תרגול כיתה 10

The integration problem can be expressed in a slightly more general way by introducing a positive weight function ω into the integrand, and allowing an interval other than [-1, 1]. That is, the problem is to calculate

$$\int_{a}^{b} \omega(x) f(x) dx \approx \sum_{i=1}^{n} w_{i} f(x_{i})$$

for some choices of a, b, and ω are given for <u>Abramowitz and Stegun</u> (A & S).

Interval	$\omega(x)$	Orthogonal polynomials	A & S
[-1, 1]	1	Legendre polynomials	25.4.29
(-1, 1)	$(1-x)^{\alpha}(1+x)^{\beta}, \alpha, \beta > -1$	Jacobi polynomials	25.4.33 ($\beta = 0$)
(-1, 1)	$\frac{1}{\sqrt{1-x^2}}$	Chebyshev polynomials (first kind)	25.4.38
[-1, 1]	$\sqrt{1-x^2}$	Chebyshev polynomials (second kind)	25.4.40
[0, ∞)	e^{-x}	Laguerre polynomials	25.4.45
$(-\infty,\infty)$	e^{-x^2}	Hermite polynomials	25.4.46

The polynomial $p_n(x)$ is said to be an *orthogonal polynomial* of degree *n* associated to the weight function $\omega(x)$ if

$$\int_{a}^{b} \omega(x) p_n(x) p_m(x) dx = 0, \quad n \neq m$$

 $p_n(x)$ is unique up to a constant normalization factor, moreover any *orthogonal polynomial* p_n of degree *n* fulfill

$$\int_{a}^{b} \omega(x) x^{k} p_{n}(x) dx = 0, \text{ for all } k = 0, 1, \dots, n-1.$$

Fundamental theorem

If we pick the nodes to be the zeros of p_n , then there exist weights w_i which make the computed integral exact for all polynomials of degree 2n - 1 or less.

Number of points, <i>n</i>	Points, x _i	Weights, w _i
1	0	2
2	$\pm\sqrt{1/3}$	1
2	0	8/9
3	$\pm\sqrt{3/5}$	5/9
4	$\pm\sqrt{\left(3-2\sqrt{6/5}\right)/7}$	$\frac{18+\sqrt{30}}{36}$
	$\pm\sqrt{\left(3+2\sqrt{6/5}\right)/7}$	$\frac{18 - \sqrt{30}}{36}$
	0	128/225
5	$\pm \frac{1}{3}\sqrt{5-2\sqrt{10/7}}$	$\frac{322+13\sqrt{70}}{900}$
	$\pm \frac{1}{3}\sqrt{5+2\sqrt{10/7}}$	$\frac{322-13\sqrt{70}}{900}$

Some low-order rules for solving the integration problem are listed below.

```
s1=sqrt((3-2*sqrt(6/5))/7);
s2=sqrt((3+2*sqrt(6/5))/7); x=[-s2 -s1 s1 s2]
w1=(18+sqrt(30))/36; w2=(18-sqrt(30))/36;
w=[w2 w1 w1 w2]
syms z; for k=1:8
intgr(k)=eval(int(z^k,z,-1,1)-dot(w,x.^k));
end
intgr
intgr =
-0.0000 0 0 0 0 0 0 0 0.0116
```

The Newton–Cotes Formula of degree *n* is stated as

$$\int_{a}^{b} f(x) \, dx \approx \sum_{i=0}^{n} w_i \, f(x_i)$$

where $x_i = h i + x_0$, with *h* (called the *step size*) equal to $(x_n - x_0) / n = (b - a) / n$.

The w_i are called *weights*.

1
$$\frac{\frac{\text{Rectangle}}{\text{rule, or}}}{\substack{\text{midpoint}\\\text{rule}}} (b-a)f_1 \qquad \frac{(b-a)^3}{24} f^{(2)}(\xi)$$

Degree	Common name	Formula	Error term
1	<u>Trapezoid</u> <u>rule</u>	$\frac{b-a}{2}(f_0+f_1)$	$-\frac{(b-a)^3}{12}f^{(2)}(\xi)$
2	Simpson's rule	$\frac{b-a}{6}(f_0 + 4f_1 + f_2)$	$-\frac{(b-a)^5}{2880}f^{(4)}(\xi)$
3	Simpson's 3/8 rule	$\frac{b-a}{8}(f_0+3f_1+3f_2+f_3)$	$-\frac{(b-a)^5}{6480}f^{(4)}(\xi)$
4	Boole's rule	$\frac{b-a}{90}(7f_0+32f_1+12f_2+32f_3+7f_4)$	$-\frac{(b-a)^7}{1935360}f^{(6)}(\xi)$

Composite trapezoidal rule:

$$\int_{a}^{b} f(x) \, dx \approx \frac{b-a}{n} \left[\frac{f(a) + f(b)}{2} + \sum_{k=1}^{n-1} f\left(a + k \frac{b-a}{n}\right) \right].$$

This can alternatively be written as:

$$\int_{a}^{b} f(x) dx \approx \frac{b-a}{2n} \left(f(x_0) + 2f(x_1) + 2f(x_2) + \dots + 2f(x_{n-1}) + f(x_n) \right)$$

where

$$x_k = a + k \frac{b-a}{n}$$
, for $k = 0, 1, \dots, n$

(one can also use a non-uniform grid).

The error of the composite trapezoidal rule is the difference between the value of the integral and the numerical result:

error
$$= \int_{a}^{b} f(x) dx - \frac{b-a}{n} \left[\frac{f(a) + f(b)}{2} + \sum_{k=1}^{n-1} f\left(a + k \frac{b-a}{n}\right) \right].$$

This error can be written as

error
$$= -\frac{(b-a)^3}{12n^2}f''(\xi),$$

where ξ is some number between *a* and *b*.

Composite Simpson's rule

Suppose that the interval [a,b] is split up in n subintervals, with n an even number. Then, the composite Simpson's rule is given by

$$\int_{a}^{b} f(x) \, dx \approx \frac{h}{3} \Big[f(x_0) + 2 \sum_{j=1}^{n/2-1} f(x_{2j}) + 4 \sum_{j=1}^{n/2} f(x_{2j-1}) + f(x_n) \Big],$$

where $x_j = a + jh$ for j = 0, 1, ..., n - 1, n with h = (b - a) / n; in particular, $x_0 = a$ and $x_n = b$. The above formula can also be written as

$$\int_{a}^{b} f(x) dx \approx \frac{h}{3} \Big[f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + 2f(x_4) + \dots + 4f(x_{n-1}) + f(x_n) \Big].$$

The error committed by the composite Simpson's rule is bounded (in absolute value) by

$$\frac{h^4}{180}(b-a)\max_{\xi\in[a,b]}|f^{(4)}(\xi)|,$$

where *h* is the "step length", given by h = (b - a) / n.