A “LOCAL MEAN OSCILLATION” DECOMPOSITION
AND SOME ITS APPLICATIONS

ANDREI K. LERNER

1. INTRODUCTION

A recent result by the author [39] establishes a pointwise control of
an arbitrary measurable function in terms of its local mean oscillations.
Soon after that, in a surprising work [12], D. Cruz-Uribe, J. Martell and
C. Pérez showed that this result can be effectively applied in a variety
of questions, including sharp weighted inequalities for classical singular
integrals and the dyadic square function. In turn, based on [12] and
on a recent concept of the intrinsic square function by M. Wilson [54],
the author [40] obtained sharp weighted estimates for essentially any
Littlewood-Paley operator.

The aim of these notes is to present a unified, extended and almost
self-contained exposition of the above-mentioned works [39, 12, 40].

2. THE sPACE BMO

2.1. The classical approach to BMO. The mean oscillation of a
locally integrable function f over a cube ) C R" is defined by

Q(f:Q) = @il /Q (@) — foldz,

where fo = i‘ fQ f. It is easy to see that

igﬂg@‘/\f(x)—ddxg(l(f;Q <21nf—/]f — c|dzx.

The space of functions with bounded mean oscillation, BMO(R"),
consists of all f € L;,.(R™) such that

| fllBrro = sup Q(f;Q) < o0
QCRn

This space was introduced by F. John and L. Nirenberg in [30]. In the
same work the following fundamental property of BM O-functions was
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established: for any f € BMO, any cube Q C R", and for all a > 0,

1) HeeQ:|f(@) ~ fol > a}l < 2AQlexp (~ ———).

cnll fllBMo

For example, it follows from this inequality that

1 1/p
2.2 Illssso = sup (i /Q 7(@) ~ folrdz)

for any p > 1.
The sharp maximal function is defined by

f(x) = SQgpQ(f;Q),

where the supremum is taken over all cubes ) containing the point x.
This operator was introduced by C. Fefferman and E.M. Stein [20].
Recall that the Hardy-Littlewood maximal operator is defined by

1
M) =swp o [ 17(w)ldy
@z |Q] Jg

Since f#(x) < 2M f(z), we have that f# is bounded on L? for p > 1.
The basic property of f# proved in [20] says that the converse inequality
is also true, namely if f € LP°, then

(2.3) 1fllze < ell f#lle (1 <p<o0).

As we shall see below, the assumption that f € LP° can be relaxed
until f*(+o0) = 0.

Originally, inequality (2.3) was applied to describing the intermediate
spaces between BMO and LP. A number of other applications of (2.3)
concerns LP-norm inequalities involving various operators in harmonic
analysis (see D. Kurtz [31]). Typically, one can obtain a pointwise
estimate (T} f)#(z) < cTyf(x), where T} is a certain singular-type op-
erator, and 75 is a maximal-type operator. Combining this with (2.3)
yields a norm estimate of T} by T5. Perhaps the first such application
was found by A. Cordoba and C. Fefferman in [10] where it was shown
that for a singular integral T,

(2.4) (Tf)*(w) < eM(|f[") (@) (r>1).

2.2. Median values and local mean oscillations. Given a measur-
able function f, its non-increasing rearrangement is defined by

ff)y=mf{a>0:{x eR": |f(x)]| > a}| <t} (0<t<o0).
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Observe that we have defined the rearrangement as the left-continuous
function. Usually in the literature (see, e.g., [1, p. 39]) one can find
the right-continuous rearrangement defined by

inf{ao > 0: |{z e R": |f(x)] > a}| <t}

The left-continuous rearrangement can be also defined in the following
very convenient form (cf. [5]):

f(t) = sup inf [f(z)].

|E|=t zeE

Definition 2.1. By a median value of f over () we mean a possibly
nonunique, real number m¢(Q) such that

{z € Q: f(x) >my(@Q)} <1Q/2
and
Hz e Q: flx) <m;(Q)} <|QI/2
If follows from this definition that

{z € Q:|f(x)] = [Ims(Q)} = [Q1/2,
which implies
Img(Q)] < (fx@)"(1Q1/2).

Also, if m (@) is a median value of f, then for any constant ¢, m;(Q)—c
is a median value of f —c. Hence, applying the previous inequality, we
get

(2.5) m(Q) — ¢ < ((f — xa) (1Q1/2).

Definition 2.2. Given a measurable function f on R"™ and a cube @),
the local mean oscillation of f over () is defined by

w(£:Q) = ((f =mp(@)xe)" (NQI)  (0<A<1).
It follows from (2.5) that for 0 < A < 1/2,

inf ((f = c)xq) (MQ) < wr(£;Q) < 2inf ((f - c)xe) (AQI)-

Therefore, the median value m((Q) plays the same role for the local
mean oscillation (in the case 0 < A < 1/2) as the usual integral mean
value fq does for the integral mean oscillation.
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2.3. A “local mean oscillation” approach to BMO. By Cheby-
shev’s inequality, f*(t) < %Hf“Ll, and hence,

2
wA(f: Q) < XQ(fa Q),
which shows that 5
Sgpr(f;Q) < < fllBao-

The main result about local mean oscillations obtained by F. John [29]
says that for A < 1/2 the converse inequality holds:

(2.6) | fllBaro < ngpr(f;Q)'

This result was rediscovered by J.-O. Stromberg [51] who showed also
that (2.6) remains true for A = 1/2. Note that this exponent is sharp.
Indeed, if A > 1/2, then wy(f; @) = 0 for any function f taking only
two values, and therefore (2.6) fails.

Observe that (2.6) allows to “recover” BMO under the minimal as-
sumptions on f. In particular, in the definition of wy(f; Q) we suppose
only that f is merely measurable. Note also that (2.6) shows that (2.2)
holds for any p > 0.

Denote

| fll Baio, = Sgpm(f; Q).

By the above discussion we have the John-Stromberg equivalence

Ifllsmo =< [[fllsmoy (0 <A <1/2).

The proof of this result is based on the following version of the John-
Nirenberg inequality (2.1):

(2.7) HzeQ:|f(z) —mp(Q)] > a}| < 2|Qlexp < - m>

It is easy to see that actually (2.7) implies the John-Nirenberg in-
equality. Indeed, by (2.5) and by Chebyshev’s inequality,

Ims(Q) — fol < 2Q(f: Q) < 2[|flsmo-
Hence, if o > 4| f||smo, we get from (2.7) that

{r€Q:1f(@)—fol >} < HreQ:|f(x) - myQ) > a/2}|
< 2AQlexp (— o).

o\l fllBaco

On the other hand, for o < 4| f||pmo this inequality holds trivially
with suitable ¢},.
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An interesting analysis of the John-Nirenberg and John-Stromberg
inequalities (and in particular, an attempt to obtain (2.7) with dimen-
sion free constants) can be found in a recent work [14] by M. Cwikel,
Y. Sagher and P. Shvartsman.

Similarly to the Fefferman-Stein sharp function, one can define the
local sharp maximal function by

M f(x) = supw(f; Q).
Q3
It was shown by J.-O. Stromberg [51] that for any p > 0,

(2.8) 1llee < M flle (0<A<1/2).

As we shall see below (Corollary 4.2), it is enough to assume here that
[*(+00) = 0.

