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In a previous paper, the authors described a simulation method for the evolution of two-
dimensional cellular structures by curvature flow that satisfied the von Neumann-Mullins relation
with high accuracy. In the current paper, we extend this method to three-dimensional systems.
This is a substantial improvement over prior simulations for two reasons. First, this method sat-
isfies the MacPherson–Srolovitz relation with high accuracy, a constraint that has not previously
been explicitly implemented. Second, our front-tracking method allows us to investigate topological
properties of the systems more naturally than other methods, including Potts models, phase field
methods, cellular automata, and even other front-tracking methods. We demonstrate this method
to be feasible in simulating large systems with as many as 100,000 grains, large enough to collect
significant statistics well after the systems have reached the steady-state.

INTRODUCTION

Current knowledge of grain growth in polycrystalline
materials relies on a combination of experimental obser-
vations of grain growth microstructures, developments
in kinetic theory, and more recently, simulations of mi-
crostructural evolution. This understanding is limited
by the difficulty of experimentally accessing the details
of a three-dimensional microstructure, by the anisotropy
of properties that govern grain boundary motion (e.g.,
grain boundary energy and mobility), and by impurities
and inhomogeneities in real materials (i.e., the presence
of a solute species or crystalline defects). Hence, despite
recent advances in three-dimensional microscopy [1, 2], in
characterizing the anisotropy of grain boundary energies
and mobilities [3, 4], and in analyzing the effects of impu-
rities [5, 6], the importance of theory and simulations de-
veloped for simplified and idealized microstructures can-
not be overstated. Indeed, a model that assumes material
isotropy, a grain boundary motion governed only by in-
terfacial thermodynamics (the Gibbs-Thomson relation),
and the absence of impurities provides fertile ground for
investigating basic features of the complicated process of
grain growth. As an example, these idealizations have
permitted an exact solution for the rate of growth of
any given grain within a microstructure. This was done
first in two dimensions by von Neumann [7] and Mullins
[8], and more recently in three and higher dimensions by
MacPherson and Srolovitz [9].

Nonetheless, even with this idealized model and the
accompanying exact solutions, our understanding of the
properties of the evolving microstructure remains rudi-
mentary. Difficulties with developing a theory of the
broader microstructure arise principally in understand-
ing the interactions between grains and from the many
degrees of freedom of a grain boundary network in three
dimensions. As an alternative, simulations have provided
important insights into the mechanisms and energetics of

grain growth [10, 11], but contemporary simulation meth-
ods do not rigorously adhere to the same assumptions
of isotropy and curvature-driven grain boundary motion
that have proven instrumental in developing the theory
for individual grains. In this paper, we present a new
method for simulating grain growth in an idealized mi-
crostructure that is consistent with these assumptions.
This new method for three-dimensional grain growth
obeys the exact relation for the rate of growth of ev-
ery grain, is more accurate and more efficient than prior
simulations, and is capable of investigating microstruc-
tural properties previously overlooked. An example of a
simulated three-dimensional microstructure is illustrated
in Fig. 1.

One of the most frequently used simulation methods
is a Monte Carlo Potts model [12–14], which represents
grains as ensembles of lattice points sharing the same
label. Evolution of the structure is performed by allow-
ing the label of a lattice point to change probabilisti-
cally based on an energy that is a function of the la-
bels of neighboring points. The implementation of this
method is relatively straightforward, without the need to
explicitly distinguish between the interior of grains and

FIG. 1. A system of 250 grains.



2

the grain boundaries or explicitly implement topologi-
cal changes in the grain boundary network. While this
approach has been used to simulate polycrystalline sys-
tems with more than 2,000,000 grains [15], certain ques-
tions remain. The discretization of the structure into vol-
ume elements limits the resolution of the simulation and
often introduces spurious anisotropy (e.g., facet forma-
tion on surfaces commensurate with the lattice) [12, 16].
Furthermore, the resulting microstructures do not rig-
orously maintain the angles along grain boundary junc-
tions as demanded by thermodynamics. Finally, the dis-
cretization inherent to this method introduces to the mi-
crostructure a length scale associated with the underlying
numerical lattice (unrelated to the atomic lattice length
scale), and makes measuring topological and geometrical
quantities difficult [17].

