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1. Introduction

A recent result by the author [39] establishes a pointwise control of
an arbitrary measurable function in terms of its local mean oscillations.
Soon after that, in a surprising work [12], D. Cruz-Uribe, J. Martell and
C. Pérez showed that this result can be effectively applied in a variety
of questions, including sharp weighted inequalities for classical singular
integrals and the dyadic square function. In turn, based on [12] and
on a recent concept of the intrinsic square function by M. Wilson [54],
the author [40] obtained sharp weighted estimates for essentially any
Littlewood-Paley operator.

The aim of these notes is to present a unified, extended and almost
self-contained exposition of the above-mentioned works [39, 12, 40].

2. The space BMO

2.1. The classical approach to BMO. The mean oscillation of a
locally integrable function f over a cube Q ⊂ Rn is defined by

Ω(f ;Q) =
1

|Q|

∫
Q

|f(x)− fQ|dx,

where fQ = 1
|Q|

∫
Q
f . It is easy to see that

inf
c∈R

1

|Q|

∫
Q

|f(x)− c|dx ≤ Ω(f ;Q) ≤ 2 inf
c∈R

1

|Q|

∫
Q

|f(x)− c|dx.

The space of functions with bounded mean oscillation, BMO(Rn),
consists of all f ∈ L1

loc(Rn) such that

∥f∥BMO ≡ sup
Q⊂Rn

Ω(f ;Q) <∞.

This space was introduced by F. John and L. Nirenberg in [30]. In the
same work the following fundamental property of BMO-functions was
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established: for any f ∈ BMO, any cube Q ⊂ Rn, and for all α > 0,

(2.1) |{x ∈ Q : |f(x)− fQ| > α}| ≤ 2|Q| exp
(
− α

cn∥f∥BMO

)
.

For example, it follows from this inequality that

(2.2) ∥f∥BMO ≍ sup
Q

( 1

|Q|

∫
Q

|f(x)− fQ|pdx
)1/p

for any p ≥ 1.
The sharp maximal function is defined by

f#(x) = sup
Q∋x

Ω(f ;Q),

where the supremum is taken over all cubes Q containing the point x.
This operator was introduced by C. Fefferman and E.M. Stein [20].

Recall that the Hardy-Littlewood maximal operator is defined by

Mf(x) = sup
Q∋x

1

|Q|

∫
Q

|f(y)|dy.

Since f#(x) ≤ 2Mf(x), we have that f# is bounded on Lp for p > 1.
The basic property of f# proved in [20] says that the converse inequality
is also true, namely if f ∈ Lp0 , then

(2.3) ∥f∥Lp ≤ c∥f#∥Lp (1 < p <∞).

As we shall see below, the assumption that f ∈ Lp0 can be relaxed
until f ∗(+∞) = 0.

Originally, inequality (2.3) was applied to describing the intermediate
spaces between BMO and Lp. A number of other applications of (2.3)
concerns Lp-norm inequalities involving various operators in harmonic
analysis (see D. Kurtz [31]). Typically, one can obtain a pointwise
estimate (T1f)

#(x) ≤ cT2f(x), where T1 is a certain singular-type op-
erator, and T2 is a maximal-type operator. Combining this with (2.3)
yields a norm estimate of T1 by T2. Perhaps the first such application
was found by A. Cordoba and C. Fefferman in [10] where it was shown
that for a singular integral T ,

(2.4) (Tf)#(x) ≤ cM(|f |r)(x)1/r (r > 1).

2.2. Median values and local mean oscillations. Given a measur-
able function f , its non-increasing rearrangement is defined by

f ∗(t) = inf{α > 0 : |{x ∈ Rn : |f(x)| > α}| < t} (0 < t <∞).
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Observe that we have defined the rearrangement as the left-continuous
function. Usually in the literature (see, e.g., [1, p. 39]) one can find
the right-continuous rearrangement defined by

inf{α > 0 : |{x ∈ Rn : |f(x)| > α}| ≤ t}.

The left-continuous rearrangement can be also defined in the following
very convenient form (cf. [5]):

f∗(t) = sup
|E|=t

inf
x∈E

|f(x)|.

Definition 2.1. By a median value of f over Q we mean a possibly
nonunique, real number mf (Q) such that

|{x ∈ Q : f(x) > mf (Q)}| ≤ |Q|/2

and

|{x ∈ Q : f(x) < mf (Q)}| ≤ |Q|/2.

If follows from this definition that

|{x ∈ Q : |f(x)| ≥ |mf (Q)|}| ≥ |Q|/2,

which implies

|mf (Q)| ≤ (fχQ)
∗(|Q|/2).

Also, ifmf (Q) is a median value of f , then for any constant c,mf (Q)−c
is a median value of f − c. Hence, applying the previous inequality, we
get

(2.5) |mf (Q)− c| ≤
(
(f − c)χQ

)∗(|Q|/2).
Definition 2.2. Given a measurable function f on Rn and a cube Q,
the local mean oscillation of f over Q is defined by

ωλ(f ;Q) =
(
(f −mf (Q))χQ

)∗(
λ|Q|

)
(0 < λ < 1).

It follows from (2.5) that for 0 < λ ≤ 1/2,

inf
c∈R

(
(f − c)χQ

)∗(
λ|Q|

)
≤ ωλ(f ;Q) ≤ 2 inf

c∈R

(
(f − c)χQ

)∗(
λ|Q|

)
.

Therefore, the median value mf (Q) plays the same role for the local
mean oscillation (in the case 0 < λ ≤ 1/2) as the usual integral mean
value fQ does for the integral mean oscillation.
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2.3. A “local mean oscillation” approach to BMO. By Cheby-
shev’s inequality, f ∗(t) ≤ 1

t
∥f∥L1 , and hence,

ωλ(f ;Q) ≤
2

λ
Ω(f ;Q),

which shows that

sup
Q
ωλ(f ;Q) ≤

2

λ
∥f∥BMO.

The main result about local mean oscillations obtained by F. John [29]
says that for λ < 1/2 the converse inequality holds:

(2.6) ∥f∥BMO ≤ c sup
Q
ωλ(f ;Q).

This result was rediscovered by J.-O. Strömberg [51] who showed also
that (2.6) remains true for λ = 1/2. Note that this exponent is sharp.
Indeed, if λ > 1/2, then ωλ(f ;Q) = 0 for any function f taking only
two values, and therefore (2.6) fails.

Observe that (2.6) allows to “recover” BMO under the minimal as-
sumptions on f . In particular, in the definition of ωλ(f ;Q) we suppose
only that f is merely measurable. Note also that (2.6) shows that (2.2)
holds for any p > 0.

Denote

∥f∥BMOλ
= sup

Q
ωλ(f ;Q).

By the above discussion we have the John-Strömberg equivalence

∥f∥BMO ≍ ∥f∥BMOλ
(0 < λ ≤ 1/2).

The proof of this result is based on the following version of the John-
Nirenberg inequality (2.1):

(2.7) |{x ∈ Q : |f(x)−mf (Q)| > α}| ≤ 2|Q| exp
(
− α

cn∥f∥BMOλ

)
.

It is easy to see that actually (2.7) implies the John-Nirenberg in-
equality. Indeed, by (2.5) and by Chebyshev’s inequality,

|mf (Q)− fQ| ≤ 2Ω(f ;Q) ≤ 2∥f∥BMO.

Hence, if α > 4∥f∥BMO, we get from (2.7) that

|{x ∈ Q : |f(x)− fQ| > α}| ≤ |{x ∈ Q : |f(x)−mf (Q)| > α/2}|

≤ 2|Q| exp
(
− α

c′n∥f∥BMO

)
.

On the other hand, for α ≤ 4∥f∥BMO this inequality holds trivially
with suitable c′n.
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An interesting analysis of the John-Nirenberg and John-Strömberg
inequalities (and in particular, an attempt to obtain (2.7) with dimen-
sion free constants) can be found in a recent work [14] by M. Cwikel,
Y. Sagher and P. Shvartsman.

Similarly to the Fefferman-Stein sharp function, one can define the
local sharp maximal function by

M#
λ f(x) = sup

Q∋x
ωλ(f ;Q).

It was shown by J.-O. Strömberg [51] that for any p > 0,

(2.8) ∥f∥Lp ≤ c∥M#
λ f∥Lp (0 < λ ≤ 1/2).

As we shall see below (Corollary 4.2), it is enough to assume here that
f ∗(+∞) = 0.

On one hand it seems that (2.8) is an improvement of the Fefferman-

Stein inequality (2.3) since we easily have thatM#
λ f(x) ≤ 2

λ
f#(x). On

the other hand, B. Jawerth and A. Torchinsky [28] showed that f# is

essentially the Hardy-Littlewood maximal function of M#
λ f : for any

x ∈ Rn,

(2.9) c1MM#
λ f(x) ≤ f#(x) ≤ c2MM#

λ f(x)

(this result with λ = 1/2 one can find in [34]). It follows from this that
inequalities (2.3) and (2.8) are equivalent for p > 1.

Inequalities (2.9) show that the local sharp maximal function M#
λ f

is much smaller than f#. This advantage is invisible in the unweighted
Lp spaces. However, as soon as the weighted inequalities are concerned,
the use ofM#

λ f usually leads to much more precise results. As a typical
example, consider Coifman’s inequality [6] saying that if w ∈ A∞, then
a singular integral operator T satisfies

(2.10) ∥Tf∥Lp(w) ≤ c∥Mf∥Lp(w) (0 < p <∞).

