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Points where f is discontinuous

Figure 3.4.8

The next theorem is similar to the Chain Rule for derivatives.

THEOREM 4
If f is continuous at ¢ and G is continuous at f{c}, then the function
glx) = G (x)
is also continuous at ¢. That is, a continuous function of a continuous function
is continuous.

PROGF Let x be infinitely close to but not equal to ¢. Then
st(g(x)) = UGS () = Gst(f(x)) = GUf (e = glo).
For example, the following functions are continuous:
fxy=+/x"+1, all x
g(x) = |x* — x|, all x
Bx) = (1 + /0", x>0
jx) = e, all x
k(x) = Inlx|, allx # 0

Here are two examples illustrating two types of discontinuities.

EACERON R SN SRR

a . xt—=3x+4
exaMPLE 6 The function g{x) = o~ - D)

= 2. At these two poitts

- continuous at every real point except X = 1and x
g(x) is undefined (Figure 3.4.9).

_wkme

—

EXAMPLE 6 The greatest integer function [x], shown in Figure 3.4.10, is defined by

[x] = the greatest integer n such that 7 < x.

Thus [x]=0if 0L x <1, EH~:HMNAN_TH_HN:.MMRAM
and so on. For negative x, we have [x]=—1if -1 <x<0 [x]=-2

Figure 3.4.9

Figure 3.4.10

dgc
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x2-3x44
4{x=1}{x~2}

y=

¥y =[x]

if =2 < x < —1, and 50 on. For example,
[7.362] =7, [nl=3, [-243]= -3

H..n.: each :.:nmﬂ. n, _Ha.“_ is equal to n. The function [x] is continuous when
x is not an integer but is discontinuous when x is an integer n. At an integer n,
both one-sided limits exist but are different,

lmfey=n~1, lmft)=n
A

The graph of [x] looks like@ t has a step, or jumnp discontinuity,
at each integer n. The functioff TX] will be useful in the last section of this
chapter. Some hand calculators have a key for cither the greatest integer
function or for the similar function that gives {x] for positive x and [x] + 1
for negative x.

Functions which are “‘continuous on an interval” will play an important

role in this chapter. Intervals were discussed in Section 1.1. Recall that closed intervals
have the form

fa.8].



13 3 CONTINUOUS FUNCTIONS

open intervals have one of the forms

@b, (@), (—o.bk (—o0, ),
and half-open intervals have one of the forms
(@b, (@bl [(meoh (=% b}.

ndpoint and b, the upper endpoint. The symbol

In these intervals, a is called the lower e
dpoint, while o indicates that there is no

— oo indicates that there is no lower en
upper endpoint.

DEFINITION

We say that f is continious on E_@h if f is continuous at every
point ¢ in L If in addition f has a derivative at every point of I, we say that f
is differentiable on I. -

a function continuous on & closed interval, we

To define what is meant by
s from the right and continuous from the left,

introduce the notions of continuou
using one-sided limits.

DEFINITION T
» . r \l’Fll/
[ is continuous from the right at ¢ {f im [(x) = fle).
b x-ct
e {is contintious from the left at if Gm f(x) =S¢
x=r”
e T
XAMPLE 6 (Continued Ffunction %] is continudys
from the right but not from the left at each integer n because )
M=mn lim[x] =1 im{x]=n—1
x=nt y—a~

T Iriseasy tocheck that | s Gontimuous at ¢ if and only if f is con
both the right and left at ¢.

tinuous from

10N

f is said to be continuous on the closed interval [a, b if f is continuous at 260
point ¢ wherea < ¢ < b, continuous from the right at a, and continuous fpom
theleftatb. .. mm

Figure 3.4.11 shows a function f continuous on [a,b).

—————
T ————

EXAMPLE 7 The semicircle e
|

.c.uh..f—l.Hn. \m

— - shown in Figure 3412, is continuous on th ced interval [—1,1]. Tt is

3.4 CONTINUITY
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Figure 3.4.11

[fis continuous on the interval _“nv. b

Figure 3.4.12

differentiable on the o i

. pen interval (—1, 1). To see that it i i

or (=11) is continw

the right at x = —1, let Ax be positive infinitesimal. Then ous from

y=J1-(-1*=0
v+ Ay =T —(-1+AxP = /1 - (1 — 24x + Ax?)
=./2Ax = Ax? = /(2 — Ax)Ax.

