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Abstract. This text is based on two courses taught at Bar Ilan
University. One is the undergraduate course 89132 taught to groups
of about 120, 130, and 150 freshmen during the ’14-’15, ’15-’16,
and ’16-’17 academic years. This course exploits infinitesimals to
introduce all the basic concepts of the calculus, mainly following
Keisler’s textbook. The other is the graduate course 88826 that has
been taught to between 5 and 10 graduate students yearly for the
past several years. Much of what we write here is deeply affected
by this pedagogical experience.

The graduate course develops two viewpoints on infinitesimal
generators of flows on manifolds. The classical notion of an infini-
tesimal generator of a flow on a manifold is a (classical) vector field
whose relation to the actual flow is expressed via integration. A
true infinitesimal framework allows one to re-develop the founda-
tions of differential geometry in this area. The True Infinitesimal
Differential Geometry (TIDG) framework enables a more transpar-
ent relation between the infinitesimal generator and the flow.

Namely, we work with a combinatorial object called a hyper-
real walk with infinitesimal step, constructed by hyperfinite iter-
ation. We then deduce the continuous flow as the real shadow of
the said walk.

Namely, a vector field is defined via an infinitesimal displace-
ment in the manifold to itself. Then the walk is obtained by itera-
tion rather than integration. We introduce synthetic combinatorial
conditions Dk for the regularity of a vector field, replacing the clas-
sical analytic conditions of Ck type. The Dk conditions guarantee
the usual theorems such as uniqueness and existence of solution
of ODE locally, Frobenius theorem, Lie bracket, analysis of small
oscillations of the pendulum, and other concepts.

Here we cover vector fields, infinitesimal generator of flow,
Frobenius theorem, hyperreals, infinitesimals, transfer principle,
ultrafilters, ultrapower construction, hyperfinite partitions, micro-
continuity, internal sets, halo, prevector, prevector field, regularity
conditions for prevector fields, flow of a prevector field, relation
to classical flow. The concluding mathematical chapters prove the
transfer principle.

The historical part of the book takes a fresh look at several
centuries of the development of infinitesimal procedures in analy-
sis from the viewpoint enabled by Robinson’s framework for infin-
itesimal mathematics. See also related publications at http://u.

math.biu.ac.il/~katzmik/infinitesimals.html

http://u.math.biu.ac.il/~katzmik/infinitesimals.html
http://u.math.biu.ac.il/~katzmik/infinitesimals.html
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Preface

Terence Tao has recently published a number of texts where he
exploits ultraproducts in general, and Robinson’s framework for in-
finitesimals in particular, as a fundamental tool; see e.g., [Tao 2014],
[Tao & Vu 2016]. In the present text, we apply such an approach to
the foundations of differential geometry.

Differential geometry has its roots in the study of curves and sur-
faces by methods of mathematical analysis in the 17th century. Ac-
cordingly it inherited the infinitesimal methods typical of these early
studies in analysis. Weierstrassian effort at the end of the 19th century
solidified mathematical foundations by breaking with the infinitesimal
mathematics of Leibniz, Euler, and Cauchy, but in many ways the baby
was thrown out with the water, as well. This is because mathematics,
including differential geometry, was stripped of the intuitive appeal and
clarity of the earlier studies.

Shortly afterwards, the construction of a non-Archimedean totally
ordered field by Levi-Civita in 1890s paved the way for a mathemat-
ically correct re-introduction of infinitesimals. Further progress even-
tually lead to Abraham Robinson’s hyperreal framework, a modern
foundational theory which introduces and treats infinitesimals to great
effect with full mathematical rigor. Since then, Robinson’s framework
has been used in a foundational role both in mathematical analysis
[Keisler 1986] and other branches of mathematics, such as differential
equations [Benoit 1997], measure, probability and stochastic analy-
sis [Loeb 1975], [Herzberg 2013], [Albeverio et al. 2009], asymp-
totic series [Van den Berg 1987], as well as mathematical economics
[Sun 2000]. These developments have led both to new mathematical
results and to new insights and simplified proofs of old results.

The goal of the present monograph is to restore the original infini-
tesimal approach in differential geometry, on the basis of true infinitesi-
mals in Robinson’s framework. In the context of vector fields and flows,
the idea is to work with a combinatorial object called a hyperreal walk
constructed by hyperfinite iteration. We then deduce the continuous
flow as the real shadow of the said walk.

We address the book to a reader willing to benefit from both the in-
tuitive clarity and mathematical rigor of this modern approach. Read-
ers with prior experience in differential geometry will find new (or
rather old but somewhat neglected since Weierstrass; see http://u.

math.biu.ac.il/~katzmik/infinitesimals.html) insights on known
concepts and arguments, while readers with experience in applications
of the hyperreal framework will find a new and fascinating application
in a thriving area of modern mathematics.

http://u.math.biu.ac.il/~katzmik/infinitesimals.html
http://u.math.biu.ac.il/~katzmik/infinitesimals.html
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Introduction

. . . Lübsen defined the
differential quotient first by
means of the limit notion; but
along side of this he placed
(after the second edition)
what he considered to be the
true infinitesimal calculus – a
mystical scheme of operating
with infinitely small
quantities. [Klein 1908,
p. 217]

The classical notion of an infinitesimal generator of a flow on a
manifold is a (classical) vector field whose relation to the actual flow
is expressed via integration. A true infinitesimal framework allows one
to re-develop the foundations of differential geometry in this area in
such a way that the relation between the infinitesimal generator and
the flow becomes more transparent.

The idea is to work with a combinatorial object called a hyper-
real walk constructed by hyperfinite iteration. We then deduce the
continuous flow as the real shadow of the said walk.

Thus, a vector field is defined via an infinitesimal displacement
defined by a self-map F of the manifold itself. The flow is then obtained
by iteration F ◦N (rather than integration), as in Euler’s method. As a
result, the proof of the invariance of a vector field under a flow becomes
a consequence of basic set-theoretic facts such as the associativity of
composition, or more precisely the commutation relation F ◦ F ◦N =
F ◦N ◦ F .

Furthermore, there are synthetic, or combinatorial, conditions Dk

for the regularity of a (pre)vector field, replacing the usual analytic con-
ditions of Ck type, that guarantee the usual theorems such as unique-
ness and existence of solution of ODE locally, Frobenius theorem, Lie
bracket, and other concepts.

A pioneering work in applying true infinitesimals to treat differ-
ential geometry of curves and surfaces is [Stroyan 1977]. Our ap-
proach is different because Stroyan’s point of departure is the analytic
class C1 of vector fields, whereas we use purely combinatorial syn-
thetic conditions D1 (and D2) in place of C1 (and C2). Similarly,
the Ck conditions were taken as the point of departure in the following
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books: [Stroyan & Luxemburg 1976], [Lutz & Goze 1981], and
[Almeida, Neves & Stroyan 2014].

To illustrate the advantages of this approach, we provide a proof
of a case of the theorem of Frobenius on commuting flows. We also
treat small oscillations of a pendulum (see Chapter 14), where the idea
that the period of oscillations with infinitesimal amplitude should be
independent of the amplitude finds precise mathematical expression.

One advantage of the hyperreal approach to solving a differential
equation is that the hyperreal walk exists for all time, being defined
combinatorially by iteration of a self-map of the manifold. The fo-
cus therefore shifts away from proving the existence of a solution, to
establishing the properties of a solution.

Thus, our estimates show that given a uniform Lipschitz bound on
the vector field, the hyperreal walk for all finite time stays in the finite
part of ∗M . If M is complete then the finite part is nearstandard. Our
estimates then imply that the hyperreal walk for all finite time descends
to a real flow on M .

0.1. Breakdown by chapters

In Chapters 3 and 4.7, we introduce the basic notions of an extended
number system while avoiding excursions into mathematical logic that
are not always accessible to students trained in today’s undergraduate
and graduate programs. We start with a syntactic account of a number
system containing infinitesimals and infinite numbers, and progress to
the relevant concepts such as filter, ultrapower construction, the exten-
sion principle (from sets and functions over the reals to their natural
extensions over the hyperreals), and the transfer principle.

In Chapter 5.4, we present some typical notions and results from
undergraduate calculus and analysis, such as continuity and uniform
continuity, extreme value theorem, etc., from the point of view of the
extended number system, introduce the notion of internal set gener-
alizing that of a natural extention of a real set, and give a related
construction of the reals out of hyperrationals.

In Chapter 14 we apply the above to treat infinitesimal oscillations
of the pendulum. In Section 1.1, we present the traditional approach to
differentiable manifolds, vector fields, flows, and 1-parameter families of
transformations. In Chapter 9.2, we present the traditional “A-track”
(see section 0.2) approach to the invariance of a vector field under its
flow and to the theorem of Frobenius on the commutation of flows. In
Chapters 10.2 and 11.2, we present an approach to vectors and vector
fields as infinitesimal displacements, and obtain bounds necessary for
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proving the existence of the flow locally. In Chapters 12.5 and 13.7 we
approach flows as iteration of (pre)vector fields. Chapters 16 through
18 contain more advanced material on superstructures, the transfer
principle, definability and conservativity. Chapters 20 through 24 con-
tain a historical update on infinitesimal mathematics.

0.2. Historical remarks

Many histories of analysis are based on a default Weierstrassian
foundation taken as a primary point of reference.

In contrast, the article [Bair et al. 2013] developed an approach
to the history of analysis as evolving along separate, and sometimes
competing, tracks.

These are:

• the A-track, based upon an Archimedean continuum; and
• the B-track, based upon what we refer to as a Bernoullian (i.e.,

infinitesimal-enriched) continuum.1

Historians often view the work in analysis from the 17th to the mid-
dle of the 19th century as rooted in a background notion of continuum
that is not punctiform. This necessarily creates a tension with modern,
punctiform theories of the continuum, be it the A-type set-theoretic
continuum as developed by Cantor, Dedekind, Weierstrass, and oth-
ers, or B-type continua as developed by [Hewitt 1948], [ Loś 1955],
[Robinson 1966], and others. How can one escape a trap of pre-
sentism in interpreting the past from the viewpoint of set-theoretic
foundations commonly accepted today, whether of type A or B?

A possible answer to this query resides in a distinction between
procedure and ontology. In analyzing the work of Fermat, Leibniz,
Euler, Cauchy, and other great mathematicians of the past, one must
be careful to distinguish between

(1) its practical aspects, i.e., actual mathematical practice involv-
ing procedures and inferential moves, and,

(2) semantic aspects related to the actual set-theoretic justifica-
tion of the entities such as points of the continuum, i.e., issues

1Scholars attribute the first systematic use of infinitesimals as a foundational
concept to Johann Bernoulli. While Leibniz exploited both infinitesimal methods
and “exhaustion” methods usually interpreted in the context of an Archimedean
continuum, Bernoulli never wavered from the infinitesimal methodology. To note
the fact of such systematic use by Bernoulli is not to say that Bernoulli’s foundation
is adequate, or that it could distinguish between manipulations with infinitesimals
that produce only true results and those manipulations that can yield false results.
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of the ontology of mathematical entities such as numbers or
points.

In Chapters 20 through 24 we provide historical comments so as to
connect the notions of infinitesimal analysis and differential geometry
with their historical counterparts, with the proviso that the connection
is meant in the procedural sense as explained above.

0.3. Preview of flows and infinitesimal generators

As discussed in Section 9.1, the infinitesimal generator X of a flow
θt(p) = θ(t, p) : R×M →M on a differentiable manifold M is a (clas-
sical) vector field defined by the relation

Xp(f) = lim
∆t→0

1

∆t

(
f(θ∆t(p)) − f(p)

)

satisfied by all functions f on M . Even though the term “infinitesimal
generator” uses the adjective “infinitesimal”, this traditional notion
does not actually exploit any infinitesimals. The formalism is somewhat
involved, as can be sensed already in the proof of the invariance of the
infinitesimal generator under the flow it generates, as well as the proof
of the special case of the Frobenius theorem on commuting flows in
Section 10.1.

We will develop an alternative formalism where the infinitesimal
generator of a flow is an actual infinitesimal (pre)vector field. As an
application, we will present more transparent proofs of both the invari-
ance of a vector field under its flow and the Frobenius theorem in this
case.





CHAPTER 1

Differentiable manifolds

1.1. Definition of differentiable manifold

A n-dimensional manifold is a set M possessing additional proper-
ties (a formal definition appears below as Definition 1.1.2). Namely, M
is assumed to be covered by a collection of subsets (called coordinate
charts or neighborhoods), typically denoted A or B, and having the
following properties. For each coordinate neighborhood A we have an
injective map u : A→ Rn whose image

u(A) ⊆ Rn

is an open set in Rn. Thus, the coordinate neighborhood is a pair

(A, u).

The maps are required to satisfy the following compatibility condition.
Let

u : A→ Rn, u = (ui)i=1,...,n,

and similarly

v : B → Rn, v = (vα)α=1,...,n

be a pair of coordinate neighborhoods. Whenever the overlap A ∩ B
is nonempty, it has a nonempty image v(A ∩ B) in Euclidean space.
Both u(A) and u(A ∩ B), etc., are assumed to be open subsets of Rn.

Definition 1.1.1. Let v−1 be the inverse map from the image
(in Rn) of the injective map v back to M .

Restricting to the subset v(A ∩ B), we obtain a one-to-one map

u ◦ v−1 : v(A ∩B) → Rn (1.1.1)

from an open set v(A ∩ B) ⊆ Rn to Rn.
Similarly, the map v ◦ u−1 from the open set u(A ∩B) ⊆ Rn to Rn

is one-to-one.

Definition 1.1.2. A smooth n-dimensional manifold M is a union

M = ∪α∈IAα,

17
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where I is an index set, together with maps uα : Aα → Rn, satisfy-
ing the following compatibility condition: the map (1.1.1) is differen-
tiable for all choices of coordinate neighborhoods A = Aα and B = Aβ

(where α, β ∈ I) as above.

Definition 1.1.3. The maps u◦v−1 are called the transition maps.1

The collection of coordinate charts as above is called an atlas for the
manifold M .

Definition 1.1.4. A 2-dimensional manifold is called a surface.

Note that we have not said anything yet about a topology on M .

Definition 1.1.5. The coordinate charts induce a topology on M
by imposing the usual conditions:

(1) If S ⊆ Rn is an open set then v−1(S) ⊆ M is defined to be
open;

(2) arbitrary unions of open sets in M are open;
(3) finite intersections of open sets are open.

Remark 1.1.6. We will usually assume that M is connected. Given
the manifold structure as above, connectedness of M is equivalent to
path-connectedness2 of M .

Remark 1.1.7 (Metrizability). There are some pathological non-
Hausdorff examples like two copies of R glued along an open halfline
of R. These satisfy the compatibility condtion of Definition 1.1.2. To
rule out such examples, the simplest condition is that of metrizability;
see e.g., Example 1.4.1, Theorem 1.5.2.

Identifying A ∩ B with a subset of Rn by means of the coordi-
nates (ui), we can think of the map v as given by n real-valued func-
tions

vα(u1, . . . , un), α = 1, . . . , n. (1.1.2)

1.2. Hierarchy of smoothness

The manifold condition stated in Definition 1.1.2 can be stated as
the requirement that the n real-valued functions vα(u1, . . . , un) of (1.1.2)
are all smooth.

Definition 1.2.1. The usual hierarchy of smoothness (of func-
tions), denoted Ck (or C∞, or Can), in Euclidean space generalizes
to manifolds as follows.

1funktsiot maavar
2kshir-mesila
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(1) For k = 1 a manifold M is C1 if and only if all n2 partial
derivatives

∂vα

∂ui
, α = 1, . . . , n, i = 1, . . . , n

exist and are continuous.
(2) The manifold M is C2 if all n3 second partial derivatives

∂2vα

∂ui∂uj

exist and are continuous.
(3) The manifold M is Ck if all nk the partial derivatives

∂kvα

∂ui1 · · · ∂uik
exist and are continuous.

(4) The manifold M is C∞ if for each k ∈ N, all partial derivatives

∂kvα

∂ui1 · · · ∂uik
exist.

(5) The manifold M is Can if for each k ∈ N, all partial derivatives

∂kvα

∂ui1 · · · ∂uik
are real analytic functions.

The last condition is of course the strongest one.

1.3. Open submanifolds, Cartesian products

The notion of open and closed set in M is inherited from Euclidean
space via the coordinate charts (see Definition 1.1.5).

Definition 1.3.1. An open subset C ⊆M of a manifold M is itself
a manifold, called an open submanifold, with differentiable structure
obtained by the restriction of the coordinate map u = (ui) of (A, u).
The restriction will be denoted u⇂A∩C .

Let Mat = Matn,n(R) be the set of square matrices with real coef-
ficients. This is identified with Euclidean space of dimension n2, and
is therefore a manifold.

Theorem 1.3.2. Define a subset GL(n,R) ⊆ Matn,n(R) by setting

GL(n,R) = {X ∈ Matn,n(R) : det(X) 6= 0}.
Then GL(n,R) is an open submanifold.
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Proof. The determinant function is a polynomial in the entries xij
of the matrix X. Therefore it is a continuous function of the entries,

which are the coordinates in Rn2

. Thus GL(n,R) is the inverse image
of the open set R \{0} under a continuous map, and is therefore an
open set, hence a manifold with respect to the restricted atlas. �

Remark 1.3.3. The complement D of GL(n,R) in Matn,n is the
closed set consisting of matrices of zero determinant. The set D for
n ≥ 2 is not a manifold.

Theorem 1.3.4. Let M and N be two differentiable manifolds of
dimensions m and n. Then the Cartesian product M × N is a differ-
entiable manifold of dimension m + n. The differentiable structure
is defined by coordinate neighborhoods of the form (A × B, u × v),
where (A, u) is a coordinate chart on M , while (B, v) is a coordinate
chart on N . Here the function u× v on A× B is defined by

(u× v)(a, b) = (u(a), v(b))

for all a ∈ A, b ∈ B.

1.4. Circle, tori

Theorem 1.4.1. The circle S1 = {(x, y) ∈ R2 : x2 + y2 = 1} is a
manifold.

Proof. Let us give an explicit atlas for the circle. Let A+ ⊆ S1

be the open upper halfcircle

A+ = {a = (x, y) ∈ S1 : y > 0}.
Consider the coordinate chart (A+, u), namely

u : A+ → R, (1.4.1)

defined by setting u(x, y) = x (projection to the x-axis).
The open lower halfcircle A− = {a = (x, y) ∈ S1 : y < 0} also gives

a coordinate chart (A−, u) where the coordinate u is defined by the
same formula (1.4.1). We similarly define the right halfcircle

B+ = {a = (x, y) ∈ S1 : x > 0},
yielding a coordinate chart (B+, v) where v(x, y) = y, and similarly
for B−.

The transition function between A+ and B+ is calculated as follows.
Note that in the overlap A+ ∩ B+ one has both x > 0 and y > 0. Let
us calculate the transition function u ◦ v−1. The map v−1 sends y ∈
R1 to the point (

√
1 − y2, y) ∈ S1, and then the coordinate map u
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sends (
√

1 − y2, y) to the first coordinate
√

1 − y2 ∈ R1. Thus the
composed map u ◦ v−1 given by

y 7→
√

1 − y2 (1.4.2)

is the transition function in this case. Since function (1.4.2) is smooth
for all y ∈ (0, 1), the circle is a C∞ manifold of dimension 1 (modulo
spelling out the remaining transition functions).

Finally we discuss the metrizability condition (see Remark 1.1.7).
We define a distance function by setting

d(p, q) = arccos〈p, q〉 (1.4.3)

This gives a metric on S1 having all the required properties. It follows
that S1 is metrizable. �

Example 1.4.2. The torus T 2 = S1 × S1 is a 2-dimensional man-
ifold by Theorem 1.3.4. Similarly, the n-torus T n = S1 × · · · × S1

(product of n copies of the circle) is an n-dimensional manifold.

Example 1.4.3. The unit sphere Sn ⊆ Rn+1 admits an atlas similar
to the case of the circle. The distance function is defined by the same
formula (1.4.3).

1.5. Projective spaces

Another basic example of a manifold is the projective space, de-
fined as follows. Let X = Rn+1 \{0} be the collection of (n + 1)-
tuples x = (x0, . . . , xn) distinct from the origin. Define an equivalence
relation ∼ between x, y ∈ X by setting x ∼ y if and only if there is a
real number t 6= 0 such that y = tx, i.e.,

yi = txi, i = 0, . . . , n.

Denote by [x] the equivalence class of x ∈ X.

Definition 1.5.1. the real projective space, RPn, is the collection
of equivalence classes [x], i.e.,

RPn = {[x] : x ∈ X}.
Theorem 1.5.2. The space RPn is a smooth n-dimensional mani-

fold.

Proof. To show that RPn is a manifold, we need to exhibit an
atlas. We define coordinate neighborhoods Ai, where i = 0, . . . , n by
setting

Ai = {[x] : xi 6= 0}. (1.5.1)
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We will now define the coordinate pair (Ai, ui), where ui : Ai → Rn,
namely the corresponding coordinate chart. We can set

ui(x) =

(
x0

xi
, . . . ,

xi−1

xi
,
xi+1

xi
, . . . ,

xn

xi

)

since division by xi is allowed in the neighorhoodAi by condition (1.5.1).
The coordinate ui is well-defined because if x ∼ y then ui(x) = ui(y)
by canceling out the t in the numerator and denominator.

Let us calculate the transition maps. We let u = ui and v = uj,
where we assume for simplicity that i < j. We wish to calculate the
map u ◦ v−1 associated with Ai ∩ Aj. Take a point

z = (z0, . . . , zn−1) ∈ Rn .

Since we work with the condition xj 6= 0, we can rescale the homoge-
neous coordinates so that xj = 1. Thus we can represent v−1(z) by
the (n+ 1)-tuple

v−1(z) = (z0, . . . , zj−1, 1, zj , . . . , zn−1). (1.5.2)

Now we apply u = ui to (1.5.2), obtaining

u ◦ v−1(z) =

(
z0

zi
, . . . ,

zi−1

zi
,
zi+1

zi
, . . .

zj−1

zi
,

1

zi
,
zj+1

zi
, . . . ,

zn−1

zi

)
(1.5.3)

All transition functions appearing in (1.5.3) are rational functions and
are therefore smooth. Thus RPn is a differentiable manifold.

Let us check the metrizability condition. For unit vectors p, q we
set

d(p, q) = arccos |〈p, q〉|
For arbitrary p, q we use the formula

d(p, q) = arccos
|〈p, q〉|
|p| |q| . (1.5.4)

Note that p and −p represent the same point in projective space. For-
mula (1.5.4) provides a metric on RPn with all the required properties,
showing that RPn is metrizable. �

1.6. Derivations

Let M be a differentiable manifold as defined in Section 1.1. The
tangent space, denoted TpM , at a point p ∈ M is intuitively the col-
lection of all tangent vectors at the point p.3

3A preliminary notion of a tangent space are developed in introductory courses
based on a Euclidean embedding of the manifold; see e.g., http://u.math.biu.
ac.il/~katzmik/egreglong.pdf (course notes for 88-201).

http://u.math.biu.ac.il/~katzmik/egreglong.pdf
http://u.math.biu.ac.il/~katzmik/egreglong.pdf
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In modern differential geometry, a tangent vector can be defined
via derivations.

Definition 1.6.1. Let p ∈M . Let

Dp = {f : f ∈ C∞}
be the ring of C∞ real-valued functions f defined in an (arbitrarily
small) open neighborhood of p ∈M .

Definition 1.6.2. The ring operations in Dp are pointwise multi-
plication fg and pointwise addition f + g, where we choose the inter-
section of the domains of f and g as the domain of the new function
(respectively sum or product). Thus, we set (fg)(x) = f(x) g(x) for
all x where both functions are defined.

Choose local coordinates (u1, . . . , un) near p ∈M . The following is
proved in multivariate calculus.

Theorem 1.6.3. A partial derivative ∂
∂ui at p is a linear form, or 1-

form, denoted ∂
∂ui : Dp → R on the space Dp, satisfying the Leibniz rule

∂(fg)

∂ui

∣∣∣∣
p

=
∂f

∂ui

∣∣∣∣
p

g(p) + f(p)
∂g

∂ui

∣∣∣∣
p

(1.6.1)

for all f, g ∈ Dp.

Formula (1.6.1) can be written briefly as
∂

∂ui (fg) = ∂
∂ui (f)g + f ∂

∂ui (g)

keeping in mind that both sides are evaluated only at the point p (not in
a neighborhood of the point). Formula (1.6.1) motivates the following
more general definition of a derivation at p ∈M .

Definition 1.6.4. A derivation X at the point p ∈ M is a linear
form

X : Dp → R
on the space Dp satisfying the Leibniz rule:

X(fg) = X(f)g(p) + f(p)X(g) (1.6.2)

for all f, g ∈ Dp.





CHAPTER 2

Derivations, tangent and cotangent bundles

2.1. The space of derivations

The notion of a manifold M was defined in Section 1.1. Recall that
a derivation X at p ∈M is a linear form on the space of smooth func-
tions Dp such that X satisfies the Leibniz rule at p; see Section 1.6. It
turns out that the space of derivations is spanned by partial derivatives.
Namely, we have the following theorem.

Theorem 2.1.1. Let M be an n-dimensional manifold. Let p ∈M .
Then the collection of all derivations at p is a vector space of dimen-
sion n, denoted TpM , and called the tangent space of M at p.

Proof in case n = 1. We will prove the result in the case n = 1.
For example, one could think of the 1-dimensional manifold M = R
with the standard smooth structure. Thus we have a single coordi-
nate u in a neighborhood of a point p ∈ M which can taken to be 0,
i.e., p = 0. Let X : Dp → R be a derivation at p. We would like to
show that X coincides with the derivative d

dx
or its multiple. We argue

in 4 steps as follows.

(1) Consider the constant function 1 ∈ Dp. Let us determine
X(1). We have X(1) = X(1 · 1) = 2X(1) by the Leibniz rule.
Therefore X(1) = 0. Similarly for any constant a we have
X(a) = aX(1) = 0 by linearity of X.

(2) Now consider the monic polynomial u = u1 of degree 1, viewed
as a linear function u ∈ Dp=0. We evaluate the derivation X
at the element u ∈ Dp and set c = X(u). Thus c ∈ R.

(3) By the Taylor remainder formula, every f ∈ Dp=0 can be writ-
ten as follows:

f(u) = a+ bu+ g(u)u, a, b ∈ R,

25



26 2. DERIVATIONS, TANGENT AND COTANGENT BUNDLES

where g is smooth and g(0) = 0. Since f ′(0) = b, we have by
linearity and Leibniz rule

X(f) = X(a+ bu+ g(u)u)

= bX(u) +X(g)u(0) + g(0) · c
= bc+ 0 + 0

= c
d

du
(f).

(4) It follows fromX(f) = c d
du

(f) that derivationX coincides with

the derivation c d
du

for all input functions f ∈ Dp. Hence the

tangent space is 1-dimensional and spanned by the element d
du

,
proving the theorem in this case.

The case of general n is treated similarly using a Taylor formula
with partial derivatives. �

2.2. Tangent bundle, sections of a bundle

Let M be a differentiable manifold. In Section 2.1 we defined the
tangent space TpM at p ∈M as the space of derivations at p.

Definition 2.2.1. As a set, the tangent bundle, denoted TM ,
of an n-dimensional manifold M is the disjoint union of all tangent
spaces TpM as p ranges through M , or in formulas:

TM =
⋃

p∈M
TpM.

Theorem 2.2.2. The tangent bundle TM of an n-dimensional man-
ifold M has a natural structure of a manifold of dimension 2n.

Proof. We coordinatize TM locally using 2n coordinate functions
as follows. By Theorem 2.1.1, a tangent vector v at a point p decom-
poses as v = vi ∂

∂ui (with respect to the Einstein summation conven-
tion).

We combine the coordinates (u1, . . . , un) of a point p ∈M , together
with the components of tangent vectors v ∈ TpM , with respect to the
basis ( ∂

∂u1 ,
∂

∂u2 , . . . ,
∂

∂un ), namely v = vi ∂
∂ui . The resulting string of

coordinates

(u1, . . . , un, v1, . . . , vn)

of the pair (p, v) parametrizes a neighborhood of TM . It can be checked
that the transition functions are smooth, showing that TM is a (2n)-
dimensional manifold. �
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Theorem 2.2.3. The tangent bundle TS1 of the circle S1 is a 2-
dimensional manifold that can be identified with an (infinite) cylin-
der S1 × R.

Proof. We represent the circle as the set of complex numbers of
unit length:

S1 = {eiθ} ⊆ C.
Recall that ei(θ+2πn) = eiθ for all n ∈ Z. We use the coordinate θ on the
circle to express a tangent vector at a point eiθ ∈ S1 as c d

dθ
where c ∈ R.

Then the pair (eiθ, c) gives a parametrisation for the tangent bundle
of S1. �

Definition 2.2.4 (Canonical projection). Given the tangent bun-
dle TM of a manifold M , let

πM : TM →M, (p, v) 7→ p

be the canonical projection “forgetting” the tangent vector v and keep-
ing only its initial point p.

Definition 2.2.5. [Section] In the language of the theory of bun-
dles, a vector field X on M is a section of the tangent bundle. Recall
that the latter is given by πM : TM → M . Namely, a vector field is a
map X : M → TM satisfying the condition

πM ◦X = IdM .

We will express a vector field more concretely in terms of local
coordinates in see Section 2.3.

2.3. Vector fields

Consider a coordinate chart (A, u) in M where u = (ui)i=1,...,n. We
have a basis ( ∂

∂ui ) for TpM by Theorem 2.1.1. Therefore an arbitrary
vector X ∈ TpM is a linear combination

X i ∂

∂ui
,

for appropriate coefficients X i ∈ R depending on the point p. Here we
use the Einstein summation convention.

Recall that the vectors
(

∂
∂ui

)
form a basis for the tangent space at

every point of A ⊆M .

Definition 2.3.1. A choice of component functions X i(u1, . . . , un)
in the neighborhood will define a vector field

X i(u1, . . . , un)
∂

∂ui
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in the neighborhood A.

Here the components X i are required to be of an appropriate dif-
ferentiability type. In more detail, we have the following definition.

Definition 2.3.2. (see [Boothby 1986, p. 117]) Let M be a C∞

manifold. A vector field X of class Cr on M is a map assigning to each
point p of M , a vector Xp ∈ TpM whose components (X i) in any local
coordinate (A, u) are functions of class Cr.

Example 2.3.3. Let M be the Euclidean plane R2. Via obvious
identifications the Euclidean norm in the (x, y)-plane leads naturally
to a Euclidean norm | | on the tangent space (i.e., tangent plane) at
every point with respect to which both tangent vectors ∂

∂x
and ∂

∂y
are

orthogonal and have unit norm:∣∣∣∣
∂

∂x

∣∣∣∣ =

∣∣∣∣
∂

∂y

∣∣∣∣ = 1.

Note that each of ∂
∂x

and ∂
∂y

defines a global vector field on R2 (defined

at every point of the plane). Any combination

X = f(x, y)
∂

∂x
+ g(x, y)

∂

∂y

is also a vector field in the plane, with |X| =
√
f 2 + g2 since the

basis ( ∂
∂x
, ∂
∂y

) is orthonormal.

Remark 2.3.4 (Representation by path). The derivation i.e., vec-
tor ∂

∂x
at a point p = (a, b) ∈ R2 is represented by the path α(s) =

(a+ s, b), in the sense that

∀f ∈ Dp,
∂

∂x
f = d

ds

∣∣
s=0

f(α(s)),

and we have | ∂
∂x
| = |α ′| = 1.

Example 2.3.5. Similarly, the vector ∂
∂y

at a point p = (a, b) is

represented by the path α(s) = (a, b+ s).

2.4. Vector fields defined by polar coordinates

Remark 2.4.1. Eventually we will develop the notion of a differ-
ential k-form, generalizing the notion of a 1-form. The 1-forms, also
known as covectors, are dual to vectors.

Interesting examples of vector fields are provided by polar coor-
dinates. These may be undefined at the origin, i.e., apriori only de-
fined in the open submanifold R2 \{0} of R2. Here the vector ∂

∂θ
at a
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point with polar coordinates (r, θ) is represented by the path α(θ) =
(r cos θ, r sin θ) with derivative

α′(θ) = (−r sin θ, r cos θ) = r(− sin θ, cos θ)

and therefore |α ′| = r. Hence at the point with polar coordinates (r, θ),
we have ∣∣∣∣

∂

∂θ

∣∣∣∣ = r.1 (2.4.2)

Corollary 2.4.2. The rescaled vector 1
r

∂
∂θ

is of norm 1.

2.5. Source, sink, circulation

In this section we will describe some illustrative examples of vector
fields.

Example 2.5.1 (Zero of type source/sink). The vector field ∂
∂r

in

the plane is undefined at the origin, but r ∂
∂r

has a continuous extension
(C0) which is a vector field vanishing at the origin.2

Definition 2.5.2. The vector field in the plane defined by r ∂
∂r

is

called a source while the opposite vector field X = −r ∂
∂r

is called a
sink.3

Note that the integral curves of a source flow from the origin and
away from it, whereas the integral curves of a sink flow into the ori-
gin, and converge to it for large time. At a point p ∈ R2 with polar
coordinates (r, θ) the sink is given by

X(p) =

{
−r ∂

∂r
if p 6= 0

0 if p = 0.

1An alternative argument can be given in terms of differentials. Since dr2 =
dx2 + dy2 by Pythagoras, we have |dr| = 1 as well. Meanwhile θ = arctan y

x and

therefore dθ = 1
1+(y/x)2 d(y/x) = x2

y2+x2

xdy−ydx
x2 = xdy−ydx

r2 . Hence

|dθ| =
|xdy − ydx|

r2
=

r

r2
=

1

r
. (2.4.2)

Thus rdθ is a unit covector. We therefore have an orthonormal basis (dr, rdθ) for
the cotangent space. Since dθ

(
∂
∂θ

)
= 1, equation (2.4.2) implies (2.4.1). Therefore

1
r

∂
∂θ is a unit vector.

2Moreover it is equal to x ∂
∂x + y ∂

∂y and hence smooth.
3Would these be makor and kior (with kaf)? Actually this is known as bor, not

kior.
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Example 2.5.3 (Zero of type “circulation” in the plane). The vec-
tor ∂

∂θ
in the plane, viewed as a tangent vector at a point at distance r

from the origin, tends to zero as r tends to 0, as is evident from (2.4.1).
Therefore the vector field defined by ∂

∂θ
on R2 \{0} extends by con-

tinuity to the point p = 0.4 Thus we obtain a continuous vector
field p 7→ X(p) = −y ∂

∂x
+ x ∂

∂y
on R2 which vanishes at the origin:

X(p) =

{
∂
∂θ

if p 6= 0

0 if p = 0.

Such a vector field is sometimes described as having circulation5 around
the point 0. The integral curves of a circulation are circles around the
origin.

Remark 2.5.4. The zero of the vector field associated with small
oscillations of the pendulum are of circulation type. These were studied
recently in e.g., [Kanovei et al. 2016].

Example 2.5.5 (Zero of type circulation on a sphere). Spherical
coordinates (ρ, θ, ϕ) in R3 restrict to the unit sphere S2 ⊆ R3 to give
coordinates (θ, ϕ) on S2. The north pole is defined by ϕ = 0. At this
point, the angle θ is undefined but the vector field ∂

∂θ
can be extended

by continuity as in the plane (see Example 2.5.3), and we obtain a zero
of type “circulation”. Similarly the south pole is defined by ϕ = π.
Here ∂

∂θ
has a zero of type “circulation” but going clockwise (with

respect to the natural orientation on the 2-sphere).
Thus the vector field ∂

∂θ
on the sphere has two zeros of circulation

type, namely north and south poles.

2.6. Duality in linear algebra

Let V be a real vector space. We will assume all vector spaces to
be finite dimensional unless stated otherwise.

Example 2.6.1. Euclidean space Rn is a real vector space of di-
mension n.

Example 2.6.2. The tangent plane TpM of a regular surface M (see
Definition 1.1.4) at a point p ∈M is a real vector space of dimension 2.

Definition 2.6.3. A linear form, also called 1-form, φ on V is a
linear functional from V to R.

4Moreover it equals −y ∂
∂x + x ∂

∂y and hence smooth.
5machzor, tzirkulatsia.
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Definition 2.6.4. The dual space of V , denoted V ∗, is the space
of all linear forms φ on V . Namely,

V ∗ = {φ : φ is a 1-form on V } .
Evaluating φ at an element x ∈ V produces a scalar φ(x) ∈ R.

Definition 2.6.5. The natural pairing between V and V ∗ is a linear
map

〈 , 〉 : V × V ∗ → R,
defined by setting 〈x, y〉 = y(x), for all x ∈ V and y ∈ V ∗.

Theorem 2.6.6. If V admits a basis of vectors (xi), then V ∗ ad-
mits a unique basis, called the dual basis (yj), satisfying

〈xi, yj〉 = δij , (2.6.1)

for all i, j = 1, . . . , n, where δij is the Kronecker delta function.

Example 2.6.7. The vectors ∂
∂x

and ∂
∂y

form a basis for the tangent

plane TpE of the Euclidean plane E at each point p ∈ E. The dual
space is denoted T ∗

p and called the cotangent plane.

Definition 2.6.8. The basis dual to
(

∂
∂x
, ∂
∂y

)
is denoted (dx, dy).

Thus (dx, dy) is a basis for the cotangent plane T ∗
p at every point p ∈ E.

Polar coordinates will be dealt with in detail in Subsection 2.7.
They provide helpful examples of vectors and 1-forms, as follows.

Example 2.6.9. In polar coordinates, we have a basis ( ∂
∂r
, ∂
∂θ

) for
the tangent plane TpE of the Euclidean plane E at each point p ∈
E \ {0}. The dual space T ∗

p has a basis dual to
(

∂
∂r
, ∂
∂θ

)
and de-

noted (dr, dθ).

Example 2.6.10. In polar coordinates, the 1-form

r dr

occurs frequently in calculus. This 1-form vanishes at the origin (de-
fined by the condition r = 0), and gets “bigger and bigger” as we get
further away from the origin, as discussed in Section 2.7.

2.7. Polar, cylindrical, and spherical coordinates

Polar coordinates6 (r, θ) satisfy r2 = x2 + y2 and x = r cos θ, y =
r sin θ. In R2 \ {0}, one way of defining the ranges for the variables is
to require

r > 0 and θ ∈ [0, 2π).

6koordinatot koteviot
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It is shown in elementary calculus that the area of a region D in
the plane in polar coordinates is calculated using the area element

dA = r dr dθ.

Thus, the area is expressed by the following integral:

area(D) =

∫

D

dA =

∫∫
rdrdθ.

Cylindrical coordinates in Euclidean 3-space are studied in vector cal-
culus.

Definition 2.7.1. Cylindrical coordinates (koordinatot gliliot)

(r, θ, z)

are a natural extension of the polar coordinates (r, θ) in the plane.

The volume of an open region D is calculated with respect to cylin-
drical coordinates using the volume element

dV = r dr dθ dz.

Thus the volume of D can be expressed as follows:

vol(D) =

∫

D

dV =

∫∫∫
rdr dθ dz.

Example 2.7.2. Find the volume of a right circular cone with
height h and base a circle of radius b.

Spherical coordinates7

(ρ, θ, ϕ)

in Euclidean 3-space are studied in vector calculus.

Definition 2.7.3. Spherical coordinates (ρ, θ, ϕ) are defined as fol-
lows. The coordinate ρ is the distance from the point to the origin,
satisfying

ρ2 = x2 + y2 + z2,

or ρ2 = r2+z2, where r2 = x2+y2. If we project the point orthogonally
to the (x, y)-plane, the polar coordinates of its image, (r, θ), satisfy x =
r cos θ and y = r sin θ.

The last coordinate ϕ of a point in R3 is the angle between the
position vector of the point and the third basis vector e3 = (0, 0, 1)t in
3-space. Thus

z = ρ cosϕ while r = ρ sinϕ .

7koordinatot kaduriot
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Here the ranges of the coordinates are often chosen as follows:

0 ≤ ρ, while 0 ≤ θ ≤ 2π, and 0 ≤ ϕ ≤ π

(note the different upper bounds for θ and ϕ). Recall that the volume
of a region D ⊆ R3 is calculated using a volume element of the form

dV = ρ2 sinϕ dρ dθ dϕ,

so that the volume of a region D is

vol(D) =

∫

D

dV =

∫∫∫

D

ρ2 sinϕ dρ dθ dϕ .

Example 2.7.4. Calculate the volume of the spherical shell between
spheres of radius α > 0 and β ≥ α.

Now consider a sphere Sρ of radius ρ = β. The area of a spherical
region on Sρ is calculated using the area element

dASρ
= β2 sinϕ dθ dϕ .

Thus the area of a spherical region D ⊆ Sβ is given by the integral

area(D) =

∫

D

dASρ
=

∫∫
β2 sinϕ dθ dϕ .

Example 2.7.5. Calculate the area of the spherical region on a
sphere of radius β included in the first octant, (so that all three Carte-
sian coordinates are positive).

2.8. Cotangent space and cotangent bundle

Derivations were already discussed in Section 1.6. Recall that the
tangent space TpM at p ∈M is the space of derivations at p.

Definition 2.8.1. The vector space dual to the tangent space Tp
is called the cotangent space, and denoted T ∗

p .

Thus an element of a tangent space is a vector, while an element of
a cotangent space is called a 1-form, or a covector.

Definition 2.8.2. As a set, the cotangent bundle, denoted T ∗M ,
of an n-dimensional manifold M is the disjoint union of all cotangent
spaces T ∗

pM as p ranges through M , or in formulas:

T ∗M =
⋃

p∈M
T ∗
pM.

Definition 2.8.3. The basis dual to the basis ( ∂
∂ui ) is denoted

(dui), i = 1, . . . , n.
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Thus each dui is by definition a 1-form on Tp, or a cotangent vector
(covector for short). We are therefore working with dual bases

(
∂

∂ui

)

for vectors, and (dui) for covectors. The pairing as in (2.6.1) gives
〈
∂

∂ui
, duj

〉
= duj

(
∂

∂ui

)
= δji , (2.8.1)

where δji is the Kronecker delta: δji = 1 if i = j and δji = 0 if i 6= j.

Example 2.8.4. Examples of 1-forms in the plane are dx, dy, dr, rdr,
dθ.



CHAPTER 3

Number systems and infinitesimals

3.1. Successive extensions N, Z, Q, R, ∗R

The page http://u.cs.biu.ac.il/~katzmik/88-826.html gives
a link to these course notes as well as exams from previous years.

Our reference for true infinitesimal calculus is Keisler’s textbook
[Keisler 1986], downloadable at
http://www.math.wisc.edu/~keisler/calc.html

We start by motivating the familiar sequence of extensions of num-
ber systems

N →֒ Z →֒ Q →֒ R
in terms of their applications in arithmetic, algebra, and geometry.

Remark 3.1.1. Each successive extension is introduced for the pur-
pose of solving problems, rather than enlarging the number system for
its own sake. Thus, the extension Q →֒ R enables one to express the
length of the diagonal of the unit square and the area of the unit disc
in our number system.

The familiar continuum R is an Archimedean continuum, in the
sense that it satisfies the following Archimedean property.

Definition 3.1.2. An ordered field extending N is said to satisfy
the Archimedean property if

(∀ǫ > 0)(∃n ∈ N) [nǫ > 1] .

We will provisionally denote the real continuum by A, where “A”
stands for Archimedean. Thus we obtain a chain of extensions

N →֒ Z →֒ Q →֒ A,

as above, where A is complete. In each case one needs an enhanced
ordered number system to solve an ever broader range of problems from
algebra or geometry.

Remark 3.1.3. Each real number can be represented by an unend-
ing decimal. The idea of representing each number by an unending
decimal is due to Simon Stevin in the 16th century; some historical
remarks on Stevin and his numbers can be found in Section 20.1.
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The next stage is the extension

N →֒ Z →֒ Q →֒ A →֒ B,

where B is a Bernoullian continuum containing infinitesimals, defined
as follows.

Definition 3.1.4. A Bernoullian extension of R is any proper ex-
tension which is an ordered field.

Remark 3.1.5. The A-track approach to the calculus in the spirit
of Weierstrass and his followers exploits the complete Archimedean
continuum exclusively. The B-track approach exploits an infinitesimal-
enriched continuum. Both of these approaches to the calculus and
analysis have been present throughout the history of analysis starting
from the 17th century onward; see Part 3.

Any Bernoullian extension allows us to define infinitesimals and do
interesting things with those. But things become really interesting if
we assume the Transfer Principle (Section 3.8), and work in a true
hyperreal field, defined as in Definition 3.3.4 below. We will provide
some motivating comments for the Transfer Principle in Section 3.3.

3.2. Motivating discussion for infinitesimals

Infinitesimals can be motivated from three different angles: geo-
metric, algebraic, and arithmetic/analytic.

θ

Figure 3.2.1. Hornangle θ is smaller than every recti-
linear angle. Courtesy of Arkadius Kalka.
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Remark 3.2.1 (Geometric approach (hornangles)). Some students
have expressed the sentiment that they did not understand infinites-
imals until they heard a geometric explanation of them in terms of
what was classically known as hornangles. A hornangle is the crevice
between a circle and its tangent line at the point of tangency. If one
thinks of this crevice as a quantity, it is easy to convince oneself that it
should be smaller than every rectilinear angle (see Figure 3.2.1). This
is because a sufficiently small arc of the circle will be in the convex
region cut out by the rectilinear angle no matter how small. One can
define addition on these angles (e.g., the sum of two hornangles is the
hornangle defined by the circle whose curvature is the sum of the cur-
vatures of the original circles) with the result that a hornangle added
to itself arbitrarily many times will still be smaller than any rectilinear
angle. We cite this example merely as intuitive motivation (our actual
construction of infinitesimals will be different).

Remark 3.2.2 (Algebraic approach (passage from ring to field)).
The idea is to represent an infinitesimal by a sequence tending to zero.
One can get something in this direction without reliance on any form
of the axiom of choice. Namely, take the ring S of all sequences of
real numbers, with arithmetic operations defined term-by-term. Now
quotient the ring S by the equivalence relation that declares two se-
quences to be equivalent if they differ only on a finite set of indices.
The resulting object S/K is a proper ring extension of R, where R is
embedded by means of the constant sequences. However, this object
is not a field. For example, it has zero divisors. But quotienting it
further in such a way as to get a field, by extending the ideal K to a
maximal ideal K ′, produces a field S/K ′, namely a hyperreal field.

Remark 3.2.3 (Analytic/arithmetic approach). This approach is
similar to 3.2.2 but with greater emphasis on analysis rather than alge-
bra. One can mimick the construction of the reals out of the rationals
as the set of equivalence classes of Cauchy sequences, and construct
the hyperreals as equivalence classes of sequences of real numbers un-
der an appropriate equivalence relation. This viewpoint is detailed in
Section 5.1.

Some more technical comments on the definability of a hyperreal
line can be found in Section 18.1.

3.3. Introduction to the transfer principle

The transfer principle is a type of theorem that, depending on
the context, asserts that properties, rules, laws or procedures valid
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for a certain number system, still apply (i.e., are “transfered”) to an
extended number system.

Example 3.3.1. The familiar extension Q →֒ R preserves the prop-
erty of being an ordered field.

