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We describe a method for evolving two-dimensional polycrystalline microstructures via mean
curvature flow that satisfies the von Neumann-Mullins relation with an absolute error O(∆t2). This
is a significant improvement over a different method currently used that has an absolute error
O(∆t). We describe the implementation of this method and show that while both approaches lead
to indistinguishable evolution when the spatial discretization is very fine, the differences can be
substantial when the discretization is left unrefined. We demonstrate that this new front-tracking
approach can be pushed to the limit in which the only mesh nodes are those coincident with triple-
junctions. This reduces the method to a vertex model that is consistent with the exact kinetic law
for grain growth. We briefly discuss the extension of the method to higher spatial dimensions.

INTRODUCTION

Over the last quarter century, numerous methods have
been developed to study grain growth in two and three
dimensions, including Monte Carlo Potts models [1, 2],
cellular automata [3, 4], phase field models [5, 6], vertex
models [7, 8], front tracking models [9], and finite ele-
ment models [10]. Each approach has advantages and
disadvantages. The Monte Carlo Potts model is both
simple, easily implementable and extendable to a wide
range of grain growth phenomena. Phase field models,
like the Potts model, are based upon well-founded mi-
croscopic physics but have the advantage of being formu-
lated in terms of continuum descriptions. Vertex models
have the most compact data sets and, arguably, are based
on the most fundamental objects in the microstructure
– triple-junctions. Front tracking models have the ad-
vantage of well-defined equations of motion for boundary
elements. Finite element methods naturally carry all ma-
terial point information. In all cases, a discretization of
the microstructure is involved, which necessarily com-
promises our ability to model the requisite grain growth
physics in full fidelity.

The fundamental equation which governs normal grain
growth in isotropic polycrystalline materials is the von
Neumann-Mullins relation [11, 12], which describes the
area evolution of individual grains in a two-dimensional
polycrystal:

dA

dt
= −2πMγ

(
1− n

6

)
, (1)

where n denotes the number of grains that are in con-
tact with the grain of interest, and M and γ are con-
stants describing the grain boundary mobility and grain
boundary energy, respectively. This result is exact for
normal grain growth in an isotropic polycrystalline ma-
terial where the velocity v at each point along the grain
boundary is v = Mγκ, where κ is the curvature at that
point.

A widely used numerical scheme for tracking mi-
crostructural evolution, including grain growth, is the
front tracking method as realized in the robust and versa-
tile program, Surface Evolver, developed by Brakke [13].
This program can track the evolution of grain boundaries
moving via mean curvature motion in any number of di-
mensions. Several papers report grain growth simulation
results based upon this method [14–16]. In this paper,
we develop a new approach for simulating grain growth
that is based on front tracking ideas and that satisfies
the exact von Neumann-Mullins relation at all times, re-
gardless of discretization. This approach may be easily
extended to an arbitrary number of dimensions. As an
example, we implement the new grain growth method in
two dimensions on the Surface Evolver platform.

ALGORITHM

In most front tracking codes, nodes are distributed
along a surface and moved according to a discretized
equation of motion. Each node is “connected” by edges
to neighboring nodes to represent a surface. New nodes
are added when neighboring ones move too far apart;
likewise, nodes are removed when neighboring ones be-
come too close. A central issue in modeling normal grain
growth in an isotropic polycrystalline system is a descrip-
tion of what happens where grain boundaries meet. In
two dimensions, three grain boundaries meet at a point
(i.e., a vertex, or triple-junction), and assuming that all
boundaries have equal energy, the angle between them
is 2π/3. The key feature of normal grain growth is that
these angles are fixed; i.e., we must view them as bound-
ary conditions on the vertices (in three dimensions, the
two-dimensional grain boundaries meet along triple-lines,
also at fixed angles 2π/3). If the angles are “only ap-
proximately” fixed, then the grain growth model will,
at best, be “only approximately” correct. We note that
when a topology change (e.g., grain switching) occurs,
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triple-junction angles necessarily change. These changes
are very brief and are limited only by the discreteness of
the atomic structure. As described below, this is a time
scale much smaller than the time step in any continuum
simulation. It is important to ensure that the rate of
these angle changes are not dictated by the details of the
numerical method or the length scale of the observation
in an experiment.

