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Foreword

In the study of a mathematical system, algebraic structures allow for the discovery of
more information. This is the motor behind the success of many areas of mathematics
such as algebraic geometry, algebraic combinatorics, algebraic topology and others. This
was certainly the motivation behind the observation of G.-C. Rota stating that various
combinatorial objects possess natural product and coproduct structures. These struc-
tures give rise to a graded Hopf algebra, which is usually referred to as a combinatorial
Hopf algebra. Typically, it is a graded vector space where the homogeneous components
are spanned by finite sets of combinatorial objects of a given type and the algebraic
structures are given by some constructions on those objects.

Recent foundational work has constructed many interesting combinatorial Hopf al-
gebras and uncovered new connections between diverse subjects such as combinatorics,
algebra, geometry, and theoretical physics. This has expanded the new and vibrant
subject of combinatorial Hopf algebras. To give a few instances:

• Connes and Kreimer showed that a certain renormalization problem in quantum
field theory can be encoded and solved using a Hopf algebra indexed by rooted
trees.

• Loday and Ronco showed that a Hopf algebra indexed by planar binary trees is the
free dendriform algebra on one generator. This is true for many types of algebras;
the free algebra on one generator is a combinatorial Hopf algebra.

• In the context of polytope theory, some interesting enumerative combinatorial in-
variants induce a Hopf morphism from a Hopf algebra of posets to the Hopf algebra
of quasi-symmetric functions.

• Krob and Thibon showed that the representation theory of the Hecke algebras
at q = 0 is intimately related to the Hopf algebra structure of quasi-symmetric
functions and non-commutative symmetric functions.

Some of the latest research in these areas has been the subject of a series of recent
meetings, including an AMS/CMS meeting in Montré al in May 2002, a BIRS workshop
in Banff in August 2004, and a CIRM workshop in Luminy in April 2005. It was suggested
at the BIRS meeting that the draft text of M. Aguiar and S. Mahajan be expanded into
the first monograph on the subject. Both are outstanding communicators. Their unified
geometric approach using Coxeter complexes and projection maps allows us to construct
many of the combinatorial Hopf algebras currently under study and further to understand
their properties (freeness, cofreeness, etc.) and to describe morphisms among them.

The current monograph is the result of this great effort and it is for me a great
pleasure to introduce it.

Nantel Bergeron
Canada Research Chair
York University
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Preface

This research monograph deals with the interaction between the theory of Coxeter groups
on one hand and the relationships among several Hopf algebras of recent interest on the
other hand. It is aimed at upper-level graduate students and researchers in these areas.
The viewpoint is new and leads to a lot of simplification.

0.1 The first part: Chapters 1-3

The first part, barring Chapter 2, consists of standard material. The first two chapters
are related to Coxeter theory, while the third chapter is related to Hopf algebras. We
hope that they will make the second part more accessible.

Chapter 1 provides an introduction to some standard Coxeter theory written in lan-
guage suitable for our purposes. The emphasis is on the gate property and the projection
maps of Tits, which are crucial in almost everything that we do. The reader may be re-
quired to accept many facts on faith, since most proofs are omitted. This chapter is a
prerequisite for Chapter 5.

Chapter 2 is completely self-contained. It begins with some standard material on
left regular bands (LRBs). We then develop some new material on pointed faces, lunes
and bilinear forms on LRBs, largely inspired from the descent theory of Coxeter groups
(Chapter 5). We also introduce the concept of a projection poset which generalizes the
concept of a LRB to take into account some nonassociative examples.

Chapter 3 provides a brief discussion on cofree coalgebras, the coradical filtration and
the antipode, which are standard notions in the theory of Hopf algebras. We then briefly
discuss three examples of Hopf algebras which have now become standard: namely, the
Hopf algebras of symmetric functions Λ, noncommutative symmetric functions NΛ and
quasi-symmetric functions QΛ.

0.2 The second part: Chapters 4-8

The second part consists of mostly original work. The well-prepared reader may start
directly with this part and refer back to the first part as necessary. Chapter 4 provides
a brief overview of this work, which is spread over the next four chapters. Chapter 5 is
related to Coxeter theory, while Chapters 6, 7 and 8 are related to Hopf algebras. Each
of them is kept as self-contained as possible; the reader may even read them as different
papers. A more detailed overview is given in the introduction section of each of these
four chapters. The results in the second part, which are stated without credit, are new
to our knowledge.

0.3 Future work

At many points in this monograph we say, “This will be explained in a future work”. We
plan to write a follow-up to this monograph, where these issues will be taken up. Our

i
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main motivation is not merely to prove new results or reprove existing results but rather
to show that these ideas have a promising future.

0.4 Acknowledgements

We would like to acknowledge our debt to Jacques Tits, whose work provided the main
foundation for this monograph. The work of Kenneth Brown on random walks and the
literature on Hopf algebras, to which many mathematicians have contributed, provided
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initiative, Carl Riehm and Thomas Salisbury for publishing this volume in the Fields
monograph series, the referees for their comments and V. Nandagopal for providing TeX
assistance.
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0.5 Notation

K stands for a field of characteristic 0. For P a set, we write KP for the vector space over
K with basis the elements of P and KP ∗ for its dual space. A word is written in italics
if it is being defined at that place. While looking for a particular concept, the reader is
advised to search both the notation and the subject index. The notation [n] stands for
the set {1, 2, . . . , n}. The table below indicates the main letter conventions that we use.

subsets S, T , U , V

compositions α, β, γ

partitions λ, µ, ρ

faces or set compositions F , G, H , K, N , P , Q

chambers C, D, E

pointed faces or fully nested set compositions (F,D), (P,C)

flats or set partitions X , Y

lunes or nested set partitions L, M

We write Σ for the set of faces, and C for the set of chambers. Otherwise we use
the roman script for the above sets. For example, Q is the set of pointed faces and L
is the set of flats. For the coalgebras and algebras constructed from such sets, we use
the calligraphic scriptM, N and so on. There are some inevitable conflicts of notation;
however, the context should keep things clear. For example, we also use the above letters
F , M , K, H and S to denote various bases, V for a vector space, H for a Hopf algebra
and S for an antipode.



Chapter 1

Coxeter groups

In this chapter, we review the necessary ideas on regular cell complexes, hyperplane
arrangements and Coxeter groups. The material is for the most part standard; parts of
it are taken from Brown [18].

1.1 Regular cell complexes and simplicial complexes

For some basic information on regular cell complexes, the reader may look at the book by
Cooke and Finney [22]. Another reference is the book on oriented matroids by Björner,
Las Vergnas, Sturmfels, White and Ziegler [14, Appendix 4.7].

Let Σ be a pure regular cell complex, that is, the maximal cells have the same dimen-
sion. In particular, Σ could be a pure simplicial complex. We will see some examples in
the forthcoming sections. Elements of Σ are called faces and maximal faces are called
chambers. Let C be the set of chambers.

We say two chambers are adjacent if they have a common codimension 1 face. A
gallery is a sequence of chambers such that consecutive chambers are adjacent. We say
that Σ is gallery connected if for any two chambers C and D, there is a gallery from C

to D. For any C,D ∈ C, we then define the gallery distance dist(C,D) to be the minimal
length of a gallery connecting C and D. And any gallery which achieves this minimum
is called a minimum gallery from C to D.

1.1.1 Gate property

An important concept related to the gallery metric is the gate property. It originated in
the work of Tits on Coxeter complexes and buildings [99, Section 3.19.6]. The concept
was first abstracted by Dress and Scharlau [86, 25]. The reader may also look at Abels [1],
Mühlherr [66] and Mahajan [60] for some later work.

F

C

D

E

Figure 1.1: The gate property.

Gate property. For any face F ∈ Σ and chamber C ∈ C, there exists a chamber D
containing F such that dist(C,D) ≤ dist(C,E), where E is any chamber containing F .

1
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Furthermore, dist(C,E) = dist(C,D) + dist(D,E).

Figure 1.1 shows a part of a simplicial complex and illustrates the gate property. For F a
face of Σ, let ΣF consist of those faces which contain F . This is the star region of F , also
denoted star(F ). Let CF be the set of chambers containing F . The gate property says
that the star region star(F ) when viewed from any chamber in the complex Σ appears
to have a gate. In the above notation, the chamber D is the gate of star(F ) when viewed
from the chamber C.

A complex may or may not have the gate property. For instance, a polygon with an
odd number of sides is a complex without the gate property. The gate property implies
that Σ is strongly connected ; that is, star(F ) is gallery connected for all F ∈ Σ. In fact
it implies that CF is a convex subset of C; that is, if D and E are any two chambers in
CF then any minimum gallery from D to E lies entirely in star(F ) (hence in CF ).

1.1.2 Link and join

We will need to deal with the concepts of link and join only for simplicial complexes.
Hence for simplicity, we assume that Σ is a simplicial complex, but not necessarily pure.

We say that two faces of Σ are joinable if there is a third face containing both of
them. The link of a face F , denoted link(F ), is the subcomplex of Σ consisting of those
faces which are disjoint from F but joinable to F . As a poset, link(F ) is isomorphic to
star(F ). In Figure 1.1, for example, star(F ) consists of the vertex F , and the six edges
and six triangles which contain it. And link(F ) is the outer hexagon, consisting of six
vertices, six edges and the empty face.

Let Σ1 and Σ2 be simplicial complexes with vertex sets V1 and V2 respectively. Then
the join of Σ1 and Σ2, denoted Σ1 ∗Σ2, is the simplicial complex with vertex set V1 ⊔V2,
and one face F1 ⊔F2 for every F1 ∈ Σ1 and F2 ∈ Σ2. We denote F1 ⊔F2 by F1 ∗F2, and
call it the join of F1 and F2.

1.2 Hyperplane arrangements

A good reference for this section is Brown [18, Appendix A]. For more details, we rec-
ommend Brown [17, Chapter I]. The reader may also look at Orlik and Terao [71] or
Ziegler [103]. The discussion below generalizes to oriented matroids [14]. A part of it
(Sections 1.2.1 and 1.2.2) generalizes further to left regular bands (Section 2.2).

A hyperplane arrangement is a finite set of hyperplanes in a real vector space V . The
arrangement is called central if all the hyperplanes pass through the origin, and essential
if the intersection of all the hyperplanes is the zero subspace.

1.2.1 Faces

Let {Hi}i∈I be an essential central hyperplane arrangement. For each i, let H+
i and H−

i

be the two open half-spaces defined by Hi. The choice of + and − is arbitrary but fixed.
We say that Hi is the supporting hyperplane of H+

i and H−
i . An open half-space together

with its supporting hyperplane is a closed half-space. A face of the arrangement is a
subset of V of the form

F =
⋂

i∈I

Hǫi
i ,

where ǫi ∈ {+, 0,−} and H0
i = Hi. The totality Σ of all the faces is a poset under

inclusion. The maximal faces are called chambers. A codimension one face of a chamber
is called a facet. An arrangement is called simplicial if the chambers are simplicial cones.

Note that each face F can be defined by a sign sequence (ǫi(F ))i∈I , where ǫi(F ) is
0, + or −, depending on whether F lies in Hi, H+

i or H−
i respectively. It is clear that a

chamber is a face F for which ǫi(F ) 6= 0 for each i. Each face F has an opposite face F
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obtained by replacing each ǫi(F ) in the sign sequence defining F by its negative. We say
that a hyperplane Hi separates faces F and K if ǫi(F ) and ǫi(K) have opposite signs.

Less obviously, Σ is a semigroup. The product FK is the face with sign sequence

ǫi(FK) =





ǫi(F ) if ǫi(F ) 6= 0,

ǫi(K) if ǫi(F ) = 0.
(1.1)

We note some elementary but important properties of this product.

• The above product is associative. The zero subspace {0} whose sign sequence is
identically zero serves as the identity for this product.

• The set of chambers C is a two sided ideal in Σ.

• For a face F , we have FF = F . And given faces F and P , if there exists a face G
such that FPG = FPG, then FP = FP = F .

The product has a geometric meaning. Namely, if we move from a point of F to a
point of K along a straight line then FK is the face that we are in after moving a small
positive distance.

Remark A fairly complete study of the semigroup algebra associated to Σ can be found
in recent work of Saliola [85].

1.2.2 Flats

Let L be the intersection lattice of the arrangement. It consists of those subspaces of V
which can be obtained by intersecting some subset of hyperplanes in the arrangement.
One may check that L is a poset under inclusion with a meet and join. In other words, L
is a lattice, also referred to as the lattice of flats. We warn the reader that many authors
order L by reverse inclusion, contrary to our convention.

Let supp : Σ ։ L be the map that sends a face F to its linear span. Equivalently,
suppF is the intersection of the hyperplanes containing F . The support map satisfies
the property

suppFG = suppF ∨ suppG. (1.2)

Hence one may say that the support map is a semigroup homomorphism, with the product
in L given by the join.

Let C be a chamber. The support of a codimension one face of C is called a wall of
C. The set of walls of C is the unique minimal subset of hyperplanes which define C,
see [17, Chapter 1, Section 4B, Proposition 1].

Remark There are various axiomatic approaches to oriented matroids, one of which
uses covectors [14, Section 4.1.1]. In this approach, an oriented matroid is an appropriate
collection of sign sequences which are closed under the product in (1.1). In this context,
L is the underlying matroid obtained by forgetting the + and − signs, and Equation (1.2)
holds. This is summarized in [14, Proposition 4.1.13], which is attributed to Edmonds
and Mandel [63].

1.2.3 Spherical picture

The poset Σ has the structure of a regular cell complex homeomorphic to the sphere. This
is obtained by cutting the hyperplane arrangement by the unit sphere, and identifying
faces of the arrangement with cells on the sphere. The face F = {0} is not visible in the
spherical picture; it corresponds to the empty cell. In particular, the regular cell complex
so obtained is pure. If the arrangement is simplicial then Σ becomes a pure simplicial
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complex. As far as notation goes, we do not distinguish between the linear and spherical
models of Σ. The notions of Section 1.1 can now be applied to hyperplane arrangements,
and in this case, we can say a lot more.

1.2.4 Gate property and other facts

The cell complex Σ of an hyperplane arrangement is gallery connected. The gallery
distance dist(C,D) is equal to the number of hyperplanes which separate C and D. The
maximum gallery distance is dist(C,C), which is independent of C and equal to the
number of hyperplanes in the arrangement.

For chambers E,D,C ∈ C, let the notation E− . . .−D− . . .−C mean that there is a
minimum gallery from E to C passing through D. Sometimes we use the more compact
notation E −D − C. Then one can show that

E −D − C ⇐⇒
If a hyperplane H separates C and D

then it also separates E and C.
(1.3)

This fact implies that a minimum gallery from C to D can always be extended to a
minimum gallery C −D − C.

Proposition 1.2.1 The cell complex of faces of a central hyperplane arrangement sat-
isfies the gate property.

In fact, the gate of star(F ) when viewed from C is the chamber FC, obtained by
multiplying F and C using the product described in (1.1). This gives the combinatorial

F
C

FC

Figure 1.2: The projection map at work.

content of the geometry in the product on Σ. Namely, FC is the chamber closest to
C in the gallery metric having F as a face. This is shown in Figure 1.2. We call FC
the projection of C on F . The product in Σ can be recovered from the projection of
chambers by

FP =
⋂

C: P≤C

FC.

We call FP the projection of P on F .

1.3 Reflection arrangements

We review the basic facts that we need about a finite Coxeter group and its associated
simplicial complex. The foundations of this theory were laid down by Tits [99]. Details
can be found in Brown [17] and Mahajan [60]. The reader may also refer to Grove and
Benson [39], Humphreys [47] or Bourbaki [16]. The example of type An−1 is explained
in the next section.

1.3.1 Finite reflection groups

A finite reflection group W on a real inner product space V is a finite group of orthogonal
transformations of V generated by reflections sH with respect to hyperplanes H through
the origin. The set of hyperplanes H such that sH ∈ W is the reflection arrangement
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associated with W . This arrangement is central but not necessarily essential. In the
latter case, we can pass to an essential arrangement by taking the quotient of V by the
subspace obtained by intersecting all the hyperplanes. The regular cell complex Σ of this
essential arrangement is called the Coxeter complex of W . It turns out that the Coxeter
complex Σ is always a simplicial complex. Furthermore, the action of W on V induces
an action of W on Σ, and this action is simply transitive on the chambers. Thus the set
C of chambers can be identified with W , once a “fundamental chamber” C0 is chosen.
We write wC0 for the chamber corresponding to the element w of W .

The Coxeter complex has the structure of a semigroup given by (1.1), which commutes
with the group action. In other words,

w(FK) = w(F )w(K)

for w ∈ W and F,K ∈ Σ. This product appeared in the work of Tits on Coxeter
complexes and buildings [99, Section 2.30]. He used the notation projF G instead of FG,
since he viewed this operation as a geometric tool rather than as a product.

1.3.2 Types of faces

The number r of vertices of a chamber of Σ is called the rank of Σ (and of W ); thus the
dimension of Σ as a pure simplicial complex is r − 1. It is known that one can color the
vertices of Σ with r colors in such a way that vertices connected by an edge have distinct
colors. The color of a vertex is also called its label, or its type, and we denote the set of all
types by S. We can also define type(F ) for any F ∈ Σ; it is the subset of S consisting of
the types of the vertices of F . For example, every chamber has type S, while the empty
face has type ∅. The action of W is type-preserving; moreover, two faces are in the same
W -orbit if and only if they have the same type.

