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The Face Semigroup Algebra of a
Hyperplane Arrangement

Franco V. Saliola

Abstract. This article presents a study of an algebra spanned by the faces of a hyperplane arrangement.

The quiver with relations of the algebra is computed and the algebra is shown to be a Koszul algebra.

It is shown that the algebra depends only on the intersection lattice of the hyperplane arrangement. A

complete system of primitive orthogonal idempotents for the algebra is constructed and other algebraic

structure is determined including: a description of the projective indecomposable modules, the Cartan

invariants, projective resolutions of the simple modules, the Hochschild homology and cohomology,

and the Koszul dual algebra. A new cohomology construction on posets is introduced, and it is shown

that the face semigroup algebra is isomorphic to the cohomology algebra when this construction is

applied to the intersection lattice of the hyperplane arrangement.

1 Introduction

Let A denote a finite collection of linear hyperplanes in R
d. Then A dissects R

d into

open subsets called chambers. The closures of the chambers are polyhedral cones

whose relatively open faces are called the faces of the hyperplane arrangement A. The

set F of faces of A can be endowed with a semigroup structure. Geometrically, the

product xy of faces x and y is the face entered by moving a small positive distance

along a straight line from x towards y. The k-algebra spanned by the faces of A with

this multiplication is the face semigroup algebra of the hyperplane arrangement A.

Here k denotes a field.

The face semigroup algebra kF has enjoyed recent attention mainly due to two

interesting results. The first result is that a large class of seemingly unrelated Markov

chains can be studied in a unified setting via the semigroup structure on the faces of

a hyperplane arrangement. The Markov chains are encoded as random walks on the

chambers of a hyperplane arrangement [5]. A step in this random walk moves from

a chamber to the product of a face with the chamber according to some probability

distribution on the faces of the arrangement. This identification associates the tran-

sition matrix of the Markov chain with the matrix of a linear transformation on the

face semigroup algebra of the hyperplane arrangement. Questions about the Markov

chain can then be answered using algebraic techniques [10]. For example, a combi-

natorial description of the eigenvalues with multiplicities of the transition matrix is

given and the transition matrix is shown to be diagonalizable.

The second interesting result concerns the descent algebra of a finite Coxeter

group, a subalgebra of the group algebra of the Coxeter group. To any finite Cox-

eter group is associated a hyperplane arrangement and the Coxeter group acts on
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the faces of this arrangement. This gives an action of the Coxeter group on the face

semigroup algebra of the arrangement. The subalgebra of elements invariant under

the action of the Coxeter group is anti-isomorphic to the descent algebra of the Cox-

eter group [6, 10]. The descent algebra was introduced in [26] and the proof that it

is indeed an algebra is rather involved. This approach via hyperplane arrangements

provides a new and somewhat simpler setting for studying the descent algebra. See

[25] and [23].

This article presents a study of the algebraic structure of the face semigroup alge-

bra kF of an arbitrary central hyperplane arrangement in R
d. Throughout this article

k will denote a field of arbitrary characteristic and A a finite collection of hyperplanes

passing through the origin in R
d. The intersection lattice of A is the set L of intersec-

tions of subsets of hyperplanes in A ordered by inclusion. (Note that some authors

order the intersection lattice by reverse inclusion rather than inclusion.)

The structure of the article is as follows. Sections 2 and 3 recall notions from

the theory of posets and hyperplane arrangements, respectively. Section 4 defines

the face semigroup algebra of a hyperplane arrangement and describes its irreducible

representations. In Section 5 a complete system of primitive orthogonal idempotents

in kF is constructed. This leads to a description of the projective indecomposable

kF-modules (Section 6) and a computation of the Cartan invariants of kF (see 6.4).

The projective indecomposable modules are used to construct projective resolutions

of the simple kF-modules in Section 7. The quiver with relations of kF is computed

in Section 8. Section 9 proves that kF is a Koszul algebra and computes the Ext-

algebra (or Koszul dual) of kF. This is used in Section 9.4 to compute the Hochschild

homology and cohomology of kF. Section 10 explores connections with poset co-

homology. A new cohomology construction is introduced, and it is shown that the

cohomology algebra, with its cohomology cup product, is isomorphic to kF. Finally,

connections with the Whitney cohomology of the geometric lattice L∗ are explored.

2 Posets

This section collects some background from the theory of posets for the convenience

of the reader. An excellent reference is [27, Chapter 3].

A poset is a finite set P together with a partial order ≤. The opposite poset P∗ of

a poset P is the set P with partial order defined by x ≤ y in P∗ if and only if x ≥ y

in P. For x, y ∈ P, write x ⋖ y and say y covers x or x is covered by y if x < y and

there does not exist z ∈ P with x < z < y. The Hasse diagram of P is the graph with

exactly one vertex for each x in P and exactly one edge between x and y if and only if

x ⋖ y or y ⋖ x. An edge of the Hasse diagram is called a cover relation.

A chain in P is a sequence of elements x0 < x1 < · · · < xr in P. A chain x0 < x1 <
· · · < xr is unrefinable if xi−1 ⋖ xi for all 1 ≤ i ≤ r. The length of the chain x0 < x1 <
· · · < xr is r. The length or rank of a poset is the length of the longest chain in P. For

x ≤ y in P, the interval between x and y is the set [x, y] = {z ∈ P | x ≤ z ≤ y}. The

interval [x, y] is a poset and its rank is denoted by ℓ([x, y]).

A (finite) poset L is a lattice if every pair of elements x, y in L has a least upper

bound (called join) x∨ y and a greatest lower bound (called meet) x∧ y (with respect

to the relation ≤). There exists an element 0̂ called the bottom of L satisfying 0̂ ≤ x
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for all x ∈ L. Similarly, there exists an element 1̂ in L called the top of L satisfying

x ≤ 1̂ for all x ∈ L.

The Möbius function µ of a finite poset P is defined recursively by the equations

µ(x, x) = 1 and µ(x, y) = −
∑

x≤z<y

µ(x, z),

for all x < y in P. If x 6< y, then set µ(x, y) = 0. The Möbius inversion formula [27,

Section 3.7] states that g(x) =
∑

y≤x f (y) if and only if f (x) =
∑

y≤x g(y)µ(y, x),

where f , g : P → R.

3 Hyperplane Arrangements

This section recalls some background from the theory of hyperplane arrangements

(see [21]).

3.1 Hyperplane Arrangements

A hyperplane arrangement A in R
d is a finite set of hyperplanes in R

d. We restrict

our attention to central hyperplane arrangements where all the hyperplanes contain

0 ∈ R
d. Each hyperplane H ∈ A determines two open half-spaces of R

d denoted H+

and H−. The choice of which half-space to label + or − is arbitrary, but fixed.

3.2 The Face Poset

A face of A is a nonempty intersection of the form x =
⋂

H∈A
HσH , where σH ∈

{+,−, 0} and H0
= H. The sequence σ(x) = (σH)H∈A is the sign sequence of x. A

chamber c is a face such that σH(c) 6= 0 for all H ∈ A.

The face poset F of A is the set of faces of A partially ordered by

x ≤ y ⇐⇒ for each H ∈ A either σH(x) = 0 or σH(x) = σH(y).

Equivalently, x ≤ y ⇐⇒ x ⊂ ȳ. If x ≤ y, then we say x is a face of y. Note that the

chambers are the maximal elements in this partial order.

3.3 The Support Map and the Intersection Lattice

The support of a face x ∈ F is the the intersection of the hyperplanes in A containing

x,

supp(x) =

⋂

H∈A

σH (x)=0

H.

The set L = supp(F) of supports of faces of A is a graded lattice ordered by inclu-

sion called the intersection lattice of A. (Some authors order the intersection lattice

by reverse inclusion, so some care is needed while reading the literature.) The rank

of X ∈ L is the dimension of the subspace X ⊂ R
d if the intersection of all the hy-

perplanes in the arrangement is trivial. For X,Y ∈ L the meet X ∧ Y of X and Y is
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the intersection X ∩ Y and the join X ∨ Y of X and Y is X + Y , the smallest subspace

of R
d containing X and Y . The opposite poset L∗ of L is a geometric lattice. The

top element 1̂ of L is the ambient vector space R
d and the bottom element 0̂ is the

intersection of all hyperplanes in the arrangement
⋂

H∈A
H. The chambers are the

faces of support 1̂. Since supp(x) ≤ supp(y) if x ≤ y, the support map supp: F → L

is an order-preserving poset surjection.

