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1 Introduction

Increasingly powerful experimental and computational resources have made pos-
sible large-scale studies of an enormously broad range of physical systems on the
atomic scale. A central challenge in analyzing atomic systems is the automated
characterization, visualization, and analysis of structure, so that meaningful
results can be extracted from massive sets of raw data. Given only atomic
coordinates, what can be said about the underlying structure of the sample?
In what crystalline phases, if any, are atoms arranged? What types of defects
appear in the sample and where are they located?

Such questions are easy to ask and surprisingly difficult to answer. The
last several decades have witnessed the development of numerous automated
approaches for characterizing, visualizing, and analyzing structure in atomic
systems [1, 2]. Despite much progress in this area, conventional methods tend
to be ineffective in analyzing high-temperature systems without quenching or
time-averaging atomic coordinates. This chapter describes a topological ap-
proach for automated structure analysis in atomic systems which is substantially
more robust than conventional approaches, especially for high-temperature and
imperfect systems.

This chapter begins by detailing the related problems of structure charac-
terization and defect identification, considers several conventional approaches
and their limitations, and then explains how Voronoi topology can be used to
analyze structure in atomic systems. We provide several examples of applica-
tions that benefit from this approach. We conclude with a brief discussion of
VoroTop, a new set of open-source tools built to automate this analysis.

1.1 Local structure in atomic systems

Molecular dynamics simulation techniques are now widely applied to investigate
material properties in systems with billions of atoms, often over the course
of many millions of time-steps. Molecular statics and Monte Carlo methods
are also routinely employed in studies of large systems with atomic resolution.
More recently, experimental methods such as atom probe tomography have been
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Figure 1: A typical two-dimensional atomic system [4].

introduced that provide three-dimensional atomic coordinate data sets directly
from physical samples [3]. To a large degree, these enormous data sets must
be substantially simplified to allow for the extraction of interesting conclusions
from a vast sea of mostly uninteresting data. Countless terabytes of data might
be ultimately distilled into a short statement such as: “The migration of point
defects is inhibited by grain boundaries.” The task of the scientist – as distinct
from that of the programmer – is to understand how to properly reduce and
interpret the massive data generated by experiment or simulation. Without
proper tools to help with this task, many atomic coordinate data sets look
almost identical.

Consider the two-dimensional system illustrated in Figure 1. Although the
sample is primarily crystalline, it contains defects of various types, including
grain boundaries and vacancies. Although many of these defects can be seen
with our eyes, defining them precisely enough to make them amenable to auto-
mated analysis can be difficult. A simple exercise helps illustrate some of the
underlying complexities. Look again at Figure 1 and choose an arbitrary atom.
Now think about the following two questions. First, does the chosen atom be-
long to a crystal or to a defect? Second, how can the answer to the first question
be made precise? Even brief reflection on these questions will persuade most
readers that answers are neither simple nor unambiguous.

Although Figure 1 may be analyzed with only an intuitive idea of what
it means for an atom to “belong to a crystal”, making this intuition precise
is necessary for automating the analysis of larger systems, especially three-
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dimensional ones. For example, while studying phase transitions containing
billions of atoms, determining which atoms belong to which phases will depend
on precise definitions of what it means for an atom to belong to one phase or
another. Without precise definitions, quantitative analysis of such systems is
not possible.

1.2 Conventional characterization approaches

The characterization considered in this chapter is a form of local structure anal-
ysis, as its objective is to describe the local environment around each atom
by considering how its neighbors are arranged relative to it. Only after local
structure is characterized can larger-scale structure be determined.

Conventional approaches to local structure characterization can be classified
as either physical or aphysical. Physical approaches take into account physical
properties of a system, such as energy and stress, in addition to atomic coor-
dinates. As atoms belonging to defects often have higher energies than those
belonging to bulk crystals, or different stress patterns, such quantities can be
helpful in identifying structural defects.

In physical approaches, a threshold value is typically chosen, and atoms
with property values above or below that threshold are identified as defects.
In high-temperature systems, choosing a threshold can be difficult because the
variance in energy, stress, or other physical quantities associated with thermal
fluctuations is typically of the same order of magnitude as that associated with
structural defects. In practice, physical quantities are rarely useful in directly
studying high-temperature atomic systems [2].

Aphysical approaches, in contrast, consider only atomic coordinate data,
and not the underlying energetics. In coordination number analysis, perhaps
the simplest example of an aphysical method, each atom is assigned a number
counting atoms within a specified radius. The expected number of neighbors in
many crystalline systems is known a priori, and atoms with different coordina-
tion numbers are associated with defects. For example, for a properly chosen
threshold, most atoms in Figure 1 will have a coordination number of 6, while
those belonging to defects will have coordination numbers other than 6.

