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Introduction

1.1 Metals Research

The importance of metals in our day-to-day lives can hardly be exaggerated.
Since prehistoric man discovered that crafting bronze into tools could alleviate
much of the physical strain hitherto involved in agriculture-related activities,
metals have been a part of almost every realm of our history: agriculture,
warfare, food-production, construction, transportation, industry, and modern
electronics. Look around you for a moment. You probably cannot point to a
single item, save yourself, that does not either contain metal nor was produced
with it.

Considering the importance of metals in our day-to-day lives, it should not
surprise us that people have been trying to understand the properties of metals
and how to manipulate them for thousands of years. Understanding the laws
that control the behavior of metals can assist us in developing new materials and
in improving old ones.

Until the latter half of the twentieth century, the scientific study of metals was
limited primarily to laboratories. Experiments were conducted with real samples
- without melting real iron or bending bona fide copper, there was no effective
way to study what might happen.

The development of computers over the last fifty years has made possible many
new techniques for simulating metals and their behavior, including the
molecular dynamic simulation method. Computers specialize in number-
crunching and number-crunching lies at the heart of molecular dynamic
simulation.

1.2 Molecular Dynamic Simulation

Many people, when they hear the term ‘science experiment’, immediately think
of a laboratory — experiments are conducted in laboratories. Chemistry, biology
and physics are all explored —experimentally —in special rooms and buildings
dedicated to those sciences, with beakers and microscopes, incubators, and
particle accelerators. =~ Few people ever think about conducting science
experiments inside computers. You simply cannot mix solutions inside IBMs or
grow fungus inside a Macintosh. But while certain things cannot be done inside
a computer, much else can be, and that is the focus of the research presented
herein.
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In the 1950’s and 1960’s, computers had advanced to a point where large
numbers of calculations could be carried out by computing machines in a
reasonable amount of time. This newfound power led to applications that were
computationally intensive, such as numerical integration and simulations.
Scientists realized the potential that computers held for studying materials that
might be very difficult or impossible to study in laboratories. Complex proteins,
for example, could be simulated at a much lower cost than they could be
synthesized. The computer, then, became an ideal environment to study
numerous topics of interest.

Molecular dynamic simulation is a method that employs computers to simulate
large numbers of molecules, for ‘numerical experiments’ in fields including
chemistry, theoretical and applied physics, and material science. Computers are
given information necessary to simulate a sample. This information typically
includes the positions and velocities of a large number of atoms and a number of
rules (e.g. F=ma, vi=vo+at) by which to manipulate those atoms. Given the data
for the atoms and the relevant rules, the computer is left to apply those rules in
successive steps to the simulated material. It was using this technique that all of
our work was done.

All of our ‘experiments” were performed by computers. No real metals were
stretched; no real samples were heated and cooled; no real beakers were broken.
Instead, we instructed the computer to keep track of all of the atoms in a
simulated piece of metal. Using the basic laws of classical physics,! computers
computed relevant forces and velocities of thousands of atoms over the course of
hundreds of thousands of time-steps. At every point in simulated time, a
computer calculated the relevant forces, and recalculated the accelerations,
velocities, and positions of every atom.

Within this simulation environment, we were able to perform numerous
‘experiments’ using simulated samples. We were able to ‘heat’ samples, ‘cool’
them, ‘stretch’ them, and observe every detail of interest to us. The simulated
environment proved to be an ideal one; one that allowed us to change almost any
environmental variable that we wished to study. ‘Changing the temperature’
required only tinkering a bit with parts of the preexisting program; ‘identifying
the individual grains” entailed coding a new subroutine; ‘stretching the material’

1. The beginning of the twentieth century saw the theories of relativity and quantum mechanics
replace classical physics as the accepted theories explaining the world around us. In theory, then,
we should be considering modern physics in our research, and not classical physics, especially
when working at the atomic level. The reasons that we, as well as do most people in the field,
choose to work with classical physics are twofold: 1) The computational power necessary to
calculate forces using modern physics is drastically restrictive; 2) The difference between using
the two systems is insignificant for our experiments.
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was accomplished by writing a more few lines of code. Pseudo-code for most of
the important functions is presented in the paper itself.

1.3 Research Goals

Our research focuses on a very limited set of issues. In this paper we explore:

1) The relationship between the rate at which a molten metal is cooled
and the average size of the grains in the resultant solid (Chapter 3);

2) The stress-strain behavior, including the ultimate tensile stress, the
yield stress, and the shape of the stress-strain curve (Chapter 4);

3) The impact of average grain size on the ultimate tensile strength and
Young's modulus (i.e. the modulus of elasticity) (Chapter 5).

4) The impact of grain orientation on the ultimate tensile strength and
Young's modulus (Chapter 5).

1.4 Simulating the Materials

141 General

To carry out our experiments, we made use of an excellent package of code
written by D. C. Rapaport of Bar-llan University and which is meant to
supplement a book by the author entitled The Art of Molecular Dynamics
Simulation [21]. Using his programs as a starting point allowed us to spend more
time on our own experiments and less time on reinventing the wheel. All of our

coding was done in the popular computer-
programming language, “C”. We used this
language for a variety of reasons, primarily
because the code from Rapaport was written
in this language.

Here, we briefly
simulations are about.

explain what these
Creating simulated

metals
begins with

simulating individual atoms.
that we wished to create, we had the computer
generate a pair of numbers. The numbers in
this pair represent the vertical and horizontal
positions of the atom on an imagined Cartesian
plane (i.e., the x,y-coordinates).
began with the ‘atoms’ positioned on either a

For each atom

All samples
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square lattice, illustrated above, or on a triangular lattice, illustrated to the left.

After the initial positions were set up, each atom was assigned a velocity. In
most experiments, the magnitude of the velocity (a function of the desired
temperature) was the same for every atom. The direction of the velocity,
however, was different for each atom. For each atom, an angle whose measure
lay between 0 and 2m radians was randomly chosen.? Using this angle, the
computer computed the vertical and horizontal velocities for that particular
atom. Once the initial configuration had been set up, the experiments could
begin.

The atoms were then allowed to ‘move around’ in small time-steps. For every
time step At, we changed the position of the atom using the equations:

X, =X, +v At and

t+At

yt+At = yl +V),At,

where x; and y: are the x- and y-coordinates of the given atom at time ¢, and vx
and vy are the x- and y-components of the velocity of the given atom at time t.
That is, the final position after a given time step is the geometric sum of the
previous position and the product of the velocity and the time step. We ran this
calculation, of course, for every atom in the system at every step.

Aside from changes in position, we also needed to calculate changes in velocities
and in accelerations of each atom. To do so, we calculated the net force on each
atom after each step. Using Newton’s equation of motion F =ma (where F is the
force on the particle of mass m and acceleration a) we were able to readjust the
acceleration of each atom after calculating the net force on each atom. With this
information, we were also able to adjust the velocities, using the equation:

V,.a =V, +alt

t+At

2. The generation of ‘random’ numbers by computers is a topic of much interest both to computer
scientists and to theoretical mathematicians. The numbers generated appear random, and in
some sense they certainly are, though, because of its deterministic nature, a computer cannot
produce truly random numbers. The way in which we produced these ‘random’ numbers is
similar to the way in which random numbers are generated for all such projects. The interested
reader is referred to [16] for an overview of the use of random number in simulations.



Introduction
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could be programmed and run on
computers, we were able to study simulated materials under almost every
imaginable condition.

The diagram above shows a system of 20x30 atoms after 500 time-steps. At this
point in time the atoms are “moving about” in random motion.

1.4.2 Periodic Boundaries

Properties of matter are noticeably different inside a material than they are at its
surface. This causes us special problems when simulating a material. Due to
limits of current computing power, regardless of how many atoms we could
practically simulate, that number of atoms would be orders of magnitude smaller
than the number of atoms in a real material, and the entire sample would behave
as if it were entirely a surface sample. Because we wanted to study what occurs
inside a metal when it fractures, simply simulating a material with typical
boundaries would be unrealistic.

To solve this problem, we used periodic boundary conditions (PBC). Using PBC
meant having the computer

imagine that there were no free o UD o UD o UD
surfaces in the system. The left- oy O olog © olog © e
.most. at((i)r?s bin the iyste':n;lbare sl eI oo 9 oo
imagined to be nearest neighbors o o o
of the right-most ones, and the o © & o © @ o @ =
upper-most ones of the bottom- o o b . & o
most. Because of this, atoms o O Ole ® el o O 'S
inside -the syst(zn ta}ct 1as 1If1f fchi:[y oo O s 8 ® oo O
were in an effectively infinite

o » o
system. Sl = . @ - S &

] ] i

The picture to the right might oo < olo © @ olo © 2 o
help t}}e 1‘eade}'r hvisualize ‘Wi'l]ilt o oo O o oo O & o
was going on. e square in the
middle contains the simulated o o & Yo © = “lo © S “
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atoms that exist in the mind of the computer. The surrounding squares are
merely imagined by the computer, in order to simulate an infinite system on all
sides. The atoms on the left side of the main square interact with carbon copies
of the atoms on the right side of the square, which are copied in an adjacent
square to the left of the ‘real” square.

In this way, all simulated atoms act as though they were positioned in the
interior of a material, regardless of how close they may actually be to the surface.
This technique helps us appropriately prepare the material we wished to study.