3.4 Deletion and Restriction

Fix X ∈ L. The faces y of A with supp(y) ≤ X are the faces of the arrangement

AX = {H ∩ X | X 6≤ H ∈ A}. AX is the restriction to X and the face poset of AX is

denoted by F≤X . The intersection lattice L≤X of AX is the interval [0̂, X] of L.

Given X ∈ L let AX
= {H ∈ A | X ⊂ H} denote the set of hyperplanes in

A containing X. AX is a deletion of A. If x ∈ F with supp(x) = X, then the face

poset FX of AX is isomorphic to the subposet of F of all faces having x as a face:

FX ∼= {y ∈ F | x ≤ y}. The intersection lattice of AX is the interval [X, 1̂] ⊂ L.

4 The Face Semigroup Algebra

This section recalls the semigroup structure on the faces of a hyperplane arrangement

and the irreducible representations of the resulting semigroup algebra. See [10] for

details.

4.1 The Face Semigroup

For x, y ∈ F the product xy is the face of A with sign sequence

σH(xy) =

{
σH(x) if σH(x) 6= 0,

σH(y) if σH(x) = 0.

This product is associative and noncommutative, with identity element the intersec-

tion of all the hyperplanes in the arrangement 1 =
⋂

H∈A
H. Note that the support

of the identity element 1 is 0̂ (and not 1̂). The support map supp: F → L satisfies

supp(xy) = supp(x) ∨ supp(y) for all x, y ∈ F. Therefore supp is a semigroup sur-

jection, where L is considered a semigroup with product given by join ∨, as well as

an ordering-preserving poset surjection.

Remark 4.1. There is a nice geometric interpretation of this product. The face xy is

the face that one enters by moving a small positive distance along any straight line

from x to y.

Proposition 4.2 For all x, y ∈ F,

(1) x2
= x,

(2) xyx = xy,

(3) xy = y if and only if x ≤ y,
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(4) xy = x if and only if supp(y) ≤ supp(x),

(5) supp(xy) = supp(x) ∨ supp(y),

Remark 4.3. Conditions (1) and (2) of the proposition say that F is a left regular band.

4.2 The Face Semigroup Algebra

The face semigroup algebra of A with coefficients in the field k is the semigroup alge-

bra kF of the face semigroup F of A. Explicitly, it consists of linear combinations of

elements of F with multiplication induced by the product of F. The face semigroup

algebra kF is a finite dimensional associative algebra with identity 1 =
⋂

H∈A
H.

Unless explicitly stated otherwise, no assumptions will be made on the character-

istic of the field k.

4.3 Irreducible Representations

This section summarizes [10, Section 7.2] constructing the irreducible representa-

tions of kF.

Since F and L are semigroups, the support map supp: F → L extends linearly

to a surjection of algebras supp: kF → kL. The kernel of this map is nilpotent, and

the semigroup algebra kL is isomorphic to a product of copies of the field k, one

copy for each element of L. This implies that ker(supp) is the Jacobson radical of

kF and that the irreducible representations of kF are given by the components of the

composition kF
supp
−−→ kL

∼=
−→

∏
X∈L

k. This last map sends X ∈ L to the vector with

1 in the Y -position if Y ≥ X and 0 otherwise. The X-component of this surjection is

the map χX : kF → k defined on the faces y ∈ F by

χX(y) =

{
1 if supp(y) ≤ X,

0 otherwise.

The elements

(4.1) EX =
∑

Y≥X

µ(X,Y )Y,

one for each X ∈ L, correspond to the standard basis vectors of
∏

X∈L
k under the

isomorphism kL ∼=
∏

X∈L
k above. They form a basis of kL and also form a complete

system of primitive orthogonal idempotents (see Section 5).

5 Primitive Idempotents

Let A be a k-algebra. An element e ∈ A is idempotent if e2
= e. It is a primitive

idempotent if e is idempotent and we cannot write e = e1 + e2 where e1 and e2 are

nonzero idempotents in A with e1e2 = 0 = e2e1. Equivalently, e is primitive if and

only if Ae is an indecomposable A-module. A set of elements {ei}i∈I ⊂ A is a complete

system of primitive orthogonal idempotents for A if ei is a primitive idempotent for
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every i, if eie j = 0 for i 6= j, and if
∑

i ei = 1. If {ei}i∈I is a complete system of

primitive orthogonal idempotents for A, then A ∼=
⊕

i∈I Aei as left A-modules and

A ∼=
⊕

i, j∈I eiAe j as k-vector spaces.

5.1 Complete System of Primitive Orthogonal Idempotents

For each X ∈ L, fix an x ∈ F with supp(x) = X and define elements in kF recursively

by the formula,

(5.1) eX = x −
∑

Y>X

xeY .

Note that eb1 is an arbitrarily chosen chamber.

Lemma 5.1 Let w ∈ F and X ∈ L. If supp(w) 6≤ X, then weX = 0.

Proof We proceed by induction on X. This is vacuously true if X = 1̂. Suppose the

result holds for all Y ∈ L with Y > X. Suppose w ∈ F and W = supp(w) 6≤ X.

Using the definition of eX and the identity wxw = wx (Proposition 4.2 (2)),

weX = wx −
∑

Y>X

wxeY = wx −
∑

Y>X

wx(weY ).

By induction, weY = 0 if W 6≤ Y . Therefore, the summation runs over Y with

W ≤ Y . But Y > X and Y ≥ W if and only if Y ≥ W ∨ X, so the summation runs

over Y with Y ≥ W ∨ X.

weX = wx −
∑

Y>X

wx(weY ) = wx −
∑

Y≥X∨W

wxeY .

Now let z be the element of support X ∨W chosen in defining eX∨W . So eX∨W = z −∑
Y>X∨W zeY . Note that zeX∨W = eX∨W since z = z2. Therefore, z =

∑
Y≥X∨W zeY .

Since supp(wx) = W ∨ X = supp(z), it follows from Proposition 4.2 (4) that wx =

wxz. Combining the last two statements,

weX = wx −
∑

Y≥X∨W

wxeY = wx
(

z −
∑

Y≥X∨W

zeY

)
= 0.

Theorem 5.2 The elements {eX}X∈L form a complete system of primitive orthogonal

idempotents in kF.

Proof Complete. 1 =
⋂

H∈A
H is the only element of support 0̂. Hence, eb0 =

1 −
∑

Y>b0 eY . Equivalently, 1 =
∑

Y∈L
eY .

Idempotent. Since eY is a linear combination of elements of support at least Y ,

eY z = eY for any z with supp(z) ≤ Y (Proposition 4.2 (4)). Using the definition of

eX , the facts eX = xeX and eY = eY y, and Lemma 5.1,

e2
X =

(
x −

∑
Y>X

xeY

)
eX = xeX −

∑
Y>X

xeY (yeX) = xeX = eX .
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Orthogonal. We show that for every X ∈ L, eXeY = 0 for Y 6= X. If X = 1̂, then

eXeY = eXxeY = 0 for every Y 6= X by Lemma 5.1 since X = 1̂ implies X 6≤ Y . Now

suppose the result holds for Z > X. That is, eZeY = 0 for all Y 6= Z. If X 6≤ Y , then

eXeY = 0 by Lemma 5.1. If X < Y , then

eXeY = xeY −
∑

Z>X

x(eZeY ) = xeY − xe2
Y = 0.

Primitive. We will show that eX lifts EX =
∑

Y≥X µ(X,Y )Y (see equation (4.1))

for all X ∈ L, a primitive idempotent in kL. If X = 1̂, then supp(eb1) = 1̂ = Eb1.

Suppose the result holds for Y > X. Then supp(eX) = supp(x −
∑

Y>X xeY ) =

X −
∑

Y>X(X ∨ EY ). Since EY is a linear combination of elements Z ≥ Y , it follows

that X ∨ EY = EY if Y > X. Therefore, supp(eX) = X −
∑

Y>X EY . The Möbius

inversion formula applied to EX =
∑

Y≥X µ(X,Y )Y gives X =
∑

Y≥X EX . Hence,

supp(eX) = X −
∑

Y>X EY = EY .