A closely related approach is the cellular automata
model [18, 19]. This model inherits the simplicity of the
Potts model’s discrete lattice structure and labeling sys-
tem, but allows a wider range of energetic conditions to
be introduced into the switching probabilities of the la-
bels. Recent work has been able to simulate systems
with roughly 30,000 grains [20]. Cellular automata mod-
els have many of the same limitations as the Potts model
though, including the possibility of faceting and lattice
pinning due to the lattice-based discretization of the mi-
crostructure.

Another approach developed for three-dimensional sys-
tems is the phase-field method [21, 22], where a smoothly
varying order parameter is defined for every grain ori-
entation. A given grain occupies the region where the
corresponding order parameter is one and all other order
parameters vanish. The energy of the system depends on
the values and gradients of all the order parameters, and
the system is evolved using a non-conserved Ginzburg-
Landau equation [23]. While this procedure allows for the
incorporation of sophisticated energetics, a large num-
ber of coupled nonlinear differential equations must be
numerically solved at every time step [24]. Further-
more, this method requires a finite grain boundary width
(rather than the sharp boundaries for the Potts and cellu-
lar automata models), implying that the thermodynamic
constraint on the angles at which grain boundaries meet
is relaxed. This finite width is a result of the requirement
that gradients of the order parameters be small, and the
consequent requirement for a very fine discretization of
the microstructure [25]. The resulting demands for com-
putational resources currently limit phase-field methods
to systems containing 30,000 grains [26].

The final primary approach to simulate three-
dimensional grain growth are various front-tracking
methods in which two-dimensional grain boundaries are
explicitly represented. Most front-tracking simulations
are either “vertex models”, which follow the motion of
only the quadruple points (where four boundaries meet)
[27], or are only slightly more refined, and allow for non-

planarity of the faces by introducing a further node in
the center of a face [28–30]. These methods provide only
coarse discretizations of the grain boundary network and
cannot adequately capture the curvature of the inter-
faces. A more severe limitation of these models is their
inability to represent two-edged faces and three-faced
grains, entities that certainly arise in physical systems
[31, 32].

Apart from vertex models, several other implementa-
tions of front-tracking methods exist. A recent simula-
tion [33] uses Brakke’s Surface Evolver [34] to construct
and evolve grain boundaries with a finer discretization
that is more able to reflect the boundary curvature, an
essential feature of grain growth. While Surface Evolver
is able to handle many of the topological transitions that
arise in the grain boundary network, it is currently un-
able to describe others that routinely occur during nor-
mal grain growth. When such transitions occur, the mi-
crostructure must be manually readjusted to account for
the change. A separate front-tracking approach [35] uses
finite element methods to provide an elegant, accurate
discretization of the microstructure. However, the com-
putational expense associated with preserving the mesh
quality has limited these simulations to fewer than 5000
grains.

All front-tracking methods benefit from the explicit
representation of the grain boundary network, facilitat-
ing calculations of topological and geometrical quantities
of interest. This creates certain challenges though, in-
cluding the need to explicitly address and program all
topological changes that occur during system evolution.
While the evolution of two-dimensional microstructures
involves only the disappearance of grains and edge-flips,
in three dimensions the disappearance of grains as well as
the disappearance and creation of edges and faces must
be implemented. This topological complexity, along with
the resources necessary to represent and evolve these
structures, has limited previous work in this area to sys-
tems of 6000 grains [33, 36, 37].

Of particular note is that all of these prior simula-
tion methods generally fail to satisfy the MacPherson–
Srolovitz relation [9], which extends the classic von
Neumann-Mullins relation to three dimensions and gov-
erns the rate of change of volume of each grain. Even
front-tracking methods, which prescribe velocities of in-
dividual nodes according to local curvatures and which
increasingly approximate the correct solution with refine-
ment of the surface mesh, fail to satisfy the MacPherson–
Srolovitz relation for any finite discretization. It is un-
clear how the error introduced by these method impacts
the microstructures that appear in the steady-state.