It is well known that both inequalities (2.3) and (2.8) hold if we replace
the Lp-norm by the Lp(w)-norm for w ∈ A∞ (we shall prove this fact
in Theorem 4.6 below). Further, it was shown in [28] that

(2.11) M#
λ (Tf)(x) ≤ cMf(x).

Combining this with the weighted Strömberg’s inequality (2.8), we im-
mediately obtain (2.10). Next, observe that (2.11) along with (2.9)
yields an improvement of (2.4):

(Tf)#(x) ≤ cMMf(x).
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But even this improved version combined with the weighted Fefferman-
Stein inequality (2.3) gives only (2.10) with MMf instead of Mf on
the right-hand side.

3. The main decomposition result

3.1. On theorems of C. Fefferman and L. Carleson. Denote
Rn+1

+ = Rn × (0,∞). Given a cube Q ⊂ Rn, set

Q̃ = {(y, t) ∈ Rn+1
+ : y ∈ Q, 0 < t < ℓ(Q)},

where ℓ(Q) denotes the side length of Q.
We say that σ is a Carleson measure on Rn+1

+ if

C(σ) ≡ sup
Q⊂Rn

|σ|(Q̃)
|Q|

<∞,

where |σ| is the total variation of σ.
Let K be a positive function with

∫
Rn K = 1 and such that

K(x) ≤ c

1 + |x|n+1
.

Write Kt(x) = t−nK(x/t), t > 0.
The famous duality theorem by C. Fefferman [18, 20] says that

BMO(Rn) is the dual space of H1(Rn). This result has several equiva-
lent formulations. One of them is the following (see [4] and [22, p. 272]):
if f ∈ BMO(Rn) with compact support, then there is g ∈ L∞ and there
is a Carleson measure σ such that

(3.1) f(x) = g(x) +

∫
Rn+1
+

Kt(x− y)dσ(y, t),

where
∥g∥L∞ ≤ c∥f∥BMO and C(σ) ≤ c∥f∥BMO.

L. Carleson [4] gave a direct and constructive proof of (3.1) providing
a new proof of the H1 −BMO duality.

3.2. On theorems of J. Garnett and P. Jones, and N. Fujii. We
say that I ⊂ R is a dyadic interval if I is of the form ( j

2k
, j+1

2k
) for some

integers j and k. A dyadic cube Q ⊂ Rn is a Cartesian product of n
dyadic intervals of equal lengths. Let D be the set of all dyadic cubes
in Rn.

Given a cube Q0, denote by D(Q0) the set of all dyadic cubes with
respect to Q0 (that is, they are formed by repeated subdivision of Q0

and each of its descendants into 2n congruent subcubes).
J. Garnett and P. Jones [23] obtained the following dyadic version of

Carleson’s theorem: given f ∈ BMO and a cube Q0, there is g ∈ L∞
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with ∥g∥L∞ ≤ 2∥f∥BMO and there exists a sequence {Qk} ∈ D(Q0),
and a sequence ak of real numbers such that for a.e. x ∈ Q0,

f(x)− fQ0 = g(x) +
∑
k

akχQk
(x)

and for each Q ∈ D(Q0),∑
Qk⊂Q

|ak||Qk| ≤ c∥f∥BMO|Q|.

If we replace Rn+1
+ by its discrete subset {pQ = (cQ, ℓ(Q)), Q ∈ D},

where cQ is the center of Q, and consider on this subset the measure σ
having mass ak|Qk| at pQk

, then we get a correspondence between the
Garnett-Jones and Carleson theorems.

The above-mentioned results deal with decompositions of BMO-
functions. A remarkable observation of N. Fujii [21] is that almost the
same proof as in [23] yields actually a decomposition of an arbitrary
locally integrable function: given a cube Q,

(3.2) f(x)− fQ = g(x) +
∞∑
j=1

∑
ν

a(j)ν χQj
ν
(x) for a.e. x ∈ Q.

Here |g(x)| ≤ cf#
Q (x), where f

#
Q (x) is the Fefferman-Stein sharp func-

tion relative to Q, and

(3.3) |a(j)ν | ≤ c sup
Q⊃Q′⊃Qk

j

Ω(f ;Q′).

3.3. A decomposition in terms of local mean oscillations. It
was mentioned by N. Fujii [21] without the proof that replacing fQ in
(3.2) by a median value mf (Q), one can obtain a similar decomposition

but with the local sharp maximal function instead of f#
Q (x). Indeed,

following [21], we get a variant of (3.2) with a control of g byM#
λ f and

with (3.3) replaced by

|a(j)ν | ≤ c sup
Q⊃Q′⊃Qk

j

ωλ(f ;Q
′).

Our key result stated below says that such a variant can be further

improved with a control of a
(j)
ν it terms of single local mean oscilla-

tions. As we shall see below, this point is crucial for many important
applications.

If Q ∈ D(Q0) and Q ̸= Q0, we denote by Q̂ its dyadic parent, that is,

the unique cube from D(Q0) containing Q and such that |Q̂| = 2n|Q|.
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For x ∈ Q0 set

M#,d
λ;Q0

f(x) = sup
x∈Q∈D(Q0)

ωλ(f ;Q),

where the supremum is taken over all dyadic cubes with respect to Q0

containing the point x.
The following theorem was proved in [39].

Theorem 3.1. Let f be a measurable function on Rn and let Q0 be
a fixed cube. Then there exists a (possibly empty) collection of cubes
Qk
j ∈ D(Q0) such that

(i) for a.e. x ∈ Q0,

|f(x)−mf (Q0)| ≤ 2M#,d
1/4;Q0

f(x) + 2
∞∑
k=1

∑
j

ω 1
2n+2

(f ; Q̂k
j )χQk

j
(x);

(ii) for each fixed k the cubes Qk
j are pairwise disjoint;

(iii) if Ωk = ∪jQk
j , then Ωk+1 ⊂ Ωk;

(iv) |Ωk+1 ∩Qk
j | ≤ 1

2
|Qk

j |.

Observe that properties (ii)-(iv) here are the same as those of cubes
obtained from the classical Calderón-Zygmund decomposition (and in-
deed, the cubes Qk

j in Theorem 3.1 are also obtained from a similar
stopping-time process). In particular, we shall use below the following
standard trick. Let Ek

j = Qk
j \Ωk+1. It follows from the properties (ii)-

(iv) of Theorem 3.1 that |Ek
j | ≥ |Qk

j |/2 and the sets Ek
j are pairwise

disjoint.

Proof of Theorem 3.1. We divide the proof into several parts.

The 1st part. We claim that there exists a (possibly empty) col-
lection of pairwise disjoint cubes {Q1

j} ∈ D(Q0) such that

(3.4)
∑
j

|Q1
j | ≤

1

2
|Q0|

and

(3.5) f −mf (Q0) = g1 +
∑
j

αj,1χQ1
j
+
∑
j

(f −mf (Q
1
j))χQ1

j
,

where

(3.6) |g1(x)| ≤M#,d
1/4;Q0

f(x) for a.e. x ∈ Q0 \ ∪jQ1
j

and the numbers αj,1 satisfy

(3.7) |aj,1| ≤ ω1/2n+1(f ; Q̂1
j) + ω1/4(f ;Q0).
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Set f1(x) = f(x)−mf (Q0) and

E1 = {x ∈ Q0 : |f1(x)| > ω1/4(f ;Q0)}.
We may assume that |E1| > 0 since otherwise we trivially have

|f(x)−mf (Q0)| ≤ ω1/4(f ;Q0) ≤M#,d
1/4;Q0

f(x) for a.e. x ∈ Q0

(and so the collection {Q1
j} is empty).

Let

m∆
Q0
f1(x) = sup

Q∈D(Q0),x∈Q
|mf1(Q)|,

and consider

Ω1 = {x ∈ Q0 : m
∆
Q0
f1(x) > ω1/4(f ;Q0)}.

Observe that by (2.5) and by Chebyshev’s inequality

|mf (Q)− f(x)| ≤ 2

|Q|

∫
Q

|f(y)− f(x)|dy.

From this, by Lebesgue’s differentiation theorem we get that for a.e.
x ∈ Rn,

lim
|Q|→0,Q∋x

mf (Q) = f(x).

Hence, m∆
Q0
f1(x) ≥ |f1(x)| for a.e. x, and therefore |Ω1| ≥ |E1| > 0.

For each x ∈ Ω1 there exists a cube Qx ∈ D(Q0) containing x
and such that |mf1(Qx)| > ω1/4(f ;Q0). Note that Qx ̸= Q0 since
mf1(Q0) = 0. Therefore, choosing the maximal dyadic cubes (ex-
actly as in the classical Calderón-Zygmund decomposition), we get that
Ω1 = ∪jQ1

j , where Q
1
j are pairwise disjoint cubes from D(Q0) such that

(3.8) |mf1(Q
1
j)| > ω1/4(f ;Q0)

and

|mf1(Q̂
1
j)| ≤ ω1/4(f ;Q0).

It follows from (3.8) that

(f1χQ0)
∗(|Q0|/4) < (f1χQ1

j
)∗(|Q1

j |/2).

Hence,

|{x ∈ Q1
j : |f1(x)| > (f1χQ0)

∗(|Q0|/4)}| ≥ |Q1
j |/2,

and thus
1

2

∑
j

|Q1
j | ≤

∑
j

|{x ∈ Q1
j : |f1(x)| > (f1χQ0)

∗(|Q0|/4)}|

≤ |{x ∈ Q0 : |f1(x)| > (f1χQ0)
∗(|Q0|/4)}| ≤ |Q0|/4,
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which proves (3.4) (here we have used the well known property of the
rearrangement saying that µf (f

∗(t)) ≤ t, where µf is the distribution
function of f).

Further, observe that mf1(Q
1
j) = mf (Q

1
j) −mf (Q0). Hence we can

write

f −mf (Q0) = f1χQ0\Ω1 +
∑
j

mf1(Q
1
j)χQ1

j
+
∑
j

(f −mf (Q
1
j))χQ1

j
,

which yields (3.5) with g1 = f1χQ0\Ω1 and αj,1 = mf1(Q
1
j). Since

m∆
Q0
f1(x) ≥ |f1(x)| a.e., we obviously have (3.6). Next,

|αj,1| ≤ |mf1(Q
1
j)−mf1(Q̂

1
j)|+ |mf1(Q̂

1
j)|

≤
(
(f −mf (Q̂

1
j))χQ1

j

)∗
(|Q1

j |/2) + ω1/4(f ;Q0)

≤ ω1/2n+1(f ; Q̂1
j) + ω1/4(f ;Q0),

which gives (3.7), and hence our claim is proved.

The 2nd part. Observe that each function f − mf (Q
1
j) has the

same behavior on Q1
j that f − mf (Q0) has on Q0. Therefore we can

repeat the process for any Q1
j , and continue by induction.

Denote by Qk
j the cubes obtained at k-th stage. Let Ωk = ∪jQk

j and

fi,k(x) = f(x)−mf (Q
k−1
i ). Denote

I1,k = {i : Ωk ∩Qk−1
i = ∅} and I2,k = {i : Ωk ∩Qk−1

i ̸= ∅}.
Assume that i ∈ I2,k. Setting

Ji,k = {j : Qk
j ⊂ Qk−1

i },
we have

Ωi,k = {x ∈ Qk−1
i : m∆

Qk−1
i

(fi,k)(x) > ω1/4(f ;Q
k−1
i )} = ∪j∈Ji,k

Qk
j ,

and the numbers α
(i)
j,k = mfi,k(Q

k
j ), similarly to (3.7), satisfy

(3.9) |α(i)
j,k| ≤ ω1/2n+1(f ; Q̂k

j ) + ω1/4(f ;Q
k−1
i ) (j ∈ Ji,k).

Further, similarly to (3.4),

(3.10) |Ωk ∩Qk−1
i | =

∑
j∈Ji,k

|Qk
j | ≤

1

2
|Qk−1

i |.

We write below how (3.5) will transformed after the first repetition
of the above described process. Set ψ1 =

∑
i(f−mf (Q

1
i ))χQ1

i
.We have

ψ1 =
∑
i∈I1,2

(f −mf (Q
1
i ))χQ1

i
+
∑
i∈I2,2

(f −mf (Q
1
i ))χQ1

i
.
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Next,∑
i∈I2,2

=
∑
i∈I2,2

(f −mf (Q
1
i ))χQ1

i \Ωi,2
+
∑
i∈I2,2

(f −mf (Q
1
i ))χΩ2

i
,

and (we use that α
(i)
j,2 = mf (Q

2
j)−mf (Q

1
i ))∑

i∈I2,2

(f −mf (Q
1
i ))χΩ2

i
=
∑
i∈I2,2

∑
j∈Ji,2

(f −mf (Q
1
i ))χQ2

j

=
∑
i∈I2,2

∑
j∈Ji,2

α
(i)
j,2χQ2

j
+
∑
i∈I2,2

∑
j∈Ji,2

(f −mf (Q
2
j))χQ2

j

Combining the previous equations along with (3.5), we get

f −mf (Q0) = g1 + g2 +
∑
j

αj,1χQ1
j
+
∑
i∈I2,2

∑
j∈Ji,2

α
(i)
j,2χQ2

j
+ ψ2,

where

g2 =
∑
i∈I1,2

(f −mf (Q
1
i ))χQ1

i
+
∑
i∈I2,2

(f −mf (Q
1
i ))χQ1

i \Ωi,2

and

ψ2 =
∑
i∈I2,2

∑
j∈Ji,2

(f −mf (Q
2
j))χQ2

j
.

Similarly, after (k − 1)-th repetition of the process we obtain that

f(x)−mf (Q0) =
k∑
ν=1

gν +
k∑
ν=1

∑
i∈I2,ν

∑
j∈Ji,ν

α
(i)
j,νχQν

j
(x) + ψk(x),

where

gk =
∑
i∈I1,k

fi,kχQk−1
i

(x) +
∑
i∈I2,k

fi,kχQk−1
i \Ωi,k

(x)

and

ψk(x) =
∑
i∈I2,k

∑
j∈Ji,k

(
f −mf (Q

k
j )
)
χQk

j
(x)

(so, by our notation,
∑

i∈I2,1
∑

j∈Ji,1
α
(i)
j,1χQ1

j
(x) ≡

∑
j αj,1χQ1

j
(x)).

By (3.10), |Ωk| ≤ |Ωk−1|/2, and hence |Ωk| ≤ |Q0|/2k. Since the
support of ψk is Ωk we obtain that ψk → 0 a.e. as k → ∞. Therefore,
for a.e. x ∈ Q0,

f(x)−mf (Q0) =
∞∑
ν=1

gν +
∞∑
ν=1

∑
i∈I2,ν

∑
j∈Ji,ν

α
(i)
j,νχQν

j
(x)

≡ S1(x) + S2(x).
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The 3rd part. It is easy to see that the supports of gν are pairwise
disjoint and for any ν and for a.e. x ∈ Q0,

|gν(x)| ≤M#,d
1/4;Q0

f(x).

Therefore,

|S1(x)| ≤M#,d
1/4;Q0

f(x) a.e. in Q0.

Next, we write

(3.11) S2(x) =
∑
j

αj,1χQ1
j
(x) +

∞∑
ν=2

∑
i∈I2,ν

∑
j∈Ji,ν

α
(i)
j,νχQν

j
(x).

By (3.7),∑
j

|αj,1|χQ1
j
(x) ≤

∑
j

ω1/2n+1(f ; Q̂1
j)χQ1

j
(x) + ω1/4(f ;Q0).

Applying (3.9), we get that the second term on the right-hand side of
(3.11) is bounded by

∞∑
ν=2

∑
i∈I2,ν

∑
j∈Ji,ν

(
ω1/2n+1(f ; Q̂ν

j ) + ω1/4(f ;Q
ν−1
i )

)
χQν

j
(x)

≤
∞∑
ν=2

∑
j

ω1/2n+1(f ; Q̂ν
j )χQν

j
(x) +

∞∑
ν=2

∑
i

ω1/4(f ;Q
ν−1
i )χQν−1

i
(x).

Combining this with the previous estimate yields

|S2(x)| ≤
∞∑
ν=1

∑
j

(
ω1/2n+1(f ; Q̂ν

j ) + ω1/4(f ;Q
ν
j )
)
χQν

j
(x) + ω1/4(f ;Q0)

≤ 2
∞∑
ν=1

∑
j

ω1/2n+2(f ; Q̂ν
j )χQν

j
(x) +M#

1/4;Q0
f(x),

which along with the estimate for S1 completes the proof. �

4. Applications of Theorem 3.1 to M#
λ f and BMO

By a weight we mean a non-negative locally integrable function. We
start with the following result.

Theorem 4.1. For any weight w, cube Q, and a measurable function f ,

(4.1)

∫
Q

|f−mf (Q)|wdx ≤ 6

∫
Q

M#
λ;Qf(x)

δMQ

(
M#

λ;Qf(x)
1−δw

)
(x)dx,

where a constant λ depends only on n, and 0 < δ ≤ 1.
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Proof. Applying Theorem 3.1 with Q = Q0 yields∫
Q0

|f −mf (Q0)|w dx ≤ 2

∫
Q0

M#
1/4;Q0

f(x)w dx

+ 2
∑
k,j

ω 1
2n+2

(f ; Q̂k
j )

∫
Qk

j

w.

Since

ω 1
2n+2

(f ; Q̂k
j ) ≤ inf

x∈Qk
j

M#
λn;Q0

f(x) (λn = 1/2n+2),

we have ∑
k,j

ω 1
2n+2

(f ; Q̂k
j )

∫
Qk

j

w ≤
∑
k,j

(
inf
Qk

j

M#
λn;Q0

f
) ∫

Qk
j

w

≤ 2
∑
k,j

(∫
Ek

j

(
M#

λn;Q0
f
)δ) 1

|Qk
j |

∫
Qk

j

(
M#

λn;Q0
f
)1−δ

w

≤ 2
∑
k,j

∫
Ek

j

(
M#

λn;Q0
f
)δ
MQ0

(
(M#

λn;Q0
f)1−δw

)
dx

≤ 2

∫
Q0

(
M#

λn;Q0
f
)δ
MQ0

(
(M#

λn;Q0
f)1−δw

)
dx.

Also,∫
Q0

M#
1/4;Q0

f(x)w dx ≤
∫
Q0

M#
1/4;Q0

f(x)δMQ0

(
M#

1/4;Q0
f(x)1−δw

)
(x)dx.

