CLASSIFYING STRUCTURE
IN TWO-DIMENSIONAL POINT SETS
VIA VORONOI TOPOLOGY

EMANUEL A. LAZAR

ABSTRACT. Many two-dimensional systems can be studied as collections of
particles in two dimensions. Understanding the way in which such sets of
particles are arranged is thus a natural and important question. We suggest an
approach towards classifying structure in such systems using Voronoi topology.

1. INTRODUCTION

We often encounter sets of particles in two dimensions whose “structure” we
would like to analyze. What can we say about the way in which such particles are
ordered? Perhaps we wish to identify defects in a single-phase system, or perhaps

FIGURE 1. A two-dimensional system of particles.

we wish to identify different phases in a multi-phase system. Figure 1 illustrates a
polycrystalline system with several defects, including grain boundaries, dislocations,
and vacancies. Although these defects can be seen with our eyes, defining them
precisely enough as to make them amenable to automated computer analysis is
difficult.

Here we suggest a topological method, based on Voronoi topology, for classifying
structure in two-dimensional sets of particles. This approach allows us to naturally
ignore small fluctuations in atomic positions associated with thermal vibrations and
small strains, without the need for quenching or temporal averaging. Many ideas
suggested here can be considered as an extension of ideas first introduced in [1].
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2. VOrRONOI TOPOLOGY

One way to define the “local structure” of a particle in a two-dimensional system
is by considering its number of neighbors. Sometimes this number is called the
“coordination number” of a particle. Although we have a rough intuition of what
it means for a particle to have “neighbors”, it is not obvious how to make this
term precise. One way to do this is by considering all other particles which are
at most a fixed distance away. One limitation of this general approach is the need
for choosing that fixed distance. How large should it be? Should it be the lattice
constant? Should it be slightly larger than the lattice constant, so that particles
slightly further away are included? If so, how much larger? Should this cutoff
distance be system-dependent?

Alternatively, we might always consider the set of n nearest neighbors as the
neighbors of a particle. One limitation of this approach that particle A might be a
neighbor of particle B, even though particle B is not a neighbor of particle A. It
seems reasonable to desire that the property of being a neighbor is reflexive.

A third approach that does not require choosing a cutoff distance, and which is
also reflexive, involves using Voronoi tessellations. The Voronoi cell of a particle
in a system of particles is the region of space closer to that particle than to any
other. Constructing a Voronoi cell for every particle in a system subdivides the
larger space into convex polygonal regions, each containing a single particle near
its center. We can then define the number of neighbors of a particle as the number
of edges of its Voronoi cell. The idea behind this definition is that every edge of
a Voronoi cell indicates the presence of another, neighboring, particle in a system.
This can be seen in Figure 2, which shows a central Voronoi cell with six edges;

FIGURE 2. A central particle with a Voronoi cell with six edges;
each edge is shared with a neighboring particle.

each edge is shared with a single neighboring particle. For this reason, the number
of edges of a Voronoi cell can be considered as a proxy for counting the number of
neighbors of a particle.

Figure 3 illustrates the same polycrystalline system shown before, this time with
each particle colored according to the number of edges of its Voronoi cell. The
majority of particles have six edges and are colored yellow; other Voronoi cells have
five or seven edges and colored blue and blue respectively.

If we use the Voronoi cell of a particle to define its number of neighbors, then
we can use this number to define the local “structure” near the particle. For
example, particles whose Voronoi cells have 6 edges might be called “bulk”, whereas
those with more or fewer neighbors we can might label as defects. Once we have
identified defects at the single-particle level, we can then identify larger-scale defects
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FIGURE 3. A two-dimensional system of particles. Each particle
is colored by the number of edges of its Voronoi cell.

as contiguous regions of particle-defects. For example, notice a ring of 3 blue and
3 blue particles on the left side of the illustrated polycrystalline system. This
ring identifies the presence of a vacancy. A long chain of alternating red and blue
particles might indicate the presence of a high-angle grain boundary. And so on
and so forth.
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FIGURE 4. A vacancy seen as a collection of three 5-sided Voronoi
cells and three 7-sided cells.

3. EXTENDED VORONOI TOPOLOGY

We sometimes find Voronoi cells with 6 edges which do not appear as part of
the bulk. This motivates us to extend the simple model suggested above, in which
we define the local structure of a particle as its number of Voronoi edges. Instead,
we might consider the Voronoi structure not only of the immediate neighbors, but
also of the second nearest neighbors. We can then define two particles to have the
same local structure if the Voronoi structure around them and their neighbors is
identical.

Figure 5 illustrates three central particles, each with a six-sided Voronoi cells. If
we only used the number of Voronoi neighbors to classify local structure, then we
would consider the three particles to have the same local structure. However, if we
take into consideration the Voronoi structure around the immediate neighbors, then
the three central particles each has a different local structure: the central particle
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FIGURE 5. Three central particles with six-sided Voronoi cells.
If we look beyond the immediate Voronoi neighbors then we can
notice that the “local structure” is different near the three central
particles.

in (a) is surrounded by 6 particles with hexagonal Voronoi cells; the central particle
in (b) is surrounded by 5 particles with hexagonal Voronoi cells and 1 particle with
a seven-sided Voronoi cell; the central particle in (c) is surrounded by six particles
with different kinds of Voronoi cells.

4. CANONICAL CODES

If we want to determine whether two particles have the same local structure,
then we need a good way to record that information. Consider for a moment
the arrangement of particles in Figure 5(c). The central particle has 3 neighbors
with hexagonal Voronoi cells, 1 neighbor with a pentagonal Voronoi cell, and 2
neighbors with seven-sided Voronoi cells. If we only record this information, then
we fail to capture information regarding the way in which those neighbors are
arranged relative to one another. Instead we should record the way in which they
are ordered. We could, for example, list the number of edges of the Voronoi cell
of each neighbor as arranged in a clockwise fashion. For example, if we begin with
the neighbor immediately below the central particle, we can write (6,7,6,6,7,5). If
we begin with the neighbor immediately above the central particle we would write
(6,7,5,6,7,6). Although these two sets of numbers indicate the same information,
it is not immediately obvious whether the two local structures are identical by
looking at them. “Local structure” should not depend on which neighbor we use
first for our list and should not depend on whether we list neighbors in clockwise
or counterclockwise manner.

We therefore adopt the following convention. For every arrangement of particles,
we use the lexicographically smallest representation of the ordering, considered over
all cyclic permutations and both orientations (clockwise and counterclockwise).
That is, for any choice of N neighbors, we consider all cyclic permutations of
(n1,n9,...ny) and all cyclic permutations of (ny,ny_1,...,n2,n1), and choose
the lexicographically smallest such representation. We then say that two particles
have the same local structure if and only if they have the same canonical list
of Voronoi neighbor edges. The examples in Figures 5(a), (b), and (c) have the
canonical codes (6,6,6,6,6,6), (6,6,6,6,6,7), and (5,6,7,6,6,7) respectively.

5. LocAL ORDERS IN IDEAL STRUCTURES

In order for the codes to be useful in identifying structure in realistic systems,
it is helpful to determine the set of structure codes associated with a particular
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FIGURE 7. A special kind of crystal, perturbed via small thermal
vibrations.

kind of phase. For example, in a perfect close-packed two-dimensional system, we
should expect that the code associated with every particle is (6,6,6,6,6,6). If we find
particles with other codes, then we can know that they reside nearby to defects.
These codes are “stable” under perturbations of the particle positions [2].

What happens if instead of a close-packed system we consider a less trivial crys-
tal? Figure 6 illustrates a close-packed lattice with a sublattice removed. Instead
of all particles having hexagonal Voronoi cells, now many particles have pentago-
nal Voronoi cells. Particles in this structure can have one of four canonical codes:
(6,6,6,6,6,6), (5,6,6,6,6,6), (5,5,6,6,6) and (5,5,6,6,6,6).

Unlike in the close-packed case, Voronoi cells here are highly unstable, in that
small perturbations of the positions of the particles will change the structures
codes. Figure 7 illustrates a “finite-temperature” version of the special struc-
ture. Notice that many of the five-sided Voronoi cells change to six- and seven-
sided Voronoi cells. Along with changing the topology of the Voronoi cells, small
perturbations also change the associated canonical codes. Codes that were pre-
viously (6,6,6,6,6,6) remain unchanged. However, particles initially having codes
(5,6,6,6,6,6), (5,5,6,6,6), and (5,5,6,6,6,6) can change. In particular, particles with
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(5,6,6,6,6,6) codes in the unperturbed structure can either remain unchanged or else
change to (6,6,6,6,6,7). Particles that began as (5,5,6,6,6,6) can change to either
(5,6,6,6,6,7), (5,6,6,6,6,6), or (6,6,6,6,6,7). Particles that began as (5,5,6,6,6) can
resolve into many more types: (6,6,6,6,7), (6,6,6,7,7), (5,6,6,6,7,7), (5,6,6,6,6,7,6),
and (5,6,6,6,5,7,7). A complete enumeration of all possible codes and changes re-
sulting from small perturbations would take some more work; some details related
to this can be found in [2].

6. SUGGESTED APPROACH

Before describing a possible numerical approach, it is important to consider a
theoretical problem of fundamental importance (in my opinion at least) related to
identifying different “phases” in a sample. Namely, it seems to me that there are
no precise definitions of the meaning “phase”. For example, in Figure 6 above,
every fifth particle along each direction is removed. What happens if instead it is
every third, or everything seventh, or every twenty-third? Should each of those be
considered different phases? What if vacancies are removed at irregular spacings
in different parts of the sample? Should we classify that as yet another kind of
phase, or a combination of small pieces of other phases? If we don’t have a precise
definition of “phases”, then it makes little sense to discuss trying to identify them.
I believe that this question has been, to a large degree, ignored by most people who
deal with this kind of problem. So while I will suggest an approach that I believe is
not really complete, I think it might be the best we can do, and possibly sufficient
for our purposes.

The idea of this approach, based on ideas above, is that we look first at an “ideal
structure” and compute the set of types we expect to find in it. For example, in the
close-packed lattice, in a perfect crystal, or small perturbation of a perfect crystal,
the Voronoi cell of every particle should be a hexagon, and it’s neighbors should all
be hexagons, described by the code (6,6,6,6,6,6). Any other Voronoi cells or codes
indicate some defect kind of structure.

The type of structure seen in Figure 6 has a substantially larger class of types
associated with it, but a set which we can still enumerate. It will be important to
precompute this set of codes.

When analyzing a particular structure, we should compute the Voronoi cell topol-
ogy of every particle in the system, and also the codes for every particle, each of
which captures the “local structure” nearby that particle. Regions in which only
the (6,6,6,6,6,6) code appears should be understood to be of close-packed phase.
Those with a large number of these other codes might be considered a second kind
of phase. Particles with codes that we have not expected likely indicate some sort
of defect in the structure, or perhaps boundaries between two different phases.
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