In a previous paper [38], the authors introduced a
front-tracking method for two-dimensional grain growth
that accurately satisfies the von Neumann-Mullins rela-
tion [7, 8]. In what follows, we extend this method to
three dimensions, maintaining the same high level of ac-
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curacy in satisfying the exact MacPherson–Srolovitz re-
lation [9]. Specifically, the error in displacement of the
nodes during a time step ∆t is of order O(∆t2), and the
relative error in the rate of change of the volume of a
grain from the discretization of the surface mesh is found
to be small. Furthermore, our implementation allows us
to model large systems, observe them as they evolve into
steady-state microstructures, and examine many of their
topological and geometrical properties in a very straight-
forward manner. In this paper, we provide compiled
statistics from eight grain growth simulations, each be-
ginning with 100,000 grains, representing a substantial
increase in the size and accuracy of the simulations be-
yond the largest currently appearing in the literature.

DATA STRUCTURE AND ALGORITHM

The fundamental equation that governs normal grain
growth in three-dimensional isotropic polycrystalline ma-
terials is the MacPherson–Srolovitz relation [9] which de-
scribes the volume evolution of individual grains:

dV (D)

dt
= −2πMγ

(
L(D)− 1

6
M(D)

)
, (1)

where V (D) is the volume of grain D, L(D) is a one-
dimensional measure of the grain size called the mean
width, and M(D) is the sum of the lengths of all triple
edges (along which three grains meet) of the grain; M and
γ are constants describing the grain boundary mobility
and grain boundary energy, respectively. This result is
exact for normal grain growth in isotropic polycrystalline
materials.

The algorithm described below accurately evolves a tri-
angulation of the grain boundary network, but allows
considerable variation in the triangulation used. This
algorithm requires that every grain be represented as a
closed collection of faces (two dimensional grain bound-
aries). Every face is composed of a collection of trian-
gular facets with face nodes on the interior of the face
and a number of boundary nodes around its perimeter.
Boundary nodes located at points where four grain meet
are called vertex nodes, while boundary nodes located
at points where three grains meet are called edge nodes.
Line segments that connect adjacent boundary nodes are
triple edge segments, while line segments connected to at
least one face node are regular edge segments.

The general algorithm for evolving the microstructure
involves two parts. First, we calculate the appropriate
displacements for all nodes at every time step and move
the nodes of the triangulation accordingly. Second, we
implement topological changes that occur while the sys-
tem evolves, such as the disappearance of edges and faces.
We first describe the node displacements. The analytic
solution for the volume evolution of each grain is given
by Eq. 1. We discretize the time and volume variables

FIG. 2. Illustration of an exterior angle α with respect to the
grain sitting below the two faces for a typical edge e.

in this equation and solve for the change in grain volume
∆V (D):

∆V (D) = −2πMγ

(
L(D)− 1

6
M(D)

)
∆t. (2)

Next, we localize this equation for each node of the grain.
That is, for each grain D we calculate “local” versions of
L(D) and M(D) for every node, and then change the
volume of grain D near each node by an appropriate
amount. Done carefully, this will ensure that Eq. 2 will
be satisfied for every grain at every time step with an
error proportional to the square of the time step ∆t.

We briefly explain the terms L(D) and M(D). The
first is a linear measure known as the mean width which
measures the total mean curvature on the surface of a
grain; this is a key quantity in describing systems that
evolve via mean curvature flow.1 Because our discretized
grains are piecewise flat, the mean width L reduces to a
sum over all edge segments of a grain. If ei is the length
of the ith edge segment, and αi is the exterior angle at
that edge segment with respect to the same grain, then:

L(D) =
1

2π

∑
i

eiαi, (3)

where i is indexed over all edge segments (both regular
and triple) of grain D. Figure 2 shows the exterior angle
α of a typical edge e.

The second term M(D) measures the length of all
triple edges around grain D, i.e. all edges at which three
different grains meet. If ej is the length of a triple edge
segment j of grain D then:

M(D) =
∑
j

ej , (4)

where j is indexed only over triple edge segments of the
grain. In this description, L(D) and M(D) are then de-
fined as sums over the edge segments of a grain. However,
we can also define these quantities as sums over the nodes

1 More information about the mean width can be found in [9],
and especially in its Supplementary Information. The interested
reader can find there a more elaborate definition of the term, as
well as many helpful examples. To date, there is no standard
reference on this subject.
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of a grain. We can define “local” versions of L(D) and
M(D) at every node n of a grain D:

Ln(D) =
1

4π

∑
i

eiαi, (5)

Mn(D) =
1

2

∑
j

ej , (6)

where i is indexed over all edge segments (both regular
and triple) of grainD that are incident with a node n, and
j is indexed only over the respective triple edge segments.
We can then rewrite Eqs. 3 and 4 as sums over nodes:
L(D) =

∑
k Lk(D) and M(D) =

∑
kMk(D) where k is

indexed over all nodes of a grain. Because the faces of
our grains are piecewise flat, the amount by which the
volume of a grain will change by moving node n by dn is

∆Vn(D) =
1

6

∑
i,j

(ei × ej) · dn, (7)

where ei and ej are all ordered pairs of consecutive edge
vectors pointing from a node n to its neighboring nodes,
ordered clockwise with respect to an outward-pointing
normal; here no distinction is made between regular and
triple edge segments.

We can now use these “local” versions of L(D),M(D),
and ∆V (D) to define a local version of Eq. 2:

∆Vn(D) = −2πMγ

(
Ln(D)− 1

6
Mn(D)

)
∆t. (8)

Since all terms on the right are determined, we have only
to substitute for ∆Vn(D) using Eq. 7 and solve for dn
to find a displacement that will satisfy the MacPherson–
Srolovitz relation locally at every node of the grain D.

The actual motion of a node is given by three unknown
spatial variables. The grains adjacent to face nodes, edge
nodes, and vertex nodes provide two, three and four
constraining equations of the type described above, re-
spectively. Not all of these constraints are independent
though, since the volume of all grains incident with a
node should be conserved with that node’s displacement.
This leaves three unknowns and one, two and three con-
straints for each face node, edge node, and vertex node,
respectively. That is, there remains one degree of free-
dom when moving edge nodes and two degrees of freedom
when moving face nodes.

Node displacements are decomposed into two parts.
First, we move nodes by distances that appropriately
change the volumes of the adjacent grains. Specifically,
we move each face node in the unique direction that
minimizes the magnitude of the node displacement; this
direction is roughly perpendicular to the face. Like-
wise, we move each edge node in the unique direction
that minimizes the magnitude of that node displacement;

FIG. 3. A single grain.

this direction is orthogonal to the line segment connect-
ing the edge node with the two neighboring boundary
nodes. The direction of the vertex node displacement
is completely determined. Because each individual dis-
placement satisfies the local, discretized version of the
MacPherson–Srolovitz relation (Eq. 8), the only error in-
volved in these displacements are “interference” errors
that result from the simultaneous movement of adjacent
nodes. In the next section we show that the this error is
small.

In order to maintain numerical stability, we then move
each face node as close as possible to the center of mass
of the boundary of the adjoining triangles and each edge
node as close as possible to the center of its two adjacent
boundary nodes. These displacements help to keep face
nodes from wandering towards face boundaries and edge
nodes from becoming too close to one another, both of
which can cause instability. While individual face nodes
and edge nodes may be moved in a way that preserves
the volumes of the two or three neighboring bodies, the
simultaneous motion of all of the face nodes and edge
nodes in this manner creates further “interference” er-
rors identical to the ones mentioned above. Since this
error is small, we believe that it is outweighed by the
improvement in numerical stability.