Consider a two-dimensional continuum system where
three boundaries meet at a point where all of the inter-
nal angles are 2π/3 (see Fig. 1). If we construct a dis-

FIG. 1. An example two-dimensional polycrystalline mi-
crostructure where three boundaries meet at 2π/3 angles at
each triple-junction.

cretized version of this system in which a node is placed at
a triple-junction and additional nodes are placed on the
three boundaries a short distance away from the triple-
junction, then the internal angles where the connecting
edges meet are not necessarily 2π/3. As the spatial dis-
cretization is refined, the internal angles approach 2π/3.
Therefore, in the discrete model, the triple-junction an-
gles depend on the discretization, while for the contin-
uum, they are always fixed at 2π/3. The point is that
the angles only asymptotically converge to the continuum
value with refinement of the discretization. Although the
grain growth method proposed here is inherently discrete,
it implicitly enforces the asymptotic angle condition at
the triple-junctions by moving the nodes as if the angles
in microstructure were fixed at 2π/3.

In this section, we describe a new method for simulat-
ing grain growth. We begin by picturing a microstructure
which we discretize into a set of nodes and connecting
edges. Next, we develop a method for moving nodes in a
manner that ensures that the von Neumann-Mullins re-
lation is exactly satisfied for all grains at all times. To do
this, we discretize the time variable t from Eq. (1) into
time steps ∆t and solve for the change in grain area ∆A:

∆A = −2πMγ
(

1− n

6

)
∆t. (2)

For simplicity, we consider a discretization of a single
isolated grain, embedded in an infinite body, as shown

in Fig. 2. Moving the node σ changes the area of the

σ

FIG. 2. An isolated grain; i.e., a grain with no triple-
junctions.

shaded triangle by the same amount as it changes the
area of the entire grain. This ability to localize changes
of area enables us to express each side of Eq. (2) as a sum
over all nodes surrounding a grain. The sum of the ex-
terior angles around a discretized closed shape (polygon)
is exactly 2π. If we ensure that the area of each triangle
changes by an amount −αMγ∆t, where α is the exterior
angle at its apex, then after each time step the area of
the entire polygon will change by −2πMγ∆t, with an
error of the order (∆t)2, owing to overlap between tri-
angles associated with adjacent nodes; this error will be
elaborated in detail in the next section.

We now shift attention to the more general case of a
grain with n neighboring grains. Here, we move nodes
as for an isolated grain with one correction. That is, we
move triple-junctions in a way that changes the area of
each neighboring grain by an amount −(αi − π

3 )Mγ∆t.
Since a body with n neighbors has n triple-junctions, the
area of a body with n neighbors will change by an amount
−(2π−nπ3 )Mγ∆t, or −2πMγ(1− n

6 )∆t, which is exactly
the discretized von Neumann-Mullins relation for n-sided
bodies, Eq. (2).

We now provide a more precise description of the mo-
tion of each node, beginning with those that are not
triple-junctions. Consider a node σ with edges e1 and
e2, as shown in Fig. 3; the exterior angle between the
two edges is α. Our goal is to move node σ by a displace-
ment vector dv that will change the area of the triangle
by ∆A = −αMγ∆t. Though we could move the node in
almost any direction (with an appropriate magnitude) to
achieve the desired area change, for reasons of numerical
stability we move the node in the direction of e1 + e2.
If α is the exterior angle between the two edges, then to
change the area of the triangle by exactly −αMγ∆t, we
let:

dv = αMγ∆t
e1 + e2
|e1 × e2|

. (3)

We next consider a triple-junction node τ (i.e., a node
at which three grains meet), as shown in Fig. 4. To be
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FIG. 3. A schematic of an isolated grain, emphasizing a single
triangle with apex σ and directed edges e1 and e2.

consistent with the von Neumann-Mullins relation, dis-
placement of the triple-junction must change the area of
each neighboring grain by ∆Ai = −(αi− π

3 )Mγ∆t, where
αi is the exterior angle at the triple-junction with respect
to grain i. Unlike boundary nodes, which have a degree
of freedom in their solution, triple-junctions have exactly
one solution.

If α1 and α2 are exterior angles at the triple junction
with respect to bodies 1 and 2, as shown in Fig. 4, then:

dv = 2Mγ∆t

[
0 −1
1 0

] [
e1 − e2

e2 − e3

]−1 [
α1 − π

3

α2 − π
3

]
(4)

will tell us exactly how to move the triple junction node
τ . Equations (3) and (4) then describe the motions of
all boundary nodes and all triple-junction nodes, respec-
tively. These equations represent the displacement vec-
tors for each node at every time step.

τ

e

e

e

3

2

1

Grain 1

Grain 2

Grain 3

α

α

α

1

3

2

FIG. 4. A triple-junction τ where grains 1, 2, and 3 meet,
where ei are the vectors from the triple-junction node to the
nearest nodes on each of the three boundaries.

ERROR ANALYSIS

We now evaluate the errors associated with evolving
a system using the Brakke method and that proposed
here. We show that the Brakke method leads to an error
linear in ∆t and that proposed here leads to an error
linear in (∆t)2. We define the error as follows. After one
time-step, the area of an individual grain should change
exactly:

∆A = −2πMγ
(

1− n

6

)
∆t,

as given by Eq. (2). We define the error to be the differ-
ence between this exact, theoretical result and what actu-
ally happens to a grain after one time-step. If ∆AB is the
change in area of a grain after one Brakke time-step, then
we define the absolute error after one Brakke time-step to
be EB = |∆A−∆AB |; the relative error is εB = EB/∆A.
Likewise, if ∆AP is the change in area of a grain after
one time-step using the proposed method, then the ab-
solute and relative errors are EP = |∆A − ∆AP | and
εP = EP /∆A, respectively.

We first show that the absolute numerical error in-
volved in our method is of the order O(∆t2). To do so,
we let a denote the area of a shape A, b denote the area
of a shape B, and so forth. If we move an individual
node to change an area by −αMγ∆t for boundary nodes
or −(αi− π

3 )Mγ∆t for triple-junctions and keep all other
nodes fixed, there would be no error (up to machine pre-
cision). This is because the proposed method moves the
nodes in a manner that is consistent with the exact von
Neumann-Mullins relation.

If we move all nodes simultaneously, errors result from
“interference” between motions of neighboring nodes.
Consider for example the edge segment shown in Fig. 5.
If we move only node n1 by dn1 and leave all other
nodes fixed, the area of the body will change by exactly
−(a + b + c). Similarly, if we move only n2 by a motion
dn2, leaving all other nodes fixed, the area of the body
changes by −(c+ e+ f). When we move both nodes si-
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FIG. 5. Representation of part of an edge between two bodies.
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multaneously, we want to change the area of the body by
a + b + 2c + e + f . However, the simultaneous motions
of nodes n1 and n2 instead change the area of the body
by a+ b+ c+ d+ e+ f . This produces an absolute error
|d − c| = 1

2 |dn1 × dn2|. Since each dni is linear in ∆t,
the cross product dn1 × dn2, and hence the the error
resulting from the “interference” of the two motions, is
linear in (∆t)2.

Similar errors occur for all pairs of adjacent nodes mov-
ing simultaneously. Because any finite shape in our sys-
tem has a finite number of these “interference” errors,
the total error involved in the motion of all nodes will be
O(∆t)2. More precisely, the error is given by:

EP =
1

2

∣∣ N∑
i=1

dni × dni+1

∣∣, (5)

where the summation is around an individual grain.
In the Brakke method, the displacements of the nodes

are also linear in ∆t, and so it too produces “interference”
errors of order (∆t)2. However, in the Brakke case, the
displacement of each node (even when all other nodes
are fixed) results in errors that are O(∆t). In summing
these errors we arrive at a total error that is also O(∆t).
Though the expressions that demonstrate this are cum-
bersome for the general case, the validity of this state-
ment can be shown by consideration of a regular polygon.

Consider an isolated grain represented by a regular
polygon of m sides and radius r, as shown in Fig. 6.
The area of this grain is 1

2mr
2 sin

(
2π
m

)
. After one time-

r

FIG. 6. Regular polygonal grain with m sides and radius r.

step, the area of this shape should change by ∆A =
−2πMγ∆t. In the Brakke scheme 1, evolution by one
time-step changes the radius r of the grain by − Mγ∆t

r cos( πm ) ,

while in the proposed method, one time-step changes
the radius by − 2πMγ∆t

mr cos( 2π
m )

. The corresponding changes

1 We used the area normalization and effective area options
in Surface Evolver. These options are meant to approximate
motion by mean curvature. With these options, resistance to
motion of a node is proportional to the component of the area
associated with that node which is also perpendicular to the force
on the node. See [17] for more details.

in grain area are

∆AB = −Mγ
[
2m sin(

π

m
)∆t− m

r2
tan(

π

m
)(∆t)2

]
(6)

∆AP = −Mγ

[
2π∆t− 2π2(∆t)2

mr2sin( 2π
m )

]
. (7)

The absolute and relative errors are, therefore,

EB = Mγ
[(

2π − 2m sin(
π

m
)
)

∆t+
m

r2
tan(

π

m
)(∆t)2

]
(8)

EP = Mγ

[
2π2(∆t)2

mr2sin( 2π
m )

]
(9)

εB =
(

1− m

π
sin(

π

m
)
)

+
m

2πr2
tan(

π

m
)(∆t) (10)

εP =
π∆t

mr2 sin( 2π
m )

. (11)

The absolute error in the Brakke method has a leading
order term proportional to ∆t for all m; the relative error
has a leading order term entirely independent of the time-
step ∆t! On the other hand, in the proposed method, the
leading order term in the absolute and relative errors are
(∆t)2 and ∆t, respectively.

To show the impact of these differences, we inserted the
values of r and ∆t, taken from a simulation in which the
number of grains decreased from 25,000 to 20,000, into
Eqs. (10) and (11) for the relative errors of the two meth-
ods and tabulate the results in Table I for several levels
of discretization m. Clearly, the relative error in the pro-
posed method is several orders of magnitude smaller than
in the Brakke method.

m εB εP
3 17.31% 0.00919%
4 9.97% 0.00597%
5 6.46% 0.00502%
6 4.51% 0.00459%
7 3.33% 0.00436%
8 2.55% 0.00422%
9 2.02% 0.00413%
10 1.64% 0.00406%
11 1.36% 0.00401%
12 1.14% 0.00398%

TABLE I. Relative errors ε in the area change of a grain
discretized into m pieces using the Brakke method and that
proposed here; the radius is r = 0.003989L and the time step
size is ∆t = 1.21× 10−9MγL2.

Similar results can be obtained for grains with dif-
ferent numbers of neighbors. These calculations show
that for both vertex and non-vertex nodes, the Brakke
scheme produces an absolute error that is, to leading or-
der, proportional to ∆t, while in the proposed method
the absolute error is proportional to (∆t)2. In the Brakke
method, reducing the time-step by a factor of 100 reduces
the absolute error by a factor of 100, while in the pro-
posed method, it reduced the error by a factor of 10,000.
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(a)t=0, 1000 grains. (b)t=0.0001, 982 grains (c)t=0.001, 571 grains

(d)t=0.005, 157 grains (e)t=0.01, 82 grains (f)t=0.1, 12 grains

FIG. 7. Temporal evolution of a microstructure based upon the proposed method for MγL2 = 1. This microstructure was
initialized as a Voronoi tessellation of the unit square into 1000 grains.

Examination of Eqs. (8)-(11) shows that both methods
lead to identical errors in the very fine mesh limit (i.e.,
the number of sides m tends to infinity).

MICROSTRUCTURE EVOLUTION

The evolution of a typical microstructure using the
proposed method is shown in Fig. 7; the microstruc-
ture began as a Voronoi tessellation of the space based
upon 1000 randomly distributed points. The initial mi-
crostructure has grains with straight edges and triple-
junctions where three boundaries do not generally meet
at 2π/3. However, after a short time, the triple-junction
angles become very close to 2π/3 and many of the bound-
aries are curved. The structure coarsens over time result-
ing in fewer grains and a larger average grain size. Figure
8 shows a comparison of two microstructures, starting
from the same Voronoi initial condition state, where one
has been evolved using the method developed by Brakke
and the other has been evolved using the method pro-
posed here. While the microstructures appear similar,

(a)Brakke method (b)Proposed method

FIG. 8. Microstructures evolved from a single Voronoi tessel-
lation of 1000 grains after half of the grains have been con-
sumed, using (a) the Brakke method and (b) the proposed
method.

a grain-by-grain comparison shows that they are micro-
scopically quite different. This does not prove that one
method is correct and the other erroneous since small
numerical differences between the two methods can lead
to differences in the microstructures that increase over
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time. In the following sections, we will offer more quan-
titative descriptions of these systems that highlight the
differences between the two evolution methods.