To see that this is sufficient, suppose E is a primitive idempotent in kL and that e

is an idempotent lifting E. Suppose e = e1 + e2 with ei orthogonal idempotents. Then

E = supp(e) = supp(e1) + supp(e2). Since E is primitive and supp(e1) and supp(e2)

are orthogonal idempotents, supp(e1) = 0 or supp(e2) = 0. Say supp(e1) = 0. Then

e1 is in the kernel of supp. This kernel is nilpotent, so en
1 = 0 for some n ≥ 0. Hence

e1 = en
1 = 0. Therefore, e is a primitive idempotent.

Remark 5.3. We can replace x ∈ F in equation (5.1) with any linear combination x̃ =∑
supp(x)=X λxx of elements of support X whose coefficients λx sum to 1. The proofs

still hold since the element x̃ is idempotent and satisfies supp(x̃) = X and x̃y = x̃ if

supp(y) ≤ X. Unless explicitly stated we will use the idempotents constructed above.

5.2 A Basis of Primitive Idempotents

Proposition 5.4 The set {xesupp(x) | x ∈ F} is a basis of kF of primitive idempotents.

Proof Let y ∈ F. Then by Corollary 5.2 and Lemma 5.1,

y = y1 = y
∑
X

eX =
∑

X≥supp(y)

yeX =
∑

X≥supp(y)

(yx)eX .

Since supp(yx) = supp(y) ∨ supp(x) = X, the face y is a linear combination of

the elements of the form xesupp(x). So these elements span kF. Since the number of

these elements is the cardinality of F, which is the dimension of kF, the set forms a

basis of kF. The elements are idempotent since (xeX)2
= (xeX)(xeX) = xe2

X = xeX

(since xyx = xy for all x, y ∈ F). Since xeX also lifts the primitive idempotent

EX =
∑

Y≥X µ(X,Y )Y ∈ kL, it is also a primitive idempotent (see the end of the

proof of Corollary 5.2).

6 Projective Indecomposable Modules

This section describes the projective indecomposable kF-modules and computes the

Cartan invariants of kF.
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6.1 Projective Indecomposable Modules

For X ∈ L, let FX ⊂ F denote the set of faces of support X. For y ∈ F and x ∈ FX

let

y · x =

{
yx supp(y) ≤ supp(x),

0 supp(y) 6≤ supp(x).

Then kFX is a kF-module.

Lemma 6.1 Let X ∈ L. Then {yeX | supp(y) = X} is a basis for kFeX .

Proof Suppose
∑

w∈F
λwweX ∈ kFeX . If supp(w) 6≤ X, then weX = 0. So suppose

supp(w) ≤ X. Then supp(wx) = supp(w) ∨ X = X. Therefore,

∑
w∈F

λwweX =
∑

w∈F

λw(wx)eX ∈ spank{yeX | supp(y) = X},

where x is the element chosen in the construction of eX (recall that eX = xeX since

x2
= x). So the elements span kFeX . These elements are linearly independent, being

a subset of a basis of kF (Proposition 5.4).

Proposition 6.2 The kF-modules kFX are all the projective indecomposable kF-mod-

ules. The radical of kFX is spank{y − y ′ | y, y ′ ∈ FX}.

Proof Define a map φ : kFX → kFeX by w 7→ weX . Then φ is surjective since φ(y) =

yeX for y ∈ FX and since {yeX | supp(y) = X} is a basis for kFeX (Lemma 6.1). Since

dim kFX = #FX = dim kFeX , the map φ is an isomorphism of k-vector spaces.

φ is a kF-module map. Let y ∈ F and let x ∈ FX . If supp(y) ≤ X, then φ(y · x) =

φ(yx) = yxeX = yφ(x). If supp(y) 6≤ X, then y · x = 0. Hence, φ(x · y) = 0. Also,

since supp(y) 6≤ X, it follows that yeX = 0. Therefore, yφ(x) = yxeX = yx(yeX ) =

yx0 = 0. So φ(y · x) = yφ(x). Hence φ is an isomorphism of kF-modules. Since

kFeX are all the projective indecomposable kF-modules, so are the kFX .

6.2 Cartan Invariants

Let {eX}X∈I be a complete system of primitive orthogonal idempotents for a finite

dimensional k-algebra A. The Cartan invariants of A are defined to be the numbers

cX,Y = dim HomA(AeX, AeY ),

where X,Y ∈ I. The invariant cX,Y is the multiplicity of the simple module SX =

(A/radA)eX as a composition factor of the left A-module AeY . The Cartan matrix of

A is the matrix [cX,Y ].

The following is Theorem 1.7.3 of [4].

Theorem 6.3 (Idempotent Refinement Theorem) Let N by a nilpotent ideal in a

ring R and let e be an idempotent in R/N. Then any two idempotents in R lifting e are

conjugate in R.
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Proposition 6.4 For X,Y ∈ L,

dimk HomkF(kFeX , kFeY ) = |µ(X,Y )|,

where µ is the Möbius function of L. Therefore the Cartan invariants of kF are cX,Y =

|µ(X,Y )| and the Cartan matrix is triangular of determinant 1.

Proof Since HomkF(kFeX , kFeY ) ∼= eXkFeY , it follows that cX,Y = dim eXkFeY .

We will use Zaslavsky’s Theorem [30]: The number of chambers in a hyperplane

arrangement is
∑

X∈L
|µ(X, R

d)|.

For each W ∈ L, let w denote an element of support W . If W ≥ X, then

supp(xw) = W , so replace w with xw and construct idempotents eW as in Subsection

5.1. (By the Idempotent Refinement Theorem above, it does not matter which lifts of

the idempotents in kL we use to compute the Cartan invariants: eXkFeY
∼= ẽXkFẽY

if eX and ẽX are conjugate and if eY and ẽY are conjugate.) Then for each W ≥ X

we have xeW = eW , so x = x
∑

W eW = x
∑

W≥X eW =
∑

W≥X eW . This gives the

equality

k(xF) = xkF =
∑

W≥X

eW kF.(6.1)

Note that xF is the face poset of the hyperplane arrangement A
X

= {H ∈ A |
X ⊂ H} and that the faces of support Y in AX are the chambers in the restricted

arrangement (AX)Y (see Section 3.4). Zaslavsky’s Theorem applied to (AX)Y gives

the number of faces of support Y in AX is
∑

W∈[X,Y ] |µ(W,Y )| since the intersection

lattice of (AX)Y is the interval [X,Y ] in L. But the number of faces of support Y in

(AX)Y is the cardinality of the set xFY , which is the dimension of

k(xFY ) ∼= xkFY
∼= xkFeY

∼=
⊕

X≤W≤Y

eW kFeY

by (6.1) and Lemma 5.1. Therefore for each X,Y ∈ L,

∑
X≤W≤Y

dim eW kFeY =
∑

X≤W≤Y

|µ(W,Y )|.

The result now follows by induction. If X = Y , then dim eXkFeX = |µ(X, X)|.
Suppose the result holds for all W with X < W ≤ Y . Then

dim eXkFeY =
∑

X≤W≤Y

|µ(W,Y )| −
∑

X<W≤Y

dim eW kFeY

=
∑

X≤W≤Y

|µ(W,Y )| −
∑

X<W≤Y

|µ(W,Y )|

= |µ(X,Y )|.
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7 Projective Resolutions of the Simple Modules

7.1 A Projective Resolution of the Simple Module Corresponding to 1̂

In Section 5C of [11], an exact sequence of kF-modules is constructed to compute the

multiplicities of the eigenvalues of random walks on the chambers of a hyperplane

arrangement. This construction in combination with the above description of the

projective indecomposable kF-modules yields a projective resolution of the simple

kF-modules.

Let Fp ⊂ F denote the set of faces of codimension p. For x ∈ F and y ∈ Fp, let

x · y =

{
xy supp(x) ≤ supp(y),

0 supp(x) 6≤ supp(y).

Fix an orientation ǫX for every subspace X ∈ L. If x is a codimension one face of

y, then pick a positively oriented basis {e1, . . . , ei} of X = supp(x) and a vector v in y

and put [x : y] = ǫY (e1, . . . , ei, v), where Y = supp(y). Since X is a codimension one

subspace of Y , the mapping v 7→ ǫY (e1, . . . , ei, v) is constant on the open halfspaces

of Y determined by X. This implies the identity,

[x : y] = [x̃ : x̃y], if supp(x̃) = supp(x).(7.1)

Lemma 7.1 ([11, Section 5, Lemma 2]) Let x, y ∈ F with x of codimension two in

y. Then there are exactly two faces w and z in the open interval (x, y) and we have

[x :w][w : y] = −[x :z][z : y].

