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This paper evaluates the use of the fuzzyk-means clustering method for the clustering of files of 2D chemical
structures. Simulated property prediction experiments with the Starlist file of logP values demonstrate that
use of the fuzzyk-means method can, in some cases, yield results that are superior to those obtained with
the conventionalk-means method and with Ward’s clustering method. Clustering of several small sets of
agrochemical compounds demonstrate the ability of the fuzzyk-means method to highlight multicluster
membership and to identify outlier compounds, although the former can be difficult to interpret in some
cases.

INTRODUCTION

The clustering of chemical structures is a widely used
technique that has found application in the selection of
compounds for screening, the analysis of substructure search
output, and the prediction of molecular properties, inter alia
(see, e.g., refs 1-3). Cluster analysis involves three principal
components: a similarity coefficient for quantifying the
degree of similarity between pairs of compounds, between
a compound and a cluster, or between a pair of clusters; a
clustering method that processes the similarity data to identify
groups of structurally related compounds; and an efficient
algorithm for the implementation of the method so that it
can be applied to data sets of nontrivial size. There is an
extensive literature associated with all of these components
(see, e.g., refs 4-6): here, we focus on the choice of
clustering method.

There are many different types of clustering method7-9

and there have been several detailed comparisons of their
effectiveness and efficiency when used for the processing
of chemical structure databases, perhaps most notably the
work of Willett and his collaborators (as summarized in ref
4) and of Brown and Martin.3,10 Studies such as these have
resulted in the widespread operational use of the Jarvis-
Patrick and Ward’s clustering methods. There is, however,
a further method whose computational complexity makes it
particularly attractive when very large numbers of com-
pounds need to be clustered, as is the case with many
database applications. This is thek-means method,6 which
is perhaps the archetypal relocation method11 and which
involves an initial partition of a data set that is then refined
by iterative relocation of the compounds in the data set.

The k-means method, like most of those used previously
for chemical clustering, is an example of acrisp clustering
method, in which each compound is a member of just a single
cluster. Alternatively, in afuzzy clustering method, each
compound can belong to one, some, or many of the clusters
(albeit to a greater or lesser degree, rather than just belonging
or not belonging in the case of a crisp classification).12-14

There has already been some interest in using these methods
for the analysis of chemical data,15-23 with many of these
studies using the fuzzyk-means clustering method that is
probably the most common type of fuzzy clustering method
and that forms the focus of this paper. Specifically, we report
a detailed evaluation of the fuzzyk-means method for
clustering files of chemical structures and compare its
performance with that of established crisp methods using
both quantitative and qualitative approaches. Full details of
the work are presented by Rodgers.24

THE FUZZY K-MEANS CLUSTERING METHOD

Fuzzy clustering is one of the principal applications of
fuzzy set theory,25-27 an important part of which is the
concept of amembership function. The membership function
of an object describes to what degree that object is a member
of a given set. In traditional set theory an object is either a
member of a set, corresponding to a membership function
of 1, or is not a member of that state, corresponding to a
membership function of 0. Fuzzy logic extends this notion
by allowing an object to belong to more than one set, with
the membership function being allowed to take values
between 0 and 1. Formally, given a setA, in a space of points,
X, with a generic element ofX denoted asx, i.e., X ) {x},
then the membership function in a conventional crisp set
assigns a valueµA(x) to eachx
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i.e., µA (x): Xf {0, 1}.
In fuzzy set theory, an object is assigned a value for its

membership function of a given set anywhere between these
two extremal values, i.e.,µA (x): X f [0, 1]. The sum of the
memberships for each object is unity, and the closer the value
of µA(x) to this upperbound, the greater the degree to which
x is a member of the fuzzy setA.

The idea of partial membership that underlies fuzzy set
theory provides an obvious way of tackling the inherent
problem of conventional clustering methods, where an object
can only belong or not belong to a particular cluster. A fuzzy
cluster is a fuzzy subset on the set of objects, with the
membership function of each object representing the degree
to which it belongs to that cluster. If a cluster is a group
whose members share common properties, then the member-
ship function of an object indicates the degree to which that
object displays these properties, with similar objects having
high membership of the same cluster(s).

All of the fuzzy clustering methods that have appeared in
the literature are extensions of conventional methods that
have incorporated fuzzy set theory, with the fuzzyk-means
method being by far the most widely used. The method was
first characterized by Dunn28 and then generalized by
Bezdek12 and is simply an iterative procedure for finding
memberships of all the objects in the feature space that
optimize an objective function.13,28-30 The method is sum-
marized below.