On one hand it seems that (2.8) is an improvement of the Fefferman-
Stein inequality (2.3) since we easily have that M f(z) < 2 f#(z). On
the other hand, B. Jawerth and A. Torchinsky [28] showed that f# is
essentially the Hardy-Littlewood maximal function of M f f: for any
r € R",

(2.9) MM f(z) < [*(x) < ;MM f(2)

(this result with A = 1/2 one can find in [34]). It follows from this that
inequalities (2.3) and (2.8) are equivalent for p > 1.

Inequalities (2.9) show that the local sharp maximal function M} f
is much smaller than f#. This advantage is invisible in the unweighted
L? spaces. However, as soon as the weighted inequalities are concerned,
the use of M f f usually leads to much more precise results. As a typical
example, consider Coifman’s inequality [6] saying that if w € A, then
a singular integral operator 1" satisfies

(2.10) 1T f Loy < M fllir@) (0 <p<o0).

It is well known that both inequalities (2.3) and (2.8) hold if we replace
the LP-norm by the LP(w)-norm for w € A, (we shall prove this fact
in Theorem 4.6 below). Further, it was shown in [28] that

(2.11) M (Tf)(x) < eMf(x).

Combining this with the weighted Stromberg’s inequality (2.8), we im-
mediately obtain (2.10). Next, observe that (2.11) along with (2.9)
yields an improvement of (2.4):

(Tf)*(x) < cMM f(z).
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But even this improved version combined with the weighted Fefferman-
Stein inequality (2.3) gives only (2.10) with MM f instead of M f on
the right-hand side.

3. THE MAIN DECOMPOSITION RESULT

3.1. On theorems of C. Fefferman and L. Carleson. Denote
R"™ = R" x (0,00). Given a cube Q C R", set
Q={(y.t) eRT 1y €Q,0<t<Q)},

where /(@) denotes the side length of Q.
We say that o is a Carleson measure on RTI if

_ 0(Q)
Clo) = 5w 7]

< 00,

where |o| is the total variation of o.
Let K be a positive function with fR” K =1 and such that
c
< — .
= 1+ |zt
Write Ky(z) =t "K(x/t),t > 0.

The famous duality theorem by C. Fefferman [18, 20] says that
BMO(R™) is the dual space of H*(R™). This result has several equiva-
lent formulations. One of them is the following (see [4] and [22, p. 272]):
if f € BMO(R™) with compact support, then there is g € L* and there
is a Carleson measure o such that

(3.1) flz) =g(x) + /Rn+1 Ki(x —y)do(y,t),

K(x)

where

19l < cllfllBao and  Clo) < || fllsao-
L. Carleson [4] gave a direct and constructive proof of (3.1) providing
a new proof of the H* — BMO duality.

3.2. On theorems of J. Garnett and P. Jones, and N. Fujii. We
say that I C R is a dyadic interval if [ is of the form (;—k, 12%1) for some
integers 7 and k. A dyadic cube @) C R" is a Cartesian product of n
dyadic intervals of equal lengths. Let D be the set of all dyadic cubes
in R™.

Given a cube @y, denote by D(Qy) the set of all dyadic cubes with
respect to (o (that is, they are formed by repeated subdivision of Qg
and each of its descendants into 2" congruent subcubes).

J. Garnett and P. Jones [23] obtained the following dyadic version of

Carleson’s theorem: given f € BMO and a cube @, there is g € L™
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with ||g|lz~ < 2||f|lsmo and there exists a sequence {Qx} € D(Qp),
and a sequence ay, of real numbers such that for a.e. z € Qq,

f@) = foo =9(@) + > arxo,(z)

and for each Q € D(Qy),
Z |ax||Qk| < cllfllBrol Q-

QrCQ

If we replace R/! by its discrete subset {pg = (cq, {(Q)),Q € D},
where cg is the center of (), and consider on this subset the measure o
having mass ay|Qk| at pg,, then we get a correspondence between the
Garnett-Jones and Carleson theorems.

The above-mentioned results deal with decompositions of BMO-
functions. A remarkable observation of N. Fujii [21] is that almost the
same proof as in [23] yields actually a decomposition of an arbitrary
locally integrable function: given a cube @,

v

(3.2) flx) = fo=9g(z)+ ZZ@,(})XQZ(@ for a.e. x € Q.

Here |g(z)] < cfg(x), where fg(x) is the Fefferman-Stein sharp func-
tion relative to (), and

(3.3) e <c sup Q(f;Q).
QDQDQ¥

3.3. A decomposition in terms of local mean oscillations. It
was mentioned by N. Fujii [21] without the proof that replacing fg in
(3.2) by a median value m¢((Q), one can obtain a similar decomposition

but with the local sharp maximal function instead of fg (x). Indeed,

following [21], we get a variant of (3.2) with a control of g by M} f and
with (3.3) replaced by

dP] <c sup wi(f: Q).
QDOQDOQY

Our key result stated below says that such a variant can be further
improved with a control of at it terms of single local mean oscilla-
tions. As we shall see below, this point is crucial for many important
applications.

If @ € D(Qo) and Q # @y, we denote by @ its dyadic parent, that is,

the unique cube from D(Q,) containing @ and such that |Q| = 27|Q)|.
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For x € ()¢ set
MES fe) = sup  wi(f;Q),
r€Q€D(Qo)

where the supremum is taken over all dyadic cubes with respect to Qg
containing the point x.
The following theorem was proved in [39].

Theorem 3.1. Let f be a measurable function on R"™ and let QQy be

a fized cube. Then there exists a (possibly empty) collection of cubes
Q% € D(Qq) such that

(i) for a.e. x € Qo,
[f(@) = mp(Qo)l < 2Mo f(a +2ZZw (5 Q)xge (@);

k=1 3

(i) for each fized k the cubes Qf are pairwise disjoint;
(111) if Qp = UjQ?, then Qpiq C Qp;
(iv) Qe N QF] < 51QF].
Observe that properties (ii)-(iv) here are the same as those of cubes
obtained from the classical Calderén-Zygmund decomposition (and in-
deed, the cubes Q;“ in Theorem 3.1 are also obtained from a similar

stopping-time process). In particular, we shall use below the following
standard trick. Let E]k = Q? \ Q1. It follows from the properties (ii)-

(iv) of Theorem 3.1 that |EF| > |Q¥/2 and the sets E} are pairwise
disjoint.
Proof of Theorem 3.1. We divide the proof into several parts.

The 1st part. We claim that there exists a (possibly empty) col-
lection of pairwise disjoint cubes {Q}} € D(Qy) such that

(3.4) 1@ < 51l

and

(3.5)  f=m(Qo) = g1+ Z aj1Xq! Z(f —my(Q))xqr,

where

(3.6) l91(2)] <M/4Q f(z) for a.e.xEQO\UjQ}

and the numbers «;; satisfy

(3.7) |ajq| < W1/2"+1(f§ @;) + w1/4(f§ Qo).
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Set fi(z) = f(x) —ms(Qo) and
By ={x € Qo: |fi(z)] > wia(f;Qo)}-

We may assume that |E;| > 0 since otherwise we trivially have

|f(z) —mp(Qo)| < wiya(f; Qo) < MﬁfQof(x) for a.e. z € Qq
(and so the collection {Q;} is empty).
Let

mo,filz) = sup  |mp(Q),
QeD(Qo),zeQ

and consider

O = {z € Qo : mg, f1(x) > wija(f;Qo)}.
Observe that by (2.5) and by Chebyshev’s inequality

2
ms(Q) — f@)] < /Q ) — F()dy.