Example 3.3.2. To give a negative example, the frequently used
extension R →֒ R∪{±∞} of the real numbers to the so-called extended
reals does not preserve the property of being an ordered field.

The hyperreal extension R →֒ ∗R (defined below) preserves all first-
order properties (i.e., properties involving quantification over elements
but not over sets; see Section 5.8 for a fuller discussion) of ordered
fields.

Example 3.3.3. The formula sin2 x + cos2 x = 1, true over R for
all real x, remains valid over ∗R for each hyperreal input x, including
infinitesimal and infinite values of x ∈ ∗R.

Thus the transfer principle for the extension R →֒ ∗R is a theorem
asserting that any statement true over R is similarly true over ∗R,
and vice versa. Historically, the transfer principle has its roots in the
procedures involving Leibniz’s Law of continuity ; see Section 21.3.

We will explain the transfer principle in several stages of increasing
degree of abstraction. More details can be found in Sections 3.8, 5.5,
5.7, and chapter 16.

Definition 3.3.4. An ordered field B, properly including the field
A = R of real numbers (so that A $ B) and satisfying the Transfer
Principle, is called a hyperreal field.

Once such an extended field B is fixed, elements of B are called
hyperreal numbers,1 while the extended field itself is usually denoted ∗R.

Theorem 3.3.5. Hyperreal fields exist.

For example, a hyperreal field can be constructed as the quotient of
the ring RN of sequences of real numbers, by an appropriate maximal
ideal; see Section 5.3.

3.4. Infinitesimals and infinite numbers

Definition 3.4.1. A positive infinitesimal is a positive hyperreal
number ǫ such that

(∀n ∈ N) [nǫ < 1] .

1Similar terminology is used with regard to integers and hyperintegers; see
Section 5.11.



3.5. KEISLER’S PICTORIAL TECHNIQUES 39

Alternatively one could quantify over real n. More generally, we
have the following.

Definition 3.4.2. A hyperreal number ε is said to be infinitely
small or infinitesimal if

−a < ε < a

for every positive real number a.

In particular, one has ε < 1
2
, ε < 1

3
, ε < 1

4
, ε < 1

5
, etc. If ε > 0

is infinitesimal then H = 1
ε

is positive infinite, i.e., greater than every
real number.

Finite

−2 −1 0 1 2

Positive
infinite

Infinite
telescope

1
ǫ
− 1

1/ǫ
1
ǫ

+ 1

Figure 3.4.1. Keisler’s telescope. Courtesy of Arka-
dius Kalka.

A hyperreal number that is not an infinite number is called finite;
sometimes the term limited is used in place of finite.

3.5. Keisler’s pictorial techniques

Keisler’s textbook uses pictorial techniques.2 Thus, it exploits the
technique of representing the hyperreal line graphically by means of:

(1) dots indicating the separation between the finite realm and
the infinite realm;

(2) One can view infinitesimals with microscopes as in Figure 4.1.1;
(3) One can also view infinite numbers with telescopes as in Fig-

ure 3.4.1.
2technikot tziuriot
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3.6. Finite hyperreals

We have an important subset

{finite hyperreals} ⊆ ∗R

which is the domain of the function called the standard part function
(also known as the shadow):

st : {finite hyperreals} → R

which rounds off each finite hyperreal to the nearest real number. For
details concerning the shadow see Section 4.1.

Example 3.6.1. Consider the slope calculation for y = x2 at a
point c. Here we exploit the standard part function (the shadow). If
a curve is defined by y = x2 we wish to find the slope at the point c.
To this end we use an infinitesimal x-increment ∆x and compute the
corresponding y-increment ∆y = (c+∆x)2−c2 = (c+∆x+c)(c+∆x−
c) = (2c+∆x)∆x. The corresponding “average” slope is therefore ∆y

∆x
=

2c+ ∆x which is infinitely close to 2c, and we are naturally led to the
definition of the slope at c as the shadow of ∆y

∆x
, namely

st

(
∆y

∆x

)
= 2c.

3.7. Extension principle

This section deals with the extension principle, which expresses the
idea that all real objects have natural hyperreal counterparts. We will
be mainly interested in sets, functions and relations. The extension
principle asserts the following:

The order relation on the hyperreal numbers extends
the order relation on the real numbers. There exists a
hyperreal number greater than zero but smaller than
every positive real number. Every set D ⊆ R has
a natural extension ∗D ⊆ ∗R. Every real function f
with domain D has a natural hyperreal extension ∗f
with domain ∗D.

Here “extension” means that
∗f⇂D = f.

We will also exploit extensions of arbitrary relations. Here the noun
principle (in extension principle) means that we are going to assume
that there is a function ∗f : B → B which satisfies certain properties. It
is a separate problem to define a continuum B which admits a coherent
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definition of ∗f for all functions f : A → A. Such a problem will be
solved in Section 5.3.

Here the naturality of the extension alludes to the fact that such
an extension is unique, and the coherence refers to the fact that the
domain of the natural extension of a function is the natural extension of
its domain. We now present a more detailed version of Definition 3.4.2.

Definition 3.7.1. The following three terms will be useful in the
sequel:

(1) A positive infinitesimal is a positive hyperreal smaller than
every positive real.

(2) A negative infinitesimal is a negative hyperreal greater than
every negative real.

(3) An arbitrary infinitesimal is either a positive infinitesimal, a
negative infinitesimal, or zero.

Ultimately it turns out counterproductive to employ asterisks for
hyperreal functions; in fact we will drop them already in equation (3.8.1).
See also Remark 5.8.4.

3.8. Transfer principle

Definition 3.8.1. The Transfer Principle asserts that every first-
order statement true over R is similarly true over ∗R, and vice versa.

Remark 3.8.2. The adjective first-order alludes to the limitation
on quantification to numbers as opposed to sets of numbers, as dis-
cussed in more detail in Section 5.8.

Listed below are a few examples of first-order statements.

Example 3.8.3. The commutativity rule for addition x+y = y+x
is valid for all hyperreal x, y by the transfer principle.

Example 3.8.4. The formula

sin2 x+ cos2 x = 1 (3.8.1)

is valid for all hyperreal x by the transfer principle.

Example 3.8.5. The statement

0 < x < y =⇒ 0 <
1

y
<

1

x
(3.8.2)

holds for all hyperreal x, y.
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Example 3.8.6. The indicator function χQ of the rational numbers
equals 1 on rational inputs and 0 on irrational inputs. By the transfer
principle, its natural extension ∗χQ = χ(∗Q) will be 1 on hyperrational

numbers ∗Q and 0 on hyperirrational numbers (namely, numbers in the
complement ∗R \∗Q).

Example 3.8.7. All ordered field -statements are subject to trans-
fer. As we will see below, it is possible to extend transfer to a much
broader category of statements, such as those containing the function
symbols “exp” or “sin” or those that involve infinite sequences of reals.

We summarize the definitions that already appeared in Section 3.3.

Definition 3.8.8. The following three terms will be useful in the
sequel.

(1) A hyperreal number x is finite if there exists a real number r
such that |x| < r.

(2) A hyperreal number is called positive infinite if it is greater
than every real number;

(3) a hyperreal number negative infinite if it is smaller than every
real number.

3.9. Three orders of magnitude

Hyperreal numbers come in three orders of magnitude: infinitesi-
mal, appreciable, and infinite.

Definition 3.9.1. A number is appreciable if it is finite but not
infinitesimal.

Next, we will outline the rules for manipulating hyperreal numbers.
To give a typical proof, consider the rule that if ǫ is positive in-

finitesimal then 1
ǫ

is positive infinite. Indeed, for every positive real r

we have 0 < ǫ < r. Now if r is real then 1
r

is also real. It follows
from (3.8.2) by transfer that 1

ǫ
is greater than every positive real, i.e.,

that 1
ǫ

is infinite.

3.10. Rules for manipulating hyperreals

Let ǫ, δ denote arbitrary infinitesimals. Let b, c denote arbitrary
appreciable numbers. Let H,K denote arbitrary infinite numbers. We
have the following theorem.

Theorem 3.10.1. We have the following rules for addition:

• ǫ+ δ is infinitesimal;
• b+ ǫ is appreciable;
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• b+ c is finite (possibly infinitesimal);
• H + ǫ and H + b are infinite.

We have the following rules for products.

• ǫδ and bǫ are infinitesimal;
• bc is appreciable;
• Hb and HK are infinite.

We have the following rules for quotients.

• ǫ
b
, ǫ

H
, b

H
are infinitesimal;

• b
c
is appreciable;

• b
ǫ
, H

ǫ
, H

b
are infinite provided ǫ 6= 0.

We have the following rules for roots, where n is a standard natural
number.

• if ǫ > 0 then n
√
ǫ is infinitesimal;

• if b > 0 then n
√
b is appreciable;

• if H > 0 then n
√
H is infinite.

Remark 3.10.2. The traditional topic of the so-called “indetermi-
nate forms” can be treated without introducing any ad-hoc terminol-
ogy, by noting that we have no rules for the order of magnitude in
certain cases, such as ǫ

δ
, H

K
, Hǫ, and H + K. These cases correspond

to what are known since François Napoléon Marie Moigno as indeter-
minate forms.

Theorem 3.10.3. Arithmetic operations on the hyperreal numbers
are governed by the following rules.

(1) every hyperreal number between two infinitesimals is infinites-
imal.

(2) Every hyperreal number which is between two finite hyperreal
numbers, is finite.

(3) Every hyperreal number which is greater than some positive
infinite number, is positive infinite.

(4) Every hyperreal number which is less than some negative infi-
nite number, is negative infinite.
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Example 3.10.4. The difference
√
H + 1 −

√
H − 1 (where H is

infinite) is infinitesimal. Namely,

√
H + 1 −

√
H − 1 =

(√
H + 1 −

√
H − 1

) (√
H + 1 +

√
H − 1

)
(√

H + 1 +
√
H − 1

)

=
H + 1 − (H − 1)(√
H + 1 +

√
H − 1

)

=
2√

H + 1 +
√
H − 1

is infinitesimal. Once we introduce limits (see Section 4.3), this example
can be reformulated as follows: limn→∞

(√
n+ 1 −

√
n− 1

)
= 0.

3.11. Two relations of proximity

Definition 3.11.1. Two hyperreal numbers a, b are said to be in-
finitely close, written

a ≈ b,

if their difference a− b is infinitesimal.

It is convenient also to introduce the following terminology and
notation. We will use Leibniz’s notation pq . Leibniz actually used a
symbol that looks more like ⊓ but the latter is commonly used to denote
a product. Leibniz used the symbol to denote a generalized notion of
equality “up to” a negligible term (though he did not distinguish it
from the usual symbol “=” which he also used in the same sense). A
prototype of such a relation (though not the notation) appeared already
in Fermat under the name adequality. We will use it for a multiplicative
relation among (pre)vectors.

Definition 3.11.2. Two hyperreal numbers a, b are said to be ad-
equal,3 written

a pq b,

if either a
b
≈ 1 or a = b = 0.

Remark 3.11.3. The relation sin x ≈ x for infinitesimal x is imme-
diate from the continuity of sine at the origin (in fact both sides are
infinitely close to 0), whereas the relation

sin x pq x

is a subtler relation equivalent to the computation of the first order
Taylor approximation of sine.

3See Section 21.1 on Fermat.



CHAPTER 4

From infinitesimal calculus to ultrapower

4.1. Standard part principle

In addition to the extension principle, and the transfer principle, an
important role in infinitesimal mathematics is played by the standard
part principle.

Theorem 4.1.1 (Standard Part Principle). Every finite hyperreal
number x is infinitely close to a unique real number.

The proof will be given in Section 4.11.

r r + β r + γr + α

st

−1

−1

0

0

1

1

2

2

3

3

4

4r

Figure 4.1.1. The standard part function, st, “rounds
off” a finite hyperreal to the nearest real number. The func-
tion st is here represented by a vertical projection. Keisler’s
“infinitesimal microscope” is used to view an infinitesimal
neighborhood of a standard real number r, where α, β,
and γ represent typical infinitesimals. Courtesy of Wiki-
pedia.
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Definition 4.1.2. The real number infinitely close to a finite hy-
perreal x is called the standard part, or shadow, denoted st(x), of x.

Thus we have x ≈ st(x).

Definition 4.1.3. The ring hR ⊆ ∗R of finite hyperreals is the
domain of the shadow st : hR → R.

We will use the notation ∆x, ∆y for infinitesimals.

4.2. Differentiation

An infinitesimal increment ∆x can be visualized graphically by
means of a microscope as in the Figure 4.2.1.

a

a a+ ∆x

Figure 4.2.1. Infinitesimal increment ∆x under the
microscope. Courtesy of Arkadius Kalka.
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Definition 4.2.1. The slope s of a function f at a real point a is
defined by setting

s = st

(
f(a+ ∆x) − f(a)

∆x

)

whenever the shadow exists (i.e., the ratio is finite) and is the same
for each nonzero infinitesimal ∆x. The construction is illustrated in
Figure 4.2.2.

a

|f(a+ ∆x) − f(a)|

a a+ ∆x

Figure 4.2.2. Defining slope of f at a. Courtesy of
Arkadius Kalka.

Definition 4.2.2. Let f be a real function of one real variable.
The derivative of f is the new function f ′ whose value at a real point x
is the slope of f at x. In symbols,

f ′(x) = st

(
f(x+ ∆x) − f(x)

∆x

)
(4.2.1)

whenever the slope exists as specified in Definition 4.2.1.
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Equivalently, we can characterize the real function f ′ using the
relation ≈, by setting

f ′(x) ≈ f(x+ ∆x) − f(x)

∆x

(wherever the slope exists, as before).

Definition 4.2.3. When y = f(x) we define a new dependent
variable ∆y by settting

∆y = f(x+ ∆x) − f(x)

called the y-increment.

Then we can write the derivative as st
(
∆y
∆x

)
.

Example 4.2.4. If f(x) = x2 we obtain the derivative of y = f(x)
by the following direct calculation already performed in Example 3.6.1:

f ′(x) ≈ ∆y

∆x
=

(x+ ∆x)2 − x2

∆x

=
(x+ ∆x− x)(x+ ∆x+ x)

∆x

=
∆x(2x+ ∆x)

∆x
= 2x+ ∆x

≈ 2x.

4.3. Limit and standard part

Definition 4.3.1. Let L and c be real numbers. We say that L is
the limit of a function f at the point c, and write

lim
x→c

f(x) = L,

if whenever x is infinitely close to c but different from c, the value f(x)
is infinitely close to L.

Equivalently, we have limx→c f(x) = L if and only if each x ≈ c, x 6=
c, satisfies st(f(x)) = L. Thus we can define the derivative by setting

f ′(x) = lim
∆x→0

(
f(x+ ∆x) − f(x)

∆x

)

under the conditions specified in Definition 4.2.2.
One similarly defines infinite limits like limx→∞ f(x), etc.
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4.4. Differentials

Given a function y = f(x) one defines the dependent variable ∆y =
f(x+ ∆x) − f(x) as in Definition 4.2.3 above.

Definition 4.4.1. We define a new dependent variable dy by set-
ting dy = f ′(x)∆x at a point where f is differentiable, and sets for
symmetry dx = ∆x.

Remark 4.4.2. We have the adequality

dy pq ∆y if dy 6= 0

as in Definition 3.11.2.

Theorem 4.4.3. Leibniz’s notation dy
dx

is related to Lagrange’s no-
tation as follows:

f ′(x) =
dy

dx
or equivalently dy = f ′(x)dx.

In Leibniz’s notation, rules such as the chain rule acquire an ap-
pealing form.

Remark 4.4.4. For a function z = g(x, y) of two variables one
can write dz = ∂g

∂x
dx + ∂g

∂y
dy with a similar meaning attached to the

infinitesimal differentials dx, dy, and dz.

4.5. Second differences and second derivatives

Definition 4.5.1. Let y = f(x). The second difference ∆2y =
∆2(x, y,∆x) is the dependent variable

∆2y = f(x) − 2f(x+ ∆x) + f(x+ 2∆x).

Definition 4.5.2. The second derivative f ′′(x) is defined by set-
ting f ′′(x) = g′(x) where g(x) = f ′(x).

If the derivative of the derivative of f is continuous then one can

define the second derivative equivalently by setting f ′′(x) = st
(
∆2y
∆x2

)
;

see Theorem 4.5.4.
As in the case of the first derivative, the second derivative is said

to exist at x if the value is independent of the choice of ∆x.

Definition 4.5.3. The dependent variable d2y is d2y = f ′′(x)(dx)2.

Thus whenever d2y 6= 0, one has ∆2y pq d
2y.

Theorem 4.5.4. Assume that the derivative of the derivative of f

is continuous. Then f ′′(x) = st
(
∆2y
∆x2

)
.
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Proof of equivalence of two definitions. Since both sides
of the claimed equality (f ′(x))′ = st

(
∆2y
∆x2

)
are unaffected by addition of

linear terms to the function f , we can assume without loss of generality
that f(x) = f ′(x) = 0 at a fixed point x.

Let h = ∆x. We apply Taylor formula with remainder (generalizing
the mean value theorem; see Theorem 7.4.1 below). Thus we have

f(x+ h) =
1

2
h2f ′′(x+ ϑh)

where f ′′(x) is shorthand for (f ′(x))′, for suitable 0 < ϑ < 1. Simi-
larly, f(x+ 2h) = 1

2
h2f ′′(x+ ϑ̄ 2h). Then

∆2y = f(x) − 2f(x+ h) + f(x+ 2h)

= f(x) − 2(1
2
)h2f ′′(x+ ϑh) + 1

2
(2h)2f ′′(x+ ϑ̄ 2h)

= −h2f ′′(x+ ϑh) + 2h2f ′′(x+ ϑ̄ 2h)

and therefore

∆2y

∆x2
= −f ′′(x+ ϑh) + 2f ′′(x+ ϑ̄ 2h) ≈ f ′′(x)

by continuity of f ′′. �

4.6. Application: osculating circle of a curve, curvature

Second differences provide an intuitive approach to understanding
the curvature of curves.

Definition 4.6.1. Given an arclength parametrisation γ(s) of a
smooth curve in the plane, consider the shadow of the circle through
three infinitely close points A,B,C on γ. This circle is called the
osculating circle of γ at the point P ∈ γ given by the common shadow
of A,B,C.

Definition 4.6.2. The center of curvature O at P of the curve γ
is the center of the osculating circle to the curve at P .

Definition 4.6.3. The curvature kγ(s) of the curve γ at a point P =
γ(s) is the reciprocal of the radius |OP | of the osculating circle to the
curve at P , i.e., kγ(s) = 1

|OP | .

Theorem 4.6.4. The curvature of the curve at a point P is the
norm of the second derivative of γ(s) at P .

Proof. Given a smooth regular plane curve in R2, consider a dia-
mond formed by three consecutive infinitely close points A,B,C on the
curve, such that |AB| = |BC|, together with a fourth point B′ ∈ R2

symmetric to B with respect to the line AC. Thus |AB| = |BC| =
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|CB′| = |B′A|. To construct such a diamond we intersect the curve
with a circle of infinitesimal radius h centered at B, to produce points A
and C with |AB| = |BC| = h. Then the center of curvature of the curve
is the (shadow of the) center O of the circle passing through A,B,C.
Let R = 1

k
be the radius of this circle. By similarity of isosceles trian-

gles △ABB′ ∼△OAB, we obtain

|BB′|
h

=
h

R

where h = |AB| = |BC| is the side of the diamond and |BB′| is the
length of the short diagonal. Therefore

|BB′|
h2

=
1

R
= k (4.6.1)

is the curvature at the point. The expression (4.6.1) can be identi-
fied with the second derivative of the curve parametrized by arclength.
Indeed, we have

BB′ = (A−B) + (C −B) = A+ C − 2B

and the second derivative, by Definition 4.5.2, is the shadow of

A+ C − 2B

h2
=

∆2γ

h2

where we used the fact that for an infinitesimal arc, the ratio of the
arc AB (or BC) to the chord h is infinitely close to 1, i.e., the arc
and the chord are adequal (see Section 3.11). The result now follows
from Theorem 4.5.4 expressing the second derivative in terms of second
differences. �

4.6.1. Epilogue: true infinitesimal calculus. This section is op-
tional. The article [Katz & Polev 2017] describes a recent experience of
teaching true infinitesimal calculus. The starting point of the article is the
view that education and pedagogy are empirical sciences and therefore the
effectiveness of this or that approach is most pertinently judged based on
their classroom effect, rather than apriori partis pris.

Note the choice is not between infinitesimals and limits, since limits are
present in both approaches (in the infinitesimal approach they are defined
via the shadow; see Section 4.3. Rather, the choice is between infinitesimals
and the Epsilontik. Moreover the goal is not to replace the ǫ, δ definitions
by infinitesimal ones, but rather to use the latter to prepare for the former.

The infinitesimal approach was the main approach to analysis for several
hundred years from Leibniz to Cauchy before the intuitive definitions were
replaced by long-winded epsilontic paraphrases thereof.
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Some mathematicians and following them also some historians tend to
view the Weierstrassian approach as the benchmark from which other ap-
proaches are measured. That this is taken as a self-evident truth may be
a reflection of a parti pris involving a belief in a butterfly model of devel-
opment of mathematics. Philosopher Ian Hacking effectively challenges this
belief in his recent book by contrasting such a model with a Latin model ;
see [Hacking 2014].

Hacking’s distinction between the butterfly model and the Latin model
involves the contrast between a model of a deterministic biological devel-
opment of animals like butterflies, as opposed to a model of a contingent
historical evolution of languages like Latin.

Hacking’s dichotomy applies to the development of the field of math-
ematics as a whole. Some scholars view the development of mathematics
as a type of organic process predetermined genetically from the start, even
though the evolution of the field may undergo apparently sudden and dra-
matic changes, like the development of a butterfly which passes via a cocoon
stage which is entirely unlike what it is pre-destined to produce in the end.

The Latin model acknowledges contingent factors in the development
of an exact science (mathematics included), and envisions the possibility of
other paths of development that may have been followed.

For example, had an axiomatic formalisation of infinitesimals been pro-
posed earlier (e.g., by Du Bois-Reymond or other infinitesimalist of his gen-
eration, in conjunction with Frege and/or Peano), it might have been in-
corporated into the early formalisations of set theory, and spared us the
verbal excesses of the Cantor–Russell opposition to infinitesimals, reflecting
the state of affairs in mathematical foundations toward the end of the 19th
century.

On such a view, there is no reason to view A-track Weierstrassian anal-

ysis as the benchmark by which infinitesimal analysis should be measured,

and strengthens the Fermat–Leibniz–Euler–Cauchy–Robinson continuity in

the development of infinitesimal analysis.

4.7. Introduction to the ultrapower

To motivate the material on filters contained in this chapter, we
will first provide an outline of a construction of a hyperreal field ∗R
exploiting filters in this section. A more detailed technical presentation
of the construction appears in Section 5.3.

Let RN denote the ring of sequences of real numbers, with arithmetic
operations defined termwise. Then we will define ∗R as

∗R = RN/MAX (4.7.1)

where MAX ⊆ RN is an appropriate maximal ideal.
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Remark 4.7.1. What we wish to emphasize at this stage is the
formal analogy between (4.7.1) and the construction of the real field as
the quotient field of the ring of Cauchy sequences of rational numbers.

Note that in both cases, the subfield is embedded in the superfield
by means of constant sequences. We will now describe a construction
of such a maximal ideal.

Remark 4.7.2. The idea is to define the ideal MAX as consisting
of all “negligible” sequences 〈un : n ∈ N〉, i.e., sequences which vanish
for a set of indices of full measure 1; namely,

ξ
(
{n ∈ N : un = 0}

)
= 1.

Let P(N) is the set of subsets of N. Here a measure ξ : P(N) → {0, 1}
has the following properties:

(1) ξ takes only two values, 0 and 1;
(2) ξ is a finitely additive measure;
(3) ξ takes the value 1 on each cofinite set.1

Definition 4.7.3. The subset Fξ ⊆ P(N) consisting of sets of full
measure 1 is called a free ultrafilter.

These originate with [Tarski 1930]. The construction of a Bernoul-
lian continuum outlined above was therefore not available prior to
that date. The construction outlined above is known as an ultra-
power construction. The first construction of this type appeared in
[Hewitt 1948], as did the term hyper-real.

Remark 4.7.4. In the paragraph above, we motivated the con-
struction in terms of finitely additive measures because the notion of a
measure is more familiar to the broad mathematical public today than
the notion of a filter. The two descriptions are in fact equivalent. The
more detailed treatment below will rely on filters.

4.8. Introduction to filters

To present an infinitesimal-enriched continuum of hyperreals, we
need some preliminaries on filters. Let I be a nonempty set (usually N).
The power set of I is the set

P(I) = {A : A ⊆ I}
of all subsets of I.

1For each pair of complementary infinite subsets of N, such a measure ξ decides
in a coherent way which one is negligible (i.e., of measure 0) and which is dominant
(measure 1).
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Definition 4.8.1. A filter on I is a nonempty collection F ⊆ P(I)
of subsets of I satisfying the following axioms:

• Intersections: if A,B ∈ F , then A ∩ B ∈ F .
• Supersets: if A ∈ F and A ⊆ B ⊆ I, then B ∈ F .

Thus to show that B ∈ F , it suffices to show

A1 ∩ · · · ∩ An ⊆ B,

for some finite n and some A1, . . . , An ∈ F .

Example 4.8.2. The full power set P(I) is itself a filter.

A filter F contains the empty set ∅ if and only if F = P(I).

Definition 4.8.3. We say that a filter F is proper if ∅ 6∈ F .

Every filter contains I itself, and in fact the one-element set {I} is
the smallest filter on I.

Definition 4.8.4. An ultrafilter is a proper filter that satisfies the
following additional property:

• for any A ⊆ I, either A ∈ F or Ac ∈ F , where Ac = I \ A.

4.9. Examples of filters

We present several examples of filters.

Example 4.9.1 (Principal ultrafilter). Choose i ∈ I. Then the
collection

F i = {A ⊆ I : i ∈ A}
is an ultrafilter, called the principal ultrafilter generated by i.

Remark 4.9.2. If I is finite, then every ultrafilter on I is of the
form F i for some i ∈ I, and so is principal.

Example 4.9.3 (Fréchet filter). The filter

FFre = {A ⊆ I : I \ A is finite}
is the cofinite, or Fréchet, filter on I, and is proper if and only if I is
infinite. Note that FFre is not an ultrafilter.2

2More generally, one can consider a filter generated by a collection. If ∅ 6= H ⊆
P(I), then the filter generated by H, i.e., the smallest filter on I including H, is
the collection FH = {A ⊆ I : A ⊃ B1 ∩ · · · ∩ Bn for some n and some Bi ∈ H}
For H = ∅ we set FH = {I}. If H has a single member B, then FH = {A ⊆
I : A ⊃ B}, which is called the principal filter generated by B. The ultrafilter F i

of Example 4.9.1 is the special case of this when B = {i}, namely a set containing
a single element.
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4.10. Properties of filters

The following results are immediate consequences of the definitions.

Theorem 4.10.1. An ultrafilter F has the following properties:

(1) A ∩ B ∈ F if and only if (A ∈ F and B ∈ F);
(2) A ∪ B ∈ F if and only if (A ∈ F or B ∈ F);
(3) Ac ∈ F if and only if A 6∈ F .

Theorem 4.10.2. Let F be an ultrafilter and {A1, . . . , An} a finite
collection of pairwise disjoint (Ai ∩ Aj = ∅) sets such that

A1 ∪ . . . ∪ An ∈ F .
Then Ai ∈ F for exactly one i such that 1 ≤ i ≤ n.

Recall that a free ultrafilter is an ultrafilter that is not principal.

Theorem 4.10.3. A nonprincipal ultrafilter must contain each cofi-
nite set. Thus every free ultrafilter F includes the Fréchet filter FFre,
namely

FFre ⊆ F .
This is a crucial property used in the construction of infinitesimals

and infinitely large numbers; see e.g., Example 5.2.1.

Remark 4.10.4. A filter F is an ultrafilter on I if and only if it is a
maximal proper filter on I, i.e., a proper filter that cannot be extended
to a larger proper filter on I.

Definition 4.10.5. A collection H ⊆ P(I) has the finite intersec-
tion property if the intersection of every nonempty finite subcollection
of H is nonempty, i.e.,

B1 ∩ · · · ∩ Bn 6= ∅ for any n and any B1, . . . , Bn ∈ H.3

4.11. Real continuum as quotient of sequences of rationals

To motivate the construction of the hyperreal numbers, we will first
analyze the construction of the real numbers via Cauchy sequences.
Let QN denote the ring of sequences of rational numbers. Let

QN
C ⊆ QN

denote the subring consisting of Cauchy sequences.

3Note that the filter FH (see note 2) is proper if and only if the collection H
has the finite intersection property.



56 4. FROM INFINITESIMAL CALCULUS TO ULTRAPOWER

Definition 4.11.1. The real field R is the quotient field

R = QN
C

/
MAX (4.11.1)

where MAX ⊆ QN
C is the maximal ideal consisting of null sequences

(i.e., sequences tending to zero).

Note that QN
C is only a ring, whereas the quotient (4.11.1) is a field.

The point we wish to emphasize is that a field extension is con-
structed starting with the base field and using sequences of elements
in the base field.

An alternative construction of R from Q is via Dedekind cuts, as
follows.

Definition 4.11.2 (Dedekind reals). A real number x is a pair x =
{Q,Q′} of two nonempty sets of rationals with the following three
properties:

(1) the sets are complementary i.e., Q ∪Q′ = Q and Q ∩Q′ = ∅;
(2) (∀q ∈ Q) (∀q′ ∈ Q′) [q < q′];
(3) the “left” set Q does not have a maximal element.

Suppose R has already been constructed and let x ∈ R. With
respect to the natural order on R, one can express the two sets Q = Qx

and Q′ = Q′
x as follows: Qx = {q ∈ Q : q < x} and Q′

x = {q ∈ Q : q ≥
x}. This will be exploited in Section 16.2.

The Dedekind reals provide a convenient framework for proving the
standard part principle (Theorem 4.1.1), as follows.

Proof of standard part principle. The result holds gener-
ally for an arbitrary ordered field extension R →֒ E. Indeed, let x ∈ E
be finite. If x ≈ r for r ∈ Q then we set st(x) = r.

Now suppose x is not infinitely close to a rational number. Then x
induces a Dedekind cut {Qx, Q

′
x} on the subfield Q ⊆ R ⊆ E via

the total order of E, by setting Qx = {q ∈ Q : q < x} and Q′
x = {q ∈

Q : q ≥ x} as usual, where Q′
x = {q ∈ Q : q > x} since x is not infinitely

close to a rational number.
The real number corresponding to the Dedekind cut is then infin-

itely close to x. �



CHAPTER 5

Hyperrationals, hyperreals, continuity

5.1. Extending Q

Free ultrafilters F on N were defined in Section 4.10. We will think
of a set A ∈ F in the ultrafilter as dominant and its complement N \A
as negligible.

Let QN be the ring of sequences of rational numbers. We choose
a free ultrafilter F on N and form an ideal MAX = MAXF ⊆ QN as
follows. Here MAX consisting of all sequences 〈un : n ∈ N〉 ∈ QN such
that

{n ∈ N : un = 0} ∈ F .

Definition 5.1.1 (Ultrapower construction). A field extension ∗Q
of Q is the quotient

∗Q = QN/MAX.

Here we dropped the subscript F from MAX for simplicity.

Definition 5.1.2. The inclusion Q →֒ ∗Q is defined by iden-
tifying each q ∈ Q with the equivalence class of the constant se-
quence 〈q, q, q, . . .〉.

Remark 5.1.3. This MAX is not the same maximal ideal as the
one used in the construction of R from Q in Section 4.11. We employ
similar notation to emphasize the similarity of the two constructions.

Definition 5.1.4. The equivalence class of a sequence u = 〈un〉
will be denoted [u] or alternatively [un] ∈ ∗Q.

Theorem 5.1.5. The field ∗Q can be defined in an equivalent way
as follows:

∗Q =
{

[u] : u ∈ QN} ,
where [u] is the equivalence class of the sequence u relative to the ul-
trafilter F .

Definition 5.1.6. The order on the field ∗Q is defined by set-
ting [u] < [v] if and only if {n ∈ N : un < vn} ∈ F .

57
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5.2. Examples of infinitesimals

With respect to the construction presented in Section 5.1, we can
now give some examples of infinitesimals.

Proposition 5.2.1. Let α =
[
1
n

]
i.e., the equivalence class of the

sequence 〈 1
n

: n ∈ N〉. Then α is smaller than r for every positive real
number r > 0.

Proof. We have α = [u] where u = 〈un : n ∈ N〉 is the null se-
quence (i.e., sequence tending to zero) un = 1

n
. Let r ∈ R, r > 0.

Consider the set

S = {n ∈ N : un < r}.
Equivalently, we can write

S =
{
n ∈ N : 1

r
< n

}
.

Since there are only finitely many integers that fail to satisfy the con-
dition 1

r
< n, the set S is cofinite; more explicitly,

S =
{⌈

1
r

⌉
,
⌈
1
r

⌉
+ 1,

⌈
1
r

⌉
+ 2, . . .

}
.

Thus S is a member of the Fréchet filter FFre (see Section 4.9). But FFre ⊆
F by Theorem 4.10.3 for each free ultrafilter F , and in particular the
one used in the ultrapower construction above. Hence S ∈ F . There-
fore α < r by definition of the order relation. �

Example 5.2.2. The sequence
〈

(−1)n

n

〉
(5.2.1)

represents a nonzero infinitesimal in ∗Q, whose sign depends on whether
or not the set 2N of even natural numbers is a member of the ultrafilter.
If 2N ∈ F then the sequence (5.2.1) is equivalent to

〈
1
n

〉
and therefore

generates a positive infinitesimal.

5.3. Ultrapower construction of a hyperreal field

To obtain a full hyperreal field model of a B-continuum, we re-
place Q by R in the construction of Section 5.1, and form a similar
quotient by the ideal MAX ⊆ RN consisting of real sequences 〈un : n ∈
N〉 ∈ RN such that {n ∈ N : un = 0} ∈ F .

Definition 5.3.1. We set

∗R = RN/MAX (5.3.1)

where MAX = MAXF .
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Equivalently,
∗R =

{
[u] : u ∈ RN} .

We wish to emphasize the analogy with formula (4.11.1) defining
the A-continuum, and also a key difference: the basic ring is RN rather
than RN

C . In more detail, we proceed as follows.

(1) We define RN to be a ring with componentwise operations.
(2) We choose a nonprincipal ultrafilter F ⊆ P(N).
(3) We define MAXF to be the subset of RN consisting of real

sequences 〈un〉 such that {n ∈ N : un = 0} ∈ F .
(4) We observe that MAXF is an ideal of the ring RN.
(5) We observe that the quotient RN /MAXF is a field and in fact

an ordered field (see Definition 5.3.2).
(6) We denote the quotient by RN /F to simplify notation.

Definition 5.3.2. A natural order relation ∗< on ∗R is defined by
setting

[un] ∗< [vn]

if and only of the relation < holds for a “dominant” set of indices,
where “dominance” is determined by our fixed ultrafilter F :

[un] ∗< [vn] if and only if {n ∈ N : un < vn} ∈ F .
Additional details on the ultrapower construction can be found e.g.,

in [Davis 1977].

Theorem 5.3.3. The field RN /F satisfies the transfer principle.

We will present a detailed proof of the transfer principle in Chap-
ters 16 and 17. See [Chang & Keisler 1990, Chapter 4], for a more
general model theoretic study of ultrapowers and their applications.

5.4. Construction via equivalence relation

From now on, we will work with a variant of the construction (5.3.1).
The variant is formulated in terms of an equivalence relation. This
variant is more readily generalizable to other contexts (see Section 7.5).

Definition 5.4.1. We set ∗R = RN/∼ where ∼ is an equivalence
relation defined as follows:

〈un〉 ∼ 〈vn〉 if and only if {n ∈ N : un = vn} ∈ F .
Since the relation ∼ depends on the choice of the free ultrafilter F ,

so does the quotient RN/∼. For this reason the logicians, and they are
definitely a special breed, decided to write directly

RN /F ,
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as already noted in Section 5.3. But we will see that this abuse of
notation offers some insights.

Definition 5.4.2. Subsets ∗Q and ∗N of the field ∗R consist of
F -classes of sequences 〈un〉 with rational (respectively, natural) terms.

More generally, we have the following.

Definition 5.4.3. Given a subset X ⊆ R, the subset ∗X of ∗R
consists of F -classes of sequences 〈un〉 with terms un ∈ X for each n.

Definition 5.4.4. If X ⊆ R and f : X → R, then the map
∗f : ∗X → ∗R

sends each F -class of a sequence 〈un〉 (where un ∈ X) to the F -
class of the sequence 〈vn〉 where vn = f(un) for each n, or in for-
mulas ∗f([〈un〉]) = [〈f(un)〉].

It is easy to check that this definition of ∗f is independent of the
choices made in the construction.

As noted in Definition 5.3.2, the order ∗< on ∗R is defined by set-
ting [u] ∗< [v] if and only if {n ∈ N : un < vn} ∈ F .

5.5. The ordered field language

Let the ordered field language be defined starting with a pair of
operations · and + and relation <, and enhanced as follows.

(1) We allow finite expressions like (x + y) · z + (x − 2y) (in free
variables x, y, z, etc.) called terms ;

(2) we can form further formulas like T = T ′ and T < T ′ where T, T ′

are terms;
(3) we allow more complex formulas by means of logical connec-

tives1 and quantifiers ∀, ∃;
(4) given a specific ordered field F , we allow the replacement of

free variables in a formula by elements of F ;
(5) this leads to the notion of a formula being true in F ;
(6) this enables us to express and study various properties of the

field F in a formal and well defined way.

5.6. Extending the language further

The ordered field language defined in Section 5.5 is not sufficient
as a basis for either calculus or analysis. For instance there is no way
to express phenomena related to non-algebraic functions like exp, sin,
etc. Therefore we need to extend the ordered field language further.

1Kesher logi
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Definition 5.6.1. We will use the term extended real number lan-
guage to refer to the ordered field language extended further as follows:

(7) we can freely use expressions like f(x), where f : R → R is
any particular function;

(8) we can freely use formulas like x ∈ D, where D is any partic-
ular subset of R;

(9) we can freely use any particular real numbers as parameters.

Remark 5.6.2. Returning to the fundamental idea of an exten-
sion A →֒ B of an Archimedean continuum by a Bernoullian one, it
may be helpful to point out that there is a triple of objects involved
here:

(1) a symbol r in the language,
(2) the number rA which is the interpretation of the symbol r in

the Archimedean continuum, and
(3) the number rB which is its interpretation in the Bernoullian

continuum, where the star-transform of rA is rB.

There is an important distinction here between syntax (i.e., the lan-
guage itself) and semantics (referring to the model where the language
is interpreted).

A more detailed treatment of formulas can be found for example in
[Loeb & Wolff 2015]. We give a more precise version of the transfer
principle as follows.

Theorem 5.6.3 (Transfer revisited). Let A be a sentence of the
extended real number language, and let ∗A be obtained from A by sub-
stituting ∗f and ∗D for each f or D which occur in A. Then A is true
over R if and only if ∗A is true over ∗R.

In Chapter 16 we will prove a generalisation of Theorem 5.6.3. In
Remark 5.8.4 we will explain our approach to dropping the asterisks
on functions.

Remark 5.6.4. In the statement of the theorem we wrote true
over R, or over ∗R, rather than the usual true in R, to emphasize
the fact that the sentences involved refer not only to real numbers
themselves but also to sets of reals as well as real functions, namely,
objects usually thought of as elements of a superstructure over R; see
Chapter 16 for more details.

Further analysis of the transfer principle appears in Section 5.7.
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5.7. Upward and downward Transfer

Some motivating comments for the transfer principle already ap-
peared in Section 3.3. Recall that by Theorem 5.3.3 we have an exten-
sion R →֒ ∗R of an Archimedean continuum by a Bernoullian one which
furthermore satisfies transfer. To define ∗R, we fix a nonprincipal ultra-
filter F over N and let ∗R = RN/F . By construction, elements [u] of ∗R
are represented by sequences u = 〈un : n ∈ N〉 of real numbers, u ∈ RN,
with an appropriate equivalence relation defined in terms of F as in
Section 5.3. Here an order is defined as follows. We have [u] > 0 if and
only if {n ∈ N : un > 0} ∈ F .

Definition 5.7.1. The inclusion R →֒ ∗R is defined by sending a
real number r ∈ R to the constant sequence un = r, i.e.,

〈r, r, r, . . .〉.
Since we view R as a subset of ∗R, we will denote the resulting (stan-
dard) hyperreal by the same symbol r.

The transfer principle was formulated in Theorem 5.6.3. To sum-
marize, it asserts that truth over R is equivalent to truth over ∗R.
Therefore there are two directions to transfer in.

Definition 5.7.2. Transfer of statements in the direction

R ∗R

is called upward, whereas transfer in the opposite direction
∗R R

is called downward.

5.8. Examples of first order statements

In this section we will illustrate the application of the transfer prin-
ciple by several examples of transfer, applied to sentences familiar from
calculus. The statements that transfer is applicable to are first-order
quantified formulas, namely formulas involving quantification over field
elements only, as in formulas of type (∀x ∈ R), etc. Quantification over
all subsets of the field is disallowed.

Example 5.8.1. The completeness property of the reals is not
transferable because its formulation involves quantification over all sub-
sets of the field, as in (∀A ⊆ R), etc.

Example 5.8.2. Rational numbers q > 0 satisfy the following:

(∀q ∈ Q+)(∃n,m ∈ N)
[
q =

n

m

]
,
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where Q+ is the set of positive rationals. By upward transfer, we obtain
the following statement, satisfied by all hyperrational numbers:

(∀q ∈ ∗Q+)(∃n,m ∈ ∗N)
[
q =

n

m

]

where n,m may be infinite. Hypernatural numbers i.e., elements of ∗N,
will be discussed in more detail in Section 5.11.

As discussed in Section 5.6, Transfer is applicable to functions, as
well, in addition to the ordered field formulas.

Definition 5.8.3. A function f is continuous at a real point c ∈ R
if the following condition is satisfied:

(∀ǫ ∈ R+)(∃δ ∈ R+)(∀x ∈ R)
[
|x− c| < δ ⇒ |f(x) − f(c)| < ǫ

]
.

By upward transfer, a continuous function f similarly satisfies the fol-
lowing formula over ∗R:

(∀ǫ ∈ ∗R+)(∃δ ∈ ∗R+)(∀x ∈ ∗R)
[
|x− c| < δ ⇒ | ∗f(x) − ∗f(c)| < ǫ

]
.

(5.8.1)
Note that formula (5.8.1) is satisfied in particular for each positive
infinitesimal ǫ ∈ ∗R.

Remark 5.8.4. In practice most calculations exploit the hyperreal
extension of a function f , rather than f itself. We will therefore con-
tinue on occasion to denote by f the extended hyperreal function, as
well.

Definition 5.8.5. Let D ⊆ R. A real function f is continuous
in D if the following condition is satisfied:

(∀x ∈ D)(∀ǫ ∈ R+)(∃δ ∈ R+)(∀x′ ∈ D)
[
|x′ − x| < δ ⇒ |f(x′) − f(x)| < ǫ

]
,

where we underlined the first pair of quantifiers for later purposes.

Switching the underlined pair of quantifiers, one obtains an equiv-
alent formula

(∀ǫ ∈ R+)(∀x ∈ D)(∃δ ∈ R+)(∀x′ ∈ D)
[
|x′ − x| < δ ⇒ |f(x′) − f(x)| < ǫ

]
.

(5.8.2)

Remark 5.8.6. Switching the second and third quantifiers in (5.8.2)
produces an inequivalent formula. Namely, we obtain the definition of
uniform continuity as in (5.9.1) below.
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By upward transfer, the hyperreal extension ∗f of such a function
will similarly satisfy the following formula over ∗R:

(∀ǫ ∈ ∗R+)(∀x ∈ ∗D)(∃δ ∈ ∗R+)(∀x′ ∈ ∗D)
[
|x′ − x| < δ ⇒ |∗f(x′) − ∗f(x)| < ǫ

]
,

(5.8.3)

where ∗D ⊆ ∗R is the natural extension of D ⊆ R (see Section 3.1).

5.9. Uniform continuity

Definition 5.9.1. A real function f is uniformly continuous in a
domain D ⊆ R if the following condition is satisfied:

(∀ǫ ∈ R+)(∃δ ∈ R+)(∀x ∈ D)(∀x′ ∈ D)
[
|x′ − x| < δ ⇒ |f(x′) − f(x)| < ǫ

]
.

(5.9.1)

By upward transfer, the hyperreal extension ∗f of such a function
will similarly satisfy the following formula over ∗R:

(∀ǫ ∈ ∗R+)(∃δ ∈ ∗R+)(∀x ∈ ∗D)(∀x′ ∈ ∗D)
[
|x′ − x| < δ ⇒ |∗f(x′) − ∗f(x)| < ǫ

]
.

An alternative characterisation of uniform continuity, of reduced
quantifier complexity, is presented in Section 6.3.

5.10. Example of using downward transfer

To illustrate the use of downward transfer in a proof, consider the
problem of showing that if f is differentiable at c ∈ R and f ′(c) > 0
then there is a point x ∈ R, x > c such that f(x) > f(c). This proof
was proposed by a student in the freshman course 89132 at Bar Ilan
University.

Indeed, for infinitesimal α > 0 we have st
(

∗f(c+α)−∗f(c)
α

)
> 0 as

in (4.2.1). Thus the quotient
∗f(c+α)−∗f(c)

α
itself is appreciable and posi-

tive. Hence we have ∗f(c + α) > ∗f(c). Setting x = c + α, we see that
the following formula holds over the hyperreal field ∗R as witnessed by
this particular x:

(∃x > c)[∗f(x) > ∗f(c)].

We now apply downward transfer to obtain the formula

(∃x > c)[f(x) > f(c)], (5.10.1)

which holds over the real field R. Namely, formula (5.10.1) asserts the
existence of a real number x > c such that f(x) > f(c), as required.

Remark 5.10.1. Another example of downward transfer will be
given in Section 6.2 following formula (6.2.3).
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5.11. Dichotomy for hypernatural numbers

Let us consider the set of hypernatural numbers, ∗N (positive hy-
perintegers) in more detail.

Definition 5.11.1. A hyperreal number x is called finite if |x| is
less than some real number. Equivalently, x is finite if |x| is less than
some natural number. A number is infinite if it is not finite.

Thus an infinite positive hypereal is a hyperreal number bigger than
each real number.

Now consider the extension N →֒ ∗N constructed by an ultrapower
as in Section 5.3, where ∗N = NN/F . Recall that we have the following
definition.

Definition 5.11.2. A sequence u ∈ NN given by

u = 〈un : n ∈ N〉
is said to be equivalent to a sequence v ∈ NN given by v = 〈vn : n ∈ N〉
if and only if the set of indices

{n ∈ N : un = vn}
is a member of a fixed ultrafilter F ⊆ P(N). We identify N with its
image in ∗N via the natural embedding generated by n 7→ 〈n, n, n, . . .〉.

Theorem 5.11.3. Every finite hypernatural number is a natural
number.