More sophisticated aphysical approaches consider not only the number of
neighbors of an atom, but also the manner in which those neighbors are ar-
ranged. In an ideal triangular lattice, for example, every atom is surrounded by
six equally-spaced neighbors; adjacent pairs of neighbors make identical angles
α = π/3; see Figure 2. Centroysymmetry analysis [5] and bond-angle analysis
[6] are but two examples of widely-used methods that measure deviation from
this ideal structure. Centrosymmetry measures the extent to which neighbors of
an atom can be matched in equally-spaced but oppositely-directed pairs, so that
their displacement vectors cancel. Bond-angle analysis measures the extent to
which angles between “bonds” from a central atom to neighboring atoms remain
close to an idealized value, π/3 in the example of Figure 2.

Several other aphysical approaches, including bond-order analysis [7] and
neighbor distance analysis [1], have been developed and applied, sometimes
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Figure 2: A central particle and neighbors in (a) an unperturbed triangular-
lattice crystal, and (b) a perturbed triangular-lattice crystal.

at greater computational cost. As with physical approaches, most aphysical
approaches tend to be ineffective in analyzing high-temperature systems, in
which deviations from ideal values are affected by thermal fluctuation as much as
by structural defects. In a sense that can be made mathematically precise, this
problem is a necessary limitation of all continuous structure-characterization
methods [8]. To circumvent this problem, systems must be quenched or time-
averaged before analysis [2]. It is unknown whether this preconditioning of the
data results in changes to its meaning. Consider, for example, the effect of
quenching on a material that has different high- and low-temperature polytypes
and a displacive transition between them.

1.3 Voronoi analysis

Voronoi analysis traces its history to the mathematical study of crystal lattices
[9], and in recent decades has been used to analyze many physical and biolog-
ical systems [10, 11]. In this section we introduce the central ideas of Voronoi
analysis and consider how they can be used to characterize local structure in
atomic systems. We do this first in the context of two-dimensional systems,
and defer discussion of the conceptually similar, but practically more complex,
three-dimensional case to Section 2.

The Voronoi cell of an atom is the region of space closer to that atom than
to any other; Voronoi cells which meet along a boundary are called neighbors.
Voronoi cells of atoms are always convex polygons (in two dimensions) or poly-
hedra (in three dimensions), though not necessarily regular. Figure 3(a) shows
several atoms in an unperturbed triangular lattice along with their Voronoi
cells. Figure 3(b) shows a finite-temperature version of the same system, in
which atoms are slightly perturbed from their perfect lattice sites. Although
cell perimeters and areas have slightly changed, the topology of each Voronoi
cell has not; in particular, all cells remain six-sided. This stability in the pres-
ence of small perturbations is a powerful feature of Voronoi analysis, and is the
source of its robustness in analyzing high temperature systems.

The Voronoi cell of an atom can be characterized both geometrically and
topologically. Its area, for example, can be used to calculate the “free volume” of
an atom or to estimate local atomic density. These geometric characterizations
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(a) (b)

Figure 3: (a) atoms in a zero-temperature crystal with regular six-sided Voronoi
cells; (b) atoms in finite-temperature crystal with slightly irregular six-sided
Voronoi cells.

of Voronoi cells tend to be sensitive to small distortions of atomic coordinates.
In contrast, topological descriptions of the Voronoi cell tend to be robust under
such distortions. In particular, the number of sides of a Voronoi cell, equivalently
its number of neighbors, is generally invariant under small perturbations of
atomic coordinates. For reasons that will be explained in Section 2.2, we use
the word topology to refer to the number of sides of a two-dimensional Voronoi
cell.

In defect-free crystals with triangular lattice structure, the Voronoi cell of
every atom has six sides [12]. Atoms whose Voronoi cells have more or fewer
than six sides can be considered as belonging to defects. Local structure near
an atom in a two-dimensional system can thus be characterized and analyzed
according to its number of Voronoi neighbors. Figure 4 illustrates the same
polycrystal shown in Figure 1, this time with each atom colored according to
the number of sides of its Voronoi cell. Most atoms have six sides and are colored
yellow; other Voronoi cells have five or seven sides and are colored blue and red,
respectively.

Characterizing local structure through Voronoi cell topology facilitates the
visualization and analysis of defect structure in polycrystalline materials. In
Figure 4, for example, atoms whose Voronoi cells have six sides can be classified
as belonging to crystals, whereas those with more or fewer sides can be classified
as belonging to defects. After we have identified defects at the single-atom level,
we can identify larger-scale defects as contiguous regions of defect atoms. Notice,
for example, a ring of 3 red and 3 blue atoms on the left side of Figure 4. This
ring identifies the presence of a vacancy. Similarly, a chain of alternating red
and blue atoms indicates the presence of a high-angle grain boundary. This
analysis requires no choice of threshold or preconditioning of the data, and is
robust against thermal vibrations and elastic strains.

In the following section, we present a similar analysis for studying three-
dimensional systems. The topology of Voronoi cells in three dimensions is more
complicated, yet can be approached in much the same way.
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Figure 4: The two-dimensional polycrystal from Figure 1 with Voronoi cells
shown and atoms colored by the number of sides of their Voronoi cells.

2 Voronoi Topology Structure Analysis

2.1 Topology basics

Topology is the mathematical study of properties of objects that do not change
under continuous deformations; these properties are often related to the manner
in which objects are connected to themselves and to other objects. To illustrate
this idea, consider the shapes shown in Figure 5. While the sphere can be
continuously deformed into the ellipsoid without cutting or gluing, the torus
cannot. In the language of topology, the sphere and ellipsoid are isomorphic
with one another, whereas the torus is not isomorphic to either.

Many properties of these shapes do not change when they are continuously
deformed. For example, imagine taking a pair of scissors and cutting a closed
loop in the three shapes, as illustrated in Figure 5. This procedure inevitably
divides each of the sphere and ellipsoid into two disconnected pieces. In contrast,
the same procedure can leave the torus connected as one piece. This type of
“connectedness” is a topological property of a shape, and if two shapes are
isomorphic then they either both have this property or both do not.

This brief exercise illustrates one property that is preserved under continuous
deformations; the field of topology develops powerful tools to study shapes and
other topological invariants [13].

As topology focuses on studying the connectivity of shapes such as spheres
and tori, it is not immediately clear that it would have much relevance to study-
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(a) sphere (b) ellipsoid (c) torus

Figure 5: The sphere and ellipsoid can be deformed into one another without
cutting or gluing, while the torus cannot. Cutting a loop in the first two shapes
necessarily divides them into two pieces; a loop cut in the third shape can leave
it connected.

Figure 6: The Voronoi cell of a central blue atom (blue), surrounded by neigh-
boring atoms (gold).

ing sets of discrete points, such as those encountered in studying atomic systems.
In what meaningful way can points in space be considered connected? Over the
last decade or so, however, powerful tools such as discrete Morse theory and
persistent homology [14, 15] have been developed to analyze data of diverse
kinds [16]. Voronoi topology continues in this spirit. In what follows we show
how considering the topology of a Voronoi cell can provide keen insight into the
manner in which a set of points are arranged in space. In this sense, Voronoi
topology forms a bridge between the discrete and continuous, and enables the
application of ideas from topology to the study of atomic systems.

2.2 Voronoi topology

In atomic systems, small perturbations resulting from thermal noise or small
strains are often unimportant for understanding crystal structure and defects.
Whereas geometrical characterizations of local structure are generally sensitive
to such perturbations, topological ones are generally not. Figure 6 illustrates
the three-dimensional Voronoi cell of a central atom surrounded by neighbors.
When atomic positions are perturbed, geometrical properties of this Voronoi
cell, including edge lengths and face areas, almost always change. In contrast,
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(a) (b) (c)

Figure 7: Three topologically distinct Voronoi cells, each with 4 four-sided, 4
five-sided, and 2 six-sided faces.

the manner in which edges and faces are connected does not. Such topological
properties are thus naturally suited for studying atomic systems when we wish
to ignore small perturbations.

In the remainder of this chapter, we use the term topology of a Voronoi
cell to refer to the manner in which neighboring Voronoi cells are connected to
a central Voronoi cell and to each another. In two dimensions, neighbors of a
central Voronoi cell can be connected in only one manner – cyclically, with each
neighbor connected to two others – and so a count of sides of a Voronoi cell
completely describes its topology. In three dimensions, however, completely de-
scribing the arrangement of all neighboring cells is more complicated. Consider,
for example, that while a count of faces of a Voronoi cell indicates its number
of neighbors, it says nothing about how those neighbors are arranged.

Additional topological information about a Voronoi cell is provided through
consideration of the number of sides of its faces. This additional data provides
a more refined description of the manner in which neighbors are connected to
a central cell and to each other, as the number of sides of a face indicates the
number of neighbors shared in common between two Voronoi cells.

Even this additional information, however, does not completely describe the
manner in which neighbors of a Voronoi cell are connected, as seen through the
examples in Figure 7. While all three Voronoi cells have 4 four-sided faces, 4
five-sided faces, and 2 six-sided faces, these faces are arranged differently in the
three examples. For example, a pair of six-sided faces are adjacent in (b), but
not in (a) or (c). Differences in the arrangements of faces indicate differences in
the manner in which neighboring Voronoi cells are connected to one another and,
consequently, the manner in which neighboring atoms are arranged. Our desire
to completely describe the arrangement of neighbors motivates the development
of a method to record all information about the topology of a Voronoi cell.

2.3 Recording Voronoi topology

The language and tools of graph theory can be used to record complete topolog-
ical information of a Voronoi cell by looking at it as a planar graph. Briefly, a
graph is a set of points called vertices, and a set of connections between those ver-
tices called edges. A planar graph is one whose vertices and edges can be drawn
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Figure 8: Planar edge graphs of the three Voronoi cells shown in Figure 7.

in the plane without any edges crossing. Two graphs are isomorphic if there is
a correspondence between their vertices so that two vertices are connected by
an edge in one graph if and only if corresponding vertices are connected by an
edge in the other graph [17]. Mathematical theorems from the early twentieth
century [18, 19] guarantee that every Voronoi cell can be uniquely represented
as a planar graph, thus allowing us to make precise statements about Voronoi
cells using the language of graph theory. Figure 8 illustrates planar graphs
corresponding to the three Voronoi cells of Figure 7.

We employ an algorithm introduced by Weinberg [20, 21] to calculate a
unique “code” for each planar graph that completely describes the manner in
which its edges and faces are connected. Equivalently, this code captures com-
plete information about the manner in which neighbors of a Voronoi cell are
arranged relative to a central cell and to each other. Determining whether two
atoms have the same local structure then reduces to comparing codes of two
Voronoi cell graphs [22].

The algorithm of Weinberg is as follows: (a) An initial vertex is chosen
and assigned the label 1. (b) An edge incident with that vertex is chosen and
travel begins along it. (c) If an unlabeled vertex is reached, it is labeled with
the next unused integer and we “turn right” and continue. (d) If a labeled
vertex is reached after traveling along an untraversed edge, we return to the last
vertex along the same edge but in the opposite direction. (e) If a labeled vertex
is reached after traveling along an edge previously traversed in the opposite
direction, we “turn right” and continue; if that right-turn edge has also been
traversed in that direction, we instead continue along the next right-turn edge
available; if all outgoing edges have been traversed, we stop.

Throughout this procedure, the list of the vertices in the order in which
they are visited, including multiplicities, is recorded; we call this ordered list a
code. Figure 9 illustrates the process of constructing a code. Codes are then
produced for each choice of initial vertex and edge, and for each of two possible
orientations of the graph; the lexicographically smallest code is used as the
canonical code for the graph.

Constructing canonical codes allows us to capture complete information
about the topology of a Voronoi cell, and hence about the manner in which
neighboring atoms are arranged. After determining the Voronoi topologies that
are associated with a particular crystal structure we can identify which atoms
belong to the bulk, and which ones are associated with defects.
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Figure 9: Vertices are labeled as they are initially encountered while traversing
the graph following the rules described in the text. The code lists all vertices
in the order in which they have been visited.

2.4 Topological instability and families of topologies

Although many Voronoi cells are topologically stable under small perturbations,
many are not. Consider, for example, the Voronoi cells in a two-dimensional
square lattice, illustrated in Figure 10(a). When unperturbed, the Voronoi cell
of each atom has exactly four edges, and exactly four Voronoi cells meet at
every corner. These corners are unstable in the sense that small perturbations
of the atomic coordinates transform them into pairs of corners at which only
three cells meet; examples of these transformation can be seen in Figures 10(b)
and (c).

A consequence of these instabilities is that Voronoi cells in finite-temperature
square-lattice crystals can have between 4 and 8 edges. Voronoi cells with fewer
than 4 or more than 8 edges cannot be obtained through small perturbations of
the atomic coordinates and should thus be considered defects. We use the term
family to refer to a set of Voronoi cell topologies that can be obtained from
a perfect structure through infinitesimal perturbations of atomic coordinates;
topologies that cannot be obtained in this manner are classified as defects.

This approach is directly applicable to analyzing three-dimensional systems.
Consider, for example, the Voronoi cell of an atom in an unperturbed FCC

(a) (b) (c)

Figure 10: (a) atoms in an unperturbed square lattice; (b-c) atoms in finite-
temperature square-lattice crystals.
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BCC FCC HCP

Figure 11: Voronoi cells of atoms in unperturbed BCC, FCC, and HCP crystals
[23]; red circles indicate unstable corners.

Figure 12: Voronoi cells of atoms in a finite-temperature FCC crystal; each
unstable corner has transformed into one of the stable configurations illustrated
in Figure 13.

crystal, illustrated in Figure 11. Many of its corners are topologically unstable,
and small perturbations of the atomic coordinates result in topological changes
[23]; Voronoi cells of several atoms in a finite-temperature FCC crystal are
illustrated in Figure 12. We refer to the set of Voronoi cell topologies that can
be obtained in this manner as the family of FCC topologies; Voronoi cells that
cannot be obtained in this manner are classified as defects in FCC crystals.
We can likewise associate to any structure a family of topologies which can be
obtained through infinitesimal perturbations. In the following section we outline
a method by which these families can be determined.

2.5 Determination of families of topologies

Determination of families of topologies associated with particular structures en-
ables us to anticipate which topologies will appear in finite-temperature systems,
and consequently identify and characterize defects in those systems. We briefly
consider both analytic and Monte Carlo approaches.

The unique Voronoi cells of atoms in perfect crystalline systems are easily
determined and well known; Figure 11 shows several such Voronoi cells. In three
dimensions, Voronoi cell corners that are adjacent to more than four Voronoi
cells are topologically unstable, and random perturbations of nearby atomic
coordinates will change the manner in which neighboring Voronoi cells are con-
nected. For example, Voronoi cells of atoms in perfect FCC crystals have six

11



Figure 13: Unstable corner in an FCC Voronoi cell and seven possible ways in
which it can transform under small perturbations of atomic positions.

corners which are each adjacent to six different cells; these can be seen in Figure
11 as corners at which four edges meet. When atomic positions are perturbed,
each of these topologically-unstable vertices can resolve in one of seven ways,
illustrated in Figure 13. Unstable corners that appear in other systems can
resolve in different manners, and each system must be analyzed independently.

To enumerate all topologies associated with FCC, we must consider all per-
mutations of these resolutions over all unstable corners. Since each of the six
unstable vertices can resolve in one of seven ways, or remain unstable, we must
check a total of 86 = 262,144 possible permutations. We compute canonical
codes, as described in Section 2.3, for each of these, and find 6250 unique topolo-
gies in the family associated with FCC; due to symmetries, many topologies ap-
pear multiple times in the initial analysis. Similar analysis for other crystalline
systems proceeds in a similar fashion.

The analytic approach described here is not practical for analyzing all sys-
tems. For example, the unique Voronoi cell associated with the diamond cubic
crystal has 12 topologically-unstable corners, each of which can resolve in one
of 7 possible manners, or remain unstable. Enumerating all possible topolo-
gies associated with diamond cubic crystal would thus require consideration of
812 = 68,719,476,736 topologies, the determination and storage of which can
be computationally restrictive. In these cases, Monte Carlo sampling allows us
to determine Voronoi topologies that occur with significant probability within
finite-temperature versions of a particular structure. In particular, atoms in a
perfect structure are randomly displaced to simulate the effects of temperature,
and the resulting Voronoi topologies are recorded. This is repeated for a large
number of atoms in order to sample the set of expected topologies. Care must
be taken in choosing appropriate perturbations and sample size.

2.6 Ambiguous topologies and their disambiguation

One complication of the topological classification approach results from individ-
ual Voronoi topologies belonging to multiple families. Consider for example a
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two-dimensional Voronoi cell with six sides. We have previously observed that
such Voronoi cells can appear both in triangular and perturbed square-lattice
crystals. Thus, knowledge that the Voronoi cell of an atom has six sides is insuf-
ficient to unambiguously identify its local structure. Similar ambiguities arise
in three-dimensional structures, as many Voronoi topologies that belong to the
FCC family also belong to the HCP family [23].

Such ambiguities can be resolved by reconsidering topological instabilities
under small perturbations as follows. We first consider the case of the ambiguous
two-dimensional six-sided Voronoi cell; similar analysis for three-dimensional
systems will be described below. We have noted before that Voronoi cells in
triangular-lattice crystals are topologically stable under small perturbations; in
contrast, Voronoi cells in square-lattice crystals are not. Therefore, if we slightly
perturb atoms near a six-sided Voronoi cell, its topology will unlikely change if
it belongs to a triangular lattice. In contrast, if it belongs to a square-lattice
crystal, then the topology will be more likely to change. Notice, for example,
that the six-sided Voronoi cell in the center of Figure 10(b) changes upon the
small perturbation illustrated in Figure 10(c). Observing whether the topology
of a Voronoi cell changes when atomic positions are perturbed can thus help
disambiguate ambiguous topologies.

Similar analysis is both necessary and effective in studying three-dimensional
systems. For example, many Voronoi topologies belong both to the families of
FCC and HCP crystals. When neighboring atoms are slightly perturbed, topolo-
gies of such Voronoi cells will often change. If small perturbations of neighboring
atoms result in unambiguous FCC topologies then we can identify these atoms
as belonging to FCC crystals; similarly, if small perturbations of neighboring
atoms result in unambiguous HCP topologies then we can identify these atoms
as belonging to HCP crystals. Understanding how small perturbations of atomic
coordinates change the topology of a Voronoi cell thus helps resolve ambiguous
topologies. An example in which this method of resolving ambiguous topologies
improves the identification of defect structure is described in Section 3.1.

2.7 Alloys

The topological approach described so far does not distinguish between atoms
of different element types, but can be generalized to do so. Each code described
in Section 2.3 records an implicit ordering of the faces. In particular, since
each code “travels” along each edge of every face exactly once in a particular
direction, faces can be ordered by the point along the path at which all of their
directed edges have been traversed. Then, in addition to the code which de-
scribes the Voronoi topology, we can also record the element types associated
with each face in that order. Figure 14 shows three different colorings of a
Voronoi cell with BCC structure. If red faces indicate neighbors with element
types R and blue faces indicate neighbors with element types B, then lists of
the corresponding element types are: RRRRRRRRRRRRRR, BRBRBRBRBR-
BRRR, and RBRBRRRBRRRRBR. This additional information about element
types distinguishes between different arrangements of neighbors in alloys, even
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Figure 14: Voronoi cells of atoms in binary alloys, with faces colored according
to neighboring element.

when the geometry and topology of the Voronoi cells are identical.

3 Applications

Voronoi topology enables the analysis of complex systems in ways not possible
using convention methods. In this section we consider two primary applica-
tions of this approach. First we consider its utility in identifying defects in
high-temperature systems, something that is difficult to do using conventional
approaches. We then consider how Voronoi topology can be used to characterize
complex grain boundary structures, and subsequently be used to analyze their
evolution.

3.1 Defect identification in high-temperature crystals

The first step in studying defect structure evolution in high-temperature sys-
tems is the accurate identification of defect structure. We consider here how the
topological approach, and its extension described in Section 2.6, can be used
to precisely identify a stacking-fault tetrahedron in a high-temperature FCC
copper crystal; we also contrast it with two popular conventional methods. A
stacking-fault tetrahedron (SFT) is a three-dimensional defect consisting of four
stacking faults that form faces of a tetrahedron. The interior and exterior of an
SFT are FCC crystals, bounded by stacking-fault planes with a local structure
resembling HCP, and edges which are stair-rod dislocations [24]. Figure 15 il-
lustrates a cross-section through the center of an SFT and parallel to one of its
faces; the intersection of the SFT with the viewing plane is an equilateral trian-
gle. This SFT was constructed in an FCC copper crystal and then thermalized
at 85% of its melting temperature.

Figure 15 illustrates the SFT visualized using two conventional approaches,
and the topological methods described in this chapter. Figure 15(a) shows atoms
colored using the centrosymmetry order parameter [5]. In this coloring, atoms
belonging to faces of the SFT have higher centrosymmetry values than those
in the FCC crystal, as expected. However, many atoms inside and outside the
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(a) Centrosymmetry (b) Bond-angle analysis

(c) Voronoi Topology (d) VT + perturbations

Figure 15: Cross-section of a stacking-fault tetrahedron in copper at 85% of its
melting temperature, colored using (a) centrosymmetry, (b) bond-angle analysis,
(c) Voronoi topology, and (d) Voronoi topology with perturbation disambigua-
tion. In (a), colors represent the centrosymmetry parameter as per the color
bar; in (b-d) dark blue, yellow and red indicate atoms with FCC, HCP, and
other local structures, respectively.
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SFT also have high centrosymmetry values, making the automated location of
the SFT difficult at the simulation temperature.

Figure 15(b) shows atoms colored using bond-angle analysis [6]. Many atoms
belonging to the SFT faces are classified as having HCP local structure, as ex-
pected. However, many atoms away from the SFT are also erroneously classified
as structural defects, despite the absence of other defects in the crystal. More-
over, bond-angle analysis incorrectly identifies many atoms in the bulk as having
HCP local structure. Although the general shape of the SFT can be discerned,
its structural details are ambiguous, restricting automated analysis.

These figures should be contrasted with the pictures produced using the
approaches discussed above. Figure 15(c) illustrates the same sample colored
using Voronoi topology. Atoms whose Voronoi cell topologies belong to FCC are
colored dark blue. Atoms whose Voronoi topologies are unambiguously HCP are
colored yellow; all remaining atoms are colored red. Every atom characterized
as have an HCP local structure is on an SFT face. Moreover, all atoms not at
the surface of the SFT are correctly identified as belonging to an FCC crystal.
Finally, atoms lying at the corners of the triangular cross-section through the
SFT triangle are identified as having a local structure that is distinct from the
bulk crystal and the stacking-fault faces; these are the stair-rod dislocation cores.
The sole weakness of this visualization procedure results from Voronoi topologies
which belong to both FCC and HCP families and whose local structure identified
as FCC rather than HCP.

Figure 15(d) shows the clearest picture of the SFT using the extension of
the Voronoi analysis method described in Section 2.6. To resolve the ambiguous
topologies, we perturbed the system 50 times using a random Gaussian pertur-
bation with standard deviation 1% of the average interatomic distance. Atoms
which transform into exclusively HCP topologies are characterized as having
HCP local structure, while those that occasionally transform into unambigu-
ously FCC topologies, or which always remained ambiguous, are charactered as
FCC. Here many more atoms belonging to the stacking fault faces are correctly
identified as having HCP-like local structure. In [23], we further demonstrated
the successful application of the Voronoi topology method to the identification
of grain boundaries, twins, stacking faults, vacancies, and dislocations in a high
temperature, plastically deformed nanocrystalline metal.

The correct identification of atoms as belonging to bulk or defect structure
allows for a wide range of possible applications in studying many physical mecha-
nisms. We briefly consider the analysis of heterogeneous melting in superheated
metals.

3.2 Melting

The melting of crystals is one of the most ubiquitous and also least-understood
phase transformations. Due to its intrinsic high-temperature nature, and be-
cause one of the two phases involved in the process is amorphous, melting has
been notoriously difficult to study at the atomic level, even through simulation.
We provide here a brief description of how Voronoi topology analysis can be
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Figure 16: A single (111) plane in an FCC single crystal, heated to 120% of the
bulk melting temperature, and annealed for 200 ps at this temperature. Blue
atoms are those with local FCC structure; gold atoms belong to a single liquid
nucleus; all other atoms are not shown.

used to identify liquid phases in a superheated crystal matrix.
Even at temperatures just below the bulk melting point, the Voronoi topolo-

gies of over 98% of atoms in a single copper crystal belong to the FCC family
[23]. This suggests identifying liquid phases as contiguous regions of atoms with
Voronoi topologies that do not belong to the FCC family. To study melting,
a liquid nucleus was constructed inside a large copper crystal. The size of the
liquid nucleus was large enough so that it would grow when the copper crystal
was thermalized at 120% of its bulk melting temperature. Figure 16 shows a
single (111) plane inside this system at several times. Every atom in the system
is first identified as FCC or not, based on whether its Voronoi topology is in
the FCC family. Next, atoms with non-FCC topologies are clustered so that
any pair of neighboring non-FCC Voronoi cells belong to the same “cluster”.
Figure 16 shows all atoms with Voronoi topologies belonging to the FCC family
in dark blue, and atoms in the largest cluster of non-FCC topologies in gold.
Other atoms with non-FCC topologies, belonging to smaller liquid nuclei, are
not shown.

Although the system is heated to well above its melting point, the crystalline
and liquid phases in the system are correctly identified without quenching or
time-averaging, as validated by visual inspection. This ability to precisely iden-
tify the two phases allows for quantitative analysis of the rate at which the
supercritical liquid nucleus grows. Figure 17 shows the volume of the largest
liquid nucleus, measured in number of atoms, as a function of time. While a de-
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Figure 17: The volume of a liquid nucleus as a function of time in a crystal
heated to 120% of its bulk melting temperature.

tailed analysis of this phase transformation is beyond the scope of this chapter,
this example shows the potential of the Voronoi topology approach for studying
questions inaccessible to conventional analysis methods.