At first sight, the displacements described in this sec-
tion may not resemble motion by mean curvature, since
we do not attempt to move nodes in their normal di-
rections and with magnitudes proportional to their local
curvature. Indeed, a more naive approach may attempt
to define a normal direction at every node, and move each
node in that direction by an amount proportional to the
mean curvature at that point. The difficulty is that while
this method adequately describes the necessary displace-
ments at points commensurate with the nodes, it does
not adequately describe the motion of the other points
of the triangulation. In the current method, rather than
considering the velocities of a finite number of points and
moving the surface as those points require, we consider
the way in which the volume of a grain changes with
the movement of entire triangular facets. This allows
us to accurately satisfy the exact MacPherson–Srolovitz
relation without resorting to arbitrarily refined surface
meshes.
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FIG. 4. A volume element associated with a triangular facet
on the grain boundary.

Our simulations in particular use a single face node
located in the center of a given face to simplify the im-
plementation and to reduce the computational require-
ments. An example of a single, discretized grain from
our simulations is given in Fig. 3. Edge nodes are added
to make the discretization smoother, and occasionally re-
moved when neighboring ones become too close. Two ad-
jacent boundary nodes and a neighboring face node then
determine a small, flat triangular facet of a face, as seen
in the figure.

ERROR ANALYSIS

We now consider the error associated with evolving a
given triangulation one time step by the above equations.
This error is measured by comparing the volume change
of a grain in one time step to that predicted by the exact
solution for a grain of the same shape, the discretized
MacPherson–Srolovitz relation (Eq. 2). We demonstrate
that our method produces errors from the discretization
of time that are proportional to (∆t)2 to leading order,
independent of the triangulation used.

Consider a simple tetrahedron like that shown in Fig. 4.
Imagine one of its corners, c, placed in the center of a
discretized grain, and the other three corners, v1, v2,
and v3, placed at the three corners of a triangular facet
of that grain. Every grain can be decomposed into a
finite number of these tetrahedra, with one tetrahedron
associated with each triangular facet of the grain.

Before moving any of the vertices, the volume of the
tetrahedron can be determined from the edge vectors e1,
e2, and e3: V = 1

6e1 · (e2 × e3). If we only move v1

by dv1∆t, then the volume would change by 1
6 (e2×e3) ·

dv1∆t. Likewise, if we only move v2 or v3, then the
volume would change by 1

6 (e3 × e1) · dv2∆t or 1
6 (e1 ×

e2) ·dv3∆t, respectively. An “exact” solution involved in
moving all three vertices should then change the volume
by ∆V (D) = 1

6 [(e2 × e3) · dv1 + (e3 × e1) · dv2 + (e1 ×
e2) · dv3]∆t. However, if we move all three vertices at
the same time, we find that the volume actually changes
by ∆Va(D) = 1

6 (e1 + dv1∆t) · ((e2 + dv2∆t) × (e3 +
dv3∆t))− 1

6e1 · (e2 × e3). The difference between these
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FIG. 5. We graph the rate of change of volume against the
rate of change of the volume predicted by the MacPherson–
Srolovitz relation for (a) Surface Evolver and (b) the current
method. Data is collected from one time-step in a system
with 1000 grains.

two numbers is the “interference” error involved in these
node displacements:

∆Va(D)−∆V (D) = 1
6e1 · (dv2 × dv3)∆t2

+ 1
6e2 · (dv3 × dv1)∆t2

+ 1
6e3 · (dv1 × dv2)∆t2

+ 1
6dv1 · (dv2 × dv3)∆t3. (9)

Since the ei and dvi are independent of ∆t, the error
for these overlapping displacements is, to leading order,
proportional to ∆t2. Since each grain can be decomposed
into a finite number of these tetrahedra, the total error
for each grain is a sum of these interference errors and is
thus also of order O(∆t)2.

One way to visualize the magnitude of the error in-
volved in this method is by plotting ∆V/∆t for each grain
against the rate of change of the volume predicted by the
MacPherson–Srolovitz relation. Figure 5 shows these val-
ues for the current method and for Surface Evolver [34], a
prominent front-tracking program that is used for grain-
growth simulations [33, 39]. It is clear from these data
that Surface Evolver produces much larger errors from
the discretization of time than does our method.

There remains the question of the error introduced
by the triangulation itself, i.e. from the discretization of
space. Generally speaking, for a triangulation where the
linear size s of the individual triangles is small and the
triangles are equiaxed, the error in the mean width in-
troduced by discretizing a continuous grain D scales as
(s/L(D))2 [9]. Regrettably though, a precise calculation
of this error is not possible since an exact description
of the surface of any grain that occurs during normal
grain growth is not available. As evidence of the dif-
ficulty involved, suppose that the limiting shape of the
faces of a two-faced grain in a physical system are spher-
ical caps. Consider that in an infinitesimal time interval,
every infinitesimal piece of the spherical cap moves an



6

equal amount toward the center of the coincident sphere.
A geometric construction reveals that this would cause
the dihedral angle of the faces of the grain to depart
from 2π/3, despite the requiremet that the dihedral an-
gle be an invariant of the physical system. Therefore, a
grain with spherical caps does not evolve in a self-similar
fashion during normal grain growth, and cannot be the
limiting shape of the two-faced grain.

Nevertheless, a spherical cap may be a reasonable ap-
proximation for a continuous face in a physical system
[40]. Using our triangulation, the discrete analogue to
this continuous face is a pyramid over a polygonal base.
The relative error introduced by our triangulation is es-
timated by comparing the integrals of the mean curva-
ture over the continuous face and the corresponding dis-
cretized face, and is found to be about one percent. We
stress that this is a consequence of the triangulation, and
not of the algorithm, which is entirely amenable to the
use of a finer surface mesh. Furthermore, this error in our
implementation is offset by the fact that our choice has
allowed us to perform a front-tracking simulation con-
taining more than a factor of ten more grains than other
comparable simulations [33, 36, 37]. Finally, we point out
that the same error is not generally reported for other
simulation methods, and therefore may not be compared
with ours. Further details of the relevant calculation may
be found in the supplementary material.

TOPOLOGICAL CHANGES

Aside from calculating displacements for all nodes at
every step we must also describe appropriate topological
changes that occur during coarsening, namely, the disap-
pearance of grains and the disappearance and creation of
edges and faces. In three-dimensional systems, all typi-
cal topological events can be decomposed into combina-
tions of five elementary topological changes: the disap-
pearances of (a) edges, (b) triangular faces, (c) two-sided
faces, (d) tetrahedral grains and (e) three-faced grains.2

These events occur when the length of an edge, the area
of a face, or the volume of a grain approaches zero. Since
none of these quantities can be negative, we are forced to
make appropriate changes in the system by deleting these
entities and creating new ones in their place. Figure 6
illustrates these five topological changes.

Although we did not initially expect them, the occur-
rence of two-sided faces and three-faced bodies during
normal grain growth is widely reported in the literature,
including in numerous experimental studies [31, 32, 41]
and several recent simulations [33, 36, 37]. Curiously,

2 These five could be further decomposed into combinations of only
three fundamental events.

these topological events do not seem to appear in some
otherwise detailed discussions of three-dimensional grain
growth, including [42].

The two most frequent changes that occur in an evolv-
ing system are the disappearance and creation of edges
and triangular faces. When edges disappear new triangu-
lar faces are created, and when triangular faces disappear
new edges are created. In this sense these changes can
be considered duals and are “reversible”; the other three
topological changes are not reversible. As for the occur-
rence of more complicated topological events, consider
the disappearance of a grain that has two faces with two
sides and two faces with four sides. Such a grain is col-
lapsed by first removing a two-sided face. The remaining
grain, which has three two-sided faces, is then removed.
This topological trajectory is illustrated in Fig. 7. All
topological events that we have observed in the evolu-
tion of our systems may be decomposed in this manner,
meaning that the algorithm is simplified by requiring only
a small number of topological events to be implemented.
Since the details of the code are lengthy and depend on
the triangulation, we do not describe them here.

MICROSTRUCTURAL EVOLUTION

We now report on the simulation results from our im-
plementation of the algorithm described above. The ini-
tial condition for all of our simulations are Voronoi tes-
sellations of 100,000 points randomly distributed in a
unit cube with periodic boundary conditions. Setting the
length of the unit cell to L, we measure time in dimen-
sionless units of L2/Mγ, where M and γ are the grain
boundary mobility and energy, respectively (as described
above).

In the initial Voronoi tessellation, all grains have flat
faces and straight edges. The evolution of a typical mi-
crostructure is illustrated by still images in Fig. 8, and
by an animation in the supplementary material. After
a short time, the faces and edges begin to curve: angles
between adjacent faces at triple edges quickly approach
2π/3 and the angles between triple edges at vertex nodes
approach the tetrahedral angle arccos (−1/3) ≈ 109.5◦.
The microstructure gradually coarsens over time, result-
ing in fewer grains and a larger average grain size. Fig-
ure 9 shows that the average grain volume 〈V 〉 increases
linearly with t3/2 after the initial transient. Assuming
that the microstructure remains in the steady-state, this
behavior can be derived analytically using dimensional
analysis [43].

Finally, an animation showing the evolution of a single
three-dimensional grain is available online with this pa-
per. Many of the topological changes described in Section
may be readily identified as the grain shrinks.
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(a)and (b) (c)

(d) (e)

FIG. 6. Five basic topological changes: (a) An edge disappears and becomes a triangular face. (b) A triangular face disappears
and becomes an edge. (c) A two-sided face disappears; two neighboring faces merge. (d) A grain with four triangular faces
disappears into a vertex. (e) A grain with three two-sided faces disappears into a triple-edge.

FIG. 7. This quickly shrinking grain is removed in two steps:
first we remove a two-sided face, then we delete the remaining
three-faced grain.

STEADY-STATE

During grain growth the microstructure evolves toward
a statistically self-similar state, i.e. a state in which prop-
erties are statistically time-invariant up to a change in
scale. One way of observing this process is by observing
scale-independent properties as they relax toward asymp-
totic, steady-state values. Figures 10 and 11 show how
the average number of faces per grain 〈FG〉 and the aver-
age number of edges per face 〈EF 〉 change as the system
evolves. Both of these quantities decrease over time from
their initial values, characteristic of the initial state [44],
but then asymptotically approach constant values which
are characteristic of steady-state grain growth.

A frequent prediction in the literature [40, 45, 46] is
that the average number of faces per grain should be
about 13.397 in the steady-state, while Coxeter [47] pro-
vided some justification that this quantity should be
around 13.564. We observe that the average number of
faces per grain and edges per face remain fixed in the
steady-state at 13.769± 0.016 and 5.128± 0.001 respec-
tively, close but measurably different from Coxeter’s pre-
diction. These data were obtained from the values at
time t = 0.00125, when ≈ 10, 700 grains remained in

each simulation.

Although it is not apparent how to fully character-
ize steady-state microstructures, we do know the values
of several steady-state, scale-invariant properties. For
example, the distribution of grain shapes in such a mi-
crostructure must have a definite form, as does the dis-
tribution of normalized volumes of the grains. Figures
12, 13 and 14 show the distribution of edges per face,
the distribution of faces per grain, and the distribution
of normalized grain volumes. These results show clearly
that the steady-state microstructure is quite different
from the initial Voronoi microstructure; this is most ap-
parent when considering the distribution of normalized
grain volumes. Note that these data are consistent with
earlier simulations of smaller systems using other three-
dimensional grain growth simulation methods [30, 33].

The present results represent the largest three-
dimensional grain growth simulations performed to date
using a front-tracking method. Large data sets are im-
portant for several reasons, namely: (1) they ensure that
simulations evolve long enough to reach the steady-state
microstructure, (2) they ensure that sufficient grains
remain in the steady-state to capture reasonable mi-
crostructural statistics, and (3) they ensure that the fea-
tures of the statistical distributions are sufficiently accu-
rate for comparison with experiments, other simulations
and theory. Figure 13 shows a comparison of the dis-
tribution of faces per grain for the present simulation
results, a phase field model [21], two Monte Carlo Potts
models [12, 48], a front tracking model [33], and a vertex
model [30]. Comparison shows that the current method
not only produces significantly smoother curves than the
previous methods, but agrees with the mean of the scat-
tered results drawn from smaller simulations.
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(a)10,000 grains (b)5003 grains (c)1998 grains
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FIG. 8. Temporal evolution of a microstructure using the current method. This microstructure was initialized as a Voronoi
tessellation of 10,000 points randomly distributed in the unit cube with periodic boundary conditions. The images were
constructed by removing all grains that do not intersect a randomly chosen plane z = 0 and imaging the remaining three-
dimensional grains.