1. Select parameter values:k is the number of partitions,
m is the fuzziness index, andε is the stopping threshold.

2. Initialize the centroid matrix with the cluster seeds.
3. Calculate the membership,µij, of each compound,j, in

each cluster,i, using

wherexjk is the data point of thejth compound at thekth
variable andVik is the centroid value in theith cluster at the
kth variable.

4. Update the positions of the centroids using

5. Calculate the difference between the centroid matrix
from the current and previous iterations:

In this fuzzy version of thek-means method the objective
function (Jm) to be minimized is as follows:

By minimizing the function (3), the objects should have
high membership in the resulting clusters. The fuzzy version
of the conventional objective function includes two extra
termssthe membership function of each object,µ, and an
exponent weight,m (or “fuzziness” index). The objective
function is the sum of the squared distances between each
object and corresponding cluster centroid with the distances
weighted by the fuzzy memberships. Thus objects that have
a large distance will also have a small membership function
for that fuzzy set and so will have less effect on the objective
function,Jm. The membership function is first weighted by
m, which is present to reduce the sensitivity to small
differences in distance. The fuzzy objective function is then
minimized, and the method compares the input vectors to
the mean vectors for each class to allow adjustments to the
partition matrix.

There are three parameters of importance. The first of these
is the number of clusters,k, which (as with most relocation
clustering methods) must be chosen by the user prior to the
start of the clustering process. The weighting exponent, or
fuzziness index,m (1 < m < ∞), weights the membership
values so that the effect of noise on the centroid is reduced.
A value of m ) 1 corresponds to a normal crisp partition,
but asm increases toward∞, the partition becomes fuzzier
and the membership function of each compound in each
cluster tends toward the limiting value of 1/k. The value of
m thus has a large impact on the cluster analysis: a value
that is too low will not effectively handle noise in the data
and a value that is too high will produce very poorly
separated clusters. In fact, as will be seen below, all of our
experiments have used only small values ofm as previous
work has shown that this gives the most appropriate results
in a wide range of applications (see, e.g., refs 16, 20, 31-
33).Jm is a squared error criterion and by minimizing it fuzzy
clusters are being produced that are optimal in a generalized
least-squaresd errors manner. The termination criterion is
usually set toε ) 0.001, but 0.01 can be sufficient. The
membership calculation in step 3 of the algorithm has
normally involved the Euclidean distance measure, but other
similarity coefficients34 could be used if required.

In crispk-means analysis the Euclidean distance between
each of the objects in the data set and the centroids is
calculated, and then the object is assigned to the centroid to
which it is closest. This can be thought of as “winner takes
all” as only the closest cluster is given membership for the
object. In fuzzyk-means, membership of each object to each
cluster is assigned proportionately depending on this Eu-
clidean distance value, with the closest cluster being assigned
the highest membership and the furthest one the least. In
this respect fuzzyk-means could be described as a “winner
takes most” method.

SIMULATED PROPERTY PREDICTION

The prediction of chemical, biological, and physical
properties has been extensively used for the quantitative
evaluation and comparison of clustering methods3,4sindeed,
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then stop, otherwise go to step 3.
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cluster-based and nearest-neighbor searching methods have
been suggested as an effective alternative to conventional
prediction methods10sand we have used this approach in
the work reported here.

Our experiments used a set of 1763 molecules randomly
selected from the Starlist database35 for which logP values
are available. The Molconn-Z package36 was used to calculate
a wide range of topological indices and other physicochem-
ical parameters for each of the molecules; principal compo-
nents analysis was then carried out so that each molecule
was characterized by the first 45 principal components, these
accounting for 77.6% of the variance in the sets of calculated
values.

A MATLAB implementation of thek-means fuzzy clus-
tering method was used to classify the Starlist data set. This
program takes as input the 1763× 45 data matrix and
produces two matrices as output: the fuzzy partition matrix,
which contains the membership function of each compound
for each cluster; and the centroid matrix, which contains the
centroids (calculated using (2) above) for each of the current
set of clusters, and thus the basis for the next iteration of
the relocation procedure that drives this clustering method.
These two matrices were initialized randomly so as create
the centroids for the first iteration of the method. Iteration
is continued until the difference,ε, between the current and
previous centroid matrices is not greater than 0.01.