The nature of some of our experiments precluded using PBC at later stages of
experimentation. Because we planned to fracture the metals by pulling them
apart, we needed to have free space in the vertical plane. For this reason, we
wrote special code that could turn on and off PBC as necessary. We generally
used PBC when creating the sample, and then turned it off before attempting to
study fracture.

1.4.3 The Potential Energy Function

The motion of each atom is largely determined by its neighboring atoms. Every
atom exerts some force on every other atom, and the net force exerted on a given
atom determines its acceleration and its eventually motion. Because all
movement depends on correctly determining the forces that each atom exerts on
its neighbors, properly modeling these forces is crucial to properly simulating a
material.

The important question then is: how do we calculate the net force on a given
atom? One of the first equations used in molecular dynamic simulation
describes the Lennard-Jones Potential (LJP).> Owing to the nature of certain
chemical bonds and to the manner in which electrons orbit the nuclei of the
atoms and deform electron clouds of other atoms, various forces attract and repel
the atoms to and from each other. When the atoms are relatively close to one
another, the repellant force is very strong and prevails over the attractive force;
when the atoms are far apart from each other, an attractive force pulls them
closer together.

The following equation is typically used to describe this potential:

3. A note of possible interest to some readers: One of the first papers to discuss MDS in general,
and the Lennard-Jones potential in specific, was written by the physicist Loup Verlet, at the time
a professor in the Belfer Graduate School of Science of Yeshiva University. The most commonly
used time-integration algorithm in MDS is called the Verlet Algorithm, named after this author,
and introduced in that paper [27].
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o7 (7]

The term r represents the distance between the two atoms. The terms € and o are
material-dependant parameters.

Here is a graph of the potential as a function of distance between two atoms:

E:'I:IL.J

1 1 2

0 Distance hetweeW‘/_

As you can see, when the atoms are close together, a positive potential is
induced, pushing the atoms apart. When the atoms are further apart, an
attractive force pulls them together. This attractive force, known as the Van der
Waals attraction, is caused by the interactions between induced dipole moments.

It is important that we note here that although this potential is commonly used, it
is not the only possible, or the only utilized, potential. While many other
interatomic potentials have been developed, we limit consideration to this
potential for the sake of simplicity.

1.4.4 Simulation Size

We used between 3000 and 40,000 atoms in most of our simulation cells.
Depending on the nature of the individual experiment, various sample sizes
proved to be computationally feasible and acceptable. Ideally, if our computing
power had no limits, we would have run experiments with millions or billions of
atoms. These sorts of simulations would more strongly resemble macroscopic
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metals. However, our resources are limited and such experiments were not
possible.

What then could we do, considering our limited resources? We have already
introduced the idea of PBC that helps resolve some related problems. In
addition, we sometimes ran tests on increasingly larger sets of atoms, paying
attention to whether sample size affected the end results. If the results did not
change with an increase in system size, we could safely ignore our limited
system sizes. If results did change with increasing system sizes, we could
sometimes conjecture what the data would look like in very large systems.
Moreover, sometimes this helped us only identify very general trends rather than
particular numbers. For example, we show that a decreasing cooling rate is
correlated with a decrease in grain size. While the particulars of this correlation
might depend somewhat on sample size, we have no reason to believe that this
trend will reverse itself or otherwise significantly change when we consider
larger sample sizes.

1.4.5 Accuracy

Awareness of the tension between computational efficiency and scientific
accuracy informed our every step. Obviously, scientific accuracy is crucial if our
research is to have any scientific meaning and value. On the other hand,
pedantic attention to accuracy can seriously compromise the scope of our
research. Because experiments can take hours, days, and sometimes weeks to
run, it was critical to understand when accuracy was necessary and when it was
gratuitous. For example, in certain tests, alterations could be made to the code in
order to cut the run-time in half. If this would reduce the accuracy of the end
result by 20%, for example, we would probably opt for the longer route to obtain
more accurate results. If, however, such a cut would result in a reduction in
accuracy of 1/10 of a percent, we would probably sacrifice the accuracy for the
sake of the time saved. With the extra time, just think, we could run twice as
many experiments!

Knowing which changes effected which reductions in accuracy was itself a
complicated job. Oftentimes we would invest hours testing experiments with
different parameters, so as to save tens of hours down the line. Sometimes it is
crucial to invest heavily now if we are to gain in the long run.

One example of time-saving measures taken is the division of the system into
cells to calculate the forces acting on each atom. This allowed us to reduce an
O(n?) problem to an O(n) problem.*

4. Computer scientists use a special notation to describe, in very general terms, how much time is
necessary to implement a given algorithm. The letter 7 is used to denote the size of the input of a
given function. For example, in sorting a list of words, n would denote the number of words
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Consider the system, shown earlier in section 1.4.1, shown to the right. One
method of calculating forces would be to calculate the force between every atom
and every other atom in the system. We would end up making roughly n2
calculation, if n is the number of atoms in the system, and so the algorithm
would be described as O(n?). This
might be acceptable if we were
dealing with a small number of atoms,
but it would quickly get out of hand
when the number of atoms becomes
large.

Moreover, it should be apparent from
looking at the potential energy
function shown in section 1.4.3, that
the force existing between two atoms
at large separations is very small compared with that existing between two
atoms at small distances. The force that exists between an atom at the left side of
the above sample and another atom at
the right side of the sample is
negligible. In order, then, to sensibly
reduce the time necessary for
calculations of force, we split the
sample into numerous cells. We then
have the computer calculate the forces
that exist between atoms only if they
are either in the same cell or in
adjacent cells.

The picture to the left demonstrates how the sample looks after being divided
into cells. Seeing that there are almost 50 cells, we can figure out how much time
we are saving by using this cell-method. For each atom, we are now calculating

we’d like to sort. If we say that a given function runs in O(n) time, we mean that the time
necessary to execute that function grows linearly with the size of the input—sorting 200 numbers
would take, theoretically, twice as long as would sorting 100 numbers. If we say that a given
function runs in O(n?) time, we mean that the time necessary to execute the function grows as the
square of the size of the input—sorting 200 numbers would take four times as long as would
sorting 200 numbers. If we say that a given function runs in O(logn) time, we mean that the time
necessary to execute that function grows as the log of the size of the input—sorting 200 numbers
would take 10g200/10g100, or about 1.15, times as long as would sorting 100 numbers.

Finding an appropriate algorithm to solve a certain problem is crucial for using computing
resources efficiently. The study of algorithms is in itself an vast and fascinating topic, and we
could easily written an book about the efficiency of various algorithms for MD experiments.
Clearly, though, such an endeavor is well beyond the scope of our research.
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the forces between it and atoms in 9 cells, instead of in all 48 cells. This turns out
to be a saving of roughly 80% run-time. If the number of cells were even larger,
as it would be in larger systems, that number could turn into 90%, 95%, and even
higher. This method results in an O(n) algorithm instead of the painfully-slow
O(n?) necessary for calculating the forces between every pair of atoms. The time
saved using this method surely is worth the slight loss in accuracy that could
have been saved had we calculated the forces for every pair of atoms.

This size of the cells is large enough so that forces between all pairs of atoms
separated by less than a distance rCut, would be calculated. In our experiments,
we took rCut to be 2.50. The force between two atoms in our systems separated
by such a distance turns out to be an attractive force of 0.00408, which, when
compared to a maximum value of the function of 0.25000, is negligible in our
final results.

1.4.6 Units of Measurement

Working with extremely small objects can be difficult when measuring quantities
such as position and velocity is necessary. Because our particles are of atomic
size, the number of meters and seconds that describe their positions and
velocities are very small when expressed in standard SI units. For this reason we
decided to use special dimensionless MD units.

When using these units, all measurements are described in units that are easier to
deal with. Instead of saying that two atoms are 0.00000000034 meters apart, we
can say that they are 1 MD length unit apart. Or instead of saying that the mass
of an atom is 6.6904265 x 10-23g, we can write instead that its mass is 1 MD unit of
mass. Eventually we can convert our results back into standard units, but for the
meantime, this notation will make our lives considerably easier. Throughout the
thesis, all units should be understood to be MD units, where lengths are
expressed in o, energy in ¢, and mass in m.

1.4.7 Hardware Specifications

Most of the computations were carried out on one of two standard off-the-shelf
computers. At home in Pittsburgh, I used a PC equipped with an Intel Celeron
2.4 Ghz processor, and loaded with 256 MB of standard memory. While working
in Israel, I used both an Intel Celeron 600MHz, loaded with 192MB or RAM, and
later another laptop using a Mobile AMD Sempron 3000+, running at 1.8 Ghz,
and loaded with 448 MB of memory.

10
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2.1 Background

Much of our interest lies in examining ensembles of atoms that are organized
into groups called grains.> Properties of these grains directly affect many of a
material’s mechanical properties. In Chapter 5, we examine the strength of a
metal, and its relation to the average size of the grains. Because grains are so
important to our work, we devote an entire chapter to the problem of grain
identification.

To study properties of the grains, it is crucial that we instruct the computer how
to organize the many atoms into defined groups, or grains. After being able to
‘identify” individual grains, we could then spend efforts studying those grains.

This task of ‘identifying grains’ is rather complicated, and often there exists no
singular, ‘correct’ solution to the problem. Sometimes we have atoms about
which it is not clear whether they should be counted as part of one grain or
another. Other times, it is not obvious if we should count two areas towards one
large grain or whether we should count them as two separate, albeit similar and
adjacent, ones. Even when it is clear that two areas should be separated, it is
often unclear where the separation between the two lies. Because of the inherent
ambiguity in solving these problems, a degree of arbitrariness is introduced into
the relevant algorithms.