From this, by Lebesgue’s differentiation theorem we get that for a.e.
r € R",

lim —my(Q) = f(x).

|Q|—=0,Q3z
Hence, mg, fi(z) > | fi(x)| for a.e. x, and therefore |Q] > [Ey| > 0.
For each = € (2 there exists a cube @, € D(Qy) containing x
and such that |my (Q2)] > wi/a(f; Qo). Note that Q. # Qo since
my, (Qo) = 0. Therefore, choosing the maximal dyadic cubes (ex-
actly as in the classical Calderén-Zygmund decomposition), we get that
Q1 = U;Q;, where Q; are pairwise disjoint cubes from D(Q) such that
(3.8) ‘mfl<Q;)‘ > wiya(f; Qo)
and
Imyp, (Q5)] < wiya(f; Qo).
It follows from (3.8) that

(f1x@o) " (1Qol/4) < (fixg1)*(1Q;1/2).

Hence,

{z € Qj : [Ai(x)] > (fixgo) (1Ql/4)} > Q;1/2,
and thus

SY01Q < Y He e @A) > (fixa) (Qul/AH
< e € Qo+ AW > (xan) (1Q0l/4)}] < Qol/4,
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which proves (3.4) (here we have used the well known property of the
rearrangement saying that p,(f*(t)) < t, where py is the distribution
function of f).

Further, observe that my, (Q}) = ms(Qj) — my(Qo). Hence we can
write

f = ms(Q0) = fixgoen + Y m(@)xagr + Y (f = ms(Q)))xqr
J J

which yields (3.5) with g1 = fixgone, and a;1 = my, (Qf). Since
mg, f1(x) > | fi(x)| a.e., we obviously have (3.6). Next,

|mf1(Q}> - mfl(@]l)| + |mf1(@]1)|

((f = ma(@)xen) (1QH/2) +wryalF: Qo)
wijont (3 Q1) + wiya(f: Qo)

which gives (3.7), and hence our claim is proved.

The 2nd part. Observe that each function f — mf(Q]l) has the
same behavior on le- that f — my(Qo) has on Qy. Therefore we can
repeat the process for any le-, and continue by induction.

Denote by Q% the cubes obtained at k-th stage. Let Q = U;Q¥ and

fir(@) = f(z) — mp(QF ). Denote
Tip={i:%nQ ' =0} and Ty, = {i: U nNQ"" £0}.
Assume that 7 € Zy . Setting

Tw=1{j:QF CcQi'},

IA

[e781

IN

IN

we have
Qp={reQi": mgf,l(fi7k)(x) > wia(f; Q8 )} = Ujes, §>
and the numbers a% = my,, (QF), similarly to (3.7), satisfy

(39) gl < wyn (:Q5) +wia(F Q7Y (€ Ti):
Further, similarly to (3.4),

(3.10) QT =) QY <

JETi k

1

k-1

We write below how (3.5) will transformed after the first repetition
of the above described process. Set 11 = 3,(f —ms(Q}))xq:- We have

Y=Y (f=mp@Q))xgr + Y (f = ms(@Q)xqr-

iGILQ i622y2
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Next,
Z Z F=mp(@Q))xona,, + Z f=ms(Q))xez,
1€To 2 1€12 2 1€T3 2

and (we use that o @ =mg(Q?) —myp(Q}))

7

Y =mi@Dxaz = D Y (F—mp@))xez

€Ty 2 €122 jJ€ET; 2
=30 > alver+ Y Y (F - mi@)xer
1€712,2 j€ETi 2 €122 JE€ETi 2

Combining the previous equations along with (3.5), we get

f=mp(Qo) =91+ g2+ Z% 1XqQ! + Z Z Oé%QXQQ + g,

ZGIQ 2 ]GZ
where
g2= Y (f=mp@))xgr + > (f = mp(@))xgna.s
iEIlg 'I:EIQ’Q
and
=D > (F=mp@)xee
1€122 j€T; 2

Similarly, after (k — 1)—th repetition of the process we obtain that

f(z) —mg(Qo) = ZQV+ZZ > a J,,XQV ) + Pr(),

v=1 Z€I2V.]€\7ZV

Ik = Z fi,kXfol(I) + Z fz’,kXfol\Qiﬂk(x)

1€11 1€Lo

=D > (F=m@))xq(@)
1€ JE€ET K
(so, by our notation, 3 ez, > e, aﬁxQ; (x) =2, aj1Xq! (x)).
By (3.10), |Q&| < |Q%_1|/2, and hence |Qx| < |Qo|/2*. Since the
support of 1 is 0 we obtain that ¢, — 0 a.e. as k — oco. Therefore,
for a.e. x € Q,

fla@) = mp(Qo) = Zgﬂrz > D guxerle

v=11i€lz, je€Tiv

and
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The 3rd part. It is easy to see that the supports of g, are pairwise
disjoint and for any v and for a.e. x € @,

l9.(2)] < M{j0, ().
Therefore,
i) < ML, f(@) ac. in Qo.

Next, we write

(311 S =Y auxg @)+ D > afixe()

v=2i€Ts, j€T;

By (3.7),
Z |04j,1|XQ} (z) < Zw1/2n+1(f; @})XQ}(@ + oJl/4(f; Qo).
J J

Applying (3.9), we get that the second term on the right-hand side of
(3.11) is bounded by

> > <w1/2"“(f?@g”‘)+w1/4(f;Q§'_1)>XQ§($)

v=21i€ls, j€ETi v

< ZZwl/znﬂ f; Q XQ” +ZZW1/4 Q7 XQ;’*(*T)'

v=2 3

Combining this with the previous estimate yields

[S2(z)| < ZZ(M/znﬂ(ﬁ@?)+w1/4(f;Q?))XQ;($)+w1/4(f;Qo)

v=1l j

< 230> wipee (FQ)xgr (@) + M, o f(2),

v=1 j

which along with the estimate for S; completes the proof. 0

4. APPLICATIONS OF THEOREM 3.1 TO Mff AND BMO

By a weight we mean a non-negative locally integrable function. We
start with the following result.

Theorem 4.1. For any weight w, cube QQ, and a measurable function f,
@) [ 1f-m(@ude <6 [ M@ Mo(MEore)u)(z)ds,
Q Q

where a constant \ depends only on n, and 0 < 6 < 1.
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Proof. Applying Theorem 3.1 with Q) = Q) yields

[f =mp(Qo)lwdz < 2 / M0, f (0)w dz

+ 2Zwl fQ’“/k

Qo

Since
Wt (15Q)) < L MY g fla) (= 1/2772),
we have
Zwl ka/w<Zlnij>\ /ka
-5
<2Z</ Anczo |Qk|/ AnQo w
< 22/ A Qo MQo ((Mf Qof)l_éw)dx
S 2/ (M;\t;Qof) MQO ((Mf Qof)l_aw)d‘r'
0
Also,
/ M g f (@wdr < / M gy f (@ )’ Mo, (Mﬁ4Q0f($)1_5w)(x)dx.
Combining the obtained estimates completes the proof. O

Theorem 4.1 implies easily both the John-Nirenberg-John-Stréomberg
and the Fefferman-Stein-Stromberg inequalities, namely, we have the
following.