Proposition 7.2 ([11, Section 5, Lemma 4]) The following is an exact sequence of

kF-modules.

· · · // kFp

∂p

// · · · // kF1

∂1

// kF0

∂0

// k // 0,

where the action of kF on k is given by w · λ = λ for all w ∈ F and λ ∈ k. The

differential ∂i is given by ∂0(c) = 1 for all c ∈ F0 and for x ∈ Fp,

∂p(x) =
∑
y⋗x

[x : y]y.

Sketch of the proof It is easy to check that the complex consists of kF-modules and

that ∂i is a kF-module map. It remains to explain why the complex is exact. Sup-

pose that the intersection of all the hyperplanes is a point; otherwise quotient out

by that subspace. Intersecting the hyperplane arrangement with a sphere centered at

the origin induces a regular cell decomposition Σ of the (d − 1)-sphere whose cells

correspond to the faces x 6= 1 of A. The dual of Σ is the boundary of a polytope (a

zonotope, actually) Z. Therefore, the poset of nonempty faces of Z is anti-isomorphic

to the face poset F of A. Since Z is contractible, any augmented cellular chain com-

plex will be an exact sequence of k-vector spaces. The above complex is precisely

the augmented cellular chain complex with incidence numbers given by [x : y]. (See

[14].) Therefore, it is exact.
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Note that kFp
∼=

⊕
codim(X)=p kFX as kF-modules and that kFX is projective by

Proposition 6.2, where codim(X) is the codimension of the subspace X. So the

kF-modules kFp are projective. Also note that in order for ∂0 to be a kF-module

morphism, the action of kF on k must be given by χb1. That is, k is the simple module

afforded by the irreducible representation χb1. This proves the following result.

Corollary 7.3 The exact sequence

· · · // kFp

∂p

// · · · // kF1

∂1

// kF0

∂0

// k // 0

is a projective resolution of the simple kF-module afforded by the irreducible representa-

tion χb1 : kF → k.

7.2 Projective Resolutions of the Simple Modules

Recall that the simple kF-modules are indexed by X ∈ L, afforded by the represen-

tations χX : kF → k,

χX(y) =

{
1 if supp(y) ≤ X,

0 otherwise.

Also recall that F≤X denotes the face semigroup of AX , consisting of the set of faces

in F of support contained in X (Subsection 3.4). Let (F≤X)p denote the set of faces in

AX of codimension p in X. Applying the previous result to the hyperplane arrange-

ment AX gives a projective resolution

· · · −→ k(F≤X)p
∂
−→ · · ·

∂
−→ k(F≤X)1

∂
−→ kFX −→ kX −→ 0

of the simple kF≤X-module kX with action given by w · λ = λ for all w ∈ F≤X and

λ ∈ k. The algebra surjection kF → kF≤X given by w 7→ χX(w)w for w ∈ F puts

a kF-module structure on each k(F≤X)p and on k. The kF-module structure on k is

precisely that given by χX : kF → k. Each k(F≤X)p is a projective kF-module since

the kF-module structure on k(F≤X)p decomposes as

k(F≤X)p
∼=

⊕
Y≤X,

codimX (Y )=p

kFY ,

where codimX(Y ) denotes the codimension of Y in X. This establishes the following.

Proposition 7.4 Let X ∈ L. Then

· · · −→
( ⊕

Y∈L

codimX (Y )=p

kFY

)
∂

−−→ · · ·
∂

−−→ kFX −→ kX −→ 0

is a projective resolution of the simple kF-module kX afforded by χX : kF → k, where

∂(w) =
∑

y⋗w[w : y]χX(y)y and codimX(Y ) denotes the codimension of Y in X.
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8 The Quiver of the Face Semigroup Algebra

8.1 The Quiver of a Split Basic Algebra

A finite dimensional k-algebra A is a (split) basic algebra if every simple module of

A has dimension one. The Ext-quiver or just quiver Q of a split basic algebra A is

a directed graph with one vertex for each isomorphism class of simple modules of

A. The number of arrows x → y is dim Ext1
A(Sx, Sy), where Sx and Sy are simple

modules corresponding to the vertices x and y.

A path p in Q is a sequence of arrows x0 → x1 → · · · → xr. The path starts at

s(p) = x0 and terminates at t(p) = xr. The length of p is r. Two paths p and q are

parallel if they start and terminate at the same vertices: s(p) = s(q) and t(p) = t(q).

The path algebra kQ of a quiver Q is the k-vector space spanned by the paths in Q with

the product of two paths defined by path composition: if p = x0 → x1 → · · · → xr

and q = y0 → y1 → · · · → ys, then

p · q =

{
y0 → · · · → ys → x1 → · · · → xr if x0 = s(p) = t(q) = ys,

0 otherwise.

Let P ⊂ kQ be the ideal of kQ generated by the arrows of Q. An ideal I ⊂ kQ is

admissible if Pr ⊂ I ⊂ P2, for some r ≥ 2.

Proposition 8.1 ([1, Section III.1, Theorem 1.9]) Let A be a finite-dimensional,

split, basic k-algebra with quiver Q. Then A ∼= kQ/I, where I is an admissible ideal of

kQ.

Let I be an admissible ideal of kQ. An element of I is a relation from x to y if it is a

k-linear combination of paths in Q beginning at a vertex x and ending at a vertex y.

Note that any element ρ ∈ I can be written as a linear combination of relations since

xρy is a relation for any pair of vertices x, y ∈ Q. The following result combines

Corollary 1.1 and Proposition 1.2 of [9].

Proposition 8.2 Let Q be a quiver with no oriented cycles and let I be an admissible

ideal. Suppose that R is a minimal set of relations generating I as a two-sided ideal of

kQ. Then the number of relations from x to y in R is the dimension of the k-vector space

Ext2
kQ/I(Sx, Sy).

8.2 The Quiver of the Face Semigroup Algebra

Since every simple kF-module is of dimension one, kF is a split basic algebra. This

section computes the quiver Q of kF, and the next section describes an ideal I such

that kQ/I ∼= kF.

Lemma 8.3 For X,Y ∈ L and p ≥ 0,

Ext
p
kF(kX, kY ) ∼=

{
k if Y ≤ X and dim(X) − dim(Y ) = p,

0 otherwise.
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Proof Let codimX(W ) denote the codimension of W in X and let Cp denote⊕
codimX (W )=p kFW . Applying the functor Hom(−, kY ) to the projective resolution

of kX in Proposition 7.4, gives the cocomplex

· · ·
∂∗

p
−→ HomkF

(
Cp, kY

) ∂∗

p+1
−→ HomkF

(
Cp+1, kY

) ∂∗

p+2
−→ · · · .

Now HomkF

(
Cp, kY

)
∼=

⊕
codimX (W )=p HomkF (kFW , kY ) and

HomkF (kFW , kY ) ∼= HomkF (kFeW , kY ) ∼= eW · kY =

{
k if W = Y,

0 otherwise,

where we used the fact that χY (eW ) = 0 if W 6= Y and 1 otherwise. (If W 6= Y , then

χY (eY ) = 1 implies χY (eW ) = χY (eW )χY (eY ) = χY (eW eY ) = 0.)

Since HomkF(kFW , kY ) vanishes unless W = Y , the entries in the above cocom-

plex vanish in all degrees except for that in which kFY appears. This degree is precisely

codimX(Y ) = dim(X) − dim(Y ), in which case HomkF(kFY , kY ) ∼= k.

Corollary 8.4 The quiver Q of kF is given by the Hasse diagram of the intersection

lattice L. The cover relations are oriented by X → Y ⇐⇒ X ⋗ Y .

Proof The vertices of Q are in one-to-one correspondence with the isomorphism

classes of simple kF-modules. These are indexed by the elements of L. The number

of arrows X → Y is

dim Ext1
kF(kX , kY ) =

{
1 if X ⋗ Y,

0 otherwise.

8.3 Quiver Relations

This section defines a k-algebra surjection ϕ : kQ → kF and identifies a minimal

generating set of the kernel. The kernel is an admissible ideal of the path algebra kQ,

so this generating set gives the quiver relations.