Thus

Ay = /2 - Ax)Ax.

The insi ical i itive i
,_,Emﬂﬂﬂc_ﬂ“ mmwﬂw .—:n E.n:om_ is positive infinitesimal, so Ay is infinitesimai
e function is continuous from the ri :
. ) he C right = —L Simi
reasoning shows it is continuous from the left at x = w atx= - Similar

Laldee

e ———

PROBLEMS FOR SECTION 3.4

— _ ) .
n Problems 1-17, find the set of all points at which the function is continuous.

1 fixp=3x*+5x+ 4 ix +2
2 .\T&H|u|
x* 41

u \Ahvﬂa\ﬂm 4 .:.kuﬂ X
x+2
5 Sy =Jx-2+1 6 fipe 2t 3
Ix + 3

133



134 3 CONTINUOUS EUNCTIONS
7 x 5 ) x+2 3.5 MAXIMA AND MINIMA 135
= -
\@U c+x fix (x — 1}x - kTR
9 f=4- ”N 10 = 4_ x1—4 Let ¢ be a real number in the domain I of f
— .
11 [ =—rT T 12 glx) = —+ () fhasa ; ;
x— (Lfix + 1) x x- maximum at ¢ if f{c) = [(x) for all .
13 =27 2, x=3 “ g case f{c) is called the maximum _s_swﬁx T real numbers x in I. In this
X = X} = X% —-X i1 P ' H
i x=3 x=? w .Maww.wa M&Ema...ﬁi at cif fle) < fix) for all real numbers x in 1. f{c} is th V
15 =y % 6 Jo=Jr-0 ed the minimum value of f- S then
17 fiy= When we look . -
_ \ , . _ . ook at the graph o i .
18 Show that f(x) = ;\m is continuous from the right at x = 0. will appear as the highest ﬁnwrmmuﬂ Z:Mm mo.::nno:m function f on I, the maximom
19 Show that f(x} = /1 — % s continuous from the left at x = L. minimum as the lowest vailey (Figure 3.5.1)
20 Show that f(x) = /1 — |x| is continuous o the closed interval [— 1, 1].
21 Show that f{x} = /\m + /2 = xis continuous on the closed interval [0, 2].
22 Show that fix} = /9 — 1 is continuous on the closed interval [—3, 3]
23 Show that f{x) = /x% =9 is continuous on the half-open intervals {— <, —3] and
[3, 20).
024 Suppose the fanction f(x) is continuous on the closed interval [a, b). Show that there
is a function glx) which is continuous on the whole real line and has the value glx) = flx)
for x in [a, b].
O 25 Suppose lim,.. f(x) = L. Prove that the function g(x}, defined by glx) = fix} for
x # ¢ and gix} = Lforx=cis continuous at <.
26 In the curve y = f(x) {liustrated below, identify the points x = ¢ where each of the Figura 3.6.1  Maximum and Minimum
following happens: :
{a} [is discontinuousatx =& In general, al of the followi T .
(b} fis continuous but not differentiable at x = ¢. h . ng possibilities can arise:
S has no maximum in its domain 1.
Shasa mraximum at exacily one point in 1.
[ has a maximum at several different points in I
However even if f has a maxi ’
. aximum at several different poi
ma. . 1 points, f ¢
wunxuwﬂca value. Because if f has a maximum at ¢, and also at n\ h._u have only ons
¢;) = flc,), and therefore f(c,) and f(c,) are equal 2> then fie)} = fley)
) of the Tollowing functio T
maximum and no Emsm3¢3m“ ns, graphed in Figure 3.52, have no
(a) flx)=1x, O<x
‘ o Mww .ﬁn&nxn, b<x<l
oA | € flx)=12x+3.
Loy ews V%T;.HL? s whndy O |
. ﬁ@ 3 Flx () Fo0
: m,, « ¥
3.5 MAXIMA AND MINIMA NJ
4
Let us assume throughout This section that fis a real function whose domain is an
interval 1, and furthermore that fis continuous on 1. A problem that often arises is
that of finding the point ¢ where f{c) has its largest value, and also the point ¢ where :
{(c) has its smallest value, The derivative turns out to be very useful in this problem. : @ fo=4,0<x ® F .
We begin by defining the concepts of maximum and minimum. Fi * )= 2% 0<x<l (© flx)=12x+3
igure 3.5.2 No Maximum or Minimum
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PiE 2 The function f(x) = x? + 1 has no maximum. mE.ﬁwﬁ.w M.Mn.ﬂ.aww ﬂﬂ
x = 0 with vatue 1, because lor x # 0, we always have x~ > U,
,E._n graph is shown in Figure 353

interval, the two endpoints of I will always be among the critical points. Geometrically
the theorem says that if f has a maximum or minimumat c, then either cis an endpoint
of the curve, or there is a sharp corner at ¢, or the curve has a horizontal slope at c.
Thus at 2 mazimum there is either an endpoint, a sharp peak, or a horizontal summit.

The Critical Point Theorem has some important applications to economics.
Here is one example. Some other examples are described in the problem set.

f(x}

EXAMPLE 3 Suppose a quantity x of a commeadity can be produced at a total cost
C(x} and sold for a total revenue of R(x), 0 < x < . The profit is defined
as the difference between the revenue and the cost,

P(x) = Rix) — C(x).

Show that if the profit has a maximum at x,, then the marginal cost is squal
to the marginal revenue at x,,

fix)e=xt+1

2 Thin (0, 1)

: . R'(xg) = C'(xq).
X Figure 3.5.3

, In this problem it is understood that R(x) and C(x) are differentiable

) . s based on the j functions, so that the marginal cost and marginal revenue always exist.
tive in finding maxima and minima 15 bay ; Therefore P'(x} exists and

The use of the deriva

Critical Point Theorem. t !
only occur at certain points, cailed eritical points. The theore

and its proof is given at the end of this section.

i ini function can
t the maxima and minima of a
It shom e m will be stated now,

Px} = R(x) - C'(x).
Assume P(x) has a maximum at x,. Since (0, o) has no endpoints 2nd Pixg)
exists, the Critical Point Theorem shows that P'(x,) = 0. Thus
Pixg) = Riixg) — Clxg) = 0
and Ri(xp) = C'lxp).

CRITICAL POQINT THEOREM

. . o has
Let { be continuous on its domain 1. Suppose that ¢ is a _no::. in __:m:a%h:nm
either a maximum or a minimum at ¢ Then one of the following three g

must happen:

DEFINITION

(i} ¢ is an endpoint of 1,

(i) f{c)is undefined;

i} £ =10
‘ We shall say that? is a critical point of f1f either {1 :
1™ three types of critical poi 7o Figure 3.5.4. When [ is an open 1

(i) cannot arise since the endpoints are not elements of 1. But when [ is a closed

An interior point of ajnterval 1 is an element of [ which is ot an endpoint of I.

For example, TT15 an open interval, then every point of I is an interior point

of I. But if I is a closed interval {a, b], then the set of all interior points of [ is the
open interval (a, &) (Figure 3.5.5).

a ' b

J y A
endpoint endpoint

Figure 3.5.5

interior points

An interior point of I which is a critical point of f is called an interior critical
point. There are a number of tests to determine whether or not f has a maximum at a

given interior critical point. Here are two such tests. In both tests we assume that fis
continuous on its domain I,

\\\LIJ

IRECT TEST

Suppose c is the only interior critical point of f, and u, v are points in I with
Case (i) Case (iii) U<ec<u

int Theorem e

Figure 3.5.4
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> flv), then f has a maximum at ¢ and nowher

G If fle) > ) and f€)
else.

) If flo) < flu) and fle
else.

(iii) Otherwise,

) < flv), then [ has a minimum at ¢ and nowhere

[ has neither a maximum nor a minimum at ¢

t are shown in Figure 3,5.6. The w&m.Emma
ne whether f bas a maximuin or minimum
£(p), and f{c} instead of computing all

he t ifi the Direct ,_,nm.
of the Direct Test is that one can determi
at ¢ by computing only the three values S,

values of f(x)-

(ii) min (iii} neither

Figura 3.5.8

PROOF OF THE DIRECT TEST We m
same side of ¢, their values are on
that u, < 4y < ¢ (Figure 3.5.7).

i ints of I are on the

ust prove that if two poin .
the same side of f (). Suppose, for Em.muow.
On the closed interval [u,, ¢] the oniy

"~

- i his interval, it
critical points are the endpoints. Thus irg we _.mm:_n” mﬁ Wo—m ) n_ma #Bmx..n.:.__a
has 2 maximum at one endpoint and a minimum at the other.