3.3 Grain boundary characterization

In addition to accurately identifying known defects, Voronoi topology can also be
used to characterize structure in complex systems and automate their analysis.

At 0 K, a Σ5 [001] (310) symmetric tilt boundary in BCC tungsten has three
metastable states. The atomic structure of each state can be characterized as a
pattern of several Voronoi cell topologies. This can be seen in Figure 18, where
each atom is assigned a color according to its Voronoi topology. Phase I consists
of three distinct Voronoi topologies, and its atoms are colored in three shades of
blue. Phase II consists of two Voronoi topologies, and its atoms are colored in
two shades of green. Phases III consists of six Voronoi topologies, and its atoms
are colored in shades of red, orange, and yellow. These Voronoi topologies are
stable under small perturbations of the atomic coordinates, suggesting Voronoi
topology as a robust method for characterizing, and subsequently identifying,
grain boundary structure.

In one study, Voronoi topology was used to study the evolution of grain
boundaries under irradiation conditions [23]. In particular, a Σ5 [001] (310)
symmetric tilt boundary was constructed in the Phase I state of body-centered
cubic tungsten and equilibrated at 1500 K, or roughly 40% of its melting tem-
perature. Self-interstitial atoms were inserted in random locations in the grain
boundary at a constant rate to mimic the effects of radiation damage. The
insertion of these atoms transformed the grain boundary from a Phase I state
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(a) Phase I (b) Phase II (c) Phase III

Figure 18: Three meta-stable phases of the Σ5 [001] (310) symmetric tilt bound-
ary in BCC tungsten. Each Voronoi topology is assigned a distinct color. In
the profile view, atoms with BCC topologies are shown in grey; in the planar
view, these atoms are not shown.

to a mixture of Phases I, II, and III states. By characterizing atoms using their
Voronoi topologies, domains of different grain boundary phases can be readily
observed in the irradiated grain boundary, illustrated in Figure 19. This auto-
mated identification of complex structure allows for further automated analysis
of the manner in which this grain boundary changes over time [23]. Although a
complete analysis of grain boundary evolution under irradiation is beyond the
scope of this chapter, this example highlights the potential of Voronoi topology
to automate analysis of complex defect structures.

4 Automation Through Software

The analysis described in this chapter can be automated through publicly-
available computer software. VoroTop is an open-source software package that
characterizes local structure in atomistic data sets based on Voronoi cell topol-
ogy. VoroTop was developed and is maintained by the first author with generous
support of the NSF under grant DMR-1507013; both the software and source
code are available at http://www.vorotop.org.

VoroTop reads atomistic data in several standard formats, including those
of LAMMPS [25] and AtomEye [26], and then uses the Voro++ software library
[27] to compute the Voronoi cell of each atom. Using algorithms described
in Section 2.3, VoroTop computes the topology of each Voronoi cell and then
compares it against a precomputed family of topologies associated with a user-
chosen structure, such as BCC, FCC, or HCP crystals. The program also enables
users to create new families of topologies, with techniques described in Section
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Figure 19: Grain boundary, initially of Phase I state, transformed under irradi-
ation conditions; atoms are colored by Voronoi topology.

2.5, and then use those user-generated families to analyze other data sets.
After characterizing atoms through their Voronoi cell topology, VoroTop

outputs data in standard formats, including those of LAMMPS and AtomEye;
these and other programs can then be used for visualization and further analysis.
VoroTop can also output the topology of each atom (through codes described in
Section 2.3), and calculate distributions of Voronoi topologies; these capabilities
allow for further independent analysis. Much of the analysis described in this
chapter has also been integrated into the popular OVITO visualization and
analysis software package [28] for convenient use. Additional documentation
about VoroTop, and information about other functionality, are available on the
website.

The use of Voronoi topology for structure identification is computationally
efficient, and its runtime scales linearly with the number of atoms in a system. In
preliminary tests, the Voronoi topology of one million atoms could be calculated
on a single core of a desktop computer in under one minute. Although this is
slower than most conventional methods, Voronoi topology obviates the need for
quenching, a step otherwise necessary for analysis of high-temperature systems.
Furthermore, Voronoi analysis also provides more accurate characterization of
structure even in quenched systems; see Supporting Information of [23].

Extensions of the basic topological approach, such as those described in
Sections 2.6 and 2.7, and the clustering method described in Section 3.2 are
currently being developed for future implementation.
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