8.3.1 First Version

Let ∂ : kF → kF be the map

∂(y) =
∑

x∈kF
x⋗y

[y : x]x,

where [y :x] is the incidence number defined in equation (7.1). Define a k-algebra

morphism ϕ : kQ −→ kF by

ϕ(X) = eX for X ∈ Q0, ϕ(X → Y ) = eY ∂(y)eX,

ϕ(X0 → X1 → · · · → Xr) = ϕ(Xr−1 → Xr) · · ·ϕ(X0 → X1),
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where y was chosen in the construction of eY . (Actually, y can be any element of sup-

port Y . This follows from the identity xx ′
= x if and only if supp(x) ≥ supp(x ′).) Us-

ing Lemma 5.1 and that eY = y −
∑

Z>Y yeZ , it follows that eY ∂(y)eX = ([y :x1]x1 +

[y :x2]x2)eX where x1 and x2 are the two faces of support X with common codimen-

sion one face y. In particular, this is nonzero.

Proposition 8.5 Let ϕ : kQ → kF be the map defined above. For each interval [Z, X]

of length two in L, the sum of all paths of length two from X to Z

∑
Y∈(Z,X)

(X → Y → Z)

is an element of the kernel of ϕ. These elements form a minimal generating set of rela-

tions for the kernel of ϕ.

Proof If R is a minimal set of relations generating ker ϕ, then Proposition 8.2 gives

that the number of elements of Z.R.X (the number of relations in R starting at X and

ending at Z) is dim Ext2
kF(kX , kZ). This is 1 if [Z, X] is an interval of length two and 0

otherwise. Therefore, we need only one relation for each interval of length two in L.

Let z be the element of support Z chosen in the construction of eZ . Then∑
Y∈(Z,X) ϕ(X → Y → Z) is a linear combination of elements of the form x̃eX with x̃

of support X having z as a face. If x̃ has z as a face, then z is of codimension two in x̃.

Lemma 7.1 gives that x̃ has exactly two codimension one faces ỹ and w̃. Since

ϕ(supp(ỹ) → Z)ϕ(X → supp(ỹ)) =

([z : ỹ]ỹ + [z : y ′]y ′)([y :x1]x1 + [y :x2]x2)eX

and one of ỹx1 or ỹx2 must be x̃ — suppose ỹx1 = x̃ — we see that x̃eX appears in

ϕ(X → supp(ỹ) → Z) with coefficient [z : ỹ][y :x1]. The identity (7.1) gives that

this coefficient is [z : ỹ][ỹ : x̃]. Similarly, x̃eX appears in ϕ(X → supp(w̃) → Z) with

coefficient [z : w̃][w̃ : x̃]. Lemma 7.1 shows that these two coefficients sum to zero.

Therefore,
∑

Y∈(Z,X) ϕ(X → Y → Z) = 0.

Corollary 8.6 The face semigroup algebra kF of a hyperplane arrangement depends

only on the intersection lattice L.

Note that this implies that arrangements with the same intersection lattice but

nonisomorphic face posets have isomorphic face semigroup algebras.

8.3.2 Second Version

In this section we note that the idempotents eX used in the previous section to define

ϕ can be changed slightly without affecting the kernel of ϕ. This will be used in a

companion paper to construct idempotents for the descent algebra of a finite Coxeter

group [23].

For each X ∈ L let LX denote a nonempty set of elements of support X and let

λX = |LX |. In what follows we will need the fact that the characteristic of k does
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not divide λX for all X ∈ L. Let X̃ denote the sum of the elements in LX divided

by λX . Then X̃ is an idempotent and the elements eX = X̃ −
∑

Y>X X̃eY form a

complete system of primitive orthogonal idempotents in kF (see Remark 5.3). Define

ϕ : kQ → kF using these idempotents: the image of vertex X is the idempotent eX ;

the image of an arrow X → Y is eY ∂(y)eX , where y is any element of support Y .

To see that the kernel of ϕ is described by Proposition 8.5, let (X → Y → Z) be a

path in Q and note that ϕ(X → Y → Z) can be written as

1

λZ

∑
z∈LZ

(
[z : yz

1]yz
1 + [z : yz

2]yz
2

)(
[y :x

y
1 ]x

y
1 + [y :x

y
2 ]x

y
2

)
eX ,

where yz
1 and yz

2 are the two faces of support Y with z as a face and x
y
1 and x

y
2 are

the two faces of support X with y as a face. (Use Lemma 5.1, the fact that eX =

X̃ −
∑

Y>X X̃eY for all X ∈ L, and Proposition 4.2.)

Next we will show that the coefficient of yz
i x

y
j in the above is 1

λZ
[z : yz

i ][y :x
y
j ]. This

amounts to showing that if yz
i x

y
j = yz ′

i ′ x
y
j ′ , then z = z ′, i = i ′ , and j = j ′. Both z

and z ′ are faces of yz
i x

y
j = yz ′

i ′ x
y
j ′ , but no face can have two distinct faces of the same

support. So z = z ′. Also, yz
i and yz

i ′ are faces of yz
i x

y
j = yz

i ′x
y
j ′ of the same support,

so in fact i = i ′. Since yz
i x

y
j = yz

i x
y
j ′ , it follows that x

y
j and x

y
j ′ are on the same side of

Y . But, by definition, they are on different sides of Y . So j = j ′.

Let x ∈ F have support X and suppose xeX is a summand of ϕ(X → Y → Z).

Then x = yz
i x

y
j for some i, j ∈ {1, 2}, z ∈ LZ . Since there are exactly two faces w1

and w2 in the open interval {w ∈ F : z < w < x}, it follows that yz
i is either w1 or

w2. In the former case the coefficient of xeX is

1

λZ
[z :w1][y :x

y
j ] =

1

λZ
[z :w1][w1 y ′ :w1x

y
j ] =

1

λZ
[z :w1][w1 :x],

using equation (7.1). Similarly, if y = w2, then the coefficient is 1
λZ

[z :w2][w2 :x].

Therefore, the coefficient of xeX in
∑

X⋖Y ⋖Z ϕ(X → Y → Z) is, by Lemma 7.1,

1

λZ
[z :w1][w1 : x] +

1

λZ
[z :w2][w2 :x] = 0.

So
∑

X⋖Y ⋖Z ϕ(X → Y → Z) = 0 since {xeX : supp(x) = X} is a basis of kFeX .

9 The Ext-Algebra of the Face Semigroup Algebra

9.1 Koszul Algebras

Our treatment of Koszul algebras closely follows [3]. Let k be a field. A k-algebra

A is a graded k-algebra if there exists a k-vector space decomposition A ∼=
⊕

i≥0 Ai

satisfying AiA j ⊂ Ai+ j. Here AiA j is the set of elements {
∑

l ala
′
l | al ∈ Ai, a′

l ∈ A j}.

The subspace A0 is considered to be an A-module by identifying it with the A-module

A/
⊕

i>0 Ai .

If A =
⊕

i≥0 Ai is a graded k-algebra, then a graded A-module M is an A-module

with a vector space decomposition M =
⊕

i∈Z
Mi satisfying AiM j ⊂ Mi+ j for all
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i, j ∈ Z. A graded A-module M is generated in degree i if M j = 0 for j < i and

M j = A j−iMi for all j ≥ i. If M and N are graded A-modules, then an A-module

morphism f : M → N has degree p if f (Mi) ⊂ Ni+p for all i.

A graded A-module M has a linear resolution if M admits a projective resolution

· · · −−−−→ P2
d2−−−−→ P1

d1−−−−→ P0
d0−−−−→ M −−−−→ 0,

with Pi a graded A-module generated in degree i and di a degree 0 morphism form

all i ≥ 0. Observe that if M admits a linear resolution, then M is generated in degree

0.

Definition 9.1 A graded k-algebra A =
⊕

i≥0 Ai is a Koszul algebra if A0 is a

semisimple k-algebra and A0, considered as a graded A-module concentrated in de-

gree 0, admits a linear resolution.

A quadratic k-algebra is a graded k-algebra A =
⊕

i≥0 Ai such that A0 is semisim-

ple and A is generated by A1 over A0 with relations of degree 2. Explicitly, A =⊕
i≥0 Ai is quadratic if A0 is semisimple and A is a quotient of the free tensor algebra

TA0
A1 =

⊕
i≥0(A1)⊗i of the A0-bimodule A1 by an ideal generated by elements of

degree 2: A ∼= TA0
A1/〈R〉 with R ⊂ A1 ⊗A0

A1. Here (A1)⊗i denotes the i-fold tensor

product of A1 over A0.

Proposition 9.2 ([3, Corollary 2.3.3]) Koszul algebras are quadratic.

Not all quadratic algebras are Koszul algebras. Furthermore, it is not known for

which algebras the notions of quadratic and Koszul coincide.

Let A = TA0
A1/〈R〉 be a quadratic algebra. If V is an A0-bimodule, let V ∗

=

HomA0
(V, A0). For any subset W ⊂ V , let W⊥

= { f ∈ V ∗ | f (W ) = 0}. The

algebra A!
= TA0

A∗
1/〈R⊥〉 is the quadratic dual of A or the Koszul dual of A in the

case when A is a Koszul algebra. (An important technicality is that in defining the

quadratic dual the identification (V ∗
1 ⊗· · ·⊗V ∗

n ) ∼= (Vn ⊗· · ·⊗V1)∗ has been made,

where ( f1 ⊗ · · · ⊗ fn)(vn ⊗ · · · ⊗ v1) = fn(vn fn−1(vn−1 · · · f1(v1) · · · )) for all fi ∈ V ∗
i

and vi ∈ Vi .)

If A is a graded k-algebra, then the Ext-algebra of A is the graded k-algebra

Ext(A) =
⊕

n Extn(A0, A0) with multiplication given by Yoneda composition.

Theorem 9.3 ([3, Theorems 2.10.1 and 2.10.2]) Suppose A is a Koszul algebra. Then

the Koszul dual A! is a Koszul algebra isomorphic to the opposite of the Ext-algebra

Ext(A) of A and Ext(Ext(A)) ∼= A.

Before proceeding, we record how the quadratic dual of a quadratic algebra arising

as the quotient of the path algebra of a quiver is constructed from the quiver and

relations. Note that the path algebra kQ of a quiver Q is the free tensor algebra of the

k-vector space kQ1 spanned by the arrows of Q viewed as a bimodule over the k-vector

space kQ0 spanned by the vertices of Q. It follows that A = kQ/〈R〉 ∼= TkQ0
kQ1/〈R〉,

where R is a set of relations of paths of length two. Then the quadratic dual algebra

A! ∼= TkQ0
(kQ1)∗/〈R⊥〉 ∼= kQopp/〈R⊥〉 is a quotient of the path algebra kQopp of the

opposite quiver Qopp of Q and R⊥
= {s ∈ kQ

opp
2 | s∗(r) = 0 for all r ∈ R}. Here
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(pq)∗ : kQ2 → k for a path pq of length two in Qopp is the function that takes the

value 1 on qp ∈ Q and 0 otherwise. That is, the quiver of A! is Qopp and the relations

are the relations orthogonal to R. (This can be derived from the definitions. See also

[17].)

9.2 The Face Semigroup Algebra is a Koszul Algebra

This section establishes that the face semigroup algebra of a hyperplane arrangement

admits a grading making it a Koszul algebra. This is done by constructing a linear

resolution for the degree 0 component with respect to the grading inherited from the

path length grading on the path algebra of the quiver.

Proposition 9.4 kF admits a grading making it a Koszul algebra.

Proof The k-vector spaces

(kF)i =

⊕

codimY (X)=i

eXkFeY .

define a grading on kF. (This is the grading inherited from the path length grading

on the path algebra kQ of the quiver Q of kF.) So kF is a graded k-algebra. The degree

0 component is

(kF)0 =

⊕

codimY (X)=0

eXkFeY =

⊕

X∈L

eXkFeX
∼= k|L|,

hence is semisimple. It remains to show that k|L| has a linear resolution. It suffices to

show that each simple kF-module kX has a linear resolution since k|L| ∼=
⊕

X∈L
kX .

Fix X ∈ L and consider the projective resolution of the simple kF-module kX

given by Proposition 7.4,

· · · −→
( ⊕

codimX (Y )=p

kFeY

)
∂

−→ · · ·
∂

−→ kFeX −→ kX −→ 0.

For each kFeY define k-subspaces

(kFeY )i =

⊕

codim(W )=i

eW kFeY .

By Lemma 5.1, if i < codim(Y ), then the degree i component of kFeY is 0. For

i = codim(Y ), (kF)i = eY kFeY = spank eY (Lemma 5.1 again). Since eY generates

kFeY as a kF-module, kFeY is generated in degree codim(Y ). The boundary operator

∂ is a degree 0 morphism: if eW w ∈ eW kFeY , then deg(eW w) = codim(W ) and the

degree of its image ∂(eW w) = eW ∂(w) ∈ eW ∂(kFeY ) ⊂
⊕

codimX (Y ′)=p eW kFeY ′ is

codim(W ).
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Remark 9.5. Notice that by creating the surjection ϕ : kQ → kF many choices were

taken (in constructing the complete system of primitive orthogonal idempotents and

in putting orientations on the subspaces in L). These choices affect the grading in-

herited by kF from kQ, but the corresponding graded algebras are isomorphic: two

gradings on a k-algebra that both give rise to a Koszul algebra give isomorphic graded

k-algebras. (See Corollary [3, Corollary 2.5.2].)

9.3 The Ext-algebra of the Face Semigroup Algebra

In this section we show that the Ext-algebra of kF is the incidence algebra of the

opposite lattice L∗ of the intersection lattice L.

The incidence algebra I(P) of a finite poset P is the set of functions on the sub-

set of P × P of comparable elements {(y, x) ∈ P × P | y ≤ x} with multipli-

cation ( f g)(x, y) =
∑

x≤z≤y f (x, z)g(z, y). The identity element is the Krönecker

δ-function. The incidence algebra I(P) is a split basic algebra and the quiver Q of

I(P) has P as its set of vertices and exactly one arrow x → y if y ⋖ x. If I denotes

the ideal of kQ generated by differences of parallel paths, then I(P) ∼= kQ/I. This

isomorphism is given by mapping a vertex x of Q to the function y 7→ δ(x, y), and

an arrow x → y of Q to the function (u, v) 7→ δ(x, u)δ(y, v).

Proposition 9.6 The Ext-algebra of kF is the incidence algebra I(L∗) of the opposite

lattice of the intersection lattice L. Equivalently, it is the opposite algebra I(L)opp of the

incidence algebra I(L) of L.

Proof Since kF is a Koszul algebra (Proposition 9.4), its Ext-algebra is its Koszul dual

algebra (Theorem 9.3), so we compute the Koszul dual of kF.

Let Q denote the quiver of kF. From Proposition 8.5, kF ∼= kQ/〈R〉 is the quotient

of the path algebra kQ by the ideal generated by the sums of all parallel paths of length

two,

R =

{ ∑
Z∈(Y,X)

(X → Z → Y ) : X,Y ∈ L

}
.

Then (kF)! ∼= kQopp/〈R⊥〉, where R⊥ is spanned by differences of parallel paths of

length two in Qopp,

R⊥
=

{
(X → Z → Y ) − (X → Z ′ → Y ) : X ⋖ Z, Z ′

⋖ Y ∈ L
}

.

(See the discussion at the end of Subsection 9.1.)

Let I(L∗) denote the incidence algebra of L∗. Then I(L∗) ∼= kQopp/I, where I

is the ideal generated by differences of parallel paths (not necessarily of length two).

Therefore, the proof is complete once it is shown that R⊥ generates I.

If p : X → X1 → · · · → Xn → Y and q : X → Y1 → · · · → Yn → Y are parallel

paths in Q such that there exists an i with X j = Y j for all j 6= i, then p − q ∈ I. If

there exists a sequence of paths p = p0, p1, . . . , p j = q with pi−1 and pi differing in

exactly one place for 1 ≤ i ≤ j, then p − q = (p0 − p1) + · · · + (p j−1 − p j ) ∈ I.

Therefore, I = 〈R⊥〉 if any path in Qopp can be obtained from any other path that

is parallel to it by swapping one vertex at a time (without breaking the path). This
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follows from the semimodularity of L
∗ and by induction on the length of paths in

Qopp. Recall that a finite lattice L is (upper) semimodular if for every x and y in L, if x

and y cover x ∧ y, then x ∨ y covers x and y.