In the following discussion, we define the problem of grain identification and
explain how we went about solving it. We note in advance that there is often no
singularly correct solution to this problem, and that every solution is plagued by
quirky, unavoidable problems.

2.2 The Problem
The problem of grain identification is to specify criteria by which to divide a
sample of atoms into a smaller number of groups called grains. A precise
definition of grain might be given: A grain is a contiguous set of atoms sharing
the same crystal symmetry and the same spatial orientation of the
crystallographic axes.

5. The term grain is commonly used to refer to a phase of matter consisting of a regular
arrangement of component units. The terms ‘grain’ and ‘crystal’ are used interchangeable
throughout the literature to refer to the same entity. For the sake of uniformity, we will use only
the term grain.

11
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We need to decide what should constitute a grain, and how we are to determine
whether a given atom should be considered part of a specified grain or not. We
want a function that for any given atom can tell us whether or not it is in any
grain and if it is, in which grain is it.

To solve this problem, we developed a number of techniques, the last of which
we implemented in our numerical experiments. We leave for another time a
detailed explanation of alternative methods that we did not use.

2.3 The Algorithm

In explaining our algorithm, we provide 5 examples and show pictures every
step of the process.

From merely glancing at the above pictures, you might notice that the samples
have a number of different groups of atoms, each of which belongs to some
grain. While it might not be entirely clear where one grain ends and where
another one begins, it should be clear that the samples above can be divided into
different grains.

The first task of our algorithm is to identify atoms that are most likely part of the
interior of a grain. We can identify these atoms as those that have 6 neighbors
that are approximately equidistant from itself. To the right is a R
picture of what such a situation might look like. The black 4 % & & & .
atom in the middle is what we call ‘well- # ® il

centered” amongst the gray-colored ones. I‘.. . ....'

» L B N NN
Atoms that do not have 6 approximately AR B N g
equidistant neighbors are either part of the exterior of a grain
or are not part of any grain at all. To the left is a picture of

what such a situation might look like. The black atom in the middle of the of the

12
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gray-colored ones does not seem to be well-centered. Most likely, it is an atom
belonging to a grain boundary.

Identify Internal Atoms ()

{
for all atoms i
if (neighbors (i)==6 AND stddev of distance from i
to its neighbors is less than 0.05) then i
is internal
else i is external
}

If the standard deviation of the distance between the atom and its surrounding
neighbors is too high, then chances are high that the atom is not well centered in
the interior of a grain. The second image above, with the green surrounding
atoms, is an example of such a phenomena.

Here are pictures of the 5 samples with the external atoms marked in black and
the internal ones in gray:

After marking off the external atoms, we also mark off all atoms that has at least
two external atoms as neighbors. This is done to ensure that two separate grains,
which happen to share two or three atoms, are not mistakenly joined as one. At
this stage we eliminate grains below a certain threshold size. In our experiments,
we eliminated any grains that had three or fewer atoms.

13
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After the internal and external atoms are marked, the neighboring atoms are
dealt with, and the mini-grains eliminated, we can begin coloring in the various
grains. We start with any internal atom in the system and recursively color it
and all its neighboring internal atoms the same color and call it a grain. When all
internal atoms adjacent to that grain are colored, we start growing the next grain,
beginning with an uncolored internal atom. We repeat this procedure until all
internal atoms in the system are colored.

The final step in identifying the grains is expanding them, to let them subsume
neighboring atoms that may have originally been marked off as grain-boundary
atoms, but that could be considered part of the grain.

14
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Our algorithm is thus able to read a set of coordinates and “identify” patterns that
we know as grains. It is important to note here, as we have done before, that the
task of “identifying grains’ is an inherently complex one, and often there exists no
single correct solution to the problem. Explaining these complications and
describing their impact on solving this problem is beyond the scope of this thesis,
and addressing it briefly would only do the topic injustice. I hope to address
these issues at another time in more depth.

2.4 Other Methods

All of our experiments began with atoms moving around freely as a liquid and
then cooling and settling into a crystalline grain structure. We then worked to
identify the grains from what had formed ‘naturally’. Another method used in
MD simulations is the filling of a sample area with prefabricated grains. In this
method, an average grain size is first chosen and then grain centers are
distributed accordingly inside an area or volume. A method introduced by G.F.
Voronoi in 1908 is used to divide the surrounding space in a manner that every
point is associated with the grain center closest to it. The orientation of the grain
is chosen beforehand and does not naturally develop. Two examples of research
that use this method are [8] and [26].

An advantage of using such grains is the significant time saved in generating the
grains, a process that takes almost no time when employing this method.
However, this method also has a number of disadvantages. First, it is often
difficult to obtain lattices with normal distributions of the grains [14]. Moreover,
it is not clear that these artificially-created grains realistically resemble real grains
of metals. It seems reasonable to believe that the shapes of the grains impact a
number of their properties. Further work is necessary to determine whether
grains generated in the two different methods produce different results in
simulations.
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3.1 Background

While heated in a gas or liquid state, the molecules of a metal move around
quickly and do not settle into any structured (crystalline) form. As a metal cools,
it solidifies, and grains begin to form.

It has been shown experimentally that the rate at which metals are cooled
impacts the size of the grains that form. Quickly cooling metal produces small
grains; slowly cooling them produces larger ones. The precise relationship
between the cooling rate and the average grain sizes has not yet been fully
documented. The published experimental results on the topic have been few,
and there has been no published research detailing MDS reproduction of the
experimental results.

In this section, using two-dimensional molecular dynamic simulations, we study
how various cooling rates impact average grain sizes. Our simulations help us
understand why the cooling rate affects the grain sizes of the metals. We show
that the average size of the grains is a function of the cooling rate. More
specifically, the function demonstrating the relation between the average grain
size d and the cooling rate r is of the form:

d « r*, where x is about -0.18.

Our research confirms some prior, experimental data, which we cite later.

3.2 Terms and Concepts

The kinetic energy of each atom is its energy of motion. In these experiments we
focused on the translational kinetic energy, a quantity which depends on two
variables: the mass (m) and the magnitude of the velocity (v) of the atom. The
following equation is commonly used to describe the kinetic energy of an atom,

KE:lmv2
2

The temperature of a system is a measure of the average kinetic energy of the
atoms in the system. To determine the temperature of the system, we sum the
kinetic energy of each atom and take the average over all of the atoms in the
system:
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1 &1 2
Toc—>» —myv,”,
n;z 11

where 7 is the number of atoms in the system, m is the mass of each atom, and v
is the velocity of each atom. Because m is 1 (in MD units) for all atoms, we can

say:

Quenching is the rapid cooling of a metal from its initial temperature. This
process, often accomplished by immersing a metal in oil or water, is used in
processing metals in order to achieve certain properties, some of which we will
study. Liquids can be transformed into solids by cooling them. The speed of this
process is called the cooling rate and is measured in units of temperature per
unit time. A typical unit for measurement is degrees per second.

Relaxing the system is a method in which we bring all the atoms in the system to
a relaxed state —the net force acting on each atom is zero and the temperature is
zero. In reality a system never fully relaxes and the atoms are always in motion,
always vibrating around a fixed center.¢

3.3 Survey of the Literature
Attempts to determine the relationship between cooling rates and grain sizes
have already been made theoretically and experimentally. In [3], the authors
propose two different dependences of the
aluminum grain size on cooling rate. To the
right is a graph [3] of these two relations: the
upper line has d o« r°” and the lower line,

which the authors ultimately prefer, has
0.9
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In [15] and [29], it was shown that the average
grain sizes decreases with increasing cooling i
rate. In these papers, however, no incomplete .
quantitative analysis of this relationship is
shown. In [25], experimental work is
conducted in different iron-based systems.
Among other things, the authors document
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6. This is the so-called zero point motion.

17



Molecular Dynamic Studies in the Fracturing of Metals

T T T
© dy=178 ym
x dy=151 ym
& dy=126 pm

FERRITE GRAIN SIZE (dg),um

005 01 02 05 1 2
COOLING RATE (q), K s

Effect of cooling rate on ferrite grain size for
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the relationship between cooling
rates and average grain sizes.

To the left is a graph [25] showing the
relationship between cooling rates
and average grain sizes of ferrite
(body-centered cubic iron). Results
from these experiments show that,

J o r -0.26

The authors [25] do not cite the
earlier work presented in [3] and so

have no need to explain the ostensibly large discrepancy between their work and

the previous work [25].

To date, no research has been published that has reproduced the theoretical [3] or
experimental [25] trends reported above. Perhaps this is the case because until
now, most MD research constructs the sample artificially, and does not allow
grains to develop ‘naturally’, as explained in Section 2.4. This thesis represents
an important step in understanding the relationship between grain size and
cooling rate and the influence of grain size and fracture properties in the context

of MD simulations.
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3.4 Simulating Quenching, Relaxation, and Grain Growth

3.4.1 Introduction

The simulations described in this part of the thesis are relatively simple: we
prepared the samples as a liquid, quenched them, relaxed them, and then
observed the size of the grains that formed.

For each trial, after choosing the desired dimensions of our sample, we had the
computer place the atoms on a rectangular lattice and assign each atom a
velocity. The magnitude of this velocity was the same for all atoms (a function of
the desired initial temperature of the system); the direction of the velocity was
randomized for each atom.