1.3.3 The Coxeter diagram

Choose a fundamental chamber C0. It is known that the reflections si in the facets of
C0 generate W . In fact, W has a presentation of the form

〈s1, . . . , sr | (sisj)
mij 〉 (1.4)

with mii = 1 and mij = mji ≥ 2. A group with a presentation of this form is called
a Coxeter group. The set of generators {s1, . . . , sr} is usually denoted S and one says
that the pair (W,S) is a Coxeter system. This terminology is due to Tits [99] and it
recognizes the fact that the class of finite groups with a presentation as above were first
studied by Coxeter [23]. With the condition of finiteness, it is the same as the class of
finite reflection groups defined earlier.

The data in a Coxeter system is conveniently encoded in a picture called the Coxeter
diagram of W . This diagram is a graph, with vertices and edges, defined as follows:
There are r vertices, one for each generator si, and the vertices corresponding to si and
sj are connected by an edge if and only if mij ≥ 3. If mij ≥ 4 then we simply label the
edge with the number mij . Figure 1.3 shows the Coxeter diagrams of type An−1 and Bn.

It is customary to use the generators of W , or equivalently, the vertices of the Coxeter
diagram to label the vertices of its Coxeter complex Σ. The rule is as follows.

A vertex of the fundamental chamber C0 is labeled si if it is fixed by all the fundamen-
tal reflections except si. Since W acts transitively on C and the action is type-preserving,
this determines the type of all the vertices of Σ.
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Type An−1 : ��������
s1

��������
s2

. . . ��������
sn−1

Type Bn : ��������
s1

��������
s2

. . . ��������
sn−1

��������4

sn

Figure 1.3: The Coxeter diagrams of type An−1 and Bn.

1.3.4 The distance map

We write l(w) for the minimum length of w expressed as a word using elements of S.
Then the gallery metric is given by

dist(uC0, vC0) = l(u−1v).

This further suggests that we can define the W -valued gallery distance function

d : C × C →W

by the formula

d(uC0, vC0) = u−1v.

It follows that this function is invariant under the diagonal action of W on C × C. In
other words,

d(C,D) = d(C′, D′) ⇐⇒ There exists a unique w such that wC = C′, wD = D′.

Also it is clear that

d(E,C) = d(E,D)d(D,C). (1.5)

The set C × C of pairs of chambers will play a central role in our theory.

1.3.5 The Bruhat order

We say that u ≤ v in the weak left Bruhat order on W if there is a minimum gallery
E −D − C such that d(D,C) = u and d(E,C) = v.

Alternatively,

u ≤ v in W ⇐⇒ There is a minimum gallery v−1C0 − u−1C0 − C0.

⇐⇒ There is a minimum gallery C0 − vu−1C0 − vC0.

The first gallery condition is illustrated in Figure 1.4. The second gallery above is ob-
tained from the first by multiplying by v.

u−1C0

v−1C0 C0

Figure 1.4: A minimum gallery that illustrates the partial order on W .
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By letting d(E,D) = w in the first definition above, one obtains a more combinatorial
description of the weak left Bruhat order. Namely,

u ≤ v ⇐⇒ v = wu and l(v) = l(w) + l(u).

The left in the notation refers to the fact that w appears to the left of u in the expression
v = wu.

One can define the weak right Bruhat order on W , denoted ≤rb, by the equation

u ≤rb v ⇐⇒ u−1 ≤ v−1.

The partial order ≤ will be used crucially in Chapters 5, 7 and 8, while the partial order
≤rb will only make a brief appearance in Chapter 7. Hence whenever we refer to the
partial order on W , it always means the weak left Bruhat order.

1.3.6 The descent algebra: A geometric approach

For a Coxeter system (W,S), let

Q = {T | T ≤ S}

be the poset of subsets of S ordered by inclusion. Let des : W → Q be the descent map

des(w) = {s ∈ S | l(ws) < l(w)}.

Let KW be the group algebra of W over the field K. Solomon [92] showed that the
elements

dT =
∑

des(w)≤T

w,

as T varies, give a basis for a subalgebra of KW . This subalgebra is known as the descent
algebra. Further Solomon also computed the radical of this algebra [92, Theorem 3]. A
geometric version of his result is given in Lemma 2.6.6.

Let Σ be the Coxeter complex of W and KΣ be its semigroup algebra. Let (KΣ)W

be the algebra of invariants of the W -action on KΣ. A basis for (KΣ)W is given by

σT =
∑

type(F )=T

F,

as T ranges over all subsets of S. Bidigare [11] proved that the map

(KΣ)W → KW,

that sends σT to dT is an algebra anti-homomorphism. It is easy to see that this map is
injective and its image is precisely the descent algebra. Hence (KΣ)W is anti-isomorphic
to the descent algebra. The proof, which is conceptual and short, is also explained in
Brown [18, Section 9.6].

1.3.7 Link and join

The relevance to us of the link and join operations on simplicial complexes is that Coxeter
complexes are well behaved with respect to these operations. The facts written below
will be crucially needed in Chapters 6, 7 and 8.
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Link

Let F ∈ Σ be a face of type T ≤ S. And let WS\T be the subgroup of W generated
by S \ T . Then the link of F in Σ, denoted link(F ), is again a Coxeter complex. The
Coxeter group of link(F ) can be viewed as a subgroup of W and it is a conjugate of
WS\T . A subgroup of W of this form is known as a parabolic subgroup. The Coxeter
diagram of link(F ) is obtained from the Coxeter diagram of Σ by deleting all the vertices
whose type is contained in T . The map

Σ→ link(F ),

that sends the face K to the face in link(F ) which corresponds to FK, is a semigroup
homomorphism. For convenience, we usually identify link(F ) with star(F ) and work with
the map Σ→ star(F ) that sends K to FK. This map also preserves opposites. Namely,
if K and K are opposite faces in Σ then FK and FK are opposite faces in star(F ).

Remark It is clear that if F and F ′ are faces of the same type then link(F ) ∼= link(F ′).

Join

The join Σ1 ∗ Σ2 of two Coxeter complexes is again a Coxeter complex, whose diagram
is the disjoint union of the diagrams of Σ1 and Σ2. Its Coxeter group is the cartesian
product of the two smaller Coxeter groups. Further, the join operation is compatible
with the projection maps and the distance map, that is,

(H1 ∗N1)(H2 ∗N2) = (H1H2 ∗N1N2), where Hi, Ni ∈ Σi.

d(C ∗ C′, D ∗D′) = (d(C,D), d(C′, D′)).

In addition, a minimum gallery in Σ1∗Σ2 yields a minimum gallery in Σ1 and a minimum
gallery in Σ2. And using the galleries in the two smaller complexes, one can reconstruct
the original gallery. We refer to this fact as the compatibility of galleries with joins.

1.4 The Coxeter group of type An−1

The symmetric group Sn on n letters can be generated by n − 1 transpositions s1, s2,
. . ., sn−1, where si interchanges i and i+ 1 and fixes the other letters. These generators
satisfy the relations

s2i = 1, (sisi+1)
3 = 1, (sisj)

2 = 1 if i and j differ by more than 1.

This gives rise to a presentation for Sn, which is of the form written in (1.4). Hence Sn
is a Coxeter group, which is also known as the Coxeter group of type An−1. Its Coxeter
diagram is shown in Figure 1.3.

1.4.1 The braid arrangement

The reflection arrangement in this case is the braid arrangement in R
n. It is discussed in

detail in [11, 12, 13, 19]. It consists of the
(
n
2

)
hyperplanes Hij defined by xi = xj , where

1 ≤ i < j ≤ n. The intersection of all these hyperplanes is the line x1 = x2 = . . . = xn;
so the arrangement is not essential. Each chamber is determined by an ordering of the
coordinates, so it corresponds to a permutation. The faces of a chamber are obtained by
changing to equalities some of the inequalities defining that chamber.

When n = 4, the arrangement consists of six planes in R
4. By taking the quotient

of R
4 by the line x1 = x2 = x3 = x4, and cutting by the unit sphere, we obtain the

spherical picture shown in Figure 1.5. It has been reproduced from Billera, Brown and
Diaconis [13]. As an example, the permutation 2314 corresponds to the inequality

x2 < x3 < x1 < x4.
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��
����

����

2413 2431

2341

23142134

2143

1243
1234

1324 3124

3214

3412

3421

3142
13421432

1423

3241

1−2

2−4

2−3

3−4

1−4

1−3

Figure 1.5: The braid arrangement when n = 4.

1.4.2 Types of faces

The symmetric group Sn acts on the braid arrangement by permuting the coordinates.
We fix x1 < x2 < . . . < xn to be the fundamental chamber C0. The supports of the
facets of C0 are hyperplanes of the form xi = xi+1, where 1 ≤ i ≤ n− 1. The reflection
in the hyperplane xi = xi+1 corresponds to the generator si of Sn that interchanges the
coordinates xi and xi+1. The chamber C0 has n− 1 vertices, namely

s1 : x1 < x2 = . . . = xn,

s2 : x1 = x2 < x3 = . . . = xn,
...

sn−1 : x1 = . . . = xn−1 < xn.

The letters s1, s2, . . ., sn−1 on the left are labels assigned to each vertex by the rule
mentioned in Section 1.3.3. Applying the action of W we see, for example, that

xπ(1) < xπ(2) = . . . = xπ(n)

gives all vertices of type s1 as π varies over the permutations of [n].

1.4.3 Set compositions and partitions

A composition of the set [n] is an ordered partition F 1| . . . |F k of [n]. That is, F 1, . . . , F k

are disjoint nonempty sets whose union is [n], and their order counts. We can encode the
system of equalities and inequalities defining a face by a composition of [n]; the equalities
are used to define the blocks and the inequalities to order them. For example, for n = 4,

x1 = x3 < x2 = x4 ←→ 13|24.

Thus the faces of Σ are compositions of the set [n]. Observe that the vertices of type s1
are two block compositions such that the first block is a singleton. Note that F is a face
of H if and only if H consists of a composition of F 1 followed by a composition of F 2,
and so on, that is, if and only if H is a refinement of F .

The product in Σ is also easy to describe in this language. We multiply two com-
positions by taking intersections and ordering them lexicographically; more precisely, if
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F = F 1| . . . |F l and H = H1| . . . |Hm, then

FH = (F 1 ∩H1| . . . |F 1 ∩Hm| . . . |F l ∩H1| . . . |F l ∩Hm) ,̂

where the hat means “delete empty intersections”. The 1-block composition is the iden-
tity for the product.

The lattice of flats L is the lattice of set partitions ordered by refinement. For example,
for n = 4,

x1 = x3, x2 = x4 ←→ {13, 24}.

The product or join of two set partitions is their smallest common refinement. More
precisely, we multiply partitions by taking intersections of the parts and deleting empty
intersections. The similarity between the product in Σ and L is explained by the support
map. The support map Σ ։ L forgets the ordering of the blocks. For example, for n = 4,
the support map sends the face 13|24 to {13, 24}.

Thus we see that set compositions and partitions emerge naturally in this example.
In fact, one can explain this example in purely combinatorial terms without reference to
hyperplane arrangements. More details are given in Section 5.4.

1.4.4 The Bruhat order

Let Inv(u) be the set of inversions of a permutation u ∈ Sn, that is,

Inv(u) := {(i, j) ∈ [n]× [n]
∣∣ i < j and u(i) > u(j)} .

The inversion set determines the permutation. Given u and v in Sn, we write u ≤ v if
Inv(u) ⊆ Inv(v). This gives the weak left Bruhat order on Sn.

Note that Inv(u) can be identified with the set of hyperplanes which separate C0 and
u−1C0, by letting the pair (i, j) correspond to the hyperplane xi = xj . As an illustrative
example, take u = 3|4|2|1. Then (1, 3) ∈ Inv(u). And note that the hyperplane x1 = x3

separates
x1 < x2 < x3 < x4 and x4 < x3 < x1 < x2,

which are the chambers C0 and u−1C0 respectively. Now using (1.3), one sees that the
above definition of the weak left Bruhat order is same as the gallery definition given
earlier.

3214 3142 2413 23414123 1432

3124 2143 1423 13422314

1324 1243

4213 4132 3412 24313241

4312 3421

1234

2134

4321

4231

Figure 1.6: The weak left Bruhat order on S4.

Figure 1.6, which is taken from [4], shows the partial order on S4. It can also be
drawn from Figure 1.5 by replacing each permutation by its inverse and drawing an edge
between adjacent chambers.



Chapter 2

Left regular bands

Left regular bands, or LRBs for short, are semigroups that have been of recent interest
in random walk theory. They are easy to define and work with and have a rich source of
examples. For more details, see the seminal paper of Brown [18]. The main example is the
poset of faces of a hyperplane arrangement defined in Section 1.2. The LRB terminology
we use is motivated by this example. Coxeter complexes fall in this category as they
arise from reflection arrangements. As a slightly more general example, we have the
poset of covectors of an oriented matroid. More information about LRBs can be found in
Grillet [38] and Petrich [76, 77]. The origin of LRBs can be traced to Schützenberger [90].

2.1 Why LRBs?

The main motivation for LRBs is that many of our results in Chapter 5 generalize to
LRBs. Coxeter complexes, and more generally, the poset of faces of a hyperplane ar-
rangement, to which most of the theory is applied, can be viewed as special cases. To
effect this generalization, one is forced to develop the standard theory of LRBs further.
We begin with the standard material in Section 2.2 and then present the new material
in Sections 2.3-2.7.

In Section 2.3, we introduce the concept of a pointed face. This notion will allow us
to properly formulate the adjointness properties of the descent map to be considered in
Chapter 5. Similarly, Section 2.4 on sub and quotient LRBs is motivated by the Hopf
algebra considerations in Chapter 6.

In Section 2.5, we define and study a bilinear form on any LRB Σ. This bilinear
form controls the commutativity in diagram (5.8), which we will encounter in Chapter 5.
We show that the radical of this form contains the radical of the semigroup algebra KΣ,
which was computed by Bidigare [11] and Brown [18]. Further we give a computable
criterion for the equality of radicals to hold.

In Section 2.6, we specialize to the case when Σ is the Coxeter complex of a Coxeter
group. In this situation, one can pass to invariants and induce a bilinear form on (KΣ)W ,
which can be identified with KQ defined in Section 1.3.6. We know that (KΣ)W is anti-
isomorphic to the descent algebra (Section 1.3.6). Following the method in Section 2.5,
we show that the radical of the above form contains the radical of the descent algebra.
Further we show that the two radicals are equal if the above mentioned criterion is
satisfied.

Some of our results in the second part of Chapter 5 generalize further to projection
posets, which is a notion that we introduce in Section 2.7. This allows us to consider
nonassociative structures like buildings and modular lattices.

11
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2.2 Faces and flats

The material in this section is taken from Brown [18, Appendix B]. In this section and
the next, we define the basic objects related to LRBs. Towards the end of each section,
we explain the examples of a hyperplane arrangement and the free LRB. The example of
the braid arrangement is explicitly worked out in Sections 1.4 and 5.4. The reader may
want to read these sections in parallel with the material below.

2.2.1 Faces

Let Σ be a left-regular band, or a LRB for short. It is a semigroup that satisfies the
identities

x2 = x and xyx = xy (2.1)

for all x, y ∈ Σ. Early references to this concept occur in Klein-Barmen [50] and
Schützenberger [90]. For simplicity, we assume that Σ is finite and has a unit. In this
case, the first identity follows from the second.

The relation
x ≤ y ⇐⇒ xy = y

defines a partial order on Σ. Elements of Σ are called faces and for x ≤ y, one says that
x is a face of y.

• If x ≤ y then zx ≤ zy for any z; however, xz ≤ yz may not hold.

• If there is z such that xz = y then x ≤ y. In other words, x is always a face of xz.

The above properties follow from the definitions. A complete list of properties which
we will need to use later is given in Section 2.7.2.

2.2.2 Flats

Define another relation � on Σ by x � y ⇐⇒ yx = y. This is transitive and reflexive,
but not necessarily antisymmetric. We therefore obtain a poset L by identifying x and y
if x � y and y � x. We denote the quotient map by supp: Σ ։ L. Then

yx = y ⇐⇒ suppx ≤ supp y

holds by definition. Elements of L are called flats. It follows that

xy = x and yx = y ⇐⇒ suppx = supp y. (2.2)

The support map is order preserving. To see this, suppose that x ≤ y, that is, xy = y.
Premultiplying by y and using Equation (2.1), we conclude that yx = y and hence
suppx ≤ supp y. Following [18, Appendix B], it can also be shown that L is a join
semilattice and that

suppxy = suppx ∨ supp y. (2.3)

In other words, the support map is a map of semigroups, with the product in L given by
the join.

2.2.3 Chambers

We call an element c ∈ Σ a chamber if supp c = 1̂, where 1̂ is the largest element of L.

Proposition 2.2.1 [18, Proposition 9] The following conditions on an element c ∈ Σ
are equivalent:
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1. c is a chamber.

2. cx = c for all x ∈ Σ.

3. c is maximal in the poset Σ.