Proof. Let [u] ∈ ∗N where u = 〈un : n ∈ N〉. Suppose [u] is finite.
Then there exists a real number

r > 0

such that [u] < r. This means that {n ∈ N : un < r} ∈ F . Modifying
the sequence u on a negligible set of terms does not affect its equiv-
alence class [u]. Therefore we can replace the remaining members of
the sequence by 0 so that the condition un < r is now satisfied for
all n ∈ N. Now consider the finite collection of integers

{
0, 1, 2, . . . ⌊r⌋

}
.

For each index n ∈ N, we have either un = 0, or un = 1, or un = 2,. . . ,
or un = ⌊r⌋. In other words, we represent N as a disjoint union of at
most ⌊r⌋ + 1 sets, each of type Si = {n ∈ N : un = i}.

We now apply the defining property of an ultrafilter (see Theo-
rem 4.10.2). It follows that exactly one of these sets, say

Si0 = {n ∈ N : un = i0},
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is dominant, i.e., it is a member of F . Therefore [u] = i0 and so [u] is
a natural number. �

Alternative proof. We provide an alternative proof exploiting
the transfer principle instead of the special features of the ultrapower
construction. Let r ∈ R+ be fixed. Note that natural numbers satisfy
the formula

(∀n ∈ N)
[
n < r ⇒ n = 0 ∨ n = 1 ∨ n = 2 ∨ . . . ∨ n = ⌊r⌋

]

(of finite length dependent on r). Therefore by transfer, all hypernat-
ural numbers satisfy the corresponding formula

(∀n ∈ ∗N)
[
n < r ⇒ n = 0 ∨ n = 1 ∨ n = 2 ∨ . . . ∨ n = ⌊r⌋

]
.

Thus, if a hypernatural number [u] is smaller than r then it must
necessarily be one of the natural numbers 0, 1, 2, . . . , ⌊r⌋. �

Corollary 5.11.4. Every member of ∗N is either a natural number
or an infinite number.

Proof. This is immediate from Theorem 5.11.3. �



CHAPTER 6

Galaxies, equivalence of definitions of continuity

6.1. Galaxies

Recall that, given a free ultrafilter F on N, we set ∗N = NN/MAX
where u ∈ MAX if and only if {n ∈ N : un = 0} ∈ F . The hypernatu-
rals ∗N are partitioned into galaxies as follows.

Definition 6.1.1. An equivalence relation ∼g on ∗N is defined as
follows: for n,m ∈ ∗N, we set

n ∼g m if and only if |n−m| is finite.

Definition 6.1.2. An equivalence class of the relation ∼g is called
a galaxy. The galaxy of an element x ∈ ∗N will be denoted gal(x).1

Example 6.1.3. By Corollary 5.11.4, there is a unique galaxy con-
taining finite numbers, namely the galaxy

gal(0) = {0, 1, 2, . . .} = N,

where as before each element n of N is identified with the class in ∗N
of the constant sequence 〈n, n, n, . . .〉.

Example 6.1.4. Each galaxy containing an infinite hyperinteger H
is of the form

gal(H) = {. . . , H−3, H−2, H−1, H,H+1, H+2, H+3, . . .} (6.1.1)

and is therefore order-isomorphic to Z (rather than N).

Corollary 6.1.5. The ordered set (∗N, <) is not well-ordered.

Indeed, it contains a copy of Z given by (6.1.1), which is not well-
ordered.

1Sometimes galaxies are defined in the context of larger number systems, such
as ∗R. Our main interest in galaxies lies in illustrating the concept of a non-internal
set; see Section 7.7.
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6.2. Equivalence of S-continuity and ǫ, δ continuity at c

Let D = Df ⊆ R be the domain of a real function f .

Remark 6.2.1. It is a good exercise to prove that ∗(Df ) = D ∗f .
We will denote this set by ∗Df .

Definition 6.2.2. Let x ∈ ∗Df . We say that ∗f is microcontinuous2

at x if whenever x′ ≈ x, one also has ∗f(x′) ≈ ∗f(x) for x′ in the
domain ∗Df of ∗f . Here x′ ≈ x means that x′ − x is infinitesimal.

Remark 6.2.3. This definition can be applied not only at a real
point x ∈ Df but also at a hyperreal point x ∈ ∗Df ; see Example 6.3.4
exploiting microcontinuity at an infinite point.

Theorem 6.2.4. ∗f is microcontinuous at a real point c if and only
if limx→c f(x) = f(c).3

This was already discussed in Section 4.3.

Theorem 6.2.5. Let c ∈ R. A real function f is continuous in
the ǫ, δ sense at c if and only if ∗f is microcontinuous at c.

The result appeared in [Robinson 1966, Theorem 3.4.1] and is
by now part of the logical toolkit of every mathematician working in
Robinson’s framework. We will follow [Goldblatt 1998, p. 76].

Proof of direction (⇐). Let L = f(c). Recall that a real func-
tion f is continuous at c in the ǫ, δ sense if

(∀ǫ ∈ R+)(∃δ ∈ R+)(∀x ∈ Df )
[
|x− c| < δ ⇒ |f(x) − L| < ǫ

]
. (6.2.1)

Assume that ∗f is microcontinuous at c, so that

(∀x ∈ ∗Df ) [x ≈ c ⇒ ∗f(x) ≈ L] . (6.2.2)

2In the literature the term S-continuous is sometimes used in place of
microcontinuous.

3Microcontinuity at all points in a segment (“between two limits” i.e., end-
points) provides a useful modern proxy for Cauchy’s definition of continuity in his
1821 text Cours d’Analyse: “the function f(x) is continuous with respect to x
between the given limits if, between these limits, an infinitely small increment in
the variable always produces an infinitely small increment in the function itself.”
(translation from [Bradley & Sandifer 2009, p. 26]) In the current cultural cli-
mate it needs to be pointed out that Cauchy was obviously not familiar with our
particular model of a B-continuum, based as it is on traditional set-theoretic foun-
dations. On the other hand, his procedures and inferential moves find closer proxies
in the context of modern infinitesimal-enriched continua than in the context of mod-
ern Archimedean continua; see Section 23.1. See Section 23.1 for further details on
Cauchy’s use of infinitesimals.
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Let us prove that f is continuous in the sense of formula (6.2.1). Choose
a real number ǫ > 0 as in the leftmost quantifier in (6.2.1). Let d > 0 be
infinitesimal. If |x−c| < d then in particular x ≈ c. By microcontinuity
of ∗f we necessarily have

∗f(x) ≈ L,

and in particular |∗f(x) − L| < ǫ since ǫ is appreciable. Then the
value δ = d is witness to the truth of the existence claim expressed by
the formula

(∃δ ∈ ∗R+)(∀x ∈ ∗Df )
[
|x− c| < δ ⇒ |∗f(x) − L| < ǫ

]
(6.2.3)

where our chosen ǫ is a fixed parameter in formula (6.2.3) (unlike for-
mula (6.2.1) which quantifies over ǫ). We now apply downward transfer
(see Section 5.7) to formula (6.2.3) to obtain

(∃δ ∈ R+)(∀x ∈ Df )
[
|x− c| < δ ⇒ |f(x) − L| < ǫ

]
.

We conclude that there exists a real δ > 0 as required, proving the
direction (⇐).4 �

Proof of direction (⇒). Conversely, assume that the ǫ, δ con-
dition (6.2.1) holds. Let ǫ be a positive real number. Then by (6.2.1)
there is an appropriate real number δ > 0 such that the following
sentence is true:

(∀x ∈ Df )
[
|x− c| < δ ⇒ |f(x) − L| < ǫ

]
. (6.2.4)

Applying upward transfer to formula (6.2.4), we obtain

(∀x ∈ ∗Df )
[
|x− c| < δ ⇒ |∗f(x) − L| < ǫ

]
. (6.2.5)

But now whenever x satisfies x ≈ c, the condition |x − c| < δ is
automatically satisfied since x−c is infinitesimal while δ is appreciable.
It follows from (6.2.5) that if x ≈ c then the inequality |∗f(x) − L| < ǫ
holds. This is true for all real numbers ǫ > 0. Therefore ∗f(x) ≈ L,
proving the relation (6.2.2) and the opposite implication (⇒). �

6.3. Uniform continuity in terms of microcontinuity

The ǫ, δ definition of uniform continuity appeared in Definition 5.9.1.
We now introduce an equivalent definition in terms of microcontinuity.
The equivalence is proved in Theorem 7.1.1.

4There is a shorter proof that exploits the overspill principle that will be elab-
orated later (see Section 7.8). Suppose f is S-continuous at c. Given a real ǫ > 0,
we define the set Aǫ = {δ : (∀x ∈ ∗Df ) [ |x− c| < δ =⇒ |f(x) − f(c)| < ǫ ]}. The
set is internal and contains all positive infinitesimals. By ovespill, Aǫ must contain
an appreciable value, as well, as required.
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Definition 6.3.1 (Definition via ≈). A real function f is uniformly
continuous in its domain D = Df if and only if

(∀x ∈ ∗Df )(∀x′ ∈ ∗Df ) [x ≈ x′ ⇒ ∗f(x) ≈ ∗f(x′)]

where ∗f is its natural extension to the hyperreals.

Alternatively, one has the following definition via microcontinuity.

Definition 6.3.2 (Alternative definition via ≈). A real function f
is uniformly continuous in its domain Df if

for all x ∈ ∗Df ,
∗f is microcontinuous at x.

Remark 6.3.3. The above Definition 6.3.2 sounds startlingly simi-
lar to the definition of continuity itself. What is the difference between
the two definitions? The point is that microcontinuity is now required
at every point of the Bernoullian continuum rather than merely at the
points of the Archimedean continuum, i.e., in the domain of ∗f which
is the natural extension of the real domain of the real function f .

Example 6.3.4. The function f(x) = x2 fails to be uniformly con-
tinuous on its domain D = R because of the failure of microcontinuity
of its natural extension ∗f at any single infinite hyperreal H ∈ ∗Df = ∗R
(cf. Definition 6.3.2). The failure of microcontinuity at H is checked as
follows. Consider the infinitesimal ǫ = 1

H
, and the point H+ǫ infinitely

close to H. To show that ∗f is not microcontinuous at H, we calculate
∗f(H + ǫ) = (H + ǫ)2 = H2 + 2Hǫ+ ǫ2 = H2 + 2 + ǫ2 ≈ H2 + 2.

This value is not infinitely close to ∗f(H) = H2:
∗f(H + ǫ) − ∗f(H) = 2 + ǫ2 6≈ 0.

Therefore microcontinuity fails at the point H ∈ ∗R. Thus the squaring
function f(x) = x2 is not uniformly continuous on R.



CHAPTER 7

Uniform continuity, EVT, internal sets

7.1. Equivalence of definitions of uniform continity

The definitions appeared in Section 6.3.

Theorem 7.1.1. Uniform continuity of f in its domain D = Df

can be characterized in the following two equivalent ways:

(1) by means of the formula

(∀ǫ ∈ R+)(∃δ ∈ R+)

(∀x ∈ D)(∀x′ ∈ D)
[
|x′ − x| < δ ⇒ |f(x′) − f(x)| < ǫ

] (7.1.1)

(2) and by means of the formula

(∀x ∈ ∗D)(∀x′ ∈ ∗D) [x ≈ x′ ⇒ ∗f(x) ≈ ∗f(x′)] . (7.1.2)

Proof of (⇒). We first show that condition (7.1.1) implies (7.1.2).
We treat ǫ and δ = δ(ǫ) as fixed real parameters. We then apply upward
transfer to the underlined part of formula (7.1.1), we obtain

(∀x ∈ ∗D)(∀x′ ∈ ∗D)
[
|x′ − x| < δ ⇒ |∗f(x′) − ∗f(x)| < ǫ

]
. (7.1.3)

This holds for each real ǫ > 0, where real δ > 0 was chosen as a function
of ǫ. If x ≈ x′ then the condition |x− x′| < δ is satisfied whatever the
value of the real number δ > 0. Formula (7.1.3) therefore implies

(∀x ∈ ∗D)(∀x′ ∈ ∗D)
[
x ≈ x′ ⇒ |∗f(x′) − ∗f(x)| < ǫ

]
. (7.1.4)

Note that formula (7.1.4) is true for each real ǫ > 0. We therefore
conclude that ∗f(x′) ≈ ∗f(x), proving (7.1.2). �

Proof of (⇐). We will show the contrapositive statement, namely
that ¬(7.1.1) implies ¬(7.1.2). Assume the negation of (7.1.1). It fol-
lows that there exists a real number ǫ > 0 such that

(∀δ ∈ R+)(∃x ∈ D)(∃x′ ∈ D)
[
|x′ − x| < δ ∧ |f(x′) − f(x)| > ǫ

]
.

(7.1.5)
Applying upward transfer to formula (7.1.5) we obtain

(∀δ ∈ ∗R+)(∃x ∈ ∗D)(∃x′ ∈ ∗D)
[
|x′ − x| < δ ∧ |∗f(x′) − ∗f(x)| > ǫ

]

(7.1.6)

71
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where ǫ is a fixed real parameter. The formula is true for all positive
hyperreal δ. In particular it holds for an infinitesimal δ0 > 0. For this
value, we obtain

(∃x ∈ ∗D)(∃x′ ∈ ∗D)
[
|x′ − x| < δ0 ∧ |∗f(x′) − ∗f(x)| > ǫ

]
. (7.1.7)

The condition |x′ − x| < δ0 implies that x ≈ x′. Therefore the for-
mula (7.1.7) implies the following:

(∃x ∈ ∗D)(∃x′ ∈ ∗D)
[
x′ ≈ x ∧ |∗f(x′) − ∗f(x)| > ǫ

]
.

Meanwhile the lower bound ǫ is real and therefore appreciable. It
follows that ∗f(x′) 6≈ ∗f(x). Thus

(∃x ∈ ∗D)(∃x′ ∈ ∗D)
[
x′ ≈ x ∧ ∗f(x′) 6≈ ∗f(x)

]
,

violating condition (7.1.2). This establishes the required contrapositive
implication ¬(7.1.1) =⇒ ¬(7.1.2). �

Remark 7.1.2. The term microcontinuity is exploited in the text-
books [Davis 1977] and [Gordon et al. 2002] in place of the term
S-continuity. It reflects the existence of two definitions of continuity,
one using infinitesimals, and one using epsilons. The former is what we
refer to as microcontinuity. It is given a special name to distinguish it
from the traditional definition of continuity. Note that microcontinuity
at a nonstandard hyperreal does not correspond to any notion available
in the epsilontic framework limited to an Archimedean continuum.

We give an additional example of the failure of uniform continuity
seen from the viewpoint of Definition 6.3.2.

Example 7.1.3. Consider the function f given by f(x) = 1
x

on the
open interval D = (0, 1) ⊆ R. Then ∗f fails to be microcontinuous at a
positive infinitesimal. Indeed, choose an infinite hyperreal H > 0 and
let x = 1

H
and x′ = 1

H+1
. Clearly x ≈ x′. Both of these points are in

the extended domain ∗D = ∗(0, 1). Meanwhile,

∗f(x′) − ∗f(x) = H + 1 −H = 1 6≈ 0.

It follows from Theorem 7.1.1 that the real function f is not uniformly
continuous on the open interval (0, 1) ⊆ R.

7.2. Hyperreal extreme value theorem

First we clarify a notational point with regard to real and hyperreal
intervals.
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Example 7.2.1. The unit interval [0, 1] ⊆ R has a natural extension
∗[0, 1] ⊆ ∗R. Transfering the formula [0, 1] = {x ∈ R : 0 ≤ x ≤ 1} we
see that the segment ∗[0, 1] contains all positive infinitesimals as well
as all hyperreal numbers smaller than 1 and infinitely close to 1.

The extreme value theorem (EVT) is usually proved in two or more
stages:

(1) one first shows that the function is bounded;
(2) then one proceeds to construct an extremum by one or another

procedure involving choices of sequences.

The hyperreal approach is both more economical (there is no need to
prove boundedness first) and less technical.

Theorem 7.2.2 (EVT). A continuous function f on [0, 1] ⊆ R has
a maximum.

Proof. Let H ∈ ∗N \N be an infinite hypernatural number.1 The
real interval [0, 1] has a natural hyperreal extension

∗[0, 1] = {x ∈ ∗R : 0 ≤ x ≤ 1}.
Consider its partition intoH subintervals of equal infinitesimal length 1

H
,

with partition points2

xi = i
H
, i = 0, . . . , H.

The function f has a natural extension ∗f defined on the hyperreals
between 0 and 1. Note that in the real setting (when the number of
partition points is finite), a point with the maximal value of f among
the partition points xi can always be chosen by induction.3 By transfer,
there is a hypernatural j such that 0 ≤ j ≤ H and

(∀i ∈ ∗N)
[
i ≤ H ⇒ ∗f(xj) ≥ ∗f(xi)

]
. (7.2.2)

Consider the real point c = st(xj) where st is the standard part func-
tion. Then c ∈ [0, 1] since non-strict inequalities are preserved under

1For instance, the one represented by the sequence 〈1, 2, 3, . . .〉 with respect to
the ultrapower construction outlined in Section 5.3.

2The existence of such a partition follows by upward transfer (see Section 5.7)
applied to the first order formula (∀n ∈ N) (∀x ∈ [0, 1]) (∃i < n)

[
i
n ≤ x < i+1

n

]
.

3We have the following first order property expressing the existence of a maxi-
mum of f over a finite collection:

(∀n ∈ N) (∃j ≤ n) (∀i ≤ n)
[
f
(
j
n

)
≥ f

(
i
n

)]
.

We now apply the transfer principle to obtain

(∀n ∈ ∗N) (∃j ≤ n) (∀i ≤ n)
[
∗f
(
j
n

)
≥ ∗f

(
i
n

)]
, (7.2.1)

where ∗N is the collection of hypernatural numbers. Formula (7.2.1) is true in
particular for a specific infinite hypernatural value of n given by H ∈ ∗N \ N.
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passage to the standard part. Let L = f(c). By microcontinuity of f
at c ∈ R, we have ∗f(xj) ≈ L, i.e., st(∗f(xj)) = L. Now consider an ar-
bitrary real point x ∈ [0, 1]. Then x lies in an appropriate sub-interval
of the partition, namely x ∈ [xi, xi+1], so that st(xi) = x, or xi ≈ x.
Applying st to the inequality in the formula (7.2.2), we obtain

L = st(∗f(xj)) ≥ st(∗f(xi)) = ∗f(st(xi)) = ∗f(x)

by microcontinuity at the point x ∈ R. Hence L ≥ f(x), for all real x,
proving c to be a maximum of f . �

Corollary 7.2.3. The point c is a maximum of ∗f as well.

This follows by upward transfer applied to the formula expressing
the fact that c is a maximum of f .

Corollary 7.2.4 (Rolle’s theorem). A differentiable function on
a compact interval with identical values at the endpoints has vanishing
derivative at some interior point of the interval.

Proof. By the extreme value theorem, f has a maximum c in the
interval. We can assume that the maximum is in the interior by passing
to −f if necessary. Let ǫ > 0 be infinitesimal. Since c is a maximum

of ∗f by Corollary 7.2.3, we have f(c+ǫ)−f(c)
ǫ

≤ 0 and f(c−ǫ)−f(c)
−ǫ

≥ 0.
Taking the shadow, we obtain both f ′(c) ≤ 0 and f ′(c) ≥ 0, as required.

�

7.3. Intermediate value theorem

Theorem 7.3.1. Let f be a continuous real function on [0, 1] and
assume that f(0)f(1) < 0. Then there is a point c ∈ [0, 1] such
that f(c) = 0.

Proof. Let H ∈ ∗N \ N and consider the corresponding partition
of ∗[0, 1] with partition points xi = i

H
, i = 0, . . . , H.

To fix ideas, assume that f(0) < 0 and f(1) > 0. Consider the set
of all partition points xi such that for all partition points before xi, the
function is nonpositive. By transfer this set has a last point xj. By
hypothesis

f(xj) ≤ 0 < f(xj+1).

Applying standard part we obtain

st(f(xj)) ≤ 0 ≤ st(f(xj+1)).

Let c = st(xj). By microcontinuity at c, we have st(f(xj)) = f(c) =
st(f(xj+1)). Therefore f vanishes at c. �
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7.4. Mean Value Theorem

Theorem 7.4.1 (Mean Value Theorem). Let f be a differentiable
function. Then

(∀x ∈ R)(∀h ∈ R)(∃ϑ ∈ R)
[
f(x+ h) − f(x) = h · g(x+ ϑh)

]

where 0 < ϑ < 1 and g(x) = f ′(x).

Here differentiability of f is assumed on the appropriate interval
[x, x+ h] where h > 0.

Proof. The traditional proof passes via reduction (by subtract-

ing a linear function of slope f(x+h)−f(x)
h

) to Rolle’s theorem (Theo-
rem 7.2.4). Then the new function f satisfies the boundary condi-
tion f(x) = f(x + h), and by Rolle’s theorem, its derivative g satis-
fies g(x+ ϑh) = 0 for a suitable ϑ, as in Section 7.2. �

7.5. Ultrapower construction applied to P(R)

Consider the set of subsets of R, denoted P(R). Thus saying that A
is contained in P(R), i.e., A ∈ P(R) means that A is included in R,
i.e., A ⊆ R. By the extension principle (see Section 3.3) we have the
corresponding subset ∗A ⊆ ∗R called the natural extension of A. We
would like to apply the ultrapower construction to the set P(R).

Definition 7.5.1. It will be convenient to exploit the shorthand
notation P = P(R).

Then the natural extension ∗P of P is constructed as before as a
quotient of the set PN by an appropriate equivalence relation defined
in terms of an ultrafilter using the dominant/negligible dichotomy, so
that we have

∗P = PN/F
in the notation of Section 5.4.

The natural extensions of subsets of R constitute a useful family of
subsets, but we will now construct an important larger class of subsets
of ∗R called internal sets. These are the members of ∗P.

Definition 7.5.2. An element α ∈ ∗P is an F -equivalence class α =
[A] where A is a sequence A = 〈An ∈ P : n ∈ N〉 of elements of P (i.e.,
subsets of R), where A ∼ B if and only if {n ∈ N : An = Bn} ∈ F .

We will provide further details in Section 7.6.
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7.6. Internal sets

In more detail, we have the following definition. Let F ⊆ P(N) be
the fixed free ultrafilter used in the construction of our hyperreal field.

Definition 7.6.1 (Definition of internal set). Consider a sequence
A = 〈An ∈ P(R) : n ∈ N〉 of subsets of R. We use it to define a
set α = [A] ⊆ ∗R as follows (by abuse of notation, the same symbols α
and [A] are used both for the equivalence class of sequences of sets, and
for the subset of ∗R that it represents). Namely, a hyperreal [u] = [un]
is an element of the set α = [A] if and only if one has

{n ∈ N : un ∈ An} ∈ F .
Such sets α ⊆ ∗R are called internal.

Example 7.6.2. An example of a subset of ∗R which is internal but
is not a natural extension of any real set is the interval [0, H] where H
is an infinite hyperreal. To show that it is internal, represent H by a
sequence u = 〈un : n ∈ N〉, so that H = [u]. Then the set α = [0, H]
is represented by the equivalence class α = [A] of the sequence A =
〈An : n ∈ N〉 of real intervals An = [0, un] ⊆ R.

7.7. The set of infinite hypernaturals is not internal

Does the construction of Section 7.5 give all possible subsets of ∗R?
The answer turns out to be negative already for the hypernaturals, as
we show in Theorem 7.7.4.

Theorem 7.7.1. Each internal subset of ∗N has a least element.

Remark 7.7.2. In other words, ∗N is internally well-ordered in the
sense that the well-ordering property is satisfied if we only deal with
internal sets.

Proof. Assume that an internal α is given by α = [A] where A =
〈An〉. Here each set An can be assumed nonempty by Lemma 7.7.3
below. Since N is well-ordered we can choose a minimal element un ∈
An for each n. Consider the sequence u = 〈un : n ∈ N〉 formed by these
minimal elements. Its equivalence class [u] is the minimal element in
the set α ∈ ∗P. �

Lemma 7.7.3. A nonempty set α = [A] where A = 〈An〉 can always
be represented by a sequence where each of the sets An in the sequence
is nonempty.

Proof. The set of indices n for which An = ∅ is negligible (i.e.,
not a member of the ultrafilter) since otherwise α would be the empty
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set itself. For each n from this negligible set of indices n, we can
replace the corresponding set An = ∅ by An = N without affecting
the equivalence class α = [A]. In the new sequence all the sets An are
nonempty. �

Theorem 7.7.4. The set of infinite hypernaturals, ∗N \ N, is not
an internal subset of ∗N.

Proof. If the set ∗N \ N were internal it would have a least ele-
ment by Theorem 7.7.1. But there is no minimal infinite hypernatural
because if H is an infinite hypernatural then H − 1 is another infinite
hypernatural. �

Corollary 7.7.5. The subset N ⊆ ∗N is not internal.

Proof. A subset of ∗N is internal if and only if its complement is.
Since ∗N \ N is not internal, the same is true of N. �

7.8. Underspill

Definition 7.8.1 (Underspill). Underspill is the principle that ev-
ery internal set including the set difference ∗N \N necessarily contains
also some elements that are finite natural numbers.

This principle will be exploited in Section 15.4.

7.9. Attempt to transfer the well-ordering of N

Question 7.9.1. Is it possible to apply the transfer principle to
the well-ordering property of the natural numbers, in such a way as to
obtain a property of ∗N?

We showed in Section 7.7 that a nonempty internal subset of N has
a least element. We will answer the more general question concerning
subsets of R question in Section 7.10.

All the examples of transfer given in Section 5.7 deal with quantifi-
cation over numbers, such as natural, rational, or real numbers.

As already pointed out, quantification over sets cannot be encom-
passed by the transfer principle. Thus, the least upper bound property
for bounded sets in R fails when interpreted literally over ∗R, due to
the following result.

Theorem 7.9.2. The set of all infinitesimals in ∗R does not admit
a least upper bound.

Proof. Suppose C > 0 were such a bound. Either C is infinites-
imal or it is appreciable. If C were infinitesimal, then the infinitesi-
mal 2C would be greater than C, contradicting the supposition that C
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is a least upper bound. If C were appreciable, then C/2 would also
be appreciable and therefore a smaller upper bound (for the set of in-
finitesimals) than C. The contradiction proves that there is no least
upper bound. �

7.10. Quantification over internal sets; Henkin semantics

Quantification over sets in N can be transfered on condition of being
interpreted as quantification over elements of P = P(N), as follows.

Example 7.10.1. The condition of well-ordering can be stated as
follows. To simplify the formula we will use the symbol ∀′ to denote
quantification over nonempty sets only:

(∀′A ⊆ N)(∃u ∈ A)(∀x ∈ A)
[
u ≤ x

]
. (7.10.1)

To make this transferable, we replace the relation of inclusion A ⊆
N by the relation of containment A ∈ P. We therefore reformulate
condition (7.10.1) as follows:

(∀A ∈ P \ {∅})(∃u ∈ A)(∀x ∈ A)
[
u ≤ x

]
,

where P = P(N). At this point transfer can be applied, resulting in
the following sentence:

(
∀A ∈ ∗P \ {∅}

)
(∃u ∈ A)(∀x ∈ A)

[
u ≤ x

]
.

Here quantification is over elements of ∗P (rather than over arbitrary
subsets of N).

In other words, quantification is over internal subsets of ∗N, re-
sulting in a correct sentence. The crucial fact is the properness of the
inclusion

∗P(N) $ P(∗N).

Remark 7.10.2. [Robinson 1966] refers to this approach to quan-
tification as Henkin semantics.

All sentences involving quantification over subsets

A ⊆ R (7.10.2)

can similarly be transfered provided we interpret the quantification as
ranging over

A ∈ P(R) (7.10.3)

and transfering formula (7.10.3) instead of (7.10.2), to obtain

A ∈ ∗P(R),

entailing quantification over internal subsets only.
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Example 7.10.3. The least upper bound property for bounded sub-
sets of R holds over the hyperreals, provided we interpret it as applying
to internal subsets only (“in the sense of Henkin”).

7.11. From hyperrationals to reals

This section supplements the material of Section 5.3 on the ultra-
power construction. We used the ultrapower construction to build the
hyperreal field out of the real field. But the ultrapower construction
can also be used to give an alternative construction of the real number
system starting with the rationals. The star-transform of the field Q
of rational numbers gives an extension Q →֒ ∗Q to the hyperrationals,
where ∗Q = QN /MAXF (see Section 5.1 for details). Consider the
subring F ⊆ ∗Q consisting of all finite hyperrationals. Thus F is the
galaxy of the number 0; see Definition 6.1.2. More precisely, we have
the following definition.

Definition 7.11.1. The ring F is defined by the following two
equivalent conditions:

(1) F is the galaxy of 0 ∈ ∗Q;
(2) F =

{
x ∈ ∗Q : (∃r ∈ Q)

[
|x| < r

]}
.

Definition 7.11.2. The ideal I ⊆ F of infinitesimal elements is
defined by setting I =

{
x ∈ F : (∀r ∈ Q)

[
r > 0 ⇒ |x| < r

]}
.

Here the absolute value bars denote the natural extension of the
usual absolute value function on the rationals (as usual for functions,
the star superscript on the absolute value function is suppressed).

Note that F is only a ring (and not a field) because an infinitesimal
is not invertible in F . In Theorem 8.1.1 we will now show that the
ring F admits a natural quotient which is isomorphic to R.

Definition 7.11.3. The halo hal(x) ⊆ ∗Q of an element x ∈ ∗Q is
the set of elements of ∗Q infinitely close to x.

Example 7.11.4. We have hal(0) = I.





CHAPTER 8

Halos, ihulls, manifolds

8.1. From hyperrationals to reals bis

Recall that

(1) the ring hR ⊆ ∗R consists of finite hyperreals (see Defini-
tion 4.1.3);

(2) we have ∗Q ⊆ ∗R;
(3) F ⊆ ∗Q is the ring of finite hyperrationals;
(4) I ⊆ F of hyperrational infinitesimals;
(5) If x ∈ ∗Q then its halo is hal(x) = x+ I ⊆ ∗Q.

Theorem 8.1.1. The ideal I ⊆ F is maximal, and the quotient
field Q̂ = F/I is naturally isomorphic to R, so that we have a short
exact sequence1

0 → I → F → R → 0.

We will provide the isomorphisms in each direction, denoted as
follows: φ : Q̂ → R and ψ : R → Q̂.

Homomorphism from Q̂ to R. A typical element of Q̂ is a halo,
namely hal(x) ⊆ ∗Q, where x ∈ F can be viewed as an element of the
ring hR ⊆ ∗R. Since x is finite, its standard part is well-defined, and
we set

φ(hal(x)) = st(x), (8.1.1)

where st : hR → R is the standard part. Formula (8.1.1) provides the

required homomorphism φ : Q̂ → R. �

Corollary 8.1.2. Given a finite x ∈ ∗Q, consider the extended
decimal expansion

x = a.d1d2d3 . . . dndn+1 . . . ; . . . dHdH+1 . . . . (8.1.2)

Then the digits of x of finite rank (i.e., digits before the semicolon
in (8.1.2)) define a standard decimal expansion which uniquely deter-
mines the real number st(x), giving an alternative construction of the
homomorphism φ.

1Sidra meduyeket ktzara
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Homomorphism from R to Q̂. Let us now construct a homo-
morphism in the opposite direction. The idea is to truncate the ex-
tended decimal expansion of a real number at a hypernatural rank.
Choose a fixed H ∈ ∗N \ N. Consider a positive real number y ∈ R.
The procedure will be similar for a negative number but we describe
it for a positive number so as to fix ideas. Let K = ⌊10Hy⌋. Then we
have 0 ≤ 10Hy −K < 1. Dividing by 10H we obtain

0 ≤ y − K

10H
<

1

10H
.

It follows that y ≈ K
10H

. In other words, we are considering the deci-
mal approximation of y truncated at rank H, yielding a hyperrational
number

K

10H
∈ F ⊆ ∗Q.

Then the map ψ : R → Q̂ is defined by sending the real number y to
the halo hal

(
K
10H

)
⊆ ∗Q. In formulas, we have

ψ(y) =
K

10H
+ I.

Then we have φ(ψ(y)) = st
(

K
10H

)
= y, proving the theorem. �

Second proof. This can be elaborated as follows in terms of the
extended decimal expansion. Consider the decimal expansion of y as
y = a.a1a2a3 . . . an . . . defined for each natural index n ∈ N. By trans-
fer, the decimal digits an are defined for each hypernatural rank, as
well: y = a.a1a2a3 . . . an . . . ; . . . aH−1aHaH+1 . . . Here ranks to the left
of the semicolon are finite, while ranks to the right of the semicolon
are infinite. Choose an infinite hypernatural H ∈ ∗N \N. The prod-
uct 10Hy has the form 10Hy = a a1a2a3 . . . an . . . aH−1aH . aH+1 . . . with
a decimal point after the digit aH . Therefore its integer part (floor)
is the hyperinteger K = ⌊10Hy⌋ = a a1a2a3 . . . an . . . aH−1aH , and we
proceed as above. �

Third proof. Over R we have

(∀ǫ > 0)(∀y ∈ R)(∃q ∈ Q)[|y = q| < ǫ].

By transfer,

(∀ǫ ∈ ∗R+)(∀y ∈ ∗R)(∃q ∈ ∗Q)[|y = q| < ǫ].

Now choose an infinitesimal ǫ > 0. It follows that for each real y there
is a hyperrational q with y ≈ q. �



8.3. REPEATING THE CONSTRUCTION 83

8.2. Ihull construction

In the previous section we described a construction of R starting
from ∗Q. More generally, one has the following ihull construction (“i”
for infinitesimal)2 in the context of an arbitrary metric space M . Here
the halo of x ∈ ∗M is defined to be the set of points at infinitesimal
distance from x.

Definition 8.2.1. Given a metric space (M,d), we build ∗M via
the ultrapower. The distance function d extends to ∗M as usual. Let ≈
be the relation of infinite proximity in ∗M , and denote by F ⊆ ∗M the
set of finite elements of ∗M (i.e., the galaxy of any element in M). The

quotient F/≈ is called the ihull of M and denoted M̂ .

Corollary 8.2.2. The ihull of Q is R.

This is a restatement of Theorem 8.1.1.

8.3. Repeating the construction

What happens if we apply the ihull construction to M = R in place
of Q? Namely, consider the star-transfer ∗R, and the ring of finite
hyperreals ∗RF ⊆ ∗R, as well as the ideal of infinitesimals

∗RI ⊆ ∗RF .

It turns out that we do not get anything new in this direction, as
attested to by the following.

Theorem 8.3.1. The quotient R̂ = ∗RF/
∗RI is naturally isomor-

phic to R itself; briefly, R is its own ihull, i.e., R̂ = R, so that we have
a short exact sequence

0 → ∗RI → ∗RF → R → 0.

The proof is essentially the same, with the main ingredient being
the existence of the standard part function with range R:

st : ∗RF → R

with kernel precisely ∗RI .

Remark 8.3.2. Similar considerations apply to M = Rn, showing

that the quotient R̂n = ∗Rn
F/

∗Rn
I is naturally isomorphic to Rn itself.

We will return to this observation in Section 10.3.

2In the literature this construction is often referred to as the nonstandard hull
construction (meatefet lo standartit).
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8.4. Plane with a puncture

We will exploit the following useful notation for halos.

Definition 8.4.1. We set
©

x = hal(x).

Remark 8.4.2. In general the ihull X̂ of a metric space X consists
of halos

©

x with distance d defined to be

d(
©

x ,
©

y ) = st(∗d(x, y)). (8.4.1)

Here X̂ may be larger than the metric completion of X. The metric
completion of X is in general defined as the approachable part of X̂, or
the closure of X in X̂. For a detailed discussion see [Goldblatt 1998,
Chapter 18]. See next section for an example.

The usual flat metric dx2 + dy2 in the (x, y)-plane can be written
in polar coordinates (r, θ) as dx2 + dy2 = dr2 + r2dθ2 where θ is the
usual polar angle in R /2π Z.

Let X be the universal cover of the plane minus the origin, coor-
dinatized by (r, ζ) where r > 0 and ζ is an arbitrary real number. In
formulas, X is a coordinate chart r > 0, ζ ∈ R with metric

dr2 + r2dζ2, (8.4.2)

giving the universal cover of the flat metric on R2 \{0}, for which the
covering map X → R2 \{0}, (r, ζ) 7→ (r, θ) induces an isometry of the
Riemannian metric at each point.

Proposition 8.4.3. Points of the ihull X̂ of the form
©

(r, ζ) for
appreciable r and infinite ζ are not approachable from X.

Proof. The distance function d of X extends to the ihull (X̂, d).

Here points of X̂ are halos in the finite part of ∗X. Notice that in X̂
the origin has been “restored” and can be represented by a point (ǫ, 0)
in ∗X where ǫ > 0 is infinitesimal.

Consider a point (1, ζ) ∈ ∗X where ζ is infinite. Let us show that
the point (1, ζ) is at a finite distance ∗d from the point (ǫ, 0), namely
at distance infinitely close to 1. Indeed, the triangle inequality applied
to the sequence of points (1, ζ), ( 1

ζ2
, ζ), ( 1

ζ2
, 0), (ǫ, 0) yields the bound

d∗((1, ζ), (ǫ, 0)) ≤ (1 − 1
ζ2

) + 1
ζ2
ζ + | 1

ζ2
− ǫ| ≈ 1

and therefore

d(
©

(1, ζ),
©

(ǫ, 0)) = 1

by (8.4.1). Hence
©

(1, ζ) ∈ X̂.
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On the other hand, let us show that the point
©

(1, ζ) ∈ X̂ is not

approachable from X. Indeed, the metric d of X̂ restricted to the
rectangle

∗[1
2
, 2] × ∗[ζ − 1, ζ + 1]

dominates the product metric dr2 + 1
4
dζ2 by (8.4.2), and therefore the

rectangle includes the metric ball centered at
©

(1, ζ) of radius 1
2

without
any standard points. �

Remark 8.4.4. In the example above, the closure X̄ ⊆ X̂ is not
locally compact. Thus, the boundary of the metric unit ball in X̄

centered at the origin
©

(ǫ, 0) is a line. Therefore the space X̄ does not
satisfy the hypotheses of Theorem 10.4.7.





CHAPTER 9

1-parameter groups of transformations, invariance

9.1. 1-parameter groups of transformations of a manifold

Let θ : R×M → M be a smooth mapping (this θ is in general
unrelated to polar coordinates). Denote the coordinates by t ∈ R
and p ∈M , so that we have a map θ = θ(t, p). We will often write θt(p)
for θ(t, p).

Definition 9.1.1. Assume θ satisifies the following two conditions:

(1) θ0(p) = p for all p ∈M ;
(2) θt ◦ θs(p) = θt+s(p) for all p ∈M and all s, t ∈ R.

Then θ is called a 1-parameter group of transformations, a flow, or an
action (of R on M) for short.

An action θ defines a vector field X on M called the infinitesimal
generator 1 of θ, as follows.

Definition 9.1.2. The infinitesimal generator X of the flow θt at
a point p ∈ M is a derivation Xp : Dp → R defined by setting for each
function f on M ,

Xp(f) = lim
∆t→0

1

∆t

(
f(θ∆t(p)) − f(p)

)
.

Remark 9.1.3. The term infinitesimal generator is a generally ac-
cepted term defined as above in a context where actual infinitesimals
are not present, as already mentioned in footnote 1.

9.2. Invariance of infinitesimal generator under flow

In this section we follow [Boothby 1986]. Consider a flow θt on a
manifold M as in Section 9.1. Thus we have a map θ : R×M → M ,
where we write θt(p) for θ(t, p), such that θ0(p) = p for all p ∈ M ,
and θt ◦ θs(p) = θt+s(p) for all p ∈M and all s, t ∈ R.

Then one obtains an induced action θt∗ on a vector field Y on M ,
producing a new vector field θt∗(Y ), as follows. We view Y as a deriva-
tion acting on functions f on M . Given a function f on M , we need to

1This term is common in the literature and does not use infinitesimals in the
sense of Robinson.
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specify the manner in which the new vector field θt∗(Y ) differentiates
the function f .

Definition 9.2.1. The induced action θt∗ on the vector field Y of
the flow θ of the manifold M is defined by setting

θt
∗

(Yp)f = Yp(f ◦ θt) (9.2.1)

for all f ∈ Dq where q = θt(p).

Remark 9.2.2. The vector θt∗(Yp) resides at the point q = θt(p) ∈
M , so that θt∗ : Tp → Tθt(p).

In more detail, let q = θt(p). If a function f is defined in a neigh-
borhood of q ∈ M then the composed function f ◦ θt (for a fixed t) is
defined in a neighorhood of p and therefore it makes sense apply the
derivation Yp to the function f ◦ θt, as in formula (9.2.1).

Recall that the infinitesimal generator X of a flow θ is the vec-
tor field satisfying Xp(f) = lim∆t→0

1
∆t

(
f(θ∆t(p)) − f(p)

)
(see Defini-

tion 9.1.2). What happens when we apply the induced action of the
flow to the vector field which is the infinitesimal generator of the flow
itself? An answer is provided by the following theorem.

Theorem 9.2.3 (Boothby p. 124). The infinitesimal generator X
of an action θt is invariant under the flow:

θt∗(Xp) = Xθt(p).

Proof. The proof is a direct computation, obtained by testing the
field X on a function f ∈ Dq where q = θt(p), and Dq is the space of
smooth functions defined in a neighborhood of q. Thus, we have

θt∗(Xp)f = Xp(f ◦ θt)

= lim
∆t→0

1

∆t

(
f ◦ θt (θ∆t(p)) − f ◦ θt(p)

)
.

By definition of a flow, we have θt ◦ θ∆t = θt+∆t = θ∆t ◦ θt. Using this
commutation relation, we can express the action as follows:

θt∗(Xp)f = lim
∆t→0

1

∆t

(
f ◦ θ∆t(θt(p)) − f(θt(p))

)
.

= Xθt(p)f.

Thus θt∗(Xp) = Xθt(p), proving the theorem. �

Remark 9.2.4. While Theorem 9.2.3 is intuitively “obvious”, the
received formalism involved in proving it is bulky. In particular we
had to resort to a test function f which does not appear in the for-
mulation of the invariance. We will develop a more direct approach in
Section 12.4.
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9.3. Lie derivative and Lie bracket

In this section as in the previous one we follow Boothby. Let θt be
a flow on M with infinitesimal generator X. Let Y be another vector
field on M .

Definition 9.3.1 (Boothby p. 154). The vector field LXY , called
the Lie derivative of Y with respect to X, is defined by setting

LXY = lim
t→0

1

t

(
θ−t∗(Yθ(t,p)) − Yp

)

Theorem 9.3.2. If X and Y are vector fields on M then

LXY = [X, Y ],

where [X, Y ]f = Xp(Y f) − Yp(Xf) is the Lie bracket.

Proof. This can be checked in coordinates using a Taylor formula
with remainder. �

Example 9.3.3. The coordinate vector fields commute with respect
to the Lie bracket, i.e., [

∂

∂ui
,
∂

∂uj

]
= 0

for all i, j = 1, . . . , n. This is an equivalent way of stating the equality

of mixed partials ∂2f
∂x ∂y

= ∂2f
∂y ∂x

(sometimes called Schwarz’s theorem or

Clairaut’s theorem). Thus L ∂

∂ui

∂
∂uj = 0.

Example 9.3.4. As an example of a nontrivial bracket, one has[
y
∂

∂x
,
∂

∂y

]
= − ∂

∂x
.

In other words, vector fields y ∂
∂x

and ∂
∂y

don’t commute.

9.4. Diffeomorphisms

In this section as in Section 9.3 we follow Boothby. We first review
some concepts from advanced calculus. If

σ : M → N

is a smooth map such that σ(p) = q ∈ N , we obtain an induced
map σ∗ : TpM → TqN . Here σ∗ is the map induced on the tangent
space. This can be defined as in Definition 9.4.2 below.

Remark 9.4.1. A curve α(t) in M with α(0) = p defines a deriva-
tion X acting on functions f ∈ Dp by Xf = d

dt
|t=0f(α(t)). We then

write X = α′(0). We have the following extension of Definition 9.2.1.
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Definition 9.4.2. Choose a representing curve α(t) in M so that
we have X = α′(0), and define σ∗(X) to be the vector represented by
the curve defined by the composition σ ◦ α in the image manifold N .

In coordinate-free notation, chain rule takes the following form.

Theorem 9.4.3 (Chain rule). Chain rule for smooth maps σ, τ
among manifolds asserts that the composition σ ◦ τ satisfies

(σ ◦ τ)∗ = σ∗ ◦ τ∗,
i.e., (σ ◦ τ)∗(X) = σ∗ ◦ τ∗(X) for all tangent vectors X.

Definition 9.4.4. A diffeomorphism of M is a bijective one-to-
one map φ : M → M such that both φ and φ−1 are C∞ maps for all
coordinate charts.

Remark 9.4.5. If φ is a diffeomorphism then φ∗ : Tp → Tφ(p) is a
vector space isomorphism.

9.5. Commutation and invariance under diffeomorphism

Recall that we have the notion of a flow

θt : M →M (9.5.1)

depending on parameter t ∈ R. Recall from Definition 9.1.2 that the
vector field X (which is the infinitesimal generator of the flow) and the
flow θt itself are related by

Xp(f) = lim
∆t→0

1

∆t

(
f(θ∆t(p)) − f(p)

)
. (9.5.2)

Definition 9.5.1. A vector field X is said to generate a flow θt
if X is the infinitesimal generator of θt.

Definition 9.5.2. An integral curve, or orbit, of a vector field X
through a fixed point p ∈ M is a curve θ(t, p) satisfying θ(0, p) = p
and ∂θ

∂t
= X (in the sense of Remark 9.4.1) where t ranges through an

open interval containing 0.

Recall that a vector field X is said to be invariant under a smooth
map σ if σ∗(X) = X at every point. In more detail, if q = σ(p) ∈ M
then we require that σ∗(Xp) = Xq.

Theorem 9.5.3 (Boothby p. 142). Let X be a vector field generat-
ing a flow θ(t, p) on M and let F : M →M be a diffeomorphism. Then
the following two conditions are equivalent:

(1) X is invariant under F ;
(2) F commutes with the flow, i.e., F (θ(t, p)) = θ(t, F (p)).
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Proof of (1) =⇒ (2). Suppose X is invariant under F . Thus
we have F∗(Xp) = XF (p) for all p ∈ M . Let σp(t) be an integral curve
through p ∈ M . Since we wish to use p as the index, we use the
letter σ in place of θ to avoid clash of notation with θt introduced
in (9.5.1). By the chain rule we have (F ◦ σp)∗ = F∗ ◦ σp∗. Thus

the curve F ◦ σp : R → M induces a map sending the vector d
dt

(a

tangent vector to R) to the vector F∗(Xp). Here d
dt

is the natural basis

for the tangent line T0 R at the origin, and Xp = σ̇p(0) = σp∗
(

d
dt

)

where σ̇ = dσ
dt

. In other words, the curve F ◦ σp : R → M is an
integral curve of the vector field F∗(X). Hence the map F takes the
integral curve σp of the vector field X to an integral curve of the vector
field F∗(X).

Since F∗(X) = X by hypothesis, the uniqueness of integral curves
implies that F (θ(t, p)) = θ(t, F (p)). �

Proof of (2) =⇒ (1). We now assume the commutation relation
F (θ(t, p)) = θ(t, F (p)). Let us prove (1). Note that the vector F∗(Xp)
is represented by the curve F ◦ σp(t) and by the commutation this is
precisely σF (p)(t), which indeed represents the vector field X at the
point F (p). Thus F∗(Xp) = XF (p) as required. �





CHAPTER 10

Commuting vfields, flows, differential geom. via ID

10.1. Commutation of vector fields and flows

In this section as in the previous one we follow Boothby. Here we
prove a special case of the Frobenius theorem on flows, in the case of
commuting flows.

Recall from Definition 9.3.1 that if θt is a flow on M with infin-
itesimal generator X, and Y is a vector field on M , then the vec-
tor field LXY , called the Lie derivative of Y with respect to X, is
defined by setting LXY = limt→0

1
t

(
θ−t∗(Yθ(t,p)) − Yp

)
and further-

more LXY = [X, Y ].

Theorem 10.1.1 (Boothby p. 156). Let X and Y be C∞ vector
fields on a manifold M . Let θ = θt be the flow generated by X, and η =
ηs be the flow generated by Y . Then the following two conditions are
equivalent:

(1) [X, Y ] = 0;
(2) for each p ∈ M there exists a δp > 0 such that ηs ◦ θt(p) =

θt ◦ ηs(p) whenever |s| < δp and |t| < δp.

Proof. First we show the easy direction (2) =⇒ (1). We apply
Theorem 9.5.3 with F = θt to conclude that the infinitesimal gener-
ator Y of the flow ηs is invariant under the map θt for a fixed small
parameter t. It follows that θt∗(Yq) = Yθ(t,q), i.e., θ−t∗(Yθ(t,q)) = Yq by
Remark 9.4.5. Now consider the Lie derivative. We obtain1

[X, Y ]q = (LXY )q

= lim
t→0

1

t

(
θ−t∗(Yθ(t,q)) − Yq

)

= lim
t→0

1

t
(Yq − Yq)

= 0

as required. �

1The calculation in Boothby on page 157 contains some misprints involving
misplaced parentheses.

93
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Proof of the opposite direction. Now let us show the oppo-
site direction (1) =⇒ (2) in Theorem 10.1.1. Assume that [X, Y ] = 0
identically on M . Consider a point q ∈ M . Define a vector Zq(t) at
the point q by setting

Zq(t) = θ−t∗
(
Yθ(t,q)

)
∈ TqM. (10.1.1)

Let us show that the t-derivative Ż(t) vanishes. Let q′ = θ(t, q) so
that Zq(t) = θ−t∗ (Yq′). Then

Żq(t) = lim
∆t→0

1

∆t

(
θ−(t+∆t)∗

(
Yθ(∆t,q′)

)
− θ−t∗(Yq′)

)
(10.1.2)

Applying chain rule, we decompose the action of θ−(t+∆t)∗ as composi-
tion

θ−(t+∆t)∗ = θ−t∗ ◦ θ−∆t∗.

Thus we obtain from (10.1.2) and linearity and continuity of induced
maps that

Żq(t) = θ−t∗

(
lim
∆t→0

1

∆t

(
θ−∆t∗

(
Yθ(∆t,q′)

)
− Yq′

))
(10.1.3)

Now we recognize the expression 1
∆t

(
θ−∆t∗

(
Yθ(∆t,q′)

)
− Yq′

)
as the Lie

derivative LXY of Y at the point q′ = θ(t, q). Therefore we obtain

Żq(t) = θ−t∗ ((LXY )q′) = θ−t∗(0) = 0

since by hypothesis (1), the Lie bracket vanishes everywhere, including
at the point q′ = θ(t, q).

Since the t-derivative vanishes, the vector Zq(t) of (10.1.1) is con-
stant for |t| < δ, and therefore equal to Yq. This means that the vector
field Y is invariant under the flow θt. Therefore by Theorem 9.5.3, we
obtain the commutation of flows ηs ◦ θt(q) = θt ◦ ηs(q). �

A more general version of the theorem of Frobenius is proved in
Section 10.3.1.

The equivalence of commutation and vanishing Lie is done using
prevector fields in Section 15.23.

10.2. Infinitesimals and infinitesimal generators

Here we follow [Nowik & Katz 2015]. In Chapter 9.2, we pre-
sented the traditional A-track formalism for dealing with the infinites-
imal generator of a flow on a manifold. Note that the adjective infini-
tesimal in this context is a dead metaphor as it no longer refers to true
infinitesimals. We will now develop a true infinitesimal formalism for
dealing with the infinitesimal generator of a flow.
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An infinitesimal (B-track) formalism enables a more intuitive ap-
proach not merely to the infinitesimal generator of a flow, but to many
other topics in calculus and analysis. Thus, the concepts of derivative,
continuity, integral, and limit can all be defined via infinitesimals. For
example, in Section 7.2 we presented the infinitesimal approach to the
extreme value theorem.

10.3. Relations of ≺ and ≺≺
We will work in the hyperreal extension R →֒ ∗R defined in Chap-

ter 4.7.

Definition 10.3.1. Let r, s ∈ ∗R. We define the relation ≺ by
writing2

r ≺ s

if r = as for finite a. We also define the relation ≺≺ by writing3

r ≺≺ s

if r = as for infinitesimal a.

Example 10.3.2. The formula r ≺ 1 means that r is finite; r ≺≺ 1
means that r is infinitesimal.

More generally, consider a finite dimensional vector space V over R.

Definition 10.3.3. Given v ∈ ∗V and s ∈ ∗R, we write

v ≺ s

if ∗‖v‖ ≺ s for some norm ‖ · ‖ on V .

We will generally omit the asterisk ∗ from function symbols and so
will simply write ‖v‖ ≺ s. This condition is independent of the choice
of norm since all norms on V are equivalent.

Definition 10.3.4. We write

v ≺≺ s

if ‖v‖ ≺≺ s (with similar remarks with regard to the norm).

Definition 10.3.5. Given v, w ∈ ∗V , we write

v ≈ w

when v − w ≺≺ 1.

We choose a basis for V thus identifying it with Rn.

2Read: “Big-O”
3Read “little-o”.
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Lemma 10.3.6. An element x = (x1, . . . , xn) ∈ ∗Rn satisfies x ≺ s
or x ≺≺ s if and only if for each i = 1, . . . , n, the component xi satisfies
the corresponding relation.

This can be checked directly for the Euclidean norm on Rn.

Definition 10.3.7. Let s ∈ ∗R, s > 0. We set
{
V s
F = {v ∈ ∗V : v ≺ s}
V s
I = {v ∈ ∗V : v ≺≺ s}

Then V s
I ⊆ V s

F ⊆ ∗V are linear subspaces over R.

Theorem 10.3.8. For each finite-dimensional vector space V over R
we have a canonical isomorphism V s

F/V
s
I
∼= V , so that we obtain a short

exact sequence
0 → V s

I → V s
F → V → 0.

Proof. This is a special case of the ihull construction. Indeed,
by Section 8.3 we have V 1

F /V
1
I
∼= V , and multiplication by s maps V 1

F

onto V s
F and V 1

I onto V s
I . Briefly, Euclidean space is its own ihull; see

Remark 8.4.2. �

10.3.1. Proof of Frobenius. This section is optional. We will denote
by [·, ·] the classical Lie bracket.

Theorem 10.3.9 (Frobenius). Let U ⊆ Rn be open. Let X1, . . . , Xk : U →
Rn be k independent C1 classical vector fields s.t. [Xi, Xj ] =

∑k
m=1C

m
ij Xm

for Cm
ij : U → R. Let git be the classical flow of Xi. Given p ∈ U , let r > 0

be such that ϕ(t1, . . . , tk) = g1t1 ◦ g2t2 ◦ · · · ◦ gktk(p) is defined on (−r, r)k

and ∂ϕ
∂t1

, . . . , ∂ϕ
∂tk

are independent there. Then span
{

∂ϕ
∂t1

(a), . . . , ∂ϕ
∂tk

(a)
}

=

span{X1(σ(a)), . . . , Xk(σ(a))} for every a ∈ (−r, r)k.

Proof. By definition of giti , we have ∂
∂ti

(giti ◦ · · · ◦ gktk)(p) = Xi. So to

show ∂ϕ
∂ti

∈ span{X1, . . . , Xk} one needs to show that (g1t1 ◦· · ·◦g
i−1
ti−1

)∗(Xi) ∈
span{X1, . . . , Xk}. Equivalently, one needs (gjtj )∗(Xi) ∈ span{X1, . . . , Xk}
for every i, j, and for convenience of notation we let j = 1. Using the flow g1t
we may change coordinates so that X1 = ∂

∂x1
, and so the flow of X1 is

simply gt(x) = x+(t, 0, . . . , 0), and we need to show that span{X1, . . . , Xk}
is invariant under the flow gt, t ∈ (−r, r).

For fixed q let Xi(t) = Xi(q + (t, 0, . . . , 0)) then d
dtXi(t) = [X1, Xi] =∑k

m=1C
m
1i (t)Xm(t). Since this simple flow maps a vector to the “same”

(i.e. parallel) vector at the image point, span{X1, . . . , Xk} being invariant
under the flow means that span{X1(t), . . . , Xk(t)} is the same subspace for
all t ∈ (−r, r).
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Let us change basis in Rn such that X1(q), . . . , Xk(q) are the first k
standard basis vectors.

Let us denote the coordinates of Xi by Xj
i , j = 1, . . . , n, so we must

show that Xj
i (t) = 0 for all 1 ≤ i ≤ k, k + 1 ≤ j ≤ n and t ∈ (−r, r).

Let W ⊆ (−r, r) be the set of all t satisfying Xj
i (t) = 0 for all 1 ≤ i ≤

k, k+1 ≤ j ≤ n. Then W is clearly closed and 0 ∈ W , so if we show that W
is also open then W = (−r, r) and we are done.

At this point we pass to the nonstandard extension. To show that W is
open we must show that for every w ∈ W and every s ≈ w, s ∈ ∗W . By

transfer s ∈ ∗W means that Xj
i (s) = 0 for all 1 ≤ i ≤ k, k + 1 ≤ j ≤ n.

Say s > w.

Let A = max |Xj
i (u)|, w ≤ u ≤ s, 1 ≤ i ≤ k, k + 1 ≤ j ≤ n, and assume

this maximum is attained at u = u′, with i = a, j = b.

Let B = max | ddtX
j
i (u)|, w ≤ u ≤ s, 1 ≤ i ≤ k, k + 1 ≤ j ≤ n, and

assume this maximum is attained at u = u′′, with i = c, j = d.
Then since Xb

a(w) = 0 we have

A = |Xb
a(u′)|

= |Xb
a(u′) −Xb

a(w)| ≤ |u′ − w|B

= |u′ − w| · | d
dt
Xd

c (u′′)|

= |u′ − w| · |
∑

m

Cm
1c(u

′′)Xd
m(u′′)|

≺ |u′ − w|A
≺≺ A.

We have A ≺≺ A and so necessarily A = 0 and so Xj
i (s) = 0 for all 1 ≤ i ≤

k, k + 1 ≤ j ≤ n (the notation ≺ was introduced in Section 10.3). �

10.4. Smooth manifolds, notion of nearstandardness

Our object of interest is a smooth manifold M together with an
enlargement M →֒ ∗M . Here as usual ∗M = MN/F where F is a free
ultrafilter on N.

Definition 10.4.1. Let p ∈M . The halo of p, which we denote by

h(p) = hM(p), (10.4.1)

is the set of all points x ∈ ∗M , for which there is a coordinate neigh-
borhood U of p such that x ∈ ∗U and x ≈ p in the given coordinates,
or briefly hM(p) = {x ∈ ∗M : x ≈ p}.

Remark 10.4.2. By including the index M in the notation for
the halo as in (10.4.1), we emphasize its dependence on the ambient
manifold. For example, the halo of the origin in ∗R consists of hyperreal
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infinitesimals, while the halo of the origin in ∗R2 consists of points both
of whose coordinates are infinitesimal.

The definition of h(p) does not require coordinates, but rather de-
pends only on the topology of M . The points of M are called standard.

Definition 10.4.3. A point of ∗M belonging to h(p) for some p ∈M
is called nearstandard.

Definition 10.4.4. If a is nearstandard then st(a) is the unique p ∈
M such that a ∈ h(p).

Definition 10.4.5. Let A ⊆M be a subset. The halo hA of A is a
subset of ∗M defined by

hA =
⋃

a∈A
hM(a).

Example 10.4.6. For the ambient manifold M itself, then the
halo hM is the set of all nearstandard points in ∗M .

The following is proved in [Davis 1977, p. 90, Theorem 5.6]. LetX
be a metric space, e.g., a finite-dimensional smooth manifold equipped
with a Riemannian metric.

Theorem 10.4.7 (Davis). For a metric space X the following are
equivalent:

(1) every bounded closed set in X is compact;
(2) every finite point 4 of ∗X is nearstandard.

In particular, if M is a finite-dimensional complete Riemannian
manifold, then a point of ∗M is finite if and only if it is nearstandard.

10.5. Results for general culture on topology

We have the following characterisations of open sets and compact
sets. A good reference is [Davis 1977].

Theorem 10.5.1. A subset A is open in M if and only if hA ⊆ ∗A.

Example 10.5.2. The subset of M = R given by the closed inter-
val A = [0, 1] is not open since ∗A fails to contain negative infinitesimals
which are in the halo of A, i.e., halM(0) 6⊆ ∗A.

Theorem 10.5.3. [Davis 1977, p. 78, item 1.6] A set A ⊆ M is
compact if and only if ∗A ⊆ hA.

See Theorem 11.1.3 for a proof.

4Meaning that it is at finite distance from any p ∈ M .
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Example 10.5.4. The subset of R given by the open interval A =
(0, 1) is not compact since a positive infinitesimal ǫ is in ∗A but ǫ is not
in the halo of A, since it is not infinitely close to any point of A because
every point of A is appreciable. Since every point of A is appreciable,
so is every point of hA, but infinitesimals are not appreciable.

In particular, if A is compact then ∗A ⊆ hM . Recall that the halo
both of a point and of a subset are defined relative to the ambient
manifold M (see Remark 10.4.2).

Theorem 10.5.5 (Davis p. 78, item 1.7). The ambient manifold M
itself is compact if and only if hM = ∗M .

Remark 10.5.6. If M is noncompact then hM is an external set.5

Example 10.5.7. The 1-dimensional manifold M = R is not com-
pact. The halo hR of R consists of all finite hyperreals. This is an
external subset of ∗R. Recall that hR is the domain of the standard
part function st : hR → R defined in Section 4.1.

See Section 11.1 for some proofs.

10.6. Saturation

There is an important principle of saturation,6 which we now in-
troduce in a somewhat abridged or special form. We will need the fol-
lowing special case of the saturation property, formulated for nested7

sequences.

Theorem 10.6.1. If 〈An : n ∈ N〉 is a nested sequence of nonempty
subsets of R then the sequence 〈∗An : n ∈ N〉 has a common point.

Proof. Let P = P(R) be the set of subsets of R. Consider a
sequence 〈An ∈ P : n ∈ N〉 viewed as a function f : N → P, n 7→ An.
By the extension principle we have a function ∗f : ∗N → ∗P. Let Bn =
∗f(n). For each finite n we have Bn = ∗An ∈ ∗P. For each infinite value
of the index n = H the entity BH ∈ ∗P is by definition internal but is
not (necessarily) the natural extension of any subset of R.

If 〈An〉 is a nested sequence in P\{∅} then by transfer 〈Bn : n ∈ ∗N〉
is a nested sequence in ∗P \ {∅}. Let H be a fixed infinite index.
Then for each finite n the set ∗An ⊆ ∗R includes BH . Choose any
element c ∈ BH . Then c is contained in ∗An for each finite n:

c ∈
⋂

n∈N

∗An

5A set is external if it is not internal. See Section 7.5.
6Revaya
7mekunenet
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as required. �

Remark 10.6.2. The injective map ∗ : P → ∗P sends An to ∗An.
For each natural n we have a symbol an in the extended real number
language (see Remark 5.6.4) whose standard interpretation is An ∈ P.
Meanwhile the nonstandard interpretation of an is the entity ∗An ∈ ∗P.
The sequence 〈An : n ∈ N〉 in P is the standard interpretation of the
symbol a = 〈an〉. The sequence 〈Bn : n ∈ ∗N〉 in ∗P is the nonstandard
interpretation of the symbol a, and in particular Bn = ∗An for finite n.

Corollary 10.6.3. If the family of subsets {An}n∈N has the finite
intersection property (see Definition 4.10.5) then ∃c ∈

⋂
n∈N

∗An.

This is an equivalent formulation of Theorem 10.6.1.



CHAPTER 11

Compactness, prevectors

11.1. Equivalent characterisations of compactness

Let X be a topological space. Let p ∈ X. A neighborhood of p is
an open set that contains p. Recall the following.

(1) The halo of p, denoted h(p) ⊆ ∗X, is the intersection of all ∗U
where U runs over all neighborhoods of p in X.

(2) A point y ∈ ∗X is called nearstandard in X if there is p ∈ X
such that y ∈ h(p) (see Section 10.4).

(3) The saturation property asserts that if sets An ⊆ X form a
decreasing (nested) sequence 〈An : n ∈ N〉, then ∩n∈N

∗An 6= ∅.

Example 11.1.1. Let An = {p ∈ N : p prime and p ≥ n}. Then
by saturation there exists an element c ∈ ∩n∈N

∗An, called an infinite
prime.

Lemma 11.1.2. For a finite union, the star of union is the union
of stars.

Proof. We have (∀y ∈ X)
[
y ∈ A ∪ B ⇐⇒ (y ∈ A) ∨ (y ∈ B)

]
.

This is a first-order formula. Applying upward transfer we obtain

(∀y ∈ ∗X)
[
y ∈ ∗A ∪ ∗B ⇐⇒ (y ∈ ∗A) ∨ (y ∈ ∗B)

]
.

The lemma now follows by induction. �

A more advanced application of saturation is the following theorem.

Theorem 11.1.3. Suppose the topology of X admits a countable
basis (e.g., X is a metric space). Then the following two conditions
are equivalent:

(1) X is compact;
(2) every y ∈ ∗X is nearstandard in X.

Proof of (1) ⇒ (2). Assume X is compact, and let y ∈ ∗X. Let
us show that y is nearstandard (this direction does not require satura-
tion).

Suppose on the contrary that y is not nearstandard, i.e., y is not in
the halo of any point p ∈ X. Thus, every p ∈ X has a neighborhood Up

101
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such that
y 6∈ ∗Up. (11.1.1)

Consider the collection {Up}p∈X . This collection is an open cover of X.
Since X is compact, the collection has a finite subcover Up1 , . . . , Upn , so
that X = Up1 ∪ · · · ∪ Upn . Applying Lemma 11.1.2 to this finite union,
we obtain

∗X = ∗Up1 ∪ · · · ∪ ∗Upn .

Hence y is in one of the ∗Upi , i = 1, . . . , n, contradicting (11.1.1). �

Proof of (2) ⇒ (1). This direction exploits saturation. Assume
every y ∈ ∗X is nearstandard, and let {Ua} be an open cover of X. We
need to find a finite subcover.

Suppose on the contrary that the union of any finite collection of Ua

is not all of X. Then the complements Sa of Ua form a collection of
(closed) sets {Sa} with the finite intersection property. It follows that
the collection {∗Sa} similarly has the finite intersection property.

At this point we use the condition that the family is countable (see
Remark 11.1.4). By saturation (see Corollary 10.6.3), the intersection
of all ∗Sa is non-empty. Let y be a point in this intersection. By
hypothesis, there is a point p ∈ X such that y ∈ h(p). Now the {Ua}
form a cover of X so there is a Ub such that p ∈ Ub. But y is in ∗Sa

for all a, in particular y ∈ ∗Sb, so it is not in ∗Ub, a contradiction
to y ∈ h(p). �

Remark 11.1.4. Given a basis for the topology of X, compactness
is clearly equivalent to the property that every cover by basis sets has
a finite subcover. If we have a countable basis, then all covers under
consideration are countable, and so in the proof above we need only
countable saturation.

Theorem 11.1.5 (Cantor’s intersection theorem). A nested de-
creasing sequence of nonempty compact sets has a common point.

Proof. Given a nested sequence of compact sets Kn, we con-
sider the corresponding decreasing nested sequence of internal sets,
〈∗Kn : n ∈ N〉. This sequence has a common point x by saturation.
But for a compact set Kn, every point of ∗Kn is nearstandard (i.e.,
infinitely close to a point of Kn). In particular, st(x) ∈ Kn for all n,
as required. �

11.2. Properties of the natural extension

Given an open set W ⊆ Rn and a smooth function f : W → R
we note some properties of the extension ∗f : ∗W → ∗R, obtained by
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transfer. When there is no risk of confusion, we will omit the asterisk ∗
from the function symbol ∗f and simply write f for both the original
function and its extension. As for functions, we omit the asterisk ∗
from relation symbols, writing ≤ in place of ∗≤.

Recall that the external subset hW ⊆ ∗W consists of all points
infinitely close to some point of W (see Section 10.4). We can then
consider the shadow map st : hW → W .

Lemma 11.2.1. Let W ⊆ Rn be an open set. Assume f : W → R is
continuous. Then ∗f(a) is finite for each a ∈ hW .

Proof. Given a ∈ hW , let U ⊆ W be a neighborhood of the
point st(a) ∈ W such that U ⊆ W and U is compact.

By compactness, there is a constant C ∈ R such that |f(x)| ≤ C
for all x ∈ U . By transfer |f(x)| ≤ C for all x ∈ ∗U . In particular we
have |f(a)| ≤ C. Therefore f(a) is finite. �

11.3. Remarks on gradient

Recall that hU is the set of nearstandard points of ∗U whose stan-
dard part is in U , where ∗U is the natural extension of U . Given an
open set U ⊆ Rn and a smooth function f : U → R, we can compute
the partial derivatives ∂f

∂ui as usual.

Remark 11.3.1. If y = f(x) then we have

dy =
∂f

∂ui
dui

where the symbols dy and dui can be interpreted either in the sense of
Leibniz–Keisler differentials (see Section 4.4) or in the traditional sense
of 1-forms (see Section 2.3).

We will consider the row vector
(

∂f
∂u1

∂f
∂u2 . . . ∂f

∂un

)

sometimes called the gradient of f in calculus.

Definition 11.3.2. The partial derivatives of ∗f are by definition
the functions ∗( ∂f

∂ui

)
,

i.e., the natural extensions of the partial derivatives of the real func-
tion f .

Definition 11.3.3. Given a function f ∈ C1 we consider the row
vector Da of partial derivatives at each point a ∈ ∗U .
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One similarly defines the higher partial derivatives of f at each
point a ∈ ∗U .

Definition 11.3.4. Given a function f ∈ C2 we consider the Hes-
sian matrix Ha of second partial derivatives of f at each point a ∈ ∗U .

By Lemma 11.2.1, Da and Ha are finite throughout the set hU . For
future applications, we would like to consider the infinitesimal segment
between two infinitely close points in the halo of U .

Lemma 11.3.5. Let a, b ∈ hU with a ≈ b, then the segment between a
and b is included in hU ⊆ ∗U .

Proof. Each point in the segment between a and b is infinitely
close to the point st(a) = st(b) ∈ hU . �

Remark 11.3.6. We will not use the traditional bracket notation
for this segment so as to avoid confusion.

We obtain the following version of the mean value theorem.

Theorem 11.3.7. If f : U → R is C1 then ∗f(b)−∗f(a) = Dx (b−a)
for a suitable x in the segment between a and b.

Proof. This results by applying the transfer principle to the mean
value theorem (see Section 7.4). Note that here Dx (b− a) is a product
of matrices, namely a row vector times a column vector. �

Equivalently, we can write

∗f(b) − ∗f(a) −Dx (b− a) = 0 (11.3.1)

for the specific choice of the point x provided by the mean value theo-
rem.

11.4. Version of MVT at an arbitrary point of the segment

At an arbitrary point y in place of x we have the following weaker
statement. We will exploit the ≺≺ notation (see Section 10.3).

Theorem 11.4.1. Let f be C1 and let a, b ∈ hU be infinitely close.
Then for every y that is infinitely close to a, we have

f(b) − f(a) −Dy (b− a) ≺≺ ‖b− a‖.
Proof. By hypothesis, the partial derivatives Dy are themselves

continuous functions of y. Then the characterization of continuity via
infinitesimals and microcontinuity in Section 6.2 implies that Dx−Dy is
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infinitesimal for any y ≈ a. Therefore using the special x from (11.3.1),
we can write

f(b) − f(a) −Dy(b− a) =
(
f(b) − f(a) −Dx(b− a)

)
+ (Dx −Dy)(b− a)

= (Dx −Dy) (b− a)

≺≺ ‖b− a‖
as required. �

Setting y = a0, we obtain the following corollary.

Corollary 11.4.2. Let a0 = st(a). Then

f(b) − f(a) −Da0(b− a) ≺≺ ‖b− a‖.
Remark 11.4.3. If the first partial derivatives are Lipschitz (e.g.,

if f is C2), and we are given an infinitesimal constant β such that we
have ‖x − y‖ ≺ β for all x in the segment between a and b, then the
following stronger condition holds for such y:

f(b) − f(a) −Dy(b− a) ≺ β‖b− a‖.
Remark 11.4.4. If f is C2 then by transfer of the Taylor approxi-

mation theorem we have

∗f(b) − ∗f(a) = Da(b− a) +
1

2
(b− a)tHx(b− a)

for a suitable x in the segment between a and b, and remarks similar
to those we have made regarding Dx −Dy apply to Hx −Hy.

Remark 11.4.5. Let σ = (σi) : U → Rn be a C1 map. Then the n
rows Di

a corresponding to σi form the Jacobian matrix Ja of σ at a
point a. By applying the above considerations to each σi we obtain
that

σ(b) − σ(a) − Jy(b− a) ≺≺ ‖b− a‖.
Remark 11.4.6. If all first partial derivatives are Lipschitz (e.g.,

if σ is C2) then we obtain the relation σ(b)−σ(a)−Jy(b−a) ≺ β‖b−a‖
with β as in Remark 11.4.3.

11.5. Prevectors

We now choose a positive infinitesimal λ ∈ ∗R, and fix it once and
for all. We will now define the concept of a prevector.

Definition 11.5.1. Let a ∈ hM . A prevector based at a is a
pair (a, x), where x ∈ hM , such that for each smooth function f ∈ Da0 ,
we have ∗f(x) − ∗f(a) ≺ λ, where a0 = st(a).



106 11. COMPACTNESS, PREVECTORS

Remark 11.5.2. The hypothesis ∗f(x)− ∗f(a) ≺ λ is stronger than
merely requiring ∗f(x) and ∗f(a) to be infinitely close.

We can avoid quantification over functions occurring in Defini-
tion 11.5.1 by giving an equivalent condition of being a prevector in
coordinates as follows. Consider coordinates in a neighborhood W of
the standard point a0 = st(a) in M , whose image in Euclidean space
is U ⊆ Rn. Let â, x̂ ∈ ∗U be the coordinates for a, x ∈ ∗W .

Theorem 11.5.3. The pair (a, x) is a prevector based at the point a
if and only if

x̂− â ≺ λ,

where the difference x̂ − â is defined using the linear structure of the
ambient vector space ∗Rn ⊇ ∗U .

Proof. Let us show that the two definitions are indeed equivalent.
Assume the first definition, and let (u1, . . . , un) be the chosen coordi-
nate functions. Since each ui in particular is a smooth function, we
get ui(x) − ui(a) ≺ λ for each i, i.e., x̂− â ≺ λ.

Conversely, assume that the pair (a, x) satisfies the second defini-
tion. Let f ∈ Da0 be a smooth function. Then by the mean value
theorem (Theorem 11.3.7), we have f(x) − f(a) = Dc (x̂ − â) for a
suitable c in the segment between â and x̂. Now the components of Dc

are finite by Lemma 11.2.1. Therefore f(x) − f(a) ≺ ‖x̂− â‖ ≺ λ. �

11.6. Tangent space to manifold via prevectors, ivectors

Definition 11.6.1. Let a ∈ hM . We denote by Pa = Pa(M) the
set of prevectors based at a.

We will use Pa to define the tangent space of M at a. First we will
define an equivalence relation ≡ on Pa as follows.

Definition 11.6.2. We write

(a, x) ≡ (a, y)

if one of the following two equivalent conditions is satisfied:

(1) ∗f(y) − ∗f(x) ≺≺ λ for every smooth function f : M → R;
(2) in coordinates as above, ŷ − x̂ ≺≺ λ.

The equivalence of the two definitions follows by the argument of
Section 11.5.

Definition 11.6.3. We denote by

Ta = Ta(M)

the set of equivalence classes: Ta = Pa/≡.
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Remark 11.6.4. This is a generalisation of the ihull (nonstandard
hull) construction; see Section 8.2.

Definition 11.6.5. In the spirit of physics notation, we will denote
the equivalence class of the pair (a, x) ∈ Pa by

−→
ax ∈ Ta.

We will refer to it as an ivector (short for infinitesimal vector) so as to
distinguish it from a classical vector (which has noninfinitesimal norm
by definition).

Theorem 11.6.6. A choice of coordinates in a neighborhood of M
gives an identification of Ta with Rn for every nearstandard a.

Proof. Given a ∈ hM , let W ⊆ M be a coordinate neighborhood
of the point st(a) ∈M . Thus we have a map W → Rn with image U ⊆
Rn. Here by definition x 7→ x̂ for all x ∈ W . Recall that (Rn)λF is the
space of points in ∗Rn that are finite compared to λ. We define a map

Pa → (Rn)λF

by sending (a, x) 7→ x̂ − â. This induces an identification of the
space Ta = Pa/≡ with the space Rn = (Rn)λF/(R

n)λI (see Theorem 10.3.8).
Under this identification, the space Ta inherits the structure of a vector
space over R.1 �

Remark 11.6.7. The entity denoted Ta is a mixture of standard
and nonstandard notions. It is a vector space over R, but defined at
every nearstandard point a ∈ hM .2

1If we choose a different coordinate patch in a neighborhood of a0 = st(a)
with image U ′ ⊆ Rn, then if ϕ : U → U ′ is the change of coordinates, then by
Definition 11.3.2, we have ϕ(x̂)−ϕ(â)− Ja0

(x̂− â) ≺≺ ‖x̂− â‖ ≺ λ, where J is the
Jacobian matrix. Hence we obtain ϕ(x̂)−ϕ(â)−Ja0

(x̂− â) ≺≺ λ. This means that
the map Rn → Rn induced by the two identifications of Ta with Rn provided by the
two coordinate maps, is given by multiplication by the matrix Ja0

, and therefore
is linear. Thus it preserves the linear space structure of the quotient. Hence the
vector space structure induced on Ta via coordinates is independent of the choice
of coordinates, and so we have a well defined vector space structure on Ta over R.

2If a, b ∈ hM and a ≈ b, then given coordinates in a neighborhood of st(a),
the identifications of Ta and Tb with Rn induced by these coordinates induces an
identification between Ta and Tb. Given a different choice of coordinates, the ma-
trix Jst(a) used in the previous paragraph is the same matrix for a and b, and so the
identification of Ta with Tb is well defined, independent of a choice of coordinates.

Thus when a ≈ b ∈ hM we may unambiguously add an ivector
−→
ax ∈ Ta and an

ivector
−→
b y ∈ Tb.





CHAPTER 12

Action, differentiation, prevector fields

12.1. Action of a prevector on smooth functions

Prevectors were defined in Section 11.5. They act on functions in
a purely algebraic way that does not rely on either limits or standard
part, as follows. Recall that λ > 0 is a fixed infinitesimal.

Definition 12.1.1. A prevector (a, x) ∈ Pa acts on a smooth func-
tion f : M → R as follows:

(a, x) f =
1

λ

(
f(x) − f(a)

)
. (12.1.1)

Note that the resulting function in the righthand side of (12.1.1) is
not a real function in general.

Remark 12.1.2. The righthand side is finite by definition of pre-
vector.

This action is infinitely close to being a derivation in the following
sense.

Theorem 12.1.3. The action (a, x)f satisfies the Leibniz rule up
to infinitesimals.

Proof. Indeed, given real functions f and g we compute the action
on the product fg as follows:1

(a, x)(fg) =
1

λ

(
f(x)g(x) − f(a)g(a)

)

=
1

λ

(
f(x)g(x) − f(x)g(a) + f(x)g(a) − f(a)g(a)

)

= f(x)
1

λ

(
g(x) − g(a)

)
+

1

λ

(
f(x) − f(a)

)
g(a)

≈ f(a)
1

λ

(
g(x) − g(a)

)
+

1

λ

(
f(x) − f(a)

)
g(a).

Here the final relation ≈ is justified by the continuity of f at a0 = st(a)
and finiteness of the action 1

λ

(
g(x) − g(a)

)
. �

1We suppress the stars on the natural extensions of f and g to simplify the
calculations.

109
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12.2. Differentiation by ivectors

We use the action of a prevector to define the differentiation by an
ivector as follows.

Definition 12.2.1. The differentiation of a function f : M → R
by an ivector

−→
ax ∈ Ta is defined by setting

−→
ax f = st

(
(a, x)f

)
(12.2.1)

where (a, x)f is the action of Definition 12.1.1.

The action
−→
ax f is well defined by definition of the equivalence re-

lation ≡. Recall that Ta = Pa/ ≡.

Remark 12.2.2. The ivector
−→
ax is a nonstandard object based at

a possibly nonstandard point a, but it assigns a standard real number
to the standard function f .

Theorem 12.2.3. Differentiation by an ivector
−→
ax satisfies the fol-

lowing version of the Leibniz rule:

−→
ax(fg) = f(a0) ·

−→
ax g +

−→
axf · g(a0)

where a0 = st(a).

Proof. Applying Theorem 12.1.3 and the shadow, we obtain the

following for the differentiation
−→
ax(fg):

−→
ax(fg) = st(f(a)) · −→ax g +

−→
axf · st(g(a))

= f(a0) ·
−→
ax g +

−→
axf · g(a0),

where the second equality relies on the continuity of f and g at a0. �

When a = a0 ∈M we obtain the ordinary Leibniz rule for differen-
tiation.

12.3. Relation to classical vectors

Ivectors can be used in place of classical vectors by the following
corollary.

Theorem 12.3.1. Each classical tangent vector X at a standard

point a ∈ M defines a unique ivector
−→
ax where in coordinates x =

a+ λX.
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Proof. The classical derivative Xf of f in the direction of vec-

tor X at a0 is by definition Xf = st
(

f(a0+λX)−f(a0)
λ

)
. Note that

f(a0 + λX) − f(a0)

λ
≈ f(a+ λX) − f(a)

λ

by Corollary 11.4.2. Thus Xf coincides with
−→
axf as in formula (12.2.1).

While the choice of the point x = a + λX is coordinate-dependent
and therefore so is the prevector (a, x), the actions of vector X and

ivector
−→
ax on Da0 coincide when viewed as derivations. �

12.4. Induced map on prevectors

Let M be a smooth manifold. We recall the following.

(1) a ∈ hM is a nearstandard point.
(2) λ is a fixed infinitesimal.
(3) Pa is the space of prevectors (a, x) satisfying x̂ − â ≺ λ in

coordinates.
(4) The equivalence relation ≡ between prevectors (a, x) and (a, y)

in Pa is defined by requiring in coordinates ŷ − x̂ ≺≺ λ (see
Section 11.6).

(5) Ta = Pa/≡ is the tangent space at a.
(6) The ivector −→ax ∈ Ta is the equivalence class of a prevec-

tor (a, x) ∈ Pa.

Let f : M → N be a smooth map between smooth manifolds with
natural extension ∗f : ∗M → ∗N , or more generally an internal map
Φ: ∗M → ∗N (such as a prevector field defined in Section 12.5 below).

Definition 12.4.1. Let a ∈ hM . The differential dfa of f is the
map

dfa : Pa → Pf(a), (a, x) 7→ (f(a), f(x)).

For a standard smooth map f one necessarily has (f(a), f(x)) ∈
Pf(a). For an internal map, additional hypotheses may be required; see
Section 13.3.

Definition 12.4.2. Let f : M → N be a smooth map and ∗f its
natural extension. Let a ∈ hM . The tangent map Tfa induced by the
differential dfa is the map

Tfa : Ta(M) → Tf(a)(N)

defined as follows. We choose a prevector (a, x) representing an ivector

in TaM . We then set Tfa

(−→
ax
)

=
−−−−−−→
f(a) f(x).
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Here the ivector on the right-hand side, as the notation suggests, is
the equivalence class in Tf(a) of the prevector (f(a), f(x)) ∈ Pf(a).

Remark 12.4.3. The relation between f and dfa, as well as be-
tween f and Tfa seems more transparent here than in the corresponding
classical definition.

Theorem 12.4.4. For a standard point a ∈ M , the space Ta is
naturally identified with the classical tangent space of M at a.

Proof. This was shown in Theorem 12.3.1. One can also check
this in coordinates. It suffices to show this for an open set U ⊆ Rn,
where the classical tangent space at any point a is naturally identified
with Rn itself. A classical vector v ∈ Rn is then identified with the
ivector

−→
ax where x = a+λ ·v. Under this identification, our definition

of the differentiation
−→
axf in Section 12.1 coincides with the classical

one. A similar remark applies to the tangent map Tfa(
−→
ax). �

Remark 12.4.5. When the manifolds M,N are open subsets of
Euclidean space Rn, and Ta is the classical tangent space, the tangent
map Tfa : Ta → Tf(a) is identified with the Jacobian matrix Ja (at the
point a) whose rows are the gradients Da of each of the n components
of f .

12.5. Prevector fields, class D0

Internal sets were defined in Section 7.5.

Definition 12.5.1. A map f : ∗M → ∗N is said to be internal if its
graph is an internal subset of ∗M × ∗N .

Recall that λ is a fixed infinitesimal. A prevector field is, intuitively,
the assignment of an infinitesimal displacement (of size comparable
to λ) at every point, given by an internal map. More precisely, we have
the following definition. Recall that Pa is the set of prevectors at a
point a ∈ hM , i.e., pairs (a, x) such that in coordinates x̂− â ≺ λ.

Definition 12.5.2. A prevector field Φ on a smooth manifold M
is an internal map Φ: ∗M → ∗M such that for every a ∈ hM we have

(a,Φ(a)) ∈ Pa. (12.5.1)

In coordinates where addition and subtraction are possible, this
condition translates into Φ(a) − a ≺ λ for every a ∈ hM .

Definition 12.5.3. The class of prevector fields will be denotedD0.
Thus Φ ∈ D0 if and only if Φ(a) − a ≺ λ for every a ∈ hM .
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Remark 12.5.4. Even though the condition (12.5.1) is imposed
only at points of hM , we need the map Φ to be defined on all of ∗M .
This is because we need Φ (and in particular both its domain and range)
to be an internal entity, more specifically an element of ∗Map(M,M).
Being internal enables us to apply hyperfinite iteration which is the
foundation of the hyperreal walk; see Section 12.9.

Definition 12.5.5. Let Φ, G ∈ D0. We say Φ is equivalent to G
and write Φ ≡ G if one of the following three equivalent conditions is
satisfied for every a ∈ hM :

(1) (a,Φ(a)) ≡ (a,G(a)),
(2) in coordinates Φ(a) −G(a) ≺≺ λ,

(3)
−−−→
aΦ(a) =

−−−−→
aG(a).

12.6. Local prevector fields

Definition 12.6.1. A local prevector field on an open U ⊆M is an
internal map Φ: ∗U → ∗V satisfying the conditions of Definition 12.5.5,
where the set V ⊇ U is open.

When the distinction is needed, we will call a prevector field defined
on all of ∗M a global prevector field.

Remark 12.6.2. Allowing the values of a local prevector field de-
fined on ∗U to lie in a possibly larger range ∗V enables us to work with
a restriction of a global prevector field Φ to a smaller domain which is
not necessarily invariant under Φ.

Example 12.6.3. Let M = R. If we wish to restrict the prevector
field Φ on M given by Φ(a) = a + λ to the domain ∗(0, 1) ⊆ ∗R, then
we need the flexibility of allowing a slightly larger range for Φ.

In the sequel we will usually not mention the slightly larger range V
when describing a local prevector field, but will tacitly assume that
we have such a V when needed. A second instance where it may be
required for the range to be slightly larger than the domain is the
following natural setting for defining a local prevector field.

Example 12.6.4. Let p ∈ M . Let V ⊆ M a coordinate neighbor-
hood of p with image V ′ ⊆ Rn where p̂ ∈ V ′ corresponds to p ∈ V .
Let X be a classical vector field on V , given in coordinates by X ′ : V ′ →
Rn. Thus if in coordinates one has X = X i ∂

∂ui then X ′ is given by
the n-tuple (X1, . . . , Xn). Then there is a neighborhood U ′ of p̂ ∈ Rn,
with U ′ ⊆ V ′, such that we can define a local prevector field Φ′ : ∗U ′ →
∗V ′ by setting

Φ′(a) = a+ λ ·X ′(a). (12.6.1)
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Indeed, it suffices to choose U ′ such that U ′ is compact and further-
more U ′ ⊆ V ′. For the corresponding open set U ⊆ V in M , this in-
duces a local prevector field Φ: ∗U → ∗V which realizes the classical vec-
tor fieldX on U in the sense of Definition 12.7.1 below (cf. Theorem 12.4.4).

Remark 12.6.5. Realizing vector field (12.6.1) of Example 12.6.4
may require restricting to a smaller neighborhood U , as discussed in
Example 12.6.3. For example, when M = V = V ′ = (0, 1) and X = 1 d

dx
in classical notation, one needs to take U = (0, r) for some r ∈ R, r < 1
in order for Φ(a) = a+ λ to lie always in ∗V .

12.7. Realizing classical vector fields

Let U be an open neighborhood in the smooth manifold M . How
does a prevectorfield realize2 a classical vector field?

Definition 12.7.1. We say that a local prevector field Φ on U real-
izes a classical vector field X on U if for every smooth function h : U →
R we have the following relation for the new function Xh:

Xh (a) =
−−−−→
a Φ(a)h

for all a ∈ U , where
−−−−→
a Φ(a) is the ivector represented by the prevec-

tor (a,Φ(a)).

Remark 12.7.2. The condition of Definition 12.7.1 involves only
standard points a.

Different coordinates for the same neighborhood U will induce equiv-
alent realizations in ∗U as in Proposition 12.7.4 below. First we state
the following classical result on coordinate change.

Lemma 12.7.3. Let U ⊆ Rn and let a ∈ U . Let X : U → Rn be
a classical vector field. Let σ : U → W ⊆ Rn be a (smooth) change
of coordinates. Thus Tσ sends Ta to Tσ(a). Let Y : W → Rn be the
classical vector field corresponding to X under the coordinate change.
Then

Y (σ(a)) = JaX(a), (12.7.1)

where Ja is the Jacobian matrix of σ at a.

In Example 12.6.4 we associated a prevector field to a classical
vector field by setting Φ(a) = a + λX(a). We now show that different
coordinates for the same neighborhood U will induce realizations that
are equivalent in the sense of the relation ≡.

2Memamesh
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Proposition 12.7.4. Consider a change of coordinates σ as in
Lemma 12.7.3, so that we have Y (σ(a)) = JaX(a). Let Φ, G be the
prevector fields given by

(1) Φ(a) = a+ λX(a),
(2) G(a) = a+ λY (a)

Then we have an equivalence Φ ≡ σ−1 ◦ G ◦ σ, or in coordinates,
σ ◦ Φ(a) −G ◦ σ(a) ≺≺ λ for all a ∈ hU .

Proof. Let σi, Y i, Gi be the ith component of σ, Y,G respectively,
and let Di

a be the gradient (see Remark 11.3.3) of σi at a, so that Di
a

is the ith row of Ja. We apply the mean value theorem to σi together
with (12.7.1) to obtain the following bound for a suitable point c in the
segment between a and a+ λX(a):

[l]σi ◦ Φ(a) −Gi ◦ σ(a) = σi(a+ λX(a)) −Gi ◦ σ(a)

= σi(a+ λX(a)) − σi(a) − λY i(σ(a))

= Di
cλX(a) − λDi

aX(a)

= λ(Di
c −Di

a)X(a)

≺≺ λ,

where Di
c is the gradient of σi at c. Such a point c exists by Theo-

rem 11.3.7. Since the bound σi ◦ Φ(a) −Gi ◦ σ(a) ≺≺ λ holds for each
component i, we obtain the bound σ ◦ Φ(a) − G ◦ σ(a) ≺≺ λ, proving
the proposition. �

12.8. Internal induction

Internal induction is treated in most textbooks on Robinson’s frame-
work. We will follow [Goldblatt 1998, p. 129].

Theorem 12.8.1. If X ⊆ ∗N is an internal subset containing the
element 1 ∈ ∗N and closed under the successor function3 n 7→ n + 1
then X = ∗N.

Proof. We argue by contradiction. Consider the set difference Y =
∗N \X. Suppose Y is nonempty. since Y is internal, it has a least ele-
ment n ∈ Y (see Section 7.7). Hence n − 1 ∈ X. However, by closure
under successor, the number n must also be in X, contradicting the
hypothesis. This proves the theorem. �

Example 12.8.2 (Counterexample). The set N contains 1, is closed
under successor, but is different from ∗N. Thus the hypothesis that Y
be internal is indispensable.

3“peulat ha’okev” according to hebrew wikipedia at peano axioms
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Internal induction will be used in Section 12.9 and in the proof of
Theorem 15.7.2.

12.9. Global prevector fields, walks, and flows

In this section we will define the hyperreal walk4 of a prevector field
and relate it to the classical flow. Recall that a prevector field Φ on M
is an internal map Φ: ∗M → ∗M from ∗M to itself.

Remark 12.9.1. We wish to view a prevector field as the first step
of the corresponding walk at time t = λ, and will define the hyperreal
walk Φt and the real flow φt accordingly.

The hyperreal walk at arbitrary time t is defined by iterating Φ the
appropriate number of times.

Definition 12.9.2. Recall that Φ ∈ ∗Map(M). Consider the map
Map(M)×N → Map(M) taking (φ, n) to φn = φ◦φ◦· · ·◦φ (composition
altogether n times). Let ∗Map(M) × ∗N → ∗Map(M) be its natural
extension. This defines Φn for all hypernatural n.

We will now define the hyperreal walk Φt of a prevector field Φ. The
flow is initially defined at times t ∈ ∗R that are hyperinteger multiples
of the base infinitesimal λ.

Definition 12.9.3. Let Φ: ∗M → ∗M be a global prevector field.
For each hypernatural n ∈ ∗N, let t = nλ and define the hyperreal
walk Φt of Φ at time t by setting

Φt(a) = Φn(a). (12.9.1)

Definition 12.9.4. The real flow φt on M is φt(x) = st
(
Φnλ(x)

)

for all x ∈M , where nλ ≤ t < (n+ 1)λ, i.e., n =
⌊
t
λ

⌋
.

Remark 12.9.5. Under suitable hypotheses for Φ, the real flow φt

will be defined at real t whenever t is sufficiently small so that the stan-
dard part is well-defined; see material around (15.9.1) for the details.

Remark 12.9.6. The idea of a vector field being the infinitesimal
generator of its flow receives a literal meaning in the TIDG setting.