The atoms in the system were then allowed to move around following the laws
of classical physics. We used the Leapfrog method [11b] to compute the
velocities and coordinates of the atoms after every step. In this method, we
adjusted the velocities for each atom, and then repositioned each atom according
to its new velocities.

Leapfrog Step()

{
for all atoms i
Vix(t + at) = Vixe + aix*At
Viy(t + at) = Vigt + aj *At
Xi(t + At) = Xit t Vige*At
Yi(t + at) = Vit + Vige*At
}

3.4.2 Cooling the System

After allowing the atoms to move about for a short time, we began quenching, or
cooling, the material. We simulated quenching as follows: every 100 steps, we
multiplied the velocity of every atom by some number between 0 and 1. We
repeated this every 100 steps until the temperature of the system fell below 0.01
(MD units).

Quench (QuenchRate)
{

for all atoms i
Vix = Vix * QuenchRate
Viy = Viy * QuenchRate
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Below is a graph showing the temperature of a 60x40 atom system as a function
of time. The different graphs show different cooling rates.

Temperature Decreasing Over Time
for Various Cooling Rates
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The graph above shows that the temperature of the system decreases
exponentially with time. The numbers in the key are the value by which we
multiplied the velocity of each atom every 100 time-steps. The higher the
number, the longer it took for the system to cool down.

3.4.3 Relaxing the System

After cooling the system, we needed to then relax it, or reduce both the kinetic
and potential energy of the system to near zero. This required two things:
turning off the periodic boundary conditions (PBC) and changing the laws
governing the motion of the atoms.

Turning off the PBCs was necessary to ensure that no external pressure was
being exerted on the system. Turning off these boundary conditions was not
overly complicated, but did require some tinkering with the pre-existing code.
Because most of the code had been written for PBC simulations, and because we
did not want to needlessly rewrite hundreds and thousands of lines of code, we
changed a few parameters that would let the computer act as if there were no
PBC, even though there really was. This was done by increasing the size over
which the system was periodic. This effectively put a finite vacuum region
around the crystal. In practice we multiplied the dimensions of the system by a
factor of 3, so that if the system had been 100 x 100 in size, it now appeared to be
300 x 300 in size. An atom located at (50, 0), which before would effectively have
been located right next to an atom situated at (-49, 0), was now located 200 away.
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This change in dimensions effectively eliminated PBC effects while allowing us
to keep the same code we had used until then.

Aside from tinkering with the boundary conditions, we also replaced the true
MD method with a method that simply minimizes the energy of the system with
respect to atomic coordinates (i.e., T=0). Maintaining MD methods would leave
the atoms vibrating, as if at some finite temperature. If we let this happen, then
the vibration rate of the atoms and the rate used in loading the sample to fracture
(i.e., the stretching rate) would be similar. This is physically unrealistic because
in real systems the vibration rate of the atoms is many orders of magnitude
higher than the loading rate. Relaxing the system and abandoning MD methods
lets us deal with the atoms as if they were quasi-static, corresponding to a much
more realistic model of stretching.

While employing MD methods, we used the Leapfrog method, described above,
to govern the motion of the atoms. While relaxing the system, we moved away
from MD methods and used an artificial means of dynamics to govern the
motion of the atoms:

Relax Step()

{
for all atoms i
Xi(t + At) = Xit + aix*At
Yi(t + at) = Yie + aiy*At
}

Thus, instead of using the equations v=F and x=v, we used —x=F. This is
not molecular dynamics but simply relaxation, since this drains all of the kinetic
energy from the system. Using these equations eventually relaxed the system,
and since the PBC had already been turned off, we end up with a set of atomic
configurations corresponding to zero net-stress. In our simulation experiments,
we considered the system of atoms to be ‘relaxed” when the average square of
the net force on an atom was less than 10-12.
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Below is a graph showing the average square of the net force on an atom as a
function of number of iterations during the relaxation calculation:

Example of System Relaxing
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As this figure shows, initially, the average square force does not decrease
monotonically with iteration number. The spikes in the graph indicate the times
at which some grains dissolved into other grains or where two grains merged;
these are events that take place early in the relaxation. Later, the number of
grains tend to stay as they are and the atomic positions simply become more
relaxed with the passage of more steps; this explains the relatively straight line at
the tail of the function.

After the system had been cooled and relaxed, we identified the grains, as
explained in Chapter 2, measured their sizes, and calculated averages.

3.4.4 Calculating Average Grain Size

In most experimental work, the size of a grain is typically determined by the
grain’s average diameter. Experimentally, this property is easier to measure than
its surface area or volume. Even ignoring the questions of how to measure the
diameter of non-circular entities, for us the easiest property to measure was the
number of atoms in each grain. However, since we want to compare our
computational results with experimental ones, we needed to talk in terms of
diameter. Therefore, we took as our grain sizes the square root of the number of
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atoms in each grain. The square root of the number of atoms in a
grain is proportional to its radius and diameter.

As an example, consider the image on the right. The displayed
grain contains 144 atoms. We would say that the size of the grain

is V144 , or 12.

3.5 Simulation Experiments

3.5.1 Simulation Experiment 1

In this experiment, we began with a system of 50 x 50 atoms (2500 atoms in total)
at a temperature of 1.0. Every 100 time steps, we multiplied the velocities of each
atom by r, where 0.71 < <0.99. We cooled the system until its temperature had
fallen below 0.01, a point at which samples where considered to be low
temperature solids. After cooling the systems, we relaxed them, as described in
section 3.4.1.

To determine the cooling rate, we needed to measure the time (number of steps)
taken for the system to cool. Because the samples all began at a temperature of
1.0, we could calculate the cooling rate as follows:

Cooling Rate = 1.0 / Time to Cool
After cooling and relaxing the system, we analyzed the grains, and calculated
their average size. This was done as explained above in section 3.4.2. We ran 5

trials for each cooling rate. The results below are the average of the 5 trials.
Further data from this experiment can be found in the Appendix.
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Below is a graph showing the results of our simulation experiments.

Average Grain Size as a Function of Cooling Rate
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The solid line shown in this plot is the best-fit power-law, i.e.
f(r) =10.872r-0.1846

where r is the cooling rate. We compare this result with those provided in [3],
[15], [25], and [29].

3.5.2 Simulation Experiment 2

While this simulation experiment produced considerably less data than the
previous one, it is important in that it confirms the results of the previous
simulation experiment by reproducing similar results with samples half the size.

In this experiment, we began with a system of 25 x 50 atoms (1250 atoms in total)
at a temperature of 1.0. Every 100 time steps, we multiplied the velocities of each
atom by r, where 0.70 < » <0.95. We cooled the system until its temperature had
fallen below 0.01, a point at which samples could be considered solids. After
cooling the systems, we relaxed them, as described in section 3.4.1.

We determined the cooling rates in the simulation experiments as described

above. After cooling and relaxing the system, we analyzed the grains, and
calculated their average size. This was done as explained above in section 3.4.2.
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We ran 5 trials for each cooling rate. The results below are the average of the 5
trials. Further data from this simulation experiment can be found in the
Appendix. Below is a graph showing results of our simulation experiments.

Average Grain Size as a Function of Cooling Rate
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The best fit power law in this figure is of the form:
f(r) = 11.1427-0.1809

where r is the cooling rate. In the analysis we compare this result with those
provided in [3], [15], [25], and [29].

3.6 Observations and Analysis
The data from our two experiments confirms that the average size of the grains

diminishes with increased cooling rates, and is consistent with results published
in [3], [15], [25], and [29].

From the data collected in Simulation Experiment 1 and Simulation Experiment

2, it appears that the average grain size can be described as r-0180 and 10185, These
0.26

results are similar to the relationship d o r** reported in [25], and which was
measured experimentally. The results are not consistent with the relationships

d oc 1" or d o« r™° reported in [3], and which were predicted theoretically.
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Further work must be conducted to explain the inconsistencies between the
theory presented in [3] and the results published in [4-25] and that are
reproduced here. Our work is the first to replicate the experiments conducted in
[3], [15], [25], and [29] by means of MDS.
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4.1 Background

In this section, we explain what stress-strain curves are and a number of the
issues associated with drawing these curves in our simulated experiments. This
will become important in the next chapter, where we look at the relationship
between grain size and a number of important properties of metals.

When a tensile force is applied, all materials stretch; eventually, after sufficient
force is applied, even the strongest of metals fail and break. Stress-strain curves
are a means of visually representing the relationship between the amount of
force applied to a metal and the way in which the metal changes shape in
response. Various properties of these curves, for example, its domain and range,
are of great interest to people studying metals.

4.2 Terms and Concepts
The term strain is used to measure the geometrical deformation of a sample.
Strain, often represented by the letter ¢, is computed as follows:

where Lo is the original length of the sample and L is the new length of the
material after having been strained. For example, a meter-long sample of iron
stretched out to 1.03 meters has been strained 3%.

The term stress is used to measure the relative force applied to a sample. Stress,
often represented by the letter 7, is generally computed as follows:

where P is the load, or force, applied to the sample, and Ay is the initial cross-
sectional area of the sample. In our simulations, where the samples were two-
dimensional, the load P was divided by the length of the sample normal to the
stress:
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The equation above, containing the term Ay is used for computing what is known
as the engineering stress-strain curve. These calculations take into account only
the initial cross-section area of the sample, and do not consider the deformation
known as necking that occurs during stretching. Calculations taking this factor
into consideration produce what are known as true stress-strain curves. We
leave until section 4.4 a detailed explanation of the difference between these two
curves and a thorough explanation of necking.

