LECTURE 8: GEOMETRIC FLAVOR AND SUBWORD
PROPERTY OF BRUHAT ORDER

WANG, QIANG

1. GEOMETRIC FLAVOR

This section is a brief introduction on the role of Bruhat order in the study of
Flag and Schubert varieties.

Let G be an algebraic group, in our following discussion we concentrate on G =
GL,(C). Let B C G be the Borel subgroup of G, which in the case of G = GL,
is the set of all upper triangular matrices. Then G/B has the structure of smooth
projective variety.

Let V be an n-dimensional complex vector space. A flag is a sequence

{0}=VhcWVCc---CVp=V

of subspaces of V. If we denote by d; = dim(V;), then (do,---,dy) is a strictly
increasing sequence with dy = 0 and di = n, which is called the signature of the
flag. We say that a flag is complete if d; = ¢ for all : =0,...,n.

Fix an ordered basis B = (v1, -+ ,v,) of V. The standard flag of V is given
by setting V; = span{vy,--- ,v;}. It is clear that each V; is invariant under B.

The group G = GL,, acts transitively on the set of all complete flags and B
is the stabilizer. Thus the set of complete flags can be thought as the smooth
projective variety G/B. In the case of partial flags one obtains G/P where P is a
parabolic subgroup. A (partial) flag variety of signature (dy = 0,d;,ds = n) is just
a Grassmannian of all d;-dimensional subspaces of V.

It is known that G can be decomposed in terms of the Bruhat decomposition

G = BWB,

where W is a Weyl subgroup of GG, and in the case of G = GL,,, W is the subgroup
of all permutation matrices (= S,). Then G/B = |J, ¢y BwB/B is the disjoint
union of Schubert cells C,, := BwB/B indexed by w € W.

Let X,, = C,, be the topological closure of C,,. X, is the Schubert variety in
flag manifold F' = F(V) of all complete flags in V. The following theorem connects
Bruhat order to the study of flag varieties.

Theorem 1.1. X, C X, if and only if v < w in Bruhat order.

Let H*(F';Z) be the cohomology ring associated with F'. Each closed subvariety
X of F determines an element [X]| € H*(F,Z). Recall the Schubert polynomi-
als o, from Lecture 1. The next theorem relates Schubert classes with Schubert
polynomials.
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Theorem 1.2. There is a surjective ring homomorphism
0 Llxy, - xn] — H(F;2)

ow — [ X

2. SUBWORD PROPERTY OF BRUHAT ORDER

In this section we continue the discussion of Bruhat order in Lecture 7.
Let (W, S) be a Coxeter system.

Definition 2.1. A subword of a word s1s2--- 54 is a word of the form s;, ---s;,
where 1 <41 < -+ < < q. Write s;, -+ 85, < 8182+ 5q.

Lemma 2.2. Let u,w € W and u # w. Suppose w has a reduced expression
5152 -584 and u has a reduced expression which is a subword of s1s2---s,. Then
there exists v € W such that

(1) u<w

(2) L(v) =4(u)+1

(3) v has a reduced expression which is a subword of s1s2- - s4.

Proof. Let w =5y ---5;, -84, -8, -+ Sq be the reduced word of u such that i is
minimal among all possible choices.

Let t =t;, € T(sqsq,l ---81). Then ut =s1---8;, ---8;, -+~ 8i, - - - 8¢ (adding s;,
back). At the least, we know £(ut) < £(u) + 1. We claim that ut > u. Assuming
this claim, we can let v = ut, all conditions are easily checked.

So we need to prove the claim. First note that by definition of Bruhat order, ut
is always comparable with u. Suppose ut < u, then ¢(ut) < ¢(u). By the corollary of
S.E.P (Strong Exchange Property) we know t = t, € T'(s, - 8i, -~ 8i,_, -+ 8i, - 51)-
Either p < ¢+ 1 — i, or not. If p < g+ 1 — i, then ¢ is of then form

t=58¢8q—1"" " Spt+18pSp—1"""Sq
otherwise
t:sq...sik...Sid...sr...sid...sik...Sq

for some 7 < ij, and r # i; for any j € [k].
In the first case, consider

w = wtt = (31 .. .sq)(sq .. 'Sik .. .Sq)(sqsq71 e Sp+1spsp71 . .sq)

:81”'Sik”'8p”'8q'

But this contradicts to our assumption that ¢(w) = q.
In the second case, consider

u = utt

:(81...§i1...§ik...Sq)(sq...gik...sid...sr...sid...sik...sq)(sq...sik...sq)

But this contradicts to the minimality of 4. (|

Theorem 2.3 (Subword Property; S.P.). Let s1s2---s4 be a reduced expression of
w, then u < w if and only if u has a reduced expression that is a subword of w.
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Proof. =

Assume u < w, that means we have the following sequence:
u:uoLu1-~-ﬂ>um=w

Then wy—1 = wty, = s1---§;--- 84 for some i by the S.E.P (Strong Exchange

Property). Repeat this argument to t,,—2,- - ,ug, we get an expression of u that

is a subword of w. This subword may not be reduced yet, but D.P. (Deletion

Property) promise us that it contains as a subword a reduced expression of u.

<~

If u has a reduced expression that is a subword of 513 - - - 54, then the above lemma

allows us to construct a sequence u < v; < --- < vg such that their length are strictly

increasing by one but each has a reduced word that is a subword of sys3 - - - s,. Then

it is clear that v, = w. U

Corollary 2.4. For any u,w € W the following are equivalent:
(1) u<w.
(2) Every reduced expression of w has a subword that is a reduced expression
of u.
(3) Some reduced expression of w has a subword that is a reduced expression of
U.

Proof. This follows from a pure logical consideration, formally: If A, P are first
order formulas, and A does not involve z (P may or may not involve z), then

V. (A — P(z)) & A — V. (P(x))
and
V. (P(zx) - A) & 3,(P(z)) — A
Here A is the statement that "u < v”. P(x) is the statement that ”z is a reduced

expression of w, and it has a subword that is a reduced expression of «”. Then S.P.
is the formula V,(A < P(z). O

Corollary 2.5. For any u,w € W the interval [u,w] :=={x € W |u <z < w} is
always finite.

Proof. We argue a stronger statement that indeed [e,w] is finite where e is the
identity element of W (the least element of the Bruhat order). Pick a reduced
expression $18g - - - s of w, then any x € [e, w], by above corollary, can be written
as a subword of s;s3 - - - 54, there are only at most 2¢ of them. O