The results obtained using the fuzzyk-means clustering
were compared with those obtained using two established
crisp clustering methods, conventionalk-means and Ward’s
method, with these results being obtained using the Barnard
Chemical Information (BCI) implementations of these two
methods.37 The comparison involved simulated property
prediction, in which the groupings resulting from a cluster
analysis were used to predict the properties of the compounds
within each cluster. These predicted values were then
compared with the corresponding observed values to provide
a measure of the effectiveness of the clustering method.3,4

The conventional leave-one out procedure used to do this is
as follows:

1. Take each molecule,j, in turn, and note the cluster,i,
that contains it.

2. Calculate the mean property value from all the other
molecules in clusteri.

3. This is the predicted property value for moleculej.
Note that step 3 is only carried out if there is at least some

minimal numbers3 in our experimentssof molecules in the
clusteri. The set of predicted values is compared with the
observed values by calculating the product moment correla-
tion coefficient.4 A perfect correlation, and thus an effective
clustering, is denoted by a coefficient value of 1; a perfect
inverse correlation will be shown by a coefficient value of
-1 and a value of 0 shows that there is no correlation
between the observed and predicted values. This is a simple
way of measuring the effectiveness of clustering that has
been used very extensively in the past;2-4,10,11more complex
performance measures are discussed by Johnson.38

The correlation coefficients obtained with varying numbers
of clusters for the (crisp)k-means and Ward’s methods are
shown in Table 1 withk, the number of clusters, in the range
10 e k e 90. It will be seen, as would be expected, that the
predictive power of the classification rises rapidly and is
greatest with the largest number of, and hence the smallest

and tightest, clusters. This approach to measuring the
effectiveness of a cluster analysis is only suitable for crisp
clusters, and hence needs modification if it is to be applied
to the evaluation of fuzzy classifications. We have tested
four such modified prediction methods (PM1-PM4), of
which the best results were obtained with the last of these,
PM4.24 We hence describe the first three only briefly and
provide a detailed account plus experimental results (see
Table 2) for just PM4.

PM1. The first approach that can be used is to “defuzzify”
the fuzzy partition after the clustering has taken place. Each
compound is assigned to the cluster in which it has the
highest membership function (the “home” cluster) and
assignedµ ) 1 for that cluster andµ ) 0 for all other
clusters. The data would then be equivalent to that from a
crisp clustering (and can hence be evaluated in the normal
way) but will have benefited from being clustered using the
fuzzy algorithm.

PM2. The second prediction approach involves assigning
each molecule to its home cluster as above but retaining its
membership functions in all of the other clusters for the
predictions of other compounds. The procedure is outlined
below:

1. Apply a threshold to the data,µt, below which
membership to clusters is ignored.

2. Clusteri is the home cluster of compoundj.
3. Calculate the mean property value for clusteri by

multiplying each qualifying membership function (µ > µt)
by the property value of that compound (excluding com-
poundj). These values are then summed and divided by the
sum of the qualifying memberships in the cluster.

4. Predict property forj from the mean value in clusteri.
All molecules are thus included in the calculations as

long as their membership is high enough, but only the cluster
in which compoundj has the greatest membership is
considered for the prediction. The use ofµt eliminates the
many low cluster memberships, while retaining the more
important ones; the approach is thus less crude than PM1
but still uses only the home cluster in the final prediction
stage.

PM3. The third approach includes the membership func-
tions in the prediction stage:

1. Take each cluster in turn.

Table 1. Product Moment Correlation Coefficients for the
Prediction of logP Using Crisp Clustering Methods

k k-means Ward’s

10 0.23 0.17
30 0.59 0.40
50 0.64 0.58
70 0.67 0.64
90 0.71 0.69

Table 2. Product Moment Correlation Coefficients for the
Prediction of logP Using the PM4 Prediction Method

m

k 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

10 0.40 0.34 0.31 0.23 0.20 0.17 0.17 0.17 0.17 0.16
30 0.62 0.64 0.40 0.26 0.25 0.21 0.19 0.17 0.17 0.16
50 0.68 0.66 0.55 0.26 0.24 0.23 0.18 0.17 0.17 0.17
70 0.73 0.72 0.57 0.28 0.24 0.22 0.18 0.17 0.17 0.17
90 0.74 0.75 0.65 0.32 0.26 0.21 0.17 0.17 0.17 0.17
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2. Calculate the average property value for each cluster
by summing the property value multiplied by membership
function for each of the molecules and divide this by the
sum of the memberships.