Real, physical, experiments are usually performed by stretching (i.e., straining) a
sample and measuring the resultant stress as a function of strain. In some
experiments, the material is stretched at a fixed rate; in others, a constant force is
applied and the resultant elongation of the sample is measured.

To the right is an image of a
typical engineering stress-strain
curve. Stress is shown as a

function of strain. As the
material is stretched, the stress
varies.

stress

As you can see, the beginning
of the curve shows an
apparently  linear  relation
between the stress and the
strain. The slope of this initial
segment of the curve is known
as the Young’s modulus (or
modulus of elasticity) typically strain
represented by the letter E:

E=0/¢,

A steep slope indicates a stiff material. A material with a high value of E will
require a great deal of stress to achieve a particular strain; a material with a small
value of E deform significantly with very little stress. The value of E is material-
specific and can be affected slightly by factors such as temperature.

As long as the stress-strain relationship can be expressed as a linear function, the
deformation of the material is elastic. This means that when the stress is
removed the material will return to its original shape. The stretching of an elastic
rubber band, is an excellent example of an elastic deformation; it returns to its
original shape after the applied stress is removed.
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Once the shape of the graph becomes nonlinear, the deformation is generally
plastic. This means that even after the stress is removed, the material will not
return to its original shape. Plastics are good examples of materials that do not
return to their original state after an applied stressed is removed.

At a certain point during stretching,
deformation ceases to be elastic and
begins to be plastic. On the graph, this is S
the point at which the curve ceases to be strength
linear and begins to bend. Knowing this J,
point is important because we often want
to know how much stress an object can
endure without sustaining permanent

fracture

stress

i

damage. A property of metals associated tensile yield
with this point is the tensile yield =leenath
strength, or just yield strength.

strain

After a material is strained beyond where

the stress exceeds the yield strength, it can still endure additional stress before
breaking. The ultimate tensile strength is the maximum stress that a material
can endure before fracturing. The ability to measure this property is important
in planning the proper use of materials.

After hitting the ultimate stress, ductile metals begin to neck. In necking, the

material thins out in the middle; necking forestalls fracture. A brittle, or
inflexible, material will fracture before it necks.
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Above are seven pictures of a material undergoing strain: (a) No strain, (b) 10%,
(c) 20%, (d) 30%, (e) 40%, (f) 50%, and (g) fracture at 58.5%.

Necking actually creates serious problems in computing the stress-strain curve.
As explained in Section 4.2, an engineering stress o is described by the formula:

P
o=—
AO
This measurement of stress considers only the initial cross-sectional area Ao (or
cross-sectional length Lo) of the sample being stretched. However, when a

material necks, its cross-sectional area shrinks, and is smaller than Ag. The true
stress of the material is given by

where A is the instantaneous cross-sectional area (or length) of the sample. In
our experiments, we did not attempt to measure the instantaneous height of the
sample and we thus settled for calculating the engineering stress rather than
calculating the true stress.
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4.3 Simulating Stress and Strain Behavior

4.3.1 Creating Sample Walls

In the previous chapter, we discussed preparing the samples, turning on and off
the periodic boundary conditions (PBC), and relaxing the system. Once that is
dealt with, we can soon begin experimenting with stretching the samples.

In order to stretch the samples, we must hold the samples by their edges, and to
facilitate this, we needed to simulate edges. We did this by marking off the
atoms that were in the right-most and left- ,, R,
most cells of the system and designated them s sesssssssssesssssssss
as ‘wall atoms’. When stretching the sample, #8500ttt s e e s e e e o
the walls as whole entities were moved, but “sssssssssssssssssns s e
their internal atoms remained OtherWise ot e e e s oo s o s s s s s sese
stationary. The free atoms in between the sessscssascssssscsessss
walls were free to move. The wall atoms *2*2% *"* sesenae
here are colored black while the remaining

atoms are colored pink.

4.3.2 Stretching the Material

Stretching the material in our simulated experiments meant changing the x-
coordinate of every atom of the system. To do so, we multiplied the x-coordinate
of all interior atoms by some number 1+« , where a was typically 0.0025, which
corresponds to a strain of 0.25%. Between every stretch, we allowed the sample
to relax, as explained in Section 3.4.3. We continued stretching the material until
it eventually fractured.

Since we wanted to increase the strain at a rate fixed relative to the initial
configuration of the system, we could not scale the x-coordinates by the same
value for every increment of the stretch. If we scaled the system by 1+« for
every strain, then after n stretches we will have scaled the system by (1+«a )"
instead of an intended 1+na. After 40 stretches, for example, instead of
applying a strain of 10%, we would have applied a strain of 10.5%; after 100
stretches, instead of applying a strain of 25%, we would have applied a strain of
28%, a significant difference.

For this reason, we kept track of the number of stretch increments applied up to
any given point. When we wanted to stretch the system again, we scaled the
system as follows. If n gives the number of stretches including the current one,
we would scale the system by a constant:

o l+na
1+ (n-Da
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Making these calculations ensured that the system was being strained at a rate
fixed relative to the original configuration of the system.

Wall atoms were always moved at the constant rate of « .

Stretch(a, n)

{
const ¢ = (1l.+na)/(1.+[n-1]a)
for all internal atoms i
xXi =c¢c * xi
for all left-wall atoms i
Xxi =xi - «a
for all right-wall atoms i
xi =xi + a
}

Above is 40x60 sample, with initial grains identified, shown at (a) No strain, (b)
10% strain, (c) 20%, and (d) fracture at 32.25%.

4.3.3 Measuring the Applied Stress

The most important test for measuring a metal’s response to stress is the tensile
test. In this test, one side of a sample, often shaped as a rod or wire, is held fixed
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and the other end is pulled at a controlled rate. A machine connected to the
sample measures the force associated with displacement. Alternatively, in some
tests, the force applied is controlled and the displacement is the variable that is
measured.”

Our experiments roughly simulated the tensile test on our simulated samples.
Instead of holding one end fixed, we pulled the two ends in opposite directions.
While in a physical laboratory, such a procure is difficult, while in our simulated
experiments, this was straightforward. We controlled the strain on the system
and measured the stress at every point, as is done in standard tests.

To measure the total stress we needed to calculate the net force on each of the
two walls as we were stretching the sample. Dividing the total force on the walls
by the length of the walls, we were able to compute the force per length, or stress
0, that had been applied in order to stretch the sample.

434 Determining Sample Fracture

Since we intend to study how much stress a material can endure before
fracturing, we need to know when we should consider a material ‘fractured’.
Determining this was quite simple —when the sample fractured, the net force on
the walls, or stress on the system, dropped to 0. Thus, when we calculated the
stress to be 0, we could stop stretching the sample (i.e., it is already broken).

4.3.5 Simulation Procedure

Most of the simulation experiments followed a simple procedure. The first step
was setting up the system, cooling and relaxing it, and identifying walls which
we would hold fixed when stretching. Then, we iteratively stretched the system,
measuring at every step the stress and strain, until the sample fractured. After
every stretch we waited until the system relaxed before stretching it again.

SetupSystem()
CoolSystem()
while (sample not fractured)
{
Stretch(a, n)
RelaxSystem()
Output Strain, Stress

7. Testing stress-strain properties of materials, as well as most experimental procedures used to
test properties of metals, is commonly detailed by standards-setting agencies, in this case the
American Society for Testing and Materials (ASTM). The test described here, the tensile test for
metals, is detailed in [2].
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4.4 Demonstrations

In this section we provide an example of our simulated stretching and explain
many of the calculations that we prepared. We have already seen, in section
4.3.2, an example of a material stretching until fracture. Here we show the stress-
strain graph associated with that sample’s stretching;:

Sample Stress-Strain Curve
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The graph begins relatively straight and then begins bending. As it moves
higher, we notice a number of big drops in the stress of the system. Eventually,
the stress peaks, stays there for a while, and then diminishes until it reaches 0.
Why, you might wonder, does the stress drop suddenly a number of times

throughout the procedure? Sharp stress drops occur at strains of 9.00% and
16.25%.

These drops have much to do with the stress that builds up in the system and the
mechanism of plastic deformation of crystals, that is, the formation and
propagation of defects known as dislocations. As the system is stretched, stress
accumulates. Stress can be released when atoms reorganize themselves into a
new arrangement in which the total potential energy of the system is lower.
Necking is a highly-visible example of the manner in which metals deform as a
result of stress. Necking is the results of plastic deformation that often precedes
fracture. Ductile materials tend to deform more in this manner and thus can
absorb more energy prior to failing than brittle metals.
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which causes the drop in stress mentioned above:

While it may be somewhat hard to see in the pictures above, the system here
deforms significantly from the first picture to the second. Two changes might be
noticeable when looking closely: 1) notice the tear at the bottom of the sample,
just left of the center, increases significantly; 2) notice the bottom left part of the
sample moves up slightly from the first picture to the second. This caving

before

after

inward of the atoms is what, on a macroscopic level, appears as necking.

A much clearer example of the same phenomena can be seen in a much smaller

sample of 8 x 20 atoms. Look at the following stress-strain graph:

1.2

1

0.8

Stress (MD units)

0.6

0.4
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0

Stress-Strain Graph
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Here the large drops are much more visible
than they were in the previous example.
Consider the two pictures to the right. Notice
that although the atoms are considerably
further apart one from another in the second
picture, the overall topography of the atoms
stays the same. No significant changes have
occurred; neither sliding nor dislocation
formation or migration occurs to this very large

Zero strain

13 5% strain

strain 13.5%.