For a partial generalization, see Lemma 2.7.6. Thus the set C of chambers consists
of the maximal elements of Σ and is a two sided ideal in Σ. Let Cx = {c ∈ C | x ≤ c}.
Observe the following.

Lemma 2.2.1 If xy = x and yx = y then there is a bijection Cx → Cy given by c 7→ yc

and with inverse d 7→ xd.

For a generalization of this result to projection posets, see Lemma 2.7.7.

2.2.4 Examples

Example The motivating example of a LRB is the poset of faces of a central hyperplane
arrangement, with the product as given in (1.1). The notion of flats and the support
map given by the LRB theory agree with those described in Section 1.2. The reader may
compare Equations (2.3) and (1.2).

Example The free LRB on n letters consists of words with no letter repetitions. The
product of u and v is the concatenation (uv) ,̂ where the hat means “delete the letters in
v that have occurred in u”. The empty word is the identity for this product. And u ≤ v
if u is an initial subword of v. The chambers are the permutations of the n letters. The
lattice of flats consists of subsets of the n letters, and the support map sends a word to
the subset of letters it contains.

2.3 Pointed faces and lunes

There is an analogue of Sections 2.2.1 and 2.2.2 with faces and flats replaced by pointed
faces and lunes respectively. Details are as below.

2.3.1 Pointed faces

Let Q = {(x, c) | x ≤ c} ⊆ Σ× C. Define a partial order on Q by

(x, c) ≤ (y, d) ⇐⇒ c = d and x ≤ y.

Elements of Q are called pointed faces.

2.3.2 Lunes

Define another relation � on Q by (x, c) � (y, d) ⇐⇒ yx = y and yc = d. This is
transitive and reflexive, but not necessarily antisymmetric. We therefore obtain a poset
Z by identifying (x, c) and (y, d) if (x, c) � (y, d) and (y, d) � (x, c). We denote the
quotient map by lune: Q ։ Z. Then

yx = y and yc = d ⇐⇒ lune(x, c) ≤ lune(y, d)

holds by definition. Elements of Z are called lunes and lune(x, c) is called the lune of x
and c. It follows that

xy = x, xd = c, yx = y and yc = d ⇐⇒ lune(x, c) = lune(y, d). (2.4)

The lune map is order preserving. To see this, suppose that (x, c) ≤ (y, c), that is, xy = y.
Argue as for the support map to conclude that yx = y and hence lune(x, c) ≤ lune(y, c).
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2.3.3 The relation of Q and Z with Σ and L

For a poset P , let KP be the vector space over K with basis the elements of P . Note that
KΣ and KL are semigroup algebras. The relation of Q and Z with Σ and L respectively
can be seen as follows. Define the map base : Q → Σ by (x, c) 7→ x and the map
base∗ : KΣ → KQ by x 7→

∑
c: x≤c

(x, c). These maps induce maps Z → L and KL → KZ

so that the following diagrams commute.

Σ

supp

����

Q
baseoo

lune

����
L Z

base
oo

KΣ
� � base∗ //

supp

����

KQ

lune

����
KL

base∗
//
KZ

(2.5)

Proof For the first diagram, we need to show that

lune(x, c) = lune(y, d) =⇒ suppx = supp y.

This follows from (2.2) and (2.4).
For the second diagram, we need to show that

suppx = supp y =⇒
∑

c∈Cx

lune(x, c) =
∑

d∈Cy

lune(y, d).

This follows from (2.2), (2.4) and Lemma 2.2.1.
�

2.3.4 Lunar regions

There is another approach one can take to lunes, which is closer to intuition and which
justifies the terminology. Namely, define a map reg : Q→ {R | R ⊆ Σ} by

reg(x, c) = {y | xy ≤ c}. (2.6)

The terminology R and reg(x, c) indicate that these are “regions” in Σ. We say that
reg(x, c) is the lunar region of x and c in Σ. Let Z′ be the image of the map reg. The
sets Z′ and Z are closely related; the precise relation between them is as follows.

Lemma 2.3.1 There is a commutative diagram

Q
lune

������
��

� reg

�� ��?
??

??

Z zone
// // Z′

Equivalently, by (2.4), for x ≤ c and y ≤ d, we have

xy = x, xd = c, yx = y and yc = d =⇒ reg(x, c) = reg(y, d). (2.7)

We call the induced map Z→ Z′ the zone map.

Proof Let x, y, c, d be as in the left hand side of (2.7). Now let z ∈ reg(x, c), that is,
xzc = c. Then

yzd = yxzyc = yxzc = yc = d.

For the first equality, we used y = yx and d = yc. For the second equality, we used
Equation (2.1). From the above equation, we conclude that z ∈ reg(y, d). This shows
that reg(x, c) ⊆ reg(y, d) and the result follows by symmetry.

�
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Open Question Identify the class of LRBs for which the zone map is a bijection; in
other words, for which the reverse implication in (2.7) holds.

We give a partial answer to this question. The zone map is a bijection for the poset
of faces of hyperplane arrangements, see Lemma 2.3.3. However, this fails for the free
LRB, see Section 2.3.5. In the general case, one can say the following.

reg(x, c) = reg(y, d) =⇒ reg(x, c) = reg(xy, c) = reg(y, d) = reg(yx, d). (2.8)

Note that reg(x, c) = reg(y, d) implies that y ∈ reg(x, c), that is, xy ≤ c. Hence the term
reg(xy, c) written above makes sense.

Proof By symmetry, it is enough to show that reg(x, c) = reg(xy, c). This follows by
the following string of equivalences.

z ∈ reg(xy, c) ⇐⇒ xyz ≤ c ⇐⇒ yz ∈ reg(x, c) ⇐⇒ yz ∈ reg(y, d)

yz ∈ reg(y, d) ⇐⇒ yyz ≤ d ⇐⇒ z ∈ reg(y, d) ⇐⇒ z ∈ reg(x, c)

The third and last equivalence hold by the assumption reg(x, c) = reg(y, d) and the rest
hold by the definition of a lunar region given in (2.6).

�

2.3.5 Examples

Example We return to the example of hyperplane arrangements and first describe the
set of lunar regions Z′. More material on lunes can be found in Billera, Brown and
Diaconis [13] or Mahajan [60, Chapter 1]. Just as an element of L is an intersection of
hyperplanes, an element of Z′ is an intersection of a special set of closed half-spaces.

Lemma 2.3.2 The lunar region of F and D, namely reg(F,D), is the intersection of
those closed half-spaces which contain D and whose supporting hyperplane contains F .
More precisely, reg(F,D) consists of those faces which lie in the above intersection.

Proof Using (1.1), we obtain:

FK ≤ D ⇐⇒
If a hyperplane H contains F then it
does not separate K and D.

The lemma now follows from the definition of a lunar region given in (2.6).

Remark We note that reg(F,D) is a chamber in the subarrangement consisting of
those hyperplanes which contain F . The walls of this chamber are same as the walls
of D which contain F . This requires an extra argument which we leave to the reader.
Hence reg(F,D) is in fact the intersection of those closed half-spaces which contain D

and whose supporting hyperplane contains F and is a wall of D.

Remark In the lemma below, we will identify lunes and lunar regions. Hence we may
say that the base of the lunar region reg(F,D) is suppF .

In Figure 2.1, we have shown two schematic spherical pictures for lunar regions in a
rank 3 arrangement. Note that hyperplanes in this case are great circles on the sphere.
In the first picture, F is a vertex of the two dimensional chamber D; hence there are two
supporting hyperplanes in question. The two great circles intersect at F and its opposite
vertex P , dividing the sphere into four regions. The region containing D is the lunar
region reg(F,D) and its base consists of the two vertices F and P .

In the second picture, F is an edge; hence there is only one supporting hyperplane
in question. It divides the sphere into two regions. The region containing D is the lunar



16 CHAPTER 2. LEFT REGULAR BANDS

P

P

F

F

C

C

D

D

Figure 2.1: Two low dimensional pictures of the lunar regions reg(P,C) = reg(F,D).

region reg(F,D) and its base is the hyperplane itself, which is shown as the ellipse passing
through F and P . For a more concrete example of a lunar region, see the shaded region
in Figure 7.2.

Lemma 2.3.3 For the poset of faces of a central hyperplane arrangement, the zone map
Z→ Z′ in Lemma 2.3.1 is a bijection.

Proof By (2.7) and (2.8), it is enough to show that

reg(F,D) = reg(FP,D) =⇒ F = FP,

where F and P are arbitrary faces with P ∈ reg(F,D).

Let reg(F,D) = reg(FP,D) and P be the opposite face to P . Since PP = P , we have
FPP = FP ≤ D. Hence by definition P ∈ reg(FP,D), which by assumption implies
P ∈ reg(F,D). Therefore we obtain FP, FP ≤ D. By applying the third elementary
property of the product listed in Section 1.2.1, we conclude that FP = FP = F .

�

Remark As one can see from the proof, the existence of an opposite makes central
hyperplane arrangements special among LRBs.

Example We return to the example of the free LRB on n letters. From the definition,
we have lune(x, c) = lune(y, d) if x and y contain the same letters and the subword of
c obtained by deleting the initial segment x is same as the subword of d obtained by
deleting the initial segment y. Thus the set Z can be identified with the set of words in
the n letters without repetition, which is the same as Σ. The lune map then sends the
pointed face (x, c) to the subword of c obtained by deleting the initial segment x. In this
notation, a word y is an element of zone(x) if the letters which are common to both x

and y form an initial segment of x. In particular, the zone of a one letter word is the
entire set Σ. This shows that the zone map is not injective. To give a concrete example,
take n = 3 and the letters to be x, y and z. Then

reg(xy, xyz) = reg(yz, yzx) but lune(xy, xyz) 6= lune(yz, yzx),

which says that zone(z) = zone(x).

2.4 Link and join of LRBs

In Chapter 6, we will construct Hopf algebras from the family of LRBs {Σn}n≥0, where
Σn is the Coxeter complex of Sn. In this section, we state two simple but useful lemmas
in the construction. They are valid for any LRB.
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2.4.1 SubLRB and quotient LRB

Let Σ be a LRB and Q, L and Z be as above. Let

Σx = {y ∈ Σ | x ≤ y}.

Then Σx is a LRB in its own right, which we may also call the link or star region of x in
Σ. Denote its corresponding objects by Qx, Lx and Zx respectively. Explicitly, we have

Qx = {(y, d) ∈ Q | x ≤ y ≤ d},

Lx = {X ∈ L | suppx ≤ X}, and

Zx = {lune(y, d) ∈ Z | x ≤ y ≤ d} = {L ∈ Z | suppx ≤ baseL}.

In addition to a subLRB, one can view Σx as a quotient LRB of Σ. The quotient map

x· : Σ ։ Σx

sends y to xy. This induces the map x· : Q ։ Qx which sends (y, d) to (xy, xd), the
map x· : L ։ Lx which sends X to X ∨ suppx, and the map x· : Z ։ Zx which sends
lune(y, d) to lune(xy, xd).

Lemma 2.4.1 The following diagrams commute.

Σx
� � //

supp

����

Σ
x· // //

supp

����

Σx

supp

����
Lx

� � // L x·
// // Lx

Qx
� � //

lune

����

Q
x· // //

lune

����

Qx

lune

����
Zx

� � // Z x·
// // Zx

The proof is a direct consequence of the definitions.

2.4.2 Product of LRBs

For i = 1, 2, let Σi be a LRB and Qi, Li and Zi be the associated objects. Then the
cartesian product Σ = Σ1 × Σ2 is a LRB with componentwise multiplication; we may
call Σ the join of Σ1 and Σ2.

Lemma 2.4.2 The associated posets of Σ = Σ1×Σ2 are Q = Q1×Q2, L = L1×L2 and
Z = Z1 × Z2.

2.5 Bilinear forms related to a LRB

In this section, we initiate a study of three bilinear forms related to a LRB. They are
defined on KQ, KΣ and KL respectively. The material in Sections 2.5.1-2.5.3, except
Lemma 2.5.1 and Corollary 2.5.1, generalizes to projection posets, which are defined in
Section 2.7.

2.5.1 The bilinear form on KQ

Define a symmetric bilinear form on KQ by

〈(x, c), (y, d)〉 =






1
if yc = d and xd = c, or equivalently,
if c ∈ reg(y, d) and d ∈ reg(x, c),

0 otherwise.
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In Figure 2.2, we have shown the schematic picture of two intersecting lunar regions.
It illustrates the case when 〈(P,C), (F,D)〉 = 1 for the poset of faces of a hyperplane
arrangement.

P
F

C
D

Figure 2.2: The pointed faces (P,C) and (F,D) lie in each other’s lunar regions.

Open Question The above form is degenerate in general. Compute its radical.

As a partial answer, we give one source of degeneracy in the Coxeter case. In this
case, by passing to invariants, we obtain an induced form on (KQ)W ∼= KQ, which we
show to be degenerate in Section 2.6. This implies by general principles that the original
form was also degenerate. For example, for T, U ≤ S, if T − U is in the radical of the
induced form then ∑

D∈C

(TD, D)− (UD, D) (2.9)

belongs to the radical of the original form. Here TD refers to the face of D which is of
type T .

Example For type A, the elements of Σ and Q are set compositions and fully nested
set compositions respectively, see Section 5.4. One can give an explicit combinatorial
definition for the bilinear form on KQ. We illustrate it by the following example.

〈(6|2|3|5|1|4|7), (4|6|7|2|5|1|3)〉 = 1.

This is because 6|2|3|5|1|4|7 is a shuffle of 4, 6|7, 2|5|1, 3 and 4|6|7|2|5|1|3 is a shuffle of
6|2|3, 5|1, 4|7. This should make the general definition clear. The reader can also play
with Figure 1.5 and match the geometric and combinatorial definitions for n = 4.

To obtain an element in the radical of this form, one can take T and U to be two
compositions, say (1, 2, 1) and (2, 1, 1), with the same underlying partition, and then use
formula (2.9).

2.5.2 The pairing between KQ and KΣ

Consider the diagram

KQ×KΣ
))SSSS

KΣ×KΣ

55kkkk

))SSSS KQ×KQ // K,

KΣ×KQ

55kkkk
(2.10)

induced by the map base∗ : KΣ → KQ given by x 7→
∑

c: x≤c
(x, c). The rightmost map is

the bilinear form defined in Section 2.5.1.
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Explicitly, the map KQ×KΣ→ K is given by

〈(x, c), y〉 =

{
1 if xyc = c, or equivalently, y ∈ reg(x, c),

0 otherwise.

From the definition of the map reg : Q→ Z′, we have the following.

Lemma 2.5.1 The kernel of the map reg : KQ→ KZ′ lies in the left radical of the map
KQ×KΣ→ K. Hence there is a commutative diagram

KQ×KΣ

��

**UUUUUUU

K

KZ′ ×KΣ

44iiiiiii

2.5.3 The bilinear form on KΣ

Note that diagram (2.10) defines a symmetric bilinear form on KΣ. It is given by

〈x, y〉Σ = |{(c, d) | xd = c, yc = d}|. (2.11)

There is an alternate way to define this bilinear form. For each x ∈ Σ, let cx = |Cx| be
the number of chambers c ∈ C such that c ≥ x. Define a linear map ζ : KΣ→ K by

ζ(x) = cx. (2.12)

Lemma 2.5.2 We have 〈x, y〉Σ = ζ(xy).

Proof Since supp(xy) = supp(yx), by Lemma 2.2.1, there is a bijection

bij : Cxy → Cyx

given by c 7→ yxc with inverse d 7→ xyd.
Let (C × C)x,y = {(c, d) | yc = d, xd = c}. Then

(c, d) ∈ (C × C)x,y ⇐⇒ c ∈ Cxy, d ∈ Cyx, bij(c) = d.

To see the forward implication, note that (c, d) ∈ (C × C)x,y implies y ≤ d and x ≤ c.
Hence yc = y(xc) = d. This says that yx ≤ d and bij(c) = d. Similarly xy ≤ c. The
backward implication is similar. This proves the lemma.

�

Corollary 2.5.1 The form 〈 , 〉Σ on KΣ is invariant. In other words,

〈x, yz〉Σ = 〈xy, z〉Σ.

2.5.4 The bilinear form on KL

The bilinear form on KΣ is far from being nondegenerate. We know from Lemma 2.2.1
that cx depends only on suppx. Hence for each X ∈ L, let cX be the number of chambers
c ∈ C such that c ≥ x, where x is any fixed element of Σ having support X . The map ζ
factors through KL giving a function ζ : KL→ K with

ζ(X) = cX . (2.13)

Now 〈x, y〉Σ = ζ(xy) = ζ(supp xy) = ζ(supp x ∨ supp y). This shows the following.
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Lemma 2.5.3 The form 〈 , 〉Σ : KΣ×KΣ→ K and the map ζ : KΣ→ K factor through
KL to give a form 〈 , 〉L : KL×KL→ K and a map ζ : KL→ K satisfying

〈X,Y 〉L = ζ(X ∨ Y ).

In other words, there are two commutative diagrams

KΣ×KΣ

supp× supp

��

**UUUUUUUUUU

K

KL×KL

44iiiiiiiiii

KΣ

supp

��

ζ

))SSSSSSSSS

K

KL
ζ

55kkkkkkkkk

2.5.5 The nondegeneracy of the form on KL

Now we discuss conditions under which the induced form 〈 , 〉L on KL is nondegenerate.