3. Multiply the average property value in each cluster by
the membership function of compoundj for that cluster and
sum the values from each cluster to obtain an overall property
value for j.

Here the membership function of each molecule is being
considered and thus each molecule contributes more or less
to the prediction depending upon the degree to which it is a
member of the specific cluster. This approach is more
complex than the two previous ones but uses all of the
information provided in the fuzzy clustering matrix in the
prediction stage.

PM4. The final approach is an extension of PM3 and
involves the following steps:

1. Select a minimal membershipµmin, the minimum
membership function from which to make predictions.

2. For compoundj put membership functions in descend-
ing order. Then sum these memberships untilµmin is
reached: these are the clusters that will be used for
prediction.

3. For the clusters to be used, scale the memberships to 1.
4. Calculate the average property value of each cluster by

summing the membership function multiplied by the property
value and then dividing by the sum of the memberships for
all of the compounds present.

5. Multiply the average property value by the membership
function of compoundj for each of the clusters to be used.
These values can then be summed to obtain an overall value.

Many of the membership values for many of the molecules
are very small, implying that it may be inappropriate to use
the corresponding clusters for predictive purposes. PM4
hence uses just the most important significant memberships
for each molecule, together with the properties of all of the
other molecules in the data set.

The results obtained using the PM4 approach are shown
in Table 2. The fuzzy clusters created with a high value of
m are not well separated, with the membership functions of
the individual molecules here having similar values (and
similar behavior is also observed with PM1-PM3). At lower
levels ofm, the predictive ability of the clusters improves
as the clusters become better separated, i.e., exhibit a much
lower degree of overlap. Indeed, there is some slight
improvement over the crisp-cluster results (see Table 1) at
all partition levels form ) 1.1 andm ) 1.2. It should be
noted that the precise correlations depend on the value that
is chosen for the threshold membership function, and
experiments were hence carried out with 0.5e µmin e 0.95
across the range ofm values. The overall effect was small,
with the largest variation in the correlation coefficient (a total
range of 0.015 units) occurring atm ) 1.3 andm ) 1.8; the
correlations peaked atµmin ) 0.80 for thesem values, and
we have hence used this value across the whole range ofm
values to obtain the results shown in Table 2.

As noted in the Introduction, one of the principal advan-
tages of fuzzy clustering is that it can describe a wider range
of similarity relationships than is possible with a crisp
clustering method, where each molecule belongs to only a
single cluster. As an example, consider the Starlist molecule
labeled 1 in Figure 1. This was assigned to three clusters,

with membership values of 0.289, 0.166, and 0.394 for the
groups represented by the molecules labeled 2-4 in Figure
1. An inspection of this figure shows that molecule 1’s
structural characteristics are clearly reflected in this clas-
sification. However, when the data set was clustered using
crispk-means or Ward’s methods, the molecule was assigned
to a single cluster that consisted of nitrobenzenes of various
sorts, i.e., that reflected only part of molecule 1’s charac-
teristics.

Additional Experiments with Other Structure Repre-
sentations.The experiments thus far have used just a single
structure representation, viz. the principal components result-
ing from the Molconn-Z parameters, and we have hence
carried out additional studies using a broader range of
structural descriptors and also using different procedures for
the initialization of the relocation that lies at the heart of
k-means clustering.

Two additional representations were tested: fragment bit-
strings and molecular holograms. These were both generated
using Tripos software,39 with the bit-strings containing a total
of 992 bits and with the holograms containing 43, 199, and
991 bins. The hologram lengths of 43 and 991 were selected
as the closest prime numbers to the lengths of the principal
components and bit-strings, respectively, while 199 bins is
one of the standard Tripos defaults. The runs in this second
set of experiments used a C implementation of the fuzzy
k-means method, this being about 10 times slower than the
corresponding crisp implementation.

Thek-means method, whether crisp or fuzzy, describes a
general clustering approach, and many different versions of
the method are possible. First, the algorithm may commence
with a randomly initialized partition or with a centroid matrix
based on selected seed molecules. The experiments in the
previous section used the former approach, but this obviously
means that the final clusters are nondeterministic in char-
acter: here, the Tripos Selector system was used39 to identify
a fixed, structurally diverse set of initial seeds. Second, the
centroid and membership matrices can be updated either as
each individual molecule is allocated to a cluster or at the
end of an iteration, when all of the molecules have been
assigned. The former approach is strongly order-dependent,
and we have hence carried out the cluster updating step only
at the end of each iteration.