Corollary 4.2. Let 0 < A < \,,.
(i) For any f € BMO and any cube Q,
Q@
(42) [reQ:|f(@) —ms Q) > a} < 2Qlexp (— ———);

nllf | 10,
(ii) For any measurable f with f*(4+00) =0 and for all p > 0,

(4.3) 1f e < el M f 2o

Proof. Theorem 4.1 with § = 1 along with Stein’s L log L characteriza-
tion [50] yields

/u—m@mmswmww/Mwéwmwmmmm@
Q Q
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From this, by the exp(L)-Llog L duality [1, p. 243],

1 = mp(@)lleapri@) < cllfllBaros,
which is equivalent to (4.2).
Further, if f*(4+00) = 0, then |m;(Q)| — 0 when @ tends to R™.
Hence, letting () — R™ in Theorem 4.1 with 6 = 1, we get

(4.4) . |f(x)|lwde <6 | M f(z)Mwdz

Rn
(observe that this inequality was proved by means of different ideas
n [35]). From this, using the L” boundedness of M and the LP — L¥
duality, we get (4.3) for p > 1.

The case p = 1 follows immediately if we take w = 1. Further, if
0 <r <1, we have

wx([f5Q) < 2((LfI" = Img(@)")x@)"(AQI) < 2wa(f; Q)"
which implies
M (If1") (@) < 2MF f(x)".
Combining this estimate with the proved case p = 1, we obtain (4.3)
for0 <p< 1. O

Remark 4.3. Observe that our approach does not allow to obtain the
sharp John-Stréomberg exponent A\ = 1/2 in Corollary 4.2. On the
other hand, from point of view of most applications, it is enough to
have (4.2) and (4.3) for some A depending on n.

Remark 4.4. Tt follows from the definition of the rearrangement that
f*(+00) = 0 if and only if

H{Hx e R": |f(2)] > a}| <
for any a > 0 (cf., [36, Prop. 2.1]).
Remark 4.5. Theorem 4.1 contains also a part of Jawerth-Torchinsky

inequality (2.9). Indeed, by (4.1) with § =1 and w = 1,

— X ) —m X # x)axr
/Qlf(:v) fold §2/Q|f<> H(Q)ld su/@% f(2)d

which yields the right-hand side of (2.9).

We now extend (4.3) to the L?(w)-norms with w € A,. Recall first
several definitions.
We say that a weight w satisfies the A,,1 < p < oo, condition if

1 1 Pl
|wl| a, _sup(|Q‘/wdx> (@/Qw » dx) ,
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where the supremum is taken over all cubes ) C R".

In the case p = 1 we say that w is an A; weight if there is a finite
constant ¢ such that Mw(z) < cw(x) a.e.

Denote A, = U Ap,. There are several equivalent characteri-

1<p<oo

zations of Ay, (see [7]). In particular, w € A, if and only if there
exist constants ¢,e > 0 such that for any cube () C R"™ and for any
measurable subset F C Q,

(we use a notation w( f pw(r)dr). Also, the Lebesgue measure
and the w-measure here can be reversed namely, w € A, if and only
if there exist constants ¢,d > 0 such that for any cube () C R™ and for
any measurable subset £ C @,

49 o= (+i61)

Theorem 4.6. Let w € Ay. Then for any measurable [ satisfying
f*(+o00) = 0 and for all p > 0,

1l ey < elMF fllrwy  (0< X< A).

Proof. As in the previous proof, it is enough to prove the theorem for
p > 1. Applying Theorem 3.1, we have

1f = mp(Q)lleo@om) < 2IM{, fllzocw)
+ 2 Z ZWT#Q (f; Q?)XQ?HLP(w)-
=1 J

It suffices to show that the second term here is bounded by || M f Fllze(w)-
Then letting Q)9 — R™ will complete the proof.
Set By = Qp \ Qx41 (we use the notation from Theorem 3.1). Then

ZZW : fQ XQk ZZW L fQ XEkHﬁQk

=0 k,j

Therefore

I Z Zwﬁ(f; Q) x@x o)

Zw L f Q XE]H,lﬂQkHLp

|
=0 7]
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Further,
HZw L (3 Qe gt o = D w_i, (f: QPw(Bi N QF)
k,j

By propert1es (ii)-(iv) of Theorem 3.1 we have
| By N QY| < Q0 Q5| < 27QF).
From this and from (4.5) and (4.6),
w(Eg N Qf) < c2_l5w(Q§) < cQ‘le(Ef).
Therefore,
Yow s (OB N@) < 27 inf(MF fPw(E))
"

kg I

< @ E|ME S0

Combining the obtained estimates, we get

ZIIZw : < cZ2 2| M | o
=0 kj

< | ME fllzoaw),
which completes the proof. 0
A different proof of Theorem 4.6 can be found in [33].

5. APPLICATIONS OF THEOREM 3.1 TO SHARP WEIGHTED
INEQUALITIES

It is well known that most of the classical operators in harmonic
analysis are bounded on LP(w) for w € A,. The question about the
sharp LP(w) operator norm of a given operator in terms of ||w|| 4, has
been a subject of intense research during the last decade.

The first sharp result in this direction was obtained by S. Buckley [3]
who showed that the Hardy-Littlewood maximal operator M satisfies

_1
(5.1) M| o) < e(n,p)llwlly" (1 <p<o0),

and the exponent zﬁ is sharp for any p > 1.

It turned out that for singular integrals the question is much more
complicated. Very recently this problem has been solved due to efforts
of many mathematicians.

To be more precise, we have that any Calderén-Zygmund operator 7'
satisfies

(L55)

(5.2) 1T oy < (T m,p)l[wll, " (1 <p<o0)
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Further, for a large class of Littlewood-Paley operators S,

63 ISlpw < (@np)lull
The exponents in (5.2) in (5.3) are best possible for any p > 1.

Inequality (5.2) was first proved by S. Petermichl [45, 46] for the
Hilbert and Riesz transforms and by S. Petermichl and S. Volberg [48]
for the Ahlfors-Beurling operator. The proofs in [45, 46, 48] are based
on the so-called Haar shift operators combined with the Bellman func-
tion technique.

A unified approach to the above results was given by M. Lacey,
S. Petermichl and M. Reguera [32], who proved (5.2) for a general class
of “dyadic shifts”; their proof employed a two-weight “I'b theorem”
for such shifts due to F. Nazarov, S. Treil and S. Volberg [41]. The
proof in [32] was essentially simplified by D. Cruz-Uribe, J. Martell
and C. Pérez [12]; as the main tool they used Theorem 3.1.

Very soon after that, C. Pérez, S. Treil and A. Volberg [43] showed
that for general Calderén-Zygmund operators the problem is reduced
to proving the corresponding weak-type estimate. Based on this work,
T. Hytonen et al. [26] solved (5.2) for Calderén-Zygmund operators
with sufficiently smooth kernels. Inequality (5.2) in full generality was
proved by T. Hytonen [25] (see also the subsequent work [27]).

The history of (5.3) in brief is the following. First it was proved for
1 < p < 2 for the dyadic square function by S. Hukovic, S. Treil and
A. Volberg [24], and, independently by J. Wittwer [56]. Also, (5.3) in
the case 1 < p < 2 was proved by J. Wittwer [57] for the continuous
square function.