Definition 2.5.1 We define numbers nX by the equation

∑

X≤Y

nY = cX ,

for each X ∈ L. Equivalently, nX =
∑
X≤Y µ(X,Y )cY , where µ is the Möbius function

of the lattice L.

The numbers nX , in this generality, were defined by Brown. They are the generic
multiplicities of certain random walks on the chambers of a LRB, see [18, Theorem 1].
For the special case of hyperplane arrangements, nX = |µ(X, 1̂)|, where 1̂ is the maximum
element of L and µ is its Möbius function. This follows from a formula of Zaslavsky [101].
The connection of these numbers to random walks was first made by Bidigare, Hanlon
and Rockmore [11, 12].

Lemma 2.5.4 The semigroup algebra KL is split semisimple, that is, it is isomorphic
to a product of copies of K. Further, the form 〈 , 〉L : KL× KL → K is nondegenerate
⇐⇒ nX 6= 0 for each X ∈ L.

The first part is due to Solomon [91], see also Greene [37] and Stanley [93, Section 3.9].
It holds for any finite semilattice.

Proof Explicitly, for the first part, if K
L denotes the algebra of functions from L to K,

then there is an algebra isomorphism KL
∼=
−→ K

L given by X 7→
∑
X≤Y δY , where δY is

defined to be 1 at Y and 0 elsewhere.
For the second part, let qX be the element of KL, which corresponds to δX under this

isomorphism. Then qX are the orthogonal idempotents for the algebra KL. It follows
from Definition 2.5.1 that ζ(qX) = nX . We now compute the form 〈 , 〉L on the {qX}
basis.

〈qX , qY 〉L = ζ(qXqY ) = ζ(qX)δX,Y = nXδX,Y , (2.14)

where δX,Y denotes the Kronecker delta. The result follows.
�

Lemma 2.5.5 The kernel of the support map KΣ → KL is rad(KΣ), where rad(KΣ)
stands for the Jacobson radical of KΣ.

This result is due to Bidigare and Brown.
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Proof Bidigare [11] showed that for Σ arising from hyperplane arrangements, the kernel
of the support map KΣ→ KL is nilpotent. And since KL is semisimple, the result follows.
The same proof was generalized to LRBs by Brown [18, Section 7.2].

�

Corollary 2.5.2 We have nX 6= 0 for each X ∈ L ⇐⇒ rad〈 , 〉Σ = rad(KΣ).

This follows from the previous two lemmas and gives a computable criterion to check
equality of the radicals.

Open Question Identify the class of LRBs for which the above criterion holds.

It is known that the above criterion holds for Σ arising from hyperplane arrangements;
see Orlik and Terao [71, Theorem 2.47]. We thank Victor Reiner for this reference.
However one can check that the criterion fails for the free LRB. The reader who has
come this far may be convinced that free LRBs are good for producing counterexamples.

Example We recall that for type A, the elements of Σ and L are set compositions and
set partitions respectively.

If F = F 1|F 2| . . . |F k is a set composition then cF = f1!f2! . . . fk! where fi = |F i|.
Note that this depends only on the cardinalities of the F i and not on their order. In
other words, cF only depends on suppF = {F 1, F 2, . . . , F k}, as expected.

Using the formula for the Möbius function of the poset of set partitions, we obtain:

nX = |µ(X, 1̂)| = (x1 − 1)! . . . (xk − 1)!, (2.15)

where X = {X1, X2, . . . , Xk} and xi = |X i|. Note that nX 6= 0 for each X ∈ L, as
already claimed above.

Remark In the Coxeter case, the numbers nX are related to the invariant theory of
the Coxeter group W . If X is the minimum element of L, then nX = |µ(X, 1̂)| is the
product of the exponents of W , and hence in particular is nonzero. This is an old result
of Orlik and Solomon [70], see also Orlik and Terao [71, Corollary 6.62]. For any other
element X in the lattice, the interval [X, 1̂] is isomorphic to the intersection lattice for
another Coxeter group W ′, which is a parabolic subgroup of W ; hence the above result
applies.

2.6 Bilinear forms related to a Coxeter group

Let (W,S) be a Coxeter system and Σ be the Coxeter complex of W . Then the diagram

KQ ∼= (KΣ)W

supp

����

� � //
KΣ

supp

����
KL ∼= (KL)W

� � //
KL

commutes. In Section 2.5, we studied bilinear forms on KQ, KΣ and KL for any LRB
Σ. In the setting of Coxeter groups, it is clear that these forms are invariant under the
W -action, and hence induce symmetric bilinear forms on KQ ∼= (KQ)W ∼= (KΣ)W and
KL ∼= (KL)W . In this section, we study these two induced bilinear forms.

We have encountered the object Q in the context of the descent algebra (Section 1.3.6).
The object L is new; it is defined as the set of W -orbits in L. In fact, it has a partial
order which it inherits from L.
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2.6.1 The bilinear form on (KΣ)W

In this subsection, we give some interesting descriptions of the bilinear form on (KΣ)W .
We recall that a basis for (KΣ)W is given by

σT =
∑

type(F )=T

F,

as T ranges over all subsets of S.

Lemma 2.6.1 We have

1

|W |
〈σT , σU 〉 = |{w ∈ W | des(w) ≤ T, des(w−1) ≤ U}|.

Compare this equation with [4, Proposition 9.4].

Proof Consider the set

(C × C)T,U = {(C,D) | TCD = C and UDC = D},

where TC is the face of C of type T , and UD is the face of D of type U . It is clear that
this set is closed under the diagonal action of W on C × C. From (2.11), we see that the
left hand side of the above equation counts the number of W -orbits in this set. Further
note that each W -orbit can be indexed by an element w ∈W using the rule d(C,D) = w.
Hence one has to determine those w ∈ W , which occur as orbits in (C × C)T,U . This is
done by translating the condition on the projection maps into a condition on des(w) and
des(w−1). This will be the content of Proposition 5.3.2. This gives the right hand side
of the above equation.

�

Using Lemma 2.5.2, the bilinear form on (KΣ)W can be written as

〈σT , σU 〉 = ζ(σTσU ), (2.16)

where ζ is given by (2.12). Now write

σTσU =
∑

V≤S

αVTUσV .

Since (KΣ)W is anti-isomorphic to the descent algebra, the constants αVTU may also
be regarded as the structure constants of the descent algebra (Section 1.3.6). We now
describe the bilinear form using these constants.

Lemma 2.6.2 We have 〈σT , σU 〉 = |W |
∑
V≤S

αVTU .

Proof Using the above equations, we have 〈σT , σU 〉 =
∑
V≤S

αVTUζ(σV ). It remains to

show that
ζ(σV ) = |W | for all V ≤ S.

The left hand side counts pairs (F,D) with F ≤ D and typeF = V . Since every chamber
has a unique face of type V , this is same as the number of chambers, which is |W |.

�

Lemma 2.6.3 Let F ≤ H and typeF = T and typeH = V . Then αVTU counts the
number of faces N of type U such that FN = H.
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This lemma follows from the definition. Combining Lemmas 2.6.2 and 2.6.3 gives us
the following description.

Lemma 2.6.4 Let F ≤ D and typeF = T . Then

1

|W |
〈σT , σU 〉 = |{N ∈ reg(F,D) | typeN = U}|.

Note that the symmetry of the bilinear form is not at all clear from the right hand
side. Hence we can use the symmetry along with this lemma to derive a nontrivial result
about lunar regions as follows.

Corollary 2.6.1 The number of faces of type U in Σ, say fU , is equal to the number of
chambers in the lunar region reg(F,D), where F is any face of type U and F ≤ D.

This result is also implied by Mahajan [60, Lemma 5].

Proof Recall that S is the set of reflections and any chamber D is of type S. By the
symmetry of the bilinear form on (KΣ)W , we have

1

|W |
〈σS , σU 〉 =

1

|W |
〈σU , σS〉.

Now use Lemma 2.6.4 on both sides. Note that reg(D,D) = Σ. Hence the left hand side
is the number of faces of type U in Σ. And the right hand side is the number of chambers
in the lunar region reg(F,D), where F is any face of type U and F ≤ D.

�

2.6.2 The bilinear form on (KL)W and its nondegeneracy

It is clear that the bilinear form on (KΣ)W factors through the map (KΣ)W → (KL)W

to give a bilinear form 〈 , 〉 : (KL)W × (KL)W → K. In analogy with Lemma 2.5.4, one
can show:

Lemma 2.6.5 The algebra (KL)W is split semisimple. Further, the form 〈 , 〉 : (KL)W×
(KL)W → K is nondegenerate ⇐⇒ nX 6= 0 for each X ∈ L.

The proof is straightforward and is given in Lemma 5.7.1. The main step is to
construct a basis for (KL)W such that each basis element when viewed as an element of
KL is a sum of primitive idempotents.

Lemma 2.6.6 The kernel of the support map (KΣ)W → (KL)W is rad((KΣ)W ).

Proof The kernel is nilpotent because it sits inside rad(KΣ) which is nilpotent. And
since (KL)W is semisimple, the result follows.

�

The above result (phrased in a different language) was obtained by Solomon [92,
Theorem 3]. For other proofs and additional related results, see Atkinson [6], Garsia and
Reutenauer [32] and Krob, Leclerc and Thibon [51, Corollary 3.11]. A lift of the the
primitive idempotents of (KL)W to (KΣ)W is given by Bergeron, Bergeron, Howlett and
Taylor [7]. For a recent survey on the descent algebra, see Schocker [89].

The previous two lemmas give us the following corollary relating the radical of the
descent algebra to the radical of the bilinear form on it.

Corollary 2.6.2 We have nX 6= 0 for each X ∈ L ⇐⇒ rad〈 , 〉(KΣ)W = rad((KΣ)W ).

Note that the criterion for the equality of the radicals in the coinvariant case is the
same as the criterion obtained in Corollary 2.5.2.
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2.7 Projection posets

In this section, we introduce projection posets, which are more general than LRBs.
The main motivation is that some of our results hold in this generality. However, the
constructions of the objects L and Z are specific to LRBs; they do not generalize to
projection posets.

2.7.1 Definition and examples

Definition 2.7.1 A projection poset Σ is a poset with a (not necessarily associative)
product Σ× Σ→ Σ that satisfies:

(1) The product x1x2 . . . xn is well-defined if there exist y, z such that for every 1 ≤
i ≤ n, either xi ≤ y or xi ≤ z.

(2) y2 = y and yzy = yz.

(3) yz = z ⇐⇒ y ≤ z.

(4) The set of chambers (maximal elements) C is a left ideal in Σ.

Proposition 2.7.1 Every LRB is a projection poset.

Proof Since the product in a LRB is associative, x1x2 . . . xn is always well-defined; so
(1) holds. Property (2) holds by definition. The next two properties are a part of LRB
foundations, which were discussed in Section 2.2. Note that the definition of a LRB does
not involve any poset. The point is to first define a relation on a LRB using property (3)
and then to prove that it is a partial order.

�

A projection poset is not an empty generalization of a LRB. The generalization does
indeed give new examples.

Proposition 2.7.2 The poset of faces of a building and the order complex of a modular
lattice are projection posets.

Proof A building is a simplicial complex obtained by gluing together Coxeter com-
plexes. These Coxeter complexes are called the apartments of the building. For a building
∆, given y, z ∈ ∆, one can always choose an apartment containing y and z. Details can
be found in Brown [17]. Tits defined a product (not necessarily associative) on the poset
of faces of a building [99, Section 3.19]. One way to describe the product yz is to first
choose an apartment containing y and z, and then take the product in that apartment.

Readers may now readily see the origin of property (1). Namely, one can choose an
apartment containing the elements x1, x2, . . . , xn. The product x1x2 . . . xn is then well-
defined because the product within an apartment is associative. Similarly, buildings also
satisfy properties (2)− (4). All of them involve at most two distinct elements, hence one
can always choose an apartment containing them and argue as above.

In [1], Abels showed that the order complex of any modular lattice behaves like the
building of type A. The role of apartments is played by distributive lattices. The order
complex of a distributive lattice corresponds to a convex set of chambers in the braid
arrangement [1, Proposition 2.5]. Hence it is an example of a LRB; in particular, its
product is associative. The same argument as for buildings then shows that the order
complex of a modular lattice is a projection poset.

�

The examples in the proposition above were referred to as nonassociative LRBs in
Mahajan [60, Chapter 1], where related material can be found.
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2.7.2 Elementary facts

We now generalize some known facts about LRBs to projection posets. These facts,
though elementary, are important. They will allow us to use projection posets as the
basis for an axiomatic treatment of Hopf algebras in Chapter 6.

Lemma 2.7.1 We have y ≤ yz.

Proof By property (1), we know that yyz is well-defined. By property (2), we have
y2 = y; hence y(yz) = (yy)z = yz. Now, applying property (3), we obtain y ≤ yz.

�

Lemma 2.7.2 If y ≤ z then zy = z.

Proof Let y ≤ z. Then by property (3), we have yz = z. Premultiplying by z, we get
zyz = z2. Property (3) now implies that zy = z.

�

Lemma 2.7.3 If x ≤ y ≤ z and xw = z then yw = z.

Proof This follows from the sequence of equalities yw = yxw = yz = z. The first
equality uses Lemma 2.7.2.

�

Lemma 2.7.4 An element ∅ is the identity in Σ if and only if ∅ is the unique minimal
element in Σ.

Proof From property (3), we have

∅x = x for all x ⇐⇒ ∅ ≤ x for all x.

Also by Lemma 2.7.2, if ∅ ≤ x for all x then x∅ = x for all x.
�

Lemma 2.7.5 If y ≤ z then xy ≤ xz.

Proof Let y ≤ z. Then xyxz is well-defined by property (1). By properties (2) and
(3), we have xyxz = xyz = xz. Therefore, we get xy(xz) = xz, which by property (3)
says that xy ≤ xz.

�

The set of chambers C in Σ can also be characterized using the product in Σ as below,
also see Proposition 2.2.1.

Lemma 2.7.6 We have that c is a chamber in Σ ⇐⇒ cx = c for all x ∈ Σ.

Proof For the forward implication, note by Lemma 2.7.1 that c ≤ cx for all x, c ∈ Σ;
so if c is maximal then c = cx for all x ∈ Σ. Conversely, if cx = c for all x ∈ Σ then c is
maximal because c ≤ x =⇒ cx = x =⇒ c = x.

�

Let Cx = {c ∈ C | x ≤ c}. The following is a generalization of Lemma 2.2.1.

Lemma 2.7.7 If xy = x and yx = y then there is a bijection Cx → Cy given by c 7→ yc

and with inverse d 7→ xd.
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Proof By property (4), we know that the maps in the lemma are well-defined. We want
to show that they are inverse to each other. By symmetry, it is enough to show that for
x ≤ c, we have x(yc) = c. By property (1), we know that xyc is well-defined. Further,
from assumption and property (3), we get xyc = xc = c.

�

Corollary 2.7.1 There is a bijection Cxy → Cyx given by c 7→ yxc with inverse d 7→ xyd.

Proof By property (1), we know that yxxy is well-defined and by property (2), we have
yxxy = yx. Similarly, we have xyyx = xy. The assertion now follows from the previous
lemma.

�

Lemma 2.7.8 Let y ≤ z. Then

xz ≤ c ⇐⇒ xy ≤ c and yxz ≤ yc.

This result will be crucially used in Chapter 6, see the corollary to Proposition 6.4.5. If
z is a chamber, say d, then we may say

xd = c ⇐⇒ xy ≤ c and yxd = yc.

This result will be used in Proposition 6.5.6.

Proof Since y ≤ z, by Lemma 2.7.5, we get xy ≤ xz. The forward implication is easy.
Let xz ≤ c. Then using the above inequality, xy ≤ xz ≤ c. This proves one part. And
by Lemma 2.7.5, we have yxz ≤ yc, which proves the second part.

Conversely, let xy ≤ c and yxz ≤ yc. From Lemma 2.7.5 and the second assumption,
we have xyxz ≤ xyc. Note that since y ≤ z and x ≤ c, both sides are well-defined by
property (1). Further by properties (2) and (3), we have xyxz = xyz = xz. And by the
first assumption and property (3), we have xyc = c. Hence xz ≤ c.

�



Chapter 3

Hopf algebras

For the definition of a Hopf algebra and basic examples, the reader may refer to Kas-
sel [49], Montgomery [65] or Sweedler [95]. Roughly a Hopf algebra is a vector space with
a product and a unit, a coproduct and a counit and an antipode; the structures being
compatible in an appropriate sense.

Our Hopf algebras will have linear bases indexed by combinatorial objects of various
kinds. The study of Hopf algebras of this type was initiated by Joni and Rota [48] and
continued by Schmitt [87, 88], Ehrenborg [29] and others.

3.1 Hopf algebras

In this section, we review the notions of cofree graded coalgebras, coradical filtration and
antipode, which are relevant to us. The material is directly taken from [4].

3.1.1 Cofree graded coalgebras

Let V be a vector space over K and set

Q(V ) :=
⊕

k≥0

V ⊗k .