The prediction experiments used a range of values for the
fuzziness index, starting fromm ) 1.05 and increasing in

Figure 1. Allocation of a typical Starlist molecule (1) to three
different fuzzy clusters with membership functions of 0.289, 0.166,
and 0.394. The representative molecules for these three clusters
are shown at 2-4.
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increments of 0.05. This continued until the maximally fuzzy
position was reached, i.e., the point at which all of the
compounds were equal members of each of the clusters: for
30 clusters, this implies an average membership function that
had converged to 1/30, i.e., ca. 0.033. In the case of the bit-
strings, the maximally fuzzy clusters were achieved withm
) 1.35; for the hologram data the analysis stopped atm )
2.50 and for the Molconn-Z data atm ) 2.30. However, the
best predictive results were (as before) obtained with much
lower values of the fuzziness index:m ) 1.10 for the bit-
string data set;m ) 1.15, 1.05, and 1.15 for the hologram-
43, hologram-199, and hologram-991 data sets, respectively;
andm ) 1.20 for the Molconn-Z data set. It is the results
with these parameter values that are discussed below.

Our experiments thus far have used a fixed value for the
number of clusters in the partition, i.e., the value ofk, but
methods are available to suggest the number of clusters
present in a data set. In particular, Wild and Blankley40 have
investigated stopping criteria for use with Ward’s method
and demonstrated the general effectiveness of the Kelley
statistic.41 This statistic is implemented in the BCI OPTCLUS
software, which was used to identify the optimal number of
clusters for each of the representations of the 1763 mol-
ecules: these numbers (305 for the bit-strings; 134, 120, and
108 for the 43-, 199-, and 991-bin holograms; and 157 for
the Molconn-Z data) were then used for the cluster-based
prediction experiments. As before, crisp classifications were
generated for comparison with the fuzzy results.

The results obtained with the optimum values form and
k are detailed in Table 3. It will be seen that the best fuzzy
property prediction is better than the best crisp predictions
in all cases and that the fuzzy and crisp approaches allowed
predictions to be made for similar numbers of molecules.
The significance of the differences was tested using a
Wilcoxon Signed Ranks Test42 based on the mean absolute
deviations (MADs) of the predictions. The MAD from each
membership matrix was calculated using

wheren is the number of molecules in each partition for
which logP values were predicted. The absolute deviation
between the predicted and observed logP values was
calculated for each molecule and then the mean was
calculated over the entire data set. The Wilcoxon test was
used to check the significance of the differences between
the deviations calculated from the crisp Ward’s and the
various fuzzy cluster methods. These results are shown in
Table 4, which confirms the statistical significance of the
differences observed in Table 3 (significant differences are
also observed for many of the other fuzzy clusterings when

m < 1.25). Although significant, these differences are not
large; however, any improvement in performance is worth-
while if this increased effectiveness can be achieved at an
acceptable computational cost. Fuzzy cluster generation is
more time-consuming, as noted previously, but the costs are
not unreasonable for data sets of the sizes considered here.

Further, analogous experiments were carried out in which
the SYBYL package was used to calculate molar refractivity
values for each of the Starlist molecules. The results of these
experiments are shown in Table 5, where it will be seen that
the fuzzy correlations are often higher than the crisp
correlations. However, the differences here are noticeably
less than in Table 3, with none of these being significant at
the 0.05 level of statistical significance in the Wilcoxon test.

CLUSTERING OF SYNGENTA DATA SETS

Thus far, we have considered the use of crisp and fuzzy
methods for the prediction of physicochemical properties;
in addition, we have carried out a more qualitative evaluation
of the clusters produced when the fuzzyk-means method
was applied to several Syngenta in-house data sets. The data
sets are detailed in Table 6, where the right-hand column is
the mean intradata set similarity calculated using Daylight
fingerprints (the representation for all of the experiments in
this section) and the Tanimoto coefficient. The core structure
for each data set is included in the table, with the exception
of the last, which contains a heterogeneous set of standard
pesticide compounds from the corporate file; two cores are
included for the imidazoline/oxazolidinedione data set as this
contains representatives of two, closely related types of
compound.

