws 

F Distributive law 

DEFINITION 

O+a=a 

a+(-a)=O 

1·a =a. 

If a # 0, a ·- = 1. 
a 

a • (b + c) = ab + ac. 

The positive integers are the real numbers 1, 2 = 1 + 1, 3 = 1 + 1 + 1, 
4 = 1 + 1 + 1 + 1, and so on. 

II. ORDER AXIOMS FOR THE REAL NUMBERS 

A 0 < 1. 

B Transitive law If a < b and b < c then a < c. 

C Trichotomy law Exactly one of the relations a < b, a = b, b < a, holds. 

0 Sum law If a < b, then a + c < b + c. 

E Product law If a < b and 0 < c, then ac < be. 

F Root axiom For every real number a > 0 and every positive integer n, 
there is a real number b > 0 such that b" = a. 

Ill. COMPLETENESS AXIOM 

Let A be a set of real numbers such that whenever x andy are in A, any real 
number between x andy is in A. Then A is an interval. 

THEOREM 

An increasing sequence (S11 ) either converges or diverges to cf). 

PROOF Let T be the set of all real numbers x such that x ::;: S" for some n. T is 
obviously nonempty. 

Case 1 Tis the whole real line. If His infinite we have x S:: SH for all real numbers x. 
So SH is positive infinite and (S11 ) diverges to oo. 

Case 2 T is not the whole real line. By the Completeness Axiom, T is an interval 
(- w, b] or (- w, b). For each real x < b, we have 
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for some 11. It follows that for infinite H, SH s band SH ~ b. Therefore (S,) 
converges to b. 

We now take up the second group of axioms, which give the properties of 
the hyperreal numbers. There will be two axioms, called the Extension Axiom and 
the Transfer Axiom, which correspond to the Extension Principle and Transfer 
Principle of Section 1.5. We first state the Extension Axiom. 

1*. EXTENSION AXIOM 

(a) The set R ofrealnumbers is a subset of the set R* ofhyperrea/numbers. 

(b) There is given a relation < * on R*, such that the order relation < on 
R is a subset of<*,<* is transitive (a< *band b <* c implies a<* c), 
and < * satisfies the Trichotomy Law: for all a, b in R *, exactly one of 
a < * b, a = b, b <*a holds. 

(c) There is a hype1'1'ea/ number 8 such that 0 < * 8 and 8 < * r for each 
positive rea/number r. 

(d) For each real function f, there is given a hyperreal function f* with the 
same number of variables, called the natural extension off 

Part (c) of the Extension Axiom states that there is at least one positive 
infinitesimal. Part (d) gives us the natural extension for each real function. The 
Transfer Axiom will say that this natural extension has the same properties as the 
original function. 

Recall that the Transfer Principle of Section 1.5 made use of the intuitive 
idea of a real statement. Before we can state the Transfer Axiom, we must give an 
exact mathematical explanation of the notion of a real statement. This will be done 
in several steps, first introducing the concepts of a real expression and a formula. 

We begin with the concept of a real expression, or term, built up from variables 
and real constants using real functions. Real expressions can be built up as follows: 

(1) A real constant standing alone is a real expression. 

(2) A variable standing alone is a real expression. 

(3) If e is a real expression, and f is a real function of one variable, then 
f(e) is a real expression. Similarly, if e 1 , ... , e" are real expressions, and 
g is a real function of n variables, then g(e 1, •.. , e") is a real expression. 

Step (3) can be used repeatedly to build up longer expressions. Here are 
some examples of real expressions, where x and y are variables: 

2, X+ y, lx- 41, g(x,f(O)), 1/0. 

By a formula, we mean a statement of one of the following kinds, where 
d and e are real expressions: 

(1) An equation between two real expressions, d = e. 

(2) An inequality between two real expressions, d < e, d s e, d > e, d :::::: e, 
or d =!= e. 
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(3) A statement of the form "e is defined" or "e is undefined." 

Here are some examples of formulas: 

X+ y = 5, 
1 - x 2 

f(x)=~, 

g(x, y) < f(t), 

f(x, x) is undefined. 

If each variable in a formula is replaced by a real number, the formula will be either 
true or false. Ordinarily, a formula will be true for some values of the variables and 
false for others. For example, the formula x + y = 5 will be true when (x, y) = (4, 1) 
and false when (x, y) = (7, - 2). 

DEFINITION 

A real statement is either a nonempty finite set of formulas T or a combination 
involving two nonempty finite sets of formulas SandT that states that "whenever 
every formula inS is true, every formula in Tis true." 

We shall give several comments and examples to help make this definition 
clear. Sometimes, instead of writing "whenever every formula in S is true, every 
formula in T is true" we use the shorter form "if S then T" for a real statement. 
Each of the Algebraic Axioms for the Real Numbers is a real statement. The com­
mutative laws, associative laws, identity laws, and distributive laws are real statements. 
For example, the commutative laws are the pair of formulas 

a+ b = b +a, ab = ba, 

which involve the two variables a and b. The closure laws may be expressed as four 
real statements: 

a + b is defined, 

ab is defined, 

- a is defined, 

if a #- 0, then 1/a is defined. 

The inverse laws consist of two more real statements. The Trichotomy Law is part 
of the Extension Axiom, and all of the other Order Axioms for the Real Numbers 
are real statements. However, the Completeness Axiom is not a real statement, because 
it is not built up from equations and inequalities between terms. 

A typical example of a real statement is the inequality for exponents discussed 
in Section 8.1: 

if a ;;::: 0, and q ;;::: 1, then (a + 1)q ;;::: aq + 1. 

This statement is true for all real numbers a and q. 
A formula can be given a meaning in the hyperreal number system as well 

as in the real number system. Consider a formula with the two variables x and y. 
When x and y are replaced by particular real numbers, the formula will be either 
true or false in the real number system. To give the formula a meaning in the hyperreal 
number system, we replace each real function by its natural extension and replace 
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the real order relation < by the hyperreal relation < *. When x and y are replaced 
by hyperreal numbers, each real function f is replaced by its natural extension f*, 
and the real order relation < is replaced by < *, the formula will be either true or 
false in the hyperreal number system. 

For example, the formula x + y = 5 is true in the hyperreal number system 
when (x, y) = (2 - e, 3 + e), but false when (x, y) = (2 + e, 3 + c:), if c: is nonzero. 

We are now ready to state the Transfer Axiom. 

II*. TRANSFER AXIOM 

Every real statement that holds for all real numbers holds for all hyperreal 
numbers. 

It is possible to develop the whole calculus course as presented in this 
book from these axioms for the real and hyperreal numbers. By the Transfer Axiom, 
all the Algebraic Axioms for the Real Numbers also hold true for the hyperreal 
numbers. In other words, we can transfer every Algebraic Axiom for the real numbers 
to the hyperreal numbers. We can also transfer every Order Axiom for the real 
numbers to the hyperreal numbers. The Trichotomy Law is part of the Extension 
Axiom. Each of the other Order Axioms is a real statement and thus carries over to 
the hyperreal numbers by the Transfer Axiom. Thus we can make computations with 
the hyperreal numbers in the same way as we do for the real numbers. 

There is one fact of basic importance that we state now as a theorem. 

THEOREM (Standard Part Principle) 

For every finite hype1'1'eal number b, there is exactly one real number r that 
is infinitely close to b. 

PROOF We first show that there cannot be more than one real number infinitely 
close to b. Suppose r and s are real numbers such that r ~ b and s ~ b. 
Then r ~ s, and since r and s are real, r must be equal to s. Thus there is at 
most one real number infinitely close to b. 

We now show that there is a real number infinitely close to b. Let A 
be the set of all real numbers less than b. Then any real number between two 
elements of A is an element of A. By the Completeness Axiom for the real 
numbers, A is an interval. Since the hyperreal number b is finite. A must be 
an interval of the form (- x, r) or (- x, r] for some real number r. Every 
real numbers < r belongs to A, so s < b. Also, every real number t > r does 
not belong to A, sot 2: b. This shows that r is infinitely close to b. 

It was pointed out earlier that the Completeness Axiom does not qualify 
as a real statement. For this reason, the Transfer Principle cannot be used to transfer 
the Completeness Axiom to the hyperreal numbers. In fact, the Completeness Axiom 
is not true for the hyperreal numbers. By a closed hypel'l'eal interval, we mean a set 
of hyperreal numbers of the form [a, b], the set of all hyperreal numbers x for which 
a s x s b, where a and b are hyperreal constants. Open and half-open hyperreal 
intervals are defined in a similar way. When we say that the Completeness Axiom 
is not true for the hyperreal numbers, we mean that there actually are sets A of 
hyperreal numbers such that: 
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(a) Whenever x andy are in A, any hyperreal number between x andy is in 
A. 

(b) A is not a hyperreal interval. 

Here are two quite familiar examples. 

EXAMPLE 1 The set A of all infinitesimals has property (a) above but is not a 
hyperreal interval. It has property (a) because any hyperreal number that 
is between two infinitesimals is itself infinitesimal. We show that A is not 
a hyperreal interval. A cannot be of the form [a, oo) or (a, oo) because 
every infinitesimal is less than 1. A cannot be of the form [a, b] or (a, b ], 
because if b is positive infinitesimal, then 2 • b is a larger infinitesimal. A 
cannot be of the form [a, b) or (a, b), because if b is positive and not infini­
tesimal, then b/2 is less than b but still positive and not infinitesimal. 

The set B of all finite hyperreal numbers is another example of a set that 
has property (a) above but is not an interval. 

Here are some examples that may help to illustrate the nature of the hyper­
real number system and the use of the Transfer Axiom. 

EXAMPLE 2 Letfbe the real function given by the equation 

f(x) = }1=7. 
Its graph is the unit semicircle with center at the origin. The following two 
real statements hold for all real numbers x: 

whenever 1 - x2 ~ 0, 

whenever 1 - x2 < 0, 

f(x)=J1=7; 

f(x) is undefined. 

By the Transfer Axiom, these real statements also hold for all hyperreal 
numbers x. Therefore the natural extension f* off is given by the same 
equation 

f*(x) = }1=7. 

The domain off* is the set of all hyperreal numbers between -1 and 1. 
The hyperreal graph off*, shown in Figure E. I, can be drawn on paper by 
drawing the real graph ofj(x) and training an infinitesimal microscope on 
certain key points. 

EXAMPLE 3 Let f be the identity function on the real numbers, f(x) = x. By the 
Transfer Axiom, the equationf(x) =xis true for all hyperreal x. Thus the 
natural extension f* off is defined, and f*(x) = x for all hyperreal x. 
Figure E.2 shows the hyperreal graph off*. Under a microscope, it has a 
45° slope. 

Here is an example of a hyperreal function that is not the natural extension 
of a real function. 
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Infinite 

Figure E.1 

Figure E.2 
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Hyperreal graph of f(x) = ~ 

X 
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Hyperreal graph of 
y=x 
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EXAMPLE 4 One hyperreal function, which we have already studied in some detail, 
is the standard part function st(x). For real numbers the standard part 
function has the same values as the identity function, 

st(x) = x for all real x. 

However, the hyperreal graph of st(x), shown in Figure E.3, is very different 
from the hyperreal graph of the identity function f*. The domain of the 
standard part function is the set of all finite numbers, while f* has domain 
R *. Thus for infinite x,.f*(x) = x, but st(x) is undefined. If x is finite but 
not real, f*(x) = x but st(x) #- x. Under the microscope, an infinitesimal 
piece of the graph of the standard part function is horizontal, while the 
identity function has a 45° slope. 

The standard part function is not the natural extension of the identity 
function, and hence is not the natural extension of any real function. 
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The standard part function is the only hyperreal function used in this course 
except for natural extensions of real functions. 

We conclude with a few words about the construction of the real and the 
hyperreal numbers. Before Weierstrass, the rational numbers were on solid ground 
but the real numbers were something new. Before one could safely use the axioms for 
the real numbers, it had to be shown that the axioms did not lead to a contradiction. 
This was done by starting with the rational numbers and constructing a structure 
which satisfied all the axioms for the real numbers. Since anything proved from the 
axioms is true in this structure, the axioms cannot lead to a contradiction. 

The idea is to construct real numbers out of Cauchy sequences of rational 
numbers. 

DEFINITION 

A Cauchy Sequence is a sequence (a1 , a2 , •• • ) of numbers such that for every 
real B > 0 there is an integer n, such that the numbers 

are all within B of each other. 

Two Cauchy sequences 

(a1, az, .. . ), 

of rational numbers are called Cauchy equivalent, in symbols (a 1 , a2 , .• . ) = 
(b 1 , b2 , •.. ), if the difference sequence 

(a1 - b 1 ,a2 - b2 , ... ) 

converges to zero. (Intuitively this means that the two sequences have the same limit.) 

PROPERTIES OF CAUCHY EQUIVALENCE 

(1) If(a1 ,a2 , ... ) = (a'1 ,a~, ... )and (b1 ,b2 , •.. ) = (b~,b~, ... ) 
then the sum sequences are equivalent, 
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(a 1 + b1 ,a2 + b2 , •.. ) = (a'1 + b'1 ,a~ + b~, ... ). 

(2) Under the same hypotheses, the product sequences are equivalent, 

(at•b 1 .a2·b2, ... ) = (a'1 ·b'1 ,a~·b~, ... ). 

(3) If a .. = b .. for all but finitely many n, then 

(a 1 ,a2 , ... ) = (b 1 ,b 2 , ... ). 

The set of real numbers is then defined as the set of all equivalence classes of 
Cauchy sequences of rational numbers. A rational number r corresponds to the 
equivalence class of the constant sequence (r, r, r, .. . ). The sum of the equivalence 
class of (a 1 , a2 , •. • ) and the equivalence class of (b 1 , b2 , .• • ) is defined as the 
equivalence class of the sum sequence 

(a 1 + b1 ,a2 + b2 , ..• ). 

The product is defined in a similar way. It can be shown that all the axioms for the 
real numbers hold for this structure. 

Today the real numbers are on solid ground and the hyperreal numbers are 
a new idea. Robinson used the ultraproduct construction of Skolem to show that 
the axioms for the hyperreal numbers (for example, as used in this book) do not lead 
to a contradiction. The method is much like the construction of the real numbers 
from the rationals. But this time the real number system is the starting point. We 
construct hype1-real numbers out of arbitrary (not just Cauchy) sequences of real 
numbers. 

By an ultraproduct equivalence we mean an equivalence relation = on the 
set of all sequences of real numbers which have the properties of Cauchy equivalence 
(1 }-(3) and also 

(4) If each a .. belongs to the set {0, 1} then (a 1 ,a2 , ... ) is equivalent to 
exactly one of the constant sequences (0, 0, 0, ... ) or (1, 1, 1, ... ). 

Given an ultraproduct equivalence relation, the set of hyperreal numbers is 
defined as the set of all equivalence classes of sequences of real numbers. A real number 
r corresponds to the equivalence class of the constant sequence (r, r, r, .. . ). Sums and 
products are defined as for Cauchy sequences. The natural extension f* of a real 
function f(x) is defined so that the image of the equivalence class of (a 1 , a2 , .. • ) is 
the equivalence class of (f(a 1),f(a2 ), .. • ). It can be proved that ultraproduct 
equivalence relations exist, and that all the axioms for the real and hyperreal numbers 
hold for the structure defined in this way. 

When hyperreal numbers are constructed as equivalence classes of sequences 
of real numbers, we can give specific examples of infinite hyperreal numbers. The 
equivalence class of 

(1, 2, 3, .... 11, ... ) 

is a positive infinite hyperreal number. The equivalence class of 

(1, 4, 9, ... , 17 2 , ... ) 

is larger, and the equivalence class of 

(1,2,4, ... ,2", ... ) 

is a still larger infinite hyperreal number. 
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We can also give examples of nonzero infinitesimals. The equivalence classes 
of 

(1, 1/2, 1/3, ... , 1/n, .. . ), 

(1, 1/4, 1/9, ... , n- 2
, .. . ), 

and (1, 1/2, 1/4, ... ,2-", ... ) 

are progressively smaller positive infinitesimals. 
The mistake of Leibniz and his contemporaries was to identify all the in­

finitesimals with zero. This leads to an immediate contradiction because dyjdx 
becomes 0/0. In the present treatment the equivalence classes of 

(1, 1/2, 1/3, ... , 1/n, .. . ) 
and (0, 0, 0, ... '0, ... ) 

are different hyperreal numbers. They are not equal but merely have the same standard 
part, zero. This avoids the contradiction and once again makes infinitesimals a 
mathematically sound method. 

For more information about the ideas touched on in this epilogue, see 
the instructor's supplement, Foundations of Infinitesimal Calculus, which has a 
self-contained treatment of ultra products and the hyperreal numbers. 

FOR FURTHER READING ON THE HISTORY OF THE CALCULUS SEE: 

The History of the Calculus and its Conceptual Development; Carl C. Boyer, Dover, 
New York, 1959. 
Mathematical Thought fi"om Ancient to Modern Times; Morris Kline, Oxford Univ. 
Press, New York, 1972. 
Non-standard Analysis; Abraham Robinson, North-Holland, Amsterdam, London, 
1966. 

FOR ADVANCED READING ON INFINITESIMAL ANALYSIS SEE NON-STANDARD ANALYSIS BY 

ABRAHAM ROBINSON AND: 

Lectures on Non-standard Analysis; M. Machover and J. Hirschfeld, Springer-Verlag, 
Berlin, Heidelberg, New York, 1969. 

Victoria Symposiwn on Nonstandard Analysis; A. Hurd and P. Loeb, Springer-Verlag, 
Berlin, Heidelberg, New York, 1973. 

Studies in Model Theory; M. Morley, Editor, Mathematical Association of America, 
Providence, 1973. 

Applied Nonstandard Analysis: M. Davis, Wiley, New York, 1977. 

Introduction to the Theory of Infinitesimals: K. D. Stroyan and W. A. J. Luxemburg, 
Academic Press, New York and London, 1976. 

Foundations of Infinitesimal Stochastic Analysis: K. D. Stroyan and J. M. Bayod, 
North-Holland Pub!. Co., in press. 



Appendix 

TABLES 

Table I Trigonometric Functions 

Degrees Radians Sin Tan Cot Cos I I 
I I 

0 .000 .000 .000 1.000 1.571 90 
I .017 .017 .017 57.29 1.000 1.553 89 
2 .035 .035 .035 28.64 .999 1.536 88 

I 3 .052 .052 .052 19.081 .999 1.518 87 
4 .070 .070 .070 14.301 .998 1.501 86 

5 .087 .087 .087 11.430 .996 1.484 85 
6 .105 .105 .105 9.514 .995 1.466 84 
7 .122 .122 .123 8.144 .993 1.449 83 
8 .140 .139 .141 7.115 .990 1.431 82 
9 .157 .156 .158 6.314 .988 1.414 81 

10 .175 .174 .176 5.671 .985 1.396 80 

11 .192 .191 .!94 5.145 .982 1.379 79 
12 .209 .208 .213 4.705 .978 1.361 78 
13 .227 .225 .231 4.331 .974 1.344 77 
14 .244 .242 .249 4.011 .970 1.326 76 

15 .262 .259 .268 3.732 .966 1.309 75 

16 .279 .276 .287 3.487 .961 1.292 74 

17 .297 .292 .306 3.271 .956 1.274 73 

18 .314 .309 .325 3.078 .951 1.257 72 
19 .332 .326 .344 2.904 .946 1.239 71 

I 
.349 .342 .364 2.747 .940 1.222 70 20 

I 21 .367 .358 .384 2.605 .934 1.204 69 

22 I .384 .375 .404 2.475 .927 1.187 68 

23 I .401 .391 .424 2.356 .921 1.169 67 
24 I .419 .407 .445 2.246 .914 1.152 66 

I ! I Cot Tan Sin 
I 

Radians Degrees Cos 
I I 

(Table I is continued on the next page.) 
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Table I Trigonometric Functions (continued) 
~-----! 

!

1

. Degrees i Radians Sin Tan Cot Cos i 
--~1-------T---------------------------+------+~ 

I ;~ I ::~~ ::~~ ::~~ ;:~~~ :~~~ ::: ~~ ~; I 
I n .471 .454 .5Io !.963 .891 uoo 63 

28 .489 .469 .532 1.881 .883 1.082 62 
29 .506 .485 .554 1.804 .87 5 1.065 61 

30 .524 .500 .577 1.732 .866 1.047 60 
31 .541 .515 .60 I 1.664 .857 1.030 59 
32 .559 .530 .625 1.600 .848 1.012 58 
33 .576 .545 .649 1.540 .839 .995 57 
34 .593 .559 .675 1.483 .829 .977 56 

35 .611 .574 .700 1.428 .819 .960 55 
36 .628 .588 .727 1.376 .809 .942 54 
37 .646 .602 .754 1.327 .799 .925 53 
38 .663 .616 .781 1.280 .788 .908 52 
39 .681 .629 .810 1.235 .777 .890 51 

40 .698 .643 .839 1.192 .766 .873 50 
41 .716 .656 .869 1.150 .755 .855 49 
42 .733 .669 .900 1.111 .743 .838 48 
43 .750 .682 .933 1.072 .731 .820 47 

1

. 

44 .768 .695 .966 1.036 .719 .803 46 

45 .785 .707 1.000 1.000 .707 I .785 45 j. 

------------+-
I__Ra_d_ia_n_s_JI Degr~s~ Cos Tan Sin Cot 

--~------·----------------

Table II Greek Alphabet 

AIX Alpha Nv Nu 
B{J Beta E~ Xi, Si 
ry Gamma Oo Omicron 
Ao Delta f17T Pi 
Et: Epsilon Pp Rho 

z' Zeta ~(J Sigma 
H1) Eta TT Tau 
ee Theta Yv Upsilon 
I t Iota CJ)cp Phi 
KK Kappa xx Chi 
A). Lambda 'Y1p Psi 
M,u Mu .Qw Omega 
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Table Ill Exponential Functions 

X .r e-x l X .r e-x 

0.0 1.00 1.00 3.0 20.1 .050 

0.1 1.11 .905 3.1 22.2 .045 

0.2 1.22 .819 3.2 24.5 .041 

0.3 1.35 .741 3.3 27.1 .037 

0.4 1.49 .670 3.4 30.0 .033 

0.5 1.65 .607 3.5 33.1 .030 

0.6 1.82 .549 3.6 36.6 .027 

0.7 2.01 .497 3.7 40.4 .025 

0.8 2.23 .449 3.8 44.7 .022 

0.9 2.46 .407 3.9 49.4 .020 

1.0 2.72 .368 4.0 54.6 .018 

1.1 3.00 .333 4.1 60.3 .017 

1.2 3.32 .301 4.2 66.7 .015 

1.3 3.67 .273 4.3 73.7 .014 

1.4 4.06 .247 4.4 81.5 .012 

1.5 4.48 .223 4.5 90.0 .011 

1.6 4.95 .202 4.6 99.5 .010 

1.7 5.47 .183 4.7 110 .0091 

1.8 6.05 .165 4.8 122 .0082 

1.9 6.69 .150 4.9 134 .0074 

2.0 7.39 .135 5.0 148 .0067 

2.1 8.17 .122 5.1 164 .0061 

2.2 9.02 .Ill 5.2 181 .0055 

2.3 9.97 .100 5.3 200 .0050 

2.4 11.0 .091 5.4 221 .0045 

2.5 12.2 .082 5.5 245 .0041 

2.6 13.5 .074 5.6 270 .0037 

2.7 14.9 .067 5.7 299 .0033 

2.8 16.4 .061 5.8 330 .0030 

2.9 18.2 .055 5.9 365 .0027 

6.0 403 .0025 

Table IV Natural Logarithms 

11 .0 .I .2 .3 .4 .5 .6 .7 .8 9.~51 O* 7.697 8.391 8.796 9.084 9.307 9.489 9.643 9.777 

I 0.000 0.095 0.182 0.262 0.336 0.405 0.470 0.531 0.588 0.642 

2 0.693 0.742 0.788 0.833 0.875 0.916 0.956 0.993 1.030 1.065 

3 I 1.099 
1.131 1.163 1.194 1.224 1.253 1.281 1.308 1.335 1.361 

4 1.386 1.411 1.435 1.459 1.482 1.504 1.526 1.548 1.569 1.589 

5 1.609 1.629 1.649 1.668 1.686 1.705 1.723 1.740 1.758 1.775 

6 1.792 1.808 1.825 1.841 1.856 1.872 1.887 1.902 1.917 1.932 

7 1.946 1.960 1.974 1.988 2.001 2.015 2.028 2.041 2.054 2.067 

8 2.079 2.092 2.104 2.116 2.128 2.140 2.152 2.163 2.175 2.186 

9 ! 2.197 2.208 2.219 2.230 2.241 2.251 2.262 2.272 2.282 2.293 

10 2.303 2.313 2.322 2.332 2.342 2.351 2.361 2.370 2.380 2.389 

*Subtract 10 if n < I; for example, In 0.3 :::::: 8.796 - 10 = -1.204. 
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Table V Powers and Roots 

n n• v'~ n' v,; n n• v;; n' f!~ 
- ---- -- --

1 1 1.000 1 1.000 51 2,601 7.141 132,651 3.708 
2 4 1.414 8 1.260 52 2,704 7.211 140,608 3.733 
3 9 1.732 27 1.442 53 2,809 7.280 148,877 3.756 
4 16 2.000 64 1.587 S4 2,916 7.348 157,464 3.780 
5 25 2.236 125 1.710 55 3,025 7.416 166,375 3.803 
6 36 2.449 216 1.817 56 3,136 7.483 175,616 3.826 
7 49 2.646 343 1.913 57 3,249 7.550 185,193 3.849 
8 64 2.828 512 2.000 58 3,364 7.616 195,112 3.871 
9 81 3.000 729 2.080 59 3,481 7.681 205,379 3.893 

10 100 3.162 1,000 2.154 60 3,600 7.746 216,000 3.915 
11 121 3.317 1,331 2.224 61 3,721 7.810 226,981 3.936 
12 144 3.464 1,728 2.289 62 3,844 7.874 238,328 3.958 
13 169 3.606 2,197 2.351 63 3,969 7.937 250,047 3.979 
14 196 3.742 2,744 2.410 64 4,096 8.000 262,144 4.000 
15 225 3.873 3,375 2.466 65 4,225 8.062 274,625 4.021 
16 256 4.000 4,096 2.520 66 4,356 8.124 287,496 4.041 
17 289 4.123 4,913 2.571 67 4,489 8.185 300,763 4.062 
18 324 4.243 5,832 2.621 68 4,624 8.246 314,432 4.082 
19 361 4.359 6,859 2.668 69 4,761 8.307 328,509 4.102 
20 400 4.472 8,000 2.714 70 4,900 8.367 343,000 4.121 
21 441 4.583 9,261 2.759 71 5,041 8.426 357,911 4.141 
22 484 4.690 10,648 2.802 72 5,184 8.485 373,248 4.160 
23 529, 4.796 12,167 2.844 73 5,329 8.544 389,017 4.179 
24 576 4.899 13,824 2.884 74 5,476 8.602 405,224 4.198 
25 625 5.000 15,625 2.924 75 5,625 8.660 421,875 4.217 
26 676 5.099 17,576 2.962 76 5,776 8.718 438,976 4.236 
27 729 5.196 19,683 3.000 77 5,929 8.775 456,533 4.254 
28 784 5.292 21,952 3.037 78 6,084 8.832 474,552 4.273 
29 841 5.385 24,389 3.072 79 6,241 8.888 493,039 4.291 
30 900 5.477 27,000 3.107 80 6,400 8.944 512,000 4.309 
31 961 5.568 29,791 3.141 81 6,561 9.000 531,441 4.327 
32 1,024 5.657 32,768 3.175 82 6,724 9.055 551,368 4.344 
33 1,089 5.745 35,937 3.208 83 6,889 9.110 571,787 4.362 
34 1,156 5.831 39,304 3.240 84 7,056 9.165 592,704 4.380 
35 1,225 5.916 42,875 3.271 85 7,225 9.220 614,125 4.397 
36 1,296 6.000 46,656 3.302 86 7,396 9.274 636,056 4.414 
37 1,369 6.083 50,653 3.332 87 7,569 9.327 658,503 4.431 
38 1,444 6.164 54,872 3.362 88 7,744 9.381 681,472 4.448 
39 1,521 6.245 59,319 3.391 89 7,921 9.434 704,969 4.465 
40 1,600 6.325 64,000 3.420 90 8,100 9.487 729,000 4.481 
41 1,681 6.403 68,921 3.448 91 8,281 9.539 753,571 4.498 
42 1,764 6.481 74,088 3.476 92 8,464 9.592 778,688 4.514 
43 1,849 6.557 79,507 3.503 93 8,649 9.644 804,357 4.531 
44 1,936 6.633 85,184 3.530 94 8,836 9.695 830,584 4.547 
45 2,025 6.708 91,125 3.557 95 9,025 9.747 857,375 4.563 
46 2,116 6.782 97,336 3.583 96 9,216 9.798 884,736 4.579 
47 2,209 6.856 103,823 3.609 97 9,409 9.849 912,673 4.595 
48 2,304 6.928 110,592 3.634 98 9,604 9.899 941,192 4.610 
49 2,401 7.000 117,649 3.659 99 9,801 9.950 970,299 4.626 
50 2,500 7.071 125,000 3.684 100 10,000 10.000 1,000,000 4.642 



ANSWERS TO 
SELECTED PROBLEMS 

Section 1.1 

1 5 3 -/13 5 13 

7 y 2 9 _I' I 

-2 2 
X 

-2 

11 y 

X 

13 (x - W + y2 = 4 
15 (x- 1)2 + (y- j3)2 = 4, (x- 1)2 + (y + j3)2 = 4 
17 (x - 2)2 + (y - 4)2 = 25 

X 

A 
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Section 1.2 
-1 

I 

1 
3 
5 
7 

-=v;r· 
-6 I 

1 I 

2 I 
' 

9 yes 

I 
-2 

-1/6 
3/8 

1jj2 
1 

0 I 
2 

0 1;6 113 
2 9/8 0 
0 * 

2 

11 j(2) = 7,j(l) = 1 + I + 12,j(1 + 61) = 1 + (1 + 61) + (t + 61)2
, 

j(1 +I+ 12
) = 1 + (1 + t + t 2

) + (1 +I+ t2
)

2 ,j(g(1)) = 1 + g(t) + (g(l)) 2 

13 f(t) = tfi, f(t + 61) = (t + 61)3'2, f(tz) = t3, {(jt) = 13'4, f(g(t)) = (g(t))3·2 
15 46x 

(2x + 6x) 6x 
17 

x2 + 2x 6x + 6x2 x 2 x 2(x 2 + 2x 6x + 11x 2
) 

19 ~-Jx= ~ 
.yx + 6x + ,/;; 

21 everywhere except x = 1 and x = - 1 23 X ;::>: 0 25 ( -1, 1) 

Section 1.3 

m = 1, y = x + 1 3 vertical, x = -4 5 m = -!, y = ( -!)x + 1 
7 m = 0, y = 3 9 y = 2x - 3 11 y = - (t)x - 1 13 y = Sx 15 y = 4 

17 r· = 2,y = 21 19 r· = -tr = -(J)t + 1 21 r = O,y = 4 23 y + 3t + 2 

25 27 

slope= 1 

X 

33 (- c/a, 0), (0, - cjb) 

Section 1.4 (no problem set} 

Section 1.5 

1 infinitesimal 3 infinite 5 infinite 
11 infinitesimal 13 infinite 15 infinite 
23 infinitesimal 25 infinite 27 finite 
35 infinitesimal 37 infinite 39 finite 

29 

7 infinite 
17 finite 

29 finite 

y 

X 

9 infinitesimal 
19 finite 21 infinite 

31 finite 33 infinite 

41 (a) B > o2 (b) 1js3 < 1/s4 (c) H < H 2 (d) s < .fi (e) H > JH (f) jH > .jii 
43 (a) a = 0 and b =f. 0 (b) a =f. 0 and b =f. 0, or a = b = 0 (c) a =f. 0 and b = 0 

Section 1.6 

2 3 2/5 5 xl2 7 0 9 2 11 3 13 0 15 1/2 17 1/2 
19 X+}' 21 3x2 23 IO 25 - I/6 27 29 I/2 31 -1ji6 

I -
33 --orj2- I 

1 + J2 
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Extra Problems for Chapter 1, 

1 Ji22 3 -5/3 5 y=-2x+13 7 (x - 1)2 + (y - W = 5 

9 finite 11 infinite 13 infinite 15 infinitesimal 17 48 

19 4/7 21 -15/4 23 
1 1 

Jx+~ Jx 
25 A= 6V213 

Section 2.1 

1 2x 3 -4x 5 4 7 12t2 9 5/(2Jul 11 !Jx 
15 -3y- 2 + 4 17 a 19 aj(~) 21 2(3- 2x)- 2 

13 -2t- 3 

23 1/4 25 4t3 

27 $600, $0, - $1000 29 - 3x2 if x ::o; 0, 3x2 if x > 0. 

Section 2.2 

1 8y = 2x 8x + th2
, dy = 2x 8x, 8y = dy + 8x2 

28x 8x l 2 1 J 3 8y - dy = - 8y = dy + - - 8x 
- Jx +8x+fi' Jx' Jx + 8x + Jx Jx 

8x 8x fl 1 J 
5 8y = x(x + 8x)' dy = - xz, 8y = dy + L x2 - x(x + 8x) 8x 

7 8y = ( 1 + ( 
1 

8 )) 8x, dy = ( 1 + 
12) ~. 8y = dy + r ( 1 

8 ) - ~J 8x xx+ x .x Lxx+ x x 

9 8y = 4x 8x + 2 8x2
, 8z = 3x2 8x + 3x 8x2 + 8x3

, dy = 4x dx, dz = 3x2 dx 11 2 dx 

13 dxj(2Jx+)l 15 adx 17 (-2/x2)dx 19 -1x- 3
'
2 dx 

21 d(y+z)=LJx+3)dx,d(~)=-~x- 3'2 23 y=4x-4 25 y=O 

27 y=3x-4 29 y= -32x-48 31 y=(2x0 )x-x6 

Section 2.3 

1 6x + 5 3 5(x + 8)4 5 - 3(4 - tf 7 6x(x 2 + W 9 - 12x(6 - 2x2)2 

ll 24x2(1- 4x3)- 3 13 5(1 + x- 2) 15 -8(4x- 1)(2x2 - x + 3)- 3 

17 t- 2(l+t- 1 )- 2 or(t+l)- 2 19 3(8t-2)(4t2 -2t+l)-' 21 -3x2 +5x-1 
23 6(3t 2 + 1)(2t- 4)2 + 6t(2t- 4)3 or 6(2t- 4)2(5t2

- 4t + I) 25 -2(x- 1)- 2 

27 4x(x2 + 1)- 2 29 (s2 - 6s + 7)(s- 3)- 2 31 -5(3x- 4)- 2 33 0 
35 6(x2 + 1)(2x2 

- 1) + 12x(x2 + 1)(2x + 3) + 6x(2x2 
- 1)(2x + 3) 

37 -(4x- 5)(2x + W 2(x- 3)- 2 39 2(2x + 1)- 2 [(2x + W 1 + 3r 2 

41 4x(2x + 1)3(x2 + 1) + 6(2x + lf(x2 + 1)2 or 2(2x + 1)2(x 2 + 1)(7x2 + 2x + 3) 

43 -=--- 45 -=4-+2v- 47 -=- u-+t•- (uv) dy du dv dy du dv dy l dv duj _2 

dx dx dx dx dx dx dx dx dx 
49 r = 6x - 2 51 b = - 2, c = 4 

Section 2.4 

9 

1 dy 1 
17 y = k (x - c), dx = k 

~ dy 1 
19 y = './~' dx = 2j2~ 

21 
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23 [
.J4x- 3 - 1]

1
·
2 

dy (4 3 2 )_ 1 dy 1[)4x- 3 - 1]-
1

'
2
(4 3 - 1. 2 y = , - = \' + \' or- = - x - ) 

2 dx · · dx 2 2 

25 y = [~- 1]2 = 1 + 4x-~. dy = (-1- + 2)-1 
4 8 dx 2}Y 

dy 1 I 
or-=---=== 

dx 2 2~ 

Section 2.5 

1 -2sinllcosil 3 2cosx- 3sinx 5 sinz(cosz)- 2 7 nsin"- 1 llcosil 
9 t cost + sin t 11 e"' + xex 13 (21n x)fx 15 exfx + e·' In x 

17 -e"Jv + (1- e")/2Jv 19 x"/x + nx"- 1 In x 
21 y - 1/2 = (j3/2)(x - n/6) 23 y = x - xfe 

Section 2.6 

1 !Cx + 2)-112 3 -!(5 - x)-1'2 5 -~(2 + 3x)- 312 7 2(6x + 1)- 213 

9 x(x2 + 1)- 112 11 3 cos (3x) 13 -2x- 3 cos (3x) 15 4e4x 

17 -sin xeCOS X 19 - e·' sin (ex) 21 -14(1 - 4x)9 

23 -2xcos(1- x 2) + 2cos(2x -1) 

25 
e ... ·~cosx 

Section 2.7 

1 2x- 3 3 -10(x + 1)- 3 5 -(1/4)x- 312 + (3/4)x- 512 7 (3/4)t- 112 

9 -sinx 11 -AB2 sin(Bx) 13 a2e"·' 15 -x- 2 

17 -2(t2 + 1)- 2 + 8t2(t 2 + 1)- 3 19 -14(x + 2)- 3 

21 -±x(x + 1)- 312 + (x + 1)- 112 or Cix + 1)(x + 1)- 312 

23 it1'2(t + 3)-s,2 _ tr-u(t + 3)-3t2_±1-3,2(t + 3)-1,2 or -(31 -1,2 + £r-3;2)(t + 3)-s,2 

d
2
u d

2
u (du)

2 
25 -6t- 4 27 3-d 2 29 2u-

2 
+ 2-

x dx dx 

Section 2.8 

-(xfy)2 -5 
- (y;x)3 

2x + 3y 5x4 

1 -(y/x) 3 5 7 9 ---- 11 
2y +X 3x + 2y 2y - 1 

13 
y 

15 
6xy- y2 - 1 

17 
y cos (xy) 

19 --
2xy- 3x 2 2y- X 1 - x cos (xy) 2 sin y cosy 

21 
)' 

1 - 2y 
23 yex 25 2(6x2 + 4xy - 3)- 1 

hjkeisler
Text Box
y
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27 at (1, 2), y' = -4/5; at ( -1, 3), y' = -1/5 

29 at (2, 1), y' = 2; at (2, -1), y' = -2; at cJ3, 0), vertical 

31 -2/3 33 e 35 
2x 2y2 - 4x2 

y 

Extra Problems for Chapter 2 

1 12x2 
- 2 3 8 

1 3x2 + 3x Ll.x + Ll.x 2 

5 Ll.y = (x + Ll.x)3 - x 3 = x 3(x + Ll.x) 3 Ll.x, 

dy = -3x-4 Ll.x 
l3 9t2 + 8t - 15 

7 (2x- 2x- 3)dx 9 y = -x 11 -9x2
- 5 

15 (-2v4 + 10v3 - 3v2
- 16v + 20)(v3

- 4)- 2 

17 !x-112 + 6x112 19 tx-2i3+ix-Si4 21 (2y+!y-lf2)-lor 2Jy 
4yJy + 1 

23 
-3 

2~ 
25 

29 -4(4x - 1)- 3/2 

{ 2' 
35 f'(x) = undefined 

-2x 

Section 3.1 

3t + 6 3t + 12 
31 v = ~,a= 4( 3)3/2 

2yt+3 t+ 

ifjxj > 1 

ifjxj = 1 

ifjxj < 1 

33 
3y3 + 6x 2 y 

9xyl + 2x 3 

1 p=4JA 3 V=S 312 j(6j;c) 5 z=Jx4 -x2 +1 7 V=(s-2x)2x 
9 s = 3yj(10 - y), 0 < y < 10 11 b/16 13 A = (1 + t)(w - 2t) 

15 P(x) = x(100 - p) - lOx or P(x) = x(90 - p) 

Section 3.2 

1 100cm2 jsec 3 -2in.2jsec 5 10j6i mph 
9 40(3g/12 ftjsec where g = 32, or 160j6 ftjsec 11 

7 10/3 in. 2 ;sec 
-120mph 

800.400 160,000 15 
3 = mph -2 ftjsec 1 Jcsow + 6z J16o,oo9 

17 1,000,000t- 300,000jt people/year 19 $60 per person per year 
21 (55/144)n in. 2 /min 23 -0.01 25 2 - (x/500) 27 -100 radians/hr 
29 22 

Section 3.3 

1 53 3 does not exist 5 does not exist 
11 does not exist 13 does not exist 15 1 
21 -1/2 23 2x 25 1/(2jt) 27 3x2 

7 -1/(4j2) 9 1/3 
17 (1 + j2)1i 2 19 1 
29 -2 31 does not exist 

Section 3.4 

1 R 3 > - 2 5 R 7 all x except x = 0, x = - 1 
11 all x except x = (- 1 ± JS)/2 and x = - 1 

9 -2<x<2 

13 all x except x = 2, x = 3 15 x < 1 
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Section 3.5 

1 0, min 3 O,min 5 0, neither 7 -1/3, min 9 0, min 11 0, max 
13 0, neither 15 -1/(2 113

), min 17 3/2, min 19 0, max 21 n, neither 
23 0, max 25 0, min 27 -!,min 29 1, min 31 3, min 33 0, max 

35 1/2, max 37 1/JU at (4/17, 1/17) 39 1-m at x = I 
41 max of 1/4 at x = 2, min of -1/4 at x = -2 
43 max of 1/(4 • 31

'
4

) at x = 1((3 1
'
4

), min of -1/(4 • 3114
) at x = -1/(3 114

) 

Section 3.6 

1 X= 20/3, )' = 40/3 3 X= 50, y = 1 5 X = 3/4, )' = 1/4, x 3y = 27/256 
7 width = 10J3 in., length = 40!J3 in. 9 base = height = 2/vfi 

11 side of square = 10/3 in., height of triangle = 10/3 in. 13 area = r2 

15 base of radius 2/3, height 1 17 base of radius 4j(3n), height 4/3 19 50 
21 x = 50,000, p = $5 23 256 sec 25 1/2 27 base 4, height 2 
29 1/JU at x = 4/17, y = 1/17 31 height (3/2) ·side of base 
33 r = (2n)- 113

, h = (4/n) 113 35 x =(a+ b)/2 
37 A = 2/r, dAidr is never zero, 0 < r < oc 39 wfi hours 41 62,500 

Section 3.7 

X j(x) f'(x) 
j"(x) 

I 

\V I 
--1 

-2 6 -4 + deer. u 
0 2 0 + min. u 
2 6 4 + in cr. u 

-2 2 X 

3 _x_l(ii!N 
j"(x) 

-2 8 -6 + deer. u 
1 - [ 0 

I 
+ min. u 

2 0 2 + in cr. u 

2 X 

5 

~"lfl~(x] 
j"(x) r 

~- :k; 0 3 -4 + deer. 

1 

u 
[ [ 0 + mm. u 
2 3 4 + in cr. I u 0 2 

7 X f(x) 

~:itT I-~ 
y 

-2 16 - 32 + deer. I u 
0 0 0 + min. u 
2 16 32 + incr. I u 

-2 2 X 
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9 X f(x) f'(x) j"(x) 

-2 -6 9 iner. n 
I 7 2 0 iner. inll -3 TI 3 
2 14 17 + iner. u 

-2 

11 X f(x) f'(x) f"(x) 

-2 - lc 
3 1 - in cr. n 

-I - I 0 0 horiz. in fl. 3 

2 Sj 9 + iner. u 

13 X f(x) f'(x) f"(x) 

-4 2 -64 + deer. u 

-3 -25 0 + min. u 

-2 -14 16 0 iner. inll. 
-1 -1 8 - iner. n 

0 2 0 0 horiz. in fl. 

1 7 16 + iner. u 

2 50 96 + iner. u 

15 X f(x) f'(x) f"(x) 

-2 -4 12 - in cr. n 
-1 I 0 - max. n 2 

-1/}3 5 -!./3 0 deer. in fl. T8 
0 0 0 + min. u 

~;J3i 
5 !J3 0 iner. in fl. T8 

1 0 - max. n 2 
2 I -4 -12 - deer. n 

17 X f(x) f'(x) f"(x) y 

-4 1 _L deer. n -4 16 

-1 -1 -1 deer. n 
1 -4 -16 deer. n -4 
I 4 -16 + deer. u 4 

-1 + deer. u 

4 I I + deer. u 4 T6 

19 X f(x) f'(x) f"(x) 

)I\ , -2 I I + iner. u 4 " -1 1 2 + iner. u 
1 4 16 + iner. u 2 
I 4 -16 + deer. u 2 
1 -2 + deer. u 

2 I I + deer. u 4 4 
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21 

23 

25 

27 

29 

31 

33 
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X f(x) ' f'(x) I 

' 

f"(x) 

0 2 
0 l 

2 

10 9 __ L 
TT 121 

~--~1 
f(x) f'(x) f"(x) 

l .03 + TI 
-1/fil 3 1.9 0 4 

0 0 

1/fi 3 
4 -1.9 0 

4 l -.03 + TI 

X f(x) I f'(x) f"(x) 

-21 4 ' ' 
5 ~ - -r-5 

-1/fi l 
I . . 

0 4 ,-' 3 2 i 01 

11fil 

0 i 0 
I + 

l 
' 3 2 I 0 4 

4 ' 2, 5 25 

X f(x) .f'(xl .f"(xl 

l l 
4 2 

I l 
2 

4 2 l 
4 

x I f(x) ! f'(x) ' f"(x) 

-----+-~-· ± . 2 -4 + 
1 l + ' 4 l 

T6 ' + 

__ x-~(x)--t-!-'(x) 
1 

.f"(x) 

- 2 I fi 1 2; Js I 

0 3 1 0! 
2 fi l-2; .. ./51 

j'(.'o:) ! .f"(x) I 

I 

! 

I 

---1· --...,.--- -r---,-

-.~---------

iner. n 
mer. n 
incr. n 

mer. u 

mer. in fl. 

max. n 
deer. in fl. 
deer. u 

deer. n 
deer. in fl. 
min. u 

mer. in fl. 

mer. n 

iner. n 
iner. n 
iner. n 

~--

deer. u 

deer. u 

deer. u 

mer. n 
max. 1 n 
deer. n 

0 
n;4 
rr/2 

3n/4 

0 I 0 mer. infl. 

rr 
repeats 

l 

' 0 

0 i 

0 max. n 
- 1 0 deer. 1 infl. 

0 + mm. 0 

0 mer. inn. 

-4 

"I I __. 

ro 

~ 

~ 
-2 I 

yl 

!~ 
4 

'I~ ± 4 

\"I . I 

~ 
I 

-2 2 

2 

10 X 

4 

X 

X 

X 

~2n' 

.\ 



35 X f(x) f'(x) 

0 0 3 
2 

Tl 3 0 
2:rr 0 3 -z 

37 X f(x) f'(x) 

-:rr/3 -J3 4 
0 0 1 

:rr/3 J3 4 

39 X f(x) f'(x) 

-2 e2 -e2 

0 -1 
2 e -2 -e-2 

41 X f(x) f'(x) 

1/e -1 e 
1 0 
e 1/e 

43 X f(x) f'(x) 

-1 -e 2e 
0 0 1 
1 e-1 0 
2 2e- 2 -e -2 

3 3e- 3 2 -3 - e 

45 X f(x) f'(x) 

e-z 2 -2 - e -1 
e-1 -e -I 0 

0 
e e 2 

47 X f(x) j'(x) 

-3 -3e- 3 2 -3 - e 
-2 2 -2 - e -e -2 

-1 -e-1 0 
0 0 1 

e 2e 

49 X f(x) f'(x) 

I 4e* -12e* 4 
1 e 0 
4 e4/4 -fge4 

j"(x) 

0 iner. 
max. 

0 deer. 

I f"(x) 
I 

- iner. 
0 iner. 

+ mer. 

j"(x) 

+ deer. 

+ deer. 

+ deer. 

j"(x) 

iner. 
iner. 
iner. 

f"(x) 

iner. 
iner. 
max. 

0 deer. 

+ deer. 

f"(x) 

ez deer. 
e mm. 

iner. 
e-1 iner. 

f"(x) 

deer. 
0 deer. 

+ mm. 

+ in cr. 

+ in cr. 

f"(x) 

+ deer. 

+ min. 

+ iner. 
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in fl. 
n 

infl. 

n 
in fl. 
u 

u 
u 
u 

n 
n 
n 

n 
n 
n 

infl. 
u 

u 
u 
u 
u 

n 
in fl. 
u 
u 
u 

v 
v 
v 

y 

0 

\J"I 

~ 

-3 

~ I/ e x 

.r 

I 
4 4 

X 

X 

X 

A13 

X 
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Section 3.8 

1 f(O) = 1,f(1) = -1 3 f(4) = 0.236,f(9) = -2.838 
5 f(O) = 0.586,{(1) = -0.732 7 f(O) = -1,{(1) = 1 

11 f(O) = -1,J(1) = 1 13 f(O) = 0.9,f(1) = -0.1 
17 yes 19 yes 21 no 23 yes,f'(1617) = 0 
31 one 33 two 35 1/2 37 8/27 39 1 
43 f'(x) = 3x2 

- 3 has no zeros in (- 1, 1) 

Extra Problems for Chapter 3 

9 f(O) = l,f(1) = -1 
15 .f(l) = -1,f(e) = 0.632 
25 no 27 yes 29 no 
41 ...;'3- I 

A= 6V2
' 3 3 x = 300r 5 s = 5xj4 7 16/rr in.jsec 9 0.01 in.jsec 

11 -3 13 -1/4 15 -1 < x < 1 17 -2 < x < -I, 1 < x < 2 19 none 
21 max = 5 at x = 1, min = 3 at x = 2 23 max = 4 at x = 0, min = 1 at x = ± 1 
25 square of side fi 27 8b 3 j27a 3 29 min = - 32 at x = -2, no max 
31 base = height = 1 33 three zeros 

33 , : I f,,;y':' 
~ I -~~ I t 
2 16 1 4 
, I 27 i 0 
~ I 

25

3 I 1 i 

f"(x) 

+ 
0 

0 
+ 
+ 

deer. 
horiz. 
deer. 
deer. 
mm. 

mer. 

u 

in fl. 

in fl. 
u 

u 

37 none 39 f( -1) = .j7 - 2 < O,f(O) = 1 > 0 

Section 4.1 

1 2 3 5/4 5 11/8 7 11 9 -1/4 11 136 13 901/280 = 3.2 
17 1 + fi + ...;'Jcrr - 3) = 2.7 19 1.90 21 1.55 15 177/512=0.35 

23 3.18 

Section 4.2 

I (16/3)x312 3 t 3 + t 5 4t - r3 7 - (7 j2)s- 2 

11 (2/5)y 512 13 x2/2, x 20; -x2/2, x < 0 15 2/3 
21 32/3 23 14 25 12 27 9.9 29 16/3 

Section 4.3 

9 (1/3)(x - 6) 3 

17 12 19 0 
31 1/6 33 2 

1 x + x 2 + x 3 + C 3 (3!2)t 8 
- (1/2)t6 + (2/3)t 3 + t + C 5 (2/3)r312 + 2t 1 2 + C 

7 (1/6)(2x- 3)' + C 9 (1/3)z3 + 2z- z- 1 + C 11 5sinx + C 
13 x+lnx+C 15 x+2lnx-x- 1 +C 17 12t-(4/3)r3i2 -t2 +C 
19 -4y- 1 

- 6y- 1
'
2 + 2}Y + C 21 (lj3)ax 3 + (1/2)bx 2 + ex+ C 23 0 

25 68/15 27 0 29 3ln2 31 -ln3 33 (4/3)t 3 -t+2 
35 -2 cost+ 12 37 v = (1/2)t2

, y = (1/6)r3 + 1 
39 v = t3 + 1, y = (1/4)r4 + t + 2 
41 v = -(1/2)t- 2 + 3/2, y = (lj2)t- 1 + (3/2)t- 2 43 (a), (d), (f), (g), (i), (/) 
45 y = t 3 + 2t + 1 

Section 4.4 

---+C 1 7 
3 - ::;- (3 - 4z) + C 
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7 (1/30)(4 + 5x2
)

3 + C 9 -(1/3) cos (3x) + C 11 -(3/2) cos (4x- 1) + C 
13 (1/2) sin2 8 + C 15 -(1/4) cos4 8 + C 17 -(1/2) cos (x2 + 1) + C 
19 -cos (In x) + C 21 (2/3)(sin t) 312 + C 23 (1/2)e2x + C 
25 aex - be-x + C 27 1ex' + C 29(bja)eax + C 31 esinB + C 

33 In (x + 2) + C 35 In (ex + 1) + C 37 x - In (x + 1) + C 

39 2In(1 + Jx) + C 41 -3t- 19In(5- t) + C 43 (lj6)(x4 + 5)3
'
2 + C 

45 (1/3)(2 + v2
)

312 + C 47 - (1 - u2
) 112 + C 49 (2/3)(3s + 2)112 + C 

51 -2(1 + x- 1) 112 + c 53 -(1/15)(3 + 5x- 2
) 312 + C 55 -(2/3)(3- Jx)3 + C 

57 -2z- 1 
- (1/2)z- 2 + C 59 (2/3)(x3 + 4) 1

'
2 + C 61 (1/2)(1 + x4

)
1

'
2 + C 

63 (2/5)(t + 1)512 - (2/3)(t + 1)312 + C 65 (8/3)(1 - s)- 3 - (1 - s)- 2 + C 
67 -(1/2)(y2 + 1)- 1 + (1/4)(l + 1)- 2 + c 
69 (1/24)(4x + 1)312 

- (1/8)(4x + 1)112 + Cor (1/12)(2x- 1)(4x + 1)1
'
2 + C 

71 -(2/27)(1 - 3u)312 + (2/45)(1 - 3u)512 + C 73 (1/6)(4x + 1)3
'
2 

- (4x + 1)112 + C 
75 -(1/4) In (1 - x4

) + C 77 (1/4)y4
- (1/2)/ + (1/2) In (1 + yl) + Cor 

(1/4)(1 + y2
)

2 
- (1 + y2

) + (1/2) In (1 + y2
) + C 

79 (2/3) In (3u + 2) + 3f(3u + 2) + C 81 x - 4Jx + 8In (2 + Jx) + C 
83 In(sin8) + C 85 (1/b)In(a + bx) + C 87 -In(l +cos 8) + C 
89 (1/2)(In x)2 + C 91 1/2 93 e - e- 1 95 In 2 or (1/2) In 4 97 1/2 
99 (2/3)(3}3- 1) 101 242/5 103 100 105 (1/6)(17.jl7- 27) 107 0 

109 (ln 7 -In 4)/3 111 2/3 113 93/35 115 0 117 f(g(x)) + C 

Section 4.5 

1 56/3 3 2 5 (10.)5/3)- 6 7 32/3 9 500/3 11 2 
15 2 17 e2

- 3 19 2(e- e- 1) 21 2 -In3 23 (3/2)- In 2 
27 128}6/5 29 4/3 31 32/3 33 1/6 35 19/15 37 49/15 
39 23/12 41 3/4 43 1 - (4/3) • 2314 + (5/6) • 2315 = o.o2 45 11/4 
47 (3 + .j5)/2 49 -J's4or 312 51 c = (1/2)213 or c = r 2

'
3 

Section 4.6 

1 In all cases, sum = 2, error = 0. 
3 (a) L'.x = 0.25: sum = 1.0426 L'.x = 0.1: sum = 1.0652 

(b) L'.x = 0.25: sum = 1.0594 L'.x = 0.1 : sum = 1.0700 
In all cases, there is no error estimate. 

5 (a) L'.x = 0.25: sum = 0.3229, error s 1/384 
L'.x = 0.1: sum = 0.3220, error s 1/2400 

(b) L'.x = 0.25: sum= 0.3217108, errors 1/15,360 
L'.x = 0.1: sum = 0.3217 505, error s 1/600,000 

7 (a) L'.x = 0.5: sum = 2.8968, error s 1/48 
L'.x = 0.1: sum= 2.9012, errors 1/1200 

(b) L'.x = 0.5: sum= 2.9013, errors 1/960 
L'.x = 0.1: sum= 2.901388, error s 1/600,000 

9 (a) L'.x = 0.25: sum= 1.0968, errors -/if96 

L'.x = 0.1 : sum = 1.0906, error s -/i/600 
(b) L'.x = 0.25: sum= 1.089413 

L'.x = 0.1: sum= 1.089430 
11 (a) L'.x = 1: sum = 2.0214, error s 1 

L'.x = 0.1: sum = 1.9447, error s 0.01 
(b) L'.x = 1: sum= 1.9587, errors 0.8 

L'.x = 0.1: sum= 1.945913, error s 0.0008 
13 (a) L'.x = 3: sum = 1.8793, error s 45/8 

L'.x = 0.1: sum= 1.6685, error s 5/800 
(b) L'.x = 3: sum= 1.738132 

:s =1. 2 

13 4 
25 1/5 
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15 (a) b.x = n/2: sum= 1.5708, error:::; n3 j48 or 0.65 
b.x = n/10: sum = 1.9835, error :::; n 3 /1200 or 0.026 

(b) b.x = n/2: sum = 2.0944, error :::; n5 /2880 or 0.1 
b.x = n/10: sum= 2.00011, error:::; n5/1,800,000 or 0.00017 

17 (a) b.x = 0.25: sum= 1.7272 error:::; e/192 or 0.014 
b.x = 0.1: sum = 1.7197, error :::; e/1200 or 0.002 

(b) b.x = 0.25: sum= 1.718319, error:::; e/46,080 or 0.00006 
b.x = 0.1: sum= 1.718283, error:::; e/1,800,000 or 0.0000015 

19 (a) b.x = 0.25: sum = 0.3837, error :::; 1/192 
b.x = 0.1: sum = 0.3859, error :::; 1/1200 

(b) b.x = 0.25: sum= 0.386260, error :::; 1/46,080 
b.x = 0.1: sum = 0.386293, error :::; 1/1,800,000 

Extra Problems for Chapter 4 

1 0.6025 3 7.875 5 1/3 7 76 + 40}5 9 946i 11 2 
13 2x + x 2/2- x 3 + C 15 -(1/4)(x 2

- 1)- 2 + C 17 -(1/3)(1- 3u 2) 1: 2 + C 
19 (1/3)[(21 + 1)312 

- (21 - 1)312] + C 21 (2/5)u512 
- (4/3)u 312 + C 

23 2 sin (x/2) + C 25 - e-r + C 27 40/3 29 (e4 
- 1)/4 31 (x 3 + 2) 1 2 

33 -Ju(u- 1) 112 35 (1/2)x 2 
- x + b + 1/2 37 3x 2 

- 6x + 5 

39 F(x) = 1 if x < 0, (x 2 /2) + 1 if x ~ 0 43 nab/2 45 xf(x) + f f(t) dt 

Section 5.1 

1 3 3 oc 5 1/3 7 5;3 9 1//3 11 oc 13 oc 
17 -oc 19 X, 21 0 23 1/2 25 -1/4 27 0 29 
33 does not exist 35 X 37 does not exist 39 does not exist 
43 0 45 -X 47 1/2 49 X 51 -3/2 53 0 55 
59 does not exist 61 0 63 -X 65 does not exist 67 X 

Section 5.2 

1 1/6 3 1/16 5 0 7 -1/4 9 1/2 11 -1 
17 2 19 3 21 1 23 2 25 1 27 1 29 1 
35 0 37 1/2 39 1/2 41 4/fl = j8 43 2 45 
49 5 51 does not exist 

Section 5.3 

(a) A, B, F, H (b) B, F, H (c) B, F (d) A, B, C, D, F, G, H 
(e) B, D, F, G, H (f) B, D, F 

3 X f(x) f'(x) 

I 
j"(x) \' 

lim cr; -x I 

I 0 0 -2 + deer. I u 
I -[ 0 i + mm. u 
2 0 2 i + mer. u 

lim cr; :£ 

13 5 
31 

X 

X 

15 0 
-5/6 

41 X 

57 

15 
I 33 
47 3/2 

31 

0 

X 

1/2 

0 
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5 X f(x) f'(x) j"(x) 
_r 

lim 00 -CIJ 
x~ -c.c 

-2 5} -6 + deer. u 

0 0 0 + min. u 

2 2i 2 0 in cr. infl X 

4 51 0 max. n 

6 0 -6 deer. n 

lim -00 -CIJ 

7 X f(x) f'(x) j"(x) y 

lim -00 00 
x_,-co 

-2 -12 20 in cr. n X 

0 0 0 0 horiz. in fl. 
1c 2 + in cr. u 4 

2 4 4 0 in cr. infl. 

3 6i 0 rflax. n 

4 0 -16 deer. n 

lim -00 -OC> 

9 X f(x) f'(x) j"(x) 

1Ji ' lim 0 0 

in cr. 'I + u 

'! Jim 00 00 
x-+2-

lim -00 co 
x-+2 + 

3 -I in cr. n 

Jim 0 0 

11 X f(x) f'(x) f"(x) 

J L lim 0 0 

-I 2 + in cr. u 

lim 00 % X x-o-

lim OC> 'i~ 
x-+o+ 

1 -2 + deer. u 

Jim 0 0 

13 X f(x) f'(x) j"(x) y 

lim 0 CfJ 
x-+O+ 

I in cr. n 2 X 
lim C/j 0 
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15 7/(xl_~~,~-! ~~~-L~-
x - y II I 

,~o 

1 I 1 - t I + : deer 
lim ! 0 0 I I 

i I 

n 

'L_ 
X 

17 

---;.~ I J(: J'(x) I f"(x) 
I 

! 
' 

_\' 

0 
-~ 

.\"_,.-X 

I 

-1 
I 

-1 I + I mer. u 3 
lim 0 y~ 

I 

x-o~ I 

lim 0 
I 

y 
x->O+ 

I in cr. I n 3 
lim X 0 

19 X f{x) f'(x) J"(x) I _):>! I , 

lim 0 I I 
~--· ~--..J.-- ----= 

2 
I __.....--2 mer. n -I:( X 

lim X :c 
X"•- I 

I . 
lim -x X 

X->- I • 

0 -1 2 in cr. n 

lim 1 0 

21 X f{x) J'(x) 
I 

f"(x) ' _\' 

------r 

lim 0 0 I 

4 
I 

-2 I + mer. u 5 TI 
-1!}3 J 1.9 0 iner. in fl. X 

4 

0 0 max. n 

t;j3 3 -1.9 0 deer. in ft. 4 
2 I 4 + deer. u 5 TI 
lim 0 0 

23 X ' f(x) I J'(x) i f"(x) I 

~· 
I _L_ __ -r-- I 

lim ! 0 

I 
-2 4 

I 
2 deer. n X 5 -n 

-1;}3 l 1- ,_/J/2 0 deer. I in fl. 4 

0 0 ! 0 + mm. u 
1!}3 I 

,'3;2 0 mer. in fl. 4 

;~;I 
4 2 mer. n 5 25 

0 
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25 X f(x) f'(x) f"(x) \ ___ lim 0 0 

-2 2 -~ deer. n 
I l X -, 

~: lim -oo -CIJ 
x--.. -1-

I 

lim -CIJ I CfJ 
x-+ -1 + 

1 2 20 + deer. u --, 3 -9 

0 0 -1 0 deer. infl. 
1 2 1Q deer. n 2 3 -9 

lim -OC; -CIJ 
x---+1-

lim CIJ -CIJ 
x---+1 + 

2 2 5 + deer. u 3 - .. 
OC; 0 0 

27 X f(x) I f'(x) f"(x) I .r 

lim· CfJ 0 
x--r}; 

c 
2 -1 1 -3 deer. n 

lim 0 -CIJ min. 
x-o- (cusp) 

lim 0 CfJ 
x--+O+ 

2 in cr. n 3 
lim CfJ 0 

29 X r f(x) f'(x) f"(x) .r 

lim 0 CfJ 
x..--o--2+ 

0 2 0 max. n 
lim 0 -CIJ -2 2 .\: 

x--+2-

31 X f(x) f'(x) f"(x) 

\'~/ 
lim -CIJ -l l X 

x--+-1-* 

'0 0 0 + min. u 
lim CfJ 

x->1-
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33 

35 

37 
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X f(x) j'(x) I j"(x) 
' 

lim 'X. -X 
x--->0+ 

rr4 .. /2 -,j2 -+- deer. u 

rr.2 1 0 + min. u 
3rr."4 I fi .,fi I + mer. u 

lim x; X 

lim -X. X I 
;~:--->n + 

5rr;4 -,fi .,fi in cr. n 
3rr/2 -1 0 max. n 
7rri4 -./2 -..,/2 deer. n 
lim -X, -X 

x--->2n 

x 1 f(x) 1 /'(x) I j"(x) 

____ ·o~~~~--0--~~---o--~----~-----
mer. infl. 

rr/4 I l. 2 + mer. 
lim X! x 

x-+n/2-

lim -'X. 
x-+n/2,.. 

371/4 -1 

rr i 0 
571/4 

1

1 

lim CD 
x-->3n/2-

lim 
x--> 3rr./2 + 

711/4 
211 

X 

0 
11/4 
11/2 
lim 

x--+ 3n/4-

lim 
x--->3tt/4 + 

11 
Srr/4 
311/2 
lim 

x--->7rr./4-

lim 
x-o7rr/4+ 

211 

-X: 

-l 
0 

f(x) 

1 
.,Jii2 

1 
'X. 

-XJ 

-l 
- ,./2!2 

-l 
-CD 

'X. 

2 
l 
2 

X 

2 

f'(x) 

-1 
0 

'X. 

'X. 

0 
-l 

-X. 

-X 

-l 

0 

+ 

0 

j"(x) 

+ 
+ 
+ 

+ 

iner. 
in cr. 
mer. 

mer. 
iner. 

deer. 
mm. 
incr. 

iner. 
max. 
deer. 

deer. 

u 

n 
in fl. 
u 

n 
in fl. 

u 

u 

u 

n 
n 
n 

u 

\'IV! 
I 

0 I 
rrl 1

2rr X 

'(\ I I 
I I 

I I 
I I 

0 2rr x 

\ I 

0 3'':(\ 211 \: 

I · I 

I I 
I I 
I I 
I I 



ANSWERS TO SELECTED PROBLEMS A21 

39 X J(x) f'(x) f"(x) r 
X 

lim -CJJ 
x-+- oo 

-3 -Js 3/Js + incr. u 

lim 0 CiJ ' x-+-2- ' 
lim 0 -CJJ 

x-+2 + 

3 -Js -3/JS + deer. u 

lim -CJJ -1 
x-oo 

41 X f(x) J(x) f"(x) ji' !L lim 0 0 

-2 1/}3 2/(3.j3) + iner. u 

lim CiJ CiJ 
x-->- 1-

lim CiJ -CJJ 
-]1 I I X 

x-1 + 

2 1/}3 -2/(3j3) + deer. u 

lim 0 0 

43 X f(x) f'(x) f"(x) 
r 

lim CiJ -1 / 

-1 0 -1 0 deer. linear 

lim -I -1 min. 
x-+O- (comer) 

lim -1 
x-+O+ .\ 

0 0 mer. linear 

lim CiJ 
x-oo 

45 X f(x) f'(x) f"(x) 

lim CiJ -2 

0 I -2 0 deer. linear 

lim 0 -2 min. 
x-+t- (corner) 

lim 0 2 
x--ot+ 

2 0 iner. linear .\ 

lim CiJ 2 



A22 ANSWERS TO SELECTED PROBLEMS 

47 X f(x) f'(x) j"(x) +-lim -x 
! 

0 2 0 in cr. linear 
lim 4 corner X 

x-2-

lim 4 3 
x--o 2 .,_ 

4 10 0 in cr. linear 
lim X 3 

49 

~"~, 1/:;' j 
f'(x) i j"(x) 

X -J_ 

"' 
5 -5 2 deer. u 

x~1ll}- I 1 -3 corner 1 

lim I -I X x-> ~ 1 + 

I I l 0 2 min. 2 4 I u 

0 I I 2 in cr. u 

3 3 2 in cr. u 

lim X 

I 
~~ 

51 X f(x) f'(x) I f"(x) \"I 

lim 0 
I 

X I 

-1 1 1 deer. n ~ 2 
lim 0 -x min. 

x---.o- (cusp) 

lim 0 X 
x-+O+ 

1 in cr. n 2 
lim X 0 

53 X f(x)~~ f"(x) 'i/ ·-~----

lim -x 

I -1 -2 0 incr. linear I I 
! I 

lim -1 jump 
x--.o- X 

lim 

/: x--o+ 

2 0 in cr. linear 
lim X 



55 X f(x) f'(x) f"(x) 

lim -co 

-1 -,fi 1/,fi 
lim -1 0 

x-+O-

lim 0 
x->0,. 

,fi 1/,fi + 
lim co 1 

X_,.()) 

Section 5.4 

1 3 Yl 

X 

7 9 )' 

X 

13 

15 focus (1/4, 0), directrix x = - 1/4 

X 

ANSWERS TO SELECTED PROBLEMS 

' '/ . ' ,. ,. ,. 
"' / 

/ 

in cr. n / 

/ 
jump / 

/ .\ 
/ 

in cr. u / 
5 

X X 

11 

X 

17 focus (3/2, 1/2), directrix x = 2 

y 
I 
I 
I 
I 
I 3 
I X=-
I 2 

X 

19 X = (1/2)y2 
- (1/2) 21 y = -(1/4)(x2 + 2x + 1) 

A23 



A24 ANSWERS TO SELECTED PROBLEMS 

Section 5.5 

1 

-1 

5 

4 
3 

y 

y 

I F(± 4. 0) 
2 

_ __!_ 

2 

F(O, ± ~) 

4 X 
3 

-2 

9 y 

F(O, ± v;o) 
X 

Section 5.6 

1 hyperbola 3 parabola 

9 y 

X 

X 

3 

-2 
X 

7 

5 ellipse 7 y Yl 
I 
I 

I 

)' I 

2 
F(± Vlf, 0) 

2 X 

X 

X X 
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11 
y 

15 y 

Yl 
I 
I 
I 
I 

13 

X 

X 

17 y Yl 
I 
I 
I 
I 

-------ffi------x 

Section 5.7 

1 o: = 45°, X 2
- Y 2 + 8 = 0 3 o: = 45°, -2X2 + 6Y2 = 1 

I 
I 

5 o: = 30°, 2X2
- 2Y2 = 7 7 o: = 22.5°, 1.207X2 - 0.207Y2 = 3 

9 o: = -15°, 4.232X2 + 0.768Y2 = 5 

Section 5.8 

Any smaller value of (j > 0 or larger value of B is also correct. 

1 b=10- 3 3 b=2-(0.5W 1 -0.039 5 b=10-4 

X 

7 (j = 1- )1- 10- 6 - 5 X 10- 7 9 (j = 10- 2 11 (j = 10- 3 13 (j = 10-4 

15 (j = 1 - j0.99- 5 x 10- 3 17 B = 99/4 = 24.75 19 B = 
5 + ~- 23.7 

21 B = 
104 

-
1 

- 2 X 103 

5 
23 For all e > 0 there exists (j > 0 such that whenever c- o < x < c, /f(x) - L/ < e. 
25 For all A > 0 there exists B > 0 such that whenever x > B, f(x) < -A. 

Section 5.9 

1 1.42332 
13 1.10606 

Section 5.10 

3 -0.63688 
15 1.30633 

5 1.22074 7 2.93923 9 0.38197 

1 f'(l) = 2, error~ t1x 3 f'(4) = -(1/8), error ~ (3/128) t1x 
5 f'(3) = -1/9, error ~ (1/27) ilx 7 f'(O) = 1, error ~ 0.5 t1x 
9 f'(rc/3) = -J3, error ~ 2 ilx 11 f'(1) = 1, error~ .'lx/2 

11 0.56714 

hjkeisler
Text Box



A26 ANSWERS TO SELECTED PROBLEMS 

13 f'(l) = e, error ::;; (l/2)e Ll.x 
15 f'(lOO) = 1/20, error ::;; (1/8) • 99- 3 2 Ll.x or 0.000127 Ll.x 
17 f'(2) = (2/j5), error ::;; l/(4j2) Ll.x 19 f'(l) = \./2 + r 3 2

, error ::;; Ll.x/2 
21 J65 ~ 8Tt,, error::;; 1/4096 23 (0.301)4 or 0.008208, error::;; 6 x 10- 7 

25 
27 
31 

1/97 or 10- 2 + 3 X 10- 4 = 0.0103, error :s; 10- 5 

Jl:02 + j1.02 ~ 2fcJ, error ::;; H x 10- 4 29 (1.003)5 or 1.015, error ::;; 10- 4 

sin (n/3 + 0.004) or .)3;2 + 0.002, error::;; 8 x 10- 6 

33 tan (0.005) or 0.005, error ::;; 10- 6 35 e0
·
002 or 1.002, error ::;; 3 x 10- 6 

37 In (1.006) or 0.006, error::;; 18 x 10- 6 

Extra Problems for Chapter 5 

0 3 0 5 ct:; 7 0 9 3/2 

11 X f(x) f'(x) j"(x) / 

/. 
/ 

lim -X· / 
/ 

-I 0 2 + in cr. u 
lim X 

x ...... o- ' X X 

lim -x X 
x--.o+ 

/ 

0 2 in cr. " n 
lim X 

13 _xj f(x) f'(x) f"(x) 
r I 

iL +----
lim I 0 0 ! 

0 I J + in cr. u 2 " lim X X 
x--+1-

lim -x oc 
x->1 + 

3 -4 0 2 

lim -x -x 
x--+ 2-

lim Cf) -x 
x-o-2+ 

3 l -! + 2 

lim 0 0 

15 ~:~ ~ ~~f'(xJ_1__rrxJ 
X I -2 

X 

-2 I 4 -2 o 
x~i~_ 1 2 -2 

lim / 
x~ -I+ I 

0 
lim 

x---+ 1-

lim 
x-1 _,_ 

2 
lim 

2 

2 
2 

2 

4 

0 

0 
0 

2 

2 
2 

0 

0 

max. 

deer. 

n 

u 

I r----
:deer. linear 

icorner 

I 
I I constant linear 
!corner 1 

I 
I 

I 
J in cr. linear 

I ~ X 
I I 

! I 
I I 

n I I 
, I 



ANSWER~ I u :::>I::LI::C: II::U t't1UOLI::IVI~ 

17 y 19 \' 

(1, 5) 3 

F(O, ±VS) 

-2 2 X 

X 

-3 

21 Y' 

X 

------
X 

23 a= 45°, X 2 
- Y2 = 18 25 o :o; 0.155 27 1.7866 29 (3/4096) Ax 

31 25 - 2/15 = 24.8666, error :o; 1/(9 • (124)4
'
3

) 

Section 6.1 

1 1/3 3 J3;12 5 rr/24 7 2cr2 j3 

Section 6.2 

1 (a) rr/5 (b) rr/2 3 £a) 8rr (b) 128rr/5 5 (a) rr/3 (b) rr/3 
7 (a) 4rr/3 (b) (2/3)rr(2y'2- 1) 9 (a) 31rrj160 (b) rr 11 (a) 4rr/45 (b) rr/3 

13 (a) 27rr (b) 18rr 15 (a) 2rr/35 (b) rr/10 17 (a) rr/3 (b) rr/9 
19 20nj3 (b) 29nj6 21 (a) 16rr/3 (b) 184rr/15 23 2rr 25 (rr2 /4) - (rr/2) 
27 (rr/2)(e2 

- 1) 29 (nj6)(e2 
- 1) 31 rr In 2 33 rr(3 - In 4) 35 2rr 

37 2rr 39 rr(e-1) 41 2n(e- 1 -e-4
) 43 2rrln2 45 (n/2)1n7 

1 2nha3 

47 !n(r2 - a2
)

312 49 -nr2h- na2h + ~-
3 3r 

51 (a) n(b
2
a + ~ r3 

- r2a + a
3

) or~ nr2(r - a) 
3 3 3 3 

(b) ~n(ba2 + b3) odn[a2Jr2- a2 + (r2- a2)3i2] 

Section 6.3 

1 ~6J6- 3j3) 3 ~(3j3;2j2) - 1) 5 J?{lOjiO - 1) 7 379/12 

9 387/20 11 3/2 13 36 15 ~25/2- 1) 17 ?.j3/3 

8·10Ji0- 37fo 21 2n 23 4j2 25 
t2 

19 
Ji+4t2 

27 r4

J1 + (4x - 1)2 dx 29 r )4+~dt 



~.1!0 ~N::;VVt:K::; I U ::;t:Lt:C I t:U 1-'KUt;Lt:M::; 

31 f2 J 1 + 1 
dx ~ ~(JS + ~ + {]_ + j2 + 2) ~ 1.32 

I 4X 4 4 v2 v4 4 

Is __ j2 ~T? .J82 j2fi .j626 
33 j1 + x- 4 dx ~-+-+- + -- + -- ~ 4.246 

[ 2 4 9 16 50 

Section 6.4 

n r:-;:, 2n(2 512 2 312 4) 1 6 (17..;17-IJ 3 815 .1o - 3.1o + 15 ~8.2 5 256n/15 

2n - ;;; 
7 1575n/8 9 3 (I0~10-2y2) 11 n(2jl-1) 13 ~(2j2- 1) 

15 47n/16 17 7n;9 19 16nj5 21 2nra 23 (a) f 2nxJI + 25x8 dx 

(b) f 2nx 5 J 1 + 25x8 dx 25 (a) r 0 

2n(t2 + t)~8t2 + 4t + 1 dt 

(b) ro 2n(t2 
_ 1)j8t2 + 4t + 1 dt 27 L nx\/1+7 dx ~ 1.357 

Section 6.5 

5 

9 3- (2fj3) 
21 (1/3) ln 4 23 
33 (a) 2 (b) 32/7 

Section 6.6 

3 

11 -6 13 0 
25 8/9 

Yl 

15 2/n 
27 6./15/25 

17 1/n 
29 13/2 

19 (1!2)(e- e- 1
) 

31 116/45 

(a) 4 (b) Mx = 0, Ml. = 4 (c) (1, 0) 3 (a) 128/3 (b) Mx = 512/5, MY= 0 
(c) (0, 12/5) 5 (a) 6k (b) Mx = 8k, MY= 2k (c)(t, }) 7 (a) 128/15 
(b) Mx = 1024/105, MY= 0 (c) (0, ~) 9 (a)! (b) M, = t, MY= 1 (c) (1, ±l 

11 (a) 2j2 - 2 (b) M, = l - f, M)' = 
4v;- 2 

(c) (2j2- I' 2- fi) or ( 1 + fi, Ji) 
3j2 - 3 4j2 - 4 3 4 

13 (a) 4/3 (b) Mx = 1/2, MY = 0 (c) (0, 3/8) 
15 (a) 128/3 (b) M, = 1024/15, M). = 512/5 (c) (lf, f) 



ANSWERS TO SELECTED PROBLEMS A29 

17 j____, 
~-x 

19 y 

23 y 

X 

25 2/3 27 e2 
- 1 29 (2ln 2, 7 /24) 31 (8/15, 16/105) 

35 80ft lbs 37 320/3 ft lbs 39 50ft lbs 41 215ft lbs 

Section 6.7 

21 y 

33 ( 1/2, 2/5) 
43 9k/400 

1 1/2 3 diverges to oo 5 diverges to - oo 7 diverges to oo 9 1/2 
11 diverges to oo 13 3 15 6 17 -3/2 19 3 21 diverges to oo 
23 diverges to oo 25 diverges 27 1/2 29 diverges 31 4)2 33 
37 4 39 2/3 41 (a) n (b) ct:) 43 (a) oo (b) 8n 45 4/3 

47 (a) lln/9 (b) 16n/15 49 (a) ~ (5j5- 1) (b) S: 2nxJ1 + :xdx 

51 (a) 2nra (b) 2nr2 
- 2nr~ 

Extra Problems for Chapter 6 

ct:) 

1 8r3/3 3 2r3/3 5 {a) lln/3 (b) (16n/3)- 2nj3 7 (a) 16n (b) 16n/3 
9 np/(p + 1) 11 2

1
7 (46.j46- lOVlO) 13 5 15 (b- a)J A2 + C2 

bp+I - 1 
17 ~ [(8A2 + 4AB + B2) 312 - (4A 2 + B2

)
3i 2

] 19 
3A (b - 1){p + 1) 

21 (p + 1)- l/p 

23 {t,~) 25 {f,O) 27 15ftlbs 29 divergestooo 31 -5/4 

X 

33 diverges to oo 35 8 37 a2h/3 39 m = np, Mx = 2p, M}' = 0, (x, y) = (0, 2/n) 
43 npr4 /4 45 wpb2/2 

Section 7.1 

7 (n/4) + kn 9 none 13 0 15 0 17 0 19 kn 

Section 7.2 

1 5cos(5x) 3 68cos(382
) 5 4sec2 (48-3) 7 acos8-bsin8 

9 - - 1-sin(Jx) 11 cos8sec2 {sin8) 13 3 csc(3t)cot(3t) 15 1 
2Jx (2 + csc(3t))2 2 siny cosy 

17 3/2 19 ct:) 21 2 23 1 



A30 

25 

27 

29 

31 

ANSWERS TO SELECTED PROBLEMS 

X f(x) I f'(x) I .f"(x) 
------+------rl I J_ __ 

0 
rr/4 
rr/2 

3rr/4 
1[ 

5rrj4 
3rrj2 
7rr/4 

2rr 

0 
rr/4 
rr/2 

3rr;4 
1[ 

5rr/4 
3rr/2 
7rr/4 

2rr 

0 i 31 0 

3/.,~ !)' 3/ ~: 
3;,/i. -vfir 

incr. inft. 
iner. n 
max. n 
deer. n 

oi -31 o 
-3;fii-3;J2! + 

deer. 1 inft. 
deer. u 

-3 I 0 + 
- 3/fi I 3;J2: + 

mm. u 

1/2 
0 

1/2 
I 

1/2 
0 

tncr. 1 u 

o I 31 o incr. inft. 

f'(x) [ .f"(x) 
1 

--- f----~ 

0 i + i min. 
I I 0 i mer. 
0 ! max. 

-1 0 deer. 
0 I + mm. 
I 0 mer. 
0 max. 

-1 0 deer. 
0 + min. 

u 

in fl. 
n 

in fl. 
u 

in fl. 
n 

inll. 
u 

~ 10'J fhlhl JN 
v2 1;,;2

1 
+ mer. u 

0 I 0 iner. in ft. 
I . ;j2 I;j2[ iner. n 

3rrj4 I o· max. n 
1[ I!,fi -I!j2 deer. n 

5rr/4 0 -I 0 deer. in ft. 
3rr/2 1-I/fi -I;j2 + deer. u 
7rrj4 . -1 

1/fll 
+ min. u 

2rr 1-I;fi + mer. u 

X .f(x) f'(x) f"(x) 

0 0 0 mer. in ft. 
rr-4 2 + mer. u 

lim X X 
x-->rr/2-

lim -oc ·X 
x-+n/2 + 

3rr/4 -I 2 in cr. n 
1[ 0 I 0 mer. in ft. 

5rr14 2 + iner. u 

lim oc X 
x-o 3-rr/2-

lim -x X 
x---t 3n!2 ~ 

7rr4 -I 2 mer. n 
2rr 0 0 mer. in fl. 

0 2rr x 

y 

0 
X 

2rr X 



33 X 

lim 
x-->o+ 

rr/4 
rr/2 

3rrf4 
lim 

x---+n:-

lim 
x->n:+ 

Srr/4 
3rr/2 
7rr/4 
lim 

x--+2n-

f(x) 

00 

2 
1 
2 

00 

00 

2 
1 
2 

00 

f'(x} 

-00 

-4 
0 
4 

-00 

-4 
0 
4 

f"(x) 

+ 
+ 
+ 

+ 
+ 
+ 

deer. 
min. 
iner. 

deer. 
min. 
in cr. 

ANSWERS TO SELECTED PROBLEMS 

u 

u 
u 

u 
u 
u 

)" 

0 

V'V 
1[ 

I 
I 

2rr 
I 
I 

37 -t cos(2t) + C 
2jsecx +l + C 

39 tsec3 x+C 41 2sin(Jx)+C 43 -tcsc(58)+C 
47 tane- sece + c 49 2 51 (3 - J3)/2 53 oo 45 

55 - 1
3
0 radians/sec 57 6 59 1/2 61 2n 63 J2 65 nJ2 

Section 7.3 

1 n/3 3 -n/4 5 n/3 7 fi--=7 9 
n 
2-x 

15 
5 

17 
2x 

19 
t 

21 
1- X 

arcsin t + j1=t2 
J5x - 2\j(5x - 2f - 1 ~ 1 - t2 J1=7 

23 arcsin x 25 
1 

zjX(x + 1) 
27 -n/2 29 1 31 t arctan(x/3) + C 

33 arcsin (2x- 1) + C 35 arcsec(2x) + C 37 tarcsin(x2
) + C 

39 2arcsec(Jx) +Cor 2arctan(~) + C 41 t(arcsinx)2 + C 
45 n/6 47 nja 49 n/2 

Section 7.4 

1 xsinx + cosx + C 3 t2 sint + 2tcost- 2sint + C 
5 -tt cos(2t - 1) + ;bin(2t - 1) + C 

x 2 x 1 
7 - 4 cos(4x) + 8 sin(4x) + 

32 
cos(4x) + C 

9 !x4 arcsec x - Tz{x 2 
- 1)312 

- tJxl=l + C 

11 -2Jxcos(Jx) + 2sin(Jx) + C 13 (x + 1)arctan(Jx)- J~ + C 

15 x\/~2-=-1- j{x2 
- 1)312 + Cor t(x 2 

- 1)312 + JxZ=l + Cor 

(tx 2 +f)~ + C 
17 -tx cos(2x) + t sin(2x) + Cor tx sin2 x- ix + t sinx cosx + C 
19 fsin3 8 + C od[cos8sin(28)- 2sin8(cos(28)] + C 
21 tcos(4x) -/2 cos(6x) + Cori4sinxsin(5x) + 2~cosxcos(5x) + C 

23 tsin(t2
)- tr2 cos(t2

) + C 25 ~cos(~)- sin(M + C 

27 (t2 + 4)312 (C - ~) + C or ! t 2(t 2 + 4)312 
- 3._ (t 2 + 4)512 + C or 

5 15 3 15 

43 

4 1 
- - (t2 + 4)3

'
2 + - (t2 + 4)5

'
2 + C 29 (n/2) - 1 31 n/2 33 1/2 

3 5 

2 J3 
35 3n- T 

n/3 

A31 

X 



A32 ANSWERS TO SELECTED PROBLEMS 

Section 7.5 

(ljcost) +cost+ C 3 -cotx- x + C 5 ±cos 3 xsinx + isinxcosx + ix + C 
odx + ±sin(2x) + -b sin(4x) + C 7 i tan6 x + ± tan 4 x + Cor 
i sec6 x - ±sec4 x + C 9 1 sin 3 x - hin 5 x + C 11 -1 cot 3 0 + C 

13 ~(tanx)912 + !(tanx)512 + C 15 tanO- cotO +Cor -2cot(20) + C 
n 2 

17 -cotO + cscO + C 19 4/3 21 4 - 3 23 3n/8 

25 cos(,hlsin(fil + ,h + C odsin(2fil + J~ + C 
27 -xcosx + 1xcos 3 x + ~sinx + -bsin 3 x + C 
29 1xsin 3 x + !cosx- -bcos3 x + C 31 -btan 9 0 + ~tan7 0 + ttan 5 0 + C 
33 ± secx tanx + H secx dx 35 fsecx tanx - ±J secx dx 
37 -±csc4 xcosx + icsc2 xcosx- tfcscxdx 39 fsecxdx + fcscxdx 
41 f x"sinx dx = - x"cosx + nf x"- 1 cosxdx = - x"cosx + 11x"- 1 sin x- 11(11- 1)J x"- 2 sin xdx 
43 (a) n 2/16 (b) n 2 j4 

Section 7.6 

± arcsin(2x) + C 
X 

3 1(9 + x2
)
3 2 

- 9(9 + x2
)

1
'
2 + Cor j9+7(1x2 

- 6) + C 

5 + c 
4~2 

7 arccos ( fi0
) + C or -a resin (:If) + C 

9 
1 

--- arctanx + C 
X 

11 2 arcsin (x/2) - ±x}4=7 + C 

13 i arcsinx- ±x(l - x2
)

312 + ixJ1 - x2 + C 

15 2 arcsin ( ~ ~ 2
) + ~ (x - 2lfo=-~2 + C 17 :fa (4x 2 

- 1)312 + /6 ) 4x2 
- l + C 

or~~ (i4- bx2
) + C 19 1(a2 

- x2
)
3 i

2 
- a2p7 + C 

or -tj a2 
- x 2 (2a 2 + x2

) + C 21 ± F=f - ± arcsec (x 2
) + C 

~'>--- a2 

23 ya 2 +x2 + +C 25 n/2 27 1/9 29 X 
Jaz + xz ----

31 (fx 2 
- ±l arcsin x + ±xJI- x2 + C 33 1x3 arcsin x + tF--.;;2 - -b(l - x2

)
3

1
2 + C 

arcsin x ~i 2n 2 n - ~~- - + c 37 ~- + -
2x 2 2x 3J3 2 

35 

Section 7.7 

2 
3 1'=-c---=-----:c-------c 

sinO- 5 cosO 
5 r = 2 secO 

. 2 2 sin 0 + 2 cos 0 
9 r Sill 0 = 3r cos 0 - 2r cos 0 or r = ---::--~~ 

3 cos2 0 

13 15 

11 r =sin 0 

17 



ANSWERS TO SELECTED PROBLEMS 

19 

21 X = sin (30) COS 0, y = sin (30) sin 0 23 X= e2 COS 0, y = 02 sin 0 

Section 7.8 

1 e 3 -cote 5 

7 0 r 

0 I 

rr./4 fi 
rr./2 1 

3rr./4 0 
rr. -1 

5rr./4 -fi 
3rr./2 -1 

7rr./4 0 
2rr. 1 

9 0 

0 1.5 
rr./4 2.2 
rr./2 2.5 

3rr./4 2.2 
rr. 1.5 

5rr./4 0.8 
3rr./2 0.5 
7rr./4 0.8 

2rr. 1.5 

11 0 

0 1.5 
rr./2 0.5 

2rr./3 0 
3rr./4 -0.2 

rr. -0.5 
5rr.f4 -0.2 

4rr./3 0 
3rr./2 0.5 

2n 1.5 

1 +cote 
sine 

drfdO tan 1/1 

I I 
0 

-I -I 

-fi 
-I I 

0 
I -I 

fi 
I I 

drjdO tan 1/1 

1.5 
0.7 3.1 

0 
-0.7 -3.1 
-1 -1.5 

-0.7 -1.1 
0 

0.7 1.1 
1.5 

drfdO tan 1/J 

0 
-1 -0.5 

-0.9 
-0.7 0.3 

0 
0.7 -0.3 
0.9 

1 0.5 
0 

lrl 

iner. 
max. 
deer. 

erossesO 
in cr. 0 

0 I 
max. 
deer. 

erossesO 
iner. 

lrl 

iner. 
iner. 
max. G)_ deer. 
deer. 
deer. 
min. 
iner. 
iner. 

lrl 

max. 
deer. 

crosses 0 
in cr. 
max. 0 
deer. 

crosses 0 
in cr. 
max. 

A33 
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13 0 dr dO tan 1/1 jrj 

0 0 I crosses 0 3 
11 0.9 I 5 in cr. 6 

1.511 0 max. 

211 0.9 I -5 deer. 6 

311 0 I crosses 0 3 

411 -0.9 I 5 in cr. 6 

4.511 -1 0 max. 

5rr -0.9 I -5 deer. 6 
611 0 I crossesO 3 

IS 0 dr:dO tan 1/1 ld 
~---· 

0 4 0 max. 

rr/8 2.5 -6 -0.4 deer. 

2rr/8 0 min. 

3rrj8 2.5 6 0.4 in cr. 

4rrj8 4 0 max. 

5rrj8 2.5 -6 -0.4 deer. 

611j8 1 0 min. 

?11/8 2.5 6 0.4 in cr. 

11 4 0 max. 

repeats 

17 f) drjdO tan ljJ 
I 

Jrj 

0 0 1 ~ssesO 
rr/4 2 I 

I 

in cr. 2 
lim X x-->1 

o ..... nf2-
I 

I I lim -X i x-->1 
0---+ rr./2- I 

I 

3rr/4 -1 2 I I 
I deer. -2 

I 11 0 crosses 0 
repeals, with x --. - I as 0--. 3rr/2 

19 0 1 dr!dO tan 1/1 I Jrl -n ~ I 
2 

I 2.4 
I mm. 

2.4 
I 

mer. 
lim I Cf) I X-->1 

9-->n/2-

I 
I 

lim 

I 
-X I X-->1 

8->rr/2 + i 
i 

3rr/4 -0.4 0.4 -1 I deer. 
][ 0 0 I cusp at 0 0 

511/4 -0.4 -0.4 I mer. 
lim 

I 
X-->1 -X 

8->Jn/2-

lim X X-->1 
e- Jrt/2, 

7rr 4 2.4 -2.4 -1 deer. 
211 2 0 mm. 
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21 8 drjd8 tan ift lrl 

0 1 -1 -1 deer. 

n/4 0.6 -0.3 -2 deer. 

n/2 0.5 0 min. 

3n/4 0.6 0.3 2 iner. 

n 1 1 iner. 

5n/4 3.4 8 0.4 iner. 

lim 00 x--+-aJ 
8-o3nj2-

lim 00 X -+ 00 
e-Jrc/2 + 

7n/4 3.4 -8 -0.4 deer. 

2n -1 -1 deer. 

23 0 r drjdll tan ift lrl 

lim 00 y--+n y=n 
e-..o+ 

n/4 4 -16/n -n/4 deer. 

n/2 2 -4/n -n/2 deer. 

n 1 -1/n -n deer. 

3nj2 .. -~Jr -3nj2 deer. 3 

2n I -in 
I 

-2n deer. 2 

3n l. 

I 
-~Jt -3n deer. 3 

I 4n I --hn -4n deer. 4 

25 8 r drjd8 tan ift lrl 

lim CfJ y-+0 
e-o+ 

nj4 2 -4/n -n/2 deer. 

~ nj2 .fi -.Jifn -n deer. 
n I -!rr -2n deer. 

3nj2 Ji deer. 
2n 1/A deer. 
3n ilfi deer. 
4n I deer. 2 

27 x: max of J32f2.7 at V = arcsin(l/}3), 2n- arcsin (1/}3); min of -}32;27 ate= 
n + arcsin(l/}3), n - arcsin(l/.j3) 
y: max of 2 ate = n/2; min of -2 ate = 3n/2 

29 x: max oft ate= 0; min of- 1
9
" ate = arccos(-~), 2n - arccos(-~) 

y: max ofsineod +cos eo) ate= eo= arccos(~- 3
); min of -sin eo G +cos eo) 

ate= 2n- arccos (fos- 3
) 

31 (~· ~~), (~, :;). U· '?;). (~· 1172n). (~· ~;). (~, \';). (~· 1:2n). (~, 213;) 

Section 7.9 

15 ?:__ J3 
3 4 

5 2- ~ 
2 

3n 
7 

16 

19 7n - J3 
12 

9 ~ - 3}3 11 ~ fi 
4 8 12 + 16 

21 ~ J: (g(e))2 
- (f(e)) 2 de 

13 3 7t 

2 4 

A35 
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Section 7.10 

14rr 3 2 5 2048 - 491,/17 ~ 1 02 
15 . 7 4 9 4 

11 S:" Jsin 2 (20) + 4cos 2 (20)d0 13 s: J02+l dO 

19 nfi 21 ~ (8 - j2) 
5 

Extra Problems for Chapter 7 

1 +COS X 
cos 0 r-c . 

3 --- ;OsmO 2fi '\ 5 4/3 7 -sin (cos 0) + C 9 8 

I 1 t2 

11 -600/29 radians/hr 13 - 15 --- 1 or--- 17 1 
2fijl- x 1 + r2 1 + t 2 

19 arcsec (x - 1) + C 21 !{x2 + 1)312 - (x2 + 1)1;2 + C = x 2(x 2 + 1) 112 

-i{x
2 + 1) 312 + C = (x 2 + 1) 112(1x 2 - il + C 23 2sin 1 + 2cos 1-2 

25 ( 1 rr) 27 sec 
9 

0 2 sec 
7 

0 sec 5 8 
7C - 4 -9-- -7- + -5- + c 

29 ~ - arcsin (....)2) + C 

31 (a) .1'1 

o~' 2rr 

33 (a) .1'[ 

i 
o,__p-~ x 

2rr 

35 19rr/8 37 (3rr/2) - 4 39 4j2n;5 

Section 8.1 

(b) 

(b) 

9 0 11 X 13 0 15 X 17 27 19 XJ 21 1/6 23 1/(2rr) 

Section 8.2 

I x 3 - x 2 5 x; y2 7 ilogbx 9 ±(logbx+logby) 11 2 13 1/2 
15 x = log5 3 17 x = - i 19 X = 5 113 2} X = 2, X = 3 
23 X= 21/(l-log,2) = 3li(log2 3-l) ~ -00 n -00 w -oc 

Section 8.3 

3e3·' + 4 

11 _1!1_2_ 3,;;: 
2fi 

19 I 21 

3 -4-x In 4 5 e' cos (e') 

13 
~+r +sin .1' 

-X 23 £! 25 ec 

17 X 



27 

29 

31 

33 

X 

lim 

-2 
-I 

0 

2 
lim 
x~x 

X 

lim 

-3 
22 
-I 

0 

lim 

X 

lim 

-2 
-1 

-(W'3 
.l 
2 

0 

lim 

X 

lim 

-2 
-1 

0 

2 
lim 

f(x) 

0 

1/4 
1/2 
I 
2 
4 
X 

f(x) 

0 

3 -3 - e 
2 -2 - e 
-e - [ 

0 
e 

r:fJ 

j(x) 

0 

e-s 
e-t 

e-2!3 
e- t/8 

e 
Cf) 

f(x) 

0.88 
0.73 
0.5 
0.27 
0.12 

0 

37 

f'(x) 

0 

(ln2)/4 
(ln2)/2 

ln2 
2ln 2 
4ln2 

X• 

f'(x) 

0 

-2e- 3 

-e-2 

0 

2e 
r:fJ 

f'(x) 

0 

12e- 8 

3e- 1 

+ 
ie- t/8 

0 
3e 
Cf) 

f'(x) 

0 

-0.1 
-0.2 
-0.25 
-0.2 
-0.1 

0 

43 te<(sin x - cos x) + C 

49 
1 · ·r o 
2 1f r > 0, oo 1 r :o;; 
r 

j"(x) 

+ 
+ 
+ 
+ 
+ 

f"(x) 

0 

+ 
+ 
+ 

f"(x) 

+ 
+ 
0 

0 

+ 

f"(x) 

0 

+ 
+ 

5 

incr. 

iner. 
iner. 
mer. 
iner. 

deer. 
deer. 
min. 
mer. 
iner. 

iner. 
iner. 
iner. 
iner. 
horiz. 
iner. 

deer. 
deer. 
deer. 
deer. 
deer. 

ANSWERS TO SELECTED PROBLEMS 

u 

v 
v 
v 
v 

n 
in ft. 
v 
v 
v 

v 
v 

in ft. 
n 

inft. 
v 

n 
n 

inft. 
v 
v 

47 CfJ 

41 xi'- i' + C 

51 (a) ~(e2 
- 1) (b) 2n 53 j2(e2

"- 1) 

A37 
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Section 8.4 

1 3 cosh (3x) 3 -tanh x sech x 5 1 7 0 

9 f(x) J'(x) f"(x) 
I 

X I 
_\' 

lim -1 0 

-1 -0.76 0.4 + iner. u 
0 0 0 mer. in fl. 

0.76 0.4 iner. n -------- -------
lim 0 -1 

11 X f(x) f'(x) f"(x) 

lim 0 0 

-"I -2 0.27 0.26 + iner. u 
-0.88 0.71 0.5 0 incr. in fl. 

~ 0 0 max. (') 

0.88 0.71 -0.5 0 deer. in fl. 
2 0.27 -0.26 + deer. u 

lim 0 0 

sinh2 x cosh2 x C 13 ~2~ + C or~-2~ + 15 x cosh x - sinh x + C 

17 !x sinh x cosh x + ix2 
- i sinh2 x + Cor ix sinh (2x) - i cosh (2x) + ix 2 + C 19 CD 

1t 
23 (a) g-<4 + e2 

- e- 2
) (b) 2rr(1 - e- 1

) 25 50,000(e2 
- 1) - 320,000 dollars 

27 (a) 106(90e0
·
2 

- 110) - -74,000 dollars (b) 106(90e0
·3 - 120) - 1,490,000 dollars 

Section 8.5 

(3/x)(ln x) 2 

11 ~ + 3 
y 2(3y + 1) 

23 1 25 1 

3 -tan x 

y 
13 y - -

X 

5 In t 9 
xln 2 

15 
1 

x+y-l 
17 0 19 0 21 In a 

29 tIn 12x + 31 + C 31 2x + 2ln lx - 11 + C 33 t{ln x) 2 + C 35 In lin tl + C 
xn+l xn+1 

37 In x(ln (In x)- 1) + C 39 n + 1In x - (n + 
1
)2 + C 

41 x(ln x) 3 
- 3x(ln x) 2 + 6x In x - 6x + C 43 sin (In x) + C 45 10 - In (11) 
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47 49 - oo 51 oo 53 (a) n(e - 2) 

55 P+l- J2 + 1 + In ( 
1 ~) 

1+ e2 +1 

Section 8.6 

1 y=-x2 ~C 3 y=±Jtx3 +C 5 y=-ln(C~x
2

) 
1 x3 x2 

7 y = In (tt + C) 9 y = 11 y = -
3 

+ -
2 

+ Ax + B 
±J2cosx + C 

13 y = Ax + B 15 y = A sinh (j3x) + B cosh (j3x) or y = Aefix + Be-fix 

7 (0 0 l)r 19 
6 In 10 . 

9 9 
. 5 4 

17 y = 10 e · ~mm- 1 . 3mm 21 10 x (1.15) - 174,900 

In (0.5) 
23 t = In (0.

9
) - 6.576 years 25 y = e' + e-• 27 y = cost- 2 sin t 

108 
29 y = 106

·
5jt 31 y = 33 (b) Yo= L/2 

1 + 9e ' 
35 (a) y = 107 - 6 x 106 2-r (b) y = 107 + 3 x 106 3-r 

37 y2 
- x 2 = C or y = ± J x 2 + C 

Section 8.7 

11 X f(x) f'(x) f"(x) 

lim -00 
x-+O+ 

1/10 10-o.l + deer. u 

1/e e-1/e 0 + min. u 
1 + in cr. u 

lim 00 00 
x-cv 

X 

15 In isin 01 + C 17 }In lsec (30)1 + C 
19 ;} sec4 0 sin 0 + i sec2 0 sin 0 + i In lsec 0 + tan 01 + C 21 In ltan xl + C 

23 In lsec x + tan xl - sin x + C 25 txJxl-=--1 - t In lx + j.X2-ll + C 

27 !In IF- x I+ Cor;}ln 1
2

- :-?~ + C 29 ilnlx-
2

1 + C 
4 - x 2 + 2 2 + 4 - x 2 x + 2 

31 Jxi=---1 - arcsec x + C or ~ - arctan p-=-1 + C 
X X 1 u-,-

33 -(x2 + 1)312 
- -(x2 + 1)112 --In (x + v x 2 + 1) + Cor 

4 8 8 

x(x 2 + 1) 112 (~x2 + M -~In (x + Jxl+l) + C 
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arcsin x 1 11 + }1=-71 C arcsin x 1 11 - }1=-71 C 35 ----- n + or ---- + n + 
X X X X 

37 x arccsc x + In (x + ~-1) + C, x ~ 1; x arccsc x - In Jx + p-::..11 + C, x :S: -1 

39 J5 + ~ln(2 + j5)- 2.96 41 ~ajl + a2 + ~ln(a + ~) 

Section 8.8 

~In /2x - 7/ + C 3 n In /x - 4/ - /2 In Jx/ + C 

x2 1 51 
7 2- 3x + 41n Jx/ + 4 1n Jx + 4/ + C 

5 -! In Jx - II + 1f In Jx + 4/ + C 

1 
9 -2(x+1)2+C 

11 In Jx - 1/ - x ~ 1 - 2(x ~ 1)2 + C 13 -In Jxl + f In Jx + II + f In Jx - II + C 

I 
15 x + In Jx/ - - + C 

X 
17 x - 4 arctan (x/4) + C 19 ~In Jx- 3/-! In Jx + 1/ + C 

21 !x3 - x + arctan x + C 23 arctan x - (1/}2) arctan (x/}2) + C 

1 1 1 (2x - 1) 25 - x- 1 
- arctan x + C 27 31n Jx + 1/ - 61n Jx2 - x + 11 + fi arctan fi + C 

x 2 3 5 I 
29 2 - 41n Jx + 1/ + 41n Jx - 1/ - 41n Jx 2 + 1/ + arctan x + C 

31 In /x/ - lin Jx2 + 1/ -arctan x + C 
2 X 

Section 8.9 

-3cosx + 4sinx + C 3 :i{x2 - 1)213 + C 5 ![(x + 2)3'2 + x 312] + C 

7 2(1 + .fiJ- 21n(l + .fiJ + C or 2.fi- 21n(l + )~) + C 

9 -()4x+l/x)+C 11 -2cos(.fiJ+C 
13 ~x- 3)712 + ?Cx- 3)512 + 6(x- 3) 312 + c 
15 ![{3x + 4) In (3x + 4) - (3x + 4)] + Cor !{3x + 4) In (3x + 4) - x + C 
17 xtanx-lnJsecxJ-(x2/2)+C 19 -icos(3x2 +1)+C 
21 2x In Jxl - 3x + (x + I) In (x + 1) + C 23 cos 8- cos Bin (cos 8) + C 

25 In (2 - cos 8) + C 27 ;hex+ 1)4 + C 29 2 sin(.,/~) - 2.fi cos C.fiJ + C 

31 In (1 + cosh x) + C 33 - In x + In (-x-) + c 
l+x l+x 

35 ~1 - cos x) 512 
- ~1 - cos x)712 + C 37 ~In I J2 fl I + C 

v 2 2 + 2 + x2 

( rx) r:: r--- 1 r:: 39 4arcsin T + ..._;x..j4- x- 2..._;x(4- x)3'2 +Cor 

~(x - 2J.fiJ4-::_ x + 2 arcsin ( x ; 
2

) + C 

41 t[(5x - 2) arcsin (5x - 2) + j1=(5x - 2)2] + C 43 fex(sin x + cos x) + C 

45 (x3/3) - x + 2 arctan x + C 47 tx2 arcsec (x2) - tIn (x2 + p-=1") + C 

4x-1 5 ~ J4x"C! 
49 2xlnx+-

8
-ln(4x-1)- 2x+C 51 21n/2x+ .. .J4X2 -l/- x +C 

53 (x + 1) arctan C.fiJ - .fi + C 55 i In /sec (4x2 + 7) + tan (4x2 + 7)/ + C 

57 - 2J3F- 9x2(2 + 9x2) + c 59 c.fi2-3;3x) + c 
61 3x213 sin(~) + 6(~) cos (;.o/.~) - 6 sin cJ;:) + c 
63 fx 3(1 - x2

)-
312 + x(l - x 2

)-
112 + C 65 ~(cos 2 (In x) + sin (21n x) + 2) + C 
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Extra Problems for Chapter 8 

1 -00 3 - ecosO sin 8 5 - 3 csch 3 x coth x 7 

9 -!ex~ + ±arcsin (ex) + C or -!ex Jl- e2x - t arccos V) + C 
8x 3 5 2 2x 

11 ±e2x-tx+C 13 -- 15 ---+--------- 17 e2 

x2 
- 1 3x + 2 5x - 4 2x - 1 x2 + 1 

19 (1/a) In lxl - (b/a) In Ia + bxl + C 21 oo 23 y = ±9+ C 

25 p = cv- 11k 27 air temp. = 60c, y = 60 + 80. 2-'' 10 

{ 
4t 2t + 1} 29 (4t + 1)'(t- 3)2 '+ 1 ln[(t- WC4t + 1)] + 

4
t + 

1 
+ (-=--3 31 lnlcoshxl + C 

33 ~x + 0S12 + C 35 n(2j2 +In IJ2 + 11- In 1J2- 11) or 2n(j2 +In 1J2 + 11) 
37 e0

·
03

- 1.03, error:-:::; 0.0005 39 ln6- t + t + ~ + ± + t +-h.= U, error:-:::; t 
_ 2 In 2 - i _ (In 2 - 1 )2 

41 
x = 2ln 2 - 1 'y = 2ln 2- 1 

43 n[ejl + e2 
- J2 + In (e + jl+7) - In (1 + j2)] 

Section 9.1 

1 2-" 3 ( -1)"n 5 2- (1/2"- 1
) 

17 diverges 
7 22

'"- '' 9 diverges 11 1 
13 0 15 diverges 19 1/e 21 0 23 -1 25 diverges 
27 diverges 29 0 

Section 9.2 

1 ~1 - (1/3)"), converges to 1 
1 

5 1- (n + 1)!' converges to 1 

3 4(1 - (3/4)"), converges to 4 
1 

7 1 - --
1

, converges to 1 
n+ 

n ddn 1. 9 n even: - 2, no : 2 + 2, diverges 11 1 - (n + 1)- 2
, converges to 1 

13 ~(1 - -
1
-

1
), converges to -

2
1 

2 2n + 
15 diverges because lim an = t 

n~oo 

17 diverges because for infinite H, S2 H ;:fo S2. 2 H 

19 diverges because for infinite H, SZH ;t SH 
23 A: 9/19, B: 6/19; C: 4/19 

21 A: 2/3, B: 1/3 

Section 9.3 

1 1/42 3 11/4 5 5/48 7 216/5 9 80/9 11 5~~ 
13 492.315 + (41/999,000) 15 1/7 

Section 9.4 

1 diverges 3 converges 5 converges 7 converges 9 
11 diverges 13 converges 15 diverges 17 converges 
21 diverges 23 converges 25 converges 27 diverges 
31 converges 33 diverges 35 converges 37 converges 

Section 9.5 

diverges 
19 converges 
29 diverges 

1 diverges 3 diverges 5 converges 7 diverges 9 diverges 
11 diverges 13 converges 15 converges 17 converges 19 diverges 
21 0.90 23 0.37 
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Section 9.6 

1 diverges 3 diverges 5 absolutely converges 7 diverges 9 diverges 
11 diverges 13 conditionally converges 15 absolutely converges 
17 conditionally converges 19 diverges 21 diverges 23 no information 
25 converges 27 diverges 29 converges 31 converges 33 no information 
35 converges 37 converges 39 converges 41 no information 43 converges 

Section 9.7 

1 3 0 5 e 7 4/e2 9 l 11 1 13 0 15 1/3 17 x 
19 00 21 0 23 fi 25 1 27 (- 1, 1) 29 ( -1, 1] 31 [- 1/2, 1/2) 
33 (-oo,x) 35 (-3,-1] 37 (-cc,oo) 39 (-1,1) 41 (-5/4,5/4) 
43 ( -J5, Js) 45 (- oc, x) 

Section 9.8 

X JX X 1~ 
f'(x) = L 11 10"x"- 1

, f(r) dr = L ~~x"+ 1 

n=l o n=ol1+1 
"' r.x oc II- 3 

3 f'(x) = L 11-2xn-r, f(r)dr = L ~~xn+I 
n=I .o n=r11+1 

5 f'(x) = I (11 + 1)x"- 1
, J' f(r) dr = I ~x"+ 1 

n=l 0 n=ll! 
oc 11! J"' "' 11! 7 f'(x) = L 11=1x"- 1

, f(t) dt = L , x"+ 1 

n=II! o n=r11(11+1) 

9 f'(x) = I 211x 2"-r,J'f(t)dt = I - 1
-x2"+ 1 11 I (-1)"3"x",r = 1 

"= 1 o "= o 211 + l n = o 
x (- 1 )"4 2n + I x4" + 2 I "' (- 1 )"2" + I x" + 2 I 

13 2:: r = . 15 2:: r = -
n=O 2n + 1 ' 2 n=O ll + I ' 2 

x (-1)"4"x" x 32n+IX2n+I 
17 L r = x 19 '\' r = x 

n=O 11! ' n~O (211 + I)! ' 
oc ( -1)"2"+ 1 x2n+ 3 I X x3n+ I 

21 L 2 ) ' /" = -~- 23 L I 3 , /" = X n=o(n+1)(n+3 \,2 n=o11.(1l+l) 
X 

25 2:: 
xn+ 3 

----~ r- I 
(11 + l)(n + 3)' -

X (- 1)"x"+ I 

27 L r- 1 
n=O (11 + 1}2 -11=0 

X X 

29 2:(-1)"+ 1211x 2
"-

1,r=l 31 L ( - I )"2 • x4
" + 1, r = 1 

n= 1 n=O 
x (-1)"(1 + 22n+I)x2n+I 1 

33 2:: r =-
n=O 211 + 1 ' 2 

Section 9.9 

0.18232 3 0.7788008 5 0.4854019 7 0.3293740 9 1.003009 
11 1.098614 13 f(x) = x + x2 + · · · + x"+ 1 + E, lEI ~ 2JxJ"+ 2,/(!l = 1 
15 f(x) = 1 + x2 + .. · + x2" + E, lEI ~ !x2"+ 2./(!J =! 
17 f(x) = -x- (x 2/22)- · · · - (x"jn 2

) + E, lEI ~ 2Jxl"'+ 1/(m + 1}2, {(!) ~ 0.58 

Section 9.10 

x 2 x4 
( -l)"x 2

" ( -1)"+ 1(cos r)x 2
"+

2 
( 1) 

1 f(x) = 1 - 2! + 4T- .. · + (2n)! + (211 + 2)! ,f 2 ~ 0.8776 
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. - - 23x3 . . . ( -1)"+ 122n+ lx2•+ I (-I)" COS (2t) (2x)2n+ 3 ( 1) 
3 f(x)- 2x 31 + + (2n + 1)! + (2n + 3)! ,f l ~ 0.8415 

. 4x 3 42x 5 ( -1)"4"x2"+ 1 ( -1)"+ 14"+ 1(cos2 t - sin2 t)x2"+ 3 

5 f (x) = x - - + - - --- + + .:_____:_ __ _:___ ____ '----
. 3! 5! (2n+1)! (2n+3)! ' 

f(t) ~ 0.4207 
( -1)"(1 • 3-- · (2n + 1))r 31"+ l)x" 

7 f (x) = r 3 + 3 • r 6 x + · · . + c____:__:__ _ ___:_ __ --.:..:___ __ _ 

n! 

(-1)"+ 1(1·3--·(211 + 3))(4 + t)<- 512 -n)Xn+l (1) 
+ 2"+ 1(11 + 1)! ,f 2 ~ 0.1048 

X
3 x 3 

X
2 x 3 

9 X+ 3,0.346 11 X+ 6,0.340 13 X- 2,0.28 15 X+ 3,0.346 

x 2 x 3 

17 2- 6' 0.049 

19 
e2(x - 2)2 e2(x - 2)" e'(x - 2)"+ 1 

e< = e2 + e2(x- 2) + 
2

, + ·-- + + __c, _ __:__ 

. n! (n + 1)! 

21 P 1 + ( 1) 
p(p - 1)(x - 1)2 p(p - l) ·-- (p - 11 + 1)(x - 1)" 

X = p X - + + .. · + '-.2_~ _ _::__ _ ____;_______:__:___::"-. 

2 n! 
p(p- 1) ... (p - n)tp-n-l(x - l)"+ I 
+~-~~~~~~~-~-

(11 + 1)! 

Section 9.11 

1 96 3 6 5 1008 7 I::'=o x"/(2"11!), r = ifJ 

9 
~ (-1)"+ 1(1·3·5--·(211- 3))x" 1 

1+x+ L- 1 ,r=-
n=2 11. 2 

oo ( -1)"x" oo ( -l)"x2" 
11 I -(

2 
)' , converges to cos Jx for x:;:: 0 13 I r = ctJ 

n=O II· n=O (211 + 1)!' 
x2 00 (1 • 3 • 5 · · · (2n - 3))x2" 00 

( -l)"x6"+ 4 
1s 1 -- + I - , r = 1 11 I r = CfJ 

2 n=2 2"n! n=o(6n + 4)(211 + 1)!' 
xc X4n+l oo!Jl_1)···(l-n+1)x2n+l 

19 I I CfJ 21 X + I 3\3 3 ,. = 1 
n=o(4n + 1)(211 + 1)!'. =. n=l 11!(211 + 1) ' 

"'- 1·3···(211-1)x2"+ 1 "- (-l)"+ 1(x-1)" 
23 x + I 

2
, '(

2 1 
)2 , r = 1 25 I , r = 1 

n=l 11. 11 + n=l II 

Extra Problems for Chapter 9 

1 converges to 1 3 converges to 1 5 diverges to ctJ 7 diverges 
9 converges to 28 1

4
5 11 converges to 42 13 diverges 15 diverges 

17 converges 19 converges 21 diverges 23 converges 25 converges 
27 converges 29 diverges 31 1/2 33 1 35 Je 
37 f'(x) = I::, lila+ 1(n + 1)b2nxn-l' s~ f(t) dt = L":: l 11°(n + 1)b- 12"x"+ I' r = 1 

x ( _ 1)"x4n+ 1 
39 L r- 1 41 -0.006 43 0.646 

n=o (211 + 1)(4n + 1)' -
00 2"( -1)"(2 • 5 • 8-- · (3n - 1))x2"+ 1 1 

45 X + L n 
1 

, r = - 47 e
50 

n=l 3 (2n + 1)n. J2 

Section 10.1 

1 i + 2j 3 - 3i - 4j 5 (2, - 4) 7 ( -1, 12) 9 A + B = - 3i + j 
11 A + B + C = j 13 3A = 3i - 6j 15 B - A = - 5i + ?i 



1-\"'t'-t /-\1'\IVVVCri;:) I U VCLCV I t:LJ rnUDL..CIVI,;::. 

17 A- 2B + 3C = 18i- 8j 19 IBI = 5 21 !A- Bi = sJ2 23 I6AI = 6Js 
25 .!fi-ii 27 -!i+fj,(-~,f) 29 arccos(-{2j5)/5) 31 arccos(-!) 
33 7i + 3j 35 8i - 2j 37 - 4i - 6j 39 5 41 4i + 3j 43 lOi + 2j 
45 -2fii + 2jlj 47 6i + 8j 49 2i- j, 2i + 2j, -5i + 2j, i- 3j 

Section 10.2 

X=3i-j+r(-i+j) 3 X=3i+4j+t(-2i+5j) 5 X=i+4j+t(i-5j) 
7 X = 2i + 5j + tj 9 X = 2j + t(i + 5j) 11 X = 3j + ti 

13 X = 6i + 5j + t(i - 3j) 15 y = - 2x + 10 17 y = 3 19 no 21 yes 
23 yes 25 ( -2, 3) 27 (2, 10) 29 (4, 3) 

Section 10.3 

1 5i - j + 7k 3 - k 5 (0, 0, 0) 7 3i + j - 4k 9 i + 5j - 8k 
11 - 2i - 3j + 6k 13 3 15 .)26 17 arccos (-/r) 19 0 
21 !i-ij+ik,(!,-i,il 23 -3i+3j+3J2k 25 1,-f 27 -foi-!j+/0 k 
29 125i + 250j + 625k 31 X= i + 3j + k + r(i - k) 
33 X= -i+4j+3k+r{-i-7j+3k) 35 X=r(-3i+4k) 

Section 10.4 

1 (a) 20 (b) A II B (c) 1 3 (a) 0 (b) A l B (c) 0 
5 (a) 24 (b) neither (c) 12/37 7 (a) -92 (b) neither (c) -92/117 
9 (a) 0 (b) A _l_ B (c) 0 11 (a) 8}5 (b) A II B (c) 1 13 41 

15 3i+3j+3k 17 200)2 19 i-j 21 -2i-2j-4k 23 -i+j+k 
23 -i - j + k 27 !i + fj 29 i - j 31 arccos (t) 33 n/3 

Section 10.5 

2 

_r 
-l 

X X 

5 



ANSWERS TO SELECTED PROBLEMS A45 

9 11 z 

X 

X 

13 (a) i- 3j + 6k (b) i + 2j (c) -3i + 4j + k (d) i + 6k (e) j (f) -j + k 
15 y + 2z = - 9 17 x + y + 2z = 0 19 y - z = - 1 
21 4x + 20y - 5z = 20 23 x + 2y + z = 9 25 2x + y + 3z = 13 
27 x + y- 2z = 20 29 x- y- 3z = 3 31 24x - 19y + 4z = 57 33 parallel 
35 neither 37 X = 5i + 3j - k + t(i - j + 3k) 39 X = - i + k + t(3i - j - 2k) 
41 X= j- k + t(-i + j + k) 43 (3, 1, 1) 45 (-t,O,i) 47 (-2, 1,2) 
49 (1, 1, 3) 

Section 10.6 

1 3• 2 3• 
3 X=-t•·+-tJ J5 J5 5 X = (1/jt2+i)(ti + j) 

7 
X _ cost + cos (3t). sin t + sin (3t). 

- 2 •+ 2 J 

9 X = (4 cos (t/3) - cos (4t/3))i + (4 sin (t/3) - sin (4t/3))j 
11 X = (cos t + t sin t)i + (sin t - t cos t)j 13 X = cos ti + sin tj + t2k 

15 X = i + (2 + t
2 )j + (1 + t

2 

-
1 )k 

J2t4
- 2t2 + 1 J2t4

- 2t2 + 1 
17 X = !{cos t + cos (2t))i + t sin tj + t sin (2t)k 
19 X = ( -i + i cost - t sin t)i + ( -i - t cost + i sin t)j + CV - t cost - t sin t)k 
21 X = (t - t cos2 t - 2t sin t cos t)i + (2t - t sin t cos t - 2t sin2 t)j + 3tk 

23 P(t) = 2ti + 2t(t 
1
+ 1)j + (t + 1)k 

Section 10.7 

1 5 cos ti - 5 sin tj 3 - e' sin (e')i + e' cos (e')j 5 - 6i + (6/t)j - 6e'k 
7 2 cos 2t 9 tfJ1+7 11 i + j + k + t(i + 2j + 3k) 

13 V = 2i + 3j - 4k, lVI = fo, A = 0 
15 V = -sin ti + cos tj + k, lVI = fi, A = - cos ti - sin tj 
17 V = - e' sin (e')i + e' cos (e')j, IV I = e', 

A = (- e' sin e1 
- e11 cos e')i + (e1 cos e1 

- e11 sin e1)j 
19 V = 2ti + 4tj- 2tk, lVI = 2J61tl, A= 2i + 4j- 2k _ 
21 S = t cos ti + t sin tj, V = (- t sin t + cos t)i + (t cost + sin t)j, lVI = Jl+ t2

, 

A = (- t cos t - 2 sin t)i + (- t sin t + 2 cos t)j 
23 S = cos (t2)i + sin (t2 )j, V = - 2t sin (t2)i + 2t cos (t2)j, lVI = 12tl, 

A = (- 2 sin (t2
) - 4t 2 cos (t2))i + (2 cos (t2) - 4t 2 sin (t2))j 

25 V = (e'/Jl+ ezx)i + (ezx;Jl + e2x)j, lVI = eX, 
A= [ _ e3x(l + e21- 3/2 + e"( 1 + e21- 1/2Ji + [ _ e4x(l + e2x)- 3/2 + 2ezx(l + ezx)- 112]j 

27 2n 29 5 31 2}3 + j2In (j3 + fl) 33 ! + In 2 
35 F(t) = (tt 2 + tli + C!t3 + ili + (tt4 + 1/)k 
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37 F(t) = In It - 11i + (In It - 21 - In 2)j +(In It- 31 - In 3)k 
39 S = (t - sin t)i + (1 - cos t)j + !t2k 

Section 10.8 

infinitesimal 3 infinite 5 finite 7 infinite 9 infinite 
1l infinitesimal (zero) 13 infinite 15 infinite 17 infinitesimal 
21 -sin xi + cos xj 23 10i- 20j + 5k 25 2i + 3j- k 27 0 
29 (1/IAI)A • U if A ;to 0, 1 if A = 0 31 (a) no (b) no 33 (a) yes 
35 (a) yes (b) no 37 (a) no (b) no 39 (a) yes (b) no 

Extra Problems for Chapter 10 

19 infinite 

(b) no 

1 5i- 12j 3 -3i- 3j 5 9i + llj 7 X= -i + j + t(4i- 3j) 9 (2, 5/2) 

11 (1/jlOs, -10/}Ws, 2/Jl05) 13 lOOi- 500j + 300k 
15 X = i + 4j + 3k + tk 17 A ..L B 19 - 20 21 - i + 3j - k 

25 -x-y+2z=O 27 (-1,-2,4) 
29 S =sin t cos ti + sin2 tj +cos tk, S = -sin t cos ti- sin2 tj +cos tk 

31 V = cos (2t)i + sin (2t)j - sin tk or V = -cos (2t)i - sin (2t)j - sin tk, lVI = Jl+~~. 
A = - 2 sin (2t)i + 2 cos (2t)j - cos tk or A = 2 sin (2t)i - 2 cos (2t)j - cos tk 

33 i + !j + 1k + t(- i - ii - !k) 
35 S = (-cos e' + cos 1)i + (sine' - sin 1)j + (e' - 1)k 

Section 11.1 

z 3 5 z 

--/ 

-
\' _\' _\' 

X 

X X 
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7 9 z 11 z 

y 

)' y 

X 

X 

13 15 : 

y 

X 

17 z 
y 

y 

X 

19 z 

X y 

X 

21 

X 
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xj 

25 z 

X 

27 

X 

29 31 

X 

33 
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37 _\' _\' 

0 
X 

I 
2 

0 
X 

41 43 

~ 
ez I 

X X 

0? 
4 

Section 11 .2 

1 all (x, y) 3 all (x, y) 5 y =I - x 7 y =I -2 9 x =I 2 and y =I - 1 
ll X+)'> 0 13 X> y 15 X> 0 17 X2 > )' 19 X> 0 andy> 0 
21 x2 > y 23 x > 0 andy > 0 and x =ft 1/y 25 x > 0 and y > 0 
27 X =ft 4y and y2 >X 29 COS X + y > 0 31 X =ft y 33 X> )'andy =ft Z 

35 (x, y, z) =1 (0, 0, 0) 37 x + y > 0 and z =1 0 43 e 45 oo 

Section 11.3 

1 az;ax = 4, az;ay = -3 3 az;ax = y2 + 3x2 y, azjay = 2xy + x3 

az 2x az 2y 
5 - = - 2 2 2, -a = 2 2 2 7 fx(x, y) = y, /,y(x, y) = x 

ax (x + y ) y (x + y ) 
9 fx(x,y) = a,J;,(x,y) =b 11 fx(x,y) = 2xex2 -y',~.(x,y) = -2ye"''-}'

2 

1 1 
13 f,;(x, y) = ~ ,fy(x, y) =J 

2y X + 2y X + 2y 
15 az;ax = yxy- I' az;ay = xY In X 

17 az;ax = 1/x,az;ay = 1/y 
az lny cz 1 

19 ax - x(lnxf' ay = y lnx 
21 az = 2xy az 

ox J1- x4y2' ay j1 - x4l 
~ X ~ y ~ Z 

23 
ax Jx2 + l + z2' ay Jx2 + y2 + z2' az Jx2 + y2 + z2 

25 f,.(x, y, z) = a,fy(x, y, z) = b, fz(x, y, z) = c 
27 awjax = -Z sin X, awjay = Z COSy, awjaz = COS X + sin y 29 fx(1, 2) = 4, _t;,(1, 2) = 4 

az az 
31 fx( -1, 1) = -1,_t;,( -1, 1) = 1 33 a)o, 2) = 2, a/o, 2) = o 

az az az 4 az 27 
35 a)1, o) = e, a/1, O) = o 37 a)2, 3) = - 961 , ay(2, 3) = - 961 
39 JJ1, 2, 3) = 2,~.(1, 2, 3) = 4Jz(1, 2, 3) = 6 41 1/fi 43 1/3 

47 C,.(x, y) = 3 - tJY/x, Cy(x, y) = 4 - tJX;Y 
45 b = 2,c = 1 
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Section 11 .4 

1 tu = 3~x- 2~y,dz = 3dx- 2dy 
3 ~z = 2 xl ~x + 2x 2 y ~)' + y 2 ~x2 + 4xy ~x ~y + x 2 ~y2 + 2x ~x ~yl + 2y ~x 2 ~y + 

~x 2 ~y2,dz = 2xy2 dx + 2x 2ydy 
X~)' + )'~X + ~X~)' dx dy 

5 tu = dz = - --,- - -, 
(X + ~x}(y + ~}')XJ' ' .'C\' xy-

7 ~z = e 3"- 4Y(eH"- 4 " 1'- 1),dz = e3x- 4 r(3dx- 4dy) 

9 ~z = cos (x + ~x) sin (y + ~y) - cos x sin y, dz = -sin x sin y dx + cos x cosy dy 
II ~z = x In (1 + (~yjy)) + ~x In (y + ~y), dz = In y dx + (xjy) dy 
13 ~IV = ~x + 2 ~)' + 3 ~z, dw = dx + 2 dy + 3 dz 
IS ~IV = y ~x + (x + z) ~y + y ~z + ~x ~y + ~y ~z, dw = y dx + (x + z) dy + y dz 
17 ~z = dz + ~x~x + ~.\'~Y 19 ~z = dz + (y~x + 2x~y + ~x~y)~x + O~y 

~Y x~v 
2I ~z = dz + ~x + · ~ v 23 z = 4x + 4y - 6 

y(y + ~)') )'2()' + ~y) . 

2S z = 4x + 4y - 2 27 z = tx + ty + 1 29 z = 6e 3x + e3y- 8e3 

31 7 = j2x + ,/'6\' + .. / 6- ~(j2 + J6) 33 3S 7 = I ~ 4 . 4 . 4 " 12 16 z =X- 2 " 

37 x - 2y + 2z = 9 39 x + y - :; = I 

Section 11.5 

2
e21 + 

2
e_ 21 3 

cos(tja) + cos(tjb) 
5 

2y _ _ 2xlnx 
[a sin (t/a) + b sin (tjb)jZ x In y y(ln y) 2 

111 ~ 1 In (t + 1 )] . ) 1 [cos
2 

t . 1 ( . )J 7 (t + 1) --) - --
2

- 9 (sm t cos -.- - sm t n sm t 
t(t + 1 t sm t 

ll 2r 2t In (t2 - 1) 13 3jl~7 - 2J1~7 
(t 2

- 1)ln(t2 + 1) (t 2 + 1)[ln(t2 + 1}F 
oz 2 3 oz 2 . 2 oz 2s oz 2t 

IS cs=3s cos t,t'Jt= -3s smtcos t 17 os=s2 _ 12 , 0t= -s2 _ 12 

cz a b cz a b oz , oz 
19 OS = - (s + t)2 - (s - t)2' ot = - (s + t)2 + (s - 1)2 21 bOX = abf (ax + by) = a 0)' 

dw ;. _ . - 1 . ;. _ ;. 
2S dt = e1cos(yt)- e 1Sm(Jt) +2_--:j~(-e1 sm(yt) + e 1 cos(yt)) 

27 
dz = x(dxjdt) + y(dyjdt) or dz = ~ dx + ~ dy 
dt J x2 + y2 dt z dt z dt 

29 - = x1 -- + In x- or - = -- + z In x-dz ·(y dx dy) dz zy dx dy 
dt X dt dt dt X dt dt 
oz oz oz cu oz h1 

31 
0
- = af'(u),-;::- = bf'(u) 33 -

0 
= z-

0 
, -

0 
= Z-;::-

S ot s s t ot 

3 °2 
' )I ) 

02 
)I ' ) 37 2 39 3 S os = g (s 1(t, at= g(s 1 (t - _ 41 2 43 1/25 

Section 11 .6 

oz dz cz . dz 
1 -

0 
= 3,-d = 3- 4e" 3 , = -smx,-d = -sinx + 3cos(3x) 

X X CX X 

cz dz oz y dz e-x(l - x) 
5 - = yxr-I,- = xx(l + In x) 7 - - _-'---c~-;_ 

OX dx cx-1+x2 y 2 'dx-1+x2e 2 x 

9 )'+X 

y-x 

11 
2x + 2y 3 

13 
1 + y cos (xy) 

6xy 2 + 1 x cos (xy) 
15 slope= -i,4y = -3x + 14 

17 slope= 5, y = 5x- 6 19 slope= -1, y = -x + 2 21 slope = I, y = x 
0\V OW 

23 -(x, y) = 15, -::,-(x, y) = - 34 ex oy 
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aw lOx - 6y aw ) -6x + 5y 
25 ax (x, y) = , -(x, y = ---r=-=========~ 

J10x 2 
- 12xy + 5/ ay J10x 2 

- 12xy + 5y2 

27 6x - 5y + 4z = -21 29 x + y + z = 3 31 x + y + z = 0 
az xy iJz x2 

35 
oz cos (xy) az x cos (xy) - z sin (yz) 

33 
ax = ---z· ay = 2z ax = sin (yz), iJy = y sin (yz) 
az z iJz 2z dz x 

37 = -- - = 39 - = y - ---
ax 3x' ay 3y dx 1 + Jx 
dw ow aw dy aw dz 

41 -=-+--+--
dx ox ay dx az dx 

Section 11.7 

1 max= 3 at ( -1, -1) and (1, 1); min = 0 at (0, 0) 
3 max= 48 at (3, 3); min= -6 at (1, -2) 5 max= 4 at (2, 1); min= -5 at (2, 4) 
7 max = 2 at (n/2, n/2); min = 0 at (0, 0), (0, n), (n, 0), (n, n) 
9 max= 1 at (-1, 1) and(1, 1); min= --!at (0, tl 

11 max= i at (t, 0, tl and (t, 1, -t); min = --!at (0, t, tl and (1, t, -t) 

13 max= 1 + J2 at (,ji/2, fi/2, 1); min= -tat ( -t, -t, tl 
15 max= 3 at (-1, -1, 1), (-1, 1, 1), (1, -1, 1), (1, 1, 1); min= 0 at (0,0,0) 
17 no max; min= -4at(-2,0) 19 nomax;nomin 
21 no max; min= 6 at (t, 4) 23 max = 1 at (0, 0); no min 25 no max, no min 

27 x = 4,y = 2,z = 2 29 6in. x 6in. x 12in. 31 2Jj/3 33 (%,¥, -1) 
35 (1, 1, 1), (1, -1, -1),( -1, 1, -1), ( -1, -1, 1) 
39 j(tV) 113 in. x j(£V)1

'
3 in. x (£V) 1

'
3 in. 41 x = 100, y = 200, P(lOO, 200) = 50,000 

Section 11.8 
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Extra Problems for Chapter 11 

X y 

elliptic cone 

3 y 

.1' 
X 

X 

5 x oft 0 7 1/x + 1/y > 0 9 j~(x, y) = a, J;.(x, y) = b 
i!z oz lnx 

11 
(Jx x In .r' 8y - y(ln y) 2 13 /:;.z = /:;.x 2 /:;.y dz = _ dx _ 2 dy 

x(x + Li.x) y(y + /:;.y)' x 2 y2 

15 -8y+z=4 17 dz= 
dt 

21og(2 ,+ 11 (3t + 2) + 3 
19 

(2t + I) In (2t + I} (3t + 2} In (2t + 1} 

Section 12.1 

I 168(64 = 2.625 3 44 5 1.025 7 (n/6) 2(7 + 4j3) ~ 3.8 
9 e- 5 + e- 4 + 2e- 3 + 2e- 2 + 2e- 1 + 2 + 2e + 2e2 + e3 + e4

- 97.52 
11 150/64-2.34 13 ((11 + 7.j2)n)/32 ~ 2.05 15 108 

Section 12.2 

7/2 = 3.5 3 128;3 = 42i 5 ~In 2 - 1.04 7 4 
9 1{e6

- e2
- e- 2 + e- 6 ) ~ 197.9 11 I3/6- 2.17 13 32;I5- 2.13 

15 36n- I13.! 17 14/3 19 
27 8/3 29 38/40 

3o 21 2 23 -nm2 - 36J6J 25 e- I 

31 0 :S: x :S: 5, 0 :S: y :S: 5 - x, or 0 :S: y :S: 5, 0 ::;; x ::;; 5 - y; g g- x.f(x, y) dy dx, or 
J~ g- ''f(x, y) dx dy 
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33 -2 ~ x :S 2, -J4- x2 ~ y ~ J4- x2,f~ 2 L~:,J(x,y)dydx 
35 -4 ~ x ~ 1, 3x ~ y ~ 4- x2 ,f~ 4 f~;x' f(x,y)dydx 
37 -1 :S )' :S 1, 1/2 :S X :S 1/(1 + /), f~ I fiji!+)·') j(X, }') dx dy 39 n/4 

43 !nab 

Section 12.3 

I 3/4 3 1 5 4/3 7 16/15 9 8/3 11 8n 13 8/15 

17 !nabc 

Section 12.4. 

1 (a) 4abk (b) (0, 0) (c) !{ba 3 + ab3)k 3 (a) ik (b) (i, ~) (c) 1
4
0
4sk 

5 (a) 26/3 (b) (19/13, 151/65) (c) 944/15 

2 1 (~ + /s n + ls) 2 1 2 1 
7 (a) 7 + 6 (b) ~ + i' ~ + i (c) TI + 9 + 45 + 28 

9 (a) e
2 + e-

2 
- 2 (b) e2 + e 2 _ 2 , 4(e2 + e-2 _ 2) 

4I 32/3 

15 144 

(
e2 + 3e- 2 

- 2 e4 + e- 4 
- 2 ) 

(c) te6 + 2e2 - ~- 10e- 2 + te- 6 11 2 13 (a) (j2/48)g (b) g/24 
15 m = i, W= Mg 

Section 12.5 

I 6n 3 8n 5 ~ 7 2n(1 -In 2) 9 4/21 11 n/48 

13 32/9 I5 8ns + 11ns 17 Sn/3 19 n/3- 4/9 21 !({3 - et.)(b3 - a3) 

23 (a) nb 3/3 (b) nbs /10 25 (nkj2)(b4 - a4 ) 27 (a) .\' = 4/(3n), ,\' = 4/(3n) (b) nk/8 

29 
3J3 + 8n 

(b) (~n + 
7f) b4

k 31 (a):X=O,y= fi b 
6 3 + 4n 

Section 12.6 

1 12 3 12 5 13/56 7 16/27 9 40 
11 ~~l X 109 = U7 + 1

8°8°) X 109 ~ 1.3 X 109 

e6 e4 e- 2 e- 6 52 12j3 
13 24 - 15 + 24 - 6o 15 63 - ~ 
17 (a) 3 (b) m,~,f2) (c) Iz=ti).=i,l,=H 
19 (a) I (b)(t,ls2,172) (c)Iz=~,Iy=Tt,Ix=l1 
21 (a) 3- (b) (l l ~) (c) I - _i_ I - ~ I - ~ 18 20' 20' 972 Z - 16' }' - 960' X - 960 

(a) n (c) Jn 

I (a b c) abck 2 2 abck 2 2 abck 2 2 23 (a) 6abck (b) 4,4,4 (c) Iz = 6Q(a + b ),Iy = 6Q(a + c ),Ix = 60(b +c) 

(
a b c) abck 2 2 abck 2 2 abck 2 2 25 (a)abck (b) 2,2,2 (c)I==-

3
-(a +b),Iy=-

3
-(a +c),Ix=-

3
-(b +c) 

Section 12.7 

4n 
3 

n 
5 

128 
7 

2nhb3 
9 

nhb4 

11 ( 0, 0, ~) 3 10 7 3 10 
b4t:kn 2b2c3kn 

15 
nhb4 k 17 

4nbs 
19 

4n 4nb4 

13 -2~+--3- 15 
21 

10 5 3 

23 
nbs nbs . 
To (I - cos (2et.)) or 5 sm2 et. 25 4n(b3- a3) 27 

nb 3 

-(1 - cos4 {3) 29 nc4 

6 

31 
Snkbs 

15 
33 b3(23n - ~ 35 ib from the center 
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Extra Problems for Chapter 12 

1 0 3 0 5 1/3 7 4/5 9 ±On 2)2 
- g(ln 2)3 11 1 /6 

13 m = 2k. (:\', }i) = (rr/2, rr/8), / 0 = (rr 2 
- ""j)k 15 m = rrr 4/4, (x, y) = (0, 0), 10 = rrr6/6 

17 45rr 19 2na 23 311/3960 

-o~--Ll_l_ _k_ - _].9~ 
25 (.\,J,Z)- (s, s• Jo),l,- 60' I,- l,- 3360 

( 
b

2 + c) nb
4
ck 27 (x,J',z) = o,o,-

2
-, I,= -2~ 

Section 13.1 

grad/= 2xi + 2yj,Ju =fix + fiy 3 gradf = 2xy3i + 3x2/iJu = ~xy 3 - .!fx2y 2 

5 gradf = -sin x sin yi + cos x cos yj,Ju = (1/jS)(- sin x sin y + 2 cos x cosy) 
x . y . x-y 

7 gradf = I + a-=JJu = F:3 Jx2 + y2 -.,; xz + )'2 -.,; 2x2 + 2y2 

9 gradf = yzi + xzj + xyk,fu = !(yz + 2xz- Jxy) 
11 gradf = -x- 2i- 2y- 2j- 3z- 2k,j~ = (1/)2)( -x- 2 + 3z- 2

) 

13 gradf = xi + yj + zk Ju = x cos rx + y cos f3 + z cos I' 15 7J 10/20 J x2 + yz + 22 ,jxz + yz + 2 2 

17 9a!Jc?+-P 19 - 1!)3 21 (ll.j2)(i + j) 23 ~(3i + 6j + 2k) 
a2 z a2 z a2 z 

25 Uulv =-a z!IIVI +-a a (ulv2 + u2vd +-a 2li2V2 
X X y J' 

Section 13.2 

1 2e3 

11 -4rr 
3 !e- i 

13 # 

Section 13.3 

5 sin 1 - cos 1 + 1 
15 ± 17 !In(y) 

7 Ia +tIn 4 
19 1243/3 

9 - 2rr, 2rr 

no potential function 3 no potential function 5 no potential function 
7 y sin x + C 9 - 2x + 6y + C 11 no potential function 

13 ix2 + Sxy - / + C 15 cosh x cosh y + C 23 ix 2 + 4xy - y2 = C 
25 ~x312 + xJY = C 27 h 3 + y arctan x = C 29 cos x sin y = C 
31 (x 2/2) + (//2) + (2/3)(x + y) 312 = C 33 P(x, y) = 2 sin x cos x sin y 

Section 13.4 

3 ±{-e7 +e- 1 +e-e- 7
) 5 -i 

11 -rr/2 13 (a) -x- y (b) -1 (c) y- x 
15 (a) 2bx - 2ay (b) (2b - a)/3 (c) 0 (d) 0 
19 na2 + rr/2 

Section 13.5 

25Jll/4 
9 a2(n - 2) 

Section 13.6 

3 (rrj6)(5j5 - 1) 5 na 2 /2 

11 A..j!+~-1--b2 13 8a2 

7 Jf-ln2 9 -17/12 
(d) 0 

17 (a) -2 (b) -2rr (c) 0 (d) 0 

7 (n/6)[(1 + 4a 2
)
312 

- 1] 

15 16 17 -rr 19 -2e- 1 

1 curl F = 0, div F = 2x + 2y + 2z 3 curl F = - i + j - k, div F = 3 
5 curl F = (ze'+y- yex+')i + (xer+=- zex+}')j + (yex+=- xeY+')k, 

divF = er+z +ex+=+ e-'+J 9 0 11 A(p(c- b)+ q(a- c)+ (a- b)) 
13 abc(a + b + c) 15 3 17 n/3 19 rr/2 
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Extra Problems for Chapter 13 

1 -sin x cos a + cosy sin a 3 grad[= ye"Yi + xexYj,fu = e"Y(y cos a + x sin a) 

7 In (
6f) 

15 ~ 17 fi- fi 
60 2 6 

5 -
1
-(-2i- 3j + k) 

Ji4 
9 0 11 xlnx + xylny- x 

19 2n: 

21 curl F = (x2z - 3xy2z2)i + (xy - 2xyz)j + (y2z3 - xz)k, div F = yz + 2xyz3 + x 2y 

Section 14.1 

1 y = -1/2 cos (t2
) + c 3 y = In (t + C) 

1 + Ce2
' 

5 y = 1 - Cez' , y = 1, y = - 1 

7 Y = - 0.
5

t 2 + C, Y = 0 9 y = tan (e' + C) 11 y = C sect, y = 0 

13 y = (~ + 9 r2 

15 y = -.j2(t In t- t) + 6 17 y = 2 

Section 14.2 

1 y = C •e-5' 3 y = C •earctanr 5 y = 4 ·e-r 
y = 100 •e-r·In5 

7 y=e•ecosr 9 y=O 
11 y = 4t2 13 y = e1

_ 1 -
2 15 17 J' = 1,000,000 • e' ·In 1.5 

Section 14.3 

3 y = 5 + ce-(1/l)r2 5 y = -(t2 + 2t + 2). ce- 4 ' 1 y = 2 + ce- 4
' 

1 
7 y =- t- 1 + Ct2 

3 
9 y = sint + Ccost 11 y = e-cosr(f~se<OSSds +c) 

13 Y = e-1~ cos(e•) dr[J:el~cos(e•) dr ds + C J 
15 -[400,000t + 15,840,000] + 15,940,000e0

·
025

' 

17 15,000e - 25,000 dollars, or $15,774.23 

Section 14.4 

1 

3 

t 

Y(t) 

Y(t) 

o.o I 0.1 I o.2 

1.0 1.0 11.01 

1.0 1.054 1.095 

! 0.3 I 0.4 0.5 

1.030 11.059 1.097 

1.122 1.137 1.140 

0.6 0.7 0.8 0.9 

1.142 1.195 1.253 1.317 

1.133 1.117 1.093 1.061 

5 Apply the lemma with M = 4. 7 Apply the lemma with M = nj2. 
9 y(t) = 0 for 0:::; t:::; b, y(t) = [(2/3)(t- b)] 312 forb < t < oo. 

Section 14.5 

1 10-i2 3 ilO 5 0.1-i(O.?) 7 4 9 +i5 11 -1 ± i2 
19 -i2/3 13 5cis(n/2) 15 3flcis(-3n:/4) 17 2cis(-n/6) 

21 2cis(-~12) 23 -4 + i4 25 ±2114 cis(n/8) 
or ±vf2(1 - i) 29 ie- 3 31 efl/2- iefl/2 

35 (3 + i2)ecZ-i7J+(3 +ill< 37 Ce(-l+iJJr 39 Ce(3-i5l' 

41 ei+(l-il<, or e2' cis(1- t) 43 4e(l-il<, or 4e2' cis( -t) 

27 ± 2 cis(- n/4), 
33 (5 - i3)ecs-i3l' 

1.0 

1.386 

1.023 
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Section 14.6 

1 Ae2
' + Be- 3

' 3 Ae 5
' + Bte5

' 5 A cos (4t) + B sin (4t) 
7 e'[A cost+ B sin t] 9 -ie- 5

' + ~e-• 11 5e- 6
' + 20te- 6

' 

13 -2cos(j5t) + JSsin(jSt) 15 e- 6'[4cost + 24sint] 
17 2 cos (2t - n/6), amplitude = 2, frequency = 2, phase shift = n/6 
19 e- 2'fi cos (3t- n/4), amplitude= fie- 2

', frequency= 3, phase shift= n/4 
21 e- 2'[2 cos (51)+ sin (5t)] 

Section 14.7 

1 (24/676) cos 1- (10/676) sin t 3 (1/2)t2 + (3/16)1- (3/8) 5 0.5e 2
' 

7 -0.21e- 3' 9 0.125t sin (41) 11 3t2e- 6
' 13 Ae- 3

' + Be- 2
' + 0.8 

15 Acos(jSt) + Bsin(y!5t) + 2sin(2t) 17 4e' + e-•- 3t- 5 
19 e- 6'[2 cost + 20 sin t] + 2e- 4

' 

21 e- 2'[A cos (51) + B sin (51)] + 25 cos (2t) + 8 sin (21), steady state = 25 cos (2t) + 8 sin(2t) 
25 5 

Extra Problems for Chapter 14 

1 y=-1/(sint+C) 3 y=-ln(-lnlll+e- 2
) 5 y=Ce- 5

'' 7 y=e- 6
' 

9 )' = (2/3)t - 2/9 + ce- 31 11 y = 3,500,000e0
·
02

' - 2,500,000 
15 y = Ae4

' +Be' 17 y = e2'[A cos (2t) + B sin (2t)] 19 y = -(lj6)e- 5
' + (lj6)e' 

21 y = e-(312l'[10 cos (t/2) + 30 sin (t/2)] 23 y = Ae4
' +Be' + 13/16 + t/4 

25 y = -2cost- 3sint- (lj6)e- 5
' + (13/6)e' 
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Absolute convergence, 521 trapezoidal, 226 surface, 825 
Absolute value, 12 within E, 284 surface of revolution, 328 

of a complex number, 876 Arc, 323, 365 under a curve, 188 
Absolute value function, 12 length, 324, 366, 420 Argand diagram, 876 
Acceleration, 94 arccos, 384 Argument, complex number, 

vector, 565, 623 Arccosecant, 384 876 
Addition formulas for sine derivative, 387 Associative Law, 905 

and cosine, 372 Arccosine, 384 inner product, 597 
Addition Property, 190, 303 derivative, 387 scalar multiples, 570 

variables integral, 392 vector product, failure, 602 
two, 712, 720 arccot, 384 vector sum, 568 
three, 760 Arccotangent, 384 Asymptote 

Adiabatic process, 490 derivative, 387 of a hyperbola, 270 
Almqst parallel vectors, 632 arccsc, 384 vertical, 251 
Alternating series, 517 Archimedes, 902 Average slope, 22, 168 

harmonic, 520, 546 arcsec, 384 Average speed, 339 
Alternating Series Test, 518 Arcsecant, 384 Average value, 337 
Amplitude, 886 derivative, 387 Average velocity, 169, 339 
Angle, 77, 365 integral, 473 Axioms 

between vectors, 573 arcsin, 384 for hyperreal numbers, 906 
three dimensions, 588 Arcsine, 384 for real numbers, 905 

Angular measure, 367 derivative, 387 Axis 
Anticommutative Law for integral, 392 coordinates 

vector products, 604 power series, 560 plane, 3 
Antiderivative, 192 arctan, 384 space, 585 
Approximation Arctangent, 384 ellipse, 264 

by alternating series, 518 derivative, 387 hyperbola, 268 
arctan x, 541 integral, 472 parabola, 257 
by derivatives, 286 power series, 536 
e, 442, 551 Area Barrow, Isaac, 902 
In x, 541 below a curve, 188 Basis vectors 
by Newton's method, 290 between two curves, 220, plane, 570 
pi, 542 304 space, 587 
by power series, 541 double integral, 722 Bell-shaped curve, 537 
by Riemann sums, 178 geometric figures, 115 Berkeley, Bishop, 903 
Simpson's, 230 by Green's Theorem, 818 Binomial series, 558 
sin x, 552 infinite, 353 Binomial Theorem, 559 
by Taylor's Formula, 547 polar, 421 Bound variable, 119, 178 

A 57 
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Boundary 
oriented surface, 834 
plane region, 689 
solid region, 757, 838 

Bounded open region, 694 
Box 

cylindrical, 770 
rectangular, 758 
spherical, 776 

Cantor, Georg, 903 
Capital Accumulation, 452 
Cardioid, 751 
Catenary, 449 
Cauchy, A. L., 903 
Cauchy Convergence Test 

(Criterion), 500, 504 
Cauchy Divergence Test, 505 
Cauchy equivalence, 911 
Cauchy sequence, 911 
Center 

circle, 5 
ellipse, 264 
hyperbola, 268 
sphere, 641 

Center of gravity, 344 
Center of mass 

double integral, 745 
triple integral, 765 
two dimensions, 346 
wire, 344 

Centroid, 346 
polar region, 430 

Chain Rule 
for continuous functions, 

130 
variables 

one, 86 
two, 672 

Change of variables, 210, 484 
Changing base of logarithms, 

439 
Characteristic polynomial, 882 
Circle, 5 

area, 115 
polar equation, 410 

Circular cylinder, 644 
Circular helix, 616 
Circulation 

dimensions 
two, 820 
three, 836 

Circumference, 115, 324 
Circumscribed cylinder, 721 
Circumscribed rectangle, 189 
Circumscribed rectangular 

box, 759 
cis, 876 
Closed interval, 2 

hyperreal, 908 

Closed rectangle, 713 
Closed region, 689 

hyper real, 700 
space, 757 

Closure Laws, 905 
Commodity vector, 565 
Common logarithm, 436 
Commutative Law, 905 

inner product, 597 
vector product, failure, 602 
vector sum, 568 

Comparison test, 512, 524 
Completeness axiom, 905 
Completing the square, 274, 

479 
Complex number, 874 

conjugate, 875 
exponent, 879 
plane, 874 

Complex valued differential 
equation, 879 

Complex valued function, 879 
Component 

directed line segment, 564 
vector, 565 

valued function, 615 
Composition of functions, 86 

continuity, 130, 653 
derivative, 86, 672 

Concave downward, 152 
Concave upward, 152 
Conditional convergence, 521 
Cone 

area, 327 
elliptic, 642 
volume, 115 

Conic section, 264 
Conjugate axis, 268 
Conjugate complex, 875 
Conservative field, 807 
Constant, II 
Constant function, II 

derivative of, 61 
integral of, 184 

Constant of integration, 199 
Constant on an interval, 151 
Constant Rule 

derivative, 61 
double integral, 732 
integral, 200 
series, 508 

Continuity, 125 
of compositions, 130, 653 
of differentiable functions, 

127 
E, o condition, 288 
of an integral, 192 
on an interval, 132 
law of, 902 
on a set, 653 

two variables, 651 
vector, 635 

Continuously compounded 
interest, 443, 497 

Contour, 645 
Contour map, 644 
Convergence 

improper integral, 352 
increasing sequence, 511 
interval of, 529 
positive term series, 511 
radius of, 530 
sequence, 493 
series, 502 
summary of tests, 525 

Coordinates 
cylindrical, 769 
polar, 407 
rectangular 

plane, 3 
space, 585, 639 

spherical, 775 
cos, 78, 368 
Cosecant function, 370 

derivative, 376 
cosh, 449 

power series, 536 
Cosine, 78, 368 

derivative, 79, 374 
integral, 377 
power series, 558 

Cosines, Law of, 573 
cot, 370 
Cotangent function, 370 

derivative, 376 
coth, 450 
Critical damping, 887 
Critical point, 136 

interior, 137 
two variables, 689 

Critical Point Theorem, 136 
two variables, 689 

Cross product, 600 
esc, 370 
csch, 450 
Curl 

dimensions 
two, 819 
three, 832 

Curve length, 320 
parametric, 321 
polar coordinates, 425 
in space, 622 

Curve sketching 
using derivatives, 156 
ellipse, 266 
hyperbola, 269 
using limits, 251 
parabola, 261 
polar, 415 
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rotation of axes, 281 on an interval, 132 infinite, 719 
translation of axes, 275 two variables, 710 Dummy variable, 119, 178 

Cycloid, 616 Differential, 55 
Cylinder exact, 806 e, 83, 443 

area, 327 form, 806 irrationality of, 563 
circular, 644 second, 94 as a limit, 443 
quadric, 641 total, 662 Element 
volume, 115, 309 vector, 633 of area, 736 

Cylinder Property, 712, 721 Differential equation of a set, 2 
Cylindrical box, 770 complex valued, 879 of volume 
Cylindrical coordinates, exact, 810 cylindrical, 772 

769 first order, 461, 846 rectangular, 764 
Cylindrical Integration homogeneous, 852, 882 spherical, 777 

Formula, 771 linear, 857 Elementary function, 481 
Cylindrical region, 770 second order, 461, 881 Ellipse, 264 
Cylindrical shell method, 313 separable variables, 848 sketching method, 266 

Differentiation, 45 Ellipsoid, 642 
Damped oscillation, 887 logarithmic, 470 Elliptic cone, 642 
Damping, critical, 887 rules for, 68 Elliptic cylinder, 641 
Decreasing on an interval, 152 Direct Test, 137 Elliptic paraboloid, 642 
Definite integral, 183 Directed curve, 795 Empty set, 3 
Degenerate conic section, 263, Directed line segment, 564 Endpoint, 2 

273 Direction angle, 574, 588 Epidemic, 463 
Degree, angular unit, 367 Direction cosine, 574, 588 t, o condition 
Deleted neighborhood, 243 Direction, real, 630 continuity, 288 
Demand function, 114 Direction vector derivative, 295 
De Moivre's Formula, 878 of a line, 578, 590 limits, 283, 286 
Density of a plane, 606 t, N condition 

dimensions Directional derivative, 786 for infinite limits, 499 
one, 341 second, 793 for sequences, 499 
two, 342 three dimensions, 791 Equality of mixed partials, 
three, 764 Directrix, parabola, 257 703 

of a wire, 364 Disc method, 309 three variables, 705 
Dependent variable, 8, 45 Discontinuity, 125 Equation, 906 
Derivative, 45 Discriminant, 875 differential, 461, 846 

directional, 786 test, 273 linear, 20 
exponential function, 83, two variables, 273 parametric, 90 

443 Displacement vector, 565 point-slope, 16 
higher, 94 Distance second degree, 272 
higher partial, 703 plane, 4 two-point, 18 
hyperbolic functions, 449 between reals, 13, 282 Error estimate, 228, 296 
inverse trig functions, 387 space, 641 for derivatives, 296 
In, 84, 455 Distributive Law, 905 for Simpson's Rule, 231 
mixed partial, 703 scalar multiples, 570 and Taylor's Formula, 550 
partial, 656 products for trapezoidal sums, 228 
polar coordinates, 414 inner, 597 Escape velocity, 491 
power rule, 63, 76 vector, 602 Euler approximation, 865 
power series, 534 Divergence Euler's Formula, 879 
rational function, 68 dimensions Even function, 218 
rules for, 68 two, 819 Exact differential, 806 
sec and esc, 376 three, 833 equation, 810 
second, 94 Theorem, 839 Existence Theorem, differen-
second partial, 703 Divergent tial equations, 867 
sin and cos, 374 improper integral, 352 exp, 443 
tan and cot, 376 sequence, 494 Explosion, 851, 871 
vector, 620 series, 502 Exponent 

Determinant, 600 Domain, 10 complex, 879 
Difference, vector, 569 Dot product, 593 inequalities, 432 
Differentiable function, 45 Double integral, 711,719 real, 432 

continuity of, 127 Double Riemann sum, 715 rules, 432 
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Exponential function, 83, 443 
with base, 82, 432 
continuity, 433 
derivative, 83, 443 
integral, 444 
power series, 536 

Exponential spiral, 448 
Expression, real, 28, 906 
Extension Axiom, 906 
Extension Principle, 27 
Extreme Value Theorem, 164 

two dimensions, 689 

Factor Theorem, 477 
Factorial, n!, 493 
Fermat, P., 902 
Finite 

hyper real number, 30 
partition, 160 
Riemann sum, 178 
set, 3 
vector, 627 

First Derivative Test, 174 
First order differential equa-

tion, 461 
Fluid flow, 820 
Flux, 821 
Focus 

ellipse, 264 
hyperbola, 268 
parabola, 257 

Force vector, 565 
Forcing term, 892 
Formula, 45, 906 
Frequency, 886 
Frustum, area, 328 
Fubini's Theorem, 726 
Function, 45 

hyperreal, 27 
implicit, 97 
inverse, 70, 381 
linear, 17 
real, 6 
two variables, 14 
vector-valued, 615 

Fundamental Theorem of 
Calculus, 193 

Galileo, G., 902 
Gauss' Theorem, 839 
General solution, 461, 846 
Generalized Mean Value 

Theorem, 552 
Geometric series, 503 

formula, 446 
Godel, Kurt, 904 
grad f, 787 
Gradient, 787 
Graph, 7 

dimensions 

one, 7 
two, 640 

of an equation, 5 
infinite sequence, 492 
polar coordinates, 408 
space, 639 

Gravity 
dimensions 

one, 491 
two, 809 
three, 843, 844 

Greatest integer function, 130 
Green's Theorem, 815 

vector form, 820 
Growth rate, 51 

populations, 51, 462, 491 
sequences, 497 

Half-life, 463 
Half-open interval, 2 
Harmonic series, 505 

alternating, 546 
Helix, circular, 616 
Hewitt, E., 904 
Higher derivative, 94 

partial, 703 
Higher differential, 94 
Homogeneous differential 

equation, 852 
second order, 8 82 
solution, 852, 886 

Homogeneous function, 710 
Horizontal axis, 3 
Horizontal ellipse, 266 
Horizontal parabola, 261 
Hyperbola, 268 

graphing method, 270 
Hyperbolic cosine, 449 

derivative, 449 
integral, 449 

Hyperbolic cylinder, 641 
Hyperbolic function, 449 
Hyperbolic identities, 449 
Hyperbolic paraboloid, 643 
Hyperbolic sine, 449 

derivative, 449 
integral, 449 

Hyperboloid, 643 
Hyperinteger, 160 
Hyperrational number, 431 
Hyperreal function, 27 
Hyper real interval, 161, 908 
Hyperreal number, 27 
Hyperreal region, 697 
Hyperreal vector, 627 

i, 874 
Identity function, 12 
Identity Law, 905 

vector sum, 568 

Imaginary number, 874 
Imaginary part, 874 
Implicit differentiation, 97 
Implicit function, 97 

derivative of, 97, 680 
two variables, 680 

Implicit Function Theorem, 
680 

Improper integral, 352 
Incompressible field, 822 
Increasing function, 151 
Increasing sequence, 511 
Increment, 45 

two variables, 662 
vector, 633 

Increment Theorem, 54, 299 
variables 

two, 664 
three, 670 

Indefinite integral, 199 
Ind_ependent variable, 8, 45 
Indeterminate form, 31 
Induction, Principle of, 64 
Inequalities for exponents, 432 
Inequality, 906 
Inequality Rule 

double integral, 733 
series, 508 

Inertia, moment of 
dimensions 

two, 748 
three, 767 

Infinite hyperreal number, 24 
examples, 912 

Infinite partial sum, 502 
Infinite partition, 161 
Infinite Riemann sum, 181 

double, 719 
Infinite sequence, 492 
Infinite series, 502 
Infinite Sum Theorem, 303 

double integral, 736 
triple integral, 764 

Infinite telescope, 24 
Infinite vector, 627 
Infinitely close, 24, 35 

compared to, 302 
two dimensions, 651 
vectors, 627 

Infinitesimal, 24, 28 
examples, 913 
microscope, 24 
vector, 627 

Inflection, point of, 156 
Initial condition, 462, 847, 881 
Initial point 

directed line segment, 564 
smooth curve, 795 

Initial value problem 
first order, 847 
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second order, 881 double, 725 Local maximum, 156 
Inner product, 594 triple, 761 Local minimum, 156 

derivative, 625 Locus 
rules, 597 Judicious guessing, 893 of an equation, 7 

Inscribed cylinder, 721 Justification of a definition, polar coordinates, 408 
Inscribed rectangle, 189 304 space, 639 
Integers, 3 

Kepler, J., 902 
Logarithm 

Integral changing base, 439 
arcsec and arccsc, 473 

Kinetic energy, 784 common, 436 
arcsin and arccos, 392 Kline, Morris, 907 natural, 83, 454 
arctan and arccot, 472 Law of continuity, 902 rules, 437 
definite, 183 Law of Cosines, 573 Logarithmic differentiation, 
double, 711, 719 Least squares, method of, 702 470 
exponential function, 443 Leibniz, Gottfried Wilhelm, Logarithmic function, 436 
improper, 352 902 Logistic function, 464 
indefinite, 199 Length Lower endpoint, 2 
iterated, 724 arc, 366 
line, 795 curve, 320 MacLaurin series, 555 
In, 456 parametric, 321 MacLaurin's Formula, 550 
partial, 798 space, 622 Magnitude, 567 
power series, 534 polar coordinates, 425 Major axis, ellipse, 264 
rational functions, 477 real, 630 Malcev, A., 904 
sin and cos, 377 vector, 566 Map, 209 
sinh and cosh, 449 Level curve, 645 Marginal price vector, 624 
surface, 829 Level surface, 791 Marginal revenue, 114 
tan, 471 !'Hospital's Rule Marginal values, 51 
triple, 760 for 0/0, 243 Mass 

Integral Test, 514 for oo/oo, 246 dimensions 
Integration Limit, 117 one, 341 

change of variables, 210, and curve sketching, 251 two, 342 
484 E, o condition, 283, 286 double integral, 743 

coordinates finite, 117 triple integral, 764 
cylindrical, 771 from the left, 123 Mass-spring system, 888 
polar, 751 from the right, 123 Maximum, 135 
spherical, 777 infinite, 237 closed region, 691 

methods of, 481 one-sided, 123 local, 156 
by parts, 391, 394 of a Riemann sum, 188, 316 open region, 698 
substitution, 210, 484 rules, 121 two variables, 688 

trigonometric, 403, 485 sequence, 493 value, 135 
Interest, 442, 451 and standard parts, 120 Mean Value Theorem, 168 
Interior point, 137, 689 two variables, 656 generalized, 552 

critical, 137 Limit Comparison Test, 513, for Integrals, 338 
Intermediate Value Theorem, 524 Member of a set, 2 

162 Line, 16 Method of least squares, 702 
Intermediate variable, 671 equation of, 16, 18, 20 Methods of integration, 481 
Interval, 2 polar equation, 409 Midpoint, 582, 592 

of convergence, 529 space, 589 Minimum, 135 
hyperreal, 161, 908 vector equation, plane, 578 local, 156 

Inverse function, 70, 381 vector equation, space, 589 two variables, 688 
hyperbolic, 461 vertical, 16 value, 135 
trigonometric, 384 Line integral, 795 Minor axis, ellipse, 264 

Inverse Function Rule, 72 Linear differential equation, Mixed partial derivative, 703 
Inverse Function Theorem, 857 Model theory, 904 

386 second order, 892 Moment 
Inverse Laws, 905 solution, 858, 862, 897 dimensions 
Inverse relation, 3 81 Linear equation, 20 one, 343 
Inverse square law, 491 Linear function, 17, 60 two, 345 
Irrotational field, 822 In, 83, 454 double integral, 744 
Iterated integral, 724 integral, 456 triple integral, 765 
Iterated Integral Theorem power series, 536 wire, 344 
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Moment of inertia (second 
moment), 

dimensions 
two, 748 
three, 767 

Natural extension, 906 
Natural logarithm, 81, 454 

derivative, 84, 455 
integral, 456 

Negative infinite, 24, 30 
Negative infinitesimal, 28 
Neighborhood, 243 

deleted, 243 
Newton, Sir Isaac, 902 
Newton's First Law, 567 
Newton's Law of Cooling, 490 
Newton's method, 290 
Newton's Second Law, 570 
Nonstandard analysis, 904 
Nonuniqueness, differential 

equation, 872 
Norm of a vector, 566 
Normal curve, 537 
Normal vector 

curve, 606 
surface, 828 

nth derivative, 94 
nth differential, 94 

Odd function, 218 
One-to-one function, 382 
Open interval, 2 
Open rectangle, 794 
Open rectangular solid, 803 
Open region, 694 
Ordered pair, 3 
Oriented surface, 828 
Origin, 3 

in polar coordinates, 412 
Orthogonal vectors, 597 
Oscillation 

damped, 887 
simple, 886 

Overdamping, 888 

pseries, 515 
Parabola, 257 

graphing method, 261 
Parabolic cylinder, 641 
Paraboloid 

elliptic, 642 
hyperbolic, 643 

Parallel line and plane, 609 
Parallel planes, 609 
Parallel, test for, 597 
Parallel vectors, 597 
Parallelogram, 583 

area, 604 
Parametric curve, 90 

Parametric equations, 90 
of a line, 579, 590 
polar coordinates, 411 
and vector equations, 579, 

615 
Partial derivative, 656 

higher, 703 
implicit function, 686 
mixed, 703 
second, 703 
three variables, 659 

Partial fraction, 477 
Partial integral, 798 

derivative of, 811 
Partial second derivative, 703 
Partial sum, 502 
Particular solution, 846 
Partition 

finite, 160 
infinite, 161 
of a rectangle, 715 
of a rectangular box, 759 

Partition point, 161, 176 
Path Independence Theorem, 

806 
Perimeter, 115 
Period, 886 
Periodic function, 368 
Perpendicular line and plane, 

609 
Perpendicular planes, 609 
Perpendicular, test for, 597 
Perpendicular vectors, 597 
Phase shift, 886 
Pi, 1r, 366 
Piecewise continuous, 357 
Piecewise smooth, 800 
Plane, 4, 604 
Point, 3 
Point of inflection, 156 
Point-slope equation, 16 
Polar coordinates, 407 

area, 421 
Polar equation 

circle, 410 
line, 409 

Polar form, complex 
numbers, 876 

Polar Integration Formula, 
751 

Polar rectangle, 7 50 
Polar region, 750 
Polynomial, 60 

function, 60 
Population growth, 434, 442, 

463 
Position, 203 
Position vector, 565 

of a curve, 615 
of a line, 578, 590 

of a plane, 606 
of a point, 576, 589 

Positive infinite, 24, 30 
Positive infinitesimal, 28 
Positive term series, 511 
Potential function, 805 

existence, 806 
method for finding, 807 
three variables, 814 

Potential energy, 807 
Power Rule 

derivatives, 63 
general form, 89 
integrals, 200, 471 
negative exponents, 66 
rational exponents, 76 

Power series, 528 
multiplication of, 563 
operations on, 535 
steps for finding, 557 
table, 556 

Present value, 454 
Pressure, 364 
Price vector, 565 
Principle of Induction, 64 
Principle of Superposition, 

863, 896 
Prism, volume, 115 
Product 

function, 648 
inner, 594 
vector, 600 

Product Law, order axiom, 
905 

Product Rule 
derivative, 62 
vector derivative, 625 

Profit, 137 
Pyramid, volume, 306 
Pythagoras, Theorem of, 5 

Quadrant, 4 
Quadratic formula, 103, 477 

complex, 875 
Quadric cylinder, 641 
Quadric surface, 640 
Quotient function, 652 
Quotient Rule, derivatives, 66 

R, I 
R*, 24 
Radian, 78, 367 
Radioactive decay, 463 
Radius 

of circle, 5 
of convergence, 530 
of sphere, 641 

Range, 10 
Rate of growth, 51, 434, 

442, 463 
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Ratio Test, 524 Root, 2 Set, 2 
Rational function, 60, 474 Root Axiom, 905 Side condition, 692 

differentiation, 68 Rotation of axes, 280 Simple closed curve, 801 
integration, 477 equations, 277 Simple oscillation, 886 

Rational number, 3 Simpson's approximation, 230 
Rational term, 60 Saddle point, 690 Simpson's Rule, 231 
Real direction, 630 Scalar, 566 sin, 77, 368 
Real expression, 906 Scalar Associative Law, 570 Sine, 77, 368 
Real length, 630 Scalar equation derivative, 79, 374 
Real line, 1 of a line, 577 integral, 377 
Real number, 1 of a plane, 604 power series, 558 
Real part, 874 Scalar multiple, 570 sinh, 449 
Real statement, 907 derivative, 627 derivative, 449 
Real term, 906 Scalar product, 593 integral, 449 
Real vector, 630 Scalar triple product, 604 power series, 537 
Rearrangement, series, 523 Schwartz' Inequality Skolem, Thoralf, 903 
Reciprocal function, 8 integrals, 236 Slide rule, 438 
Rectangle vectors, 637 Slope 

area, 115 sec, 370 average, 22, 168 
closed, 713 Secant function, 370 curve, 25, 43 
open, 794 derivative, 376 directional, 786 
polar, 750 integral, 471 function, 43 

Rectangle Property, 188 Secant line, 295 implicit function, 680 
Rectangular box, 758 sech, 450 as a limit, 119 
Rectangular coordinates Second degree equation line, 16 

plane, 3 variables polar coordinates, 413 
space, 585, 639 two, 272 Slope-intercept equation, 17 

Rectangular solid, 115, 758 three, 640 Smooth curve, 319, 795 
Reduction formula Second derivative, 94 piecewise, 800 

secant and cosecant, 399 partial, 703 space, 803 
sine and cosine, 398 Second Derivative Test, 138 Smooth function, 662, 824 
tangent and cotangent, 397 two variables, 707 continuity of, 666 

Region Second differential, 94 Smooth surface, 662, 824 
below a curve, 175 Second order differential Snail, 448 
between two curves, 218, equation, 461 Solenoidal field, 822 

717 Second partial derivative, 703 Solid region, 757 
bounded, 694 Sector, 365 Solution, differential 
closed, 689 area, 115, 324, 366, 420 equation, 461, 846 
cylindrical, 770 Separable variables, 465, 848 Speed, 623 
hyperreal, 697 solution method, 848 Sphere, 641 
open, 694 Sequence surface area, 115, 333 
polar, 750 graph of, 492 volume, 115, 317 
solid, 757 increasing, 511 Spherical box, 776 
spherical, 775 infinite, 492 Spherical coordinates, 775 
unbounded, 694 of partial sums, 502 Spherical Integration 
under a curve, 175 Series, 502 Formula, 777 

Related rates, 112 absolutely convergent, 521 Spherical region, 775 
Relativity, theory of, 239 alternating, 517 Spiral 
Resonance, 897 conditionally convergent, of Archimedes, 411, 474 
Resonant frequency, 900 521 exponential, 448 
Revenue, 114 convergent, 502 vertical, 616 
Riemann sum, 176, 178 divergent, 502 Spring constant, 888 

double, 715 of functions, 528 Square function, 8 
finite, 178 infinite, 502 Square root, 2 
infinite, 181 positive term, 511 st, 36 
infinite double, 719 sum, 502 Standard part, 36 
triple 759 summary of tests, 525 function, 910 

Right-handed coordinates, 585 tail, 508 principle, 36, 908 
Robinson, Abraham, 904 Taylor, 554 rules, 37 
Rolle's Theorem, 165 telescoping, 506 vector, 629 
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Statement, real, 907 in space, 621 dependent, 8, 45 
Steady state part of the and vector derivatives, 620 dummy, 119, 178 

solution, 899 Tangent plane, 666 independent, 8, 45 
Steepest ascent, 788 of an implicit function, 686 intermediate, 671 
Steepest descent, 788 Tangent vector, 621 point, 578 
Stokes' Theorem, 834 tanh, 450 vector, 578, 589 
Straight line, 16 Tarski, Alfred, 904 Variation of constants, 857 

in space, 589 Taylor's Formula, 550 Vector, 565 
Strictly between, 2 Taylor polynomial, 549 continuous, 635 
Strictly within, 282 Taylor remainder, 549 derivative, 620 
Subinterval, 160 Taylor series, 554 difference, 569 
Subrectangle, 715 table of, 556 differential, 633 
Substitution, integration by, Telescoping series, 506 dimensions 

210, 484 Term, 9 n, 586 
trigonometric, 402 real, 906 two, 565 

Sum Terminal point three, 586 
function, 648 directed line segment, 564 direction, 578, 606 
partial, 502 smooth curve, 795 equation, 615 
Riemann, 178 Third partial derivative, 704 of a line, 578, 589 
series, 502 Topographic map, 644 of a plane, 606 
trapezoidal, 226 Torus, 336 field, 805 
vector, 567 Total differential, 662 finite, 627 

Sum Law, order axiom, 905 three variables, 669 function, 615 
Sum Rule Transfer Axiom, 908 h yperreal, 627 

derivatives, 61 Transfer Principle, 28 increment, 633 
double integral, 732 Transient part of solution, 899 infinite, 627 
integral, 200 Transitive Law, 905 infinitesimal, 627 
series, 508 Translation of axes, 275 negative, 569 
use in integration, 483 Transverse axis, 268 normal, 606, 828 
vector derivative, 625 Trapezoidal approximation, position, 565 

Surface 226 product, 600 
area, 328, 825 Trapezoidal Rule, 228 derivative, 627 
area, polar, 428 Trapezoidal sum, 226 real, 630 
as a boundary, 834 Triangle, area, 115 rules, 625 
contour map of, 644 Triangle inequality, 568 sum, 567 
implicit, 686 Trichotomy Law, 905 valued function, 615 
integral, 829 Trigonometric functions, 365 variable, 578, 589 
level, 791 Trigonometric identities, 372 Velocity, 23 
oriented, 828 Trigonometric substitution, average, 169 
quadric, 640 402 and integration, 203 
of revolution, 327 Triple integral, 760 vector, 565, 622 
sketching method, 645 Triple Riemann sum, 759 Vertex, parabola, 257 
smooth, 662, 824 Two-point equation, 18 Vertical axis, 3 
tangent plane of, 666 Vertical ellipse, 266 
topographic map of, 644 U1traproduct, 903 Vertical line, 16 

Symmetric region, 784 equivalence, 912 Vertical parabola, 259 
Symmetry and center of mass, Unbounded open region, 694 Volume, 305 

347 Undefined term, 6 below a surface, 723 
System of formulas, 45 Undetermined coefficients, between two surfaces, 738 

893 cylindrical shell method, 
Tail rule, 508 Uniqueness Theorem 313 
Tail, series, 508 differential equations, 870 disc method, 309 
tan 79, 370 double integrals, 722 as a double integral, 723 
Tangent of an angle, 79 Unit circle, 365 element of, 764 
Tangent function, 370 Unit hyperbola, 450 function, 711, 722 

derivative, 376 Unit vector, 570, 588 geometric figures, 115 
integral, 471 Upper endpoint, 2 as the integral of area, 305 

Tangent line, 53 solid of revolution, 309, 313 
of an implicit function, 686 Variable, 8, 45 as a triple integral, 763, 778 
in polar coordinates, 412 bound, 119, 178 under a surface, 723 



Water pressure, 364 
Wave equation, 708 
Weierstrass, Karl, 903 
Work 

against gravity, 348 
as an inner product, 595 
as a line integral, 796 
as a single integral, 349 

x-axis, 3 
x-component, 564, 586 
x-coordinate, 3 
(x,y) plane, 3, 639 
(x,z) plane, 639 
(x,y,z) space, 585, 639 

y-axis, 3 

INDEX 

y-component, 564, 586 
y-coordinate, 3 
(y,z) plane, 639 

z-axis, 585, 639 
z-component, 586 
Zero of a function, 161 
Zero vector, 567 
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RUlES OF INTEGRATION 

I du = u + C 

I du + dv = I du + I dv (Sum Rule) 

TABlE OF INTEGrlAlS 

(The constant of integration is left out.) 

I x-+' 
x' dx = -- r # -I 

r +I' 

I ex dx =ex 

I sinx dx = -cosx 

I tanx dx = In lsecxl 

I secx dx = lnlsecx + tanxl 

I sec2 x dx = tanx 

I tanx secx dx = secx 

J sin2 x dx = -!x --! sinx cosx 

I I ll- I I sin"xdx= --sin"- 1 xcosx+-- sin"- 2 xdx 
ll ll 

ftan"x dx = -
1
- tan"- 1 x- Itan"- 2 x dx 

n - I 

I
sec"xdx = -

1
-sec"- 1 xsinx + n-

2
Isec"- 2 xdx 

n - I n - I 

I arcsinx dx = x arcsinx + F- x2 

I arctanx dx = x arctanx --!In(! + x2
) 

I arcsecx dx = x arcsecx - ln(x + JxZ=!J, x :2: I 

I ~=arcsinx 
I ~ = arcsecx 

lx1Jx 2
- I 

I k du = k I du (Constant Rule) 

I u dv = uv - I v du (Integration by Parts) 

I [ 1 dx = lnlxl 

I lnlxl dx = x lnlxl - x 

I cosx dx = sinx 

I cotxdx = lnlsinxl 

f cscxdx = -lnlcscx + cotxl 

I csc2 x dx = -cot x 

Icotxcscxdx = -cscx 

I cos2 x dx = tx + t sinx cosx 

I
cos"x dx = ~ cos"- 1 x sinx + 

11 
-

1 
Icos"- 2 x dx 

ll ll 

I
cot"x dx = - -

1
- cot"- 1 x- Icot"~ 2 x dx 

n- I 

I
csc"x dx = - -

1
- csc"- 1 x cosx + 

11 
-

2 
Icsc"- 2 x dJ 

11- 1 n- 1 

I arccosxdx = xarccosx-~ 

I arccotx dx = x arccotx +-!In(! + x2
) 

I arccscx dx = x arccscx + ln(x + JxZ=!J, x :2: I 

I dx 
---

2 
= arctan x 

1 + X 



ELEMENTARY ALGEBRA OF THE REAL NUMBERS 

a+b=b+a 

a + (b + c) = (a + b) + c 

a(b + c) = ab + ac 

a+0=a·1=a 

a-a=O 

-(-a)= a 

-(a- b)= b- a 

a c ad + be 
b + d = bd (b,d #- 0) 

a 1 =a 

!" = 1 

a"'-" = a"'ja" (a #- 0) 

a'"b"' = (ab)m 

Fa = -.:ja, ( -a)m/n = ~' (a> O,n odd) 

If a < b then a + c < b + c. 
If a < b, then - b < -a. 

1-al = lal lal • lbl = labl ~ = 1~1 (b #- 0). 
lbl b 

The following terms are undefined: 
a/0, 0°, o-m, Fa (a, m positive, n even) 

ab = ba 

a(bc) = (ab)c 

a(-b) = (-a)b = -ab 

a·O = 0 

aja = 1 (a #- 0) 

1 
-=a 
1/a 

(a#- 0) 

1 b 

ajb a 
(a, b #- 0) 

a c ac 
-.- = - (b, d #- 0) 
b d bd 

a 0 = 1 (a #- 0) 

0" = 0 (n > 0) 
amn = (amj' 

amJn = F (a > 0) 

.::fo.::jb = ;fob (a, b > 0) 

If a < b and 0 < c, then ac < be. 

IfO <a< b, then 1/b < !fa. 

-b ± jb2
- 4ac 

Quadratic F omwla: ax2 + bx + c = 0 if and only if x = ----'---
2a 

ALGEBRA OF HYPERREAL NUMBERS 

Notation: 

e, [J are positive infinitesimals 

b, c are positive and finite but not infinitesimal 
H, K are positive infinite. 

The following are infinitesimal: 

-e, 1/H, ejb, sjH, bjH, E + 0, e - 0, E • 0, b • E, .:ji. 
The following are finite but not infinitesimal: 

-b, ljb, bjc, b + e, b • c, .:jb, b + c 

b - c is finite (possibly infinitesimal). 

The following are infinite: 

-H, lje, bfe, Hje, Hjb, H + e, H + b, H • b, H. K, .::(ii, H + K 

The following can be infinitesimal, finite but not infinitesimal, or infinite: 
ejb, HjK, He, H - K 



STANDARD PARTS 

In the following b, c are finite (possibly infinitesimal). 

st(b + c) = st(b) + st(c) 

st(bc) = st(b)st(c) 

st(jb) = ;rst{b) if b > 0, n > 0 
b::::; st(b) 

b = st(b) if and only if b is real 
st(s) = 0, st(H) is undefined 

TRIGONOMETRIC IDENTITIES 

sin2 8 + cos2 0 = l 
cot>O + l = csc2 0 
cos( ~e)= cosO 

cos(n/2 ~ 8) =sinO 
cos(O + r{!) = cosOcosr{! ~sinO sin¢ 

RULES OF EXPONENTS AND LOGARITHMS 

Assume a > 0, b > 0. 

1-' = l 

a-'"= (ax)Y 
alogaX = X 

log.(xy) = log,x + log,y 

log.(x'') = y log,x 

logby = log.y/log.b 

TABLE OF DERIVATIVES 

du = (dujdx) dx (Chain Rule) 
d(u + v) = du + dv (Sum Rule) 

d (-
u) = v du ~ u dv 

~ (Quotient Rule) 
v v2 

d(ln u) = duju 

d(sin u) = cos u du 

d(tan tt) = sec2 u du 

d(sec u) = tan u sec u du 

du 
d(arcsinu) = ~ 

v 1 ~ !12 

du 
d(arctanu) = --

2 1 + ll 

du 
d(arcsecu) = ~ 

[u[.yu2 ~I 

st(b ~ c) = st(b) ~ st(c) 

st(bjc) = st(b)jst(c) if st(c) oft 0 
st(b') = st(b)"1'l if st(b) > 0 
b ::::; c if and only if st(b) = st(c) 

if b s; c, then st(b) s; st(c) 

tan 2 0 + I = sec2 e 
sin(~O) =~sinO 

sin(n/2 ~ 0) =cosO 

sin(O + ¢) = siniJcosrfJ +cosO sin¢ 

axbx = (ab)' 

log.(ax) = x 

log.(xjy) = log.x ~ log.y 
bx = axlogab 

d(ku) = k du (Constant Rule) 
d(tw) = u dv + v du (Product Rule) 

d(u') = ru'- 1 du (Power Rule) 

d(e") = e" du 

d(cos u) = ~sin u dtt 

d(cot u) = ~csc2 u dtt 

d(csc 11) = ~cot u esc u d11 

du 
d(arccosu) = ~ ---

Jl-=7 
du 

d(arccotu) = ~ --
1 + 11

2 

du 
d(arccscu) = ~ ----

[u[p-=i 



ILES OF INTEGRATION 

'tl = ll + c 

'u + dv = f du + f dv (Sum Rule) 

.BLE OF INTEGRALS 

te constant of integration is left out.) 

xr+ 1 

'dx = -- r oft -1 
r + 1' 

inxdx= -cosx 

m x dx = In lsecxl 

~cx dx = lnlsecx + tanxl 

~c2 x dx = tanx 

mx secx dx = secx 

n2 xdx = !x- !sinxcosx 

n'' x dx = - - sin''- 1 x cosx + -- sin"- 2 x dx 1 n-1s . 
" " 

m"x dx = -
1
- tan"- 1 x - J tan"- 2 x dx 

II - 1 

~C 11 X dx = -- sec"- 1 x sinx + -- sec"- 2 x dx 1 ll- 2f 
II - 1 II - 1 

rcsinxdx = xarcsinx + ~ 

:ctan x dx = x arctan x - ! In (I + x2) 

:csecx dx = x arcsecx - ln(x + ~), x 2 1 

dx . 
~ = arcsmx 
r1- x2 

dx 
---- = arcsecx 
:lp-=! 

J k du = k J du (Constant Rule) 

f u dv = uv - f v du (Integration by Parts) 

f x- 1 dx = lnlxl 

f lnlxl dx = x lnlxl - x 

J cosx dx = sinx 

.f cotxdx = lnlsinxl 

f cscx dx = -In lcscx + cotxl 

J csc2 x dx = -cot x 

f cotx cscx dx = -cscx 

J cos2 x dx = !x +! sinx cosx 

f
cos"xdx = ~cos"- 1 xsinx + ~fcos"- 2 xdx 

n " 

Jcot"x dx = - -
1
-cot''- 1 x- Jcot"- 2 x dx 

n - 1 

fcsc"x dx = - -
1
- csc"- 1 x cosx + 

11
-

2 
Jcsc"- 2 x dx 

n-1 n-1 

J arccos x dx = x arccos x - fi-=-7 

J arccotx dx = x arccotx +! ln(1 + x2
) 

f arccscx dx = x arccscx + ln(x + p-=!), x 2 1 

f dx 
---

2 
= arctan x 

1+x 
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