. L gt ¢
han f(c); if the minimum is at c,
i and f(u;) are both less t 5 if e
.pmrww wﬁwwwﬂmm_wuzt are _um:._ greater than fle)r A similar proof works
1

¢ < vy <0

COND DERIVATIVE TEST
Hnly interior critical point of f an

d that f'ic) = 0.

Suppose ¢ is th
i Iff'ey<0, f has a maximum at ¢ and nowh
iy Iffe >0 f has a minimum-at ¢ and nowhere else.

ere else.

= 0, the curve is horizontal at
ans that the curve climbs up

3.5.8.) Since \\.S
decreasing. This'me

1 it instead. (See ﬂwc_..n
"(e) i i lope is

¢. If f(c) is negative the s

until it levels off at ¢ and then falls

3.5 MAXIMA AND MINIMA

down, 50 it has a maximum at ¢. On the other hand, if f"(c) is positive, the slope is
increasing, so the curve falls down until it reaches a minimum at ¢ and then climbs up,
This argument makes it easy to remember which way the inequalities go in the
test.

The Second Derivative Test fails when f"(c) = 0 and when Jf"(c) does not
exist. When the Second Derivative Test fails any of the following things can still
happen:

(I) fhasamaximumatx =c. Y
(2) f has a mintmum at x = c.

(3) S has neither a maximum nor a minimum at x = c. 14

(i) [ (c)<0, max

(i) f"(c)> 0, min

Figure 3.6.8

In most maximum and minimum problems, there is only one eritical point
except for the endpoints of the interval. We develop a method for finding the maximum
and minimum in that case.

METHOD FOR FINDING MAXIMA AND MINIMA

When to use: f is continuous on its domain I, and [ has exactly one interior
critical point. —_—

Step 7 Differentiate f.
Step 2 Find the unique interior critical point ¢ of 7.

Step 3 Test to see whether f has a maximum or minimum at ¢. The Direct Test or
the Second Derivative Test may ‘be used.

This method can be applied to an open or half-open interval as well as a
closed interval. The Second Derivative Test is more convenient because it requires
only the single computation f*(c), while the Direct Test requires the three computa-
tions f{u), f(v), and f(c). However, the Direct Test always works while the Second
Derivative Test sometimes fails.

We illustrate the use of both tests in the examples.
\Iﬁ}||||||||||llll|r-l-l.l

from the origin.
The distance is given by

139
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140 3 CONTINUQUS FUNCTIONS

and substituting 2x + 3 for y,

= S r @+ = Sixd 12x 4+ 9
This is defined on the whole rephiing. $
Gn.z\@f\.b& -

dz 10x + 12 _

— e

dx 2/ sx2 +12x + 9

Step 1

Step 2 L2 — 0 only when 5x + g=0o0rx=—%-
dx
dtz 5z — (5x + 6)(dz/dx)
Step 3 aﬂmm = |\.I|N|N||!|..
Atx=—§ Sx+6=0and z>0s0 d?z/dx* = 5/z > 0. By the Second
Derivative Test, z has a minimatm atx = — %

i ini = — = 2x + 3:=% The
stance is a minimum at x = —% y=2x 3
noznﬁﬁmﬁnﬂchﬂﬂmﬂmg sz=JxHy = /\w This is shown in Figure 3.39.

4
EXAMPLE 6 Find the minimum of f(x) = x® + 107 + 2.

Step ! J'(x) = 6x* +40x’ = x3(6x? + 40).

Step2 f'(x) = Qonly wh
Step = Gecond Derivative Test fails, because
o frix) =30t + 12053, [0 =0

We use the Direct Test. Letyu=—Lv=1L Then
fo=2 f-H=1 Sy =13
igure 3.5.10.

: - 23
exampLE 6 Find the maximum of fx}=1—x""

Step 1 fi(x)= —(R)x -
Step2 ['x)is undefined at x = 0,and this the only critical v@ .

l:w.
|

3.5 MAXIMA AND MINIMA

max (0, 1}

flx) = xt+

- Jx)=1—x
Figure 3.5.10 Figu

351

Step 3 We use the Direct Test. Lety = — 1,0 = 1

=1 jf(-H=0 f(l)=0
Thus fhas a maximum at x = 0, as shown mé

If f has more than one interior critical point, the maxima and minima
can sometimes be found by dividing the interval into two or more parts.