DISCUSSION AND CONCLUSIONS

The MacPherson–Srolovitz relation provides an exact
expression for the volume evolution of individual grains
in isotropic polycrystalline microstructures. We have de-
veloped a simulation method for evolving these struc-
tures in a manner consistent with this exact relation. We
demonstrate that the present method is simultaneously
capable of high accuracy and computational efficiency.
Furthermore, the present method accounts for all types
of topological reactions that are observed to occur during
normal grain growth.

The next step is to use this method to explore more
complicated questions regarding the transient period and
the steady-state. For example, how long do materials
take to reach the steady-state from different initial con-
ditions? What sort of grain shapes appear in the steady-
state? For example, what fraction of grains are Kelvin
tetrakaidecahedra? What correlation might we expect to
find between neighboring grains of various degrees? Our
method provides a robust tool for investigating features

of the steady-state microstructure which have hitherto
been inaccessible by simulation, either from difficulties
with identifying geometric features or from limited sys-
tem size. The eventual goal is to fully characterize the
steady-state of cellular structures that evolve via mean
curvature flow.

While the purpose of this paper is primarily to describe
a new approach to simulating normal grain growth that
offers significant advantages compared to existing meth-
ods, we present an additional example of the type of ques-
tions that can be addressed with the current method.
The data structure inherent to our methodology allows
the simple identification of topological features that can
be used to determine the distribution of topologically dis-
tinct polyhedra within the microstructure. Rather than
simply measuring the distribution of faces per grain (as
in Fig. 13 and other studies), we are able to specify
both the number and types of these faces. For example,
Fig. 15 shows the relative frequencies of different eight-
faced grains in the Voronoi and steady-state systems. Ex-
actly 14 topologically distinct polyhedra with eight faces
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FIG. 9. The average grain volume 〈V 〉 as a function of t3/2.

Each system began with 100,000 grains; when t3/2 = 0.001,
there remain slightly fewer than 500 grains. Data points are
averaged from eight simulations; error bars indicate standard
deviation from the mean.
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FIG. 10. The average number of faces per grain 〈FG〉 de-
creases as the system evolves away from the initial Voronoi
structure. As the system approaches the steady-state, this
number asymptotically approaches a fixed value close to
13.769 ± 0.016. Data points are averaged from eight simula-
tions; error bars indicate standard deviation from the mean.

can appear in the initial Voronoi tessellation [49]. Two of
them have exactly two three-sided faces, two four-sided
faces, two five-sided faces, and two six-sided faces, while
the remaining types of grains can be distinguished by the
number of faces of each type. After the systems evolve,
two-sided faces can appear and more polyhedra are possi-
ble, though Fig. 15 excludes grains with two-sided faces.
Figure 15 shows that the distribution of different types
of eight-faced grains is much narrower in the steady-state
than in the initial Voronoi construction. Indeed, in the
steady-state a single topological type accounts for over
half of all eight-faced grains.

This example demonstrates the potential our method
has for collecting statistically significant measurements of
novel topological characteristics of the grain growth mi-
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FIG. 11. The average number of edges per face 〈EF 〉 decreases
as the system evolves away from the initial Voronoi structure.
As the system approaches the steady-state, 〈EF 〉 approaches
5.128 ± 0.001. Data points are averaged from eight simula-
tions; error bars indicate standard deviation from the mean.
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FIG. 12. Distribution of faces with different numbers of
edges from Voronoi configurations and from steady-state mi-
crostructures averaged from eight simulations; error bars in-
dicate standard deviation from the mean.

crostructure, well within the steady-state regime. While
some of our results are similar to those previously col-
lected by others and are included here for the purpose
of validation, the results given in this section represent
a new class of statistics not heretofore reported for grain
growth. We intend to focus on these and other three-
dimensional microstructural statistics in a future paper.
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