Combining the obtained estimates completes the proof. �
Theorem 4.1 implies easily both the John-Nirenberg-John-Strömberg

and the Fefferman-Stein-Strömberg inequalities, namely, we have the
following.

Corollary 4.2. Let 0 < λ ≤ λn.

(i) For any f ∈ BMO and any cube Q,

(4.2) |{x ∈ Q : |f(x)−mf (Q)| > α}| ≤ 2|Q| exp
(
− α

cn∥f∥BMOλ

)
;

(ii) For any measurable f with f∗(+∞) = 0 and for all p > 0,

(4.3) ∥f∥Lp ≤ c∥M#
λ f∥Lp .

Proof. Theorem 4.1 with δ = 1 along with Stein’s L logL characteriza-
tion [50] yields∫

Q

|f −mf (Q)|wdx ≤ 6∥f∥BMOλ

∫
Q

MQw ≤ c∥f∥BMOλ
∥w∥L logL(Q).
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From this, by the exp(L)-L logL duality [1, p. 243],

∥f −mf (Q)∥expL(Q) ≤ c∥f∥BMOλ
,

which is equivalent to (4.2).
Further, if f ∗(+∞) = 0, then |mf (Q)| → 0 when Q tends to Rn.

Hence, letting Q→ Rn in Theorem 4.1 with δ = 1, we get

(4.4)

∫
Rn

|f(x)|wdx ≤ 6

∫
Rn

M#
λ f(x)Mwdx

(observe that this inequality was proved by means of different ideas
in [35]). From this, using the Lp boundedness of M and the Lp − Lp

′

duality, we get (4.3) for p > 1.
The case p = 1 follows immediately if we take w ≡ 1. Further, if

0 < r < 1, we have

ωλ(|f |r;Q) ≤ 2((|f |r − |mf (Q)|r)χQ)∗(λ|Q|) ≤ 2ωλ(f ;Q)
r,

which implies

M#
λ (|f |

r)(x) ≤ 2M#
λ f(x)

r.

Combining this estimate with the proved case p = 1, we obtain (4.3)
for 0 < p < 1. �
Remark 4.3. Observe that our approach does not allow to obtain the
sharp John-Strömberg exponent λ = 1/2 in Corollary 4.2. On the
other hand, from point of view of most applications, it is enough to
have (4.2) and (4.3) for some λ depending on n.

Remark 4.4. It follows from the definition of the rearrangement that
f ∗(+∞) = 0 if and only if

|{x ∈ Rn : |f(x)| > α}| <∞
for any α > 0 (cf., [36, Prop. 2.1]).

Remark 4.5. Theorem 4.1 contains also a part of Jawerth-Torchinsky
inequality (2.9). Indeed, by (4.1) with δ = 1 and w ≡ 1,∫

Q

|f(x)− fQ|dx ≤ 2

∫
Q

|f(x)−mf (Q)|dx ≤ 12

∫
Q

M#
λ f(x)dx,

which yields the right-hand side of (2.9).

We now extend (4.3) to the Lp(w)-norms with w ∈ A∞. Recall first
several definitions.

We say that a weight w satisfies the Ap, 1 < p <∞, condition if

∥w∥Ap ≡ sup
Q

(
1

|Q|

∫
Q

w dx

)(
1

|Q|

∫
Q

w− 1
p−1 dx

)p−1

,
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where the supremum is taken over all cubes Q ⊂ Rn.
In the case p = 1 we say that w is an A1 weight if there is a finite

constant c such that Mw(x) ≤ cw(x) a.e.

Denote A∞ =
∪

1≤p<∞

Ap. There are several equivalent characteri-

zations of A∞ (see [7]). In particular, w ∈ A∞ if and only if there
exist constants c, ε > 0 such that for any cube Q ⊂ Rn and for any
measurable subset E ⊂ Q,

(4.5)
w(E)

w(Q)
≤ c

(
|E|
|Q|

)ε
(we use a notation w(E) =

∫
E
w(x)dx). Also, the Lebesgue measure

and the w-measure here can be reversed, namely, w ∈ A∞ if and only
if there exist constants c, δ > 0 such that for any cube Q ⊂ Rn and for
any measurable subset E ⊂ Q,

(4.6)
|E|
|Q|

≤ c

(
w(E)

w(Q)

)δ
.

Theorem 4.6. Let w ∈ A∞. Then for any measurable f satisfying
f ∗(+∞) = 0 and for all p > 0,

∥f∥Lp(w) ≤ c∥M#
λ f∥Lp(w) (0 < λ ≤ λn).

Proof. As in the previous proof, it is enough to prove the theorem for
p ≥ 1. Applying Theorem 3.1, we have

∥f −mf (Q0)∥Lp(Q0,w) ≤ 2∥M#
1/4f∥Lp(w)

+ 2∥
∞∑
k=1

∑
j

ω 1
2n+2

(f ; Q̂k
j )χQk

j
∥Lp(w).

It suffices to show that the second term here is bounded by ∥M#
λ f∥Lp(w).

Then letting Q0 → Rn will complete the proof.
Set Ek = Ωk \ Ωk+1 (we use the notation from Theorem 3.1). Then

∞∑
k=1

∑
j

ω 1
2n+2

(f ; Q̂k
j )χQk

j
=

∞∑
l=0

∑
k,j

ω 1
2n+2

(f ; Q̂k
j )χEk+l∩Qk

j

Therefore

∥
∞∑
k=1

∑
j

ω 1
2n+2

(f ; Q̂k
j )χQk

j
∥Lp(w)

≤
∞∑
l=0

∥
∑
k,j

ω 1
2n+2

(f ; Q̂k
j )χEk+l∩Qk

j
∥Lp(w).
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Further,

∥
∑
k,j

ω 1
2n+2

(f ; Q̂k
j )χEk+l∩Qk

j
∥pLp(w) =

∑
k,j

ω 1
2n+2

(f ; Q̂k
j )
pw(Ek+l ∩Qk

j )

By properties (ii)-(iv) of Theorem 3.1 we have

|Ek+l ∩Qk
j | ≤ |Ωk+l ∩Qk

j | ≤ 2−l|Qk
j |.

From this and from (4.5) and (4.6),

w(Ek+l ∩Qk
j ) ≤ c2−lεw(Qk

j ) ≤ c2−lεw(Ek
j ).

Therefore,∑
k,j

ω 1
2n+2

(f ; Q̂k
j )
pw(Ek+l ∩Qk

j ) ≤ c2−lε
∑
k,j

inf
Qk

j

(M#
λn
f)pw(Ek

j )

≤ c2−lε∥M#
λn
f∥pLp(w).

Combining the obtained estimates, we get
∞∑
l=0

∥
∑
k,j

ω 1
2n+2

(f ; Q̂k
j )χEk+l∩Qk

j
∥Lp(w) ≤ c

∞∑
l=0

2−lε/p∥M#
λn
f∥Lp(w)

≤ c∥M#
λn
f∥Lp(w),

which completes the proof. �
A different proof of Theorem 4.6 can be found in [33].

5. Applications of Theorem 3.1 to sharp weighted
inequalities

It is well known that most of the classical operators in harmonic
analysis are bounded on Lp(w) for w ∈ Ap. The question about the
sharp Lp(w) operator norm of a given operator in terms of ∥w∥Ap has
been a subject of intense research during the last decade.

The first sharp result in this direction was obtained by S. Buckley [3]
who showed that the Hardy-Littlewood maximal operator M satisfies

(5.1) ∥M∥Lp(w) ≤ c(n, p)∥w∥
1

p−1

Ap
(1 < p <∞),

and the exponent 1
p−1

is sharp for any p > 1.

It turned out that for singular integrals the question is much more
complicated. Very recently this problem has been solved due to efforts
of many mathematicians.

To be more precise, we have that any Calderón-Zygmund operator T
satisfies

(5.2) ∥T∥Lp(w) ≤ c(T, n, p)∥w∥
max(1, 1

p−1
)

Ap
(1 < p <∞).
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Further, for a large class of Littlewood-Paley operators S,

(5.3) ∥S∥Lp(w) ≤ c(T, n, p)∥w∥
max( 1

2
, 1
p−1

)

Ap
(1 < p <∞).

The exponents in (5.2) in (5.3) are best possible for any p > 1.
Inequality (5.2) was first proved by S. Petermichl [45, 46] for the

Hilbert and Riesz transforms and by S. Petermichl and S. Volberg [48]
for the Ahlfors-Beurling operator. The proofs in [45, 46, 48] are based
on the so-called Haar shift operators combined with the Bellman func-
tion technique.

A unified approach to the above results was given by M. Lacey,
S. Petermichl and M. Reguera [32], who proved (5.2) for a general class
of “dyadic shifts”; their proof employed a two-weight “Tb theorem”
for such shifts due to F. Nazarov, S. Treil and S. Volberg [41]. The
proof in [32] was essentially simplified by D. Cruz-Uribe, J. Martell
and C. Pérez [12]; as the main tool they used Theorem 3.1.

Very soon after that, C. Pérez, S. Treil and A. Volberg [43] showed
that for general Calderón-Zygmund operators the problem is reduced
to proving the corresponding weak-type estimate. Based on this work,
T. Hytönen et al. [26] solved (5.2) for Calderón-Zygmund operators
with sufficiently smooth kernels. Inequality (5.2) in full generality was
proved by T. Hytönen [25] (see also the subsequent work [27]).