EXAMPLE 7 Find the maximum and minimum of f(x) = x/(x* + 1).

- , u..THlM..._.
Step 1 H@vﬁiﬂ

r = =1. There are two interior critical points.
e divide the interval (— co, o0) oy which f is defined into the two sub-

intervals (— oo, 0] and [0, o). On-€ach of these subintervals, £ has just one
interior crifical point.

Step 3 We shall use the direct test, for the subinterval {— oo, 0] At the critical
point —1, we have f(—1) = —4. By direct computation, we sec that
F{—2) = —#% and f(0) = 0. Both of these values are greater than —34. This
shows that the restriction of f to the subinterval {— o, 0] has a minimum
at x = —1. Moreaver, f(x) is always =0 for x in the other subinterval
(0, «). Therefore f has a minimum at — 1 for the whole interval {— oo, oo},
1n a similar way, we can show that fhas a maximum at x = 1.

n.OED..Q_m_GE\rﬁmamumacaﬁxnl_s.u.zuem_cn&ﬁlsu IW_EEN
maximum at x = 1 with value (1) = j{See Figure 3.3.T2

The Critical Point Theorem can often be used to show that a curve has no
maximum or minimum on an open interval I = (g, b). The theorem shows that:

If y = f(x) has no critical points in {a. b), the curve has no maximum or
minimum on {a, b).

If v = f(x) has just one critical point x = ¢ in (a, b) and two points x, and

141
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, CONCLUSION Since x = 0 is the only critical point of f and f doesn't havd a
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|
|
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142 3 CONTINUOUS FUNCTIONS

Jfix}

T
max {1, 3)

x
1+x?

fix}=
Figure 3.5

x, are found where f(x,) < f(€) < f(xy), then the curve has #o maximum or minimum
on (a, b).

e —

AMPLE 8 f(x) = x® — 1. Test for maxima and minima.
Step 1 fi{x) = 3x%
Step 2 ['(x)=0only when x = 0.

ecause [ (x) = 6%, fi@=0
By direct computation, f(0) = — 1, fi-1= -2 =0

Therefore f has peither a minimum not a maximum at x = T

Ste,

! maximum or minimum there, we conciude that f has no maximum andfno
, minimum as shown in Figure 3.5.13.

Figure 3.5.13 R e

hmEJﬂth CRITICAL POINT THEGREM >mm:8aﬁrm_.,=1§ol.cno_.Evro_am“

that is, assume that ¢ s not an endpoint of [ and () exists. We must show

that (iii) is true; L&, ey = 0. We give the proof for the case that f has a
maximum at ¢. Let x =&, and let Ax > 0 be infinitesimal. Then

fle+ ax) < fleh fle — Ax) < fle)

(See Figure 3.5.14.) Therefore
Jle + Ax) — fle) fle — Ax) — f(0)

EANE it A et
Ax o= —Ax

T ——

3.5 MAXIMA AND MINIMA 143

f(x) c

c—Ax et Ax

Figure 3.5.14 Procf of the Critical Point Theorem

Taking standard paris,

———
a7 Du.x -
fler = .:A\i? + ?W \Ev <0,
fle — Ax) -
and also, 0= mAiv = fc).

Therefore f'{c) = 0.

PROBLEMS FOR SECTION 3.5

In Problerms 1-36, find the r:u_.nr._n interior critical point and determine whet
> : P fr :
J point al 1 hetheritisa maximum,

1 S = x? 2 fx)=1-x?
3 fy=x*+2 4 JE) =x*+3x*+5
5 S =x34+2 ’
: P 6 Fe) =x*—3x* + 3x
. .xlw:+mnlm 8 f)=2x— 1Y +{x—-1+6
fix)=x 1 F)=2—(x+ 1)
1
11 = - !
f(x) o <x<l 12 \.@Hx~+_
13 Jxy=x"+1 14 flxy=4-x'*
15 fxy=x*—=x"1 x<0 16 flo=xt—x"4 x>0
17 Sy =x"1—(x =37, 18 f) = - .
A =x+x"' 0<x
19 fiy=J/4—x1, —2<x<2 20 FO=@—x)M2, —2<x<2
21 y=sinx+x 0<x<In 2 y=sin’x, O<x<=n
23 y=e 2 y=el .
1 T
26 .. n
y o NAxAm 6 y=In(sinx), O<x<x
27 =
y = xe y>.] y=xlnx, 0<x<m
29 y=x—Inx, OD<x< @ X y=e-x
3 fixy=1x =3 32 fE)=3+]1—x
33 fxy=12—|x} & Jlx)=2]x] —x
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35