Each of the data sets was clustered on its own and also
when merged with some or all of the other data sets. Here,
we describe the results obtained in just a few of the cases:
specifically, the most self-similar and dissimilar data sets
(the cyanotropanes and the pesticide standards, respectively),
these two data sets merged together, and the first seven data
sets (those that are each based on a common scaffold) merged
together. The full sets of runs are discussed by Rodgers.24

Table 3. Product Moment Correlation Coefficients for the Prediction of logP Using the Optimal Number of Clusters (k) and Using the Optimal
m Values for the Fuzzy Clustering Runsa

holograms

method bit strings 43 bins 199 bins 991 bins Molconn-Z

crispk-means 0.76 (91.0) 0.69 (98.8) 0.72 (99.0) 0.70 (99.1) 0.73 (98.4)
fuzzyk-means 0.81 (90.5) 0.75 (99.0) 0.74 (98.1) 0.80 (98.9) 0.80 (96.7)
Ward’s 0.75 (93.1) 0.69 (97.0) 0.72 (97.9) 0.74 (98.8) 0.71 (97.8)

a The numbers in brackets indicate the percentage of molecules for which predictions were made.

MAD )
∑|log Ppred - log Pobs|

n
(4)

Table 4. Wilcoxon Signed Ranks Test of Difference between
Predicted and Observed logP Values of the Fuzzy and Best Crisp
Clusters at the Ward Optimal Number of Partitionsa

data set Z

bit-strings 4.36
holograms-43 6.06
holograms-199 2.98
holograms-991 6.77
Molconn-Z 7.34

a All of the calculatedZ values are significant at the 0.001 level of
two-tailed statistical significance.

898 J. Chem. Inf. Comput. Sci., Vol. 44, No. 3, 2004 HOLLIDAY ET AL .



The fuzzy and crispk-means methods both require the user
to specify the number of clusters. The (mostly) small data
sets used here are typical of those that might be generated
in a project or retrieved by a substructure search of a
corporate file and were hence processed to give a small
number of clusters (3 or 4) that could easily be understood
by a chemist using a clustering tool in a typical research
project. The large, diverse pesticide standards data set was
tested with several different numbers of clusters: the results
here are based on specifying a total of 98 cluster seeds. The
Jarvis-Patrick method was run with the default clustering
parameters.

We have seen previously that the choice of fuzziness
index,m, can have a large effect on the clusters produced.
Based on the property-prediction results, all of the analyses
here were carried out withm ) 1.2; experiments with other
values in the range 1.10-1.25 for the small data sets gave
results little different from those reported below. The choice
of m did, however, affect the memberships of the clusters
produced for the standard pesticides data set, particularly for
the small clusters. This is, perhaps, hardly surprising given
the very diverse nature of these data set, especially as
comparable variations in membership were occasioned by
the choice of different random starting points for the
clustering.

Clustering of Similar Compounds. The cyanotropanes
are the most homogeneous set of compounds (as determined
by the mean intra-data set Tanimoto coefficients): the
clusters produced from the analysis of this data set are
examined here to exemplify the performance of the fuzzy
k-means method with a set of highly similar compounds.

All of the compounds have the cyanotropane core structure
(or small variations thereof), but there are small structural
variations that were analyzed withk ) 3, the clustering
producing one large cluster and two smaller ones of similar
size. Typical structures from each of the clusters are shown
in Figure 2. The first compound is from the large cluster
and thus represents the majority of the cyanotropanes. The
second cluster contains very similar compounds to the first
but has a benzene, rather than a pyridine ring, while the
tropane ring in the third cluster contains a double bond that
is absent from the other two clusters.

An analysis of the membership functions for each of the
compounds shows that the clusters are well-defined with each
compound typically having one membership function close
to unity and the other two functions close to zero: this
behavior is shown in Figure 3, which demonstrates clearly
the crisp nature of this classification with only a few
compounds showing any evidence of shared cluster-member-
ship. It is thus hardly surprising that the clusters here are
very little different from those resulting from application of
the crispk-means and Jarvis-Patrick methods to this data
set.

Clustering of Dissimilar Compounds. The pesticide
standards is by far the most diverse of the data sets
considered, without any common core structure. A whole

Table 5. Product Moment Correlation Coefficients for the Prediction of MR Using the Optimal Number of Clusters (k) and Using the Optimal
m Values for the Fuzzy Clustering Runsa

holograms

method bit-strings 43 bins 199 bins 991 bins Molconn-Z

Ward 0.81 (93.1) 0.85 (97.0) 0.82 (97.9) 0.82 (98.8) 0.92 (97.8)
k-means 0.79 (91.0) 0.84 (98.8) 0.83 (99.0) 0.82 (99.1) 0.93 (98.4)
Fuzzyk-means 0.80 (90.5) 0.87 (99.0) 0.84 (98.1) 0.84 (99.8) 0.94 (96.7)

a The numbers in brackets indicate the percentage of molecules for which predictions were made.

Table 6. Characteristics of the Syngenta Data Sets that Were
Clustereda

a The right-hand column is the mean intradata set similarity calculated
using Daylight fingerprints and the Tanimoto coefficient.

Figure 2. Typical compounds from each of the three cyanotropane
clusters.
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series of clustering experiments were carried out, with 10e
k e 400. The larger values resulted in many clusters that
were effectively empty (i.e., there were no compounds that
had significant memberships for that cluster), while small
values resulted in the grouping of markedly dissimilar
compounds; the results discussed here were obtained withk
) 98. This partition contained a fair number ofsingletons.
A singleton in crisp clustering is simply a cluster that contains
just a single member, but in fuzzy clustering every cluster
contains every compound to a greater or lesser extent. Thus
a singleton here can be a cluster with only one significant
membership or a compound with membership close to 1/k
for all clusters present, indicating that that compound has
no strong relationship to any of the clusters present and that
it should thus not be allocated to any of them. This provides
a simple, direct way of identifying outliers in a data set and
avoids a common problem with some crisp clustering
methods: compounds being allocated to clusters with which
they have only a limited degree of similarity, this in turn
resulting in “ragbag” clusters of compounds that are grouped
together only because they cannot be easily grouped any-
where else.

There is, of course, a need to define at what level of
membership a compound is considered to be a singleton.
We have not found any discussion of this point in the
literature; inspection of the many clusters produced during
this study suggests the following, purely heuristic defini-
tion: a compound is a singleton if

Using this definition, there were 281 singleton pesticide
standards; this is a large fraction of the total data set of 710
compounds but noticeably less than the 477 singletons
identified by the Jarvis-Patrick method. There were 8 clusters
with only one significant member and a further 24 clusters
containing only molecules with membership< 0.1.

The partition matrix resulting from the cluster analysis of
this data set has a much greater spread of membership values
than in the case of the cyanotropanes, where the memberships
were concentrated around zero and unity. This behavior is
shown in Figure 4.

The results obtained with this large set of unrelated
structures suggest that the fuzzyk-means approach has some

Figure 3. Membership functions of the cyanotropane data set. TheX axis denotes the compounds, arranged in increasing ID order, and
each such compound has three values plotted on theY axis, these values being the membership function for each of the three clusters.

Figure 4. Membership functions of the pesticide standards data set.

µmax- µmin < 1
k

for k < 10 or if µmax < 3
k

for k g10
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useful advantages, particularly when it comes to qualitative
interpretation of clustering results. It handles singletons better
than the conventionalk-means, it generally produces better
clusters than the Jarvis-Patrick method, and it is faster than
Ward’s or other hierarchical methods. These points together
with the improved qualitative interpretability make the
approach a useful addition to the armory of chemoinformatics
tools.

Clustering the Seven Homogeneous Data Sets.All of
the data sets from Table 6, excluding the pesticide standards,
were merged together and then clustered to determine how
successfully the fuzzyk-means method could group these
seven sets into appropriate clusters. Sensible groupings were
obtained withk ) 20, as detailed in Table 7, which lists the
majority of the compounds present in each cluster, and the
total and the maximum memberships for each cluster, i.e.,
the sum of the memberships of the molecules in that cluster
and the largest such membership, respectively. It may be
thought that 20 is a small number of clusters for the number
of compounds (1711 in all), but this does mean that the
output is readily comprehendible to a chemist (as well as
being intuitively sensible). As will be seen in the table, each
cluster consisted mainly of compounds from a specific data
set apart from cluster-13 and cluster-18, both of which
contained both diphenyl ethers and strobilurin fungicides:
this is quite reasonable as these two data sets contain a lot
of overlap, with many compounds containing the core
structures of both groups.

A molecule with a membership value close to unity for a
particular cluster means that that molecule is very closely
associated with, and hence an appropriate representation of,
that cluster. All of the clusters here contained molecules with
high membership functions apart from cluster-6, where the
maximum membership function was only 0.36. However,
visual examination of these compounds confirms that there
is a fair degree of structural similarity between the com-
pounds here (at least for those with membership greater than
0.20). For example, two of the compounds are shown in
Figure 5 where it will be seen that they both have the

diphenyl ether moiety (although the second compound is,
in fact, from the imidazoline/oxazolidinedione data set). The
cyanotropanes contributed to the fewest clusters, as would
be expected given the small size of this data set. The diphenyl
ethers produced the most clusters, with four all-diphenyl ether
and two joint with the strobilurin fungicides; this is again as
expected given that this is the most heterogeneous of the
seven data sets.

The membership functions normally assist in delineating
the structural relationships between compounds, but there
are occasional apparent exceptions to this general rule. One
example of this behavior is illustrated in Figure 6, which
shows two diphenyl ethers in cluster-9: these molecules are
clearly very similar but have very different memberships for
this particular cluster. An inspection of the other molecules
strongly associated with this predominantly oxazolidinedione
cluster reveals that while both of these compounds have this
ring (as well as the diphenyl ether moiety), the second
compound has an O substitution, rather than the N-benzyl
substitution common to most members of the oxazolidinedi-
one data set.

Rodgers24 also discusses the analysis of these merged
Syngenta data sets using a conventional, crispk-means
method and the crisp Jarvis-Patrick method (which is the
standard Syngenta in-house clustering tool). There was not
very much difference in the performance of the crisp and
fuzzy k-means methods (except that the fuzzy method is
rather more time-consuming); however, the Jarvis-Patrick
clusters were often more difficult to interpret, yielding one
very large cluster, many smaller ones and very large numbers
of singletons (a well-known characteristic of the method).

The comparative studies summarized here serve to high-
light the strengths and weaknesses of the fuzzyk-means
approach. The availability of the membership function allows
compounds that display structural features of more than one
cluster to belong to several different groups, makes it easy
to identify singletons that do not contribute noticeably to
any cluster (i.e., do not have any significant memberships),
and also makes it easy to identify representative compounds
(i.e., those with a membership≈ 1 in a cluster). Against
this, however, the multiple memberships can be difficult to
interpret, and there is the need to specify a value for the
fuzziness index and a criterion to determine at what level a
membership becomes significant; the fuzzy method is also

Table 7. Clusters Produced from the Seven Homogeneous Data
Sets

cluster
principal data set(s)

represented in the cluster
total

membership
maximum

membership

1 strobilurin fungicides 61.3 0.99
2 diphenyl ethers 84.9 0.99
3 lactam herbicides 50.2 1.00
4 imidazolines 81.9 0.73
5 imidazolines 101.4 1.00
6 diphenyl ethers 90.6 0.36
7 imidazolines 94.5 1.00
8 diphenyl ethers 44.5 0.99
9 oxazolidinediones 74.1 1.00
10 fluorovinyl nematicides 97.3 0.95
11 cyanotropanes 79.5 1.00
12 carbinol herbicides 130.5 0.98
13 diphenyl ethers and

strobilurin fungicides
105.3 1.00

14 lactam herbicides 43.7 1.00
15 fluorovinyl nematicides 60.8 0.98
16 lactam herbicides 61.4 1.00
17 lactam herbicides 103.6 1.00
18 diphenyl ethers and

strobilurin fungicides
87.9 0.97

19 carbinol herbicides 152.7 1.00
20 diphenyl ethers 105.0 0.93

Figure 5. A diphenyl ether (µ ) 0.36) and an imidazoline (µ )
0.26) grouped together in cluster-6 when all of the homogeneous
data sets were merged.

Figure 6. Two structurally similar diphenyl ethers having very
different membership functions (µ ) 0.99 andµ ) 0.19) for the
predominantly oxazolidinedione cluster-9 when all of the homo-
geneous data sets were merged.
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noticeably slower in operation, albeit still entirely feasible
for data sets of the sort considered here.

CONCLUSIONS

In this paper, we have reported a detailed evaluation of
the fuzzyk-means method when used for clustering sets of
chemical compounds. Simulated property prediction experi-
ments suggest that, when appropriately parametrized, the
method is at least as effective as traditional, crisp clustering
approaches based on 2D fingerprints. Clustering of several
typical in-house project data sets shows that the method is
again competitive with existing approaches, with the mem-
bership function information providing a useful explanatory
tool for rationalizing the clusters that are identified. Our
experiments certainly do not suggest that the fuzzyk-means
method should supplant existing tools for chemical cluster-
ing; however, we do believe that it provides a useful
complement to them.
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