The history of (5.3) in brief is the following. First it was proved for
1 < p ≤ 2 for the dyadic square function by S. Hukovic, S. Treil and
A. Volberg [24], and, independently by J. Wittwer [56]. Also, (5.3) in
the case 1 < p ≤ 2 was proved by J. Wittwer [57] for the continuous
square function.

In [12], D. Cruz-Uribe, J. Martell and C. Pérez proved (5.3) for the
dyadic square function for any p > 1; the key tool was again Theo-
rem 3.1. Soon after that, the author [39] showed that (5.3) holds for
the intrinsic square function, establishing by this (5.3) for essentially
any square function.

Our goal is to describe below the key points from [12] and [39]. But
first we mention the following very useful tool commonly used in these
questions.

5.1. Extrapolation. The famous extrapolation theorem of J. Rubio
de Francia [49] says that if a sublinear operator T is bounded on Lp0(w)
for any w ∈ Ap0 , then it is bounded on Lp(w) for any p > 1 for
all w ∈ Ap. In [15], O. Dragičević et al. found the sharp depen-
dence of the corresponding norms on ∥w∥Ap in this theorem. Very
recently, a different and much simplified proof of this result was given
by J. Duoandikoetxea [17]. We shall use the following version from [17].
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Theorem 5.1. Assume that for some family of pairs of nonnegative
functions (f, g), for some p0 ∈ [1,∞), and for all w ∈ Ap0 we have

∥g∥Lp0 (w) ≤ cN(∥w∥Ap0
)∥f∥Lp0 (w),

where N is an increasing function and the constant c does not depend
on w. Then for all 1 < p <∞ and all w ∈ Ap we have

∥g∥Lp(w) ≤ c1N(c2∥w∥
max(1,

p0−1
p−1

)

Ap
)∥f∥Lp(w).

Observe that by extrapolation, it is enough to prove (5.2) for p = 2;
similarly, it is enough to prove (5.3) for p = 3.

5.2. The key result. The main idea found in [12] can be described
as follows.

Theorem 5.2. Assume that for some family of pairs of nonnegative
functions (f, g) with g∗(+∞) = 0 we have

(5.4) ωλ(|g|r;Q) ≤ c
( 1

|γQ|

∫
γQ

|f |dx
)r

for any dyadic cube Q ⊂ Rn, where r, γ ≥ 1, and the constant c does
not depend on Q. Then for any 1 < p <∞,

∥g∥Lp(w) ≤ c∥w∥
max( 1

r
, 1
p−1

)

Ap
∥f∥Lp(w),

where the constant c does not depend on w.

Proof. Let Q0 be a dyadic cube with respect to Rn. Then any cube
dyadic with respect to Q0 will be also dyadic with respect to Rn. Ap-
plying condition (5.4) along with Theorem 3.1, we get that for a.e.
x ∈ Q0,

||g(x)|r −m|g|r(Q0)|1/r ≤ c
(
Mf(x) +A3γ,rf(x)

)
,

where

Aγ,rf(x) =

(∑
j,k

( 1

|γQk
j |

∫
γQk

j

|f |dx
)r
χQk

j
(x)

)1/r

(we have used that γQ̂ ⊂ 3γQ).
Therefore, the question is reduced to showing the corresponding

bounds for Mf and Aγ,rf . For M this is Buckley’s estimate (5.1).
For the sake of completeness we give here a short proof of (5.1) found
recently in [38]. It is interesting to note that very similar ideas will be
used in order to bound the operator Aγ,r.
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Denote by M c
w the weighted centered maximal operator, that is,

M c
wf(x) = sup

Q∋x

1

w(Q)

∫
Q

|f(y)|w(y)dy,

where the supremum is taken over all cubes Q centered at x. If w ≡ 1,
we drop the subscript w.

Denote Ap(Q) = w(Q)σ(3Q)p−1/|Q|p, where σ = w− 1
p−1 . Then

1

|Q|

∫
Q

|f | = Ap(Q)
1

p−1

{
|Q|
w(Q)

( 1

σ(3Q)

∫
Q

|f |
)p−1

} 1
p−1

≤ 3np∥w∥
1

p−1

Ap

{
1

w(Q)

∫
Q

M c
σ(fσ

−1)p−1dx

} 1
p−1

.

From this and from the fact that Mf(x) ≤ 2nM cf(x) we get

Mf(x) ≤ 2n3np∥w∥
1

p−1

Ap
M c

w

(
M c

σ(fσ
−1)p−1w−1

)
(x)

1
p−1 .

It is well known that by the Besicovitch covering theorem, ∥M c
w∥Lp′

w

and ∥M c
σ∥Lp

σ
are bounded uniformly in w. Therefore, from the previous

estimate we get

∥Mf∥Lp(w) ≤ 2n3np∥w∥
1

p−1

Ap
∥Mw

(
Mσ(fσ

−1)p−1w−1
)
∥

1
p−1

Lp′ (w)

≤ c∥w∥
1

p−1

Ap
∥Mσ(fσ

−1)∥Lp(σ) ≤ c∥w∥
1

p−1

Ap
∥f∥Lp(w),

which completes the proof of (5.1).
We turn now to showing that for any 1 < p <∞,

∥Aγ,rf∥Lp(Q0,w) ≤ c(p, γ, n)∥w∥
max( 1

r
, 1
p−1

)

Ap
∥f∥Lp(w).

By Theorem 5.1, it suffices to prove this estimate for p = r + 1. By
duality, this is equivalent to that for any h ≥ 0 with ∥h∥Lr+1(w) = 1,∫

Q0

(Aγ,rf)
rhw dx =

∑
k,j

( 1

|γQk
j |

∫
γQk

j

|f |
)r ∫

Qk
j

hw

≤ c∥w∥Ar+1∥f∥rLr+1(w).
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Denote Ar+1(Q) =
w(Q)(w−1/r(Q))r

|Q|r+1 . Then( 1

|γQk
j |

∫
γQk

j

|f |
)r ∫

Qk
j

hw ≤ cAr+1(3γQ
k
j )

×
( 1

w−1/r(3γQk
j )

∫
γQk

j

|f |
)r( 1

w(3γQk
j )

∫
γQk

j

hw
)
|Ek

j |

≤ c∥w∥Ar+1

∫
Ek

j

M c
w−1/r(fw

1/r)rM c
wh dx.

Therefore (exactly as above we use the boundedness of the weighted
centered maximal function),∑

k,j

( 1

|γQk
j |

∫
γQk

j

|f |
)r ∫

Qk
j

hw

≤ c∥w∥Ar+1

∫
Rn

M c
w−1/r(fw

1/r)rM c
wh dx

≤ c∥w∥Ar+1∥M c
w−1/r(fw

1/r)∥rLr+1(w−1/r)∥M
c
wh∥Lr+1(w)

≤ c∥w∥Ar+1∥f∥rLr+1(w),

and we are done.
Combining the estimates for M and Aγ,r, we get

(5.5) ∥|g|r −m|g|r(Q0)|1/r∥Lp(Q0,w) ≤ c∥w∥
max( 1

r
, 1
p−1

)

Ap
∥f∥Lp(w).

Now, the finish of the proof is standard. Denote by Rn
i , 1 ≤ i ≤ 2n,

the n-dimensional quadrants in Rn, that is, the sets I±× I±×· · ·× I±,
where I+ = [0,∞) and I− = (−∞, 0). For each i, 1 ≤ i ≤ 2n, and
for each N > 0 let QN,i be the dyadic cube adjacent to the origin of
side length 2N that is contained in Rn

i . In (5.5) with Q0 = QN,i we let
N → ∞. Observe that

m|g|r(QN,i) ≤ g∗(|QN,i|/2)r → 0

as N → ∞. Hence, by Fatou’s lemma, we get

∥g∥Lp(Rn
i ,w)

≤ c∥w∥
max( 1

r
, 1
p−1

)

Ap
∥f∥Lp(w).

Summing over 1 ≤ i ≤ 2n completes the proof. �

Remark 5.3. The proof actually shows the following dependence of the
constant on γ and r:

∥g∥Lp(w) ≤ cγ
n
r ∥w∥

max( 1
r
, 1
p−1

)

Ap
∥f∥Lp(w).
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Corollary 5.4. Let T be a linear operator of weak type (1, 1) and such
that T (fχRn\Q′)(x) is a constant on Q for any dyadic cube Q, where
Q′ ⊂ γQ. Then for any 1 < p <∞,

∥Tf∥Lp(w) ≤ c∥w∥
max(1, 1

p−1
)

Ap
∥f∥Lp(w),

where the constant c does not depend on w.

Proof. For any dyadic cube Q we have Tf(x) = T (fχγQ)(x)+c. There-
fore,

ωλ(Tf ;Q) ≤ 2((Tf − c)χQ)
∗(λ|Q|) ≤ 2(T (fχQ′))∗(λ|Q|) ≤ c|f |γQ.

It remains to apply Theorem 5.2 (we may assume that f ∈ L1 and then
(Tf)∗(+∞) = 0). �
Remark 5.5. In the next section we will define a general dyadic grid D .
It is easy to see that that Theorem 5.2 (and hence Corollary 5.4) re-
mains true if we assume that the corresponding conditions hold for any
Q ∈ D instead of Q ∈ D.

In the next sections we consider applications of the obtained results
to weighted estimated of various operators, and, in particular, to esti-
mates (5.2) and (5.3).

6. Calderón-Zygmund and Haar shift operators

We start with a number of definitions.

Definition 6.1. A Calderón-Zygmund operator on Rn is an integral
operator, bounded on L2(Rn), and with kernel K satisfying the follow-
ing conditions:

(i) |K(x, y)| ≤ c
|x−y|n for all x ̸= y;

(ii) there exists 0 < α ≤ 1 such that

|K(x, y)−K(x′, y)|+ |K(y, x)−K(y, x′)| ≤ c
|x− x′|α

|x− y|n+α
,

whenever |x− x′| < |x− y|/2.

Definition 6.2. By a general dyadic grid D we mean a collection of
cubes with the following properties:

(i) for any Q ∈ D its sidelength ℓ(Q) is of the form 2k, k ∈ Z;
(ii) Q ∩R ∈ {Q,R, ∅} for any Q,R ∈ D ;
(iii) the cubes of a fixed sidelength 2k form a partition of Rn.

Definition 6.3. We say that hQ is a Haar function on a cube Q ⊂ Rn

if
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(i) hQ is a function supported on Q, and is constant on the children
of Q;

(ii)
∫
hQ = 0;

We say that hQ is a generalized Haar function if it is a linear combi-
nation of a Haar function on Q and χQ (in other words, only condition
(i) above is satisfied).

Definition 6.4. Let m, k ∈ N. We say that S is a (generalized) Haar
shift operator with parameters m, k if

Sf(x) = Sm,kD f(x) =
∑
Q∈D

∑
Q′,Q′′∈D,Q′,Q′′⊂Q

ℓ(Q′)=2−mℓ(Q),ℓ(Q′′)=2−kℓ(Q)

⟨f, hQ
′′

Q′ ⟩
|Q|

hQ
′

Q′′(x),

where hQ
′′

Q′ is a (generalized) Haar function on Q′, and hQ
′

Q′′ is one on
Q′′ such that

∥hQ
′′

Q′ ∥L∞∥hQ
′

Q′′∥L∞ ≤ 1.

The number max(m, k) is called the complexity of S.

It can be easily verified that any Haar shift operator is bounded
on L2(Rn). In the case of a generalized Haar shift operator its L2

boundedness is required additionally by the definition.
The importance of the Haar shift operators comes from the following

result, see T. Hytönen [25] and T. Hytönen et al. [27].

Theorem 6.5. Let T be a Calderón-Zygmund operator which satis-
fies the standard estimates with α ∈ (0, 1]. Then for all bounded and
compactly supported functions f and g,

(6.1) ⟨g, Tf⟩ = C(T, n)ED

∞∑
k,m=0

2−(m+k)α/2⟨g,Sm,kD f⟩,

where ED is the expectation with respect to a probability measure on the
space of all general dyadic grids.

Observe that for several classical singular integrals of the form

Tf(x) = P.V.f ∗K(x)

a simpler representation was obtained earlier which involves only the
Haar shifts of bounded complexity (and hence, the finite sum on the
right-hand side of (6.1)). The known examples include:

(i) K(x) = 1
x
(the Hilbert transform, see S. Petermichl [44]);

(ii) K(x) =
xj

|x|n+1 , n ≥ 2 (the Riesz transform, see S. Petermichl,

S. Treil and A. Volberg [47]);



“LOCAL MEAN OSCILLATION” DECOMPOSITION 23

(iii) K(z) = 1
z2

(the Beurling transform, see O. Dragičević and
A. Volberg [16]);

(iv) K(x) is any odd, one-dimensional C2 kernel satisfying

|K(i)(x)| ≤ c|x|−1−i (i = 0, 1, 2),

see A. Vagharshakyan [52].

By extrapolation and by Theorem 6.5 we have that (5.2) would follow
from

(6.2) ∥Sm,kD f∥L2(w) ≤ c(n)φ(max(m, k))∥w∥A2∥f∥L2(w)

with sufficiently good dependence on the complexity. First, (6.2) was
obtained in [32] with the exponential growth of φ. It is easy to see
that such a dependence cannot be combined with (6.1). However, it
is enough in order to handle the above mentioned classical singular
integrals. In [12], a simpler proof was given based on Theorem 3.1; this
proof also yields the exponential dependence on the complexity. After
that a better estimate (which is enough for applying Theorem 6.5) was
obtained in [25]; in [27] it was improved until φ(t) = t2.

We give below the proof of (6.2) with the exponential growth of φ,
which in turn yields (5.2) for the classical singular integrals mentioned
above.

Given a cube Q ∈ D and l ∈ N denote by Q(l) its l-fold parent, that
is, the unique cube from D such that |Q(l)| = 2nl|Q|.
Theorem 6.6. For any w ∈ A2,

(6.3) ∥Sm,kD f∥L2(w) ≤ c(n)ξ4nξ∥w∥A2∥f∥L2(w) (ξ = max(m, k)).

Proof. First, the Haar shift operator is of weak type (1, 1). This was
proved in [32] with the exponential dependence on the complexity, and
it was further improved until the linear dependence in [25].

Next, we claim that Sm,kD (fχRn\Q(ξ)
0
)(x) is a constant on Q0. Indeed,

take an arbitrary cube Q ∈ D , and let us consider∑
Q′,Q′′∈D,Q′,Q′′⊂Q

ℓ(Q′)=2−mℓ(Q),ℓ(Q′′)=2−kℓ(Q)

⟨fχRn\Q(ξ)
0
, hQ

′′

Q′ ⟩
|Q|

hQ
′

Q′′(x).

Since hQ′′ is supported on Q′′ and x ∈ Q0, we may assume that Q′′ ∩
Q0 ̸= ∅. Further, Q′′ ⊂ Q implies Q∩Q(ξ)

0 ̸= ∅. Similarly we have that

Q′ ∩Rn \Q(ξ)
0 ̸= ∅, and Q′ ⊂ Q implies Q∩Rn \Q(ξ)

0 ̸= ∅. Combining

this with the previous fact, we have that Q
(ξ)
0 ⊂ Q. Therefore, |Q0| <

2−kn|Q| = |Q′′|, and hence Q0 ⊂ Q′′. From this, hQ
′

Q′′(x) is a constant
on Q0 (by the definition of the Haar function), which proves the claim.
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It remains to apply Corollary 5.4. We only remark that after apply-
ing the weak type (1, 1) with the linear dependence on ξ we get

(Sm,kD (fχ
Q

(ξ)
0
))∗(λ|Q0|) ≤

cξ

λ|Q0|

∫
Q

(ξ)
0

|f | ≤ cξ2nξ

λ
|f |

Q
(ξ)
0
.

Since Q(ξ) ⊂ 3 · 2ξQ, we use Remark 5.3 with γ = 3 · 2ξ, which yields
(6.3). �

An interesting open question is whether it is possible to change some-
how the machinery used in Theorems 3.1 and 5.2 in order to improve
the dependence on the complexity in (6.3) We emphasize again that a
much better dependence was recently obtained in [27] but by means of
a different argument.

7. Some other applications

In this section we mention briefly some other applications found
in [12] which are also based on Theorem 5.2.

7.1. The dyadic paraproduct. The dyadic paraproduct πb is defined
by

πbf(x) =
∑
I∈D

fI⟨b, hI⟩hI(x).

Here the sum is taken over all dyadic intervals from R, b ∈ BMO(R),
and hI is the classical Haar function

hI(x) = |I|−1/2(χI−(x)− χI+(x)),

where I− and I+ are the left and right halves of I, respectively. In [2],
O. Beznosova proved that

(7.1) ∥πbf∥Lp(w) ≤ c∥b∥BMO∥w∥
max(1, 1

p−1
)

Ap
∥f∥Lp(w) (1 < p <∞).

The proof in [2] was based on the Bellman function technique.
Now we observe that (7.1) follows from Corollary 5.4 since:

(i) πb(fχR\I0)(x) is a constant on I0 for any dyadic interval I0 (this
follows easily from the definition of πb and from the basic prop-
erty of dyadic intervals);

(ii) ∥πbf∥L1,∞ ≤ c∥b∥BMO∥f∥L1 (the proof of this fact can be found
in [42]).
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7.2. The dyadic square function. The dyadic square function is
defined by

Sdf(x) =

(∑
Q∈D

(fQ − fQ̂)
2χQ(x)

)1/2

.

As we mentioned in Section 5, for this operator the sharp L2(w) bound

∥Sdf∥L2(w) ≤ c∥w∥A2∥f∥L2(w)

was obtained independently in [24] and [56]. By extrapolation, this
yields also the sharp bounds for 1 < p ≤ 2. It was conjectured in [37] for
a general class of Littlewood-Paley operators S that they satisfy (5.3).
In [12] this conjecture was proved for Sd for any 1 < p <∞. The proof
is very similar to the ones given above.

Lemma 7.1. For any dyadic cube Q0,

ωλ((Sdf)
2;Q0) ≤ c(|f |Q0)

2.

From this lemma and from Theorem 5.2 we get (5.3) for Sd. The
proof of Lemma 7.1 is based on the same idea as the proof of Corol-
lary 5.4. For x ∈ Q0 we have

Sdf(x)
2 =

∑
Q∈D,Q(Q0

(fQ − fQ̂)
2χQ(x) +

∑
Q∈D,Q0⊂Q

(fQ − fQ̂)
2.

The second term is a constant, while the first term is controlled by
Sd(fχQ0)(x)

2. Hence, using the weak type (1, 1) of Sd (see, e.g.,[55]),
we get

ωλ((Sdf)
2;Q0) ≤ 2

(
(Sd(fχQ0))

2
)∗(

λ|Q0|
)

= 2
(
Sd(fχQ0)

)∗(
λ|Q0|

)2 ≤ c(|f |Q0)
2,

and hence the proof is complete.

7.3. The vector-valued maximal operator. Given a vector-valued
function f = {fi}, and q, 1 < q < 1, the vector-valued maximal opera-
tor M q is defined by

M qf(x) =

(
∞∑
i=1

Mfi(x)
q

)1/q

.

It was proved in [12] that for any 1 < p, q <∞,

(7.2) ∥M qf∥Lp(w) ≤ c∥w∥
max( 1

q
, 1
p−1

)

Ap

(∫
Rn

∥f(x)∥pℓqwdx
)1/p

.

By the well known idea found by C. Fefferman and E.M. Stein [19],
it suffices to prove the result for the dyadic vector-valued maximal
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function M
d

qf(x). Next, by Theorem 5.2, inequality (7.2) will follow
from

(7.3) ωλ((M
d

qf)
q;Q0) ≤ c

( 1

|Q0|

∫
Q0

∥f(x)∥ℓqdx
)q

(Q0 ∈ D).

The proof of (7.3) follows similar lines as the previous proofs. Namely,
setting

Cq =
∞∑
i=1

(
sup

Q∈D,Q0⊂Q
|fi|Q

)q
for x ∈ Q0 we get

0 ≤ (M
d

qf(x))
q − Cq ≤ (M

d

q(fχQ0)(x))
q.

It remains to use the weak type (1, 1) of M q (this was proved in [19]).

8. Littlewood-Paley operators

In the previous section inequality (5.3) was proved for the dyadic
square function Sd. The crucial point in the proof was the local nature
of Sd, that is, the fact that for any dyadic cube Q, Sdf(x) on Q is
essentially Sd(fχQ)(x) plus a constant. More general square functions
do not satisfy such a nice property. However, as it was shown in [40],
a number of tricks (based mainly on the works of M. Wilson) allow to
reduce the general problem to a local situation mentioned above. As a
result, we obtain (5.3) for a large class of Littlewood-Paley operators.

8.1. The classical S and g functions. Let Rn+1
+ = Rn × R+ and

Γβ(x) = {(y, t) ∈ Rn+1
+ : |y − x| < βt}. Here and below we drop the

subscript β if β = 1. Set φt(x) = t−nφ(x/t).
If u(x, t) = Pt ∗ f(x) is the Poisson integral of f , the Lusin area

integral Sβ and the Littlewood-Paley g-function are defined respectively
by

Sβ(f)(x) =

(∫
Γβ(x)

|∇u(y, t)|2dydt
tn−1

)1/2

and

g(f)(x) =

(∫ ∞

0

t|∇u(x, t)|2dt
)1/2

.

One can define similar operators by means of general but compactly
supported kernel. Let ψ ∈ C∞(Rn) be radial, supported in {|x| ≤ 1},
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and
∫
ψ = 0. The continuous square functions Sψ,β and gψ are defined

by

Sψ,β(f)(x) =

(∫
Γβ(x)

|f ∗ ψt(y)|2
dydt

tn+1

)1/2

and

gψ(f)(x) =

(∫ ∞

0

|f ∗ ψt(x)|2
dt

t

)1/2

.

8.2. The intrinsic square function. In [54] (see also [55, p. 103]),
M. Wilson introduced a new square function called the intrinsic square
function. It has a number of remarkable properties. This function is
independent of the aperture and of any particular kernel ψ. On one
hand, it dominates pointwise all the above defined square function. On
the other hand, it has the same mapping properties. Finally, perhaps
the most important property for us is that the intrinsic square function
is “local” in a sense. This fact makes applicable the above described
machinery to essentially any square function.

For 0 < α ≤ 1, let Cα be the family of functions supported in {x :
|x| ≤ 1}, satisfying

∫
ψ = 0, and such that for all x and x′,

|φ(x)− φ(x′)| ≤ |x− x′|α.
If f ∈ L1

loc(Rn) and (y, t) ∈ Rn+1
+ , we define

Aα(f)(y, t) = sup
φ∈Cα

|f ∗ φt(y)|.

The intrinsic square function is defined by

Gβ,α(f)(x) =

(∫
Γβ(x)

(
Aα(f)(y, t)

)2dydt
tn+1

)1/2

.

If β = 1, set G1,α(f) = Gα(f).
We mention several properties of Gα(f) (for the proofs we refer to

[54] and [55, Ch. 6]). First of all, it is of weak type (1, 1):

(8.1) |{x ∈ Rn : Gα(f)(x) > λ}| ≤ c(n, α)

λ

∫
Rn

|f | dx.

As we have already seen, this fact is crucial for applications.
Second, if β ≥ 1, then for all x ∈ Rn,

(8.2) Gβ,α(f)(x) ≤ c(α, β, n)Gα(f)(x).

This is an interesting property since in general only an indirect control
of the square function with bigger aperture by the one with smaller
aperture is possible (see [8]).
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Third, if S is anyone of the Littlewood-Paley operators defined above,
then

(8.3) S(f)(x) ≤ cGα(f)(x),

where the constant c is independent of f and x.

8.3. A variant of the intrinsic square function. In order to em-
ploy the dyadic analysis (crucial for all the above considerations), we
consider the following operator equivalent to Gα.

Given a cube Q ⊂ Rn, set

T (Q) = {(y, t) ∈ Rn+1
+ : y ∈ Q, ℓ(Q)/2 ≤ t < ℓ(Q)}.

Denote γQ(f)
2 =

∫
T (Q)

(
Aα(f)(y, t)

)2 dydt
tn+1 and let

G̃α(f)(x)
2 =

∑
Q∈D

γQ(f)
2χ3Q(x).

Lemma 8.1. For any x ∈ Rn,

(8.4) Gα(f)(x) ≤ G̃α(f)(x) ≤ c(α, n)Gα(f)(x).

Proof. For any x ̸∈ 3Q we have Γ(x) ∩ T (Q) = ∅, and hence∫
Γ(x)∩T (Q)

(
Aα(f)(y, t)

)2dydt
tn+1

≤ γQ(f)
2χ3Q(x).

Therefore,

Gα(f)(x)
2 =

∫
Γ(x)

(
Aα(f)(y, t)

)2dydt
tn+1

=
∑
Q∈D

∫
Γ(x)∩T (Q)

(
Aα(f)(y, t)

)2dydt
tn+1

≤ G̃α(f)(x)
2.

On the other hand, if x ∈ 3Q and (y, t) ∈ T (Q), then |x − y| ≤
2
√
nℓ(Q) ≤ 4

√
nt. Thus,

G̃α(f)(x)
2 =

∑
Q∈D

γQ(f)
2χ3Q(x)

≤
∑
Q∈D

∫
T (Q)∩Γ4

√
n(x)

(
Aα(f)(y, t)

)2dydt
tn+1

= G4
√
n,α(f)(x)

2.

Combining this with (8.2), we get the right-hand side of (8.4). �
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8.4. Some tricks with dyadic cubes. Our goal is to apply Theo-

rem 5.2 to G̃α(f), that is, we are going to estimate the local mean oscil-
lation of this function on any dyadic cube Q0. Due to the definition of

G̃α(f), instead of the family of dyadic cubes (as in the definition of the
dyadic square function) we have to deal with the family {3Q : Q ∈ D}.
In order to understand what is the interaction of Q0 with any cube
from the latter family, we will need several tricks with dyadic cubes.

The following result can be found in [53, Lemma 2.1] or in [55, p. 91].
We give a slightly different proof here.

Lemma 8.2. There exist disjoint families D1, . . .D3n of dyadic cubes
such that D = ∪3n

k=1Dk, and, for every k, if Q1, Q2 are in Dk, then 3Q1

and 3Q2 are either disjoint or one is contained in the other.

Proof. It suffices to prove the lemma in the one-dimensional case. In-
deed, if I is the set of all dyadic intervals in R and I = ∪3

j=1Ij is the
representation from Lemma 8.2 in the case n = 1, then the required
families in Rn are of the form

Dk =
{ n∏
m=1

Im : Im ∈ Iαi
, αi ∈ {1, 2, 3}

}
(k = 1, . . . , 3n).

Suppose that n = 1. Denote by D(l) the family of dyadic intervals
with length 1/2l, l ∈ Z. Fix l0 ∈ Z. We distribute the intervals from
D(l0) into the families Ij, 1 ≤ j ≤ 3, by the following way: for i ∈ Z,( 3i

2l0
,
3i+ 1

2l0

)
∈ I1,

(3i+ 1

2l0
,
3i+ 2

2l0

)
∈ I2,

(3i+ 2

2l0
,
3i+ 3

2l0

)
∈ I3.

The intervals from any D(l) will be distributed in the same way. In
order to do that we have to choose only one interval from D(l) and to
determine the correct family Ij for this interval; all other intervals from
D(l) will be distributed automatically.

Below we show how to choose the corresponding intervals fromD(l0−1)

and D(l0+1). Then by induction we obtain the distribution from any
other family D(l).

Take any interval from D(l0−1) such that its left half (which is from
D(l0)) belongs to I1; put such an interval to the family I3. Similarly,
take any interval from D(l0+1) such that it is a left half of some interval
from I3 and put it to the family I1.

Let I, J be two arbitrary intervals from Ii. By our construction, it
is easy to see that the statement of the lemma holds for them if one of
them lies in D(l) and another one is in one of the classes D(l) or D(l±1).
But then by induction we get the same statement if one of them is in
D(l) and another one is in D(l±k). �
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Lemma 8.3. For any cube Q ∈ D and for each k = 1, . . . , 3n there is
a cube Qk ∈ Dk such that Q ⊂ 3Qk ⊂ 5Q.

Proof. Let us consider first the one-dimensional case. Assume that
I = ∪3

j=1Ij is the representation from Lemma 8.2.

Take an arbitrary dyadic interval J = ( j
2k
, j+1

2k
). Set J1 = J . Con-

sider the dyadic intervals J2 = ( j−1
2k
, j
2k
) and J3 = ( j+1

2k
, j+2

2k
). By the

above construction, the intervals Jl lie in the different families Ij. Also,
J ⊂ 3Jl ⊂ 5J for l = 1, 2, 3.

Consider now the multidimensional case. Take an arbitrary cube
Q ∈ D. Then Q =

∏n
m=1 Im, where Im ∈ I and ℓIm = h for each m.

Fix αi ∈ {1, 2, 3}. We have already proved that there exists Ĩm ∈ Iαi

such that Im ⊂ 3Ĩm ⊂ 5Im. Observe also that, by the one-dimensional

construction, ℓĨm = ℓIm = h. Therefore, setting Qk =
∏n

m=1 Ĩm, we
obtain the required cube from Dk. �

8.5. A local mean oscillation estimate of G̃α. By Theorem 5.2,

estimate (5.3) for G̃α (and hence, for any square function from Sec-
tion 8.1) will follow from the following lemma.

Lemma 8.4. For any cube Q ∈ D,

ωλ(G̃α(f)
2;Q) ≤ c(n, α, λ)

(
1

|15Q|

∫
15Q

|f |dx
)2

.

Proof. Applying Lemma 8.2, we can write

G̃α(f)(x)
2 =

3n∑
k=1

∑
Q∈Dk

γQ(f)
2χ3Q(x) ≡

3n∑
k=1

G̃α,k(f)(x)
2.

Hence,

ωλ(G̃α(f)
2;Q) ≤ 2

3n∑
k=1

ωλ/3n(G̃α,k(f)
2;Q)

(we have used here the standard property of the rearrangement saying
that (f + g)∗(t1 + t2) ≤ f ∗(t1) + g∗(t2)).

By Lemma 8.3, for each k = 1, . . . , 3n there exists a cube Qk ∈ Dk

such that Q ⊂ 3Qk ⊂ 5Q. Hence,

inf
c∈R

((
G̃α,k(f)

2 − c
)
χQ

)∗(
λ|Q|/3n

)
≤ inf

c∈R

((
G̃α,k(f)

2 − c
)
χ3Qk

)∗(
λ|Q|/3n

)
.
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Using the main property of cubes from the family Dk (expressed in
Lemma 8.2), for any x ∈ 3Qk we have

(8.5) G̃α,k(f)(x)
2 =

∑
Q∈Dk:3Q⊂3Qk

γQ(f)
2χ3Q(x) +

∑
Q∈Dk:3Qk⊂3Q

γQ(f)
2.

Arguing as in the proof of Lemma 8.1, we obtain∑
Q∈Dk:3Q⊂3Qk

γQ(f)
2χ3Q(x)

≤
∑

Q∈Dk:3Q⊂3Qk

∫
T (Q)∩Γ4

√
n(x)

(
Aα(f)(y, t)

)2dydt
tn+1

≤
∫
T̂ (3Qk)∩Γ4

√
n(x)

(
Aα(f)(y, t)

)2dydt
tn+1

,

where T̂ (3Qk) = {(y, t) : y ∈ 3Qk, 0 < t ≤ ℓ(3Qk)}. For any φ

supported in {x : |x| ≤ 1} and for (y, t) ∈ T̂ (3Qk) we have

f ∗ φt(y) = (fχ9Qk
) ∗ φt(y).

Therefore,∫
T̂ (3Qk)∩Γ4

√
n(x)

(
Aα(f)(y, t)

)2dydt
tn+1

≤ G4
√
n,α(fχ9Qk

)(x)2.

Combining the latter estimates with (8.5) and setting

c =
∑

Q∈Dk:3Qk⊂3Q

γQ(f)
2,

we get

0 ≤ G̃α,k(f)(x)
2 − c ≤ G4

√
n,α(fχ9Qk

)(x)2 (x ∈ 3Qk).

From this, by (8.1) and (8.2) (we use also that 3Qk ⊂ 5Q implies
9Qk ⊂ 15Q),

inf
c∈R

((
G̃α,k(f)

2 − c
)
χ3Qk

)∗(
λ|Q|/3n

)
≤ c(n, α)

(
Gα(fχ9Qk

)
)∗
(λ|Q|/3n)2

≤ c

(
3n

λ|Q|

∫
9Qk

|f |
)2

≤ c

(
3n

λ|Q|

∫
15Q

|f |
)2

,

which completes the proof. �
The proof of the above lemma shows that the operator G̃α is “local”

similarly to the dyadic square function. This follows from the fact that
the intrinsic square function is defined by means of the uniformly com-
pactly supported kernels. For example, the analogue of Lemma 8.4 is
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not true for the Lusin area integral. On the other hand, we have (5.3)
for the Lusin area integral since, by (8.3), it is pointwise dominated
by Gα. So, we have here a very interesting phenomenon that the “lo-
cal” operator dominates the “non-local” one. An explanation of this
phenomenon is in [55, pp. 114-118].

9. Applications to two-weight inequalities

In this section we mention briefly another application of Theorem
3.1, namely, the application to sharp two-weighted inequalities formu-
lated in terms of Muckenhoupt-type conditions with the help of Orlicz
bumps.

Suppose that T is a Calderón-Zygmund operator. A difficult and
long-standing open problem in harmonic analysis is to characterize a
pair of weights (u, v) yielding the two-weight inequality

(9.1)

∫
Rn

|Tf(x)|pu dx ≤ c

∫
Rn

|f(x)|pv dx.

We consider sufficient Muckenhoupt-type conditions for (9.1). For a
detailed history of such estimates we refer to [11, 12].

Given a Young function Φ, the mean Luxemburg norm of f on a
cube Q is defined by

∥f∥Φ,Q = inf

{
α > 0 :

1

|Q|

∫
Q

Φ

(
|f |
α

)
dy ≤ 1

}
.

If Φ(t) = tp, then we denote ∥f∥Φ,Q = ∥f∥p,Q.
Given p, 1 < p < ∞, a Young function Φ satisfies the Bp condition

if for some c > 0, ∫ ∞

c

Φ(t)

tp
dt

t
<∞.

Given a Young function Φ, there exists an associate Young function
Φ̄ such that t ≤ Φ−1(t)Φ̄−1(t) ≤ 2t.

In [13], D. Cruz-Uribe and C. Pérez conjectured the following.

Conjecture 9.1. Let A and B be two Young functions such that

(9.2) Ā ∈ Bp′ and B̄ ∈ Bp.

If

sup
Q

∥u1/p∥A,Q∥v−1/p∥B,Q <∞,

then (9.1) holds.
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In the same work [13], Conjecture 9.1 was proved in the particular
case when B is as in (9.2) and A(t) = tpr for some r > 1. In [11],
this result was improved as follows: if p > n, B satisfies (9.2) and
A(t) = tp[log(e + t)]p−1+δ, δ > 0, then (9.1) holds. If 1 < p ≤ n,
an analogous result was proved in [11] but with larger Orlicz bump
A(t) = tp[log(e+ t)]2p−1+δ.

In [39] it was shown that Theorem 3.1 along with the local mean
oscillation estimate

ωλ(Tf,Q) ≤ c
∞∑
m=0

1

2m
1

|2mQ|

∫
2mQ

|f |

proves Conjecture 9.1 for p > n (for example, for the Hilbert transform
this shows that Conjecture 9.1 is true for all p > 1). In the case n ≥ 2,
the standard duality argument shows that Conjecture 9.1 holds in the
case p < n′ as well. In the case when n′ ≤ p ≤ n the problem remains
open, in general.

On the other hand, it was shown in [12] that the “Haar shift oper-
ator” approach combined with Theorem 3.1 proves Conjecture 9.1 for
any classical singular integral mentioned after Theorem 6.5.

Consider a similar two-weighted problem for Littlewood-Paley oper-
ators:

(9.3)

∫
Rn

|Sf(x)|pu dx ≤ c

∫
Rn

|f(x)|pv dx.

In [12], it was shown that for the dyadic square function, if 1 < p ≤ 2
and B̄ ∈ Bp, then the condition

sup
Q

∥u1/p∥p,Q∥v−1/p∥B,Q <∞

is sufficient for (9.3); if 2 < p < ∞ and Ā ∈ B(p/2)′ , B̄ ∈ Bp, then the
condition

sup
Q

∥u2/p∥1/2A,Q∥v
−1/p∥B,Q <∞

is sufficient for (9.3). The proof is based on Theorem 3.1 along with
Lemma 7.1. By the arguments from Section 8, we have that the same
conditions are sufficient for (9.3) with the intrinsic square function, and
hence for S and g functions defined in Section 8.1.
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