7

38
39
40

3 OOZH.ZCOCw EUNCTIONS

?Vu,\m+ A== % \QVu,\mT\TK. 0gx=3

-

pgx=1l
Find the shortest distance between theliney =1 — 4 and the origin.
Find the shortest distance between the curve y = 2/x and the origin.
5 —mx, x>0, whete m'is an integet = 2,

of the curve f (x) =

Find the minimum
(x) = x" —mn X < 0, whe

Find the maximum of f re m is an odd integer =z

¢ maximum and minimum of the given curve.

In Problems 41-44, find th
x Ix + 4
= I =
a =77 2 fWO=F1
3
x X
8 (O=g5 M =g

3.6 MAXIMA AND ___s_z_gbllb.__u_u_._Ob._._ozm .v
physical and social sciences.

Maximum and minimum problems arise in both the

We give three & les.

108 p\\
x miles from her work,

omagyWwis torfent a house. 1f she lives
year, while el Tear will be

her transporiation cost will be cx dollats
4 she live from work to minimize

25¢/(x + 1) dollars per year. How tar spoul
her rent and transportation expenses?

Let y be her expenses in dollars per year. Then
25¢
x4+ 1

EXAMPLE 1

y=¢x

blem is to find the minimum value of y in the jnterval ¢ < x < 0.

The pro
dy 25c
Step 1 —=¢~— )
step ! T T &+
Step 2 To find x such that dy/dx = 0 we set dyfdx =0 and solve for x.
25
2 ¢ x4 lp=25 x+1=E3

e T Y

{(x + 1)?
— 6. Wereject X = —6 because 0 < x. The only interior

Thenx =40[ X =
4.

critical point is x =
Step 3 We use the Direct Test.
—
Atx =0, y= c+0 + 25¢/(0 + 1y = 23¢.
Atx =4, wn#.fuue_?_f 1) =9¢
Atx=9 y=9T 25¢/(6 + 1) = 11.5¢.

CONCLUSION has its minimum at X = 4 miles. So the W
miles from work. (See ._E

oman should live four

36 M
AXIMA AND MINIMA—-APPLICATIONS

15¢+
10c +
min
SeT

R
:m% pr

EXAMPLE 2 A farm
er pl
along the Um:rnowqw.m _..”o usg 1000 feet of fence Yo enclose a rect
b straight river. Find the dimensions s.En.lrmnm:__mn plot
enclose the

[P N

Figure 3.8.1

magitommare,
—_————
TID o Tiver T
¥y A
Figure 3.6.2
X

Let x be the dimensi
i : dimension of the side : .
dimension, as in Figure 3.6.2. Call the MMMmLEm river, and y be the other

No fencing is needed

: on the side of

mlo of theplot b ; .

. rmafion is expressed by Hwﬁ.odoi_.:M mwﬂnﬂ.ﬂﬂ_.”ma”rw river. The given
ulas.

A=xy, x+2y=1000, 0<x< 1000

The problem is t
o find the values of ;
problem A is . s of x and y at which A i . .
B o select nwﬂ.nmmhn in terms of two variables mnmﬁhm _.nw Ximun. In this
s the independent variable, and then _umﬁ %nn. :%iaen_._
y and A are

functions of x, W

L . We find ,

eliminating y. an equation for 4 as a function of x alone b
Y

x + 2y = 1000, eHE
7

A = xy = 1000 — %)
i 2 nmooxlwxu.

We then find the maxi

aximum of A in t :
Step 1 dA/dx = 500 ~ x. n the closed interval 0 < x < 1000.
Step 2 dAfdx

Owhenx =5 s
s We use the Second 00. This is the unique interior critical point
. econd Derivati . )
maximum at the gritical poi ive Test: d’A/dx* = —1. Therefore 4 has a

=" Ju

USION h i [4 ons x =
E Tl 5 W 00 f
axim 4rea occu Unﬂ ﬁm.- ﬂ_on has dimensi 5 ‘
cC CLLUS, | um X 1

and y = (1000 — x)/2 = 250 r
= 250t (Figureed &3y ,

-
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