GRAIN SIZE EVOLUTION

While the microstructure generated using the Brakke
method and that generated using the method proposed
here appear similar, the comparison presented above is
not quantitative. In this section we look at how the av-
erage grain size changes over time using these two ap-
proaches. To this end, we simulate the evolution of four
different microstructures using the two approaches, each
initialized by Voronoi tessellations based on random dis-
tributions of 25,000 points. For each method we consid-
ered two cases: a refined system, where each grain bound-
ary is described by approximately 5 line segments (i.e.,
placing 4 nodes between each triple-junction) and an un-
refined system, where nodes are placed only at the triple-
junctions. We evolved these system until 1000 grains re-
mained.

Figure 9 shows the change of the average grain area
over time, averaged over four runs, for each of the four
cases described above: Brakke method-refined, Brakke
method-unrefined, proposed method-refined, and pro-
posed method-unrefined. In all four cases, the average

 0
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 0  0.0002  0.0004  0.0006  0.0008

<
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>
 (

L
2
)

t (MγL
2
)
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Brakke refined

Proposed unrefined
Brakke unrefined

FIG. 9. The temporal evolution of the average grain area 〈A〉
for the four cases described above; four samples were run for
each case and the averages are plotted. Each system began
with 25,000 grains; when t = 0.0008, there remain slightly
more than 1000 grains. The typical error is about two or
three times the size of the dots; the errors are not shown for
the sake of clarity.

grain size appears to grow linearly with time, albeit at
slightly different rates. These rates are very similar with
the exception of the Brakke method-unrefined. This dis-
crepancy should not be surprising since the unrefined
discretization implies that the triple-junction angles are

not fixed at 2π/3, a condition necessary for the Brakke
method to accurately describe the evolution. The pro-
posed method implemented with the unrefined discretiza-
tion yields results consistent with the refined simulation
because deviations from the triple-junction angle are ac-
counted for within this method. For the refined cases
shown in Fig. 9, the slopes of the curves are 1.067 and
1.092 for the Brakke and proposed simulations, respec-
tively. While these slopes are close to unity, we know
of no rigorous analytical results that predict them; both
are close to the 1.12 ± 0.04 reported in Ref. [18]. See
also Ref. [19] which obtains slopes ranging from 0.5 to 20
using various simulations methods.

While these results show the evolution behavior of en-
tire systems, the exact von Neumann-Mullins relation
(Eq. (1)) describes how each individual grain evolves; i.e.,
at a constant rate that depends only on its number of
sides. Figure 10 shows the area growth rates at a single
time step for each of the 20,000 grains in a system that
was evolved from a 25,000 grain Voronoi microstructure
using the Brakke and proposed methods together with
a refined discretization. When Mγ = 1, these figures
should show sharp, horizontal lines at integer values of
3∆A
π∆t , where each line corresponds to a different number of
grain neighbors n. Figure 10(b) is an excellent descrip-
tion of the results for the proposed method. However,
there is discernible scatter in the data for the Brakke
method results, Fig. 10(a). Furthermore, the average val-
ues of 3∆A

π∆t differ slightly from the von Neumann-Mullins
prediction that these should all be integers.

Figure 11 shows results similar to those shown in
Fig. 10, but for the unrefined discretization (i.e., nodes
placed only at triple-junctions). The proposed method
shows results that accurately match the von Neumann-
Mullins relation even in this unrefined discretization.
However, the scatter in the results from the Brakke calcu-
lations is very much increased compared with that for the
refined discretization. Even more problematic is that the
mean position of each set of horizontal lines in Fig. 11(a)
is in strong disagreement with the prediction of the von
Neuman-Mullins exact relation. This again emphasizes
the necessity for maintaining a sufficiently refined dis-
cretization in the Brakke calculations. The robustness of
the proposed method for any discretization is one of its
main advantages.

The data in Figs. 11(a) and 11(b) can be summarized
in a plot of ∆A/∆t versus n. See Fig. 12 where we collect
data from a microstructure beginning with 10,000 grains
and evolving until 5000 grains remain, using both refined
and unrefined discretizations. The best fit line through
each set of data is 3∆A

πt = 0.99997n− 5.9998. The errors
here, provided by comparing this equation with Eq. (2),
are several orders of magnitude smaller than the 1− 3%
errors reported in Refs. [18, 20]. That the results are so
accurate even for the unrefined microstructure demon-
strates another strength of the proposed method.
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(b)Proposed method-refined

FIG. 10. Area growth rates ∆Ai/∆t for each grain in a 20,000 grain system for one time step using a refined discretization
using (a) the Brakke method and (b) the proposed method. We assign a random number to each grain. In this simulation
Mγ = 1.
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(a)Brakke method-unrefined
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(b)Proposed method-unrefined

FIG. 11. Area growth rates ∆Ai/∆t for each grain in a 20,000 grain system for one time step using an unrefined discretization
using (a) the Brakke method and (b) the proposed method. We assign a random number to each grain. In this simulation
Mγ = 1.

DISTRIBUTIONS

We also examine the topological (number of sides) and
area distributions for the different systems. The graphs
in Figs. 13 and 14 show these distributions after the sys-
tems have evolved from 25,000 grains until only 5000
grains remain. Examination of the topology distribu-
tions (see Fig. 13) shows that the Brakke and proposed
methods yield nearly identical results when refined, but
easily distinguishable distributions when unrefined. In
particular, when unrefined, the Brakke method yields
more small n and large n grains than does the proposed
method. Results very similar to those of the unrefined
Brakke method were obtained in Ref. [7] using a vertex

model; a refined version of this model [18] produces re-
sults more similar to those of the proposed method. Since
refining the discretization generally increases the accu-
racy of a simulation, this suggests that the distribution
of the proposed method is indeed the more accurate.

Examination of the grain area distributions (see
Fig. 14) shows that the Brakke and proposed methods
yield very similar results when refined; the proposed
method produces nearly identical results when refined
and unrefined, which is not the case for the Brakke
method. In particular, the Brakke method, when un-
refined, produces too many very small grains.

The observation that simulations that produce too
many grains of small areas also produce too many grains



8

-6

-4

-2

 0

 2

 4

 6

 8

 10

 2  4  6  8  10  12  14

∆
A

/∆
t 

3
/π

Number of Sides n

Proposed refined
Proposed unrefined

FIG. 12. Validation of the von Neumann-Mullins relation
from data obtained using the proposed simulation method
with both a refined and an unrefined discretization; Mγ is
set to 1. The von Neumann-Mullins relation predicts that the
points will fall on the line shown. The points here represent
data averaged over all grains and time steps in simulations
that began with 10,000 grains and ended with 5000. The
error bars here show the standard deviations magnified by a
factor of 100.
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FIG. 13. Topological (number of sides, n) distributions for mi-
crostructures evolved from four Voronoi tessellations of 25,000
grains until only a fifth of the grains remain.

of few sides is not surprising in light of Lewis’s Law [21],
which states that the area of a grain and its number of
sides are proportional. The excess of small grains in the
Brakke method on an unrefined mesh can be understood
by reference to Fig. 11. This figure shows that grains
with few sides shrink much too slowly than they should
according to the von Neumann-Mullins exact result. We
also note that this figure shows that large grains grow
too slowly. This is also consistent with the distributions,
although this effect is weaker.
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FIG. 14. Normalized grain area distributions (A/〈A〉) for mi-
crostructures evolved from four Voronoi tessellations of 25,000
grains until only a fifth of the grains remain.

DISCUSSION AND CONCLUSIONS

The von Neumann-Mullins relation in two-dimensions
provides an exact expression for the evolution of the size
of every grain in a polycrystalline microstructure. We
have developed a simulation method for evolving these
structures in a manner consistent with this exact rela-
tion. Brakke developed the Surface Evolver program that
is widely used for simulating grain growth (and other phe-
nomena where capillarity plays an important role). We
demonstrate that a new method, presented here, provides
better accuracy and efficiency than the Surface Evolver
method for simulating normal grain growth. The abso-
lute errors in the Brakke method are linear in the time
step, while those for the proposed algorithm are second
order in the time step for the same spatial discretization.
The most important advantage of the proposed method
is that it allows for the maximum coarsening of the spa-
tial discretization with little consequence to the quality
of the observed microstructures, the grain size and topol-
ogy distributions or the grain size kinetics. In order for
Surface Evolver to provide a similar level of precision, the
discretization must be very fine relative to the grain size.
This is necessary to ensure that the triple-junction an-
gles are accurately represented. In the proposed method,
errors in the triple-junction angle have little effect on the
evolution kinetics because the evolution of each node is
always consistent with the exact kinetic relation.

Because accurate simulations in the present method
are insensitive to accurate description of the triple-
junction angles, it is possible to coarsen the mesh to
the extent that the only nodes are those coincident with
the triple-junctions. This reduces the simulation from
tracking grain boundary segments to tracking triple-
junctions. While others have simulated grain bound-
ary evolution based only on tracking of triple-junctions



9

(so-called vertex models [7, 8]), the proposed method is
higher accuracy and is based upon the mathematically
exact von Neumann-Mullins relation. Since MacPherson
and Srolovitz [22] recently provided an exact extension
of this formula to all integer dimensions greater than one
[22], it should be possible to extend the present approach
to three and higher dimension much more efficiently than
trying to track the motion of all grain boundary elements.
In three-dimensions, this means tracking triple-junction
line segments, rather than grain boundary simplices. The
importance of the present efficiency gains should increase
in going from two to three and higher dimensions.
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coarsening in two dimensions by cellular-automaton,
Acta Materialia 49 (2001) 623–629.

[4] D. Raabe, Introduction of a scalable three-dimensional
cellular automaton with a probabilistic switching rule for
the discrete mesoscale simulation of recrystallization phe-
nomena, Philosophical Magazine A 79 (10) (1999) 2339–
2358.

[5] L.-Q. Chen, W. Yang, Computer simulation of the do-
main dynamics of a quenched system with a large num-
ber of nonconserved order parameters: The grain-growth
kinetics, Physical Review Letters, B 50 (1994) 15752–
15756.

[6] C. E. K. III, L.-Q. Chen, Computer simulation of 3-d
grain growth using a phase-field model, Acta Materialia
50 (2002) 3059–3075.

[7] K. Kawasaki, T. Nagai, K. Nakashima, Vertex models
for two-dimensional grain growth, Philosophical Maga-
zine Part B 60 (1989) 399–421.

[8] K. Fuchizaki, T. Kusaba, K. Kawasaki, Computer mod-
elling of three-dimensional cellular pattern growth, Philo-
sophical Magazine Part B 71 (1995) pages 333–357.

[9] H. Frost, C. Thompson, C. Howe, J. Whang, A two-
dimensional computer simulation of capillarity-driven
grain growth: Preliminary results, Scripta Metallurgica
22 (1988) 65–70.

[10] B. Sun, Z. Suo, W. Yang, A finite element method for
simulating interface motion, Acta Materialia 45 (1997)
1907–1915.

[11] J. von Neumann, Written discussion, in: Metal Inter-
faces, American Society for Metals, Cleveland, Ohio,
1952, pp. 108–110.

[12] W. Mullins, Two-dimensional motion of idealized grain
boundaries, Journal of Applied Physics 27 (1956) 900–
904.

[13] K. Brakke, Surface Evolver, Experimental Mathematics
1 (1992) 141–165.

[14] S. Cox, A viscous froth model for dry foams in the surface
evolver, Colloids and Surfaces A: Physicochemical and
Engineering Aspects 263 (2005) 81–89.

[15] K. Marthinsen, O. Hunderi, N. Ryum, The influence of
spatial grain size correlation and topology on normal
grain growth in two dimensions, Acta Materialia 44 (4)
(1996) 1681–1689.

[16] D. Reinelt, A. Kraynik, Simple shearing flow of a dry
kelvin soap foam, Journal of Fluid Mechanics Digital
Archive 311 (1996) 327–343.

[17] K. Brakke, Surface Evolver Manual (2005).
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