In [12], D. Cruz-Uribe, J. Martell and C. Pérez proved (5.3) for the
dyadic square function for any p > 1; the key tool was again Theo-
rem 3.1. Soon after that, the author [39] showed that (5.3) holds for
the intrinsic square function, establishing by this (5.3) for essentially
any square function.

Our goal is to describe below the key points from [12] and [39]. But
first we mention the following very useful tool commonly used in these
questions.

1 1
21p—1

(1<p< o).

5.1. Extrapolation. The famous extrapolation theorem of J. Rubio
de Francia [49] says that if a sublinear operator 7" is bounded on L (w)
for any w € A,,, then it is bounded on LP(w) for any p > 1 for
all w € A,. In [15], O. Dragicevi¢ et al. found the sharp depen-
dence of the corresponding norms on |[w||4, in this theorem. Very
recently, a different and much simplified proof of this result was given
by J. Duoandikoetxea [17]. We shall use the following version from [17].
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Theorem 5.1. Assume that for some family of pairs of nonnegative
functions (f,g), for some py € [1,00), and for all w € A,, we have

191[zrow) < eN([[w]a,y)1f | 2ro (),
where N is an increasing function and the constant ¢ does not depend

onw. Then for all1 < p < oo and all w € A, we have

1
max(l,pgj)

gllzrw) < 1N (callwlla,

M A1l zo )

Observe that by extrapolation, it is enough to prove (5.2) for p = 2;
similarly, it is enough to prove (5.3) for p = 3.

5.2. The key result. The main idea found in [12] can be described
as follows.

Theorem 5.2. Assume that for some family of pairs of nonnegative
functions (f, g) with g*(+00) = 0 we have

(5.4 R e L

for any dyadic cube Q C R"™, where r,v > 1, and the constant ¢ does
not depend on Q). Then for any 1 < p < oo,

max(;,%)
9l rw) < cllwlls, " 11f 2o ),
where the constant ¢ does not depend on w.

Proof. Let Qg be a dyadic cube with respect to R™. Then any cube
dyadic with respect to @)y will be also dyadic with respect to R™. Ap-
plying condition (5.4) along with Theorem 3.1, we get that for a.e.

T € Qo,
g ()" = myg (Qo) " < (M f () + Asy f (),

where

1r
Ay f(2) = (Z (ho / . !f\dxyx(g;(l’))

jik
(we have used that 7Q C 37Q).
Therefore, the question is reduced to showing the corresponding
bounds for M f and A,,f. For M this is Buckley’s estimate (5.1).
For the sake of completeness we give here a short proof of (5.1) found

recently in [38]. Tt is interesting to note that very similar ideas will be
used in order to bound the operator A, ,.
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Denote by M the weighted centered maximal operator, that is,

. B 1
My o) =8 @)

/ F@)lw(y)dy,
Q

where the supremum is taken over all cubes () centered at z. If w =1,
we drop the subscript w.

Denote A,(Q) = w(Q)o(3Q)P/|Q|P, where o = w7 7. Then

a1 - A”(Q)pll{%<a<§@)/@|f|)“}”ll

L =
iy, iy [ Metsoyaz)

From this and from the fact that M f(z) < 2"M°f(x) we get

IN

1

M f(z) < 2°3" [T M (ME(fo 1P~ w1 (2)77.

It is well known that by the Besicovitch covering theorem, ||Mg][ .

and || Mg are bounded uniformly in w. Therefore, from the previous
estimate we get

_1 _1
1M fllzrey < 23" wll g | M (Mo (fo )" )17,

L7 (w)
1 1

< cllwll, 1Mo (fo™) e < cllwllZ, 1 1lzrw).

which completes the proof of (5.1).
We turn now to showing that for any 1 < p < oo,

max (=

11
rp— )
1A Flle@owy < ey s m)llwlla, " AL v )

By Theorem 5.1, it suffices to prove this estimate for p = r + 1. By
duality, this is equivalent to that for any h > 0 with ||h[|zr+1¢0) = 1,

T _ 1 "
| A primwas = %(@/ﬂ?m /Q?hw

< CHwHAr-H ”fHErJrl(w)
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Denote A,,1(Q) = %j:(w Then

(g [ 1) [ o < cAvr)

X <-w_1/r(13’7Q§) /WQ;“ ’f|)r<w—(3iQ§) /7ng hw) |E]k‘

< clulan [ Mo (fuly Mh .
J

Therefore (exactly as above we use the boundedness of the weighted
centered maximal function),

1 r
> (g L 1)

< cljwlla., / My, (f¥/7) MEh da

< ellwlla o 1M1 (F0 i m IR 21 )
< cllwl anpa 1.y

and we are done.
Combining the estimates for M and A, ,, we get

max(%7

1
r r f)
(5.5) gl” = migp Q)" ooy < €llwlla, ™" If lzrw)-
Now, the finish of the proof is standard. Denote by R?, 1 < i < 2™

the n-dimensional quadrants in R”, that is, the sets IT x IT x -+ x I,
where [T = [0,00) and I~ = (—00,0). For each i,1 < ¢ < 2" and
for each N > 0 let Qn; be the dyadic cube adjacent to the origin of
side length 2V that is contained in R?. In (5.5) with Qo = Qn; we let

N — o0o. Observe that
migr(@Qni) < 9" (1Qn4l/2)" — 0

as N — oo. Hence, by Fatou’s lemma, we get

max (%, -17)
19l Lr@pw) < cllwlly, ™I fllLrw)-
Summing over 1 < i < 2" completes the proof. O

Remark 5.3. The proof actually shows the following dependence of the
constant on v and 7:

max( =

11
n 1)
I9llLoy < evrllwlla, " Il Lrw)-
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Corollary 5.4. Let T be a linear operator of weak type (1,1) and such

that T'(fxrm\q)(x) is a constant on Q for any dyadic cube Q, where
Q' C Q. Then for any 1 < p < oo,

max(1,——)

1T fllzrewy < cllwlla, " N lLew),

where the constant ¢ does not depend on w.

Proof. For any dyadic cube @ we have T'f(x) = T'(fx-q)(x)+c. There-
fore,

wa(Tf;Q) < 2((T'f — )x@) (MQI) < 2(T(fx ) (MQ]) < dfle

It remains to apply Theorem 5.2 (we may assume that f € L! and then
(T'f)*(+00) = 0). 0

Remark 5.5. In the next section we will define a general dyadic grid Z.
It is easy to see that that Theorem 5.2 (and hence Corollary 5.4) re-
mains true if we assume that the corresponding conditions hold for any
Q € 2 instead of Q € D.

In the next sections we consider applications of the obtained results
to weighted estimated of various operators, and, in particular, to esti-
mates (5.2) and (5.3).

6. CALDERON-ZYGMUND AND HAAR SHIFT OPERATORS
We start with a number of definitions.

Definition 6.1. A Calderén-Zygmund operator on R™ is an integral
operator, bounded on L*(R"), and with kernel K satisfying the follow-
ing conditions:

(i) [K(z,y)| < m for all z # y;

(ii) there exists 0 < o < 1 such that

T
K (2, y) = K(z',y)| + [K(y, z) = K(y, )| < c%,

whenever |z — 2| < |z — y|/2.

Definition 6.2. By a general dyadic grid Z we mean a collection of
cubes with the following properties:

(i) for any Q € 2 its sidelength £(Q) is of the form 2% k € Z;
(i) QN R e {Q, R,D} for any Q, R € Z;
(iii) the cubes of a fixed sidelength 2* form a partition of R™.

Definition 6.3. We say that hq is a Haar function on a cube ) C R"
if
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(i) hg is a function supported on @), and is constant on the children
of Q;
(ii) f hQ = O;
We say that hg is a generalized Haar function if it is a linear combi-
nation of a Haar function on @) and x¢ (in other words, only condition
(i) above is satisfied).

Definition 6.4. Let m,k € N. We say that S is a (generalized) Haar
shift operator with parameters m, k if

1"

7h / /
Sf(x) =Sy f(x) =) > i >h8~<x>,

Qeg Q,Q"€2,Q,Q"cQ |Q‘
2(QN=2"mu(Q),6(Q")=2"k4(Q)

where hg:/ is a (generalized) Haar function on @', and hgi, is one on
Q" such that

1A < 1Al 2= < 1.

The number max(m, k) is called the complexity of S.

It can be easily verified that any Haar shift operator is bounded
on L*(R™). In the case of a generalized Haar shift operator its L?
boundedness is required additionally by the definition.

The importance of the Haar shift operators comes from the following
result, see T. Hytonen [25] and T. Hytonen et al. [27].

Theorem 6.5. Let T be a Calderon-Zygmund operator which satis-
fies the standard estimates with o € (0,1]. Then for all bounded and
compactly supported functions f and g,

(6.1) (9.Tf) = C(T,n)Eqy »_ 27 mhel2(g SPt ),

k,m=0

where By is the expectation with respect to a probability measure on the
space of all general dyadic grids.

Observe that for several classical singular integrals of the form
Tf(x)=PV.fx K(x)

a simpler representation was obtained earlier which involves only the
Haar shifts of bounded complexity (and hence, the finite sum on the
right-hand side of (6.1)). The known examples include:

(i) K(z) =1 (the Hilbert transform, see S. Petermichl [44]);

(i) K(x) = ‘xlejH,n > 2 (the Riesz transform, see S. Petermichl,

S. Treil and A. Volberg [47]);
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(iii) K(z) = & (the Beurling transform, see O. Dragicevi¢ and

A. Volberé [16]);

(iv) K(x) is any odd, one-dimensional C? kernel satisfying
[KO(@)] < clel7" (i=0,1,2),
see A. Vagharshakyan [52].

By extrapolation and by Theorem 6.5 we have that (5.2) would follow
from

(6.2) IS5 Fll 2wy < e(n)p(max(m, k) wllaz | fll 22

with sufficiently good dependence on the complexity. First, (6.2) was
obtained in [32] with the exponential growth of . It is easy to see
that such a dependence cannot be combined with (6.1). However, it
is enough in order to handle the above mentioned classical singular
integrals. In [12], a simpler proof was given based on Theorem 3.1; this
proof also yields the exponential dependence on the complexity. After
that a better estimate (which is enough for applying Theorem 6.5) was
obtained in [25]; in [27] it was improved until p(t) = 2.

We give below the proof of (6.2) with the exponential growth of ¢,
which in turn yields (5.2) for the classical singular integrals mentioned
above.

Given a cube Q € Z and | € N denote by QU its I-fold parent, that
is, the unique cube from 2 such that |Q®] = 2™|Q)|.

Theorem 6.6. For any w € As,
(6.3) IS5 Fllzqu) < c(m)ed™ |lwllay | fllzzq) (€ = max(m, k).

Proof. First, the Haar shift operator is of weak type (1,1). This was
proved in [32] with the exponential dependence on the complexity, and
it was further improved until the linear dependence in [25].

Next, we claim that Sg’k(fXRn\Qég))(x) is a constant on Q. Indeed,

take an arbitrary cube @ € Z, and let us consider

2.

Qllele@,Q/,Q//CQ
€(QN=2"mu(Q),6(Q")=2"k4(Q)

(FXpmp©s hS)
Sl e

Since hgr is supported on )" and x € )y, we may assume that Q" N
Qo # (0. Further, Q" C Q implies QN Qgg) # (). Similarly we have that
Q' NR™\ Q[(f) # (), and Q' C Q implies Q NR™\ Q((f) # (). Combining
this with the previous fact, we have that Q((f) C Q. Therefore, |Qo| <
277Q| = |Q"|, and hence Qy C Q”. From this, hgj,(x) is a constant
on Qo (by the definition of the Haar function), which proves the claim.
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It remains to apply Corollary 5.4. We only remark that after apply-
ing the weak type (1, 1) with the linear dependence on £ we get

c& cE2n¢
Since Q) C 3. 26Q, we use Remark 5.3 with v = 3 - 2¢, which yields
(6.3). O

An interesting open question is whether it is possible to change some-
how the machinery used in Theorems 3.1 and 5.2 in order to improve
the dependence on the complexity in (6.3) We emphasize again that a
much better dependence was recently obtained in [27] but by means of
a different argument.

7. SOME OTHER APPLICATIONS

In this section we mention briefly some other applications found
in [12] which are also based on Theorem 5.2.

7.1. The dyadic paraproduct. The dyadic paraproduct 7, is defined
by

mf(@) =Y fi(b, hr)hi(z).
IeD
Here the sum is taken over all dyadic intervals from R, b € BMO(R),
and hy is the classical Haar function

hi(z) = 1172 (xr_(2) = x1, (),

where I_ and I, are the left and right halves of I, respectively. In [2],
O. Beznosova proved that

max(1,

1
pf)
(7.1)  Mmfllzr@) < cllbllaollwlla, " I fllrw) (1 <p < 00).

The proof in [2] was based on the Bellman function technique.
Now we observe that (7.1) follows from Corollary 5.4 since:

(i) m(fxr\1)(x) is a constant on I for any dyadic interval Iy (this
follows easily from the definition of 7, and from the basic prop-
erty of dyadic intervals);

(i) |7 f|lLree < cl|bllBamoll fllzr (the proof of this fact can be found
in [42]).
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7.2. The dyadic square function. The dyadic square function is
defined by

1/2
Saf(z) = (Z(f@ - f@)QXQ(fE)> :

QeD
As we mentioned in Section 5, for this operator the sharp L?(w) bound

1Safllr2qw) < ellwll sl f1lz2w)

was obtained independently in [24] and [56]. By extrapolation, this
yields also the sharp bounds for 1 < p < 2. It was conjectured in [37] for
a general class of Littlewood-Paley operators S that they satisfy (5.3).
In [12] this conjecture was proved for Sy for any 1 < p < co. The proof
is very similar to the ones given above.

Lemma 7.1. For any dyadic cube g,

wx((Saf)% Qo) < c|flao)*.

From this lemma and from Theorem 5.2 we get (5.3) for S;. The
proof of Lemma 7.1 is based on the same idea as the proof of Corol-
lary 5.4. For x € (Qy we have

Suf(@) =Y (fo—fa)xe@)+ > (fo— I3
QeD,QCQo QeD,QoCQ

The second term is a constant, while the first term is controlled by
Sa(fxq,)(x)?. Hence, using the weak type (1,1) of Sy (see, e.g.,[55]),
we get

w((Saf)% Qo) < 2((Salfxq0))?) (AlQol)
= 2(Su(fxa0) (MQol)” < cllflay):

and hence the proof is complete.

7.3. The vector-valued maximal operator. Given a vector-valued
function f = {f;}, and ¢,1 < ¢ < 1, the vector-valued maximal opera-
tor M, is defined by

00 1/q
Myf(x) = (Z Mfz(x)q> .
i=1
It was proved in [12] that for any 1 < p, ¢ < oo,
_— max(%,p%) 1/p
12 Ml <l 7 (@)

By the well known idea found by C. Fefferman and E.M. Stein [19],
it suffices to prove the result for the dyadic vector-valued maximal
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iunction MZ f(z). Next, by Theorem 5.2, inequality (7.2) will follow
rom

——d 1 q
(73) (1,15 Q0) < o5 [ I @)ladz)” (QueD).
‘QO‘ Qo
The proof of (7.3) follows similar lines as the previous proofs. Namely,
setting

o

cr=3( sw |filo)’

i=1 Q€D7Q0CQ
for x € QQy we get

0 < (Mef(2))? — €7 < (M fxqn) ()"

It remains to use the weak type (1,1) of M, (this was proved in [19]).

8. LITTLEWOOD-PALEY OPERATORS

In the previous section inequality (5.3) was proved for the dyadic
square function S;. The crucial point in the proof was the local nature
of Sy, that is, the fact that for any dyadic cube @, Syf(z) on @ is
essentially Sy(fxq)(z) plus a constant. More general square functions
do not satisfy such a nice property. However, as it was shown in [40],
a number of tricks (based mainly on the works of M. Wilson) allow to
reduce the general problem to a local situation mentioned above. As a
result, we obtain (5.3) for a large class of Littlewood-Paley operators.

8.1. The classical S and g functions. Let R} = R" x R, and
Ds(x) = {(y,t) € R™™ : |y — 2| < Bt}. Here and below we drop the
subscript 8 if § = 1. Set ¢ (z) =t "p(z/t).

If u(z,t) = P, = f(x) is the Poisson integral of f, the Lusin area
integral Sp and the Littlewood-Paley g-function are defined respectively

by
) 1/2

g(f)(x) = (/Oooﬂvu(x,t)y?dt) 1/2.

One can define similar operators by means of general but compactly
supported kernel. Let ¢» € C*°(R™) be radial, supported in {|z| < 1},

dydt
tn—l

Ss(f)(x) = ( / 9t 0F

and
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and [ = 0. The continuous square functions Sy 3 and g, are defined

N dydt\
Sealf)(e) = ( [ wt<y>\2ﬁ+l)

w0 = ([ 1 vta) @)

8.2. The intrinsic square function. In [54] (see also [55, p. 103]),
M. Wilson introduced a new square function called the intrinsic square
function. It has a number of remarkable properties. This function is
independent of the aperture and of any particular kernel ¢). On one
hand, it dominates pointwise all the above defined square function. On
the other hand, it has the same mapping properties. Finally, perhaps
the most important property for us is that the intrinsic square function
is “local” in a sense. This fact makes applicable the above described
machinery to essentially any square function.

For 0 < a < 1, let C, be the family of functions supported in {z :
2| < 1}, satisfying [ = 0, and such that for all z and 2,

|o(z) — ()] < o — 2|
(R™) and (y,t) € R"™ we define

Aa(f)(y,t) = sup | [+ @i(y)]

peCq

and

If felL

loc

The intrinsic square function is defined by

1/2
Goal D)) = ( / y (Aa<f><y,t>)2%> .

If =1, set Gi(f) = Ga(f).

We mention several properties of G,(f) (for the proofs we refer to
[54] and [55, Ch. 6]). First of all, it is of weak type (1,1):
¢(n, @)
A

As we have already seen, this fact is crucial for applications.
Second, if f > 1, then for all x € R",

(8.2) Gpalf)(2) < cla, B,n)Ga(f)(2).

This is an interesting property since in general only an indirect control
of the square function with bigger aperture by the one with smaller
aperture is possible (see [8]).

(8.1) {z € R": Ga(f)(x) > A} < . |f] dz.
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Third, if S is anyone of the Littlewood-Paley operators defined above,
then

(8.3) S(f)(@) < cGalf) (@),

where the constant c is independent of f and x.

8.3. A variant of the intrinsic square function. In order to em-
ploy the dyadic analysis (crucial for all the above considerations), we
consider the following operator equivalent to G,.

Given a cube @) C R", set

T(Q) ={(y.t) ERY 1y € Q.UQ)/2 <t < L(Q)}-

Denote 7Q<f)2 = fT(Q) (Aa(f>(yat>)253ff and let

=Y () xsal

QeD
Lemma 8.1. For any x € R",
(8.4) Ga(f)(@) < Galf)(@) < c(0,n)Ga(f)(w).
Proof. For any x ¢ 3Q we have I'(z) N T(Q) = 0, and hence
dyd
L ey (el 0)* 55T < 500 xale)
Therefore,
dydt
Gl = [ (Auo0)* Ty
dydt =~
= ANy, ) 0 < Galf)(@)?.
S (A ) Rl < Gl

QeD

On the other hand, if x € 3Q and (y,t) € T(Q), then |z —y| <
2\/56(62) < 4y/nt. Thus,

=Y () xsal

QeD

<y /T S (Aa<f)<y,t>)2f§ff = GayrnlF)@)

QeD

Combining this with (8.2), we get the right-hand side of (8.4). O



“LOCAL MEAN OSCILLATION” DECOMPOSITION 29

8.4. Some tricks with dyadic cubes. Our goal is to apply Theo-
rem 5.2 to G, (f), that is, we are going to estimate the local mean oscil-
lation of this function on any dyadic cube (Jo. Due to the definition of
Go(f), instead of the family of dyadic cubes (as in the definition of the
dyadic square function) we have to deal with the family {3Q : @ € D}.
In order to understand what is the interaction of )y with any cube
from the latter family, we will need several tricks with dyadic cubes.

The following result can be found in [53, Lemma 2.1] or in [55, p. 91].
We give a slightly different proof here.

Lemma 8.2. There exist disjoint families Dy, ... Dsn of dyadic cubes
such that D = U;_ Dy, and, for every k, if Q1, Q2 are in Dy, then 3Q,
and 3Q)y are either disjoint or one is contained in the other.

Proof. 1t suffices to prove the lemma in the one-dimensional case. In-
deed, if Z is the set of all dyadic intervals in R and Z = U3_,Z; is the
representation from Lemma 8.2 in the case n = 1, then the required
families in R™ are of the form

m=1

Suppose that n = 1. Denote by DU the family of dyadic intervals
with length 1/2',1 € Z. Fix ly € Z. We distribute the intervals from
D) into the families Z;,1 < j <3, by the following way: for i € Z,

3t 3i+1 3i+1 3i+2 3i+2 3i+3

(%’ 2l ) €4, ( 2 7 2l ) € Lo, ( 2 7 2l ) €.

The intervals from any D® will be distributed in the same way. In
order to do that we have to choose only one interval from D® and to
determine the correct family Z; for this interval; all other intervals from
DY will be distributed automatically.

Below we show how to choose the corresponding intervals from D ~1)
and DU+ Then by induction we obtain the distribution from any
other family D®.

Take any interval from D%~ such that its left half (which is from
D)) belongs to Z;; put such an interval to the family Zs. Similarly,
take any interval from D%+ such that it is a left half of some interval
from Z3 and put it to the family Z;.

Let I,J be two arbitrary intervals from Z;. By our construction, it
is easy to see that the statement of the lemma holds for them if one of
them lies in D and another one is in one of the classes D® or DU*Y.

But then by induction we get the same statement if one of them is in
DU and another one is in DEF), 0
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Lemma 8.3. For any cube Q) € D and for each k =1,...,3" there is
a cube Qy, € Dy, such that QQ C 3Q; C 5Q).

Proof. Let us consider first the one-dimensional case. Assume that
1= U?lej is the representation from Lemma 8.2.

Take an arbitrary dyadic interval J = (;—k, 32%1) Set J; = J. Con-

sider the dyadic intervals Jo = (L, %) and J; = (L&, Z82). By the

above construction, the intervals .J; lie in the different families Z;. Also,
JC3J,CcbJforl=1,2,3.
Consider now the multidimensional case. Take an arbitrary cube

Q € D. Then Q = [ _, L, where I,,, € T and ¢, = h for each m.
Fix oy € {1,2,3}. We have already proved that there exists I, € T,
such that I,,, C BTm C 51,,. Observe also that, by the one- dlmensmnal
construction, ¢; = {;, = h. Therefore, setting Jy = | Im, we

obtain the required cube from Dy. O

8.5. A local mean oscillation estimate of Go. By Theorem 5.2,
estimate (5.3) for G, (and hence, for any square function from Sec-
tion 8.1) will follow from the following lemma.

Lemma 8.4. For any cube QQ € D,

15Q|
Proof. Applying Lemma 8.2, we can write

Z Z Yolf X3Q Zéa,k(f)($)2-

k=1 QeDy, k=1

A (Gl )% Q) < eln, a, \) (L » \f|d:c)2.

Hence,
g
WA(Ga(N%Q) €2 wasn (Gar(H)%Q)
k=1

(we have used here the standard property of the rearrangement saying
that (f +¢g)"(t1 +t2) < f*(t1) + g*(t2)).

By Lemma 8.3, for each k = 1,...,3" there exists a cube Qy € Dy
such that () C 3Q, C 5Q. Hence,

inf ((Gas(/)? — Ixa) (MQI/3")

ceR

<inf ((éak(f)Z - C)XSQk>*()\|Q|/3n)'

ceR
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Using the main property of cubes from the family D, (expressed in
Lemma 8.2), for any = € 3Q) we have

(85) Gar(N@) = > 1@+ Y )
QED:3QC3Q% QED:3QrC3Q
Arguing as in the proof of Lemma 8.1, we obtain
> ) el

QeDy:3QC3Qk
2 dydt

< > | (Aa(N:0)* 357
QeD;:3QC30Qy ¥ T(@)NTy /7 (2)
2 dydt

<[ (Aul £ 1) S
T(3Q1)NT, ()

where T(3Q1) = {(y,t) : y € 3Qk,0 < t < £(3Q)}. For any ¢
supported in {z : |z| < 1} and for (y,t) € T(3Q}) we have
frey) = (Fxoan) * ei(y)-
Therefore,
2 dydt
/ (Aal ). 1))" 08 < Gl Froa,) (@)
T(3Qk)NIy /m ()
Combining the latter estimates with (8.5) and setting
C= Z P)/Q(f)za
QEDL:3Q,C3Q
we get

0 < Gap(N)(@)’ = ¢ < GamalFrog) (@) (= €3Q4).
From this, by (8.1) and (8.2) (we use also that 3Qx C 5@ implies

inf ((Gak(F)? ~ ¢)xs0,) (AQI/3")
< c(n, a)(Galfxoq,)) (NQI/3")

3n 2 3n 2
Sc(w o 'f') S°’(A|@|/15Q'f'> ’

which completes the proof. O

The proof of the above lemma shows that the operator éa is “local”
similarly to the dyadic square function. This follows from the fact that
the intrinsic square function is defined by means of the uniformly com-
pactly supported kernels. For example, the analogue of Lemma 8.4 is
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not true for the Lusin area integral. On the other hand, we have (5.3)
for the Lusin area integral since, by (8.3), it is pointwise dominated
by G,. So, we have here a very interesting phenomenon that the “lo-
cal” operator dominates the “non-local” one. An explanation of this
phenomenon is in [55, pp. 114-118].

9. APPLICATIONS TO TWO-WEIGHT INEQUALITIES

In this section we mention briefly another application of Theorem
3.1, namely, the application to sharp two-weighted inequalities formu-
lated in terms of Muckenhoupt-type conditions with the help of Orlicz
bumps.

Suppose that T is a Calderén-Zygmund operator. A difficult and
long-standing open problem in harmonic analysis is to characterize a
pair of weights (u,v) yielding the two-weight inequality

(9.1) /Rn \Tf(x)\pudxgc/n\f(xﬂpvdx.

We consider sufficient Muckenhoupt-type conditions for (9.1). For a
detailed history of such estimates we refer to [11, 12].
Given a Young function ¢, the mean Luxemburg norm of f on a

cube () is defined by

. 1
||f||q>,Q:mf{a>o:@/Qq><%) dyél}.

If ®(t) = t*, then we denote || fllo.o = || fllp.0-
Given p,1 < p < 00, a Young function & satisfies the B, condition

if for some ¢ > 0,
<P
[,
Lot

~ Given a Young function @, there exists an associate Young function
® such that t < &~ 1(t)d~1(t) < 2t.
In [13], D. Cruz-Uribe and C. Pérez conjectured the following.

Conjecture 9.1. Let A and B be two Young functions such that
(9.2) A€ B, and BE€B,.
If

Sgp [uM?| 4 gllv™ 7| pg < oo,

then (9.1) holds.
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In the same work [13], Conjecture 9.1 was proved in the particular
case when B is as in (9.2) and A(t) = " for some r > 1. In [11],
this result was improved as follows: if p > n, B satisfies (9.2) and
A(t) = t*[log(e + 1)~ 6 > 0, then (9.1) holds. If 1 < p < n,
an analogous result was proved in [11] but with larger Orlicz bump
A(t) = tP[log(e + t)]?P~ 119

In [39] it was shown that Theorem 3.1 along with the local mean
oscillation estimate

o0

wrA(Tf,Q) < CZ

m=0

1 1
2m [2mQ)| Jomg

proves Conjecture 9.1 for p > n (for example, for the Hilbert transform
this shows that Conjecture 9.1 is true for all p > 1). In the case n > 2,
the standard duality argument shows that Conjecture 9.1 holds in the
case p < n’ as well. In the case when n’ < p < n the problem remains
open, in general.

On the other hand, it was shown in [12] that the “Haar shift oper-
ator” approach combined with Theorem 3.1 proves Conjecture 9.1 for
any classical singular integral mentioned after Theorem 6.5.

Consider a similar two-weighted problem for Littlewood-Paley oper-
ators:

(9.3) /Rn\Sf(x)\pudxgc/n |f(z)[Pv da.

In [12], it was shown that for the dyadic square function, if 1 < p <2
and B € B, then the condition

/]

up [P || ollv ™ ||5q < o0

is sufficient for (9.3); if 2 < p < co and A € Bz, B € B,, then the
condition

1/2 _
Lol g < oo

sup [|u*/? |
Q
is sufficient for (9.3). The proof is based on Theorem 3.1 along with
Lemma 7.1. By the arguments from Section 8, we have that the same
conditions are sufficient for (9.3) with the intrinsic square function, and
hence for S and g functions defined in Section 8.1.
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