13 5% strain

13 75% strain

Consider, on the other hand, the two pictures
on the left. After one more increment in the
stretch, the accumulated stress cannot be
accommodated through the minor movements
of the atoms and an entire chunk of atoms
move together—entire planes slip! Barely
noticeable from the pictures is that the atoms on
the whole are closer together after than they are
before. This accounts for the large drop in
stress at this point on the graph on the previous

page.

Other drops in the system stress are explained in the same way. The three
pictures to the right show the same sample at three various strain rates. The
difference between the first two pictures is minimal and hardly noticeable. The
two pictures mark the beginning and end of the second segment on the graph on
the page, which extends from 13.75 to 18.75%. The third picture is noticeably
different from the first two, and significant slip can be easily observed. The
stress that had built up over the gradual straining finally was too much for the
system to handle, and eventually slips occurred. When the grains are smaller,
relative to the system, then stress typically does not have the same chance to
build up, as the smaller grains can more easily change position and orientation

than can the larger grains.

The drops also become smaller with an increasing system size. Note how much
smaller the jumps are in the first example, a system of 2400 atoms, than they are
in the second example, a system of only 160 atoms.
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51 Background

In Chapter 3 we examined how cooling rates affect the average size of grains
when they form during solidification. Many important properties of metals
depend on the size of their constituent grains, as well as on their orientation,
another property we will discuss in this chapter.

When building structures, engineers must know how much stress their materials
can endure before failing. This is known as the ultimate tensile strength,
explained briefly in the preceding chapter. Another important property is the
degree to which the material deforms under certain loads. One important
constant associated with every material is the Young’s modulus (also known as
the modulus of elasticity). In this chapter we explore how grain size and
orientation impact these two properties.

5.2 Terms and Concepts
As we explained briefly in Chapter 3, when a load is first applied to a material,
the relationship between the stress on a material and its strain, or physical
deformation, is linear. The slope of the line describing this relationship is known
as Young's modulus. After the load is
removed, the material will return to its
original shape.

ultimate tensile

Above a certain stress, the material no strength

longer behaves linearly and the material b s
yields; this stress is called the tensile
yield strength. This property is taken to
be the force at that point divided by the

stress

N

cross-sectional area of the material, with tensile yield
units such as N/m?2. HERnE
After reaching the yield tensile strength, S

a material can generally endure more

stress before it fractures. The maximum stress it endures before fracturing is
known as the ultimate tensile strength. This property is taken to be the force at
that point divided by the cross-sectional area of the material. It is thus measured
in units of force per unit area. If the material was loaded by an increasing stress,
it would fail at the ultimate tensile strength. If it were loaded by slowly
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increasing the strain, it is possible to increase the strain beyond this point (with a
corresponding drop in the macrostress). The end of the graph illustrates the
point of apparent fracture (load controlled experiment).

The issue of grain sizes was already discussed in Chapter 3, and specifically in
section 3.4.4. We will not repeat that information here.

Some properties of grains, as we will shortly see, rotated () vesssssss
depend on the orientation of the crystal lattice with dedrees r:-:-:-:-:-:-:-:-:
respect to the applied load. Throughout this paper seneneeE
we will call this property grain orientation. The two Je2le2ls2 :-_-:-:-:-:-:-:-:-
sample cuts to the right are identical in size and '_:_'-::':-::'.':'_: """""

differ only in the orientation of the atoms (relative to ¢ 35 ._-_._-,' rotated 20
the loading axis). We leave for another time the task ,':_:::::'_ : : degrees
of quantifying the orientation of a grain. e

When materials solidify and grains form, their orientations may be random.
Some grains are orientated one way, some another, all in the same material. The
picture above shows a sample composed of seven grains, each with a different
orientation. The way in which these grains are located and distributed affect
many properties of the material. We limit ourselves in this section to looking at
a very few simple cases.
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5.3 Survey of the Literature

Since the early 1950’s it has been known that a metal’s strength is inversely
proportional to the size of its grains. This relationship is known as the Hall-
Petch relationship, named after the work the two researchers who first wrote on
the topic in [11] and [20]. This relationship is often written:

_ -1/2
o,=0,+K,d""",

where o, is the yield strength of a material, d is the average grain size, and o

and K, are temperature-dependent constants. Further research has confirmed
the validity of this relationship. See [12] an example of such work.

However, in the last fifteen or so years, much research has been published which
alleges that this relationship fails, or is reversed, for very small grains, in the
nanometer range. See [4], [18], and [23] for three examples of such experimental
data. Computer simulations showed similar results; see [22].

The graph to the right is taken from [28]. The
diagram suggests that grains larger than some
critical value d. follow the Hall-Petch
relationship , while smaller grain exhibit an
opposite relationship.

Strength

Subsequent research attempted to attribute this ' .
phenomenon to a number of factors, including % Grinses o
the large fraction of atoms at grain boundaries

[22], dislocation spacing in pileups [19], and an increased creep rate at the
nanometer range of grains [4], [10].

Y

However, many of these theories have not held up to close scrutiny and have
been rejected for various reasons [13], [18], and [24]. It seems fair to say that, to
date, no satisfactory explanation has been offered to explain this peculiar
phenomenon.

On the relationship between average grain size and Young’'s modulus, I have not
yet seen any published work. Although much data is available on the
orientation dependence of Young's modulus and other elastic constants, not
much is available about the yield strength.

I have not either seen much discussion of the relationship between the grain
orientation and tensile strength and Young’s modulus.

39



Molecular Dynamic Studies in the Fracturing of Metals

54 Simulating Experiments

5.4.1 Experiment 3 - Average Grain Size and Ultimate Tensile Strength

In this experiment, we look at the ultimate tensile strength of our materials as a
function of average grain size. The samples for this experiment were prepared as
explained in Chapter 3 and stretched as explained in Chapter 4. For this
experiment, we used the samples already created in Experiment 2 (Section 3.5.2).
These samples were 25 by 50 in size (1250 atoms in total). After each sample had
been relaxed, it was stretched and a stress-strain curve for the stretching was
recorded. Using this information, we were able to measure the maximum stress

that the sample endured during the deformation.

Example Stress-Strain Curve
\ with Ultimate Tensile Strength Marked
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In this graph, the maximum stress is identified with the ultimate tensile strength.
For each sample that we stretched, we monitored the average grain size (before
applied stress) and the maximum stress. Results from our experiments are

reported below.
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These are stress-strain curves for samples with the largest and smallest grain
sizes:

Stress-Strain Curves for Samples
with Largest and Smallest Grain Sizes

- ]

& Smallest (10.09179)
2 m Smallest (10.916934) |
Smallest (10.977315)
Largest (35.22783)
X Largest (24.909819) ——
@ Largest (24.841964)

Stress (MD units)

-0.5

Strain (%)

It is evident that the samples with larger grains reach higher maximum stresses
than samples with smaller grains. The following graph demonstrates the
maximum stress of various samples as a function of the average grain sizes of the
sample:
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Ultimate Tensile Strength
as a Function of Average Grain Size
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As is apparent from the graph, the bulk of the data was collected from samples
with small average grain sizes. We could not fully control the average grain
sizes of the samples—they are merely the results of cooling samples at various
temperatures and taking the resulting samples.

While it is difficult to establish the reason for the relationship between grain size

and ultimate tensile strength, the plot does show a clear trend: larger grain sizes
mean stronger materials.
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The evidence thus supports the thesis that ultimate strength increases with
increasing average grain size. Further data relevant to this experiment and
Experiment 4 can be found in the Appendix.

5.4.2 Experiment 4 - Average Grain Size and Young's Modulus
For this experiment we used the same data collected in Experiment 2 and used in
Experiment 3. We calculated Young’'s modulus for each sample by measuring
the slope of the graph over the first 0.5% strain. Over this range of strain, or
negligible, dislocations or planar slips that resulted from the strain.

Example Stress-Strain Curve
with Young's Modulus Marked
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Below is a graph of Young’s modulus for samples of various grain sizes:

Young's Modulus as a
Function of Average Grain Size
05
0.45 |
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Average Grain Size

As we noted with regard to UTS, while a precise relationship between Young's
modulus and grain size cannot be determined from his limited data set, it is
relatively easy to see the general trend —larger grain sizes mean higher Young’s
modulus, although this dependence appears to be fairly weak.
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Here are pictures of the initial configurations of the three samples with the

highest moduli of elasticity:

exhibited maximal UTS. Below are the samples with the three lowest moduli of

As you can readily see, two of the three samples are the same as those which
elasticity:
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5.4.3 Experiment5 - Grain Orientation and Ultimate Strength

One of the most important factors that influences the maximum stress a material
can sustain is the orientation of its grains. In this section, we experiment with
single-crystal samples fixed at various orientations, and examine the relationship
between grain orientation and ultimate tensile stress.

Our first step in this experiment was preparing the samples. To do so, we first
prepared a large circular mono-crystal
sample as shown below:

We then rotated (counterclockwise) the
circular sample anywhere between 0 and
60° in increments of 1°. After rotating the
larger sample, we cut smaller samples
from the middle of the circle as shown:
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Here are a few examples of samples from circles rotated to various orientations:

In order from right to left on the first row and then on the second row, we have
mono-crystal samples at 0°, 10°, 20°, 30° 40° 50°, and 60°. As is clear from the
pictures and the symmetry of the lattices, the rotations are periodic, and 0° and
60° are identical.

We then strained the samples as in prior experiments and as described in Section
4.3.2. We measured various properties of the stretching procedure and recorded
our results.
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Below are stress-strain curves from samples at various orientations:

Stress-Strain Curves

for Samples at Various Orientations
1.6

1.4 -

)

5 & 0 degrees
% m 10 degrees
\J; 20 degrees
g 30 degrees
n

Strain (%)

It is rather clear from the graph that the ultimate tensile strength increases with
rotation angle from zero to thirty degrees and that the Young’s modulus is nearly
invariant with respect to rotation angle.
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Here is a graph of the ultimate-stresses measured for each rotation of varying
degrees:

Maximum Stress
as a Function of Grain Orientation
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Below is a graph of Young's modulus for the various orientations. This value is
calculated as it was in Experiment 4 (5.4.2).

Young's Modulus of Elasticity
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5.5 Observations and Analysis

5.5.1 Observations
Experiment 3 relates a decrease in tensile ultimate strength to a decrease in
average grain size at the atomic range. Although the exact relationship between
these two properties is unclear from our limited work, and although it seems
clear that this relationship is probably not linear, that such a relationship exists
seems beyond doubt.

5.5.2 Analysis

The reason for this relationship may be explained as follows. Stress applied to a
grain can be ‘absorbed” by the grain in one of two ways: (1) the atoms inside the
grain can rearrange internally or (2) the grain as a whole can rotate or relocate.
When a grain absorbs the stress by changing internally, the stress is distributed
amongst the constituent atoms and each relocates slightly to absorb a small share
of the stress. When a grain absorbs stress by rotating or relocating, its internal
atoms remain stationary with respect to one another; the stress is entirely
absorbed by changes in the interface between the grain and its neighbors.

When stress is applied to a sample, the stress will most likely be absorbed in the
manner that requires the least rearranging of the atoms, minimal work. It seems
to me that slightly moving every atom within a grain requires less work than
rotating or relocating the entire grain. Grains will thus generally prefer internal
rearrangement to rotating and relocating. However, internal rearrangements are
not always possible and sometimes the grain as a whole must either reorient or
relocate itself.

In both of the aforementioned stress-absorptions processes, a single large grain
will tend to absorb more stress than will multiple smaller ones. If the stress is
absorbed by rotating and relocating, it seems more difficult to rotate or relocate
one large grain than it is to rotate or relocate multiple small ones. Moving a large
rock can be substantially more difficult than moving numerous smaller rocks.

If the stress is absorbed by internal change, where stress is distributed amongst
constituent atoms, then possessing more atoms amongst which to distribute the
stress will allow for a larger total stress to be placed on the grain.

Our research does not address the relationship between average grain size and
tensile yield strength, the subject of the Hall-Petch relationship. Our research
does not either address recent debates concerning the relevance of the Hall-Petch
relationship at this level and how to reconcile what we see at this level with what
we see with larger grains.
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Further research is necessary to explore a more exact relationship between
average grain size and ultimate tensile strength; explore the relationship between
average grain size and tensile yield stress; explain why the Hall-Petch
relationship is observed in larger grains but not in smaller ones.

Experiment 4 indicates that an increase in average grain size corresponds with an
increase in Young’'s modulus. The reason for this is probably similar to what has
been mentioned above. When a single grain absorbs stress, the stress is
distributed amongst the constituent atoms. The larger the grain, the more stress
the entire grain can endure before needing to rotate, relocate, or fracture.

Experiment 5 indicates that when grains are oriented as in the picture ssssss
on top (0 degrees), the strength of the material is minimal, while  22.%%*%"
when the grain is oriented as in the picture on bottom (30 degrees), ‘aaaaa
the strength of material is maximal. This has much to do with the
way in which slips occur in the systems. In the sample pictured on
bottom, the tensile stress is entirely perpendicular to the planes along
which the system might slip. Enough stress is needed to rip along
the entire vertical axis. In contrast, in the sample pictured on top, there exist slip
planes not entirely perpendicular to the tensile stress. Slipping requires less
stress than ripping through the entire piece.

In practice, when polycrystalline materials are used, there are probably so many
grains at so many orientations, that these factors do not make a difference. This
result, however, is important when single-crystal materials are produced and
when the orientation can be controlled.

Young's modulus does not seem to depend in any way on the orientation of a
grain. I don’t know how to explain this.
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6.1

Conclusions

Summary

In our work we have accomplished a number of important tasks:

We have explained the challenge of grain identification and a number of
inherent problems. We have also developed an algorithm to accomplish
this task; as far as I know such an algorithm has not been yet developed.
Such an algorithm is crucial for experimenting with ‘naturally born” grains
(as opposed to those created using Voronoi constructions).

We have reproduced experimental data illustrating the influence of
cooling rates on grain sizes. Such work has not yet been done using MDS.
We have reproduced the general conclusions of previous research. It is
shown that d o r*, where x is around -0.18, confirming experimental
data.

We have developed code to simulate stress-strain curves and to determine
critical points along those curves, especially ultimate tensile strength.

We have investigated the relationship between average grain size and
ultimate tensile strength. We showed a correspondence between large
grain sizes and higher UTS.

We have investigated the relationship between average grain size and
Young's modulus. We have shown that this value increases with grain
size, perhaps linearly.

We have investigated the relationship between grain orientation and
ultimate tensile strength. We have shown that certain orientations are
clearly associated with higher values of UTS and others with lower values.

We have investigate the relationship between grain orientation and
Young's modulus. We see no correlation between the two values.
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Future Research

Future work interests include both improvements to the experiments we
conducted as well as the exploration of new topics not touched upon in this
research.

Improvements

In this study, all experiments were conducted in two dimensions. We are
interested in conducting similar research for material simulations in three
dimensions.

In this study, we used the Lennard-Jones potential to govern the
interaction between all atoms. This indeed was the standard potential
used for many initial MD simulations. However, over time the use of the
Embedded Atom Method (EAM) has become very popular for modeling
metals [5], [6]. This potential takes significantly more time to compute
and thus we sufficed with the Lennard-Jones potential. In future work,
we would like to explore how the change in potential affects the results.

In this study, because of hardware limitations, we could only study
samples of relatively small size. In future work, I would like to redesign
the code such that it could be run on multiprocessor machines, thus
allowing us to increase the possible sample sizes.

New Topics

We did not investigate the relationship between average grain size and
tensile yield stress. We have not either progressed in resolving recent
controversy regarding the validity of the Hall-Petch relationship at
various scales. Both of these topics I hope to investigate further at a later
point in time.

As explained earlier the stress-strain curves that we used here are
‘engineering’ curves and not ‘true’ curves. We could rewrite some of the
code to determine the true stress and true strain.

We have only studied tension so far. We would also like to apply the
methods we have developed to studies of pressure and shear stresses as
well.
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Appendix — Supplemental Data

Appendix

This appendix provides additional data for each of the five experiments. There
we supply further details about how the experiment was run, including details
deemed too technical to include in the paper, as well as further data collected but
either not presented inside the paper, or not presented fully.

Experiment 1

Here we include data collected for each of the 5 trials of this experiment. First
we provide a chart of the cooling rates from the various trials. Although we used
the same scaling factor (between 0.71 and 0.99) for each trial, the samples varied
slightly in the time needed for cooling. Here we show figures for the cooling
rates, calculated by the function:

Cooling Rate = 1.0 / Time to Cool
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Cooling Rates (degrees per second)

Trial 1

Trial 2

Trial 3

Trial 4

Trial 5

Average

71

0.111111

0.105263

0.105263

0.105263

0.105263

0.106433

72

0.105263

0.1

0.1

0.1

0.105263

0.102105

73

0.1

0.095238

0.095238

0.1

0.1

0.098095

74

0.1

0.095238

0.095238

0.095238

0.095238

0.09619

75

0.095238

0.090909

0.095238

0.090909

0.090909

0.092641

76

0.090909

0.086957

0.086957

0.086957

0.090909

0.088538

77

0.086957

0.086957

0.086957

0.086957

0.086957

0.086957

78

0.083333

0.076923

0.083333

0.08

0.08

0.080718

79

0.076923

0.076923

0.074074

0.08

0.071429

0.07587

80

0.071429

0.074074

0.076923

0.071429

0.071429

0.073057

81

0.071429

0.068966

0.074074

0.071429

0.066667

0.070513

82

0.068966

0.066667

0.068966

0.064516

0.066667

0.067156

83

0.0625

0.064516

0.064516

0.064516

0.064516

0.064113

84

0.058824

0.060606

0.0625

0.0625

0.060606

0.061007

85

0.057143

0.055556

0.057143

0.058824

0.055556

0.056844

86

0.04878

0.052632

0.054054

0.055556

0.052632

0.052731

87

0.051282

0.051282

0.04878

0.051282

0.05

0.050525

88

0.047619

0.044444

0.046512

0.047619

0.044444

0.046128

89

0.042553

0.043478

0.044444

0.042553

0.044444

0.043495

90

0.036364

0.039216

0.04

0.040816

0.040816

0.039442

91

0.037037

0.035088

0.033898

0.034483

0.036364

0.035374

92

0.031746

0.032258

0.03125

0.032258

0.031746

0.031852

93

0.025974

0.027027

0.028169

0.026316

0.027027

0.026903

94

0.025

0.024096

0.024096

0.02439

0.023256

0.024168

95

0.019229

0.021053

0.020619

0.020833

0.020619

0.02047

96

0.016948

0.016807

0.016393

0.016807

0.01626

0.016643

97

0.012738

0.012739

0.01227

0.012579

0.012579

0.012581

98

0.008

0.008511

0.008471

0.008547

0.008511

0.008408

99

0.003769

0.004311

0.004264

0.004313

0.004264

0.004184
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We also show the average grain sizes for each of the various trials:

Appendix — Supplemental Data

Average Grain Size

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Average
71 14.62732| 16.33784| 15.17519 19.36442 17.18331| 16.5376172
72 16.5892| 19.41574| 14.86254 14.8485 15.894383 16.3220712
73 20.98327| 19.2189| 15.63805 28.18103 17.26815 20.25788
74 27.46852| 13.90845 13.506348 | 18.29443933
75 14.01696| 19.40497| 14.06386| 18.78734 15.540289 16.362684
76 14.19266| 17.81446 18.47232 13.528906| 16.00208375
77 17.38449| 19.41094| 13.88832 18.83234 13.826116) 16.6684402
78 13.44889| 21.92666| 14.11577 21.39168 15.228658 17.2223304
79 23.48725| 15.36375 19.35759 18.004414 19.053251
80 18.49113| 23.99001| 13.84888 21.57495 14.361373 18.453267
81 13.7188| 18.30396| 12.98886 18.14652 14.502331| 15.5320946
82 18.1833| 18.43904| 15.01207| 19.81726 14.675684 17.225471
83 15.97456| 23.90719| 13.73248 19.61648 20.412798 18.7286992
84 23.14575| 23.71337| 14.23657 15.91583 19.2528775
85 16.90018| 23.34457| 14.08089 15.70073 17.107587| 17.4267934
86 19.51613| 28.04999| 15.24552 19.25508 17.228789 19.859101
87 16.03843| 20.03599| 19.28927| 21.30172 13.227421| 17.9785678
88 16.2729| 22.5976| 15.63382| 21.54201 15.462401| 18.3017462
89 19.80453| 27.2256| 12.4898 17.55511 14.7896, 18.3729266
90 24.70591| 26.83557| 17.24167 17.399 15.764038 20.3892368
91 22.22979| 21.36036| 16.99349 23.30695 16.575304 20.09318
92 21.4299, 20.7988| 15.59285 19.64623 28.177292 21.1290144
93 22.52358| 22.58589| 15.50561 17.16349 21.165846 19.7888832
94| 20.22696| 21.77952| 19.99417| 19.75795 26.429959 21.63771
95 22.75406| 27.93534| 18.28563| 20.47299 20.841997 22.0580014
96 20.90477| 22.14941| 18.52274 20.28825 16.062011 19.5854376
97 19.46183| 26.36667| 20.57469 21.45219 21.571998 21.885474
98 49.94998| 23.13038| 20.13862 34.57912 22.373692) 30.0343552
99 49.96999| 21.87709| 49.94998 21.7215 22.511757 33.2060622

Occasionally, experiments crashed for technical and so no information is
available for them. Thos boxes are left blank and are ignored in calculated

averages.
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Experiment 2

Here we include data collected for each of the 5 trials of this experiment:

Cooling Rates (degrees per second)

Trial 1

Trial 2

Trial 3

Trial 4

Trial 5

Average

0.666667

0.666667

0.666667

0.666667

0.666667

0.666667

10

0.5

0.5

0.5

0.5

0.5

0.5

15

04

0.4

0.4

0.4

0.4

0.4

20

0.333333

0.333333

0.4

0.333333

0.4

0.36

25

0.333333

0.333333

0.333333

0.333333

0.333333

0.333333

30

0.285714

0.285714

0.285714

0.285714

0.285714

0.285714

35

0.25

0.25

0.25

0.25

0.25

0.25

40

0.222222

0.222222

0.25

0.222222

0.25

0.233333

45

0.2

0.2

0.222222

0.2

0.222222

0.208889

50

0.181818

0.181818

0.2

0.181818

0.2

0.189091

55

0.166667

0.153846

0.166667

0.166667

0.181818

0.167133

60

0.153846

0.133333

0.153846

0.142857

0.153846

0.147546

65

0.125

0.125

0.117647

0.133333

0.133333

0.126863

70

0.111111

0.111111

0.095238

0.105263

0.105263

0.105597

75

0.090909

0.090909

0.090909

0.090909

0.095238

0.091775

80

0.076923

0.074074

0.068966

0.076923

0.068966

0.07317

85

0.057143

0.04

0.055556

0.04878

0.05

0.050296

90

0.037037

0.033898

0.035088

0.039216

0.035088

0.036065

95

0.020833

0.02

0.020619

0.020833

0.019233

0.020304

Average Grain Size

Trial 1

Trial 2

Trial 3

Trial 4

Trial 5

Average

19.81904

16.53859

15.10053

16.63517

18.03233

17.22513

10

19.81456

16.53859

15.10053

16.63517

18.03233

17.22424

15

14.17316

17.33506

10.91693

14.54381

18.04688

15.00317

20

12.42802

14.30136

14.75127

14.49592

15.70748

14.33681

25

11.99175

15.90233

13.69493

14.39483

15.47186

14.29114

30

13.04352

10.97732

17.21135

18.15114

14.84583

35

11.77582

20.86649

11.79752

13.81676

13.96635

14.44459

40

15.08452

21.81378

11.86655

16.42685

19.79672

16.99768

45

12.63181

17.1364

12.46613

16.67884

19.84826

15.75229

50
55

20.08202
16.33568

21.80946
21.46949

11.06875
10.09179

12.56024
17.12091

19.80192
19.75488

17.06448
16.95455

60

18.32713

21.27862

14.30954

15.47784

13.4164

16.56191

65

15.77844

20.89094

11.85538

16.64083

11.59714

15.35255

70

12.64852

21.86867

12.50029

19.42914

19.49623

17.18857

75

12.39592

21.92377

24.84196

11.61145

16.03948

17.36252

80

12.34012

17.19769

13.19823

19.91975

18.79201

16.28956

85
90

21.234
18.08591

11.66739
24.54392

24.90982
19.92484

16.12034
24.8644

24.80972
19.65017

19.74825
21.41385

95

23.47672

35.22783

19.81645

15.57882

15.51866

21.9237
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Appendix — Supplemental Data

Experiments 3 and 4

The results displayed in the paper for the two experiments originated in the
same experiments. We do not provide here the stress-strain data from the more
than 50 trials (3 trials for each of 19 different cooling rates), each of which takes
hundreds of lines. The interested reader should contact the author for this
information.

Here we provide some data from the experiments related to the Maximum Stress
and to Young's Modulus, and their relation to Average Grain Size.

Experiment 5

All relevant data is provided in the paper.
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Grain Size Maximum Stress [Youngs Modulus Grain Size Maximum Stress |Youngs Modulus
10.09179 1.279136684 0.302586108 15.902334 1.45326366 0.317597169
10.916934 1.08725245 0.287922322 16.335678 1.187032471 0.327536552
10.977315 1.155425301 0.291884869 16.538591 1.625059516 0.344837237
11.068752 1.289591084 0.310181876 16.538591 1.625059504 0.344837238
11.667393 1.199705571 0.322570596 17.136402 1.595132661 0.351285722
11.77582 1.218563899 0.296229103 17.197689 1.270315478 0.313348998
11.797518 1.128524664 0.31003947 17.335056 1.684411945 0.344052552
11.855381 1.43852408 0.337044442 18.085907 1.634413806 0.358124178
11.866545 1.096370258 0.312741223 18.327127 1.450877738 0.348696165
11.991749 1.168658741 0.288468929 19.816454 1.541189058 0.36722014
12.340119 1.010707105 0.296625992 19.819038 1.441737652 0.336983555
12.39592 1.26912417 0.305498931 19.924842 1.480735426 0.359845623
12.428024 1.174752464 0.317325896 20.082022 1.340195426 0.317765245
12.466131 1.257431699 0.300638901 20.866488 2.107587082 0.337078915
12.500292 1.320024731 0.296740824 20.89094 1.397087977 0.296624335
12.631808 1.166847129 0.302043557 21.234003 1.516019943 0.343657215
12.648523 1.266671961 0.310250336 21.278621 1.693397402 0.325411404
13.04352 1.349423782 0.292998207 21.469488 1.835242688 0.356340909
13.198227 1.707891737 0.310310636 21.809463 1.835482477 0.333183147
13.311108 1.296579467 0.300966507 21.813775 1.650311281 0.345417901
13.694927 1.234213435 0.299241815 21.868672 1.806475753 0.351863754
14.173164 1.200166315 0.326114475 21.923773 1.914970908 0.355577967
14.301357 1.312488458 0.335735121 23.476715 1.323871181 0.354505318
14.309539 1.539357859 0.328049276 24.543921 2.225725728 0.374415257
15.08452 1.109619269 0.30704925 24.841964 1.707060918 0.347976044
15.100533 1.427395097 0.338056935 24.909819 1.768204126 0.368358578
15.100533 1.427395141 0.338056939 35.22783 2.246681714 0.370800974
15.778443 1.304924552 0.302334651
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