4Hiluch



CHAPTER 13

Invariance, commutation

13.1. Proof of invariance

Let Φ: ∗M → ∗M be a prevector field on M . Recall that the hyper-
real walk is defined by setting Φt = Φ◦N where N = ⌊ t

λ
⌋. A prevector

field Φ (not only can be thought of as but actually) is the infinites-
imal generator of both the walk Φt and the flow φt as discussed in
Section 12.9.

Theorem 13.1.1. Let Φ be a prevector field on M , and let Φt be its
hyperreal walk as in (12.9.1). Then the prevector field Φ is invariant
under the differential of the map Φt, in the sense that dΦt

(
a,Φ(a)

)
=

(b,Φ(b)) where b = Φ(a).

Proof. Note that we have the relation

(∀n ∈ ∗N) Φn ◦ Φ = Φ ◦ Φn,

proved by internal induction (see Section 12.8). Now let b = Φn(a).
The differential dΦt of the map Φt = Φn : ∗M → ∗M sends Pa to Pb. By
Definition 12.4.1, it acts on each prevector (a,Φ(a)) by

dΦt(a,Φ(a)) = (Φn(a),Φn(Φ(a)))

= (Φn(a),Φ(Φn(a)))

= (b,Φ(b))

by the associativity of composition, proving the invariance of the pre-
vector field Φ. �

Remark 13.1.2. This proof of invariance compares favorably to
the proof of invariance under the flow in the A-track framework (see
Theorem 9.2.3).

Remark 13.1.3. For any global prevector field Φ, the hyperreal
walk Φt is defined for all t ≥ 0. This is of course not the case for
the classical flow of a classical vector field. Similarly Φt is defined for
all t ≤ 0 if Φ is bijective.
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A treatment of Lie brackets via infinitesimal displacements appears
in Section 15.15. A treatment of commutation via infinitesimal dis-
placements appears in Section 15.23. A summary appears in Sec-
tion 13.5.

13.2. Hyperreal walk of a local prevector field

The hyperreal walk for a local prevector field is defined similarly.
A bit of care is required to specify its domain.

Definition 13.2.1. Let U ⊆ V . Consider a local prevector field
Φ: ∗U → ∗V . We extend Φ to an internal map Φ′ : ∗V → ∗V by defin-
ing Φ′(a) = a for all a ∈ ∗V − ∗U .

Remark 13.2.2. In Section 13.3 we will define classes Dk. If Φ
is Dk on hU , the extended field Φ′ as in Definition 13.2.1 is internal
but it may not be Dk on all of hV . Therefore care needs to be taken in
specifying the domain of the prevector field we wish to iterate.

Definition 13.2.3. We set

Yn = {a ∈ ∗U : (Φ′)n(a) ∈ ∗U}.
The domain of Φt is the set Yn(t) ⊆ ∗U , where n(t) =

⌊
t
λ

⌋
. The walk Φt

is defined on Yn(t) by setting Φt(a) = Φ′
t(a).

We wish also to consider the flow Φt for t ≤ 0. This can be defined
for a global prevector field Φ which is bijective on ∗M , or for a local
prevector field which is bijective in the sense of Remark 15.13.1, in
particular a D1 local prevector field. Namely, we define Φt for t ≤ 0 to
be (Φ−1)−t.

13.3. Regularity class D1 for prevector fields

We present a synthetic approach to vector fields where instead of
using the analytic classes Ck, we will use combinatorially defined classes
denoted Dk.

Defining various operations on prevector fields, such as their flow,
or Lie bracket, requires suitable regularity properties. To motivate
the definition of the class D1, we first recall the following classical
definition.

Definition 13.3.1. A classical vector field X : U → Rn is called K-
Lipschitz, where K ∈ R, if

‖X(a) −X(b)‖ ≤ K‖a− b‖ for all a, b ∈ U. (13.3.1)
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For the local prevector field Φ of Example 12.6.4, where Φ(a)−a =
λX(a), this translates into the inequality∥∥∥

(
Φ(a) − a

)
−
(
Φ(b) − b

)∥∥∥ ≤ Kλ‖a− b‖ (13.3.2)

for a, b ∈ ∗U .

Remark 13.3.2. Note the presence of the factor of λ on the right
hand side of formula (13.3.2) which is not present in formula (13.3.1).
This is due to the fact that (13.3.2) deals with infinitesimal prevectors
of type (a,Φ(a)) rather than classical vectors.

The bound (13.3.2) motivates the following definition.

Definition 13.3.3. A prevector field Φ on a smooth manifold M
is of class D1 if whenever a, b ∈ hM and (a, b) ∈ Pa, in coordinates the
following condition is satisfied:

Φ(a) − a− Φ(b) + b ≺ λ‖a− b‖. (13.3.3)

13.4. Second differences, class D2

Working with Lie brackets (more precisely, ibrackets) of prevector
fields requires a stronger condition than D1. Second differences were
already discussed in Section 4.5 in the context of the second derivative.

Definition 13.4.1. Let v, w be infinitesimal vectors such that v ≺
λ and w ≺ λ. The second difference of a prevector field Φ is defined
by ∆2

v,wΦ(a) = Φ(a) − Φ(a+ v) − Φ(a+ w) + Φ(a+ v + w).

Definition 13.4.2. A prevector field Φ on a smooth manifold M
is of class D2 if for each a ∈ hM , the following condition is satisfied in
coordinates. For each pair v, w ∈ ∗Rn with v ≺ λ, w ≺ λ, the second
difference ∆2

v,wΦ(a) is sufficiently small:

∆2
v,wΦ(a) ≺ λ‖v‖‖w‖.

In Proposition 15.2.1 we will show that the prevector field of Exam-
ple 12.6.4, induced by a classical vector field of class Ck, is necessarily
a Dk prevector field (k = 1, 2). This is in fact the central motivation
for our definition of the class Dk.

Remark 13.4.3. Our condition Dk is in fact a weaker condition
than Ck. Thus, the prevectorfield Φ of Example 12.6.4 is D1 if X is
Lipschitz, which is weaker than C1.

Our Definition 12.5.5 of the class D0 is consistent with the above
as it consists in requiring Φ(a) − a ≺ λ, i.e., Φ being a prevector field.
Note that in our definitions above, being a prevector field is part of the
definition of an entity in Dk.
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Remark 13.4.4. The class D2 enables us to define an infinitesimal
version of the Lie bracket as in Section 13.5.

13.5. Lie ibrackets, commutation

Lie ibrackets are dealt with in detail in Section 15.15 and Sec-
tion 15.23. Let N =

⌊
1
λ

⌋
. Here we will provide a summary of the

proof of commutation.

Definition 13.5.1. The Lie ibracket
.

[Φ, G
.

] of prevector fields Φ

and G is
.

[Φ, G
.

] = (G−1 ◦ Φ−1 ◦G ◦ Φ)◦N .

(See Definition 15.15.1). The following theorem corresponds to the
classical fact that the bracket of two vector fields vanishes if and only if
their flows commute. The identity prevector field I is defined by I(a) =
a for all a.

Theorem 13.5.2. Let Φ, G be two D2 prevector fields on M , and

let φt, gs be the associated real flows. Then we have
.

[Φ, G
.

] ≡ I if and
only if φt ◦ gs = gs ◦ φt for all 0 ≤ t, s ≤ T for some 0 < T ∈ R.

(See Theorem 15.23.1). The idea of the proof is as follows. We
partition the parameter rectangle [0, t] × [0, s] into N2 infinitesimal
rectangles. The composition Φt ◦ Gs corresponds to following 2N in-
finitesimal displacements along the left and top sides of the parameter
rectangle. Meanwhile, the composition Gs ◦ Φt corresponds to follow-
ing 2N infinitesimal displacements following the bottom and right sides
of the rectangle. We proceed as follows.

(1) We deform left-top one path into the bottom-right path by a
sequence of N2 elementary moves.1 Here an elementary move
switches from left and top sides of an infinitesimal rectangle
to bottom and right sides of the same rectangle.

(2) We show that if
.

[Φ, G
.

] ≡ I then each elementary move results
in a change of size ≺≺ 1

N2 in the final outcome.
(3) Therefore the total change is ≺≺ 1.
(4) Therefore compositions of the hyperreal walks satisfy Φt◦Gs ≡

Gs ◦ Φt.
(5) Passing to the standard part we obtain that the compositions

of the real flows satisfy φt ◦ gs = gs ◦ φt, as required.

1chiluf elementari.
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13.6. Bounds for D1 prevector fields

Recall that a D1 prevector field Φ satisfies the condition

Φ(a) − a− Φ(b) + b ≺ λ‖a− b‖
whenever (a, b) ∈ Pa (see Section 13.3). We note that Φ satisfies the
following adequality pq relation (see Section 3.11).

Proposition 13.6.1. Let Φ be a D1 prevector field on M . As-
sume a, b ∈ hM satisfy a− b ≺ λ. Then ‖Φ(a) − Φ(b)‖ pq ‖a− b‖.

Proof. By the triangle inequality we have∣∣‖Φ(a) − Φ(b)‖ − ‖a− b‖
∣∣ ≤ ‖Φ(a) − Φ(b) − a+ b‖

= Kλ‖a− b‖ (13.6.1)

where the hyperreal constant K defined by the last equality in for-
mula (13.6.1) is finite by the D1 condition. Hence

−Kλ‖a− b‖ ≤ ‖Φ(a) − Φ(b)‖ − ‖a− b‖ ≤ Kλ‖a− b‖.
Rearranging terms, we obtain

(1 −Kλ)‖a− b‖ ≤ ‖Φ(a) − Φ(b)‖ ≤ (1 +Kλ)‖a− b‖,
Since λ is infinitesimal, we have 1 ±Kλ pq 1, proving the result. �

Corollary 13.6.2. Under the hypotheses of Proposition 13.6.1 we
have ‖a− b‖ ≺ ‖Φ(a) − Φ(b)‖ ≺ ‖a− b‖.

13.7. Operations on prevector fields

Addition of D1 prevector fields in coordinates is equivalent, in the
sense of the relation ≡, to their composition. More precisely, we show
the following. Ivectors −→a x were defined in Section 11.6.

Proposition 13.7.1. Assume Φ be a D1 prevector field on M and
let G ∈ D0. Then

(1) for every a ∈ hM , we have
−−−−−−→
a Φ(G(a)) =

−−−−→
a Φ(a) +

−−−−→
a G(a) ;

(2) if G is also D1 then Φ ◦G ≡ G ◦ Φ.

Proof. In a coordinate chart, let

x = a+ (Φ(a) − a) + (G(a) − a) = Φ(a) +G(a) − a. (13.7.1)

Passing to equivalence classes, we obtain the following relation among

ivectors:
−−−−→
a Φ(a) +

−−−−→
a G(a) =

−→
ax. Now let b = G(a). Since G is a

prevector field we have (a, b) ∈ Pa. From formula (13.7.1) we obtain

Φ(G(a)) − x = Φ(b) − Φ(a) − b+ a ≺ λ‖b− a‖ ≺≺ λ
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by the D1 condition on Φ, proving part (1). Finally, part (2) results
from part (1) since

−−−→
aΦ(a) +

−−−→
aG(a) =

−−−→
aG(a) +

−−−→
aΦ(a) =

−−−−−−→
aG(Φ(a)),

as required. �

Definition 13.7.2. We define the notation of the increment δΦ by
setting δΦ(a) = Φ(a) − a.

Lemma 13.7.3. The prevector field defined by the sum of the incre-
ments of two D1 prevector fields is a D1 prevector field.

Proof. Let Φ and G be D1 prevector fields. The D1 condition can
be expressed as δΦ(a) − δΦ(b) ≺ λ‖a− b‖. Therefore

δΦ+G(a) − δΦ+G(b) = δΦ(a) + δG(a) − δΦ(b) − δG(b)

= (δΦ(a) − δΦ(b)) + (δG(a) − δG(b))

≺ λ‖a− b| + λ‖a− b|
≺ λ‖a− b‖

proving that the prevector field a 7→ a+ δΦ + δG is D1. �

Remark 13.7.4. By the previous proposition, composition is equiv-
alent to addition. From the previous lemma we deduce that the pre-
vector field a 7→ a + δΦ + δG is D1 but the argument shows only that
the composition of two D1 prevector fields is equivalent to a D1 pre-
vector field, which does not necessarily imply that it is itself D1; see
the example on page 29 line -8 of [Nowik & Katz 2015]. Therefore
a separate argument is needed to prove Lemma 13.7.3.

We will now show that the composition of D1 prevector fields is
again D1.

Proposition 13.7.5. If prevector fields Φ, G are D1 then the com-
position prevector field Φ ◦G is D1.

Proof. Let c = G(a) and d = G(b). We have by the triangle
inequality

‖Φ ◦G(a) − Φ ◦G(b) − a+ b‖
≤ ‖Φ ◦G(a) − Φ ◦G(b) −G(a) +G(b)‖ + ‖G(a) −G(b) − a+ b‖
= ‖Φ(c) − Φ(d) − c+ d‖ + ‖G(a) −G(b) − a+ b‖
≺ λ‖c− d‖ + λ‖a− b‖
≺ λ‖a− b‖

where Corollary 13.6.2 is applied in order to bound c − d in terms
of a− b. �



CHAPTER 14

Application: small oscillations of a pendulum

The material in this chapter first appeared in Quantum Studies:
Mathematics and Foundations [Kanovei et al. 2016].

14.1. Small oscillations of a pendulum

In his 1908 book Elementary Mathematics from an Advanced Stand-
point, Felix Klein advocated the introduction of calculus into the high-
school curriculum. One of his arguments was based on the problem
of small oscillations of the pendulum.1 The problem had been treated
until then using a somewhat mysterious superposition principle. The
latter involves (a vertical plane projection of) a hypothetical circular
motion of the pendulum. Klein advocated what he felt was a bet-
ter approach, involving the differential equation of the pendulum; see
[Klein 1908, p. 187].

The classical problem of the pendulum translates into a second
order nonlinear differential equation

ẍ = −g
ℓ

sin x

for the variable angle x with the vertical direction, where g is the
constant of gravity and ℓ is the length of the (massless) rod or string.

Remark 14.1.1. The problem of small oscillations deals with the
case of small amplitude,2 i.e., x is small, so that sin x is approxi-
mately x. Then the equation is boldly replaced by the linear one

ẍ = −g
ℓ
x,

whose solution is harmonic motion with period 2π
√
ℓ/g independent

of the amplitude a (here x ranges through the interval −a ≤ x ≤ a).

This suggests that the period of small oscillations should be in-
dependent of their amplitude. The intuitive solution outlined above
may be acceptable to a physicist, or at least to the mathematicians’

1Tnudat metutelet
2misraat
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proverbial physicist. The solution Klein outlined in his book does not
go beyond the physicist’s solution (Klein goes on to derive an exact
solution of the nonlinear equation, from which of course one can also
derive the correct asymptotics for small oscillations).

Remark 14.1.2. The Hartman–Grobman theorem [Hartman 1960],
[Grobman 1959] provides a criterion for the flow of the nonlinear
system to be conjugate to that of the linearized system, under the hy-
pothesis that the linearized matrix has no eigenvalue with vanishing
real part. However, the hypothesis is not satisfied for the pendulum
problem.

To provide a rigorous mathematical treatment for the notion of
small oscillation, it is tempting to exploit a hyperreal framework fol-
lowing [Nowik & Katz 2015]. Here the notion of small oscillation
can be given a precise sense, namely infinitesimal amplitude. Note
however the following.

Remark 14.1.3. Even for infinitesimal x, one cannot boldly re-
place sin x by x.

Therefore additional arguments are required. The linearisation
of the pendulum is treated in [Stroyan 2015] using Dieners’ “Short
Shadow” Theorem; see Theorem 5.3.3 and Example 5.3.4 there. This
chapter can be viewed as a self-contained treatement of Stroyan’s Ex-
ample 5.3.4.

The traditional A-track setting in the context of the real contin-
uum can only make sense of the claim that “the period of small oscil-
lations is independent of the amplitude” by means of a paraphrase in
terms of limits, rather than a specific oscillation. In the context of an
infinitesimal-enriched continuum, such a claim can be formalized more
literally; see Corollary 14.8.1.

Remark 14.1.4. The breakdown of infinite divisibility at quan-
tum scales makes irrelevant the mathematical definitions of derivatives
and integrals in terms of limits as x tends to zero. Rather, quotients
like ∆y

∆x
need to be taken in a certain range, or level. In our article

[Nowik & Katz 2015] we developed a general framework for differ-
ential geometry at level λ, where λ is an infinitesimal but the formalism
is a better match for a situation where infinite divisibility fails and a
scale for calculations needs to be fixed accordingly. Here we imple-
ment such an approach to give a rigorous account “at level λ” for small
oscillations of the pendulum.
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14.2. Vector fields and infinitesimal displacements

The framework developed in [Robinson 1966] involves a proper
extension R →֒ ∗R preserving the properties of R to a large extent dis-
cussed in Remark 14.3.3. Elements of ∗R are called hyperreal numbers.
A positive hyperreal number is called infinitesimal if it is smaller than
every positive real number.

We choose a fixed positive infinitesimal λ ∈ ∗R (a restriction on the
choice of λ appears in Section 14.8).

Remark 14.2.1. We will work with flows in a two-dimensional con-
text where the manifold can be conveniently identified with C. We will
also exploit the natural extension C →֒ ∗C.

Definition 14.2.2. Given a classical vector field V = V (z) where
z ∈ C, one forms an infinitesimal displacement δΦ (of the intended
prevectorfield Φ; see definition below) by setting δΦ = λV .

Note that the infinitesimal displacement can also be a more general
internal function.

Thus the aim is to construct the corresponding hyperreal walk,
denoted Φt, in the plane. Note that a zero of δΦ corresponds to a fixed
point of the flow.

Definition 14.2.3. The infinitesimal generator of the flow (or
walk) is the function Φ: ∗C → ∗C, also called a prevector field, de-
fined by

Φ(z) = z + δΦ(z), (14.2.1)

where δΦ(z) = λV (z) in the case of a displacement generated by a
classical vector field as above.

Remark 14.2.4. An infinitesimal generator, or prevector field, could
be a more general internal function. See Section 7.5 and Chapter 10.2
for details on internal sets, and Definition 13.3.3 for the D1 condition
for prevectorfields.

14.3. The hyperreal walk and the real flow

We propose a concept of solution of differential equation based on
Euler’s method with infinitesimal step, with well-posedness based on a
property of adequality (see Section 14.4), as follows.

Definition 14.3.1. The hyperreal walk, Φt(z) is a t-parametrized
map ∗C → ∗C defined whenever t is a hypernatural multiple t = Nλ
of λ, by setting

Φt(z) = ΦNλ(z) = Φ ◦ Φ ◦ . . . ◦ Φ(z) = Φ◦N(z), (14.3.1)
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where Φ◦N is the N -fold composition.

Such hyperfinite compositions are discussed in more detail in Sec-
tion 12.9. For arbitrary hyperreal t the walk can be defined by setting

Φt = ΦNλ = Φ◦N

where N =
⌊
t
λ

⌋
and ⌊ ⌋ is the floor function. Recall that the (natural

extension of the) floor function ⌊x⌋ rounds off the hyperreal number x
to the nearest integer no greater than x.

Remark 14.3.2. The fact that the infinitesimal generator Φ given
by (14.2.1) is invariant under the flow Φt of (14.3.1) receives a transpar-
ent meaning in this framework, expressed by the commutation relation
Φ ◦ Φ◦N = Φ◦N ◦ Φ due to transfer of associativity of composition of
maps (for an argument using internal induction see Section 12.8).

Remark 14.3.3. The transfer principle is a type of theorem that,
depending on the context, asserts that rules, laws or procedures valid
for a certain number system, still apply (i.e., are transfered) to an
extended number system, as discussed in Section 3.3; see there for some
illustrative examples. For a more detailed discussion, see Chapter 16.

The standard part (or shadow) st rounds off each finite hyperreal to
its nearest real number. The standard part function naturally extends
from the finite part of ∗R to that of ∗C (e.g., componentwise).

Definition 14.3.4. The real flow φt on C for t ∈ R when it exists is
constructed as the shadow (i.e., standard part) of the hyperreal walk Φt

by setting

φt(z) = st
(
ΦNλ(z)

)

where N =
⌊
t
λ

⌋
.

For t sufficiently small, appropriate regularity conditions ensure
that the point ΦNλ(z) is finite so that the shadow is well-defined.

The usual relation of being infinitely close is denoted ≈. Thus for
finite (i.e., non-infinite) z, w we have z ≈ w if and only if st(z) = st(w).
This relation is an additive one.

The appropriate relation for working with small prevector fields is a
multiplicatively invariant one rather than an additively invariant one,
as detailed in Section 14.4.

14.4. Adequality pq

The following is a generalisation to the complex setting of the def-
inition that appeared in Section 3.11.
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Definition 14.4.1. Let z, w ∈ ∗C. We say that z and w are adequal
and write z pq w if either one has z

w
≈ 1 (i.e., z

w
− 1 is infinitesimal)

or z = w = 0.

This implies in particular that the angle between z, w is infinites-
imal (when they are nonzero), but the relation pq entails a stronger
condition. If one of the numbers is appreciable, then so is the other
and the relation z pq w is equivalent to z ≈ w. If one of z, w is infin-
itesimal then so is the other, and the difference |z − w| is not merely
infinitesimal, but so small that the quotients |z − w|/z and |z − w|/w
are infinitesimal, as well.

We are interested in the behavior of orbits in a neighborhood of
a fixed point 0, under the assumption that the infinitesimal displace-
ment satisfies the Lipschitz condition. In such a situation, we have
the following theorem. Recall that the D1 condition was specified in
Definition 13.3.3.

Theorem 14.4.2. D1 prevector fields defined by adequal infinitesi-
mal displacements define hyperreal walks that are adequal at each finite
time.

Thus, if δΦ pq δG then Φt pq Gt. It follows in particular that φt = gt
where φt and gt are the corresponding real flows. This was shown in
[Nowik & Katz 2015, Example 5.12].

14.5. Infinitesimal oscillations of the pendulum

Let x denote the variable angle between an oscillating pendulum
and the downward vertical direction. By considering the projection of
the force of gravity in the direction of motion, one obtains the equation
of motion mℓẍ = −mg sin x where m is the mass of the bob of the
pendulum, ℓ is the length of its massless rod, and g is the constant of
gravity. Thus we have a second-order nonlinear differential equation

ẍ = −g
ℓ

sin x. (14.5.1)

The initial condition of releasing the pendulum at angle a (for ampli-
tude) is described by {

x(0) = a

ẋ(0) = 0

We replace the second-order equation (14.5.1) by the pair of first order
equations {

ẋ =
√

g
ℓ
y,

ẏ = −
√

g
ℓ

sin x,
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and initial condition (x, y) = (a, 0). We identify (x, y) with x + iy
and (a, 0) with a + i0 as in Section 14.2. The classical vector field
corresponding to this system is then

V (x, y) =
√

g
ℓ
y −

(√
g
ℓ

sin x
)
i (14.5.2)

(with a zero at the origin that turns out to be of circulation type; see
Example 2.5.3). The corresponding prevector field (i.e., infinitesimal
generator of the flow) Φ is defined by the infinitesimal displacement

δΦ =
(
λ
√

g
ℓ
y
)
−
(
λ
√

g
ℓ

sin x
)
i

so that

Φ(z) = z + δΦ(z).

We are interested in the hyperfinite walk of Φ, with initial condi-
tion z0 = a+ 0i. The flow is generated by hyperfinite iteration of Φ.

14.6. Linearized walk

Consider also a prevector field E(z) = z + δE(z) defined by the
displacement

δE(z) = λ
√

g
ℓ
y − iλ

√
g
ℓ
x

where as before z = x+ iy. We are interested in small oscillations, i.e.,
the case of infinitesimal amplitude a.

Lemma 14.6.1. We have δE pq δΦ.

Proof. Since sin x pq x for infinitesimal x we have y − ix pq y −
i sin x. �

Remark 14.6.2. Due to the multiplicative invariance of the relation
of adequality, the rescalings of E and Φ by change of variable z =
aZ remain adequal and therefore define adequal hyperreal walks by
Theorem 14.4.2.

14.7. Adjusting linear prevector field

We will compare the linear field E to another linear prevector
field H defined by

H(x+ iy) = e−iλ
√

g
ℓ (x+ iy)

=
(
x cosλ

√
g
ℓ

+ y sinλ
√

g
ℓ

)
+
(
−x sinλ

√
g
ℓ

+ y cosλ
√

g
ℓ

)
i
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given by clockwise rotation of the x, y plane by infinitesimal angle λ
√

g
ℓ
.

The corresponding hyperreal walk, defined by hyperfinite iteration of
prevector field H, satisfies the exact equality

Ht(a, 0) =
(
a cos

√
g
ℓ
t,−a sin

√
g
ℓ
t
)

(14.7.1)

whenever t is a hypernatural multiple of λ.

Corollary 14.7.1. We have the periodicity property H 2π√
g/ℓ

(z) = z

and hence
Ht+ 2π√

g/ℓ

= Ht (14.7.2)

whenever both t and 2π
√

g
ℓ

are hypernatural multiples of λ.

Lemma 14.7.2. We have an adequality δE pq δH whenever x and y
are finite.

Proof. Let α = λ
√

g
ℓ
≈ 0. Then δE(z) = δE(x + iy) = α(y −

ix) = −iαz, while H(z) = e−iαz and therefore δH(z) = (e−iα − 1) z.
Therefore

δH
δE

=
e−iα − 1

−iα ≈ 1

as required. �

By Theorem 14.4.2 the hyperfinite walks of Φ, E and H satisfy

Φt(a, 0) pq Et(a, 0) pq Ht(a, 0)

for each finite initial amplitude a and for all finite time t which is a
hypernatural multiple of λ.

14.8. Conclusion

The advantage of the prevector field H is that its hyperreal walk
is given by an explicit formula (14.7.1) and is therefore periodic with
period precisely 2π√

g/ℓ
, provided we choose our base infinitesimal λ in

such a way that 2π

λ
√

g/ℓ
is hypernatural. We obtain the following con-

sequence of the periodicity property (14.7.2): modulo an appropriate
choice of a representing prevector field (namely, H) in the adequality

class, the hyperreal walk is periodic with period 2π
√
ℓ/g. This can be

summarized as follows.

Corollary 14.8.1. The period of infinitesimal oscillations of the
pendulum represented by a hyperreal walk is independent of their am-
plitude.
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Remark 14.8.2. If one rescales such an infinitesimal oscillation
to appreciable size by a change of variable z = aZ where a is the
amplitude, and takes standard part, one obtains a standard harmonic
oscillation with period 2π

√
ℓ/g.

The formulation contained in Corollary 14.8.1 has the advantage of
involving neither rescaling nor shadow-taking.



CHAPTER 15

Study of D2

15.1. Second-order mean value theorem

We will need a well-known generalisation of the mean value theorem
(Theorem 7.4.1) to two variables. We will follow [Rudin 1976, Theo-
rem 9.40]. We will assume that f is C2 for simplicity (Rudin presents
weaker conditions).

Theorem 15.1.1 (Rudin Theorem 9.40). Suppose a two-variable
function f(u1, u2) is defined and of class C2 in an open set in the plane
including a closed rectangle Q with sides parallel to the coordinate axes,
having points (a, b) and (a+ h, b+ k) as opposite vertices, where h > 0
and k > 0. Set

∆2(f,Q) = f(a+ h, b+ k) − f(a+ h, b) − f(a, b+ k) + f(a, b).

Then there is a point (x, y) in the interior of Q such that

∆2(f,Q) = hk

(
∂2f

∂u1∂u2

)
(x, y).

Remark 15.1.2. Note the analogy with the mean value theorem.

Proof. We will exploit a 1-variable function

u(t) = f(t, b+ k) − f(t, b) where t ∈ [a, a+ h].

Two applications of the mean value theorem will yield the result. Note
that the mean value theorem is applicable to the first partial derivative
of f since f ∈ C2 by hypothesis. Namely there is an x ∈ (a, a + h),
and there is a y ∈ (b, b+ k), such that

∆2(f,Q) = u(a+ h) − u(a)

= hu′(x)

= h

((
∂f

∂u1

)
(x, b+ k) −

(
∂f

∂u1

)
(x, b)

)

= hk

(
∂2f

∂u1∂u2

)
(x, y)

proving the theorem. �
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15.2. The condition C2 implies D2

Let M be a smooth manifold. Recall our “second difference” nota-
tion for a prevector field Φ: ∗M → ∗M in a coordinate neighborhood of
a nearstandard point a ∈ hM :

∆2
v,wΦ(a) = Φ(a) − Φ(a+ v) − Φ(a+ w) + Φ(a+ v + w).

The condition D2 for prevector fields was defined in Section 13.4,
namely ∆2

v,wΦ(a) ≺ λ‖v‖‖w‖ whenever v, w ≺ λ. Given a classical
vector field X, in coordinates one defines a prevector field Φ(a) =
a+ λX(a). We will show that if X is of class C2 then Φ is of class D2.

Proposition 15.2.1. Let W ⊆ Rn be open. Let X : W → Rn be
a classical C2 vector field, and consider its natural extension to ∗W .
Then for each a ∈ hW and each pair of infinitesimal v, w ∈ ∗Rn, we
have

∆2
v,wX(a) ≺ ‖v‖‖w‖.

The proof appears below. We obtain the following immediate corol-
lary (see Example 12.6.4).

Corollary 15.2.2. Let X be of class C2. If Φ is the prevector
field on ∗W defined by Φ(a) = a+ λX(a) then Φ is D2.

Proof of Proposition 15.2.1. Let U ⊆ W be a smaller neigh-
borhood of st(a) for which all second partial derivatives of X are
bounded by a fixed real constant. Let (X1, . . . , Xn) be the components
of X. Given p ∈ U and v1, v2 ∈ Rn such that we have p+s1v1+s2v2 ∈ U
for all 0 ≤ s1, s2 ≤ 1, we define functions ψi by

ψi(s1, s2) = X i(p+ s1v1 + s2v2).

Then by the chain rule, the mixed second partial of ψi satisfies
∣∣∣∣
∂2ψi

∂s1∂s2

∣∣∣∣ ≤ Ci‖v1‖‖v2‖

where Ci is determined by a bound for the second partial derivatives
of X i in U . To shorten the notation we will use summation over
pairs (e1, e2) ∈ {0, 1}2. By Theorem 15.1.1 (second-order mean value
theorem) there is a point (t1, t2) ∈ [0, 1] × [0, 1] such that

∑

(e1,e2)∈{0,1}2
(−1)e1+e2ψi(e1, e2) =

∂2

∂s1∂s2
ψi(t1, t2).
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Therefore
∣∣∣∆2

v
1
,v

2

X i(p)
∣∣∣ =

∣∣∣
∑

(e1,e2)∈{0,1}2
(−1)e1+e2X i(p+ e1v1 + e2v2)

∣∣∣

=
∣∣∣

∑

(e1,e2)∈{0,1}2
(−1)e1+e2ψi(e1, e2)

∣∣∣

=
∣∣∣ ∂2

∂s1∂s2
ψi(t1, t2)

∣∣∣
≤ Ci‖v1‖‖v2‖

with Ci as above. Since this is valid for each X i, i = 1, . . . , n, there is
a constant K ∈ R such that

∣∣∣∆2
v
1
,v

2

X i(p)
∣∣∣ ≤ K‖v1‖‖v2‖ (15.2.1)

for every p ∈ U and v1, v2 ∈ Rn such that p + s1v1 + s2v2 ∈ U for all
choices of s1, s2 ∈ [0, 1] ⊆ R.

Applying the transfer principle to the bound (15.2.1), we conclude
that the same formula holds, with the sameK, for all p ∈ ∗U and v1, v2 ∈
∗Rn provided that p + s1v1 + s2v2 ∈ ∗U for all choices of s1, s2 ∈
∗[0, 1] ⊆ ∗R. In particular this is true for p = a and all infinitesi-
mal v1, v2 ∈ ∗Rn. �

15.3. Bounds for D2 prevector fields

Proposition 15.3.1. If Φ and G are D2 then Φ ◦G is D2.

Proof. We will establish that D2 =⇒ D1 in Proposition 15.11.4.
In a coordinate chart, let p = G(a) and x = G(a + v) −G(a) and y =
G(a+w)−G(a). By Propositions 15.11.4 and 13.6.1 we have x pq ‖v‖
and y pq ‖w‖. Also by Propositions 15.11.4 and 13.6.1 we obtain the
following bound that will be exploited below:

‖Φ(p+ x+ y) − Φ(G(a+ v + w))‖
pq ‖p+ x+ y −G(a+ v + w)‖
= ‖ −G(a) +G(a+ v) +G(a+ w) −G(a+ v + w)‖
= ‖∆2

v,wG(a)‖
≺ λ‖v‖‖w‖

since G is D2. Thus,

‖Φ(p+ x+ y) − Φ(G(a+ v + w))‖ ≺ λ‖v‖‖w‖. (15.3.1)
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Next,

∆2
v,wΦ ◦G(a)

= ‖Φ ◦G(a) − Φ ◦G(a+ v) − Φ ◦G(a+ w) + Φ ◦G(a+ v + w)‖
= ‖Φ(p) − Φ(p+ x) − Φ(p+ y) + Φ ◦G(a+ v + w)‖
≤ ‖Φ(p) − Φ(p+ x) − Φ(p+ y) + Φ(p+ x+ y)‖

+ ‖Φ(p+ x+ y) − Φ(G(a+ v + w))‖
=
∥∥∆2

x,yΦ(p)
∥∥+ ‖Φ(p+ x+ y) − Φ(G(a+ v + w))‖

≺ λ‖x‖‖y‖ + λ‖v‖‖w‖
≺ λ‖v‖‖w‖

exploiting the bound (15.3.1). �

15.4. Sharpening the bounds via underspill

Here we are interested in sharpening the ≺ bounds for prevector
fields on M in terms of a specific real constant, using underspill.1

Let Φ be a prevector field on W , where W ⊆M is an open coordi-
nate neighborhood with image U ⊆ Rn. Let B ⊆ U be a closed ball.
We will identify W with U to lighten the notation.

Proposition 15.4.1. In the notation above we have the following.

(1) There is C ∈ R such that ‖Φ(a) − a‖ ≤ Cλ for all a ∈ ∗B.
(2) If G is another prevector field, then there is a finite β ∈ ∗R

such that ‖Φ(a) −G(a)‖ ≤ βλ for all a ∈ ∗B.
(3) If furthermore Φ ≡ G then the constant β ∈ ∗R in (2) can be

chosen to be infinitesimal.

Proof. The first item is a special case of the second when G(a) =
a for all a. Now let us prove the second item. Define a set A of
hypernaturals as follows:

A = {n ∈ ∗N : ‖Φ(a) −G(a)‖ ≤ nλ for every a ∈ ∗B}.
Since B is closed, we have ∗B ⊆ hU . Hence every infinite hyper-
natural n ∈ ∗N is in A by definition of a prevector field. There-
fore ∗N \ N ⊆ A. But A is an internal set, being defined in terms
of internal entities Φ and G. Therefore by underspill there is a finite
integer C in A.2

1glisha?
2Recall that underspill is the fact that if A ⊆ ∗N is an internal set, and A

contains each infinite n then it must also contain a finite n. This is based on the
fact that infinite hypernaturals form an external set; see Section 7.7.
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To prove the third statement (for Φ ≡ G), consider the set

A =

{
n ∈ ∗N : ‖Φ(a) −G(a)‖ ≤ λ

n
for every a ∈ ∗B

}
.

Every finite n ∈ ∗N is in A by definition of the equivalence relation.
Therefore by overspill there is an infinite n ∈ ∗N in A. We can therefore
choose the infinitesimal value β = 1

n
. �

15.5. Further bounds via underspill

Proposition 15.5.1. Let Φ be a D1 prevector field onM . LetW ⊆
M be an open coordinate neighborhood with image U ⊆ Rn. Let B ⊆ U
be a closed ball. Then

(1) there is K ∈ R such that whenever a, b ∈ ∗B, we have

‖Φ(a) − a− Φ(b) + b‖ ≤ Kλ‖a− b‖; (15.5.1)

(2) furthermore, we have

(1 −Kλ)‖a− b‖ ≤ ‖Φ(a) − Φ(b)‖ ≤ (1 +Kλ)‖a− b‖. (15.5.2)

Proof. Let N =
⌊
1
λ

⌋
. Let a, b ∈ ∗B. We construct a hyperfinite

partition of the segment between a and b. For each k = 0, . . . , N let

ak = a+
k

N
(b− a).

Then ak − ak+1 ≺ λ. Let Cab ∈ ∗R be the maximum of the ratios

‖Φ(ak) − ak − Φ(ak+1) + ak+1‖
λ‖ak − ak+1‖

over all k = 0, . . . , N−1. Since Φ is D1, it follows that the constant Cab

is finite. For every 0 ≤ k ≤ N − 1 we have

‖Φ(ak) − ak − Φ(ak+1) + ak+1‖ ≤ Cabλ‖ak − ak+1‖

= Cabλ
‖a− b‖
N

pq Cabλ
2‖a− b‖.

Therefore by the triangle inequality we have

‖Φ(a) − a−Φ(b) + b‖
= ‖δΦ(a) − δΦ(b)‖

≤
N−1∑

k=0

‖δΦ(ak) − δΦ(ak+1)‖

≤ Cabλ‖a− b‖.

(15.5.3)
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To remove the dependence on a, b, let

A = {n ∈ ∗N : ‖Φ(a)−a−Φ(b)+b‖ ≤ nλ‖a−b‖ whenever a, b ∈ ∗B}.
Since each Cab as in (15.5.3) is finite, every infinite hypernatural n ∈ ∗N
is in A. Hence by underspill, the internal set A also contains a finite
integer K, proving (15.5.1) in item (1).

The estimate (15.5.2) follows from the first as in the proof of Propo-
sition 13.6.1. �

15.6. Overspill sharpening for D2

In Section 15.5 we used overspill to prove a sharpened bound for
a D1 prevector field Φ on M . A similar proposition can be proved
for D2. Recall that ∆2

v,wΦ(a) = Φ(a)−Φ(a+v)−Φ(a+w)+Φ(a+v+w),

and that Φ ∈ D2 if and only if ∆2
v,wΦ(a) ≺ λ‖v‖‖w‖ whenever a ∈ hM

and v ≺ λ, w ≺ λ.

Proposition 15.6.1. Let Φ be a D2 prevector field on a mani-
fold M . Let W ⊆M be a coordinate neighborhood with image U ⊆ Rn.
Let B ⊆ U be a closed ball. Then there is K ∈ R such that

‖∆2
v,wΦ(a)‖ ≤ Kλ‖v‖‖w‖

for all a ∈ ∗B and v, w ∈ ∗Rn such that a+ v, a+ w, a+ v + w ∈ ∗B.

Proof. The proof is similar to that of Proposition 15.5.1. We
set N =

⌊
1
λ

⌋
. Given a ∈ ∗B and v, w ∈ ∗Rn such that a+ v, a+ w, a+

v + w ∈ ∗B, let ak,l = a + k
N
v + l

N
w, 0 ≤ k, l ≤ N . Let Cavw be the

maximum of the values

‖Φ(ak,l) − Φ(ak+1,l) − Φ(ak,l+1) + Φ(ak+1,l+1)‖
λ‖v/N‖‖w/N‖

over all 0 ≤ k, l ≤ N − 1. Then Cavw is finite. It follows that whenever
we have 0 ≤ k, l ≤ N − 1, we have a bound

‖Φ(ak,l) − Φ(ak+1,l) − Φ(ak,l+1) + Φ(ak+1,l+1)‖ ≤ Cavwλ
∥∥∥ v
N

∥∥∥
∥∥∥w
N

∥∥∥ .

Summing the resulting double telescoping sum over all 0 ≤ k, l ≤ N−1
we get

‖Φ(a) − Φ(a+ v) − Φ(a+ w) + Φ(a+ v + w)‖ ≤ Cavwλ‖v‖‖w‖.
By underspill as in the proof of Proposition 15.5.1, there is a single
finite K which works for all a, v, w. Namely, to remove the dependence
on a, v, w, let

A = {n ∈ ∗N : ‖∆2
v,wΦ(a)‖ ≤ nλ‖v‖‖w‖ whenever all the points are in ∗B}.
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Since each Cavw is finite, every infinite hypernatural n ∈ ∗N is in A.
Hence by underspill, the internal set A also contains a finite integer K,
proving the proposition. �

15.7. Dependence on initial conditions

In this section we deal with initial conditions.3

Remark 15.7.1. We showed in Proposition 15.5.1 that each D1

prevector field Φ defined in an open neighborhood of a closed Euclidean
ball B satisfies the bound ‖Φ(a) − a − Φ(b) + b‖ ≤ Kλ‖a − b‖ for
all a, b ∈ ∗B for an appropriate finite K. Such a K will be exploited in
Theorem 15.7.2.

Hyperreal walk was defined in Section 12.9, and its local version
in Section 13.2. We show that the hyperreal walk is Lipschitz, in the
following precise sense.

Theorem 15.7.2. Let Φ be a local D1 prevector field on ∗U . Given
a point p ∈ U and a coordinate neighborhood of p with image W ⊆ Rn,
let B′ ⊆ B ⊆ W be closed balls of radii respectively r/2 and r around
the image of p. Suppose ‖Φ(a) − a − Φ(b) + b‖ ≤ Kλ‖a − b‖ for
all a, b ∈ ∗B, with K a finite constant,4 then

(1) there is a positive T ∈ R such that Φt(a) ∈ ∗B whenever a ∈ ∗B′

and −T ≤ t ≤ T ;
(2) whenever a, b ∈ ∗B′ and 0 ≤ t ≤ T , we have ‖Φt(a)−Φt(b)‖ ≤

eKt‖a− b‖.
(3) If we take a slightly larger constant K ′ = K/(1 −Kλ)2, then

whenever a, b ∈ ∗B′ and −T ≤ t ≤ T , we have

e−K′|t|‖a− b‖ ≤ ‖Φt(a) − Φt(b)‖ ≤ eK
′|t|‖a− b‖.

Proof. We will give a proof for positive t.5 Let C ∈ R be as in
Proposition 15.4.1 (on sharpening bounds via underspill and overspill),
so that ‖Φ(a) − a‖ ≤ Cλ for all a ∈ ∗B. We define T ∈ R by setting

T =
r

2C
> 0.

Let a ∈ ∗B′ and 0 ≤ t ≤ T , and set

n = n(t) =

⌊
t

λ

⌋
. (15.7.1)

3tnai hatchalati
4Such finite K exists by Proposition 15.5.1.
5The case of negative t then follows from Remark 15.13.3.
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We then obtain a bound for Φn(a) − a by means of a hyperfinite sum
as follows:

‖Φn(a) − a‖ ≤
n∑

m=1

‖Φm(a) − Φm−1(a)‖ ≤ nCλ ≤ r

2
.

By the triangle inequality we obtain

‖Φn(a)‖ ≤ ‖Φn(a) − a‖ + ‖a‖ ≤ r

2
+
r

2
= r,

and therefore Φn(a) ∈ ∗B, proving item (1).
Next, by estimate (15.5.2) we have

(1 −Kλ)‖a− b‖ ≤ ‖Φ(a) − Φ(b)‖ ≤ (1 +Kλ)‖a− b‖
for all a, b ∈ ∗B, and so by internal induction (see Theorem 12.8.1)6 we
obtain

(1 −Kλ)n‖a− b‖ ≤ ‖Φn(a) − Φn(b)‖ ≤ (1 +Kλ)n‖a− b‖,
proving (2) in view of the fact that

(1 +Kλ)n =

(
1 +

Kt

n

)n

≤ eKt (15.7.2)

by formula (15.7.1) defining n. The choice of K ′ results by elementary
algebra. �

15.8. Dependence on prevector field

In this section we will provide bounds on how fast the flows of a
pair of prevector fields can diverge from each other.

In particular, this will show that if prevector fields are equivalent
then the corresponding classical flows coincide.

We will deal with a more general situation (than that of balls
B′ ⊆ B dealt with in Section 15.7) where A,A′ are internal rather
than standard sets. Here A is the set where by assumption the flow is
contained in up to time T . The set A will typically be larger than A′.

6This step requires internal induction and cannot be obtained by iterating the
formula n times, writing down the resulting formula with integer parameter n,
and applying the transfer principle. The problem is that the entities occurring
in the formula are internal rather than standard, so there is no real statement to
apply transfer to. However, one can use the same trick as in the definition of the
hyperfinite iterate in the first place, by introducing an additional parameter as in
Section 12.9. Namely, the formula holds for all triples (Φ1,Φ2, n) ∈ Map(M) ×
Map(M) × N, and we apply the star transform.
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Remark 15.8.1. Let Φ be a D1 local prevector field on ∗U and let G
be any local prevector field on ∗U . Given a coordinate neighborhood
included in U with image W ⊆ Rn, let A′ ⊆ A ⊆ ∗W be internal sets.
Assume that β is such that

‖Φ(a) −G(a)‖ ≤ βλ (15.8.1)

for all a ∈ A (in particular if β is infinitesimal then the prevector fields
are equivalent). Assume also that K > 0 is a finite constant such
that ‖Φ(a) − a − Φ(b) + b‖ ≤ Kλ‖a − b‖ for all a, b ∈ A. Assume
that 0 < T ∈ R is such that Φt(a) and Gt(a) are in A for all a ∈ A′

and 0 ≤ t ≤ T .

Theorem 15.8.2. In the notation of Remark 15.8.1, we have the
following.

(1) for all a ∈ A′ and 0 ≤ t ≤ T , we have the following bound:

‖Φt(a) −Gt(a)‖ ≤ β

K
(eKt − 1) ≤ βteKt.

(2) If G−1 exists, e.g., if G is also D1, and if Φt(a) and Gt(a) are
in A for all a ∈ A′ and −T ≤ t ≤ T , then

‖Φt(a) −Gt(a)‖ ≤ β

K
(eK|t| − 1) ≤ β|t|eK|t|

for all −T ≤ t ≤ T .

Proof. It suffices to provide a proof for positive t. We will prove
by internal induction that for each n,

‖Φn(a) −Gn(a)‖ ≤ β

K

(
(1 +Kλ)n − 1

)
. (15.8.2)

This implies the statement when applied to n = n(t); cf. (15.7.2). The
basis of the induction is provided by the estimate (15.8.1). By triangle
inequality and Proposition 15.5.1(2) we have

‖Φn+1(a) −Gn+1(a)‖
≤ ‖Φ(Φn(a)) − Φ(Gn(a))‖ + ‖Φ(Gn(a)) −G(Gn(a))‖
≤ (1 +Kλ)‖Φn(a) −Gn(a)‖ + βλ.
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Exploiting the inductive hypothesis (15.8.2), we obtain

‖Φn+1(a) −Gn+1(a)‖

≤ (1 +Kλ)
β

K

(
(1 +Kλ)n − 1

)
+ βλ

=
β

K
(1 +Kλ)n+1 − β

K
− βKλ

K
+ βλ

=
β

K

(
(1 +Kλ)n+1 − 1

)

proving the inductive step from n to n+ 1. �

Corollary 15.8.3. Assume Φ and G are as in Theorem 15.8.2. If
we have Φ ≡ G, then there is an infinitesimal β for the statement of
Theorem 15.8.2, and therefore Φt(a) ≈ Gt(a) for all 0 ≤ t ≤ T .

Proof. By Proposition 15.4.1. �

15.9. Inducing a real flow

The hyperreal walk Φt of a prevector field Φ induces a classical flow
on M as follows.

Definition 15.9.1. Let Φ be a D1 local prevector field. Let B′ ⊆
Rn and [−T, T ] be as in Theorem 15.7.2. The real flow φt : B

′ → M
induced by Φt is defined by setting

φt(x) = st(Φt(x)) (15.9.1)

(see Definition 12.9.4). Recall that Φt is defined by hyperfinite iteration
(of Φ) precisely ⌊t/λ⌋ times.

The following are immediate consequences of Theorems 15.7.2 and
Corollary 15.8.3.

Theorem 15.9.2. Given a D1 prevector field Φ the following hold:

(1) the flow φt is Lipschitz continuous with constant eK|t|.
(2) the real flow φt is injective.
(3) If G is another D1 prevector field with real flow gt, and Φ ≡ G,

then φt = gt.

Remark 15.9.3. Suppose Φ is obtained from a classical vector
field X by the procedure of Example 12.6.4. Then [Keisler 1976,
Theorem 14.1] shows that φt is in fact the flow of the classical vector
field X in the classical sense. By Theorem 15.9.2(3), each prevector
field Φ that realizes X will yield a hyperreal walk whose standard part
will produce the same classical flow.
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The results of this subsection have the following application to the
classical setting.

Corollary 15.9.4. Consider an open set U ⊆ Rn. Let X, Y : U →
Rn be classical vector fields, where X is Lipschitz with constant K, and
there is a constant b ∈ R such that ‖X(x) − Y (x)‖ ≤ b for all x ∈
U . If x(t), x̃(t) are integral curves (i.e., the φt with different initial
conditions) of X then

‖x(t) − x̃(t)‖ ≤ eKt‖x(0) − x̃(0)‖. (15.9.2)

If y(t) is an integral curve of Y with x(0) = y(0) then

‖x(t) − y(t)‖ ≤ b

K
(eKt − 1) ≤ bteKt. (15.9.3)

Proof. Define prevector fields on ∗U as usual by setting Φ(a) −
a = λX(a) and G(a) − a = λY (a) as in Example 12.6.4. We ap-
ply Theorem 15.7.2 to prove (15.9.2). We use Theorem 15.8.2, and
Remark 15.9.3 with b = β to prove (15.9.3). �

15.10. Geodesic flow

One advantage of the hyperreal approach to solving a differential
equation is that the hyperreal walk exists for all time, being defined
combinatorially by iteration of a self-map of the manifold. The fo-
cus therefore shifts away from proving the existence of a solution, to
establishing the properties of a solution.

Thus, our estimates show that given a uniform Lipschitz bound on
the vector field, the hyperreal walk for all finite time stays in the finite
part of ∗M .

Theorem 15.10.1. Suppose M is complete and Φ is a D1 prevector
field on M satisfying a uniform Lipschitz bound. Then the hyperreal
walk Φt for all finite time t descends to a real flow on M .

Proof. On a complete manifold M , the walk Φt is nearstandard
for all finite t. The estimates of Corollary 15.9.4 imply that the real
flow φt exists and is unique for all t ∈ R. �

In particular, consider the geodesic equations on an n-dimensional
manifold M .

Consider a Riemannian metric 〈 , 〉 on M with metric coefficients
written in coordinates (u1, . . . , un) as (gij) meaning that

〈
∂

∂ui ,
∂

∂uj

〉
=

gij. The symbols Γk
ij can be expressed as Γk

ij = gkℓ

2
(giℓ;j − gij;ℓ + gjℓ;i)

where (gij) is the inverse matrix of the metric (gij).
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Definition 15.10.2. Given a regular curve α(s) in M expressed in
coordinates by (α1(s), . . . , αn(s)), the geodesic equation is

(∀k) αk ′′ + Γk
ijα

i′αj ′ = 0 (15.10.1)

with the Einstein summation convention.

The equations (15.10.1) can be interpreted as a first-order ODE on
the (2n−1)-dimensional manifold SM (union of unit spheres in all tan-
gent spaces). The latter is known to satisfy a uniform Lipschitz bound.
Therefore the geodesic flow on a complete Riemannian manifold M
exists for all time t ∈ R.

15.11. D2 implies D1

We study further properties of D1 and D2 fields.

Remark 15.11.1. An ivector is obtained from a vector by multi-
plying by λ. For the sake of providing an intuitive explanation for the
implication D2 =⇒ D1, note that being D1 roughly corresponds to
the first derivative being finite, while being D2 roughly corresponds to
the second derivative being finite. We want to show that if the sec-
ond derivative is finite then the first derivative is finite. It turns out
that there is a bound for the first derivative in terms of bounds on the
function itself and the second derivative.

Lemma 15.11.2. If a C2 function f : [0, 1] → R satisfies |f | ≤ A
and |f ′′| ≤ B then |f ′| ≤ 4A+ B.

Proof. By Taylor formula with remainder f(x) = f(c) + (x −
c)f ′(c) + 1

2
(x− c)2f ′′(d) where d is between x and c. Therefore f ′(c) =

f(x)−f(c)− 1

2
(x−c)2f ′′(d)

x−c
. Now let c be a maximum of |f ′|. We can as-

sume without loss of generality that c ≥ 1
2

(otherwise apply the same

argument to the function f(1
2
− x) to get the same bound). Then

|f ′(c)| ≤ 2

∣∣∣∣f(0) − f(c) − 1

2
(0 − c)2f ′′(d)

∣∣∣∣
≤ 2|f(0)| + 2|f(c)| + c2|f ′′(d)|
≤ 4A+ B

as required. �

First we prove a lower bound (15.11.1) on the change in a displace-
ment function δ over a suitably long interval. Later the bound will be
applied to δ = δΦ.
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Lemma 15.11.3. Let B ⊆ Rn be an open ball around the origin 0,
let a ∈ h(0), and let 0 6= v ∈ ∗Rn be infinitesimal. If δ : ∗B → ∗Rn is an
internal function satisfying

δ(x) − 2δ(x+ v) + δ(x+ 2v) ≺ ‖v‖‖δ(a) − δ(a+ v)‖
for all x ∈ hB, then there is m ∈ ∗N such that a+mv ∈ hB and

δ(a) − δ(a+ v) ≺ ‖v‖‖δ(a) − δ(a+mv)‖. (15.11.1)

Proof. We choose real r > 0 slightly smaller than the radius of B

and let N =
⌊

r
‖v‖

⌋
where ⌊ ⌋ is the integer part function. Then for

each m ≤ N we have a + mv ∈ hB. Let xj = a + jv for 0 ≤ j ≤ N .
Let A = δ(a) − δ(a+ v). By our assumption on δ we have

δ(xj) − 2δ(xj+1) + δ(xj+2) = Cj‖v‖‖A‖
with Cj finite. Let C be the maximum of C0, . . . , CN . Then C is finite
and

δ(xj) − 2δ(xj+1) + δ(xj+2) ≤ C‖v‖‖A‖ for each 0 ≤ j ≤ N. (15.11.2)

Given k ≤ N we have∥∥∥A−
(
δ(xk) − δ(xk+1)

)∥∥∥

=
∥∥∥
(
δ(x0) − δ(x1)

)
−
(
δ(xk) − δ(xk+1)

)∥∥∥

≤
k−1∑

j=0

∥∥∥
(
δ(xj) − δ(xj+1)

)
−
(
δ(xj+1) − δ(xj+2)

)∥∥∥

≤ Ck‖v‖‖A‖
by estimate (15.11.2). Thus for each m ≤ N ,

∥∥∥mA−
(
δ(x0) − δ(xm)

)∥∥∥ =
∥∥∥
m−1∑

k=0

(
A−

(
δ(xk) − δ(xk+1)

))∥∥∥

≤ Cm2‖v‖‖A‖,
and therefore ∥∥∥mA−

(
δ(x0) − δ(xm)

)∥∥∥ = Km2‖v‖‖A‖

with K finite. It follows that

m‖A‖ −Km2‖v‖‖A‖ ≤ ‖δ(x0) − δ(xm)‖,
and so, multiplying by ‖v‖, we obtain

m‖v‖‖A‖(1 −Km‖v‖) ≤ ‖v‖‖δ(x0) − δ(xm)‖.
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Now let m = min{ N , ⌊ 1
2K‖v‖⌋ }, then

m‖v‖‖A‖/2 ≤ ‖v‖‖δ(x0) − δ(xm)‖.
By definition of N and since K is finite, we have that m‖v‖ is appre-
ciable, i.e., not infinitesimal, and so finally A ≺ ‖v‖‖δ(x0) − δ(xm)‖ ,
that is, δ(a) − δ(a+ v) ≺ ‖v‖‖δ(a) − δ(a+mv)‖. �

Proposition 15.11.4. If prevector field Φ is D2 for some choice of
coordinates in W ⊆M , then Φ is D1.

Proof. Given a ∈ hW , in the given coordinates take some ball B
around st(a). Let δΦ(x) = Φ(x) − x. We must show that when-
ever v ≺ λ it follows that δΦ(a)− δΦ(a+ v) ≺ λ‖v‖ where v = b− a in
Definition 13.3.3. If δΦ(a) − δΦ(a + v) ≺≺ λ‖v‖ then we are certainly
done. Otherwise we have

λv ≺ ‖δΦ(a) − δΦ(a+ v)‖. (15.11.3)

On the other hand, we have

δΦ(x) − 2δΦ(x+ v) + δΦ(x+ 2v) = Φ(x) − 2Φ(x+ v) + Φ(x+ 2v)

= ∆2
v,vΦ(x)

≺ λ‖v‖2,
(15.11.4)

by taking v = w in Definition 13.4.2. Combining the two inequali-
ties (15.11.3) and (15.11.4) we obtain

δΦ(x) − 2δΦ(x+ v) + δΦ(x+ 2v) ≺ ‖v‖‖δΦ(a) − δΦ(a+ v)‖.
Now Lemma 15.11.3 yields an m ∈ ∗N such that a+mv ∈ hB and

δΦ(a) − δΦ(a+ v) ≺ ‖v‖‖δΦ(a) − δΦ(a+mv)‖

≤ ‖v‖
(
‖δΦ(a)‖ + ‖δΦ(a+mv)‖

)

≺ ‖v‖λ
since Φ is a prevector field so that δΦ(x) = Φ(x)−x ≺ λ for all x. This
shows that δΦ(a) − δΦ(a+ v) ≺ λ‖v‖ and hence Φ is D1. �

15.12. Injectivity

When speaking about local D1 or D2 prevector fields, whenever
needed we will assume, perhaps by passing to a smaller domain, that
a constant K as in Propositions 15.5.1, 15.6.1 exists.

Lemma 15.12.1. If Φ is a D1 prevector field then Φ is injective
on hM .
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Proof. Let a 6= b ∈ hM . If st(a) 6= st(b) then clearly Φ(a) 6= Φ(b).
Otherwise there exists a B such that a, b ∈ hB as in Proposition 15.5.1.
Therefore part (15.5.2) of the proposition gives the lower bound ‖Φ(a)−
Φ(b)‖ ≥ (1 −Kλ)‖a− b‖ and hence Φ(a) 6= Φ(b). �

We will now show that a D1 prevector field is in fact bijective on hM .
We first prove local surjectivity, as follows.

Lemma 15.12.2. Let B1 ⊆ B2 ⊆ B3 ⊆ Rn be closed balls centered
at the origin, of radii r1 < r2 < r3. Fix 0 < s ∈ R smaller than r2 − r1
and r3 − r2. Consider a function f : B2 → B3 such that

(1) ‖f(x) − f(y)‖ ≤ 2‖x− y‖ for all x, y ∈ B2;
(2) ‖f(x) − x‖ < s for all x ∈ B2.

Then f(B2) ⊇ B1.

Proof. Our assumptions on f imply that it is continuous. For
every x ∈ ∂B2 the straight line segment between x and f(x) is included
in B3 − B1, so the restriction f |∂B2

is homotopic in B3 − B1 to the
inclusion of ∂B2. Now if some p ∈ B1 is not in the image f(B2) then
the restriction f |∂B2

is null-homotopic in B3 − {p}, and so the same is
true for the inclusion of ∂B2, a contradiction. �

Proposition 15.12.3. Let B1 ⊆ B2 ⊆ B3 ⊆ Rn be closed balls
centered at the origin, of radii r1 < r2 < r3. If Φ: ∗B2 → ∗B3 is a
local D1 prevector field then Φ(∗B2) ⊇ ∗B1.

Proof. Fix 0 < s ∈ R smaller than r2 − r1 and r3 − r2 as before.
We apply transfer to the statement of Lemma 15.12.2 to obtain that
for every internal function f : ∗B2 → ∗B3, if ‖f(x) − f(y)‖ ≤ 2‖x − y‖
for all x, y ∈ ∗B2 and ‖f(x)− x‖ < s for all x ∈ ∗B2 then f(∗B2) ⊇ ∗B1.
In particular this is true for a D1 prevector field Φ: ∗B2 → ∗B3, by
Proposition 15.5.1(2). �

The following is immediate from Corollary 15.12.1 and Propos-
tion 15.12.3.

Theorem 15.12.4. If Φ: ∗M → ∗M is a D1 prevector field then the
restriction Φ⇂ hM : hM → hM is bijective.

Proof. Let p ∈ hM and let p0 = st(p). Arguing with balls Bi

centered at p0 we obtain that p ∈ ∗B1 ⊆ Φ(∗B2) ⊆ Φ(hM). �

Remark 15.12.5. On all of ∗M , a D1 prevector field may be non-
injective and nonsurjective, e.g., take M = (0, 1) and Φ: ∗M → ∗M
given by Φ(x) = λ for x ≤ λ and Φ(x) = x otherwise. Recall that the
definition of D1 prevector field imposes no restrictions in the comple-
ment ∗M − hM other than being internal on ∗M .



146 15. STUDY OF D
2

15.13. Time reversal

Remark 15.13.1. Given a prevector field Φ of class D1, the re-
stricted map Φ⇂hM : hM → hM and its inverse (Φ⇂hM)−1 are not internal
if M is noncompact, since their domain is not internal. On the other
hand, for any A ⊆ M , the restriction Φ⇂∗A is internal. Furthermore,
on ∗B1 of Proposition 15.12.3, Φ has an inverse Φ−1 : ∗B1 → ∗B2 in the
sense that Φ ◦ Φ−1(a) = a for all a ∈ ∗B1, and Φ−1 is internal. So, for
a local D1 prevector field Φ: ∗U → ∗V we may always assume (per-
haps for slightly smaller domain) that Φ−1 : ∗U → ∗V also exists, in the
above sense. As mentioned, we will usually not mention the range ∗V
but rather speak of a local prevector field on ∗U .

Proposition 15.13.2. If Φ is D1 then Φ−1 is D1, where Φ−1 is as
in Remark 15.13.1.

Proof. Let x = Φ−1(a), y = Φ−1(b), then

‖Φ−1(a) − Φ−1(b) − a+ b‖ = ‖x− y − Φ(x) + Φ(y)‖
≺ λ‖x− y‖
≺ λ‖Φ(x) − Φ(y)‖
= λ‖a− b‖

by Proposition 13.6.1. �

Remark 15.13.3. If one follows the proofs of Proposition 15.13.2
and Proposition 13.6.1 one sees that if ‖Φ(a)−Φ(b)−a+b‖ ≤ Kλ‖a−b‖
in some domain ∗U ⊆ ∗Rn, then

‖Φ−1(a) − Φ−1(b) − a+ b‖ ≤ K ′λ‖a− b‖

in a corresponding domain for Φ−1, with K ′ only slightly larger than K,
namely K ′ = K/(1 −Kλ).

15.14. Equivalence

Lemma 15.14.1. Let Φ, G be D1 prevector fields. If Φ(a) ≡ G(a)
for all standard a, then Φ(b) ≡ G(b) for all b and therefore Φ ≡ G.
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Proof. Let K be as in Proposition 15.5.1 for both Φ and G.
Let a = st(b), then

‖Φ(b) −G(b)‖ = ‖δΦ(b) − δG(b)‖
= ‖δΦ(b) − δΦ(a) + δΦ(a) − δG(a) + δG(a) − δG(b)‖
= ‖δΦ(b) − δΦ(a) + Φ(a) −G(a) + δG(a) − δG(b)‖
≤ ‖δΦ(b) − δΦ(a)‖ + ‖Φ(a) −G(a)‖ + ‖δG(a) − δG(b)‖
≤ Kλ‖a− b‖ + ‖Φ(a) −G(a)‖ +Kλ‖a− b‖
≺≺ λ

since a ≈ b and Φ(a) ≡ G(a) by hypothesis. �

Recall that Definition 12.7.1, which defines when a prevector field Φ
realizes a classical vector field X, involves only standard points. It
follows from Lemma 15.14.1 that if Φ is D1 then this determines Φ up
to equivalence. Namely, we have the following.

Corollary 15.14.2. Let U ⊆ Rn be open, and let X : U → Rn be a
classical vector field. If Φ, G are two D1 prevector fields that realize X
then Φ ≡ G. In particular, if X is Lipschitz and G is a D1 prevector
field that realizes X, then Φ ≡ G, where Φ is the prevector field obtained
from X as in Example 12.6.4 namely in coordinates Φ(a) = a+λ·X(a).

15.15. Lie ibracket

Lie ibrackets were discussed briefly in Section 13.5. Relation to
flows will be studied in Section 15.23.

Given a pair of local or global prevector fields Φ, G whose in-
verses Φ−1, G−1 exist, e.g., if Φ, G are D1, we define their Lie ibracket,

denoted
.

[Φ, G
.

], as follows. Its relation to the classical Lie bracket will
be clarified below. Let N =

⌊
1
λ

⌋
.

Definition 15.15.1. The Lie ibracket
.

[Φ, G
.

] of prevector fields Φ

and G is
.

[Φ, G
.

] = (G−1 ◦ Φ−1 ◦G ◦ Φ)N .

Remark 15.15.2. Note that this definition of the ibracket is global
in character in that it does not rely on a choice of a coordinate patch
where addition can be used. We will compare this definition to one
using addition in Section 15.17.

Lie ibracket is related to Lie bracket (see Section 15.17). A pair of
noncommuting vector fields appears in Example 9.3.4.
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15.16. The canonical pvf of a flow

Given a prevector field Φ, we defined the hyperreal walk Φt and the
real flow φt. The canonical representative prevector field is obtained
once we have the real flow φt = st(Φt). Namely we can extend it to
the nonstandard domain as usual, and use it to define a new prevector

field Φ̃ as follows.

Definition 15.16.1. The prevector field Φ̃ is the map ∗φt at time t =

λ, or Φ̃ = ∗φλ.

15.17. Relation to classical Lie bracket

The following theorem justifies our definition of the ibracket
.

[Φ, G
.

],
by relating it to the classical notion of Lie bracket.

Theorem 15.17.1. Let X, Y be two classical C2 vector fields and
let [X, Y ] denote their classical Lie bracket. Let Φ, G be D2 prevector

fields that realize X, Y respectively. Then
.

[Φ, G
.

] realizes [X, Y ].

Proof. By Remark 15.9.3, the flows φt, gt obtained as shadows
of Φt, Gt coincide with the classical flows of X, Y . It is well known that
the classical bracket [X, Y ] is related in coordinates to the classical flow
as follows:

[X, Y ](p) = lim
t→0

1

t2

(
g−1
t ◦ φ−1

t ◦ gt ◦ φt(p) − p
)
. (15.17.1)

The characterisation of limits via infinitesimals (Definition 4.3.1) yields

[X, Y ](p) ≈ 1

λ2

(
G̃−1 ◦ Φ̃−1 ◦ G̃ ◦ Φ̃(p) − p

)
.

Now, if v ≈ w then λv ≡ λw, so by Example 12.6.4, the bracket [X, Y ]
can be realized by the prevector field

A(a) = a+
1

λ

(
G̃−1 ◦ Φ̃−1 ◦ G̃ ◦ Φ̃(a) − a

)
.

Thus it remains to show that
.

[Φ, G
.

] ≡ A. The proof involves several
steps that will be developed below and can be summarized as follows.

By Proposition 15.18.1 the fields Φ̃, G̃ are D2, and so by Proposi-

tion 15.21.2 we have
.

[Φ̃, G̃
.

] ≡ A. By Theorem 15.22.1 we have Φ ≡ Φ̃

and G ≡ G̃, and so by Theorem 15.22.2 we conclude that
.

[Φ, G
.

] ≡
A. �
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15.18. The canonical prevector field of a D2 flow is D2

Proposition 15.18.1. If Φ ∈ D2 then Φ̃ ∈ D2.

Proof. We will obtain estimates for the real flow φt and then

transfer them to obtain the desired estimates for Φ̃.
Assume ‖∆2

v,wΦ(a)‖ ≤ Kλ‖v‖‖w‖ for all a, v, w in some ∗B as in
Proposition 15.6.1. Recall that

∆2
v,wΦn(a) = Φn(a) − Φn(a+ v) − Φn(a+ w) + Φn(a+ v + w).

We will prove by internal induction that

‖∆2
v,wΦn(a)‖ ≤ Kλ

2n−2∑

i=n−1

(1 +Kλ)i‖v‖‖w‖. (15.18.1)

Let p = Φn(a), x = Φn(a + v) − Φn(a) and y = Φn(a + w) − Φn(a).
Since Φ is D2 and hence also D1 by Proposition 15.11.4, we have ‖x‖ ≤
(1 + Kλ)n‖v‖ and ‖y‖ ≤ (1 + Kλ)n‖w‖. We exploit the inductive
hypothesis (15.18.1) to obtain the following estimate that will be useful
later:

‖Φ(p+ x+ y) − Φn+1(a+ v + w))‖
= ‖Φ(p+ x+ y) − Φ ◦ Φn(a+ v + w))‖
≤ (1 +Kλ)‖p+ x+ y − Φn(a+ v + w)‖
= (1 +Kλ)‖ − Φn(a) + Φn(a+ v) + Φn(a+ w) − Φn(a+ v + w)‖
= (1 +Kλ)‖∆2

v,w(a)Φn‖.

Therefore by the inductive hypothesis (15.18.1),

‖Φ(p+ x+ y) − Φn+1(a+ v + w))‖ ≤ (1 +Kλ)Kλ
2n−2∑

i=n−1

(1 +Kλ)i‖v‖‖w‖

= Kλ

2n−1∑

i=n

(1 +Kλ)i‖v‖‖w‖.

Thus we have

‖Φ(p+x+y)−Φn+1(a+v+w))‖ ≤ Kλ
2n−1∑

i=n

(1+Kλ)i‖v‖‖w‖. (15.18.2)
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Now

∆2
v,wΦn+1(a)

= ‖Φn+1(a) − Φn+1(a+ v) − Φn+1(a+ w) + Φn+1(a+ v + w)‖
≤ ‖Φ(p) − Φ(p+ x) − Φ(p+ y) + Φ(p+ x+ y)‖

+ ‖Φ(p+ x+ y) − Φn+1(a+ v + w)‖

≤ Kλ‖x‖‖y‖ +Kλ

2n−1∑

i=n

(1 +Kλ)i‖v‖‖w‖

by (15.18.2). Therefore

∆2
v,wΦn+1(a) ≤ Kλ(1 +Kλ)2n‖v‖‖w‖ +Kλ

2n−1∑

i=n

(1 +Kλ)i‖v‖‖w‖

= Kλ
2n∑

i=n

(1 +Kλ)i‖v‖‖w‖

which completes the inductive step and proves (15.18.1). Now let n =
⌊t/λ⌋. We obtain

‖∆2
v,wΦn(a)‖ ≤ Kλ

2n−2∑

i=n−1

(1 +Kλ)i‖v‖‖w‖

= Kλ
2n−2∑

i=n−1

(
1 +

Kt

n

)i

‖v‖‖w‖

≤ Kλ

2n−2∑

i=n−1

(
1 +

Kt

n

)2n−2

‖v‖‖w‖

≤ Kλne2Kt‖v‖‖w‖
≤ Kte2Kt‖v‖‖w‖.

a bound valid for all a, v, w in some appreciable ∗B as in Proposi-
tion 15.6.1. We now take standard parts to obtain a similar bound
for the real flow φt. Thus for standard a, v, w we have

‖∆2
v,wφt(a)‖ ≤ Kte2Kt‖v‖‖w‖. (15.18.3)

Transfering estimate (15.18.3) to the nonstandard domain and evaluat-

ing at t = λ we obtain ‖∆2
v,wΦ̃(a)‖ ≤ Kλe2Kλ‖v‖‖w‖ as required. �
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15.19. Ibracket of D1 pvfs is a pvf

Theorem 15.19.1. If Φ, G are local D1 prevector fields then the

ibracket
.

[Φ, G
.

] is a prevector field, i.e.,
.

[Φ, G
.

](a) − a ≺ λ for all a.

Proof. Substituting x = a and y = Φ−1 ◦ G ◦ Φ(a) in the rela-
tion δΦ(x) − δΦ(y) ≺ λ‖x− y‖ gives

δΦ(a) − δΦ(Φ−1 ◦G ◦ Φ(a)) ≺ λ‖a− Φ−1 ◦G ◦ Φ(a)‖
≺ λ2

since composition of D1 pvfs is a D1 pvf. Thus

Φ(a) − a−G ◦ Φ(a) + Φ−1 ◦G ◦ Φ(a) ≺ λ2. (15.19.1)

Now substituting x = Φ(a) and y = G−1 ◦ Φ−1 ◦ G ◦ Φ(a) in the
relation G(x) − x−G(y) + y ≺ λ‖x− y‖ gives

G ◦ Φ(a) − Φ(a) − Φ−1 ◦G ◦ Φ(a) +G−1 ◦ Φ−1 ◦G ◦ Φ(a)

≺ λ‖Φ(a) −G−1 ◦ Φ−1 ◦G ◦ Φ(a)‖
≺ λ2.

(15.19.2)
Adding estimates (15.19.1) and (15.19.2) gives the estimate

G−1 ◦ Φ−1 ◦G ◦ Φ(a) − a ≺ λ2.

By underspill in an appropriate ∗U there exists a finite C > 0 such that

‖G−1 ◦ Φ−1 ◦G ◦ Φ(a) − a‖ ≤ Cλ2

for all a ∈ ∗U . Exploiting a telescoping sum, we obtain

‖δ.
[Φ,G

.

]
(a)‖ = ‖(G−1 ◦ Φ−1 ◦G ◦ Φ)

1

λ (a) − a‖

≤
1

λ∑

k=1

‖(G−1 ◦ Φ−1 ◦G ◦ Φ)k(a) − (G−1 ◦ Φ−1 ◦G ◦ Φ)k−1(a)‖

≤ Cλ

as required. Therefore
.

[Φ, G
.

] ∈ D0. �

15.20. An estimate

Lemma 15.20.1. Let Φ be D2 and G be D1. Then for all a, b with
a− b ≺ λ, we have

δΦ(a) − δΦ(b) − δΦ(G(a)) + δΦ(G(b)) ≺ λ2‖a− b‖ (15.20.1)

or equivalently

Φ(a) − Φ(b) − Φ(G(a)) + Φ(G(b)) − a+ b+G(a) −G(b) ≺ λ2‖a− b‖.



152 15. STUDY OF D
2

Proof. Let v = b − a and w = G(a) − a. The bound (15.20.1) is
similar to the D2 condition ∆2

v,wΦ(a) ≺ λ‖v − w‖ and in fact this will

be exploited in the proof. Since Φ is D1 (by Proposition 15.11.4) we
have

Φ(a+ v + w) − Φ(G(b)) − (a+ v + w) +G(b) ≺ λ‖a+ v + w −G(b)‖.
(15.20.2)

But a+ v + w = b+G(a) − a and so (15.20.2) yields

Φ(a+ v + w) − Φ(G(b)) − b−G(a) + a+G(b)

≺ λ‖b+G(a) − a−G(b)‖
≺ λ2‖a− b‖

since G is D1. Thus

‖Φ(a) − Φ(b) − Φ(G(a)) + Φ(G(b)) − a+ b+G(a) −G(b)‖
= ‖Φ(a) − Φ(a+ v) − Φ(a+ w) + Φ(a+ v + w)

− Φ(a+ v + w) + Φ(G(b)) − a+ b+G(a) −G(b)‖
≤ ‖∆2

v,wΦ(a)‖ + ‖ − Φ(a+ v + w) + Φ(G(b)) − a+ b+G(a) −G(b)‖
≺ λ‖v‖‖w‖ + λ2‖a− b‖
= λ‖b− a‖‖G(a) − a‖ + λ2‖a− b‖
≺ λ2‖a− b‖

since ‖G(a) − a‖ ≺ λ by virtue of G being a pvf, as required. �

Lemma 15.20.2. Let Φ be a local D1 prevector field defined on ∗U .
Assume

‖Φ(a) − Φ(b) − a+ b‖ ≤ Kλ‖a− b‖
for all a, b ∈ ∗U . Then the walk of Φ satisfies:

‖Φn(a) − Φn(b) − a+ b‖ ≤ KλneKλn‖a− b‖.
Proof. We have

‖Φn(a) − Φn(b) − a+ b‖ ≤
n∑

i=1

‖Φi(a) − Φi(b) − Φi−1(a) + Φi−1(b)‖

≤
n∑

i=1

Kλ‖Φi−1(a) − Φi−1(b)‖

≤
n∑

i=1

Kλ(1 +Kλ)i−1‖a− b‖

≤ KλneKλn‖a− b‖.
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Here the third inequality is by internal induction as in the proof of
Theorem 15.7.2. �

Theorem 15.20.3. If Φ, G are D2 then
.

[Φ, G
.

] is D1.

Proof. By Proposition 15.11.4 (D2 impliesD1), Proposition 15.13.2
(inverse is also D1), and Proposition 13.7.5 (composition of D1s is
again D1), we obtain that Φ−1 ◦ G ◦ Φ is D1. Now in Lemma 15.20.1
take G to be Φ−1 ◦G ◦ Φ then we get for a− b ≺ λ:

Φ(a) − Φ(b) −G ◦ Φ(a) +G ◦ Φ(b) − a+ b+ Φ−1 ◦G ◦ Φ(a) − Φ−1 ◦G ◦ Φ(b)

≺ λ2‖a− b‖.
(15.20.3)

As above G−1 ◦ Φ−1 ◦ G is D1 and now take in Lemma 15.20.1 the
entities a, b,Φ, G to be respectively Φ(a),Φ(b), G,G−1 ◦ Φ−1 ◦ G then
we get

G◦Φ(a) −G ◦ Φ(b) − Φ−1 ◦G ◦ Φ(a) + Φ−1 ◦G ◦ Φ(b)

− Φ(a) + Φ(b) +G−1 ◦ Φ−1 ◦G ◦ Φ(a) −G−1 ◦ Φ−1 ◦G ◦ Φ(b)

≺ λ2‖Φ(a) − Φ(b)‖
≺ λ2‖a− b‖

(15.20.4)
by Corollary 13.6.2 (namely ‖a − b‖ ≺ ‖Φ(a) − Φ(b)‖ ≺ ‖a − b‖).
Adding inequalities (15.20.3) and (15.20.4), we obtain

G−1 ◦ Φ−1 ◦G ◦ Φ(a) −G−1 ◦ Φ−1 ◦G ◦ Φ(b) − a+ b ≺ λ2‖a− b‖.

Let H = G−1 ◦ Φ−1 ◦ G ◦ Φ. Then
.

[Φ, G
.

] = H
1

λ . We need to show

that H
1

λ (a) −H
1

λ (b) − a+ b ≺ λ‖a− b‖ and we know

H(a) −H(b) − a+ b ≺ λ2‖a− b‖.
By underspill in an appropriate ∗U there exists a finite C > 0 such
that ‖H(a) − H(b) − a + b‖ ≤ Cλ2‖a − b‖ for all a, b ∈ ∗U . So by
Lemma 15.20.2 with K = Cλ and n = 1

λ
, we obtain

‖H
1

λ (a) −H
1

λ (b) − a+ b‖ ≤ CλeCλ‖a− b‖
as required. �

15.21. Equivalence

Lemma 15.21.1. Let Φ be a local prevector field defined on ∗U . As-
sume ‖Φ(a) − a‖ ≤ Cλ and ‖Φ(a) − a − Φ(b) + b‖ ≤ Kλ‖a − b‖ for
all a, b ∈ ∗U . Then the walk Φn satisfies the bound

‖Φn(a) − a− n(Φ(a) − a)‖ ≤ KCn2λ2.
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Proof. We have

‖Φn(a) − a− n(Φ(a) − a)‖ =

∥∥∥∥∥
n∑

i=1

(
Φi(a) − Φi−1(a) − (Φ(a) − a)

)∥∥∥∥∥

≤
n∑

i=1

∥∥Φ(Φi−1(a)) − Φi−1(a) − Φ(a) + a
∥∥

≤
n∑

i=1

Kλ‖Φi−1(a) − a‖

≤
∑

1≤j<i≤n

Kλ‖Φj(a) − Φj−1(a)‖

≤ n2KλCλ

as required. �

Proposition 15.21.2. Let Φ, G be D2 prevector fields. Then we

have an equivalence
.

[Φ, G
.

](a) ≡ a + 1
λ

(
G−1 ◦ Φ−1 ◦ G ◦ Φ(a) − a

)
for

all a.

Proof. Let H = G−1 ◦Φ−1 ◦G ◦Φ. The proof of Theorem 15.19.1
provides C ′ ≺ 1 such that ‖H(a) − a‖ ≤ C ′λ2 for all a. The proof of
Theorem 15.20.3 provides C ′′ ≺ 1 such that

‖H(a) −H(b) − a+ b‖ ≤ C ′′λ2‖a− b‖
for all a, b. Taking C = C ′λ, K = C ′′λ and n = 1

λ
in Lemma 15.21.1

we get ‖H
1

λ (a) − a− 1
λ
(H(a) − a)‖ ≤ C ′C ′′λ2 ≺≺ λ. �

15.22. Two theorems

Theorem 15.22.1.

Theorem 15.22.2.

15.23. Ibracket and flows

The following theorem corresponds to the classical fact that the Lie
bracket of two vector fields vanishes if and only if their flows commute.
We recall that prevector field I is defined by I(a) = a for all a.

Theorem 15.23.1. Let Φ, G be two D2 prevector fields and φt, gt the

associated flows. Then we have
.

[Φ, G
.

] ≡ I if and only if φt◦gs = gs◦φt

for all 0 ≤ t, s ≤ T for some 0 < T ∈ R.



15.23. IBRACKET AND FLOWS 155

Proof. Assume first that
.

[Φ, G
.

] ≡ I, i.e.,
.

[Φ, G
.

](a) − a ≺≺ λ for
all a. So by Proposition 15.21.2 we obtain

1

λ

(
G−1 ◦ Φ−1 ◦G ◦ Φ(a) − a

)
≺≺ λ,

so G−1 ◦Φ−1 ◦G ◦Φ(a)− a ≺≺ λ2, which implies by Proposition 13.6.1
that G ◦ Φ(a) − Φ ◦G(a) ≺≺ λ2 for all a. Now let n = ⌊t/λ⌋ and m =
⌊s/λ⌋. We need to show Φn ◦ Gm(a) ≈ Gm ◦ Φn(a) for all a. This
involves nm interchanges of Φ and G, where a typical move is from

Φk ◦Gr ◦ Φ ◦Gm−r ◦ Φn−k−1

to Φk ◦ Gr+1 ◦ Φ ◦ Gm−r−1 ◦ Φn−k−1. Applying the bound Φ ◦ G(p) −
G ◦ Φ(p) ≺≺ λ2 at the point p = Gm−r−1 ◦ Φn−k−1(a) we obtain

Φ ◦Gm−r ◦ Φn−k−1(a) −G ◦ Φ ◦Gm−r−1 ◦ Φn−k−1(a) ≺≺ λ2.

By Propositions 15.11.4, 15.5.1 there is a constant K ∈ R such that

‖Φ(a) − a− Φ(b) + b‖ ≤ Kλ‖a− b‖
and ‖G(a) − a− G(b) + b‖ ≤ Kλ‖a− b‖ for all a, b in an appropriate
domain. Then by Theorem 15.7.2 applied to Gr and then to Φk,

‖Φk ◦Gr ◦Φ◦Gm−r ◦Φn−k−1(a)−Φk ◦Gr+1 ◦Φ◦Gm−r−1 ◦Φn−k−1(a)‖
≤ eK(t+s)‖Φ◦Gm−r ◦Φn−k−1(a)−G◦Φ◦Gm−r−1◦Φn−k−1(a)‖ ≺≺ λ2.

Adding the nm contributions when passing from Φn ◦ Gm(a) to Gm ◦
Φn(a) we obtain

Φn ◦Gm(a) −Gm ◦ Φn(a) ≺≺ 1;

this is because among the nm differences that we add, there is a maxi-
mal one, which is say βλ2 with β infinitesimal, and so the sum of all nm
contributions is at most nmβλ2 ≤ tsβ ≺≺ 1.

Conversely, assume φt◦gt = gt◦φt . Then by transfer Φ̃◦G̃ = G̃◦Φ̃,

so G̃−1 ◦ Φ̃−1 ◦ G̃ ◦ Φ̃ = I, and so [Φ̃, G̃] = I. By Proposition 15.18.1

and Theorems 15.22.1, 15.22.2 we get
.

[Φ, G
.

] ≡ I. �

We have the following application to the traditional setting.

Corollary 15.23.2. Let X, Y be classical C2 vector fields. Then
the flows of X and Y commute if and only if their Lie bracket vanishes.

It follows that if X1, . . . , Xk are k independent vector fields with
[Xi, Xj ] = 0 (classical Lie bracket) for 1 ≤ i, j ≤ k, then there are
coordinates in a neighborhood of any given point such that X1, . . . , Xk

are the first k coordinate vector fields.
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Proof. Define prevector fields by Φ(a) = a + λX(a) and G(a) =
a + λY (a) as in Example 12.6.4, and apply Proposition 15.2.1, Re-
mark 15.9.3, and Theorems 15.17.1, 15.23.1. The final statement is a
straightforward conclusion in the classical setting. �
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Foundations of true infinitesimal
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CHAPTER 16

Universes and extensions

This chapter develops a detailed rigorous set-theoretic setting for
the TIDG framework.

16.1. Universes

Robinson’s idea was to enlarge the mathematical world we are
studying, in a way that does not change any of its properties (in a
sense to be made precise). The enlarged view leads to new insights
on the original world. Thus, our starting point is some set X, which
in the case of differential geometry may be (the underlying set of) a
smooth n-dimensional manifold M , or the disjoint union of M with
finitely many other sets one might want to refer to, say Rn, R, and N.

Let us review some set-theoretic background related to universes.
Recall that given a set A, the symbol P(A) denotes the set of all subsets
of A. We define the universe V (X) as follows. Let

V0(X) = X.

At the next step we set V1(X) = V0(X) ∪ P(V0(X)). More generally,
we define recursively for n ∈ N,

Vn+1(X) = Vn(X) ∪ P(Vn(X)).

Finally the universe V (X) is defined as follows.

Definition 16.1.1. The universe, or superstructure, over a set X
is the set

V (X) =
⋃

n∈N
Vn(X).

Corollary 16.1.2. If a ∈ V (X) rX then a ⊆ V (X). �

Exercise 16.1.3. By definition, we have Vm(X) ⊆ Vm+1(X). Prove
that in fact Vm(X) $ Vm+1(X), and even, by Cantor’s theorem, that
Vm+1(X) has a strictly greater cardinality than Vm(X).

For special needs of Robinson’s framework, one usually requires X
to have the following key technical property; see e.g., [Keisler 1976,
15B] or [Chang & Keisler 1990, 4.4].

159
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Definition 16.1.4 (base sets). A set X is a base set if X 6= ∅ and
if x ∈ X then x is an atom in V (X), meaning that x 6= ∅ while x ∩
V (X) = ∅.

The following are important consequences.

Corollary 16.1.5 ([Chang & Keisler 1990], Corollary 4.4.1).
Assume that X is a base set. If a ∈ V (X) and a ∈ b ∈ Vm(X)
then m ≥ 1 and a ∈ Vm−1(X). �

Corollary 16.1.6. Assume that X is a base set. If a, b ∈ V (X)
and a ∩ V (X) = b ∩ V (X) then either a = b or a, b ∈ X ∪ {∅}.

Proof. Suppose that a /∈ X. Then a ∈
⋃

m≥1 Vm(X) by construc-
tion, and hence a ⊆ V (X) and a ∩ V (X) = a. If also b /∈ X then
similarly b ∩ V (X) = b, thus a ∩ V (X) = b ∩ V (X) implies a = b.
If b ∈ X then b ∩ V (X) = ∅ (as X is a base set), and we conclude
that a = a ∩ V (X) = ∅, as required. �

For examples of base sets see Section 16.2.

16.2. The real numbers as a base set

We recall Dedekind’s construction of the real field, already men-
tioned in Section 4.11. There are several formally different definitions
of the real field leading to essentially the same (modulo isomorphism)
structure by results widely known since Dedekind. Of those, we are
going to use the Dedekind definition via cuts, for technical reasons.

Definition 16.2.1 (Dedekind reals). A real number x is a pair x =
{Q,Q′} of two complementary sets of rationals, where (∀q ∈ Q) (∀q′ ∈
Q′) [q < q′] and the set Q(= Qx) does not have a maximal element.

With respect to the natural order on R, one can express the two
sets Q = Qx and Q′ = Q′

x as follows: Qx = {q ∈ Q : q < x} and Q′
x =

{q ∈ Q : q ≥ x}.
The key property of R which implies that R is a base set, is the fact

that each real x consists of two elements Qx and Q′
x, which are sets of

von Neumann rank (see below) equal exactly to ω.
For those not versed in set theory we provide a definition.

Definition 16.2.2. The von Neumann rank of a set x is an ordi-
nal rank(x) defined so that rank(∅) = 0 and if x 6= ∅ then rank(x) is
the least ordinal strictly greater than all ordinals rank(y), y ∈ x.

The existence and uniqueness of rank(x) follow from the axioms
of modern Zermelo–Fraenkel set theory ZFC, with the key role of the
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regularity, or foundation axiom in the argument. Informally, rank(x)
can be viewed as the finite or transfinite length of the cumulative con-
struction of the set x from the empty set.

Definition 16.2.3. Let γ be an ordinal. A set X is a γ-base set if
X 6= ∅, X consists of non-empty elements, and we have rank(a) = γ
whenever a ∈ x ∈ X.

Lemma 16.2.4 ([Chang & Keisler 1990], Exercise 4.4.1). If γ is
an infinite ordinal, and X is a γ-base set, then X is a base set.

Proof. We show that if y ∈ Vm(X) then either γ+ 1 ≤ rank(y) ≤
γ + m + 1 or rank(y) < m, hence one never has rank(y) = γ. This
rules out the possibility of y ∈ x for any x ∈ X = V0(X).

The claim is proved by induction on m.
If y ∈ X = V0(X) then rank(y) = γ + 1 by the choice of X.
If y ∈ V1(X) then either y ∈ X with rank(y) = γ+1, or y = ∅ (the

empty set) with rank(∅) = 0, or ∅ 6= y ⊆ V0(X) with rank(y) = γ+2.
Similarly if y ∈ V2(X) then either y ∈ V1(X) with rank(x) = 0

or γ+1 ≤ rank(y) ≤ γ+2 by the above, or y ⊆ {∅} with rank(y) ≤ 1,
or ∅ 6= y ⊆ V1(X) \ (X ∪ {∅}) with rank(y) = γ + 3.

Extending this argument, one easily proves the claim.1 �

If X is a base set then there is another rank function rankX(b)
which reflects the inner structure of the superstructure V (X) and is
defined as follows.

Definition 16.2.5. Let X be a base set. We let rankX(b) = 0
for each b ∈ X, rankX(∅) = 1, and if b ∈ V (X) \ X, b 6= ∅,
then rankX(b) is the least natural number strictly bigger than all nat-
ural numbers rankX(y), y ∈ b.

Recall that if y ∈ b ∈ V (X)\X then y ∈ V (X) by Corollary 16.1.2.
Thus, with some resemblance to the definition of the von Neumann
rank above, rankX(b) is the (finite, in this case) length of the cumula-
tive construction of the set b from atoms in X. The empty set satis-
fies rankX(∅) = 1 (as any other subset of X) since it does not belong
to X.

1An alternative argument runs as follows. If x ∈ X = V0(X) then rank(x) =
γ + 1 by the choice of X. If x ∈ V1(X) then either x ∈ X with rank(x) = γ + 1,
or x = ∅ (the empty set) with rank(∅) = 0, or x ∈ V1(X)\X with rank(x) = γ+2.
Similarly if x ∈ V2(X) then either x ∈ X with rank(x) = γ + 1, or rank(x) ≤ 1
(for x = ∅ and x = {∅}), or x ∈ V2(X) \ X with γ + 2 ≤ rank(x) ≤ γ + 3.
Extending this argument, one easily shows by induction that if m ≥ 1 then every
set y ∈ Vm(X)\X satisfies either γ+2 ≤ rank(y) ≤ γ+m+1 or rank(Y ) < m, hence
never rank(y) = γ. This rules out the possibility of y ∈ x for any x ∈ X = V0(X).
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Exercise 16.2.6. Prove that if X is a base set and m ≥ 1 then
every set b ∈ Vm(X) \ Vm−1(X) satisfies rankX(b) = m.

Next, we consider the most important case X = R (the real num-
bers). Recall that ω is the least infinite ordinal.

Lemma 16.2.7. The set X = R is an ω-base set, and hence a base
set.

Proof. Set theory defines natural numbers so that 0 = ∅ and n =
{0, 1, 2, . . . , n − 1} for all n > 0. It follows that rank(n) = n for any
natural number n. Next, according to the set theoretic definition of an
ordered pair 〈x, y〉 as

〈x, y〉 = {{x}, {x, y}},
all pairs and triples of natural numbers have finite ranks. Therefore
each rational number q, identified with a triple 〈s,m, n〉, where s ∈
{0, 1, 2}, m = 1, 2, 3, . . . , n = 0, 1, 2, 3, . . . , and q = (s− 1) · n

m
, also has

a finite rank rank(q).
We conclude that every infinite set S of rational numbers satis-

fies rank(S) = ω exactly. Therefore each Dedekind real x consists of
two sets (infinite sets of rationals Qx and Q′

x) of rank rank(Qx) =
rank(Q′

x) = ω. It remains to apply Lemma 16.2.4 with γ = ω. �

16.3. More sets in universes

From now on we concentrate on the case X = R. By definition the
set V0(R) = R has cardinality card(R) = c (the continuum), and then
by induction card(Vn(R)) = expn(c). This array of cardinalities easily
exceeds all needs of conventional mathematics. For instance, the un-
derlying set |M | of a smooth connected manifold M of dimension n ≥ 1
is a set of cardinality c. Therefore we can identify |M | with a set in
the complement V1(R) \ V0(R); this choice excludes the possibility of
nonempty intersection of |M | and R. Then every object of interest for
studying the smooth manifold M will be an element of V (R), e.g.,

(1) The topology of M is an element of V3(R);
(2) With the usual encoding of an ordered pair 〈a, b〉 in terms of

the set {{a}, {a, b}}, the set M ×M is an element of V4(R);
(3) The set Map(M) of all maps from M to itself is an element

of V5(R).

Similarly, the field operations of R, the vector space operations of Rn,
and the natural embedding of N into R, are elements of V (R), as is each
function from Rn to R. See [Chang & Keisler 1990, Lemma 4.4.3].



16.5. ULTRAPOWER CONSTRUCTION OF NONSTANDARD UNIVERSES 163

16.4. Membership relation

Statements about any fixed universe of the form V (X) are made
using a first order language with a binary relation ∈, the member-
ship relation, as the only primary relation. This language will be
called ∈-language. Its formulas are called ∈-formulas. Free variables
in ∈-formulas can be routinely replaced by elements of V (X) called
constants in such case.

Definition 16.4.1. An ∈-formula φ is called bounded if and only
if quantifiers ∀x and ∃x always appear in φ in the form

∀x (x ∈ a⇒ such-and-such)

and

∃x (x ∈ a ∧ such-and-such)

where a is either a variable or a constant, where φ can contain other
free variables and/or constants in addition to a.

These forms are abbreviated respectively as ∀x ∈ a (such-and-such)
and ∃x ∈ a (such-and-such).

16.5. Ultrapower construction of nonstandard universes

In this section we will present a generalisation of the ultrapower
construction of Section 5.3.

For the purpose of such a generalisation, recall that f, g, . . . denote
functions in a standard universe V (X), while their extensions in a
nonstandard extension ∗V (X) are denoted ∗f, ∗g, . . .

Definition 16.5.1. A nonstandard extension of V (X) consists of
a base set ∗X with X $ ∗X, a subuniverse ∗V (X) ⊆ V (∗X), and a map

∗ : V (X) → ∗V (X) (16.5.1)

satisfying the following two conditions:

(I) one has ∗X ⊆ ∗V (X), and the map ∗ is an injective map
from V (X) into ∗V (X) such that if x ∈ X then ∗x ∈ ∗X;

(II) for every bounded formula φ(x1, . . . , xk), and every k-tuple
of constants a1, . . . , ak ∈ V (X), the formula φ(a1, . . . , ak) is
true in V (X) if and only if the formula φ(∗a1, . . . ,

∗ak) is true
in ∗V (X).

Remark 16.5.2. If a 6= b then ∗a 6= ∗b by (II), so that ∗ is a bijection
of V (X) onto a subset of ∗V (X). Yet we introduce the bijectivity
condition separately by (I) for the sake of convenience.
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Example 16.5.3. An example of a bounded formula is the formula
expressing the continuity of a function; see Section 5.8. Therefore
by (II) the same formula holds in the extension for ∗f where the quan-
tification is now over the extended domain.

Again by (II), if a ∈ A ∈ V (X) then ∗a ∈ ∗A, so if one identifies a
with its image ∗a, then one may think of A as a subset of ∗A, that is,
one can think of ∗A as an extension of A. Since functions are also sets,
for every function f ∈ V (X), f : A → B, we can consider the set ∗f ,
which is also a function, ∗f : ∗A→ ∗B. If A and B are considered to be
subsets of ∗A and ∗B respectively, then the function ∗f is an extension
of the function f .

Theorem 16.5.4. Nonstandard extensions exist.

This is a well-known result presented in many sources, including the
fundamental monograph on model theory [Chang & Keisler 1990].
We will provide a proof here so as to make the exposition self-contained.
The proof occupies the remainder of this Chapter 16 as well as the next
Chapter 17.

Proof. The construction we employ is referred to as the reduced
(or bounded) ultrapower. It consists of two parts:

(1) the ultrapower itself, along with the  Loś theorem, namely
Lemma 17.1.2;

(2) the transformation of the bounded ultrapower into a universe.

We start with an arbitrary ultrafilter F ⊆ P(N) containing all cofi-
nite subsets of N, namely a nonprincipal ultrafilter. The starting point
for the construction of the full ultrapower is the product set V (X)N

which consists of all infinite sequences 〈xn〉 = 〈xn : n ∈ N〉 of ele-
ments xn ∈ V (X), or equivalently, all functions f : N → V (X), via
the identification of each f with the sequence 〈f(n) : n ∈ N〉. The
subsets Vm(X)N ⊆ V N are defined accordingly.

16.6. Bounded ultrapower

Let X be a base set (see Definition 16.1.4).

Definition 16.6.1. The set union

V (X)N
bd

=
⋃

m

(
Vm(X)N

)
$ V (X)N

is the starting point for the construction of the bounded ultrapower.

Exercise 16.6.2. Find an element in V (X)N r V (X)N
bd

.
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Let m be a natural number. We have b ∈ Vm(X) \ Vm−1(X) if and
only if rankX(b) = m; see Exercise 16.2.6.

Definition 16.6.3. A sequence 〈xn〉 ∈ V (X)N
bd

is of type m if the
set Dm = {n ∈ N : rankX(xn) = m} belongs to F .

Definition 16.6.4. In the notation as above, a sequence is totally
of type m if Dm = N.

In case m = 0, we naturally assume that V−1(X) = ∅, so that D0 =
{n : xn ∈ V0(X)}, and 〈xn〉 is totally of type 0 if and only if xn ∈ X =
V0(X) for all n.

Lemma 16.6.5. Assume that 〈xn〉 ∈ V (X)N
bd
. Then there is a

unique number m ∈ N such that 〈xn〉 is of type m.

Proof. By definition we have 〈xn〉 ∈ VM(X)N for some M and
therefore we have a pairwise disjoint finite union N =

⋃
m≤M Dm (par-

titioned by rankX). The lemma now follows from the fact that F is an
ultrafilter. �

Following Section 5.4, we define an equivalence relation ∼ (or more
precisely ∼F as the relation depends on F) on V (X)N

bd
as follows:

〈xn〉 ∼ 〈yn〉 if and only if {n ∈ N : xn = yn} ∈ F .2

Lemma 16.6.6. Assume that 〈xn〉 ∈ V (X)N
bd

is of type m. There is
a sequence 〈yn〉 ∈ V (X)N

bd
totally of type m, such that 〈xn〉 ∼F 〈yn〉.

Proof. If n ∈ Dm then simply let yn = xn. If n /∈ Dm then put
yn = a, where a is a fixed element in Vm(X) \ Vm−1(X). (Or a ∈ X =
V0(X) in the case m = 0.) �

We continue with the proof of Theorem 16.5.4. The F -quotient

V (X)N
bd
/F =

{
〈xn〉F : 〈xn〉 ∈ V (X)N

bd

}

consists of all F -classes, or ∼F -classes

〈xn〉F =
{
〈yn〉 ∈ V (X)N

bd
: 〈xn〉 ∼ 〈yn〉

}

of sequences 〈xn〉 ∈ V (X)N
bd

. We define

Vm(X)N/F =
{
〈xn〉F : 〈xn〉 ∈ Vm(X)N

}

for all m, so that V (X)N
bd
/F =

⋃
m Vm(X)N/F .

Corollary 16.6.7. Each element of V (X)N
bd
/F is of the form 〈xn〉F ,

where 〈xn〉 ∈ V (X)N
bd

is a sequence totally of type m for some (unique) m,
so that xn ∈ Vm(X) \ Vm−1(X) for all n.

2In such case there is a set A ∈ F such that we have xn = yn, for all n ∈ A.
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Proof. Use lemmas 16.6.5, 16.6.6. �

If 〈xn〉F , 〈yn〉F belong to V (X)N
bd
/F then we define a binary relation

〈xn〉F ∗∈ 〈yn〉F if and only if {n ∈ N : xn ∈ yn} ∈ F .
Lemma 16.6.8. If 〈xn〉F , 〈yn〉F belong to V (X)N

bd
/F and we have

〈xn〉F ∗∈ 〈yn〉F then there is a set K ∈ F and an index m ≥ 1 such
that xn ∈ Vm−1(X), yn ∈ Vm(X), and xn ∈ yn, for all n ∈ K.

Proof. Let L = {n ∈ N : xn ∈ yn}. By definition, the set L is a
member of F , and, as 〈xn〉F , 〈yn〉F ∈ V (X)N

bd
/F , there is an index M

such that xn, yn ∈ VM(X) for all n. Consider the sets

Km = {n ∈ L : xn ∈ Vm−1(X) and yn ∈ Vm(X)}, 1 ≤ m ≤M.

It follows by Corollary 16.1.5 that L =
⋃

1≤m≤M Km, therefore at least
one of Km belongs to F , and we can set K = Km. �

Let x ∈ V (X). Let 〈x〉 be the infinite constant sequence 〈x, x, x, . . . 〉
= 〈xn〉, where xn = x forall n. We let 〈x〉F denote its F -class as above.
The proof of Theorem 16.5.4 continues in Chapter 17.



CHAPTER 17

 Loś theorem and transfer principle

Here we continue the proof of Theorem 16.5.4.
Our main goal in Chapter 16 and here is a proof of the Transfer

Principle, an assertion to the effect that, roughly speaking, any sentence
true or false in the standard universe remains true, resp., false in the
nonstandard universe, Corollary 17.2.1 and ultimately Corollary 17.3.1.
This is not a really easy task, in part because such a typical tool of
logic as proof by induction on the logical complexity of the sentence
considered, does not seem to work. However there is another, and
stronger claim which happens to admit such an inductive proof. This
stronger claim is contained in the proof of Lemma 17.1.2. The lemma
is in fact a cornerstone of the theory of ultraproducts.

17.1.  Loś theorem

The theorem connects the truth of sentences related to V (X)N
bd

with
their “truth sets” in the ultrafilter F . A more detailed treatment of
formulas can be found in [Loeb & Wolff 2015].

Definition 17.1.1. The truth set T ⊆ N of a formula φ is defined
by setting

Tφ(〈a1n〉,...,〈akn〉) =
{
n ∈ N : φ(a1n, . . . , a

k
n) is true in V (X)

}
.

Lemma 17.1.2 (the  Loś theorem). If φ(x1, . . . , xk) is an arbitrary
bounded ∈-formula and sequences 〈a1n〉, . . . , 〈akn〉 belong to V (X)N

bd
, then

the sentence φ(〈a1n〉F , . . . , 〈akn〉F) is true in 〈V (X)N
bd
/F ; ∗∈〉 if and only

if the truth set Tφ(〈a1n〉,...,〈akn〉) is a member of F .

Here we use an upper index in the enumeration of free variables
to distinguish it from the enumeration of terms of infinite sequences
in V (X)N

bd
.

Example 17.1.3. Let φ be the formula x ∈ y. Assume that se-
quences 〈an〉, 〈bn〉 belong to V (X)N

bd
. Then the formula 〈an〉F ∈ 〈bn〉F

is true in 〈V (X)N
bd
/F ; ∗∈〉 if and only if 〈an〉F ∗∈ 〈bn〉F if and only if (by

definition) the set T〈an〉∈〈bn〉 = {n ∈ N : an ∈ bn} belongs to F .

167
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Proof. The proof of Lemma 17.1.2 proceeds by induction on the
construction of formula φ out of elementary formulas x ∈ y by means of
logical connectives and quantifiers. Among them, it suffices to consider
only ¬ (the negation), ∧ (conjunction), and ∃ (the existence quantifier)
since the remaining ones are known to be expressible via combinations
of those three. For instance, Φ ∨ Ψ is equivalent to ¬(¬Φ ∧ ¬Ψ), and
the quantifier ∀ is equivalent to ¬∃¬.

The base of induction is the case when φ is the formula x ∈ y,
already checked in Example 17.1.3. As we go through the induction
steps, we will reduce the arbitrarily long list of free variables x1, . . . , xk

to a minimally nontrivial list for each step, for the sake of brevity.
The step ¬. Let φ(x) be a bounded ∈-formula with a single free

variable x, and 〈an〉 ∈ V (X)N
bd

. Suppose that the lemma is established
for φ(〈an〉), and let us prove it for ¬ φ(〈an〉).

Indeed, formula ¬ φ(〈an〉F) is true in 〈V (X)N
bd
/F ; ∗∈〉 if and only

if φ(〈an〉F) is false in 〈V (X)N
bd
/F ; ∗∈〉. The latter holds if and only if

(by the inductive hypothesis) Tφ(〈an〉) /∈ F or equivalently T¬φ(〈an〉) ∈ F
since obviously Tφ = N r T¬φ, and one and only one set in a pair of
complementary sets belongs to F (as F is an ultrafilter).

The step ∧. Here one proves the result for φ(a) ∧ ψ(a) assuming
that the lemma is established separately for φ(a) and ψ(a). We leave
it as an exercise.

The step ∃. Assume that the lemma is established for a bounded
formula φ(x, y, z), and prove it for (∃z ∈ x)φ(x, y, z). Let 〈an〉, 〈bn〉 ∈
V (X)N

bd
. We have to prove that the statement

(A) (∃z ∈ 〈an〉F) φ(〈an〉F , 〈bn〉F , z) is true in 〈V (X)N
bd
/F ; ∗∈〉

is equivalent to

(B) the set L = T∃z∈〈an〉φ(〈an〉,〈bn〉,z) belongs to F .

Note that L = {n : ∃z ∈ an (φ(an, bn, z) is true in V (X))}.
By definition, (A) is equivalent to

(C) there is a sequence 〈cn〉 ∈ V (X)N
bd

such that both 〈cn〉F ∗∈ 〈an〉F
and φ(〈an〉F , 〈bn〉F , 〈cn〉F) are true in 〈V (X)N

bd
/F ; ∗∈〉.

By the inductive hypothesis for φ and the base of induction result,
the requirements of (C) hold if and only if each of the sets

U ′
〈cn〉 = T〈cn〉∈〈an〉 = {n : cn ∈ an}, and

U ′′
〈cn〉 = Tφ(〈an〉,〈bn〉,〈cn〉) = {n : φ(an, bn, cn) is true in V (X)}

belongs to F , which is equivalent (as F is an ultrafilter) to U〈cn〉 ∈ F ,
where

U〈cn〉 = U ′
〈cn〉 ∩ U ′′

〈cn〉 = T〈cn〉∈〈an〉∧φ(〈an〉,〈bn〉,〈cn〉).
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On the other hand, the set L of (B) satisfies U〈cn〉 ⊆ L because if n ∈
U〈cn〉 then taking z = cn satisfies φ(an, bn, z) in V (X). Therefore if T ∈
F then L ∈ F as F is an ultrafilter. This completes the proof that (A)
implies (B).

To prove the converse suppose that L ∈ F . Recall that V (X)N
bd

=⋃
m Vm(X)N, hence the sequence 〈an〉 belongs to some Vm(X). If n ∈ L

then by definition there is some z = cn ∈ an such that φ(an, bn, z) is
true in V (X).1 It follows that m > 0 and cn ∈ Vm−1(X), by Corol-
lary 16.1.5. If n /∈ L then let cn ∈ Vm−1(X) be arbitrary. The con-
struction of the sequence 〈cn : n ∈ N〉 ∈ Vm−1(X)N uses the axiom
of choice. Thus 〈cn〉 ∈ V (X)N

bd
and if n ∈ L then n belongs to the

set U〈cn〉 = U ′
〈cn〉 ∩ U ′′

〈cn〉 as above by construction. It follows that the

sets U ′
〈cn〉, U

′′
〈cn〉 belong to F , and hence we have (C) and (A).

This completes the proof of the  Loś theorem. �

17.2. Elementary embedding

Corollary 17.2.1. The map x 7−→ 〈x〉F is an elementary embed-
ding of the structure 〈V (X);∈〉 to 〈V (X)N

bd
/F ; ∗∈〉.

In other words, if φ(x1, . . . , xk) is a bounded ∈-formula and we
have a1, . . . , ak ∈ V (X), then the sentence φ(a1, . . . , ak) is true in V (X)
if and only if the sentence φ(〈a1〉F , . . . , 〈ak〉F) is true in 〈V (X)N

bd
/F ; ∗∈〉.

Proof. Recall that 〈aj〉 is the infinite sequence 〈ajn : n ∈ N〉 such
that ajn = aj for all n. Therefore the truth set Tφ(〈a1〉,...,〈ak〉) is equal

to N if φ(a1, . . . , ak) is true in V (X) and is equal to ∅ otherwise. Now
an application of Lemma 17.1.2 concludes the proof. �

This result ends the first part of the proof of Theorem 16.5.4. We
defined an embedding x 7−→ 〈x〉F of the universe 〈V (X);∈〉 to

〈V (X)N
bd
/F ; ∗∈〉

which satisfies Transfer by Corollary 17.2.1. The final step of the proof
of the theorem is embedding 〈V (X)N

bd
/F ; ∗∈〉 into the universe V (∗X),

where ∗X = {〈an〉F : 〈an〉 ∈ XN}, and, we recall, X = V0(X).

Lemma 17.2.2. Assume that γ is an infinite ordinal and X is
a γ-base set. Then ∗X is a (γ + 4)-base set, hence a base set by
Lemma 16.2.4.

Proof. By definition, each 〈an〉F ∈ ∗X is a non-empty set of pair-
wise ∼F -equivalent sequences 〈an〉 = 〈an : n ∈ N〉 of elements an ∈ X.

1Making such choices simultaneously for all n ∈ L requires Countable Choice.



170 17.  Loś THEOREM AND TRANSFER PRINCIPLE

It remains to prove that rank(〈an〉) = γ + 4. Note that a sequence of
this form is formally equal to the set of all ordered pairs

〈n, an〉 =
{
{{n}, {n, an}} : n ∈ N

}
,

where

rank(n) = n,

rank(an) = γ + 1 (as X is a γ-base set),

rank({n}) = n+ 1,

rank({n, an}) = γ + 2,

rank({{n}, {n, an}}) = γ + 3,

rank(〈an : n ∈ N〉) = γ + 4,

as required. �

The lemma shows that V (∗X) is a legitimate superstructure which
satisfies all the results of Sections 16.1 and 16.2.

Definition 17.2.3. Define a map h : V (X)N
bd
/F → V (∗X) as fol-

lows. Suppose that 〈an〉F ∈ V (X)N
bd
/F . It can be assumed, by Corol-

lary 16.6.7, that 〈an〉 is totally of type m for some m, so that an ∈
Vm(X) \ Vm−1(X) (or just an ∈ X = V0(X) provided m = 0) for all n.
The definition of h(〈an〉F) goes on by induction on m.

(1) If m = 0 then we put h(〈an〉F) = 〈an〉F .
In other words, if 〈an〉 ∈ XN then h(〈an〉F) = 〈an〉F ∈ ∗X.

(2) If m ≥ 1 then we put

h(〈an〉F) =
{
h(〈bn〉F) : 〈bn〉 ∈ Vm−1(X)N and 〈bn〉F ∗∈ 〈an〉F

}
.

This type of definition is called the Mostowski collapse; see Theo-
rem 4.4.9 in [Chang & Keisler 1990].

Exercise 17.2.4. Prove by induction on m that if 〈an〉 ∈ Vm(X)N

then h(〈an〉F) ∈ Vm(∗X). �

Lemma 17.2.5. The map h is a bijection, and h is an isomorphism
in the sense that if 〈an〉, 〈bn〉 ∈ V (X)N

bd
then

〈an〉F ∗∈ 〈bn〉F if and only if h(〈an〉F) ∈ h(〈bn〉F) .

Proof. To prove that h is a bijection, suppose that 〈an〉, 〈bn〉 ∈
V (X)N

bd
and 〈an〉F 6= 〈bn〉F . Then the truth set T = {n ∈ N : an 6= bn}

belongs to F by Lemma 17.1.2. It can be assumed, by Corollary 16.6.7,
that 〈an〉, 〈bn〉 are totally of type m, resp., m′, for some m,m′.

Case 1 : m = m′ = 0, so that an, bn ∈ X = V0(X) for all n.
Then h(〈an〉F) = 〈an〉F and h(〈bn〉F) = 〈bn〉F by construction, and on
the other hand, we have 〈an〉F 6= 〈bn〉F since T ∈ F .
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Case 2 : m′ = 0 and m ≥ 1, so that bn ∈ X = V0(X) and an ∈
Vm(X) \ Vm−1(X) for all n. Then h(〈bn〉F) = 〈bn〉F ∈ ∗X while
h(〈an〉F) ⊆ V (∗X) by construction, so that h(〈bn〉F) 6= h(〈an〉F) by
Lemma 17.2.2. (Recall Definition 16.1.4.)

Case 3 : m = 0 and m′ ≥ 1, similar.

Case 4 : m = m′ ≥ 1. Then, for any n, an and bn belong to
Vm(X) \ Vm−1(X), therefore an ⊆ Vm−1(X) and bn ⊆ Vm−1(X). In
addition, if n ∈ T then an 6= bn, hence there exists some cn ∈ Vm−1(X)
satisfying cn ∈ an \ bn or cn ∈ bn \ an. It follows that one of the sets

T ′ = {n ∈ T : cn ∈ an \ bn}, T ′′ = {n ∈ T : cn ∈ bn \ an}
belongs to F ; suppose that T ′ ∈ F . If n /∈ T then let cn ∈ Vm−1(X)
be arbitrary. Then 〈cn〉 ∈ Vm−1(X). Now we have 〈cn〉 ∗∈ 〈an〉 but
¬ 〈cn〉 ∗∈ 〈bn〉, hence, by Definition 17.2.3, h(〈cn〉F) ∈ h(〈an〉F) but
h(〈cn〉F) /∈ h(〈bn〉F). Therefore h(〈an〉F) 6= h(〈bn〉F).

Case 5 : m,m′ ≥ 1 and m 6= m′, say m′ < m. For any n we
have an ∈ Vm(X) \ Vm−1(X), hence an ⊆ Vm−1(X). Note that an ⊆
Vk(X) is impossible for k < m− 1 as otherwise

an ∈ Vk+1(X) ⊆ Vm−1(X),

a contradiction. Thus there is an element cn ∈ an, cn ∈ Vm−1(X) \
Vm−2(X), in particular, cn ∈ Vm−1(X)\Vm′−1(X). Then 〈cn〉 ∈ Vm−1(X)
and 〈cn〉 ∗∈ 〈an〉, hence h(〈cn〉F) ∈ h(〈an〉F). On the other hand, we
have cn /∈ bn by Corollary 16.1.5, hence ¬ 〈cn〉 ∗∈ 〈bn〉 and h(〈cn〉F) /∈
h(〈bn〉F). Thus we still have h(〈an〉F) 6= h(〈bn〉F).

The claim that h is a bijection is established.
Now we prove the isomorphism claim. Let 〈an〉, 〈bn〉 be sequences

in V (X)N
bd

. As above, it can be assumed that 〈an〉, 〈bn〉 are totally
of type m, resp., m′, for some m,m′ ∈ N. Suppose that 〈an〉F ∗∈
〈bn〉F . By definition the set N = {n ∈ N : an ∈ bn} belongs to F .
Then an ∈ Vm′−1(X) for all n ∈ N by Corollary 16.1.5, and hence
we have h(〈an〉F) ∈ h(〈bn〉F) by Definition 17.2.3.

If conversely h(〈an〉F) ∈ h(〈bn〉F) then immediately 〈an〉F ∗∈ 〈bn〉F
still by Definition 17.2.3. �

Definition 17.2.6. Let ∗V (X) = {h(〈an〉F) : 〈an〉 ∈ V (X)N
bd
/F},

the range of h. If m ∈ N then let
∗Vm(X) = {h(〈an〉F) : 〈an〉 ∈ Vm(X)N/F}. �

Exercise 17.2.7. Prove using Lemma 17.2.5 that the sets ∗Vm(X)
satisfy ∗Vm(X) = ∗V (X) ∩ Vm(∗X), ∗Vm+1(X) ⊆ P(∗Vm(X)), and fi-
nally ∗V (X) =

⋃
m

∗Vm(X) ⊆ V (∗X). �
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Thus ∗V (X) is a subuniverse of the full universe V (∗X) over ∗X =
∗V0(X). Let us use letters ξ, η to denote arbitrary elements of V (X)N

bd
/F ,

so that if ξ ∈ V (X)N
bd
/F then h(ξ) ∈ ∗V (X). As h is an isomorphism

by Lemma 17.2.5, we immediately obtain the following.

Corollary 17.2.8. If φ(x1, . . . , xk) is a bounded ∈-formula and
ξ1, . . . , ξk ∈ V (X)N

bd
/F , then φ(ξ1, . . . , ξk) is true in 〈V (X)N

bd
/F ; ∗∈〉 if

and only if the sentence φ(h(ξ1), . . . , h(ξk)) is true in 〈∗V (X);∈〉. �

17.3. Completing the proof

Now we are ready to complete the proof of Theorem 16.5.4.
We claim that ∗X, ∗V (X), and the map x 7−→ ∗x constitute a non-
standard extension of V (X). The proof is obtained by combining
Corollaries 17.2.1 and 17.2.8. Namely, if x ∈ V (X) then let ∗x =
h(〈x〉F), so that x 7−→ ∗x maps V (X) onto ∗V (X) ⊆ V (∗X). Fur-
thermore, Lemma 17.2.5 ensures that condition (I) of Section 16.5
holds. Now let us check condition (II) of Section 16.5. Consider a
bounded formula φ(x1, . . . , xk), and arbitrary elements a1, . . . , ak ∈
V (X). Then the formula φ(a1, . . . , ak) is true in V (X) if and only
if φ(〈a1〉F , . . . , 〈ak〉F) is true in 〈V (X)N

bd
/F ; ∗∈〉 (by Corollary 17.2.1),

if and only if the formula φ(∗a1, . . . , ∗ak) is true in ∗V (X) (by Corollary
17.2.8).

Note that both V (X) and ∗V (X) are viewed as ∈-structures with
the true membership relation ∈.

It remains to prove that X $ ∗X properly, or, to be more precise,
there is an element y ∈ ∗X not equal to any ∗x, x ∈ X.

Let a0, a1, a2, . . . be an infinite sequence of pairwise distinct ele-
ments an ∈ X. Then 〈an〉 = 〈an : n ∈ N〉 belongs to XN = V0(X)N.
It follows that ξ = h(〈an〉F) ∈ ∗X. We now prove that if x ∈ X
then ξ 6= ∗x . By definition one has to show that 〈an〉 6∼ 〈x〉, that
is, the set N = {n : an 6= x} belongs to F . However N contains
all natural numbers with the possible exception of a single index n
satisfying an = x. Hence N ∈ F . This completes the proof of Theo-
rem 16.5.4. �

Rephrasing condition (II) of Section 16.5, we obtain:

Corollary 17.3.1 (Transfer). The map x 7−→ ∗x is an elemen-
tary ∈-embedding of the structure 〈V (X);∈〉 to 〈∗V (X);∈〉. In other
words, if φ(x1, . . . , xk) is a bounded ∈-formula and a1, . . . , ak ∈ V (X),
then φ(a1, . . . , ak) is true in V (X) if and only if φ(∗a1, . . . , ∗ak) is true
in ∗V (X). �



CHAPTER 18

Further issues in foundations

18.1. Definability

In Chapter 4.7 we presented a construction of the hyperreal line
via filters and ultrapowers. For a broader picture, it may be useful to
comment on the issue of definability.

At the end of the 20th century, many mathematicians felt that there
could be no way of defining a suitable hyperreal line, since its definition
involves nonconstructive foundational material. Therefore it came as a
surprise to many people when Kanovei and Shelah proved in 2004 that,
in fact, a hyperreal line is indeed definable [Kanovei & Shelah 2004].

What this means is that there exists a specific set-theoretic formula
that defines a hyperreal line in the set-theoretic universe, in terms of
nothing else beyond the commonly accepted Zermelo–Fraenkel axioms.
This might seem surprising. To clarify the situation, one would com-
pare it with that for Lebesgue measure. It is widely known and ac-
cepted as fact that the Lebesgue measure is σ-additive. Two items
need to be pointed out here:

(1) to give an initial characterisation of the Lebesgue measure m,
one does not need the axiom of choice (AC), but AC plays a
crucial role in establishing suitable properties of m;

(2) in particular, to prove that the Lebesgue measure m is σ-
additive, one requires AC.

Here item (2) follows from the existence of a model of ZF (Zermelo–
Fraenkel axioms without AC) where the real line is a countable union
of countable sets. This model is called the Feferman–Levy model
[Feferman & Levy 1963].1 See also [Jech 1973, chapter 10].

We see that, while some rather elementary properties of m (finite
additivity or measurability of every open set of real numbers, to name
a few) can be established in ZF, a proof of the σ-additivity of m nec-
essarily requires (some version of) AC.

1One can show furthermore that in this model there exists a positive function
with zero Lebesgue integral.

173
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With regard to its foundational status, the situation is similar for a
hyperreal line. One can give an initial characterisation of a hyperreal
line without AC (cf. Kanovei–Shelah),2 but actually to prove something
about it one would need some version of AC, which can be just the
full AC of ZFC (as in Kanovei–Shelah); recently it has been shown
that the combination of the countable choice for sets of reals and the
existence of an ultrafilter over N with a wellorderable base also suffices
[Herzberg et al. 2017].

18.2. Conservativity

The various frameworks developed by Robinson and since, including
those of Nelson and Hrbacek, are conservative extensions of ZFC, and
in this sense are part of classical mathematics.

As far as conservativity is concerned, the following needs to be kept
in mind. Robinson showed that, given a proof exploiting infinitesimals,
there always exists an infinitesimal-free paraphrase.

However, this is merely a theoretical result. In practice, such a
paraphrase may involve an uncontrolled increase in the complexity of
the proof, and correspondingly a decrease in its comprehensibility, at
least in principle.

From the point of computer scientist one should certainly be able
to appreciate the difference.

Similarly, one can note that any result using the real numbers can
be restated in terms of the rationals using sequences, and even in terms
of the integers, etc. The ancient Greeks used formulations that would
be very difficult for us to follow if we did not use modern translations
in terms of extended number systems that have since become widely
accepted and are considered intuitive. The related controversy over
Unguru’s proposal is well known.

The following two additional points should be kept in mind.
First, the conservativity property of the pair ZFC, IST does not hold

for pairs like An, A
∗
n, where An is the n-th order arithmetic and A∗

n its
nonstandard extension, in fact A∗

n is rather comparable to the stan-
dard An+1. This profound result of Henson–Keisler around 1994 is well
known to specialists working in Robinson’s framework.3

Second, IST yields some principally new mathematics with respect
to ZFC, in the sense that there are IST sentences not equivalent to any
ZFC sentence. This was established in [Kanovei & Reeken 2004].

2We might want to be more precise here.
3provide references and exact formulations.
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This can be compared to the obvious fact that any sentence about C
admits an equivalent sentence about R.

The following comments by Henson and Keisler usefully illustrate
the point:

It is often asserted in the literature that any theorem
which can be proved using nonstandard analysis can
also be proved without it. The purpose of this paper is
to show that this assertion is wrong, and in fact there
are theorems which can be proved with nonstandard
analysis but cannot be proved without it. There is
currently a great deal of confusion among mathemati-
cians because the above assertion can be interpreted
in two different ways. First, there is the following
correct statement: any theorem which can be proved
using nonstandard analysis can be proved in Zermelo-
Fraenkel set theory with choice, ZFC, and thus is
acceptable by contemporary standards as a theorem
in mathematics. Second, there is the erroneous con-
clusion drawn by skeptics: any theorem which can
be proved using nonstandard analysis can be proved
without it, and thus there is no need for nonstandard
analysis. [Henson & Keisler 1986, p. 377]

Henson and Keisler go on to analyze the reasons for such a confusion:

The reason for this confusion is that the set of prin-
ciples which are accepted by current mathematics,
namely ZFC, is much stronger than the set of prin-
ciples which are actually used in mathematical prac-
tice. It has been observed (see [F] and [S]) that al-
most all results in classical mathematics use methods
available in second order arithmetic with appropriate
comprehension and choice axiom schemes. This sug-
gests that mathematical practice usually takes place
in a conservative extension of some system of second
order arithmetic, and that it is difficult to use the
higher levels of sets. In this paper we shall consider
systems of nonstandard analysis consisting of second
order nonstandard arithmetic with saturation princi-
ples (which are frequently used in practice in nonstan-
dard arguments). We shall prove that nonstandard
analysis (i.e. second order nonstandard arithmetic)
with the ω1-saturation axiom scheme has the same
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strength as third order arithmetic. This shows that
in principle there are theorems which can be proved
with nonstandard analysis but cannot be proved by
the usual standard methods. (ibid.)

In short, A∗
n is comparable to the standard An+1 rather than to An

itself.



CHAPTER 19

Burgers equation

We are interested in the article [Benci–Luperi Baglini 2017].
For preliminaries we mostly follow [Pinchover–Rubinstein 2005].

19.1. Normal direction of a surface

A crucial role in the method of solving quasilinear PDEs called the
method of characteristics is played by the specific form of the normal
direction to a surface in M ⊆ R3 given by the graph of a function u =
u(x, y).

Let ρ : R2 → R3 be a regular parametrized surface, and let ρx = ∂ρ
∂x

and ρy = ∂ρ
∂y

.

Definition 19.1.1. The unit normal vector n(x, y) to a regular
surface M ⊆ R3 at the point ρ(x, y) ∈ R3 is defined in terms of the
vector product, as follows:

n =
ρ1 × ρ2
|ρ1 × ρ2|

,

so that 〈n, ρx〉 = 〈n, ρy〉 = 0.

Either the vector ρ1×ρ2
|ρ1×ρ2| or the vector ρ2×ρ1

|ρ1×ρ2| = − ρ1×ρ2
|ρ1×ρ2| can be

taken to be a normal vector to the surface.

Theorem 19.1.2. Consider the surface M ⊆ R3 given by the graph

of a function u(x, y). Then the vector



ux
uy
−1


 is perpendicular to the

tangent plane Tp to M at the point p = (x, y, u(x, y)) ∈M .

Proof. A standard parametrisation of the graph of u is ρ(x, y) =
(x, y, u(x, y)). Then ρx = (1, 0, ux)t and ρy = (0, 1, uy)

t. Taking the
cross product, we obtain

det



−→
i

−→
j

−→
k

1 0 ux
0 1 uy


 = −ux

−→
i − uy

−→
j +

−→
k

177
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which is the opposite of the vector



ux
uy
−1


. �

19.2. Quasilinear PDEs

The general form of a quasilinear PDE is

a(x, y, u)ux + b(x, y, u)uy = c(x, y, u). (19.2.1)

The graph of u(x, y) is a surface in R3, called a solution surface M .

Example 19.2.1. Consider the PDE

ux = c0u+ c1(x, y). (19.2.2)

To obtain a unique solution we must provide an initial condition. A
natural initial condition is given by a curve expected to lie on the
solution surface M . Such a problem is called a Cauchy problem. For
example, we can choose the initial condition

u(0, y) = y.

For a fixed value of y we obtain an ODE. The corresponding homoge-
neous equation ux = c0u is solved as usual by separation of variables
to yield du

u
= c0dx, so that ln u = c0x and therefore u = ec0x, etc. The

inhomogeneous equation (19.2.2) is solved by the function

u(x, y) = ec0x
[∫ x

0

e−c0ξc1(ξ, y)dξ + y

]

as is easily checked by differentiating.

Remark 19.2.2. The solution surface M can be thought of as
stitched together all the curves from a 1-parameter family of curves
resulting from solving the ODE separately for each value of y.

19.3. The method of characteristics

This method of solution of first-order PDEs was developed by Hamil-
ton. Consider the case of a linear PDE

a(x, y)ux + b(x, y)uy = c0(x, y)u+ c1(x, y). (19.3.1)

We present the initial curve on the solution surface M parametrically
as the curve Γ given by

Γ(s) = (x0(s), y0(s), u0(s)), s ∈ I = (α, β). (19.3.2)
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The PDE (19.3.1) with c = c0u+ c1(x, y) can then be rewritten in the
form

〈


a
b

c0u+ c1


 ,



ux
uy
−1



〉

= 0. (19.3.3)

Remark 19.3.1. The second vector gives the normal direction of
the surface M as in Theorem 19.1.2.

Definition 19.3.2. The system of ordinary differential equations




dx
dt

(t) = a(x(t), y(t))
dy
dt

(t) = b(x(t), y(t))
du
dt

(t) = c0(x(t), y(t))u(t) + c1(x(t), y(t))

is referred to as the characteristic equations.

Since the vector formed by the functions on the right-hand side of
the characteristic equations is always tangent to the surface by for-
mula (19.3.3), the solution curve is constrained to stay on the sur-
face M provided suitable smoothness and nondegeneracy conditions
are ensured.

Definition 19.3.3. The solution curves are called the characteris-
tic curves. Their projections to the x, y plane are called the character-
istics.

Since each characteristic curve emanates from a different point of
the initial curve Γ(s), we will incorporate the parameter s into the
notation by writing the family of curves as

(x(t, s), y(t, s), u(t, s)).

The initial conditions can then be written as

x(0, s) = x0(s), y(0, s) = y0(s), u(0, s) = u0(s),

where x0, y0, u0 are the components of the initial curve Γ of (19.3.2).
The characteristic equations then take the form





xt(t, s) = a(x(t), y(t))

yt(t, s) = b(x(t), y(t))

ut(t, s) = c0(x(t), y(t))u(t) + c1(x(t), y(t))

with initial conditions x(0, s) = x0(s), y(0, s) = y0(s), u(0, s) = u0(s).
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19.4. Passing from parametric representation to graph rep.

Example 19.4.1. Solve the equation ux + uy = 2 subject to the
initial condition u(x, 0) = x2.

To illustrate the application of the method of characteristics, we
write the equation as a scalar product

〈


1
1
2


 ,



ux
uy
−1



〉

= 0. (19.4.1)

The characteristic equations are then




xt(t, s) = 1

yt(t, s) = 1

ut(t, s) = 2

with initial conditions x(0, s) = s, y(0, s) = 0, u(0, s) = s2. Integrating,
we obtain the family of characteristic curves

x(s, t) = t+ f1(s), y(t, s) = t+ f2(s), u(s, t) = 2t+ f3(s).

The initial conditions given in Example 19.4.1 force the choice of the
functions fi, so that we obtain

x(t, s) = t+ s, y(t, s) = t, u(t, s) = 2t+ s2. (19.4.2)

This provides a parametric representation of the solution surface.
The next step is the passage from the parametric representation in

terms of t, s to a representation as graph of a function of x, y. In this
case, the relevant equations (19.4.2) are easily inverted to yield

t = y, s = x− y.

Hence the graph representation of the solution surface is immediate
from the last equation in (19.4.2) and is given the graph of the function

u(x, y) = 2y + (x− y)2.

19.5. Study of transversality condition

We study the PDE aux+buy = c. Here Γ(s) = (x0(s), y0(s), u0(s)), s ∈
I = (α, β) is the initial curve. In the linear case, the characteristic
equations are





dx
dt

(t) = a(x(t), y(t))
dy
dt

(t) = b(x(t), y(t))
du
dt

(t) = c0(x(t), y(t))u(t) + c1(x(t), y(t))
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We applied the method of characteristics to a simple equation in Sec-
tion 19.4. Applying the method to more complicated equations may
involve several problems:

(1) The inversion is impossible even locally for small time t, if det J =
∂(x,y)
∂(t,s)

= 0 along the initial curve (t = 0). Here det J =
∂x
∂t

∂y
∂s

− ∂x
∂s

∂y
∂t

= (y0)s a − (x0)s b. The condition det J 6= 0
is the transversality condition.

(2) A possible global problem is that distinct characteristic curves
may collide, or even if the characteristics (in the x, y plane)
collide.

Example 19.5.1. Solve the linear equation −yux+xuy = u subject
to the initial condition u(x, 0) = ψ(x).

Note that here y plays the role of time and the solution develops
from the initial curve at time y = 0, similar to Burgers equation (see
Section 19.7).

For illustrative purposes we write the equation in the form of a
scalar product:

〈

−y
x
u


 ,



ux
uy
−1



〉

= 0. (19.5.1)

Therefore the characteristic equations take the form





xt(t, s) = −y
yt(t, s) = x

ut(t, s) = u

with initial conditions specified by the curve Γ(s) given by

x(0, s) = s, y(0, s) = 0, u(0, s) = ψ(s).

Let us examine the transversality condition. Note that ∂y
∂t

= x and
along the initial curve we have x = s. Thus along the initial curve we
have ∂y

∂t
= s. Therefore we compute

det J =
∂x

∂t

∂y

∂s
− ∂x

∂s

∂y

∂t
= 0 · 0 − 1 · s = −s.

Thus we expect a unique solution locally near the initial curve, except
perhaps at the point x = 0.
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The first two equations describe the linear oscillator. The solution
of the characteristic equations is given by





x(t, s) = f1(s) cos t+ f2(s) sin t

y(t, s) = f1(s) sin t− f2(s) cos t

u(t, s) = etf3(s).

(19.5.2)

Substituting the initial condition into the solution (19.5.2) leads to the
parametric form of the solution surface:

(x, y, u) = (s cos t, s sin t, etψ(s)).

The characteristics obtained as the projection to the x, y plane are the
family of concentric circles. Isolating s and t one obtains

u(x, y) = ψ(
√
x2 + y2)earctan(y/x)

Note that each of the characteristics meets the initial curve (the x-axis)
twice.

19.6. A quasilinear equation

New phenomena appear for quasilinear equations.

Example 19.6.1. Solve the quasilinear equation (y+u)ux + yuy =
x− y subject to initial condition u(x, 1) = 1 + x.

The dot product form of this equation is

〈

y + u
y

x− y


 ,



ux
uy
−1



〉

= 0. (19.6.1)

Note that the coefficient a = y+ u of ux is dependent on u making the
equation quasilinear (rather than linear). A consequence is that the
characteristic equations also involve u:





xt(t, s) = y + u

yt(t, s) = y

ut(t, s) = x− y.

(19.6.2)

The initial condition can be described by the parametrized curve Γ
given by

(1) x(0, s) = s,
(2) y(0, s) = 1,
(3) u(0, s) = 1 + s.
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Let us check the transversality condition along the initial curve Γ. We
have a = y + u = 2 + s while b = 1. Along the initial curve we
have ∂x

∂t
= y + u = 2 + s, ∂y

∂t
= y = 1, ∂x

∂s
= 1, ∂y

∂s
= 0. We compute

det J =
∂x

∂t

∂y

∂s
− ∂x

∂s

∂y

∂t
= (2 + s) · 0 − 1 · 1 = −1 6= 0

and therefore inversion is possible at least locally.
Solving the characteristic equation for y we find y(t, s) = et.

Remark 19.6.2. To make further progress we need to deal with
the fact that the equation for xt depends on u so it is not a traditional
ODE.

We use the following trick. Consider the sum xt+ut = y+u−x−y =
x + u as is immediate from (19.6.2). Setting v = x + u we obtain the
equation vt = v. Solving this ODE we obtain v = f(s)et. The initial
conditions (1) and (3) give v = (1 + 2s)et, i.e., x + u = (1 + 2s)et, so
that

u = (1 + 2s)et − x. (19.6.3)

At this point [Pinchover–Rubinstein 2005] turn pretty terse.
Substituting (19.6.3) into the first equation of (19.6.2) we obtain

xt = y + (1 + 2s)et − x.

Meanwhile y = f2(s)e
t and the initial condition (2) yields y = et.

Therefore xt = et + (1 + 2s)et − x or

xt = −x+ (2 + 2s)et.

This is an ordinary nonlinear ODE and one can apply integrating fac-
tors to solve the problem.

In [Pinchover–Rubinstein 2005] one finds a general result on
local existence of solutions. The example treated in this section is
meant to illustrate the change of coordinates involved in the proof.

19.7. Burgers equation

There is a local existence theorem for solutions of PDE. However
there are cases of physical interest where we need solution beyond the
point where the smooth solution breaks down. A case in point is the
equation

uy + uux = 0. (19.7.1)

The equation is known as the inviscid Burger’s equation (or Euler equa-
tion of hydrodynamics). We make several remarks.

(1) The equation models flow of mass with concentration u, where
speed of flow depends on concentration.
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(2) Here y is the time parameter.
(3) Solutions develop a singularity called a shock wave.
(4) One appication of the equation is to the study of traffic flow.

We start with simple case of a linear equation similar to (19.7.1):

uy + cux = 0

with initial condition
u(x, 0) = h(x).

Thus the initial curve can be parametrized by

(x, y, u) = (s, 0, h(s)). (19.7.2)

Writing the equation in dot product form we obtain
〈

c
1
0


 ,



ux
uy
−1



〉

= 0. (19.7.3)

The characteristic equations are



xt(t, s) = c

yt(t, s) = 1

ut(t, s) = 0.

(19.7.4)

Solving this along the initial curve (19.7.2) we obtain

x = s+ ct, y = t, u = h(s).

Eliminating s and t gives the explicit solution

u(x, y) = h(x− cy).

The solution implies that the initial profile does not change. It merely
moves with speed c along the x-axis.

Remark 19.7.1. Here a wave of fixed shape is moving to the right
with speed c.

19.8. Blow up of solutions of Burgers equation

Let us turn to the quasilinear Burgers (a.k.a. Euler) equation (19.7.1):

uy + uux = 0

with initial condition u(x, 0) = h(x). This equation is solved similarly
to the linear example treated in Section 19.7. We view the equation as
a dot product 〈


u
1
0


 ,



ux
uy
−1



〉

= 0.
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The characteristic equations are therefore




xt(t, s) = u

yt(t, s) = 1

ut(t, s) = 0.

(19.8.1)

The initial condition for u is

u(x, 0) = h(x)

and therefore the last equation from (19.8.1) implies u(t, s) = h(s).
Substituting this expression for u into the first equation, we obtain

xt = h(s)

and the initial condition for x yields x = s + h(s)t. Also y = t (as in
the linear case). Thus s = x − h(s)y and eliminating the variables s
and t from u we obtain

u = h(x− uy). (19.8.2)

We make 2 remarks in connection with formula (19.8.2):

(1) one can still think of u as the speed of the wave (as in the
linear case) but now the speed u is variable;

(2) The u is given only implicitly (more precisely it is a functional
equation for u);

Eliminating t we obtain the following equation for the characteristic
(in the xy plane):

x = s+ h(s)y.

The third characteristic equation ut = 0 implies that for each fixed s,
i.e., along a characteristic curve, u preserves its initial value u = h(s).
Equations

(x, y, u) = (s+ h(s)t, t, h(s))

indicate that the characteristic curves are straight lines, and in partic-
ular that the characteristics are straight lines. The initial data h(s)
determine the speed of the characteristic emanating from a given point
on Γ(s).

Remark 19.8.1. If s1 < s2 and the characteristic leaving s1 has
higher speed than the characteristic leaving s2, then they will intersect,
causing the solution to blow up.

This can be seen algebraically as follows. We differentiate (19.8.2)
with respect to x by chain rule, to obtain

ux = h′ · (1 − yux).
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Recall that y > 0 is the time parameter. Thus we have ux = h′−h′yux
and therefore ux(1 + h′y) = h′. We conclude that the solution blows
up at critical time y = yc with

yc = − 1

h′(s)
. (19.8.3)

A necessary condition for the creation of a singularity is that one
has h′(s) < 0 at least at one point, for otherwise an earlier charac-
teristic will never overcome a later one.

19.9. Extending solution past blow-up

We will write the Burgers equation in integral form. We first rewrite
it as follows:

∂

∂y
u+

1

2

∂

∂x

(
u2
)

= 0. (19.9.1)

Next we integrate with respect to x for a fixed y over an arbitrary but
fixed interval [a, b], obtaining

∂

∂y

∫ b

a

u(ξ, y)dξ +
1

2

[
u2(b, y) − u2(a, y)

]
= 0. (19.9.2)

This type of equation is referred to in the literature as an “integral bal-
ance”. Every solution of the differential equation (in particular, neces-
sarily a C1 solution) is also a solution of the integral balance (19.9.2),
but the integral balance is well defined for functions not in C1, called
“weak solutions”.

Consider a weak solution u that is C1 except for discontinuities
along a specific curve x = γ(y). We split the interval of integration
into two:

[a, b] = [a, γ(y)] ∪ [γ(y), b]

and write the integral balance in the form

∂

∂y

(∫ γ(y)

a

u(ξ, y)dξ +

∫ b

γ(y)

u(ξ, y)dξ

)
+

1

2

[
u2(b, y) − u2(a, y)

]
= 0.

Next, consider the expression

∂

∂y

(∫ γ(y)

a

u(ξ, y)dξ

)
.

We consider the primitive

F (x, y) =

∫ x

a

u(ξ, y)dξ.
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Then ∫ γ(y)

a

u(ξ, y)dξ = F (γ(y), y).

Therefore

∂

∂y

(∫ γ(y)

a

u(ξ, y)dξ

)
=

∂

∂y
F (γ(y), y) =

dγ

dy
Fx(γ(y), y) + Fy(γ(y), y).

Differentiating under the integral sign, we obtain

∂

∂y

(∫ γ(y)

a

u(ξ, y)dξ

)
=
dγ

dy

∫ γ(y)

a

(u(ξ, y))ξ dξ +

∫ γ(y)

a

(u(ξ, y))y dξ

By the fundamental theorem of calculus applied to the first integral on
the right-hand side, we have

∂

∂y

(∫ γ(y)

a

u(ξ, y) dξ

)
=
dγ

dy
(u−) +

∫ γ(y)

a

(u(ξ, y))y dξ

where u− denotes the value of u when we approach the curve γ from
the left. Next, we exploit the partial differential equation (19.9.1) to
obtain

∂

∂y

(∫ γ(y)

a

u(ξ, y) dξ

)
=
dγ

dy
(u−) −

∫ γ(y)

a

1

2

(
u2(ξ, y)

)
ξ
dξ

Thus we obtain

γy(y)u− − 1

2

(∫ γ(y)

a

(
u2(ξ, y)

)
ξ
dξ

)
.

Applying a similar maneuver to
∫ b

γ(b)
, we obtain

γy(y)u−−γy(y)u+−
1

2

(∫ γ(y)

a
(u2(ξ, y))ξ +

∫ b

γ(y)
(u2(ξ, y))ξ

)
+

1

2

(
u2(b, y) − u2(a, y)

)
= 0.

Performing the integration again and canceling the boundary terms
of u2 at a and b gives

γy(y)(u− − u+) =
1

2

(
u2− − u2+

)
=

1

2
(u− + u+) (u− − u+)

and therefore

γy(y) =
1

2
(u− + u+). (19.9.3)

Thus the curve γ moves at a speed that is the average of the speeds on
its left and the right sides.
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19.10. Example

By formula (19.9.3), we have

dγ

dy
=

1

2
(u− + u+). (19.10.1)

Thus the discontinuity moves with speed 1
2
(u− + u+).

Remark 19.10.1. By assumption, the discontinuity of u at time y
in the variable x is at location x = γ(y). In other words, the speed of
propagation of the discontinuity is precisely dγ

dy
.

Consider Burgers’ equation with initial condition

u(x, 0) = h(x) =





1 if x ≤ 0

1 − x
α

if 0 < x < α

0 if x ≥ α.

(19.10.2)

Note that h is not monotone increasing. By formula (19.8.3) we have yc =
− 1

h′(s)
. Hence the solution develops a singularity at time yc = α.

When y < α (before the shock) the solution is given by

u(x, y) =





1 if x ≤ y
x−α
y−α

if y < x < α

0 if x ≥ α.

(19.10.3)

After the critical time yc we can only talk about weak solutions. We
seek a weak solution with a single discontinuity. Equation (19.10.1)
gives the speed of propagation of the discontinuity.

Therefore the weak solution compatible with the integral balance
even for time y > α is the solution

u(x, y) =

{
1 if x < α + 1

2
(y − α)

0 if x > α + 1
2
(y − α)

The solution has the structure of a moving jump discontinuity, called
a shock wave.

The problem is the non-uniqueness of the weak solutions.

19.11. More general PDE

Consider the PDE

uy +
∂

∂x
F (u) = 0. (19.11.1)
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Equations of this type are called conservation laws. To understand
the name, relate to the quantity F as the flux. Equation (19.11.1) is
supplemented with initial condition

u(x, 0) =

{
u− if x < 0

u+ if x > 0.

We assume that the solution takes the form of a shock wave

u(x, y) =

{
u− if x < γ(y)

u+ if x > γ(y).
(19.11.2)

Then the problem is to determine the shock orbit x = γ(y). We find γ
by integrating (19.11.1) with respect to x between the bounds x1 and x2
where x1 < γ and x2 > γ. Using (19.11.2) we obtain

∂

∂y

(
(x2 − γ(y))u+ + (γ(y) − x1)u−

)
= F (u+) − F (u−). (19.11.3)

It follows from (19.11.3) that

dγ

dy
=
F (u+) − F (u−)

u+ − u−
. (19.11.4)

We denote the jump across the shock by square brackets, e.g., [u] =
u+ − u−. Then (19.11.4) becomes

dγ

dy
=

[F ]

[u]
. (19.11.5)

We make several related remarks.

(1) In many areas of continuum mechanics, the jump equation (19.11.5)
is called the Rankine–Hugoniot condition.

(2) From our analysis of Example we expect that shock would
only occur if characteristics collide. In the case of general
conservation laws, this condition is expressed as The entropy

condition: Characteristics must enter the shock curve, and
are not allowed to emanate from it.

(3) The motivation for the entropy condition is rooted in gas dy-
namics and the second law of hydrodynamics: amount of in-
formation present in a closed system only decreases with time.





Part 3

History of infinitesimal math:

Stevin to Skolem



In this part of the book we provide a historical perspective. The
history of analysis, differential geometry, and related fields is often
viewed as a process inevitably leading to rigorous Weierstrassian foun-
dations stripped of infinitesimals. From such a perspective a return to
infinitesimals becomes difficult to motivate. The perspective provided
in this part is more favorable toward infinitesimals. Such a perspective
can provide additional motivation for approaching differential geometry
using true infinitesimals as we have done in this book.



CHAPTER 20

Sixteenth century

20.1. Simon Stevin

This section contains a discussion of Simon Stevin, unending dec-
imals, and the real numbers. The material in this section is based in
part on the article [B laszczyk, Katz & Sherry 2013] published in
Foundations of Science.

Simon Stevin developed an adequate system for representing ordi-
nary numbers, including all the ones that were used in his time, whether
rational or not. Moreover his scheme for representing numbers by un-
ending decimals works well for all of them, as is well known.

Stevin developed specific notation for decimals (more complicated
than the one we use today) and did actual technical work with them
rather than merely envisioning their possibility, unlike some of his pre-
decessors like E. Bonfils in 1350. Bonfils wrote that “the unit is di-
vided into ten parts which are called Primes, and each Prime is di-
vided into ten parts which are called Seconds, and so on into infinity”
[Gandz 1936, p. 39] but his ideas remained in the realm of potential-
ity, as he did not develop any notation to ground them.

Even earlier, the Greeks developed techniques for solving problems
that today we may solve using more advanced number systems. But
to Euclid and Eudoxus, only 2, 3, 4, . . . were numbers: everything else
was proportion. The idea of attributing algebraic techniques in dis-
guise to the Greeks is known as Geometric Algebra and is considered a
controversial thesis. Our paper in no way depends on this thesis.

Stevin dealt with unending decimals in his book l’Arithmetique
rather than the more practically-oriented De Thiende meant to teach
students to work with decimals (of course, finite ones).

20.1.1. Stevin and the intermediate value theorem. As far
as using the term real to describe the numbers Stevin was concerned
with, the first author to describe the common numbers as real may
have been Descartes. Representing common numbers (including both
rational and not rational) by unending decimals was to Stevin not
merely a matter of speculation, but the background of, for example,

193
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his work on proving the intermediate value theorem for polynomials
(he worked with the example of a specific cubic) using subdivision into
ten subintervals of equal length.

Stevin’s accomplishment seems all the more remarkable if one re-
calls that it dates from before Vieta, meaning that Stevin had no nota-
tion beyond the tool inherited from the Greeks namely that of propor-
tions a : b :: c : d. He indeed proceeds to write down a cubic equation as
a proportion, which can be puzzling to an unprepared modern reader.
The idea of an equation that we take for granted was in the process of
emerging at the time. Stevin presented a divide-and-conquer algorithm
for finding the root, which is essentially the one reproduced by Cauchy
250 years later in Cours d’Analyse.

In this sense, Stevin deserves the credit for developing a representa-
tion for the real numbers to a considerable extent, as indeed one way of
introducing the real number field R is via unending decimals. He was
obviously unaware of the existence of what we call today the transcen-
dental numbers but then again Cantor and Dedekind were obviously
unaware of modern developments in real analysis.

Cantor, as well as Méray and Heine, sought to characterize the real
numbers axiomatically by means of Cauchy Completeness (CC). This
property however is insufficient to characterize the real numbers; one
needs to require the Archimedean property in addition to CC. Can
we then claim that they (i.e., Cantor, Heine, and Méray) really knew
what the real numbers are? Apparently, not any more than Stevin, if a
sufficient axiom system is a prerequisite for knowing the real numbers.

Dedekind was convinced he had a proof of the existence of an infinite
set;1 see [Ferreirós 2007, p. 111 and section 5.2, p. 244]. Thus, Joyce
comments on Dedekind’s concept of things being objects of our thought
and concludes:

That’s an innocent concept, but in paragraph 66 it’s
used to justify the astounding theorem that infinite
sets exist. [Joyce 2005]

Do such aspects of the work of Cantor and Dedekind invalidate their
constructions of the real number system? Surely not. Similarly, Stevin’s

1The proof exploits the assumption that there exists a set S of all things, and
that a mathematical thing is an object of our thought. Then if s is such a thing, then
the thought, denoted s′, that “s can be an object of my thought” is a mathematical
object is a thing distinct from s. Denoting the passage from s to s′ by φ, Dedekind
gets a self-map φ of S which is some kind of blend of the successor function and
the brace-forming operation. From this Dedekind derives that S is infinite, QED.
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proposed construction should not be judged by the yardstick of aware-
ness of future mathematical developments.

20.1.2. Modern decimals. In the approach to the real numbers
via decimals, one needs to identify each terminating decimal with the
corresponding string with an infinite tail of 9s, as in 1.0 = 0.999 . . . The
more common approaches to R are (1) via Dedekind cuts, or (2) via
equivalence classes of Cauchy sequences, an approach sometimes attrib-
uted to Georg Cantor, even though the concept of an equivalence rela-
tion did not exist yet at the time. The publication of [Cantor 1872]
was preceded by [Heine 1872] by a few months but Heine explicitly
attributes the idea of Fundamentalrheine to Cantor.

Even earlier, Charles Méray published his “Remarques sur la nature
des quantités définies par la condition de servir de limites à des variables
données” [Méray 1869]; see [Dugac 1970] for a detailed analysis.
However, Méray’s paper seems to have been unknown among German
mathematicians.

While Stevin had no idea of the set-theoretic underpinnings of the
received ontology of modern mathematics, procedurally speaking his ap-
proach to arithmetic was close to the modern one, meaning that he en-
visioned a certain homogeneity among all numbers with no preferential
status for the rationals; see [Malet 2006], [Katz & Katz 2012b],
[B laszczyk, Katz & Sherry 2013] for further details.

Stevin’s decimals cannot be placed on equal footing with the 1872
constructions, when both representations and algebraic operations were
developed as well as the continuity axioms, while Stevin only gave the
representation.

In 1923, A. Hoborski, a mathematician involved, like Stevin, in ap-
plied rather than pure mathematics, developed an arithmetic of real
numbers based on unending decimal representations [Hoborski 1923].





CHAPTER 21

Seventeenth century

Among the many 17th century pioneers of infinitesimal geometry,
we will focus on Fermat, Gregory, and Leibniz.

21.1. Pierre de Fermat

Pierre de Fermat (1601/1607–1665) developed a procedure known
as adequality for finding maxima and minima of algebraic expressions,
tangents to curves, etc. The name of the procedure derives from the
παρισóτης of Diophantus. Some of its applications amount to varia-
tional techniques exploiting a small variation E. Fermat’s treatment of
geometric and physical applications suggests that an aspect of approx-
imation is inherent in adequality, as well as an aspect of smallness on
the part of E. Fermat relied on Bachet’s reading of Diophantus, who
coined the term παρισóτης for mathematical purposes and used it to
refer to the way in which 1321/711 is approximately equal to 11/6. In
translating Diophantus, Bachet performed a semantic calque, passing
from parisoō to adaequo, which is the source for Fermat’s term rendered
in English as adequality.

21.1.1. Summary of the algorithm. To give a summary of Fer-
mat’s algorithm for finding the maximum or minimum value of an al-
gebraic expression in a variable A, we will write such an expression in
modern functional notation as f(A). One version of the algorithm can
be broken up into five steps in the following way:

(1) Introduce an auxiliary symbol E, and form f(A+ E);
(2) Set adequal the two expressions f(A+E) pq f(A) (the nota-

tion “ pq ” for adequality is ours, not Fermat’s);
(3) Cancel the common terms on the two sides of the adequality.

The remaining terms all contain a factor of E;
(4) Divide by E (in a parenthetical comment, Fermat adds: “or

by the highest common factor of E”);
(5) Among the remaining terms, suppress all terms which still

contain a factor of E. Solving the resulting equation for A
yields the desired extremum of f .

197
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In simplified modern form, the algorithm entails expanding the dif-

ference quotient f(A+E)−f(A)
E

in powers of E and taking the constant
term.

There are two crucial points in trying to understand Fermat’s rea-
soning: first, the meaning of “adequality” in step (2); and second, the
justification for suppressing the terms involving positive powers of E
in step (5).

21.1.2. The parabola. As an example consider Fermat’s deter-
mination of the tangent line to the parabola. To simplify Fermat’s
notation, we will work with the parabola y = x2 thought of as the level
curve

x2

y
= 1

of the two-variable function x2

y
. Given a point (x, y) on the parabola,

Fermat seeks the tangent line through the point, exploiting the geo-
metric fact that by convexity, a point (p, q) on the tangent line lies
outside the parabola. He therefore obtains an inequality equivalent in

our notation to p2

q
> 1, or p2 > q. Here q = y − E, and E is Fermat’s

magic symbol we wish to understand. Thus, we obtain

p2

y − E
> 1. (21.1.1)

At this point Fermat proceeds as follows:

(i) he writes down the inequality p2

y−E
> 1, or p2 > y − E;

(ii) he invites the reader to adégaler (to “adequate”);

(iii) he writes down the adequality x2

p2 pq
y

y−E
;

(iv) he uses an identity involving similar triangles to substitute x
p

=
y+r

y+r−E
where r is the distance from the vertex of the parabola

to the point of intersection of the tangent to the parabola at y
with the axis of symmetry,

(v) he cross multiplies and cancels identical terms on right and
left, then divides out by E, discards the remaining terms con-
taining E, and obtains y = r as the solution.

What interests us are steps (i) and (ii). How does Fermat pass from
an inequality to an adequality? Giusti observes: “Comme d’habitude,
Fermat est autant détaillé dans les exemples qu’il est réticent dans les
explications. On ne trouvera donc presque jamais des justifications de
sa règle des tangentes.” [Giusti 2009, p. 80] In fact, Fermat provides
no explicit explanation for this step. However, what he does is to apply
the defining relation for a curve to points on the tangent line to the
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curve. Note that here the quantity E, as in q = y − E, is positive:
Fermat did not have the facility we do of assigning negative values to
variables.

Fermat says nothing about considering points y + E “on the other
side”, i.e., further away from the vertex of the parabola, as he does in
the context of applying a related but different method, for instance in
his two letters to Mersenne (see [Strømholm 1968, p. 51]), and in his
letter to Brûlart [Fermat 1643]. Now for positive values of E, Fer-
mat’s inequality (21.1.1) would be satisfied by a transverse ray (i.e.,
secant ray) starting at (x, y) and lying outside the parabola, just as
much as it is satisfied by a tangent ray starting at (x, y). Fermat’s
method therefore presupposes an additional piece of information, priv-
ileging the tangent ray over transverse rays. The additional piece of
information is geometric in origin: he applies the defining relation (of
the curve itself) to a point on the tangent ray to the curve. Such a
procedure is only meaningful when the increment E is small.

In modern terms, we would speak of the tangent line being a “best
approximation” to the curve for a small variation E; however, Fermat
does not explicitly discuss the size of E.

The procedure of “discarding the remaining terms” in step (v) ad-
mits of a proxy in the hyperreal context in terms of the standard part
principle (every finite hyperreal number is infinitely close to a real num-
ber). Fermat does not elaborate on the justification of this step, but he
is always careful to speak of the suppressing or deleting the remaining
term in E, rather than setting it equal to zero. Perhaps his rationale
for suppressing terms in E consists in ignoring terms that don’t cor-
respond to a possible measurement, prefiguring Leibniz’s inassignable
quantities. Fermat’s inferential moves in the context of his adequality
are akin to Leibniz’s in the context of his calculus.

While Fermat never spoke of his E as being infinitely small, the
technique based on what eventually came to be known as infinitesimals
was known to Fermat’s contemporaries like Galileo (see [Bascelli 2014a],
[Bascelli 2014b]) and Wallis (see [Katz & Katz 2012a, Section 13]).
The technique was familiar to Fermat, as his correspondence with Wal-
lis makes clear; see [Katz, Schaps & Shnider 2013, Section 2.1].

Fermat was very interested in Galileo’s treatise De motu locali, as
we know from his letters to Marin Mersenne dated apr/may 1637,
10 august, and 22 october 1638. Galileo’s treatment of infinitesimals
in De motu locali is discussed in [Settle 1966] and [Wisan 1974,
p. 292].
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The clerics in Rome forbade the doctrine of indivisibles on 10 august
1632 (a month before Galileo was summonded to stand trial over he-
liocentrism); this may help explain why the catholic Fermat may have
been reluctant to speak of them explicitly.

The problem of the parabola could of course be solved purely in
the context of polynomials using the idea of a double root, but for
transcendental curves like the cycloid Fermat does not study the order
of multiplicity of the zero of an auxiliary polynomial. Rather, Fermat
explicitly stated that he applied the defining property of the curve
to points on the tangent line: “Il faut donc adégaler (à cause de la
propriété spécifique de la courbe qui est à considérer sur la tangente)”
(see [Katz, Schaps & Shnider 2013] for more details).

Fermat’s approach involves applying the defining relation of the
curve, to a point on a tangent line to the curve where the relation is
not satisfied exactly. Fermat’s approach is therefore consistent with
the idea of approximation. His method involves a negligible distance
(whether infinitesimal or not) between the tangent and the original
curve when one is near the point of tangency. This line of reasoning is
related to the ideas of the differential calculus. Fermat correctly solves
the cycloid problem by obtaining the defining equation of the tangent
line.

21.1.3. The cycloid curve. Fermat treated numerous problems
concerning maxima and minima as well as tangents to curves using a
procedure called adequality. For a transcendental curve like the cycloid
(see e.g., [Cifoletti 1990, p. 70]), he solved the problem of finding the
tangent line at an arbitrary point of the curve as follows. Fermat starts
with the defining equation of the cycloid, considers the tangent line at
a point P of the curve, chooses a nearby point Q on the tangent at
distance E from P , and substitutes Q into the defining equation of
the cycloid (Fermat refers to such a defining equation as la propriété
spécifique de la courbe), as if it satisfied the latter (hence not equality
but adequality or approximate equality).

Since the cycloid is a transcendental curve, it would be difficult to
interpret Fermat’s solution as a purely algebraic procedure involving a
formal variable E.

In more detail, note that the cycloid is generated by marking a
point on a circle and tracing the path of the point as the circle rolls
along a horizontal straight line. If the marked point is the initial point
of contact of the circle with the line, and the circle rolls to the right,
then the ordinate1 of the marked point is given by the difference of the

1In this case the ordinate refers to the horizontal coordinate.
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Figure 21.1.1. Fermat’s cycloid

length of arc traversed (the distance the center of the circle has moved)
and the distance of the point from the vertical line through the center
of the circle.2

21.1.4. Fermat’s description. Fermat’s description of the cy-
cloid is based on a diagram [Tannery & Henry 1891, Figure 103,
p. 163] reproduced in Figure 21.1.1. Let R be a point on the cycloid
and D the point of intersection of the horizontal line ℓ through R with
the axis of symmetry of the cycloid generated by one full revolution of
the circle. If M is the point of intersection of ℓ with the generating
circle when centered on the axis of symmetry, and C is the apex of that
circle then in the words of Fermat:

La propriété spécifique de la courbe est que la droite
RD est égale à la somme de l’arc de cercle CM et de
l’ordonnée DM .3 ([Fermat circ. 1637, p. 144])

Let r be the tangent line to the cycloid at R, and m the tangent line
to the circle at M . To determine the defining relation of line r, Fermat
considers the horizontal line NIV OE passing through a point N ∈ r.

2Assuming the circle to have radius 1, the equation of the cycloid as described
above is x = θ − sin θ, y = 1 − cos θ.

3To compare Fermat’s description with the parametric description given in the
previous footnote, we note that length of the segment RD is π − x = π − θ + sin θ,
while π − θ is the length of the arc CM , and the length DM equals sin θ.
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Here I is the first point of intersection with the cycloid, while V is the
point of intersection with m, and O is the point of intersection with
the generating circle, and E is the point of intersection with the axis
of symmetry.

The defining relation for r is derived from the defining relation for
the cycloid using adequality. The defining relation for the point I on
the cycloid is

IE = OE + arcCO.

By adequality, Fermat first replaces I by the point N ∈ r:

NE pq OE + arcCO = OE + arcCM − arcMO. (21.1.2)

Then Fermat replaces O by the point V ∈ m, and the arcMO, by the
length of the segment MV ⊂ m. This produces the linear relation

NE pq V E + arcCM −MV,

yielding the equation of the tangent line r to the cycloid at R as a graph
over the axis of symmetry. The distanceNE is expressed in terms of the
distance V E, where V ∈ m, and the distance MV along that tangent
line. Thinking in terms of slope relative to the variable distance DE
(which corresponds to the parameter e in the example of the parabola),
Fermat’s equation says that the slope of r relative to DE is the slope
of m minus the proportionality factor of MV relative to DE.4 To
summarize, Fermat exploited two adequations in his calculation:

(1) the length of a segment along m adequals the length of a seg-
ment of a circular arc, and

(2) the distance from the axis of symmetry to a point on r (or m)
adequals the distance from the axis to a corresponding point
on the cycloid (or circle).

As Fermat explains,

Il faut donc adégaler (à cause de la proprété spécifique
de la courbe qui est à considérer sur la tangente) cette
droite za−ze

a
[i.e., NE] à la somme OE+arcCO . . . [et]

d’après la remarque précédente, substituer, à OE,
l’ordonnée EV de la tangente, et à l’arc MO, la por-
tion de la tangente MV qui lui est adjacente (Fermat
[Fermat circ. 1637, p. 144]; [Tannery & Henry 1891,
p. 228]).

4The slope of the tangent line relative to the axis of symmetry, or equivalently,

relative to the y axis, given by elementary calculus is d(π−x)
dθ /dy

dθ = −1
sin θ + cos θ

sin θ . The
length MV equals e/(sin θ) and the slope of the tangent line to the circle relative
to the y axis is cos θ

sin θ , in agreement with Fermat’s equation.
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The procedure can be summarized in modern terms by the following
principle: The tangent line to the curve is defined by using adequality to
linearize the defining relation of the curve, or “ adégaler (à cause de la
proprété spécifique de la courbe qui est à considérer sur la tangente).”

Fermat uses the same argument in his calculation of the tangents
to other transcendental curves whose defining property is similar to
the cycloids and involves arc length along a generating curve. For a
discussion of some of these examples, see Giusti [Giusti 2009] and
Itard [Itard 1949].

21.2. James Gregory

In his attempt to prove the irrationality of π, James Gregory (1638–
1675) broadened the scope of mathematical procedures available at the
time by introducing what he called a sixth operation (on top of the
existing four arithmetic operations as well as extraction of roots). He
referred to the new procedure as the termination of a (convergent)
sequence: “And so by imagining this [sequence] to be continued to in-
finity, we can imagine the ultimate convergent terms to be equal ; and
we call those equal ultimate terms the termination of the [sequence].”
[Gregory 1667, p. 18–19] Referring to sequences of inscribed and cir-
cumscribed polygons, he emphasized that

if the abovementioned series of polygons can be ter-
minated, that is, if that ultimate inscribed polygon
is found to be equal (so to speak) to that ultimate
circumscribed polygon, it would undoubtedly provide
the quadrature of a circle as well as a hyperbola. But
since it is difficult, and in geometry perhaps unheard-
of, for such a series to come to an end [lit.: be termi-
nated], we have to start by showing some Propositions
by means of which it is possible to find the termina-
tions of a certain number of series of this type, and
finally (if it can be done) a general method of finding
terminations of all convergent series.

Note that in a modern infinitesimal framework like [Robinson 1966],
sequences possess terms with infinite indices. Gregory’s relation can
be formalized in terms of the standard part principle in Robinson’s
framework. This principle asserts that every finite hyperreal number
is infinitely close to a unique real number.

If each term with an infinite index n is indistinguishable (in the
sense of being infinitely close) from some real number, then we “termi-
nate the series” (to exploit Gregory’s terminology) with this number,
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meaning that this number is the limit of the sequence. Gregory con-
sidered the lengths of inscribed (In) and circumscribed (Cn) polygons,

and obtained recursive relations I2n+1 = CnIn and Cn+1 = 2CnIn+1

Cn+In+1
; see

[Lützen 2014, p. 225].
Gregory’s definition of coincidence of lengths of the In and the Cn

corresponds to a relation of infinite proximity in a hyperreal framework.
Namely we have In ≈ Cn where ≈ is the relation of being infinitely
close (i.e., the difference is infinitesimal), and the common standard
part of these values is what is known today as the limit of the sequence.

Our proposed formalisation does not mean that Gregory is a pre-
Robinsonian, but rather indicates that Robinson’s framework is more
helpful in understanding Gregory’s procedures than a Weierstrassian
framework. For additional details see [Bascelli et al. 2017].

21.3. Gottfried Wilhelm von Leibniz

Gottfried Wilhelm Leibniz (1646–1716) was a co-founder of infini-
tesimal calculus. When we trace the diverse paths through mathemat-
ical history that have led from the infinitesimal calculus of the 17th
century to its version implemented in Abraham Robinson’s framework
in the twentieth, we notice patterns often neglected in received histo-
riography focusing on the success of Weierstrassian foundations.

We have argued that the final version of Leibniz’s infinitesimal cal-
culus was free of logical fallacies, owing to its procedural implementa-
tion in ZFC via Robinson’s framework.

21.3.1. Berkeley on shakier ground. Both Berkeley as a philoso-
pher of mathematics, and the strength of his criticisms of Leibniz’s
infinitesimals have been overestimated by many historians of mathe-
matics. Such criticisms stand on shakier ground than the underesti-
mated mathematical and philosophical resources available to Leibniz
for defending his theory. Leibniz’s theoretical strategy for dealing with
infinitesimals includes the following aspects:

(1) Leibniz clearly realized that infinitesimals violate the so-called
Archimedean property5 which Leibniz refers to as Euclid V.5;6

in a letter to L’Hospital he considers infinitesimals as non-
Archimedean quantities, in reference to Euclid’s theory of pro-
portions [De Risi 2016, p. 64, note 15].

5In modern notation this can be expressed as (∀x, y > 0)(∃n ∈ N)[nx > y].
6In modern editions of The Elements this appears as Definition V.4.
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{
assignable
quantities

}
LC
❀

{
assignable and inassignable

quantities

}
TLH
❀

{
assignable
quantities

}

Figure 21.3.1. Leibniz’s law of continuity (LC) takes one
from assignable to inassignable quantities, while his tran-
scendental law of homogeneity (TLH) returns one to as-
signable quantities.

(2) Leibniz introduced a distinction between assignable and inassign-
able numbers. Ordinary numbers are assignable while in-
finitesimals are inassignable. This distinction enabled Leib-
niz to ground the procedures of the calculus relying on dif-
ferentials on the transcendental law of homogeneity (TLH),
asserting roughly that higher order terms can be discarded in
a calculation since they are negligible (in the sense that an
infinitesimal is negligible compared to an ordinary quantity
like 1).

(3) Leibniz exploited a generalized relation of equality up to. This
was more general than the relation of strict equality and en-
abled a formalisation of the TLH (see previous item).

(4) Leibniz described infinitesimals as useful fictions akin to imag-
inary numbers. Leibniz’s position was at variance with many
of his contemporaries and allies who tended to take a more re-
alist stance. We interpret Leibnizian infinitesimals as pure fic-
tions at variance with a post-Russellian logical fiction reading
involving a concealed quantifier ranging over ordinary values;
see [Bascelli et al. 2016].

(5) Leibniz formulated a law of continuity (LC) governing the
transition from the realm of assignable quantities to a broader
one encompassing infinite and infinitesimal quantities: “il se
trouve que les règles du fini réussissent dans l’infini . . . et
que vice versa les règles de l’infini réussissent dans le fini.”
[Leibniz 1702]

(6) Meanhile, the TLH returns to the realm of assignable quanti-
ties.

The relation between the two realms can be represented by the
diagram of Figure 21.3.1.

Leibniz is explicit about the fact that his incomparables violate Eu-
clid V.5 (when compared to other quantities) in his letter to l’Hospital
from the same year: “J’appelle grandeurs incomparables dont l’une
multipliée par quelque nombre fini que ce soit, ne sçauroit exceder
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l’autre, de la même facon qu’Euclide la pris dans sa cinquieme defini-
tion du cinquieme livre.”7 [Leibniz 1695a, p. 288]

Leading Leibniz scholar Jesseph in [Jesseph 2015] largely endorses
Bos’ interpretation of Leibnizian infinitesimals as fictions.

Modern proxies for Leibniz’s procedures expressed by LC and TLH
are, respectively, the transfer principle and the standard part princi-
ple in Robinson’s framework. Leibniz’s theoretical strategy for dealing
with infinitesimals and infinite numbers was explored in the articles
[Katz & Sherry 2012], [Katz & Sherry 2013], [Sherry & Katz 2014],
and [Bascelli et al. 2016].

21.3.2. Ellipse with infinite focus. Leibniz gives several exam-
ples of the application of his Law of Continuity, including the following
three examples.

(1) In the context of a discussion of parallel lines, he writes:
when the straight line BP ultimately becomes par-
allel to the straight line VA, even then it converges
toward it or makes an angle with it, only that the
angle is then infinitely small [Child 1920, p. 148].

(2) Invoking the idea that the term equality may refer to equality
up to an infinitesimal error, Leibniz writes:

when one straight line8 is equal to another, it is said
to be unequal to it, but that the difference is infinitely
small [Child 1920, p. 148].

(3) A conception of a parabola expressed by means of an ellipse
with an infinitely removed focal point is evoked in the following
terms:

a parabola is the ultimate form of an ellipse, in which
the second focus is at an infinite distance from the
given focus nearest to the given vertex [Child 1920,
p. 148].

Example (2) can be interpreted as follows. Leibniz denotes a finite
positive quantity by

(d)x

([Bos 1974, p. 57] replaced this by dx). The assignable quantity (d)x
as it varies passes via infinitesimal dx on its way to absolute 0. Then
the infinitesimal dx is the Leibnizian status transitus. Zero is merely

7This can be translated as follows: “I use the term incomparable magnitudes
to refer to [magnitudes] of which one multiplied by any finite number whatsoever,
will be unable to exceed the other, in the same way [adopted by] Euclid in the fifth
definition of the fifth book [of the Elements ].”

8Here Leibniz is using the term line in its generic meaning of a segment.
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the assignable shadow of the infinitesimal. Then a line (i.e., segment)
of length 2x+dx will be equal to one of length 2x, up to an infinitesimal.
This particular status transitus is the foundation rock of the Leibnizian
definition of the differential quotient.

Example (1) of parallel lines can be elaborated as follows. Let us
follow Leibniz in building the line through (0, 1) parallel to the x-axis
in the plane. Line LH with y-intercept 1 and x-intercept H is given
by y = 1 − x

H
. For infinite H, the line LH has negative infinitesimal

slope, meets the x-axis at an infinite point, and forms an infinitesimal
angle with the x-axis at the point where they meet. We will denote
by st(x) the assignable (i.e., real) shadow of a finite x. Then every
finite point (x, y) ∈ LH satisfies

st(x, y) = (st(x), st(y))

=
(
st(x), st

(
1 − x

H

))

= (st(x), 1).

Hence the finite portion of LH is infinitely close to the line y = 1 parallel
to the x-axis, which is its shadow. Thus, the parallel line is constructed
by varying the oblique line depending on a parameter. Such variation
passes via the status transitus defined by an infinite value of H.

To implement example (3), let us follow Leibniz in deforming an
ellipse, via a status transitus, into a parabola. The ellipse with vertex
(apex) at (0,−1) and with foci at the origin and at (0;H) is given by

√
x2 + y2 +

√
x2 + (y −H)2 = H + 2 (21.3.1)

We square (21.3.1) to obtain

x2 + y2 + x2 + (H − y)2 + 2
√

(x2 + y2)(x2 + (H − y)2) = H2 + 4H + 4
(21.3.2)

We move the radical to one side

2
√

(x2 + y2)(x2 + (H − y)2) = H2+4H+4−
(
x2 + y2 + x2 + (H − y)2

)

(21.3.3)
and square again. After cancellation we see that (21.3.1) is equivalent
to (

y + 2 + 2
H

)2 − (x2 + y2)
(
1 + 4

H
+ 4

H2

)
= 0. (21.3.4)

The calculation (21.3.1) through (21.3.4) depends on habits of general
reasoning such as:

• squaring undoes a radical;
• the binomial formula;
• terms in an equation can be transfered to the other side; etc.
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General reasoning of this type is familiar in the realm of ordinary as-
signable (finite) numbers, but why does it remain valid when applied
to the, fictional, “realm” of inassignable (infinite or infinitesimal) num-
bers? The validity of transfering such general reasoning originally in-
stituted in the finite realm, to the “realm” of the infinite is precisely
the content of Leibniz’s law of continuity.9

We therefore apply Leibniz’s law of continuity to equation (21.3.4)
for an infinite H. The resulting entity is still an ellipse of sorts, to the
extent that it satisfies all of the equations (21.3.1) through (21.3.4).
However, this entity is no longer finite. It represents a Leibnizian status
transitus between ellipse and parabola. This status transitus has foci
at the origin and at an infinitely distant point (0, H). Assuming x and
y are finite, we set x0 = st(x) and y0 = st(y), to obtain an equation for
a real shadow of this entity:

st
((
y + 2 + 2

H

)2 − (x2 + y2)
(
1 + 4

H
+ 4

H2

))
=

=
(
y0 + 2 + st

(
2
H

))2 −
(
x20 + y20

) (
1 + st

(
4
H

+ 4
H2

))

= (y0 + 2)2 −
(
x20 + y20

)

= 0.

Simplifying, we obtain

y0 =
x20
4

− 1. (21.3.5)

Thus, the finite portion of the status transitus (21.3.4) is infinitely close

to its shadow (21.3.5), namely the real parabola y = x2

4
− 1. This is

the kind of payoff Leibniz is seeking with his law of continuity.

9When the general reasoning being transfered to the infinite “realm” is general-
ized to encompass arbitrary elementary properties (i.e., the first order properties),
one obtains the  Loś–Robinson transfer principle, proved in Chapter 16.



CHAPTER 22

Eighteenth century

22.1. Leonhard Euler

Leonhard Euler (1707–1783) routinely relied on procedures exploit-
ing infinite numbers in his work, as in applying the binomial formula
to an expression raised to an infinite power so as to obtain the devel-
opment of the exponential function into power series.

Euler’s comments on infinity indicate an affinity with Leibnizian
fictionalist views: “Even if someone denies that infinite numbers re-
ally exist in this world, still in mathematical speculations there arise
questions to which answers cannot be given unless we admit an infinite
number.” [Euler 2000, § 82].

Euler’s dual notion of arithmetic and geometric equality which in-
dicate that, like Leibniz, he was working with generalized notions of
equality. Thus, Euler wrote:

Since the infinitely small is actually nothing, it is clear
that a finite quantity can neither be increased nor de-
creased by adding or subtracting an infinitely small
quantity. Let a be a finite quantity and let dx be
infinitely small. Then a + dx and a − dx, or, more
generally, a ± ndx, are equal to a. Whether we con-
sider the relation between a±ndx and a as arithmetic
or as geometric, in both cases the ratio turns out to be
that between equals. The arithmetic ratio of equals
is clear: Since ndx = 0, we have a± ndx− a = 0. On
the other hand, the geometric ratio is clearly of equals,
since a±ndx

a
= 1. From this we obtain the well-known

rule that the infinitely small vanishes in comparison
with the finite and hence can be neglected. For this
reason the objection brought up against the analysis
of the infinite, that it lacks geometric rigor, falls to
the ground under its own weight, since nothing is ne-
glected except that which is actually nothing. Hence
with perfect justice we can affirm that in this sublime
science we keep the same perfect geometric rigor that

209
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is found in the books of the ancients. [Euler 2000,
§ 87]

Like Leibniz, Euler did not distinguish notationwise between different
modes of comparison, but we could perhaps introduce two separate
symbols for the two relations, such as ≈ for the arithmetic compari-
son and the Leibnizian symbol pq for the geometric comparison. See
[Bair et al. 2016] for further details.



CHAPTER 23

Nineteenth century

23.1. Augustin-Louis Cauchy

A. L. Cauchy (1789–1857) was a transitional figure. His significance
stems from the fact that he championed greater rigor in mathematics.
Historians enamored of set-theoretic foundations tend to translate the
term rigor as epsilon-delta, and sometimes even attribute an epsilon-
delta definition of continuity to Cauchy.

In reality, to Cauchy rigor stood for the traditional ideal of geo-
metric rigor, meaning the rigor of Euclid’s geometry as it was admired
throughout the centuries. What lies in the background is Cauchy’s op-
position to certain summation techniques of infinite series as practiced
by Euler and Lagrange without necessarily paying attention to conver-
gence. To Cauchy rigor entailed a rejection of these techniques that he
referred to as the generality of algebra.

In his textbooks, Cauchy insists on reconciling rigor with infinitesi-
mals. By this he means not the elimination of infinitesimals but rather
the reliance thereon, as in his definition of continuity. As late as 1853,
Cauchy still defined continuity as follows in a research article:

. . . une fonction u de la variable réelle x sera continue,
entre deux limites données de x, si, cette fonction ad-
mettant pour chaque valeur intermédiaire de x une
valeur unique et finie, un accroissement infiniment pe-
tit attribué à la variable produit toujours, entre les
limites dont il s’agit, un accroissement infiniment pe-
tit de la fonction elle-même. [Cauchy 1853] [empha-
sis in the original]

Already in 1821, Cauchy denoted his infinitesimal α and required f(x+
α) − f(x) to be infinitesimal as the definition of the continuity of f .
In differential geometry, Cauchy routinely defined the center of curva-
ture of a plane curve by intersecting a pair of infinitely close normals to
the curve. These issues are explored further in [Cutland et al. 1988],
[Katz & Katz 2011], [Borovik & Katz 2012], [Katz & Tall 2013],
[Bascelli et al. 2014], and [B laszczyk et al. 2016b].
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23.2. Bernhard Riemann

Bernhard Riemann (1826–1866) was a pioneer of modern differen-
tial geometry. Riemann’s famous 1854 Habilitation lecture “On the
hypotheses lying at the foundations of geometry” was followed by a
more explicit but lesser known sequel dating from 1861 and entitled
“Commentatio mathematica”. Unlike the 1854 lecture, Riemann’s 1861
sequel contains enough formulas to enable researchers to attempt to re-
construct Riemann’s train of thought and his remarkable anticipation
of later work of Levi-Civita and other differential geometers. The 1861
text is briefly discussed in [Jost 2016, p. 62, note 19]. A reader inter-
ested in a more detailed analysis can consult [Darrigol 2015].

Riemann’s relative lack of familiarity with the field in 1854 turned
out to be an advantage in that he was able to develop a perspective
unaffected by Kantian notions of a priori space that influenced many
geometers at the time. Riemann was influenced by the philosopher
Johann Friedrich Herbart (see below).

As Jost notes, Riemann’s 1854 lecture “penetrates as deeply as
never before into a field that had occupied and challenged the great-
est thinkers of mankind since classical antiquity, and it even hints at
the greatest discovery of the physics of the following century” namely
Einstein’s relativity theory.

As Jost notes, a number of famous scientists, including psycholo-
gist Wilhelm Wundt and the philosopher Bertrand Russell, entered the
stage with errors of judgment on both the topic and content of the 1854
lecture after it had been posthumously published by Riemann’s friend
Dedekind. As Jost notes, “subsequent generations of mathematicians
worked out the ideas outlined in the brief lecture and confirmed their
full validity and soundness and extraordinary range and potential.”

Herbart’s influence on Riemann is mentioned in [Jost 2016, note 52,
p. 27]. Jost notes that this was analyzed in [Erdmann 1877, pp. 29–
33], [Boi 1995, pp. 129–136], [Scholz 1982].

The latter source downplays Herbart’s influence on Riemann’s lec-
ture, while historian David E. Rowe notes that in some of his writing,
Riemann identifies himself as a Herbartian; see [Rowe 2017].

One could also mention the article [Nowak 1989]. Nowak argues
that “Riemann was aware of the philosophical implications of his math-
ematics and structured the Habilitationsvortrag as a philosophical ar-
gument which used mathematics to demonstrate the untenability of
Kant’s position that Euclidean geometry constituted a set of synthetic
a priori truths about physical space.”
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Nowak gives considerable attention to Herbart’s influence on Rie-
mann, and notes that “Herbart’s discussion of space inspired Riemann
to create a more fruitful combination of higher-dimensional geometry
and Gauss’s differential geometry than he might otherwise have been
able to.”

Nowak goes on to makes the following three points.
1. Herbart’s constructive approach to space, already cited, mirrored

the content of Riemann’s reference to Gauss in that both discussed
construction of spaces rather than construction in space.

2. Riemann followed Herbart in rejecting Kant’s view of space as
an a priori category of thought, instead seeing space as a concept which
possessed properties and was capable of change and variation. Riemann
copied some passages from Herbart on this subject, and the Fragmente
philosophischen Inhalts included in his published works contain a pas-
sage in which Riemann cites Herbart as demonstrating the falsity of
Kant’s view.

3. Riemann took from Herbart the view that the construction of
spatial objects were possible in intuition and independent of our per-
ceptions in physical space. Riemann extended this idea to allow for the
possibility that these spaces would not obey the axioms of Euclidean
geometry. We know from Riemann’s notes on Herbart that he read
Herbart’s Psychologie als Wissenschaft. . .

As mentioned above, Russell failed to appreciate the significance of
Riemann’s pioneering writings in differential geometry. Russell’s Essay
on the Foundations of Geometry (1897) is cited by Jost on page 127
but not analyzed.

Here Russell wrote the following in his section 65:
“[Riemann’s] philosophy is chiefly vitiated, to my mind, by this

fallacy, and by the uncritical assumption that a metrical coordinate sys-
tern can be set up independently of any axioms as to space-measurement.
Riemann has failed to observe, what I have endeavoured to prove in
the next chapter, that, unless space had a strictly constant measure of
curvature, Geometry would become impossible; also that the absence
of constant measure of curvature involves absolute position, which is
an absurdity.”

What Russell is claiming here, in a nutshell, is the impossibility of
doing what has come to be called Riemannian geometry, such impossi-
bility apparently derived from first philosophical principles. For similar
non-sequiturs from Russell’s pen in the matter of infinitesimal analysis
see [Katz & Sherry 2013].
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The only substantial formula in Riemann’s lecture (addressed mainly
to non-mathematicians) is that of the length element in a space of con-

stant curvature. This is Riemann’s formula 1
1+α

4

∑

x2

√∑
dx2 appearing

in [Jost 2016, p. 37]. Today of course we would incorporate a sum-
mation index i as part of the notation, as in 1

1+α
4

∑

i(x
i)2

√∑
i(dx

i)2.

After a technical introduction to (modern) Riemannian geometry
and tensors, occupying pages 63-113, Jost finally gets to Riemann’s
formula on page 114. However, what Jost doesn’t mention explicitly
enough is that the symbol dx had a different meaning to Riemann
than the one given to it by Jost. Riemann viewed the length ele-
ment as a combination of infinitesimal displacements dxi of the coor-
dinates xi weighed by suitable functions. Meanwhile, in the modern
formalism, dxi is a covector dual to the vector ∂

∂xi . No entity like ∂
∂xi

appeared in Riemann’s writing. Riemann needed no tensors to perform
integration over curves in the manifold.

23.3. Otto Stolz

Otto Stolz (1842–1905) introduced the term Archimedean property.

23.4. Hermann Cohen

Hermann Cohen (1842–1918) sought a working logic of infinitesi-
mals and operated with a distinction between extensive and intensive
quantity, parallel to Leibnizian distinction of assignable vs inassignable.



CHAPTER 24

Twentieth century

24.1. Skolem

Nonstandard integers were first constructed by T. Skolem in the
1930s (see [Skolem 1933], [Skolem 1934]; an English version may
be found in [Skolem 1955]). Skolem’s accomplishment is generally
regarded as a major milestone in the development of 20th century logic.

D. Scott (see [Scott 1959, p. 245]) compares Skolem’s predicative
approach with the ultrapower approach (Skolem’s nonstandard integers
are also discussed in [Bell & Slomson 1969] and [Stillwell 1977,
pp. 148–150]). Scott notes that Skolem used the ring DF of alge-
braically (first-order) definable functions from integers to integers. The
quotient DF/P of DF by a minimal prime ideal P produces Skolem’s
non-standard integers. The ideal P corresponds to a prime ideal in the
Boolean algebra of idempotents. Note that the idempotents of DF are
the characteristic functions of (first-order) definable sets of integers.
Such sets give rise to a denumerable Boolean algebra P and therefore
can be given an ordered basis. Such a basis for P is a nested sequence1

Xn ⊃ Xn+1 ⊃ . . .

such that Y ∈ P if and only if Y ⊃ Xn for a suitable n. Choose a
sequence (sn) such that

sn ∈ Xn \Xn+1.

Then functions f, g ∈ DF are in the same equivalence class if and only
if

(∃N)(∀n ≥ N) f(sn) = g(sn).

The sequence (sn) is the comparing function used by Skolem to parti-
tion the definable functions into congruence classes. Note that, even
though Skolem places himself in a context limited to definable func-
tions, a key role in the theory is played by the comparing function
which is not definable.

1We reversed the inclusions as given in [Scott 1959, p. 245] so as to insist on
the analogy with a filter.
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Including these sequences in RN yields an embedding of the Skolem
nonstandard integers in the hyperintegers (via the ultrapower construc-
tion).
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[Fermat 1643] Fermat, P. Letter to Brûlart. 31 march 1643. Oeuvres, Vol. 5,

pp. 120–125.
[Ferreirós 2007] Ferreirós, J. Labyrinth of thought. A history of set theory and its

role in modern mathematics. Second edition. Birkhäuser Verlag, Basel.
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