The space Q(V ), graded by k, becomes a graded coalgebra with the deconcatenation
coproduct

∆(v1 ⊗ . . .⊗ vk) =

k∑

i=0

(v1 ⊗ · · · ⊗ vi)⊗ (vi+1 ⊗ · · · ⊗ vk) , (3.1)

and counit ǫ(v1 ⊗ · · · ⊗ vk) = 0 for k ≥ 1. The coalgebra Q(V ) is connected, in the sense
that the component of degree 0 is identified with the base field via ǫ.

We call Q(V ) the cofree graded coalgebra cogenerated by V . The canonical projection
π : Q(V ) → V satisfies the following universal property. Given a graded coalgebra
C = ⊕k≥0C

k and a linear map ϕ : C → V where ϕ(Ck) = 0 when k 6= 1, there is a
unique morphism of graded coalgebras ϕ̂ : C → Q(V ) such that the following diagram
commutes

C
ϕ̂ //_______

ϕ
  A

AA
AA

AA
A Q(V )

π
||zz

zz
zz

zz

V

Explicitly, ϕ̂ is defined by
ϕ̂|

Ck
= ϕ⊗k∆(k−1) ,

27
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where ∆(k−1) is the iterated coproduct explained in Section 3.1.3. In particular,

ϕ̂|C0
= ǫ, ϕ̂|C1

= ϕ, and ϕ̂|C2
= (ϕ⊗ ϕ)∆.

For more explanation, see Sweedler [95, Lemma 12.2.7]. For a more general result, see
Quillen [79, Appendix B] and Loday and Ronco [55].

3.1.2 The coradical filtration

Let C be a graded connected coalgebra. The coradical C(0) of C is the 1-dimensional
component in degree 0 (identified with the base field via the counit). The primitive
elements of C are

P (C) := {x ∈ C | ∆(x) = x⊗ 1 + 1⊗ x} .

Set C(1) := C(0) ⊕ P (C), the first level of the coradical filtration. More generally, the
k-th level of the coradical filtration is

C(k) :=
(
∆(k)

)−1
( ∑

i+j=k

C⊗i ⊗ C(0) ⊗ C⊗j
)
.

We have C(0) ⊆ C(1) ⊆ C(2) ⊆ · · · ⊆ C =
⋃
k≥0 C

(k), and

∆(C(k)) ⊆
∑

i+j=k

C(i) ⊗ C(j) .

Thus, the coradical filtration measures the complexity of iterated coproducts.
Suppose now that C is the cofree graded coalgebra Q(V ). Then the space of primitive

elements is just V , and the k-th level of the coradical filtration is ⊕ki=0V
⊗i. These are

straightforward consequences of the definition of the deconcatenation coproduct.

3.1.3 Antipode

There is a general formula for the antipode of a graded connected Hopf algebra H , due
to Takeuchi [96, Lemma 14] (see also Milnor and Moore [64]). Let H be an arbitrary
bialgebra with structure maps: multiplication m : H ⊗H → H , unit u : K→ H , comul-
tiplication ∆: H → H ⊗H , and counit ǫ : H → K. Set m(1) = m, ∆(1) = ∆, and for any
k ≥ 2,

m(k) = m(m(k−1) ⊗ id) : H⊗k+1 → H, and

∆(k) = (∆(k−1) ⊗ id)∆ : H → H⊗k+1 .

These are the higher or iterated products and coproducts. We also set

m(−1) = u : K→ H,

∆(−1) = ǫ : H → K, and

m(0) = ∆(0) = id: H → H .

If f : H → H is any linear map, the convolution powers of f are, for any k ≥ 0,

f∗k = m(k−1)f⊗k∆(k−1) .

In particular, f∗0 = uǫ and f∗1 = f .
We set π := id−uǫ. If π is locally nilpotent with respect to convolution, then id =

uǫ+ π is invertible with respect to convolution, with inverse

S =
∑

k≥0

(−π)∗k =
∑

k≥0

(−1)km(k−1)π⊗k∆(k−1) . (3.2)
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This is certainly the case if H is a graded connected bialgebra, in which case π annihilates
the component of degree 0 (and hence π∗k annihilates components of degree < k). Thus
Equation (3.2) is a general formula for the antipode of a graded connected Hopf algebra.

In general, the interest is in finding an explicit formula for the structure constants of
the antipode, which formula (3.2) does not always give because many cancellations often
take place. This problem won’t be pursued in the examples we will consider.

3.2 Hopf algebras: Examples

We are interested in the following diagram of connected graded Hopf algebras that relates
the Hopf algebra of permutations SΛ and the Hopf algebra of symmetric functions Λ,
noncommutative symmetric functions NΛ and quasi-symmetric functions QΛ.

NΛ
� � //

����

SΛ

����
Λ

� � // QΛ

KQ
n � � //

����

KSn

����

KL
n � � //

K(Q
n
)∗

(3.3)

The diagram on the right shows the nth graded pieces of these Hopf algebras. For P a
set, we write KP for the vector space over K with basis the elements of P , and KP ∗ for
its dual space. The three sets, namely L

n
, Q

n
and Sn, and also the structure of these

Hopf algebras, are summarized in Table 3.1.

Table 3.1: Hopf algebras, their indexing sets and structure.

Hopf algebra Indexing set Comm. Cocomm. Structure

Λ L
n

= partitions of n Yes Yes Self-dual, free comm. and cofree cocomm.

QΛ Q
n

= compositions of n Yes No Free comm. and cofree

NΛ Q
n

= compositions of n No Yes Free and cofree cocomm.

SΛ Sn = permutations of n No No Self-dual, free and cofree

The Hopf algebra SΛ defined by Malvenuto [61] will be adequately dealt in Chapter 7.
In this section, we explain the remaining three Hopf algebras. For a recent survey on
related topics, see Hazewinkel [42, 43]. For an extensive theory and applications to
representation theory of the symmetric group, see Blessenohl and Schocker [15].

3.2.1 The Hopf algebra Λ

The Hopf algebra Λ of symmetric functions is most often viewed as a subalgebra of the
algebra of formal power series in countably many variables x1, x2, . . . . Details can be
found in Fulton [31], Macdonald [59], Sagan [84] and Stanley [94]. However, we treat Λ
as an intrinsic object.

Definition 3.2.1 A partition λ = (λ1, λ2, . . . , λk) of n is a nonincreasing finite sequence
of positive integers which add up to n. We write parts(λ) for the number of parts in λ.
We denote partitions by the letters λ, µ and ρ.

We say that λ ≤ µ if µ refines λ, that is, µ is obtained by refining each part in λ

and then rearranging the parts in descending order. This defines a partial order on L
n
,

the set of partitions of n. We warn the reader that this is different from the standard
containment or dominance partial orders on partitions.
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A false-shuffle of partitions λ and µ is a shuffle of the components of λ written is
some order and the components of µ written is some order. For example, (2,1, 3, 1,3,1)
is a false-shuffle of (3, 2, 1) and (3,1,1).

A shuffle of partitions λ and µ is a false-shuffle of λ and µ, whose entries are nonin-
creasing. For example, (3,3, 2, 1,1,1) and (3, 3, 2,1, 1,1) are distinct shuffles of (3, 2, 1)
and (3,1,1).

A quasi-shuffle of partitions λ and µ is a false-shuffle of λ and µ, where in addition we
may replace any number of pairs of consecutive components (λi, µj) in the false-shuffle
by λi + µj , and the resulting entries are nonincreasing. For example, (3, 3, 1 + 1, 2,1) is
a quasi-shuffle of (3, 2, 1) and (3,1,1).

The space Λ is equipped with a variety of basis, all indexed by partitions. We will
mainly deal with the monomial m basis, the homogeneous h basis and the power sum
p basis. The change of bases matrices can be found in the references mentioned above.
The product in the h and p basis is given by

hλhµ = hλ⊔µ and pλpµ = pλ⊔µ,

where ⊔ denotes the union as multisets. This follows because the h and p basis are
defined by

hλ = h(λ1)h(λ2) . . . h(λk) and pλ = p(λ1)p(λ2) . . . p(λk)

for λ = (λ1, λ2, . . . , λk). It is true that p(i) = m(i) for all i; however mλ is defined
differently from pλ. The product in the m basis is given by

mλmµ =
∑

ρ: ρ a quasi-shuffle of λ and µ

mρ.

Remark The definition of a quasi-shuffle is concocted so that the above formula holds.
Note that the definition is a little complicated and involves ordering the components of
the partitions, which is not so natural.

There are two ways in which one can make things easier. One way is to work with QΛ,
the Hopf algebra of ordered partitions or compositions (Section 3.2.2). The definition
of a quasi-shuffle for compositions is much simpler. Another way is to work with Π,
the Hopf algebra of set partitions (Section 6.2.10). The definition of a quasi-shuffle for
set partitions is also simple, and more importantly, can be given without ordering the
components of the partitions.

The coalgebra structure of Λ was first pointed out by Geissinger [34] who also showed
that Λ is a self-dual Hopf algebra. The isomorphism of Λ with its dual is via the standard
inner product on Λ with the m and h as dual bases. The Hopf algebra viewpoint on sym-
metric functions can be found in Zelevinsky [102]. As an algebra, Λ is free commutative
on h(1), h(2), . . .. The formula

∆(h(n)) =
n∑

i=0

h(i) ⊗ h(n−i), (3.4)

extended as an algebra map defines the coproduct on Λ. The reader may write down the
general expression for ∆(hλ). It is clear that Λ is both commutative and cocommutative.
Hence Λ is the cofree graded connected cocommutative coalgebra cogenerated by P (Λ)
by the Milnor-Moore theorem, see [64, Theorem 5.18] or Quillen [79, Theorem 4.5].

Remark The cofreeness of Λ is in the category of cocommutative coalgebras, and hence
a little different from the setup in Section 3.1.1.
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On the m basis, the coproduct is as follows.

∆(mλ) =
∑

mµ ⊗mρ,

where the sum is over all ordered pairs (µ, ρ) such that µ ⊔ ρ = λ as multisets. It is
clear that m(1), m(2), . . . forms a basis for the space of primitive elements of Λ. Since
p(i) = m(i) for all i, the p(i)’s are primitive. One can now check that the coproduct on
the p basis has the same expression as on the m basis.

The antipode of Λ is given by the formulas

S(pλ) = (−1)parts(λ) pλ, S(mλ) = (−1)parts(λ)
∑

µ≤λ

cλµmµ ,

where parts(λ) is the number of parts of λ, the partial order on partitions is as given
in Definition 3.2.1, and cλµ is the number of compositions with underlying partition λ,
which refine µ.

3.2.2 The Hopf algebra QΛ

Quasi-symmetric functions QΛ were introduced by Gessel [36] as a subalgebra of the
algebra of formal power series in countably many variables x1, x2, . . . (although with
hindsight one can recognize them in work of Cartier [20]). A discussion can be found
in Stanley [94, Section 7.19], Reutenauer [82, Section 9.4] and Bertet, Krob, Morvan,
Novelli, Phan and Thibon [10]. The Hopf algebra structure of QΛ was introduced by
Malvenuto [61, Section 4.1]. The description of the product in some form or another can
be found in Cartier [20, Formula (7)], Hoffman [46], Hazewinkel [41] and Ehrenborg [29,
Lemma 3.3]. We recall some standard notions.

Definition 3.2.2 A composition α = (α1, α2, . . . , αk) of n is a finite sequence of positive
integers which add up to n. If we replace positive by nonnegative, then we get a weak
composition. We denote compositions by the letters α, β and γ.

We say that α ≤ β if β refines α. This defines a partial order on Q
n
, the set of

compositions of n.
A shuffle of compositions α and β is a shuffle of the components of α and β. For

example, (3,4,2, 5,7, 2, 8) is a shuffle of (3, 5, 2, 8) and (4,2,7).
A quasi-shuffle of compositions α and β is a shuffle of the components of α and β,

where in addition we may replace any number of pairs of consecutive components (αi, βj)
in the shuffle by αi + βj . For example, (1 + 4,1, 3 + 1, 2,2) is a quasi-shuffle of (1, 3, 2)
and (4,1,1,2).

For a composition α, we let supp(α) denote the underlying partition of α.

The Hopf algebra QΛ has two well-known basis, the monomial basis Mα and the
fundamental basis Fα, both indexed by compositions. They are related by the equation

Fα =
∑

α≤β

Mβ.

The inclusion map Λ→ QΛ sends

mλ 7→
∑

α: supp(α)=λ

Mα (3.5)

The Hopf algebra structure of QΛ on the M basis is defined as below. The formulas on
the F basis are discussed in Section 8.4.

∆(M(α1,α2,...,αk)) =

k∑

i=0

M(α1,...,αi) ⊗M(αi+1,...,αk)



32 CHAPTER 3. HOPF ALGEBRAS

Comparing the coproduct with Equation (3.1) shows that QΛ is a cofree graded coalgebra,
with Mα graded by the number of parts in α.

Mα ∗Mβ =
∑

γ: γ a quasi-shuffle of α and β

Mγ .

We would like to clarify a small point about the definition of this product. The terms
(1 + 4,1, 3 + 1, 2,2) and (1 + 4,1, 3 + 1,2, 2) are both distinct quasi-shuffles of (1, 3, 2)
and (4,1,1,2), though they have the same underlying composition. Hence M(5,1,4,2,2,)

appears with a coefficient of 2 in the product M(1,3,2) ∗M(4,1,1,2).
One may now check directly that Λ is a subHopf algebra of QΛ. The antipode of QΛ

is given by the formula

S(Mα) = (−1)parts(α)
∑

β≤α

Mβ ,

where parts(α) is the number of parts of α, and if β = (β1, β2, . . . , βk) then β is β written
in reverse order (βk, . . . , β2, β1).

3.2.3 The Hopf algebra NΛ

The Hopf algebra NΛ was introduced as a noncommutative analog of symmetric func-
tions by Gelfand, Krob, Lascoux, Leclerc, Retakh and Thibon [35]. Accordingly, it can
be viewed as a subalgebra of the algebra of formal power series in countably many non-
commutative variables. This object has been the center of intense activity; the lecture
notes by Thibon [98] may be a good place to start. There is a series of papers on this
topic [51, 28, 53, 54, 26, 27], apart from numerous other references.

In analogy with Λ, one can define the complete H basis for NΛ, again indexed by
compositions. The product in NΛ in the H basis is given by

Hα ∗Hβ = H(α,β).

It is then clear that NΛ is free on H(1), H(2), . . .. The coproduct is again defined by
Equation (3.4), with H instead of h, and extended as an algebra map. Explicitly,

∆(Hγ) =
∑

Hα ⊗Hβ ,

the sum being over pairs (α̂, β̂) of weak compositions such that α̂ and β̂ do not have a 0

in the same place, γ = α̂+ β̂, and deleting the 0 entries gives α and β.
One may check that NΛ is a graded Hopf algebra with the above product and coprod-

uct. The cofreeness of NΛ as a graded connected cocommutative coalgebra follows from
the Milnor-Moore theorem again. The primitive elements are described in [35, Proposi-
tion 3.10] and [62]. In the latter paper, Malvenuto and Reutenauer identify the primitive
elements with a free Lie algebra. To mention another fact, the Hopf algebra NΛ has an
internal product which is isomorphic to the product in the descent algebra of type A
[36, 62, 35].

3.2.4 The duality between QΛ and NΛ

One may observe that NΛ is the graded Hopf algebra dual of QΛ, with the H being the
dual of the M basis, see [35, 62]. Hence by duality, QΛ is free as a commutative algebra
over K. Hazewinkel has shown that in fact QΛ is free over the integers [40]. It is also
clear that the map NΛ → Λ which sends Hα to Hsupp(α) is a map of Hopf algebras and
is dual to the one in (3.5). It is natural to consider the dual of the F basis of QΛ; we
call this the K basis of NΛ. The product and coproduct formulas in the K basis can be
written by dualizing the formulas in the F basis which are given in Section 8.4.



Chapter 4

A brief overview

We briefly summarize the contents of the second part of the monograph.

4.1 Abstract: Chapter 5

In Chapter 5, we initiate a systematic study of the descent theory for Coxeter groups.
This brings to the fore two posets, namely C×C and Q, which are defined in terms of the
Coxeter complex Σ associated to a Coxeter system (W,S). We have already encountered
the poset Q in Section 2.2 in the more general context of LRBs. The poset C×C consisting
of pairs of chambers is more specific to the Coxeter case. Its partial order mimics the
weak left Bruhat order on W .

The descent theory consists of three order preserving maps denoted Road, GRoad
and Θ that relate the two posets C × C and Q. The maps themselves are related to one
another in an interesting way, namely, Road and GRoad are the left and right adjoints
to Θ respectively. The arguments in the proofs involve repeated use of the gate property
satisfied by Σ (Proposition 1.2.1).

C × C

Road

��

GRoad

@@ Q
Θoo W

des

��

gdes

AA Q
θoo

Figure 4.1: The descent theory.

The Coxeter group W acts on C × C and Q and also on the maps relating them. By
taking W -coinvariants, we obtain maps denoted des, gdes and θ that relate the posets W
under the weak left Bruhat order and Q = {T | T ≤ S} under subset inclusion. These
are shown in Figure 4.1. This gives us the notion of descent and global descent of an
element of W . The map des, already defined in Section 1.3.6, is standard while the map
gdes is new. It generalizes the notion of global descent of a permutation [4].

Let KΣ be the semigroup algebra over K with basis the elements of Σ. The radical of
this algebra is well understood (Lemma 2.5.5). Its semisimple quotient is KL, where L is
the poset of flats of Σ. In Section 2.5, we defined a symmetric and invariant bilinear form
on KΣ. In the second part of Chapter 5, we will see how this form emerges naturally
from descent theory. The relation between the radical of the form and the radical of the
algebra was given in Corollary 2.5.2.
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KΣ
� � //

����

KQ
� � // K(C × C)∗

����
KQ∗

����
KL

� � //
KΣ∗

KQ
� � //

����

KW

����

KL
� � // K(Q)∗

Figure 4.2: The commutative diagrams.

The bilinear form on KΣ allows us to define a commutative diagram that relates KΣ,
KQ, K(C × C), KL and their duals. A part of this diagram is shown in Figure 4.2 on
the left. The composite map from KΣ to KΣ∗ is the one induced by the bilinear form
on KΣ. By taking W -coinvariants, we obtain a quotient diagram, which is shown on the
right. For type A, this coincides with the right part of diagram (3.3).

The abstract setting enables us to generalize some of the results by replacing Σ by
a left regular band (Chapter 2). In order to incorporate nonassociative examples like
buildings and modular lattices, we generalize even further to projection posets, which is
a notion that we introduced in Section 2.7.

4.2 Abstract: Chapter 6

In Chapter 6, we study how Hopf algebras enter in this context. We start with the
family of symmetric groups Sn, for n ≥ 0. For each n, we have the corresponding objects
denoted KΣn, KQn, K(Cn×Cn) and so on and the commutative diagram relating them,
shown in Figure 4.2. By taking the direct sum over all n, we obtain a diagram of graded
vector spaces, a part of which is shown on the left below in Figure 4.3.

MΠ
� � //

����

NΠ
� � // SΠ

����
QΠ

����
Π

� � // PΠ

NΛ
� � //

����

SΛ

����
Λ

� � // QΛ

Figure 4.3: The external commutative diagrams.

We put a graded Hopf algebra structure on each object in the diagram on the left
and then show that all the maps are in fact morphisms of Hopf algebras. The semigroup
structure of Σ plays an important role in the definition of these Hopf algebras, as well as
in the proofs. The combinatorial structures that arise in this theory are set partitions, set
compositions, pairs of permutations and so on. We have seen some of this in Section 1.4.
To achieve more clarity, we write down abstract algebra and coalgebra axioms for a family
of projection posets and show that the above example is then a special case.

Following the philosophy of Chapter 5, we take the coinvariant quotient of the di-
agram on the left. This yields the diagram on the right, which we have met before
(Diagram (3.3)).
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4.3 Abstract: Chapters 7 and 8

In Chapter 7, we give an application of our methods. Namely, we study the Hopf algebra

SΠ = ⊕
n≥0

K(Cn × Cn)∗,

indexed by pairs of permutations that is introduced in Chapter 6. In particular, we show
that it is free and cofree. The method of proof is similar to the one used in [4] to study
the Hopf algebra SΛ of permutations. Namely, we compute the product and coproduct of
SΠ in different bases. A notable difference is our extensive use of the semigroup structure
of Σ. The above two Hopf algebras are related. Namely, there is a quotient map from
SΠ to SΛ. Using this map, one obtains some known as well as new results on SΛ.

In Chapter 8, in a similar way, we study and relate the Hopf algebra QΠ, also intro-
duced in Chapter 6, and the Hopf algebra QΛ of quasi-symmetric functions.
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Chapter 5

The descent theory for Coxeter

groups

5.1 Introduction

In this chapter, we initiate a systematic study of a generalized descent theory for finite
Coxeter groups. We construct a commutative diagram involving interesting objects re-
lated to Coxeter groups, which is central to the study of some Hopf algebras of recent
interest. The connection with Hopf algebras will be treated in detail in the next chapters.
The current chapter is divided into two parts, whose contents we summarize briefly.

5.1.1 The first part: Sections 5.2-5.5

Standard material

Let Sn be the symmetric group on n letters and regard it as a poset under the weak left
Bruhat order. Let Q

n
denote the poset of subsets of [n − 1] under inclusion. It is the

same as the poset of compositions of length n under refinement. In [4], Aguiar and Sottile
considered two order preserving maps des, gdes : Sn ։ Q

n
that map a permutation to

its descent and global descent set respectively. Further they considered a third order
preserving map θ : Q

n
→֒ Sn and showed that the maps des and gdes are the left and

right adjoints respectively to θ. They used these ideas to study SΛ, the graded Hopf
algebra of permutations introduced by Malvenuto [61].

In the first part of this chapter, we generalize the above results to any finite Coxeter
group W . The papers by Reading [81, 80] generalize these ideas in a different direction
from the one we take.

New material

The picture so far should be regarded as existing on the W -invariant-coinvariant level,
and which can be derived from a more fundamental picture. Accordingly, in Section 5.2,
we define three maps Road, GRoad and Θ and develop a descent theory. In particular,
we show that the maps Road and GRoad are the left and right adjoints respectively to
Θ. We refer to this as the lifted picture. The motivation for the “road” terminology is
also given in Section 5.2.

The maps Road, GRoad and Θ commute with the action of the Coxeter group W ,
and by moding out the action, one recovers the original maps, namely, des, gdes and θ.
This philosophy is summarized in Proposition 5.2.1. The descriptions of the maps des,
gdes and θ are given in Section 5.3. The notion of shuffles for arbitrary Coxeter groups is
well-known (minimal coset representatives of parabolic subgroups), see Humphreys [47,
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Section 1.10]. In Section 5.3, we discuss this notion, but from a geometric viewpoint.

In Sections 5.4 and 5.5, we discuss the examples of type An−1 and A
×(n−1)
1 in explicit

combinatorial terms.
The advantage of working with the lifted picture is both greater generality and con-

ceptual clarity. For example, for the most part, the Coxeter group W is not necessary for
the lifted picture and one may work with any central hyperplane arrangement. However
there are problems if one wants to generalize further to left regular bands, see the open
question at the end of Section 5.2.

5.1.2 The second part: Sections 5.6-5.7

Standard material

The Hopf algebra of permutations SΛ of Malvenuto [61] is related to three other graded
Hopf algebras by a commutative diagram as follows.

NΛ
� � //

����

SΛ

����
Λ

� � // QΛ

(5.1)

where Λ, QΛ and NΛ are the Hopf algebras of symmetric functions [34, 102], quasi-
symmetric functions [36, 61, 46] and noncommutative symmetric functions [35] respec-
tively. For more details, see Section 3.2.

For P a poset, let KP be the vector space over the field K with basis the elements
of P , and let KP ∗ be its dual space. The maps des, gdes and θ play a key role in the
definition of the maps in diagram (5.1). The vector spaces in degree n of these graded
Hopf algebras are as follows.

KQ
n � � //

����

KSn

����

KL
n � � // K(Q

n
)∗

(5.2)

Here L
n

is the poset of partitions of n, with partial order as given in Definition 3.2.1.

New material

Let (W,S) be a Coxeter system and let Σ be its Coxeter complex. In the second part of
this chapter, we construct a commutative diagram as above for any Coxeter group W ,
see diagram (5.17) in Section 5.7. It is a slightly expanded form of diagram (5.2). We
replace Sn by W , and Q

n
by

Q = {T | T ≤ S},

and L
n

by something appropriate, see Section 5.2.3. The main tool in the construction is
a bilinear form on KQ. However, we mention that the construction of the Hopf algebras
in diagram (5.1) is special to the example of type A, the symmetric groups.

In the summary of the first part of the chapter above, we mentioned that the maps
des, gdes and θ can be derived from more fundamental maps, namely Road, GRoad
and Θ respectively. We continue with this philosophy in the second part of the chapter.
Namely, in Section 5.6, we define the commutative diagram (5.8) to go along with these
lifted maps. In this case, the commutativity in the lifted diagram (5.8) is controlled by a
bilinear form on KΣ. Note that the W -orbits in Σ can be identified with Q. By moding
out the action of W , we recover diagram (5.17). In particular, for the example of type
An−1, one can view diagram (5.2) as a quotient of a more fundamental diagram.
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As in the first part, the lifted picture works for any central hyperplane arrangement.
However, in contrast to the first part, the second part generalizes to LRBs in a satisfactory
way. And a part of it generalizes further to projection posets.

5.2 The descent theory for Coxeter groups

In this section and the next, we present the descent theory for any Coxeter group W , as
was outlined briefly in the introduction.

5.2.1 Preliminaries

We recall some definitions and facts from Chapter 1. Let (W,S) be a Coxeter system and
Σ be the Coxeter complex of W . Then the Coxeter complex Σ is a chamber complex, that
is, a gallery connected pure simplicial complex. It follows that Σ is a meet semilattice
with the partial order given by face inclusion and the meet of F and G given by their
intersection F ∩G. Further Σ has the structure of a semigroup. For F,G ∈ Σ, we call the
product FG as the projection of G on F . Let C be the set of chambers in Σ. Then C is a
two sided ideal in Σ. We use the letters C, D and E to denote chambers. Associated to
Σ is a lattice L and an order preserving surjective map supp : Σ ։ L, called the support
map, such that

suppFG = suppF ∨ suppG.

Let
Q = {(F,D) | F ≤ D} ⊆ Σ× C and Q = {T | T ≤ S}.

The Coxeter group W acts on Σ and hence on C, the set of chambers in Σ. Further the
action on C is simply transitive. The action of W induces diagonal actions on C × C and
Q. Let d : C × C ։ W and type : Q ։ Q, where d is the distance map and type maps
(F,D) to the type of the face F . These maps are invariant under the W -action on C × C
and Σ respectively. In fact, we get induced isomorphisms

(C × C)W
∼=
−→W and ΣW

∼=
−→ Q

from the respective spaces of orbits. The notation —W refers to the set of W -orbits in
—.

5.2.2 Summary

We now summarize the content of this section and the next section.

Proposition 5.2.1 The following diagrams commute.

C × C
d // //

Road
����

W

des
����

Q
type

// // Q

C × C
d // //

GRoad
����

W

gdes
����

Q
type

// // Q

C × C
d // // W

Q
type

// //

Θ

OO

Q

θ

OO

(5.3)

All objects are posets and all maps are order preserving.

Note on the proof In Section 5.2.4, we define three partial orders each on C × C and
Q. The ones relevant to this proposition are ≤ and �. The partial order on W is the
weak left Bruhat order and on Q is subset inclusion.

In Sections 5.2.5-5.2.7, we define the maps Road, GRoad and Θ respectively and
show that they are order preserving for ≤ and �. It is clear from the definitions that
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they commute with the action of the Coxeter group W . Hence we get induced order
preserving maps on the orbit spaces des, gdes : (C ×C)W → QW and θ : QW → (C×C)W .
In Lemmas 5.2.1 and 5.2.2, we show respectively that the maps d and type are order
preserving, and that the identifications

(C × C)W
∼=
−→W and ΣW

∼=
−→ Q

are in fact poset isomorphisms. This yields the right hand columns of diagram (5.3).
They are described in detail in Section 5.3.

2

In Section 5.2.3, we discuss the objects Z and L that are used in the second part
of the chapter. In Sections 5.2.4-5.2.7, we discuss the various aspects in the proof of
Proposition 5.2.1 as explained above. In Section 5.2.8, we show that the maps Road
and GRoad are the left and right adjoints respectively to Θ (Proposition 5.2.5). We
also consider the maps Des and GDes, which are obtained from Road and GRoad by
composing with the projection Q ։ Σ on the first coordinate. By construction, it
follows that the maps des and gdes are the left and right adjoints respectively to θ

(Proposition 5.3.5). As mentioned in the introduction, for the symmetric group Sn, this
result was obtained in [4].

Remark The reader may omit the discussion pertaining to the partial orders ≤′ and
� on a first reading of this section.

5.2.3 The posets Z and L

Associated to Q is a poset Z and an order preserving surjective map lune : Q ։ Z.
The partial order ≤ on Q is the one relevant to this statement. This is explained in the
general setting of a LRB in Section 2.3. The construction of Z from Q is analogous to the
construction of the poset of flats L from Σ. Further the map base : Q → Σ that sends
(F,D) to F induces a map base : Z→ L.

Σ

type %% %%KK
KK

KK
KK

supp

����

Q
baseoooo

typeyyyysss
ss

ss
s

lune

����

Q

����

L

&& &&LLLLLLLL Zoooo

xxxxrrrrrrrr

L

(5.4)

Note that QW
∼= ΣW ∼= Q as posets. Similarly, it is true that ZW ∼= LW . We call

this quotient poset L. The map Q→ L in diagram (5.4) is the induced map on the orbit
spaces from both the supp and lune maps.

5.2.4 The partial orders on C × C and Q

Recall that the Coxeter group W acts simply transitively on the set of chambers C. Fix
a fundamental chamber C0 in Σ and use it as a reference point to identify C with W .
We use the notation discussed in Section 1.3 that wC0 is the chamber that corresponds
to w ∈W . Note that d(C0, wC0) = w.

Definition 5.2.1 Let ≤ be the weak left Bruhat order on W . Define a partial order on
the set C by

uC0 ≤b vC0 in C ⇐⇒ u ≤ v in W.
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The subscript “b” stands for Bruhat.

Notation As mentioned in Chapter 1, the notation C2 −C1 −D indicates a minimum
gallery C2 − . . .− C1 − . . .−D from C2 to D passing through C1.

Definition 5.2.2 We define three partial orders on C × C.

(C1, D1) ≤ (C2, D2) ⇐⇒ D1 = D2 = D and C2 − C1 −D.

⇐⇒ D1 = D2 = D and d(C1, D1) ≤ d(C2, D2).

(C1, D1) ≤′ (C2, D2) ⇐⇒ D1 ≤b D2 and d(C1, D1) = d(C2, D2).

(C1, D1) � (C2, D2) ⇐⇒ ∃E ∋ (C1, D1) ≤ (E,D1) and (E,D1) ≤′ (C2, D2).

C1

C2 D

Figure 5.1: A minimum gallery that illustrates the partial order ≤ on C × C.

We make some elementary observations.

• In the definition of �, only one E can satisfy the required condition; namely the
one that satisfies d(E,D1) = d(C2, D2).

• Unlike ≤, the partial orders ≤′ and � depend on the choice of the fundamental
chamber C0, since they involve the partial order ≤b.

• It is clear that (C1, D1) ≤ (C2, D2) implies (C1, D1) � (C2, D2). The converse is of
course not true. However if (C1, D1) � (C2, D2) then there exists a unique element,
say (E,D1), in the same W -orbit as (C2, D2) for which (C1, D1) ≤ (E,D1). We
conclude that ≤ and � induce the same partial order on (C × C)W .

Lemma 5.2.1 For the partial orders ≤, ≤′ and � on C × C, the map d : C × C →W is
order preserving. This induces a poset map (C ×C)W →W , which is a set isomorphism.
And for ≤ and �, the induced map is, in fact, a poset isomorphism.

Proof For ≤ and ≤′, it is clear that d is order preserving; compare Figures 1.4 and 5.1.
And these two facts imply that d is order preserving for � as well.

In view of the third observation made above, it is enough to prove the second claim
for ≤. Note that, as a poset, C ×C is made of |W | disjoint components. Each component
is obtained by fixing the second coordinate and varying the first. Further W acts simply
transitively on the set of components, and d maps each component isomorphically onto
W as a poset. This proves the second claim for ≤.

�

Remark In Chapter 7, we will use the partial orders ≤ and � to study the structure
of the Hopf algebra SΠ of pairs of permutations. This provides a separate motivation.
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Definition 5.2.3 Let Q = {(F,D) | F ≤ D} ⊆ Σ×C be the set of pointed faces. Define
three partial orders on Q as follows.

(F1, D1) ≤ (F2, D2) ⇐⇒ D1 = D2 and F1 ≤ F2.

(F1, D1) ≤′ (F2, D2) ⇐⇒ D1 ≤b D2 and typeF1 = typeF2.

(F1, D1) � (F2, D2) ⇐⇒ ∃H ∋ (F1, D1) ≤ (H,D1) and (H,D1) ≤′ (F2, D2).

In analogy with C × C, we make the following observations.

• In the definition of �, only one H can satisfy the required condition; namely the
face of D1 whose type is the same as that of F2.

• Unlike ≤, the partial orders ≤′ and � depend on the choice of the fundamental
chamber C0.

• It is clear that (F1, D1) ≤ (F2, D2) implies (F1, D1) � (F2, D2). The converse
is not true. However if (F1, D1) � (F2, D2) then there exists a unique element,
say (H,D1), in the same W -orbit as (F2, D2) for which (F1, D1) ≤ (H,D1). We
conclude that ≤ and � induce the same partial order on QW .

Let type : Q → Q map (F,D) to the type of the face F . It is invariant under the

W -action on Q and there is an induced isomorphism QW

∼=
−→ Q of sets.

Lemma 5.2.2 For the partial orders ≤, ≤′ and � on Q, the map type : Q→ Q is order
preserving. This induces a poset map QW → Q, which is a set isomorphism. And for ≤
and �, the induced map is, in fact, a poset isomorphism.

The proof is along the same lines as that for Lemma 5.2.1.

5.2.5 The map Road

We begin by explaining the notion of a descent.

Definition 5.2.4 The chamber D has a descent with respect to the chamber C at a
vertex v of D if there is a minimal gallery from C to D that passes through the facet
D\v in the final step, that is, if the support ofD\v separates C and D. This is illustrated
in Figure 5.2.

vC DE

D \ v

Figure 5.2: The chamber D has a descent with respect to the chamber C at v.

And Des(C,D) is the face ofD spanned by the vertices v ofD at whichD has a descent
with respect to C. This defines a map Des : C × C → Σ and a map Road : C × C → Q by

Road(C,D) = (Des(C,D), D).

Remark One may say that Asc(C,D) = D \ Des(C,D) consists of those vertices v at
which D has an ascent with respect to C. In this sense, the map Road keeps both the
descent and the ascent information; hence the name.
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Descent sets can be characterized in terms of the semigroup structure on Σ as follows.

Proposition 5.2.2 Given chambers C,D and a face F ≤ D, we have

FC = D ⇐⇒ Des(C,D) ≤ F.

Thus Des(C,D) is the smallest face F ≤ D such that FC = D.

The above observation is due to Brown [18, Proposition 4].

Lemma 5.2.3 For ≤ and �, the map Road : C × C → Q is order preserving.

Proof We prove the lemma only for the partial order ≤. Let (C1, D) ≤ (C2, D) and
v ≤ Des(C1, D). To prove the lemma, we need to show that v ≤ Des(C2, D).

The first assumption gives a minimum gallery C2− . . .−C1− . . .−D and the second

gives a minimum gallery C1− . . .−E
D\v

D. Replacing the second part of the first gallery

by the second gallery, one obtains a minimum gallery C2− . . .−C1− . . .−E
D\v

D. This
shows that v ≤ Des(C2, D).

�

5.2.6 The map GRoad

Next we introduce global descents. This notion is meaningful only when W is finite.
Recall that in this case, there exists the notion of opposite faces. Let − : Σ → Σ be the
opposite map that sends a face F to its opposite face F .

Definition 5.2.5 The chamber D has a global descent with respect to the chamber C
at the vertex v of D if, for every chamber E ∈ star(v), the star region of v, there is a
minimal gallery from C to E that passes through the facet E \ v in the final step.

And GDes(C,D) is the face of D spanned by the vertices v of D at which D has a
global descent with respect to C. This defines a map GDes : C × C → Σ and a map
GRoad : C × C → Q by

GRoad(C,D) = (GDes(C,D), D).

Note that by definition GDes(C,D) ≤ Des(C,D).

v

C

D

E C

Figure 5.3: The chamber D has a global descent with respect to the chamber C at v.

Proposition 5.2.3 We have GDes(C,D) = D ∩ C.

Proof Suppose that D has a global descent with respect to C at v, see Figure 5.3. The
definition implies that all chambers in star(v) have a descent (and global descent) with
respect to C at v. The fact mentioned after Equation (1.3) now implies that the opposite
chamber C ∈ star(v).

Conversely, if C ∈ star(v) then the convexity of star(v) implies that all chambers in
star(v) have a descent with respect to C at v.
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Lemma 5.2.4 For ≤ and �, the map GRoad : C × C → Q is order preserving.

Proof We only prove the lemma for the partial order ≤. Let (C1, D) ≤ (C2, D) and
v ≤ GDes(C1, D) = D ∩ C1, that is, D,C1 ∈ star(v). To prove the lemma, we need to
show that C2 ∈ star(v).

v

C1

C2

D

C1

C2

D

v

The first assumption gives a minimum gallery C2 − . . . − C1 − . . . − D, which we can
extend to D − . . .− C2 − . . .− C1 − . . .−D. Hence by restriction, we have a minimum
gallery D− . . .−C2 − . . .−C1 such that D,C1 ∈ star(v). The convexity of a star region
now implies that C2 ∈ star(v).

�

5.2.7 The map Θ

Next we introduce the map Θ. We continue to assume that W is finite. We first prove a
preliminary fact.

Fact 5.2.1 Let F ≤ D and C be any chamber. Then

FD − C −D ⇐⇒ FC = D ⇐⇒ C ∈ reg(F,D).

The last equivalence is just the definition of reg(F,D), which is the lunar region of F
and D, as given in (2.6).

F F

H

C

DFD

Figure 5.4: A chamber C in the lunar region reg(F,D).

Proof The first equivalence is a consequence of the following three statements.

FC = D ⇐⇒
If a hyperplane H separates C and D

then it does not pass through F .

H separates FD and D ⇐⇒ H does not pass through F.

FD − C −D ⇐⇒
If a hyperplane H separates C and D

then it also separates FD and D.

Figure 5.4 shows the lunar region reg(F,D) and illustrates the situation in all the state-
ments above. For the first two statements, one can argue with sign sequences using (1.1).
The third statement is same as (1.3).

�
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Definition 5.2.6 Let Θ : Q → C × C, where for F,D fixed, Θ(F,D) is the maximal
element of the poset {(C,D) | FC = D} in the partial order ≤ on C × C.

For Θ to be well-defined, we need to show that there is a unique maximum. First
note that FFD = FD = D. Hence (FD,D) ∈ {(C,D) | FC = D}. Now Fact 5.2.1
implies that (FD,D) is the maximal element in {(C,D) | FC = D} in the partial order
≤ on C × C. We have shown the following.

Proposition 5.2.4 We have Θ(F,D) = (FD,D).

C D
F

CF

We also have (C,D) = Θ(F,D) ⇐⇒ (D,C) = Θ(F,C).

It follows from the gate property and the above proposition that:

Lemma 5.2.5 For ≤ and �, the map Θ : Q→ C × C is order preserving.

5.2.8 Connection among the three maps

Proposition 5.2.5 For ≤ and �, the maps Road and GRoad are the left and right
adjoints respectively to Θ. In other words,

(i) Road(C,D) ≤ (F,D) ⇐⇒ (C,D) ≤ Θ(F,D).

(ii) (F,D) ≤ GRoad(C,D) ⇐⇒ Θ(F,D) ≤ (C,D).

And the same statement with ≤ replaced by �.

Proof We prove the proposition only for the partial order ≤. Note that the result for
� can be deduced using the result for ≤. To see (i), note that

Road(C,D) ≤ (F,D) ⇐⇒ FC = D ⇐⇒ (C,D) ≤ Θ(F,D). (5.5)

The first equivalence follows from Proposition 5.2.2 and the second from Fact 5.2.1 and
Proposition 5.2.4.

To see (ii), note that

(F,D) ≤ GRoad(C,D) ⇐⇒ F ≤ C ⇐⇒ F ≤ C

⇐⇒ D − C − FD −D ⇐⇒ C − FD −D

⇐⇒ Θ(F,D) ≤ (C,D).

The first equivalence is by Proposition 5.2.3. For the third equivalence, we use the gate
property in one direction and the convexity of star(F ) and F ≤ D in the other direction.
For the fourth equivalence, we use the fact mentioned after Equation (1.3). And for the
last equivalence, we use Proposition 5.2.4.

�

Proposition 5.2.6 The map Θ is a section to both Road and GRoad. In particular, it
implies that Θ is injective and Road and GRoad are surjective.
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Proof Let (C,D) = Θ(F,D). Then by Proposition 5.2.5,

Road(C,D) ≤ (F,D) ≤ GRoad(C,D).

However by definition, GRoad(C,D) ≤ Road(C,D). Hence

Road(Θ(F,D)) = (F,D) = GRoad(Θ(F,D)),

which proves the proposition.
�

Remark It is clear that many results in this section hold for hyperplane arrangements.
The objects W , Q, and L and the maps involving them, for example d and type, are
special to the Coxeter case. The remaining part, with the exception of the partial orders
≤′ and �, is valid for any central hyperplane arrangement.

Open Question It is not clear how to generalize the results in this section to LRBs.
The problem starts right with defining the descent map. For that, one needs to assume
that a LRB satisfies the projection axiom (P2). These projection axioms were defined in
Mahajan [60, Chapter 1, page 15]. They are not to be confused with the axioms that we
will define in Chapter 6. Formulate the correct abstract framework to define descents,
global descents and so forth.

5.3 The coinvariant descent theory for Coxeter groups

Let l : W → Z be the length function. In the previous section, we proved the existence
of the maps des, gdes : W → Q and θ : Q → W . In Sections 5.3.1-5.3.3, we explicitly
describe these maps. As expected, they have very similar descriptions to the ones for
the maps Des,GDes and Θ. In Section 5.3.4, we deduce that the maps des and gdes
are the left and right adjoints respectively to θ. In the rest of the section, we look at
some additional results. In Section 5.3.5, we discuss shuffles, and in Section 5.3.6, we
consider some sets that show up in the product in the M basis of the Hopf algebra of
permutations SΛ. The later part will be relevant to Chapter 7.

Notation For T ≤ S and D ∈ C, it is convenient to write TD for the face of D of type
T .

5.3.1 The map des

Let C,D ∈ C be such that d(C,D) = w. Then by definition, des(w) is the type of the
face Des(C,D). Let E ∈ C be such that d(D,E) = s. Hence from Equation (1.5), we
have d(C,E) = ws. Then in analogy with Definition 5.2.4, one can say:

The element w ∈W has a descent at s ∈ S if there is a minimum gallery C −E −D,
or equivalently, if l(ws) < l(w). In other words:

Proposition 5.3.1 We have des(w) = {s ∈ S | l(ws) < l(w)}.

Thus, we recover the familiar notion of descent. Alternatively, from Proposition 5.2.2:

Proposition 5.3.2 Let C,D ∈ C and T ≤ S. Further let d(C,D) = w and TD be the
face of D of type T . Then

TDC = D ⇐⇒ des(w) ≤ T.
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sC0 wC0wsC0

Figure 5.5: A descent at s for an element w ∈ W .

Since d(C0, wC0) = w, we can take for example C = C0 and D = wC0 and say that
des(w) is the type of the face Des(C0, wC0). In analogy with Definition 5.2.4, one says:

The element w ∈W has a descent at s ∈ S if there is a minimum gallery from C0 to
wC0 passing through wsC0. This is illustrated in Figure 5.5.

Alternatively, from the above proposition, des(w) is the type of the smallest face F
such that FC0 = wC0.

Remark Following our earlier terminology, one should denote the map des by the term
“road”. However in this particular case, such a distinction is not necessary because by
taking complement in the set S, the descent and ascent sets determine each other.

5.3.2 The map gdes

Let C,D ∈ C be such that d(C,D) = w. Then by definition, gdes(w) is the type of the
face GDes(C,D). Since d(C0, wC0) = w, we can take C = C0 and D = wC0 and say
that gdes(w) is the type of the face GDes(C0, wC0). Applying Definition 5.2.5 gives us
the following.

Let v be the vertex of wC0 of type s. Then the element w ∈ W has a global descent
at s ∈ S if s ∈ des(u) for every uC0 ∈ star(v).

s

C0

C0

uC0 wC0

Figure 5.6: A global descent at s for an element w ∈W .

The chambers in star(v) are characterized by the set {wzC0 | z is any word written
using generators other than s}. Hence w ∈ W has a global descent at s ∈ S if l(wzs) <
l(wz), for any word z written using generators other than s.

Proposition 5.3.3 We have gdes(w) = {s ∈ S | l(wzs) < l(wz) for any word z written
using generators other than s}.

5.3.3 The map θ

Let θ : Q→W be the map induced from Θ : Q→ C×C. The analogy with Definition 5.2.6
is given later in Proposition 5.3.7. In analogy with Proposition 5.3.4, one can say:

Proposition 5.3.4 For T ∈ Q, let TD be the face of type T of D. Then θ : Q → W is
given by T 7→ θ(T ) where θ(T ) = d(TDD,D).
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Corollary 5.3.1 For T ∈ Q, let TC0
be the face of type T of C0. Then θ : Q → W is

given by T 7→ θ(T ) where

θ(T ) = d(C0, TC0
C0), or equivalently, θ(T )C0 = TC0

C0.

C0 T
C0

C0

T
C0

C0T
C0

Proof Take D = TC0
C0 in the previous proposition. The face TD of type T of D is

TC0
. Hence TC0

D = TC0
TC0

C0 = TC0
C0 = C0.

�

Remark It may not be true that TC0
= TC0

, where TC0
is the face of type T of C0.

This is because the opposite map does not preserve types in general.

C0
C0

Figure 5.7: The image of the θ map in rank 3.

The corollary says that except for C0, the image of the map θ viewed as distance
from C0, is concentrated around C0. Alternatively, it isolates a set of “long” elements of
W . Consider the rank 3 case when W has 3 generators. The image of the θ map then
consists of 23 = 8 chambers. A schematic picture for that is shown in Figure 5.7.

5.3.4 Connection among the three maps

The map d : C × C → W has a section given by w 7→ (w−1C0, C0). Similarly, the map
type : Q → Q has a section given by T 7→ (TC0

, C0), where TC0
is the face of type T of

C0. Further, both the sections are order preserving for each of the partial orders ≤ and
�.

Note that the second coordinate in the image of both maps is always C0. Further,
the maps Road, GRoad and Θ preserve the second coordinate. Since the action of W
is simply transitive on C, and W and Q are the orbit spaces of C × C and Q respectively,
we obtain three commutative diagrams.

C × C

Road
����

W?
_oo

des
����

Q Q?
_oo

C × C

GRoad
����

W?
_oo

gdes
����

Q Q?
_oo

C × C W?
_oo

Q

Θ

OO

Q?
_oo

θ

OO

(5.6)

Using diagrams (5.3) and (5.6), now Propositions 5.2.5 and 5.2.6 yield the following
corollaries respectively.
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Proposition 5.3.5 The maps des and gdes are the left and right adjoints respectively to
θ. In other words,

(i) des(w) ≤ T ⇐⇒ w ≤ θ(T ).

(ii) T ≤ gdes(w) ⇐⇒ θ(T ) ≤ w.

Proposition 5.3.6 The map θ is a section to both des and gdes.

5.3.5 Shuffles

This subsection is optional. By using the map des, we define the notion of shuffles for a
Coxeter group. We then describe it by more geometric objects and explain how the map
θ fits into the picture. The motivation for the terminology comes from the example of
type An−1 given in Section 5.4.6.

Definition 5.3.1 For T ≤ S, define the set of T -shuffles by

ShT = {σ ∈W | des σ ≤ T }.

Let ΣT be the set of faces in Σ of type T . For a fixed T ≤ S, one can write

C =
⊔

F∈ΣT

CF , where CF = {D | F ≤ D}.

This is because every chamber D ∈ C has a unique face of type T .
Recall that we have fixed a fundamental chamber C0 in C. In each star region CF ,

by the gate property, there is a special chamber, namely FC0, closest to C0 in the
gallery metric. Under the identification of C with W , it corresponds to a T -shuffle. More
precisely:

Lemma 5.3.1 There is a bijection

π : ΣT → ShT

given by F 7→ σ, where FC0 = σC0, or equivalently, σ = d(C0, FC0). Under this
bijection, TC0

, the face of type T of C0 maps to θ(T ).

In the identity FC0 = σC0, the left hand side is the product of F and C0 while the right
hand side is the action of σ on C0.

Proof The first fact is a simple consequence of Proposition 5.3.2. The second fact
follows from Corollary 5.3.1.

�

Figure 5.8 shows two bold dots, which are faces of type T , along with their star
regions. The element σ = d(C0, FC0), which corresponds to F , has been shown as a
vector pointing from C0 to FC0.

Lemma 5.3.2 Let T ≤ S and D ∈ C be fixed, and let TD be the face of D of type T .
Then the distance map

d : {(C,D) | C ∈ reg(TD, D)} −→ ShT

is a bijection. Under this bijection, (TDD,D) maps to θ(T ). And further

ShT = {σ ∈W | σ−1C0 ∈ reg(TC0
, C0)}.
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C0

σ

θ(T )

C0

FFC0

T
C0

T
C0

C0

Figure 5.8: T -shuffles correspond to faces of type T .

Note that, in the left hand side in the above bijection, the second coordinate is always
fixed to be D. This bijection is dual to the one in Lemma 5.3.1, where the first coordinate
is fixed to be C0. For more on this duality, see Mahajan [60, Chapter 1, pages 32-36].

Proof Observe that by definition,

C ∈ reg(TD, D) ⇐⇒ TDC = D.

The first claim now follows from Proposition 5.3.2. The second claim follows from Propo-
sition 5.3.4. Setting D = C0 yields the third claim.

�

Remark Note that by the above lemma, the set

{σ ∈ W | des(σ−1) ≤ T },

closely related to ShT , corresponds to chambers in the lunar region of TC0
and C0. This

makes the connection between shuffles and lunar regions precise. The reader may look
at the definition of the product in SΛ in this regard (Definition 7.2.13).

Proposition 5.3.7 The element θ(T ) is the maximal element in ShT in the weak left
Bruhat order on W . Equivalently,

FC0 ≤b TC0
C0

for any face F of type T .

Proof We know from Definition 5.2.6 and Proposition 5.2.4 that (TDD,D) is the max-
imal element in {(C,D) | C ∈ reg(TD, D)}. Hence the result follows from Lemma 5.3.2
and the fact that d is order preserving.

�

For W = Sn, the above result is written in [4, Lemma 2.8]. In Chapter 7, we will
generalize this result further. For that purpose, the following direct proof of the above
proposition will be useful.

Alternative proof Let FC0 = uC0 and TC0
C0 = vC0. We want to show that there is

a minimum gallery C0− vu−1C0− vC0. For that, observe that vu−1 takes FC0 to TC0
C0

and hence F to TC0
. Therefore

TC0
(vu−1C0) = vu−1(FC0) = TC0

C0.
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This says that TC0
C0 is the gate of star(TC0

) when viewed from vu−1C0. Hence by the
gate property, we have,

C0 − vu
−1C0 − TC0

C0 − C0.

By restriction, we obtain the required minimum gallery.
2

5.3.6 Sets related to the product in the M basis of SΛ

This subsection is optional for this chapter. Let T ≤ S and WS\T be the parabolic
subgroup of W generated by S \ T . Let w ∈ W and x ∈ WS\T . Further let G ≤ C0 be
the face of type T of the fundamental chamber.

Lemma 5.3.3 The sets S0
w(x), S+

w (x) and S−
w (x), defined below, are in bijection with

one another.

The definition of the set S0
w(x) has a geometric flavor, while definitions of the other

two sets have a combinatorial flavor. These sets show up when one considers the product
in the M basis of the Hopf algebra of permutations SΛ. We will see this in Chapter 7.
Though this motivation is specific to type An−1, the discussion below is general. We
suppress the dependence on T in the notation.

Definition 5.3.2

S0
w(x) =





(C,D) ∈ C × C, d(C,D) = w,GD = C0

∣∣∣∣
(i) C −GC −GD −D

(ii) GC = x−1C0.






Note that this definition depends on the choice of C0. From the gate property, there are
two shorter ways to rewrite condition (i), namely, C −GC −D, or C −GD −D.

C

x−1C0 C0

D

G

GG

Figure 5.9: The set S0
w(x).

To get a general idea of what is going on, the reader may refer to Figure 5.9. In the
figure, the face G is shown as a vertex. The two lunar regions, containing the chambers
C and D respectively, lie on a sphere and meet at G, the vertex opposite to G. For
simplicity, this is not shown in the figure, where there are two vertices labeled G.

We have defined S0
w(x) using the Coxeter complex Σ. Since d(C,D) = w, knowing D

determines C and vice versa. So one can also define S0
w(x) using the Coxeter group W

by getting rid of one of the coordinates. This leads to two more sets S+
w (x) and S−

w (x)
as below.

Let d(D,C0) = σ. Then by Proposition 5.3.2,

σ ∈ ShT ⇐⇒ GD = C0.

So S0
w(x) can be rewritten as





σ ∈ ShT

∣∣∣∣
(i) C −GC −GD −D

(ii) GC = x−1C0.





,
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where D and C are defined by d(D,C0) = σ and d(C,D) = w.

Note that a gallery condition can be rephrased using the partial order ≤ on C × C.
And using the order preserving map d, one can then write it using the weak left order
on W . Hence condition (i) can be rewritten in two ways as follows.

d(GC,D) ≤ d(C,D) ⇐⇒ xσ−1 ≤ w, or d(GD,D) ≤ d(C,D) ⇐⇒ σ−1 ≤ w.

Further note that, if xσ−1 ≤ w then

GC = x−1C0 ⇐⇒
For E ∈ star(G), a minimum gallery C − E −D implies

a minimum gallery x−1C0 − E − C0.

This follows from the gate property. Now let d(E,C0) = y ∈ WS\T , that is, E = y−1C0.
Note that y and E determine each other. Now the right hand side in the above equation
can be rewritten as:

For x, y ∈WS\T , if yσ−1 ≤ w, then y ≤ x.

This motivates the following definition.

Definition 5.3.3

S+
w (x) =





σ ∈ ShT

∣∣∣∣
(i) xσ−1 ≤ w.

(ii) For y ∈WS\T , if yσ−1 ≤ w, then y ≤ x.






For type An−1, the above set is considered in [4, Equations (4.2) and (4.4)].

Analogous to the analysis above, instead of d(D,C0) = σ, we can start with the
equation d(C, x−1C0) = σ. Then by Proposition 5.3.2,

σ ∈ ShT ⇐⇒ GC = x−1C0.

This leads us to the following.

Definition 5.3.4

S−
w (x) =





σ ∈ ShT

∣∣∣∣
(i) x−1σ−1 ≤ w−1.

(ii) For y ∈WS\T , if y−1σ−1 ≤ w−1, then y−1 ≤ x−1.






In the above discussion, along with the definitions, we also indicated the proof of Lemma 5.3.3.
The details can be filled in by the reader.

5.4 The example of type An−1

This example arises from W = Sn, the symmetric group on n letters (Section 1.4). We
now explain this example in direct combinatorial terms without reference to hyperplane
arrangements or the general theory of Coxeter groups. We use the superscript n to
indicate the dependence on n.
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5.4.1 The posets Σn and Ln

We quickly recall the content of Section 1.4.3. The Coxeter complex Σn can be identified
with the poset of compositions F = F 1| . . . |F l of the set [n]. For example, 347|16|258 is
an element of Σ8. We multiply two set compositions by taking intersections and ordering
them lexicographically; more precisely, if F = F 1| . . . |F l and H = H1| . . . |Hm, then

FH = (F 1 ∩H1| . . . |F 1 ∩Hm| . . . |F l ∩H1| . . . |F l ∩Hm) ,̂

where the hat means “delete empty intersections”. For example,

(347|16|258)(6|157|28|34) = (7|34|6|1|5|28).

For the partial order of Σn, we say F ≤ K if K is a refinement of F . The set of
chambers Cn in Σn consists of set compositions with singleton blocks, so they correspond
to permutations of [n]. The opposite F of a face F = F 1| . . . |F l is obtained by reversing
the order of the blocks, that is, F = F l| . . . |F 1.

The lattice Ln is the poset of set partitions again under refinement and the support
map supp : Σn ։ Ln forgets the ordering of the blocks. For example,

supp(347|16|258) = {347, 16, 25}.

5.4.2 The posets Qn and Zn

By definition, Qn consists of pairs (F,D), where F is a set composition and D is a set
composition with singleton blocks that refines F . For example,

(236|15|4, 6|2|3|5|1|4) ∈ Q6.

It is convenient to write this element as (6|2|3|5|1|4), using small and big bars. We call
this a fully nested set composition of [6]. Similarly, the poset Zn associated to Qn can
be described using fully nested set partitions.

Table 5.1: Combinatorial notions for type An−1.

Σn = set compositions Qn = fully nested set compositions

Ln = set partitions Zn = fully nested set partitions

Definition 5.4.1 A nested set composition is a sequence F = F 1|F 2| . . . |F l, in which

each F i is a set composition of Ai, and A1| . . . |Al is a set composition of [n]. For example,

(3|15|7|48|29|6)

is a nested composition of [9]. A fully nested set composition is a nested set composition
with singleton blocks.

Equivalently, a nested set composition is a pair (F,H) of set compositions such that
F ≤ H . In the above example, the pair is (135|24789|6, 3|15|7|48|29|6). And a fully
nested set composition is a pair (F,D) with F ≤ D and D a chamber.

Definition 5.4.2 A nested set partition is a set L = {L1, . . . , Ll}, in which each Li is a
set composition of Ai, and {A1, . . . , Al} is a set partition of [n]. For example,

{3|56, 2|17, 4}

is a nested partition of [7]. A fully nested set partition is a nested set partition with
singleton blocks.
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We now describe the partial orders on Qn and Zn in this language. We say x ≤ y

in Qn if y is obtained from x by replacing zero or more occurrences of a small bar by a
big bar. Similarly, we say x ≤ y in Zn if y is obtained from x by deleting zero or more
occurrences of a bar. For example,

(3|1|5|4|2|6) ≤ (3|1|5|4|2|6) in Q6 {3|5, 2|1, 4} ≤ {3, 5, 2|1, 4} in Z5.

Next we describe the maps related to these two objects. The map Qn → Σn forgets the
small bars, and replaces the big bars by small bars. For example,

(6|2|3|5|1|4) 7→ (236|15|4).

The map lune : Qn → Zn forgets the big bars. For example,

lune(6|2|3|5|1|4) = {6|2|3, 5|1, 4}.

The map Zn → Ln forgets the small bars. For example,

{6|2|3, 5|1, 4} 7→ {236, 15, 4}.

As already mentioned, the map supp : Σn → Ln forgets the ordering among the blocks,
or equivalently, forgets the small bars.

5.4.3 The quotient posets Q
n

and L
n

The symmetric group Sn acts on Σn and Qn. The set of Sn-orbits in both cases can be
identified with the set of compositions of n, which we denote Q

n
. The induced partial

order on Q
n

is given by refinement of compositions. The quotient map type : Σn → Q
n

(resp. Qn → Q
n
) sends a set composition (resp. fully nested set composition) to its

underlying composition. For example,

type(347|16|258) = (3, 2, 3).

The symmetric group Sn acts on Ln and Zn. The set of Sn-orbits in both cases can be
identified with the set of partitions of n, which we denote L

n
. The induced partial order

on L
n

is as given in Definition 3.2.1. The map Ln → L
n

(resp. Zn → L
n
) sends a set

partition (resp. fully nested set partition) to its underlying partition. For example,

{347, 16, 258} 7→ (3, 3, 2).

The maps supp : Σn → Ln and lune : Qn → Zn induce the map Q
n
→ L

n
which sends a

composition to its underlying partition.

Remark We have explained combinatorially all the objects and maps that occur in
diagram (5.4) for this particular example.

5.4.4 The maps Road, GRoad and Θ

The projection and opposite map for type An−1 were explicitly described in Section 5.4.1.
The maps Des,GDes and Θ can be written by applying Propositions 5.2.2, 5.2.3 and 5.3.4
to these descriptions.

Definition 5.4.3 The descent map Des : Cn × Cn → Σn is defined as follows.

• Des(C,D) = F is the face of D = D1|D2| . . . |Dn such that Di and Di+1 lie in
different blocks of F iff Di appears after Di+1 in C.
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For example, Des(2|4|1|3, 1|4|3|2) = (1|34|2).

Definition 5.4.4 The global descent map GDes : Cn × Cn → Σn is defined as follows.

• GDes(C,D) = F is the face of D = D1|D2| . . . |Dn such that Di and Di+1 lie in
different blocks of F iff Dj appears after Dk in C for all j ≤ i and i+ 1 ≤ k.

For example, GDes(2|4|1|3, 1|4|3|2) = (134|2).

Definition 5.4.5 The map Θ : Qn → Cn × Cn is defined as follows.

• Θ(F,D) = (C,D), where C is obtained by reversing the order on the blocks of F
and ordering the elements within each block using the order of D.

For example, Θ(2|5|1|6|3|7|4) = (4|6|3|7|1|2|5, 2|5|1|6|3|7|4).

5.4.5 The maps des, gdes and θ

The maps Des,GDes : Cn ×Cn → Σn and Θ : Qn → Cn × Cn are maps of Sn-sets. Hence
they induce maps des, gdes : Sn → Q

n
and θ : Q

n
→ Sn on the Sn-orbits. The map des

gives the usual notion of descent of a permutation and the maps gdes and θ coincide with
the definitions given in [4]. We now describe them.

Write a permutation w ∈ Sn using the one-line notation as w1w2 . . . wn. Recall that
the generating set S is {s1, . . . , sn−1}, where si is the transposition (i, i+ 1). Note that
siw interchanges the letters i and i+ 1, while wsi interchanges the letters in positions i
and i+ 1. In other words, wsi = w1w2 . . . wi+1wi . . . wn. Note that

l(wsi) < l(w) ⇐⇒ wi > wi+1.

Hence by Proposition 5.3.1, one obtains:

Definition 5.4.6 The element w has a descent at si (or position i) if wi > wi+1.

Now we explain the map gdes. Observe that the set

{z | z can be written using generators other than si}

consists of precisely those permutations which can be written as a permutation of the
first i letters followed by a permutation of the remaining n − i letters. For such a z,
we have wz = w1 . . . wi︸ ︷︷ ︸

permuted

wi+1 . . . wn︸ ︷︷ ︸
permuted

. Combining with the above definition of des and the

definition of gdes given by Proposition 5.3.3, one obtains:

Definition 5.4.7 The element w has a global descent at si (or position i) if wj > wk

for all j ≤ i and k ≥ i+ 1.

Now we explain the map θ. The fundamental chamber C0 is the set composition
(1|2| . . . |n) and its opposite chamber C0 is (n|n − 1| . . . |2|1). Let T = {t1 < · · · < tk}
be any subset of [n − 1]. The face of type T of C0 is then given by the k block set
composition

(n−t1+1 . . . n| n−t2+1 . . . n−t1| . . . |1 . . . n−tk).

Multiplying on the right by C0 and using Proposition 5.3.4, we obtain:

Definition 5.4.8 For T ≤ S, we have

θ(T ) = (n−t1+1| . . . |n| n−t2+1| . . . |n−t1| . . . |1| . . . |n−tk).
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5.4.6 Shuffles

Let T = {t1 < · · · < tk} be any subset of [n− 1]. It follows from the definitions that

ShT = {σ ∈ Sn | σ1 < σ2 < · · · < σt1 , σt1+1 < · · · < σt2 , . . . , σtk−1+1 < · · · < σtk}.

As an example, let n = 4 and T = {2}. Then in the composition notation, T = (2, 2)
and

ShT = {1|2|3|4, 1|3|2|4, 1|4|2|3, 2|3|1|4, 2|4|1|3, 3|4|1|2}.

The set of inverses of the six elements obtained by shuffling 1|2 and 3|4 is precisely the
set above. This explains the shuffle terminology used in Section 5.3.5.

5.5 The toy example of type A
×(n−1)
1

In this section, we give a toy example to illustrate the theory. It deals with the coordinate
hyperplane arrangement arising from the Coxeter group Z

n−1
2 , that is, the Coxeter group

of type A
×(n−1)
1 . One reason we stress this example is that it belongs to an infinite

family and hence is relevant to external structures. As in the previous example, we use
the superscript n to indicate the dependence on n.

First note that Z2 or equivalently S2 is the Coxeter group of type A1 generated by a
single element of order 2. By taking direct product of n− 1 copies of Z2, we obtain the
Coxeter group Z

n−1
2 with generating set S = {s1, . . . , sn−1} and presentation as below.

s2i = 1, (sisj)
2 = 1 if i 6= j.

The reflection arrangement in this case is the coordinate arrangement in R
n−1. It consists

of the hyperplanes defined by xi = 0, where 1 ≤ i ≤ n − 1. The generator si acts on
the arrangement by changing the ith coordinate to its negative and keeping the other
coordinates unchanged.

We now explain the relevant objects for this example in direct combinatorial terms
without reference to hyperplane arrangements.

5.5.1 The posets Σn and Ln

Let Σn be the poset

+

//
//

/ −

��
��
�

0

×
+

//
//

/ −

��
��
�

0

× · · · ×
+

//
//

/ −

��
��
�

0︸ ︷︷ ︸
n−1

Namely, elements of Σn are sequences F = F 1F 2 . . . Fn−1 of length n−1 in the alphabet
{+, 0,−}. And F ≤ K in Σn if K is obtained by replacing some of the zeroes in F by
either a + or a −. The product FK is the face with sign sequence

(FK)i =





F i if F i 6= 0,

Ki if F i = 0.
(5.7)

This is the usual product rule in an oriented matroid as written in (1.1). Chambers in
Σn are sequences of length n− 1 in the alphabet {+,−}. The opposite F of a face F is
obtained by changing a + to a − and viceversa.

The lattice Ln can be identified with subsets of [n− 1], that is, Q
n
, but under reverse

inclusion. The map supp : Σn → Ln indicates the positions of the zero elements of a sign
sequence.
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5.5.2 The posets Qn and Zn

The elements of Qn can be regarded as stacked signed sequences. For example,

(
+
0 −

−
0 +−

+
0

)
∈ Qn

and stands for the pair (0− 0 + −0,+−− + −+). For the partial order on Qn, we say
that x ≤ y if y is obtained from x by replacing zero or more occurrences of a stack by
the sign on top of the stack. For example,

(
+
0 −

−
0 +−

+
0

)
≤

(
+
0 −−+−

+
0

)
.

The elements of Zn are signed subsets of [n−1]. For example, {+1,−3,+6} is an element
of Z7. The partial order on Zn is reverse inclusion. For example,

{+1,−3,+6} ≤ {+1,+6}.

The map Qn → Σn forgets the signs above the zeroes. For example,

(
+
0 −

−
0 +−

+
0

)
7→ 0− 0 +−0.

The map lune : Qn → Zn picks the positions of the zero elements and assigns them the
signs on top. For example,

(
+
0 −

−
0 +−

+
0

)
7→ {+1,−3,+6}.

The map Zn → Ln = Q
n

just forgets the signs of the signed set.

5.5.3 The quotient posets Q
n

and L
n

The group Z2 acts on {+,−} where the nontrivial element of Z2 flips signs. This induces
an action of the group Z

n−1
2 on Σn and Qn. The set of orbits in both cases can be

identified with the set of compositions of n, which we denote Q
n
. The induced partial

order on Q
n

is given by refinement of compositions. The quotient map type : Σn → Q
n

indicates the positions of the nonzero elements of the sign sequence. The quotient map
type : