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Step 6 The curve is W -shaped, as shown in Figure 3711
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Figure 3.7.11

PROBLEMS FOR SECTION 3.7

Sketch each of the curves given below by the six-step process nxu_.wmson._ in the text. 1ow nmn_._.. curve,
give a table showing all the critical points, local maxima and B_z_ﬂm.._nnnncm_m on s”_.:n: the curve
is increasing or decreasing, points of infiection, and intervals on which the curve is concave up-

ward or downward.

1 y=x+12 -2<x512 2 y=1-x% -25xg5l

3 y=x—-2, -2<x<12 4 y=3x?+x, -25x51

5 p=1x*—4x +3, 0=<x=2 6 y=-x'=2+6 —-4=x=0

7 y=x% -2<xg2 8 y=x', -2%x%2

9 y=x*+xt+x —22x£2

10 y=x+x1-x -25x£12

11 y=4 + X7+ x -2=5x=2

12 y=-x'+12x—12, —-3=x<3

i3 y=xt+dx®+2 —4s5x51l

14 y=it~x -2=xx512

15 y=xioixt -2<x%2

16 wﬂkuﬁklwuu. —1gxs3

17 y=1/x, —4<x<—% and tgxs4

18 y=1ljx+x -4sxs -} and lexx<4

19 y=x"% -2gxs -1 and t<x<?

20 y=x+x% -2=xs -} and lexsg2

2 THH,_. 0<xs10 n guamw__ 0<x=10

PX) ‘tnmwp. —d<x<4 24 gumwl__ Agxg4
x? o _5 .

25 .<me+_.. -2gx<12 26 w|u|nm||lln‘ ks

st C s i
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27 wnz\m. 1=x<4 28 .,.nuf\;l.ﬁ te=xz4
20 y=1/x tsxs4 30 y=x"e T fox<d
3 y=J9-x -2sxx2 3 y=y9+x, -4<xx4
1 y=sinxcosx, 0<x<2x M y=sinx +cosx, 0€x <2n
35 y=3sinfix), 0<x<2n 36 y=sin*x, 0€x<2n

k1l y=tanx, —nf3gx<n3 38 y=1fcosx, —=nf3<xgn/3
39 p=e% —2<x<2 40 y=&= _2<xg2

41 y=Ilnx, te<x<e 42 y = (nx)?, lle<xsge

43 y=xe % —-1<x<3 44 ye=x-—g, —-2<xg2
45 y=xlnx, eelzsx<e 46 y=x-Inx, ¢e2<xxge
47 y=x¢, =3<xcgl 48 y=e®, -—2<x52

49 y=ex +<x54 50 y=In{1+xH -3gx<3

PROPERTIES OF CONTINUOUS FUNCTIONS

This section develops some theory that will ded fol g in Chapter 4.
We begin with a new concept, that of a iyperintegef>The Hyperintegers are to the
integers as the hyperreal numbers are to th umbers. The hyperintegers consist
of the ordinary finite integers, the positive infinite hyperintegers, and the negative
infinite hyperintegers. The hyperintegers have the same algebraic properties as the
integers and are spaced one apart all along the hyperreal line as in Figure 3.8.1.

T— ~6-5-4-3-2-1 0 |

-H-4-H-3-H-1-H-1 ~H -H+«] H+2-H+} -H+4 H-4 H-3 H-2 H~ H H+ H+ H+»3 H+4

Positive

infinite . infinite

Figure 3.8.1 The Set of Hyperintegers

The rigorous definition of the hyperintegers uses the greatest integer function
[x] introduced in Section 3.4, Example 6. Remember that for a real number x, [x]
is the greatest integer n such that n < x. A real number y is itself an integer if and

e,
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3 CONTINUOUS FUNCTIONS

(1,1

Figure 3.8.2

DEFINITION

A hyperinteger isah yperreal number y such that y = [x] for some hyperreal x.

When x varies over the hypersed pumbers, [x] is the greatest w«uozﬂnmﬂ
y such that y < x. Because of t HE:&.&. Principle, gvery hyperreal number x is
wﬂﬁnnn two hyperintegers {x] and [x]+1,

x] =

x<[x]+1

and products of hyperintegers are again hyperintegers.
Alse. maﬁw.mnwww ﬂ%ﬂnwo_am .ﬂ use the rw_wn:anamn: In sketching curves we divided
a closed interva! [a, b] into finitely many subintervals. For theoretical purposes 5_
the calculus we onon divide a o_oﬂm EHEE into a finite or infinite number of equa
subintervals.-This is done as follow T
iven a closed real ESBS_ [a, S 2 ?:R partition is formed by choosing .
X pogitive 10icger #an dividing [a, b} into n € ual parts, as in Figure 3.8.3, Each
part|will be a submterval of lengthf = (b — a)/n. he n subintervals are

ﬁh.b+ﬁu_4ﬁ.u+m-b+N&¢...—_”h+C.—| _.Vﬂ.T”_

3.8 PROPERTIES OF CONTINUOUS FUNCTIONS

€ ¥
[ a+t a+1t a+nt=h
Figure 3.8.3
The endpoints
ga+ta+2...,a+n—-1,a+nt="~
are called

zal interval [a, b] is contained in the-#yperreal interval [a, b]*,
is the set of all hyperreal numbers x such that Mhnie partition is
applied to the hyperreal interval [a, b]* rather than the RE interval. To form an
EMEH partition of [a, E- nroomo a vom::.n infinite hyperinteger H and divide [a, b]*
into H equal parts ag s Figure 3.8.4. Each subinterval will have the same
infinitesimal lenggB he H subintervals are

[a,a+ 8L [a+ 8 a+28)....[a+ (K—1)6,a+Ké&],....,[a+ (H—1)$b]
and the partition points are

ga+d,a+28....a+Ké...,atHi=)

where K runs over the hyperintegers from 1 to H. Every hyperreal number x between
a and b belongs to one of the infinitesimal subintervals,

Ja+ (K=10<x<a+Kd
e —

Figure 3.8.4

in m,_m_:.n 3.8.5, the zeros of f are the points where the curve y = \ (x) intersects the
x-mnmm.

1

—
—
P —
\nu N.»/Il\k!m/l\h. x
\
Zeros of a function f

Figure 3.8.56

1




162 3 OOZ.A..ZCOCm FUNCTIONS n [y
\e J'a w.:\

% the real function f is contimious on the closed interval [a, b] and f(x)
Ts positive at one endpoint and negaiive at the other endpoint. Then f has a
zerd Tn the interval (@, b); that is, ficy = 0 for some real c in{a, b)-

Discussion There are two cases illustrated in Figure 3.8.6:

\.QVAOA.‘.AS and MQ&VOV?S.

ATH VALUE THEOREM

Figure 3.8.6

In the first case, the {heorem says that if a comtinuous curve is below the
bove it at b, then the curve must intersect the x-axis at
and b. Theorem 3 in the preceding Section 3.7 on
ly a reformuiation of the Intermediate Value

x-axis at a and a
some point ¢ between a
curve sketching is simp
Theorem.

infinite

SKETCH OF PROOF We assume fla) <0 <f(b). Let H be 2 osi
hyperinteger and vmm.“mMm.ﬁﬂ.HainJP b]* into H equal parts

Pa+9n+um,.:.n+mm =b.
Let a + K& be the last partition point at which f(a + K& < 0. Thus

Fa+ K& <0< fla+ K+
f close to fla + (K + 1)4).

We take ¢ to be the standard
Pl

Since f is continuous, f{a + K3)
We conclude that f{a + K8) =
partofa + K3, so that

igure 3.8.7)

fle) = s f(a + K&) = 0.

XAMPLE 1} The function
_. 3,
J@O =757 Jx - I
igure 3.8.8 s continuous for 0 < x < 1. Moreover,

fO =1, fWH=1-3= -2

The Intermediate Value Theorem shows that f (x) has a zero f () = 0 for
some ¢ between 0 and L.

which is shown in
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Figure 3.8.7

,-24
Figure 3.8.8

The Intermediate Value Theorem can be used to prove Theorem 3 of
o

Section 3.7 on ncnf
I|M\||I|I| N . T
uppose g is a continuous function on an interval I, and g(x) # 0 for all x

e

inl.

(i) Ifgl(c) > O for at least o i
( ne c in I, then g(x) > i
(i) If g(c) < O for at least one c in 1, Sm_wﬁwmé Ao.%wqwz Ix ~

ROOF (i) Let g{c) > Ofors i ot x, 1n
P F ome ¢ in I. If g(x,} < 0 fi poi i
N : L or some oth
hen by the Intermediate Value Theorem there is a vomsﬂwx ._H.ﬁiw“u p
2 4

WDQ Xy w_.nnmu that NAH v = 0, contra y to Huw othesis (Figure 3.8.9). Hann—OHO
2 il



2 CONTINUOUS FUNCTIONS

gix)

Figure 3.8.9 : Qu%m , A

EXTREME
;Ia ﬂan

Preosson We have seen several examples of functions that do not have maxima
on an open interval, such as f(x) = 1/x on (0, ), or g(x) = 2x on {0, 1)
The Extreme Value Theorem says that on a closed interval a continuous

function always has a maximum,
.ﬂ_ m 1]

SKETCH OF PROOF Form an infinite _uwn:_on of [a, £]%,
ga+da+28...,.a+ Hi=5h

sfer Principle, there is a partition ﬁosﬂa at which
s value. rn» c _un :6 .ﬁmbnw_d part of a + Ko

J.Cm THEOREM

2 continuous on its domain, which is a closed interval [a,b]. Then f
@ maximum at some point in [a, b], and a minimum at some point in [a, b].

We have fla+ Kd) = f(a + Lo), L

and taking standard pérts,
e ——————————

fle)z flu)

This shows that f has a maximum at ¢,

a w

Figure 3.8,10 of the Extreme Value Theorem

Vo, ety S v w

TEHYS =
oqm g ?.?P:_s ¥ ko madals

LU (¢'3
& ) = e o
»ﬁwwr% nw:r

; im%o, = mar €G]

b <€ Dub]

é

BOLLE'S THEOREM . ' -
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Suppose that f is continuous on the closed interval [a, b] and differentiable on

the apen interval (a, b). If

Ja=s4) =

gE here [ has derivative

Sl=0 ;@.W@Em cin(a, S.

tien there Is at least one poi
zera, ie, .

Geometrically, the theorem says that a a_mn_.nuzmzn curve touching the
x-axis at a and b must be horizontal for at least one point strictly between a and b,
PROOF We may assume that [a, b} is the domain of £ By the Extreme Value ,_,rnonnu._.

Shas a maximom value M and a minimum value m int [q, &), Since f(a) =

m<Oand M = oﬁwnomﬁﬁnum I,

M =0and m = 0, Then \ is the constant function Slx}y=
S'(c} = 0 for all points ¢ iti (g, b).

S

Case 1 0, and therefore

Case 2 M > 0.Let f have amaximumate, f(c) = M. By the Critical Point Theorem,
J has a critizal point at ¢. ¢ cannot be an endpoint because the value of f{x)
is zero at the endpoints and positive at x = ¢. By hypothesis, /" E exists at
x = ¢ It follows that ¢ must be a critical point of the type f/(c) =

Case3 m< (. <<n let f have a minimum at c. Then as in Case 2, ¢ is in (g, b) and

[ey=

| , Case |, m=M=0 Case 2, M >0

Case 3, m<Q
Rolle's Theorem

Case2and 3, m<O <M
Flgure 3.8.

=(x— 1¥(x — 2%, a = 1, b = 2.Yhe function f is non::cozm

. Moreover, (1) I&ﬁu = (.
Therefore by Rolle’s Theorem zﬁ.n is a point ¢in (1, ) m:w Jey=

EXAMPLE 2 f(x)

Let us find such a point ¢. We have M K
S0 = 3x = 1P = 2% + 2 — D(x = 2 = (x = D%

2(5x — T




e )

Jix) = {x— HHx -2

Figure 3.8.12
t Rolle’s Theorem says that there 15

i (1) = (2} = 0. Bu _
Zo_zwn "rsw._mmw ﬁ%nﬂaa e interval (1, 2} where fey = 0. The
another p i
required value for ¢ 15 €

is in the open 1

uwvnomsmn\..@uomua_.nmAn.

a2 @nlp.uk
EXAMPLE 3 Letf() =5 — % @ V2 J2

t one point cin(— /\m_ /\mu at which
hree such points,

Then f(a) = f(b) = 0. atens
lle’s Theorem says that there1s &
W.,Mnuo.“ 0. As a matter of fact there are 1

c=—1, =0 c=1

We can find these points a3 follows:
filxy= 26" — = 2x(x? - 1)

%.Euo when x =0 or X= + 1.
The function is drawn in Figure 3.8.13.
¥

1

i i

\ _

{

i

i 1
4
i
V2

Figure 3.8.13
1.¥hen f(—1=f1)= 0. The func-

/ 1 = —

BAMPLE ¢ L derivative at each point of (= 1, 1)
. . are 3.8.14), Note, however, that f'(x)does .:9
1. By Rolle's Theorem there is a
int, because

as Rolle’s Theorem requires (Fig ;
. ; v .

exist at either endpoint, x = or .
point ¢ in (— 1L 1) such that f () =0, ¢ = 0 is such a po
= £ =0

[ = ——77=—

3.8 PAOQOPERTIES OF CONTINUQUS FUNCTIONS 167
T flx)
-1 1 x -1 g I x
S = Vi-x ! SRy =1 —x

igure 3.8.18

Figure 3.8.14

éh& =1-x* g=—1, b=1 Then f(~1)=f()=0, and
1 () = —#x~"*for x # 0.77(0) is undefined. There is no point ¢ in (—1, I
] at which f"(c) = 0. Rolle’s Theorem does not apply in this case because f'(x)
does not exist at one of the pomts of the interva , namely at x = (.
In Figure 3.8.15, we sece that instead of being horizontal at a point in the

interval, the curve has a sharp peak.

Rolle’s Theorem is useful in finding the number of zeros of a differentiable
function f. It shows that between any two zeros of f there must be one or more zeros
of f. It follows that if /' has no zeros in an interval 1, then f cannot have more than

one zero in [
Q.

EXAMPLE § ow many zeros does the function f(x) = x? + x + 1 rmé\.v.ﬁm use
oth Rolle’s Theorem and the Intermediate Value Theorem.
Using Rolle's Theorem: f{x) = 3x* ++ 1. For all x, x® > 0, and hence
f'(x) = 1. Therefore f(x) has at most one zero.
Using the Intermediate Value Theorem: We have f{—1) = =1, f(0) = L.
Therefore f has at least one zero between — 1 and 0.

CONCLUSION  f has exactly one zero, and it lies between —1 and 0 (see Figure
3.8.16). o —— o

flixxy=xt+x+1

Figure 3.8.16
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Our method of sketching curves in Section 1.7 depends on a consequence On the other hand, we shall use Roile’ ,
of Rolle's Theorem called the Mean Value Theorem. It deals with the average slope Value Theorem. The Mean <mncno,“.~hnwo.~ﬁrno.ﬂ em in the pro of n.un the Mean
of a curve betwesen two points. m is illustrated in Figure 3.8.18.
fix} 9
X
DEFINITION
Let f be defined on the closed interval [a, b). THe average slope of f between a
and b is the quotient HUORSICH
By —
average slope = /B :3. ‘
b—a ! b—a 1
: “ "
We can see in Figure 3.8.17 that the average slope of [ between a and b is “ ¢ b x
equal to the slope of the jine passing through the points {a,f(a)) and (b.f(B))- j Figure 3.818 Th '
This is shown by the two-point equation for a line (Section 1.3). In particular, if : - e Mean Value Theorem .
f is already a linear function f(x} = mx + ¢, then the average slope of f between E PROOF OF T :
; . _ HE MEAN VALUE THEORE
o and b is equal to the slo m of the line y = f(x). ! M Let m be th
4 pe y=1 (f(6) ~ f(@)(b — a). The line through the points (a,(a) and Moﬂgaww
g 8 $

the equation

, .
] &.ﬂL l(x} = flay + m(x ~ a).
(b, F(b) . Let h{x) be :..wa&mﬁncn of f{x) above i(x).

fix)

o i h(x) = f(x) — Ix)
Then h is continuous on [a, b] and has the derivative

Hix)= [0 = tx) =[x} —m

at each point in (g, b). Since f(x) = (x) at the endpoints a and b, we have

ta, fla)} b—a

o -
-

a
H ha)=0, h{b) =0
: A Therefore Rolle's The :
Figure 3.8.17 Average Slope ] R . orem can be applied to th i :
F point ¢ in (a, b) such that #'(c) = 0. Hﬂwm o the function b, and there is a
This is shown by .Ea "io-uom.a equation for a straight line (Section 1.2). In particular, 0 = h(c) = f(c) - Ic) = f(c) ~ m
if f is already @ tinear function f(x) = mx + ¢, then the average slope of f between , whence \ v
a and b is equal to the slope m of the straight line y H,.Zx . ; i) = m.
s RN y
' : e can give a physical interpretalio
A ] , n of the :
MEAN VALUE THEQREM ’ tva T, ?P..«(S.WF?F HIA of velocity. Suppose a particle moves along the z-%ﬁ%n%ﬂ%ﬂm ”“o%mﬁ. o Hn_w.:m
. y= 2& Th i : equat
Assume that § is continuous on the closed interval [a, b] and has a derivative ; e average velocity of the particle between timés g and b is the nmnmu on

at every point of the open interval (a, b). Then there is at least one point ¢ in 1 fib) — fl@
(a, b) where the slope [’} is equal to the average slope of [ between a and b, 3 5T
f(b) = f1a) ] of the change in position to the ti
= 1 e time elapsed. The Mean Value Theorem states that

[l = pere | . . —_——
I there is a point of time ¢, g < ¢ < b, wh i
] 3 , when the velo | icle i
the average velocity between times a and b. ity J10) ofthe paricle s caval to

0, the Mean Value Theorem becomes 3 » . e M Theorems 1 and 2 in Section 3.7 o g re conse
¢ Mean Value Theorem. As an illustration, we prove par .5 of ﬂwao“ﬂnﬁ% of

Remark In the special case that fla) = f § =
Rolle’s Theorem:

L = f@_0-0_
re==p—a “h=a 0

7
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170 3 CONTINUOUS FUNCTIONS L = x4 .
=73t x, < x, where x, and x, are points ia [. By Hwa Mean Value Theorem H f="arryz r =024
A0 fre is a point ¢ strictly between x, and x, such that B’ fd=ix|-L [ab)=[-11]
@) = fxg) = fx) % f=""23 =107
.ﬂ ¢ X3 — X, x—1
—x, >0 7 f(x) = xsinx, [a,)=[0,x]
. I ; "(¢) > 0. Because x; < X3, ¥2 — %1 v L
Since ¢ is an Interor point of L f 28 F(x) = ecosx, {a,b] = [—n/2 n/2]
Thus 29 f(x) = tanx, [a,b] =[0,x] !
[0 &) Lo p - fe >0 Sk > ) B S =lact - sinx), [a.6) = [0.1]
X3 — X3 31 Find the number of zeros of x* + 3x + 1in [—2, —1).
This shows that fis increasing on I. ) . w:, ..ﬁ kb Find tke number of zeros of x* + 2x> — 2 in [0, 17.
. %QL U L

; 1 Find the number of zeros of x* — 8x — 4.
. in i - Van ;
% ﬁ%\«ﬁﬁ.} e — h\rz ( “\. !2& whheas \,M,I.O. Wh.w Y Find the number of zeros of 2x + ./x — 4.
1=0mrm3mmo=mm3_ozvué;;%p¢ 083@”217.5&. . .

least In Problems 35-42, find 2 point c in (a, b) such that /(6) — f(a) = f'(cXb — a).
how that the function has at leas

. s =x?4+2x —1, L B] = [0, 1
In Problems 1-16, use the Intermediate Value Theorem 10 8 ” fix - au + \ [a, 8] = [0, 1]
ane zero in the given interval. SOy =x [ab]=10,3]
) fy= -2 =L 0=sxsl k1) f{xy=x**, [a,b]=[0,1]
= x? ~3x, 1Sx=<2 38 fxy=yx+1, [ab]=[02]
x)=x*+ X
; %Mkwu,\mf\mﬂ..x_ 45559 » j@=x+Vr [ab] =104
3 - 2 0 =2+ W), [ab]=(12]
4 fe=Jrrlxoxh 1ExS
x—1
s 119 = 2 |a\wup.HlN 0<xsl 41 .vaux+_. [a, b1 = [0.2]
1+ X
a.,\n oexs<l 42 fH=x/x+1 [4,b]=][0,3]
6  fW=x+x-Jxtl .
- 1 43 Use Rotle's Theorem to show that the function f{x) = x* — 3x + b cannot have more
1 fiy=x'+xt—1 0sx= , than one zero in the interval [— 1, 1, regardless of the value of the constant b,
1y 3 o<x=<l i 44 Suppose £, f”, and /" are all continuous on the interval [a, b], and suppose f has at least
8 flxy=x x4+ 1 - three distinct zeros in [a, b]. Use Rolle’s Theorem to show that £ has at least one zero in
9 R =1-3x+x, 0<x<! [a.6].
’ y=1-3x+ X} 1=x<2 Qg 45 Suppose that f*(x) > 0 for all real numbers x, so that the curve y = f(x) is concave
10 1= . L 0gxs! upward on the whole real line as illustrated in the figure. Let L be the tangent line to the
11 fxy=x*+x— v\. " gcxgl curve at x = ¢. Prove that the line L lies below the curve at every point x # ¢.
12 fy=x—x+ 1070
13 f(}=cosx—qf O=xST y
—sinx — 2cosx, 0=x=7®
m_& .\.c& = sl X ~ ‘\.AHv
- —=, l=xs¢
15 .\.AHV =Inx e / 7
6 Je=eolox Lexs10 !
. ing: Rolle's -7 !
. in the interval (g, b). Warning: Ro !
In Problems 17-30, determine whether or not f rﬂm : Nﬁo_“m“ E.M _Bnr m
Theorem may give a WIong answer untess all the hypo L
c x
17 fx) = 5x3 — 8%, [a ] =[0.4]
s f@=1-x7 [&bl=0-1 :u
. — %, a,b] =[-22
1 =S8 o128 128 EXTRA PROBLEMS FOR CHAPTER 3
w gw=a-E =
n fo=1x— % [a.b]l=1-11] 1 Find the surface area 4 of a cube as a function of its volume V.
=x—1Px—-2 [abl= {12 2 Find the length of the diagonal 4 of a rectangle as a function of its length x and width y.
2 fx =t g ¥

n 10 = (x - 4x*, [k} =10, 4]