Let X → X1 → · · · → Xn → Y and X → Y1 → · · · → Yn → Y be parallel paths

in Qopp. Since Xn and Yn cover Xn ∧Yn = Y , semimodularity of L∗ gives that Xn ∨Yn

covers both Xn and Yn. Since X ≤ Xn and X ≤ Yn, it follows that X ≤ (Xn ∨ Yn). So

there exists a path from X to Xn ∨ Yn. We are now in the following situation.

X1
// · · · // Xn−1

// Xn

&&NNNNNN

X

88pppppp

&&NNNNNN
// · // · // (Xn ∨Yn)

55llllll

))SSSSSS

Y

Y1
// · · · // Yn−1

// Yn

88pppppp

Induction on the length of paths gives that

(Y → · · · → Yn−1 → Yn → Y ) − (X → · · · → (Xn ∨ Yn) → Yn → Y ),

(X → · · · → Xn−1 → Xn → Y ) − (X → · · · → (Xn ∨ Yn) → Xn → Y )

are in 〈R⊥〉. Clearly,

(X → · · · → (Xn ∨ Yn) → Xn → Y ) − (X → · · · → (Xn ∨ Yn) → Yn → Y ) ∈ 〈R⊥〉.

Therefore,

(Y → · · · → Yn−1 → Yn → Y ) − (X → · · · → Xn−1 → Xn → Y )

is in 〈R⊥〉. Therefore, I = 〈R⊥〉 and (kF)! ∼= kQopp/〈R⊥〉 = kQopp/I ∼= I(L∗).

Corollary 9.7 The Ext-algebra of I(L∗) is isomorphic to the face semigroup alge-

bra kF.

9.4 The Hochschild (Co)Homology of the Face Semigroup Algebra

Let A be a k-algebra and M an A-bimodule. There is a complex of A-bimodules

· · ·
di+1−−−−→ M ⊗k A⊗i di−−−−→ · · ·

d1−−−−→ M ⊗k A
d0−−−−→ M

with maps di : M⊗k A⊗i → M⊗A⊗i−1 defined by d0(m⊗a) = am−ma for m ∈ M,

a ∈ A and for i ≥ 1

di(m ⊗ a1 ⊗ · · · ⊗ ai) = (ma1 ⊗ a2 ⊗ · · · ⊗ ai)

+
i−1∑
j=1

(−1) j(m ⊗ a1 ⊗ · · · ⊗ a ja j+1 ⊗ · · · ⊗ ai ) + (−1)i(aim ⊗ a1 ⊗ · · · ⊗ ai−1),
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where m ∈ M and a1, . . . , ai ∈ A. The Hochschild homology of A with coefficients in

M is HHi(A, M) = ker(di)/ im(di+1) for i ≥ 0. Let HHi(A) = HHi(A, A).

Similarly, there exists a cocomplex of A-bimodules

M
d0

−−−−→ Homk(A, M)
d1

−−−−→ Homk(A ⊗k A, M)
d2

−−−−→ · · ·

where d0 : M → Homk(A, M) is the map d0(m)(a) = am − ma and di is the map

di : Homk(A⊗i, M) → Homk(A⊗i+1, M) given by

(di f )(a1 ⊗ · · · ⊗ ai+1) = a1 f (a2 ⊗ · · · ⊗ ai+1)

+

i∑

j=1

(−1) j f (a1 ⊗ · · · ⊗ a ja j+1 ⊗ · · · ⊗ ai+1) + (−1)i+1 f (a1 ⊗ · · · ⊗ ai )ai+1,

where f ∈ Homk(A⊗i, M) and a1, . . . , ai+1 ∈ A. The Hochschild cohomology of A

with coefficients in M is HHi(A, M) = ker(di)/ im(di−1) for i ≥ 0. Denote the

Hochschild cohomology of A with coefficients in A by HHi(A) = HHi(A, A).

Proposition 9.8 The Hochschild homology HHi(kF) and cohomology HHi(kF) of

kF vanish in positive degrees. In degree zero the homology is HH0(kF) ∼= k#L and the

cohomology is HH0(kF) ∼= k.

Proof Let Q denote the quiver of kF. The Hochschild homology of algebras whose

quivers have no oriented cycles is known to be zero in positive degrees and kq in

degree 0, where q is the number of vertices in the quiver [12]. This establishes the

Hochschild homology of kF since Q has no oriented cycles.

Buchweitz [19, Section 3.5] proved that the Hochschild cohomology algebra of a

Koszul algebra is the Hochschild cohomology algebra of its Koszul dual. Since kF is

a Koszul algebra with Koszul dual the incidence algebra I(L∗) of the lattice L∗, there

is an isomorphism

HH∗(kF) ∼= HH∗(I(L∗)) ∼=
⊕
i≥0

HHi(I(L∗)).

Gerstenhaber and Schack ([16]; see also [13, Corollary 1.4]) proved that the Hochs-

child cohomology HHi(I(L∗)) of I(L∗) is the simplicial cohomology of the simplicial

complex ∆(L∗) whose i-simplices are the chains of length i in the poset L∗. There-

fore,

HHi(I(L∗)) ∼= Hi(∆(L∗), k).

The latter is zero in positive degrees since ∆(L∗) is a double cone (L∗ contains both

a top and bottom element) and is k in degree zero since ∆(L∗) is connected. It is

easy to check directly that HH0(kF) ∼= k, completing the proof.
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10 Connections with Poset Cohomology

10.1 The Cohomology of a Poset

Let P denote a finite poset. The order complex ∆(P) of P is the simplicial complex

with i-simplices the chains of length i in P. Suppose P has both a minimal element

0̂ and a maximal element 1̂ and let k denote a field. The order cohomology of P with

coefficients in k is the reduced simplicial cohomology with coefficients in k of the

order complex ∆(P − {0̂, 1̂}) of P − {0̂, 1̂}. The order cohomology of P has the

following characterization in terms of the chains of P.

Suppose P contains at least two distinct elements. For i ≥ 0, let Ci(P) denote the

k-vector space spanned by the i-chains of P − {0̂, 1̂},

Ci(P) = spank

{
(x0 < · · · < xi) | x j ∈ P − {0̂, 1̂}

}
.

For i = −1, let C−1(P) = k, the vector space spanned by the empty chain. If P

consists of one element, then define C−2(P) = k and Ci(P) = 0 otherwise.

Define coboundary morphisms δi : Ci(P) → Ci+1(P) by

δi(x0 < · · · < xi) =

i+1∑
j=0

(−1) j
∑

x j−1<x<x j

(x0 < · · · < x j−1 < x < x j < · · · < xi),

where x−1 = 0̂ and xi+1 = 1̂. It is straightforward to check that δ2
= 0. The order

cohomology of P is Hi(P) = Hi(P; k) = ker(δi)/ im(δi−1).

Notice that if P consists of exactly one element, then H−2(P) = k and Hi(P) = 0

for i 6= −2. If P = {0̂, 1̂}, then H−1(P) = k and Hi(P) = 0 for i 6= −1.

10.2 A Vector Space Decomposition of the Face Semigroup Algebra

Suppose the length of the longest chain in the poset P is d+2. Then ker(δd) is spanned

by the chains of length d in P − {0̂, 1̂} and im(δd−1) is spanned by the elements,

∑
x j−1<x<x j

(x0 ⋖ · · · ⋖ x j−1 ⋖ x ⋖ x j ⋖ · · · ⋖ xd−1),

one for each chain x0 ⋖ · · · ⋖ x j−1 < x j ⋖ · · · ⋖ xd−1 of length d − 1.

Put P = L in the above and identify the cover relations with the arrows in Q. Then

the top cohomology of L corresponds to the quotient of the span of the maximal

paths in Q by the quiver relations. This gives a vector space isomorphism eb0kFeb1
∼=

Hd−2(L), where the length of the longest chain in L is d. Folkman [15] showed

that the cohomology of a geometric lattice is non-vanishing only in the top degree.

Since L∗ is a geometric lattice and ∆(L∗) = ∆(L), the cohomology of L is non-

vanishing only in the top degree. Therefore, eb0kFeb1
∼= H∗(L). Since every interval of

a geometric lattice is also a geometric lattice, the result holds for every interval of L.

That is, eXkFeY
∼= H∗([X,Y ]).

Proposition 10.1 kF has a k-vector space decomposition in terms of the order coho-

mology of the intervals of L,

kF ∼=
⊕

X,Y∈L

H∗([X,Y ]).
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10.3 Another Cohomology Construction on Posets

In light of the above decomposition, the direct sum
⊕

X,Y∈L
H∗([X,Y ]) inherits a

k-algebra structure from kF. This section shows that the algebraic structure can be

obtained via the cup product of a cohomology algebra on the intersection lattice.

This cohomology construction appears to be new.

Let P be a finite poset and let k denote a field. Let Di(P) denote the k-vector space

of i-chains in P,

Di(P) =
{

(x0 < · · · < xi) | x j ∈ P
}

.

Define coboundary morphisms di : Di(P) → Di+1(P) by

di(x0 < · · · < xi) =

i∑
j=1

(−1) j
∑

x j−1<x<x j

(x0 < · · · < x j−1 < x < x j < · · · < xi).

Then d2
= 0. The cohomology groups of the cocomplex (D•, d) will be denoted by

Hi(P) = Hi (P; k) = ker(di)/ im(di−1).

The differences between Hi (P) and Hi(P) are small but important. The former

is defined for any poset P, not just a poset with 0̂ and 1̂. The vector space Di(P)

is spanned by all the chains in P, not just those avoiding 0̂ and 1̂. The summation

in the coboundary morphism di : Di(P) → Di+1(P) runs from j = 1 to j = i,

whereas the summation runs from j = 0 to j = i + 1 in the coboundary morphism

δi : Ci(P) → Ci+1(P). However, there is a strong relationship between H(P) and

H(P).

Proposition 10.2 Let P be a finite poset. Then for all i ≥ 0,

H
i (P) ∼=

⊕
x,y∈P

Hi−2([x, y]).

Proof Di(P) decomposes into subspaces spanned by the i-chains of P beginning at

x and terminating at y: (x < x1 < · · · < xi−1 < y). The differential di respects

this decomposition and the subspaces are isomorphic to Ci−2([x, y]) (drop the x

and y of each chain). This isomorphism commutes with the coboundary operators,

establishing the proposition.

The benefit of working with H∗(P) is that the simplicial cup product (see [20,

Section 49]) on the simplices of the order complex ∆(P) of P descends to a product

on the cohomology.

Define a product ⌣: Dp(P) × Dq(P) → Dp+q(P) by

(x0 < · · · < xp) ⌣ (y0 < · · · < yq) =

{
(x0 < · · · < xp = y0 < · · · < yq) xp = y0,

0 xp 6= y0.

Lemma 10.3 For c ∈ Dp(P) and d ∈ Dq(P),

δp+q(c⌣d) = δp(c)⌣d + (−1)pc⌣δq(d).
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Proof Let c = (x0 < · · · < xp) and d = (xp < · · · < xp+q). Then

δp(c)⌣d + (−1)pc⌣δq(d)

=

p∑

j=1

(−1) j
∑

x j−1<x<x j

(x0 < · · · < x j−1 < x < x j < · · · < xp)⌣d

+ (−1)pc⌣

p+q∑

j=p+1

∑

x j−1<x<x j

(xp < · · · < x j−1 < x < x j < · · · < xp+q)

=

p∑

j=1

(−1) j
∑

x j−1<x<x j

(x0 < · · · < x j−1 < x < x j < · · · < xp+q)

+

p+q∑

j=p+1

(−1) j
∑

x j−1<x<x j

(x0 < · · · < x j−1 < x < x j < · · · < xp+q)

=

p+q∑

j=1

(−1) j
∑

x j−1<x<x j

(x0 < · · · < x j−1 < x < x j < · · · < xp+q)

= δp+q(x0 < · · · < xp+q)

= δp+q(c⌣d).

Corollary 10.4 The product Dp(P) × Dq(P)
⌣
−→ Dp+q(P) induces a well-defined

product Hp(P) × Hq(P)
⌣
−→ Hp+q(P) giving H∗(P) =

⊕
i H

i (P) a k-algebra struc-

ture.

10.4 The Face Semigroup Algebra as a Cohomology Algebra

Combining Propositions 10.1 and 10.2 gives the vector space isomorphism

φ : H
∗(L)

∼=
→

⊕
X,Y∈L

H∗([X,Y ])
∼=
→ kQ/I

ϕ
→ kF.

Recall that Proposition 10.1 identifies
⊕

X,Y H∗([X,Y ]) with kF via the quiver Q

with relations of kF. The isomorphism identifies an unrefinable chain in L with the

corresponding path in Q

(
X0 ⋖ X1 ⋖ · · · ⋖ X j−1 ⋖ X j

)
7−→

(
X j → X j−1 → · · · → X1 → X0

)

and maps the relations in H∗(L) to the quiver relations. Under this isomorphism the

multiplication in H
∗(L) maps to the multiplication in kQ/I (composition of chains

in L maps to composition of paths in Q). Therefore, φ is a k-algebra isomorphism.

Proposition 10.5 Let kF be the face semigroup algebra of a hyperplane arrangement

with intersection lattice L. Then kF ∼= H∗(L).
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10.5 Connection with the Whitney Cohomology of the Intersection Lattice

We finish this section by identifying the Whitney cohomology of L in kF. (See [2]

and more recently [28].) The Whitney cohomology of a poset P with 0̂ is the direct sum

WH∗(P) =
⊕

X∈P H∗([0̂, X]). Since the Whitney homology of L∗ is isomorphic to

the Orlik–Solomon algebra of L∗ [7, Section 7.10], the following result also explains

how the dual of the Orlik–Solomon algebra embeds in the face semigroup algebra.

Corollary 10.6 The Whitney cohomology of L∗ is isomorphic to the ideal of chambers

in kF. It is a projective indecomposable kF-module.

Proof Since H∗([X,Y ]) ∼= eXkFeY for all X,Y ∈ L (see the discussion preceeding

Proposition 10.1), the Whitney cohomology of L∗ is

WH∗(L∗) ∼=
⊕

X∈L

H∗([X, 1̂]) ∼=
⊕

X∈L

eXkFeb1
∼= kFeb1

∼= kFb1.

11 Future Directions

These results can be extended to the semigroup algebra of the semigroup of covectors

of an oriented matroid (see [8, Section 4.1] for the definition of this semigroup).

This is a consequence of two observations. The first observation is that the exact

sequence used to construct the projective resolutions of the simple modules (Section

7) can be extended to the semigroup algebra of an oriented matroid [11, Section

6]. The second observation is that the construction of the complete set of primitive

orthogonal idempotents in Section 5.1 holds for a larger class of semigroups called

left regular bands (see [24]).

By restricting attention to the reflection arrangement of a finite Coxeter group, the

theory developed here yields results about the descent algebra of the Coxeter group.

In a companion paper [23], we study the quiver and module structure of the descent

algebra using this approach.

The cohomology construction introduced in Section 10.3 appears to be new. This

construction is interesting, especially because the resulting cohomology algebra ap-

pears naturally as the face semigroup algebra of a hyperplane arrangement and de-

serves to be studied further. A natural starting point would be to mimic the theory of

the order cohomology of a poset. We mention one possibility: if G is a group acting

on a poset P, then the G-action on P induces a G-module structure on H∗(P), and

the resulting G-module structure can be studied. This has been extensively studied

for order homology and cohomology and is quite interesting [28].

For certain classes of posets H∗(P) has nice algebraic structure. For example,

if P is a Cohen–Macaulay poset, then its incidence algebra I(P) is a Koszul algebra

[22, 29]. Hence, H∗(P) is the Koszul dual algebra of I(P). This describes the Koszul

dual algebra of I(P) in terms of the order cohomology of P.

The construction also provides an extension of a result describing a part of the Lie

algebra (co)homology of a certain subalgebra N(P) of the incidence algebra of P in

terms of the order (co)homology of P [18]. Hozo showed that if P contains 0̂ and 1̂,

then the Lie algebra (co)homology of N(P) contains the order (co)homology of P.

His proof extends to show that for any poset P (not necessarily containing 0̂ and 1̂),
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the Lie algebra (co)homology of N(P) contains the (co)homology H
∗(P). This is a

further step towards describing the complete Lie algebra (co)homology of N(P) in

terms of the combinatorics of the poset P.
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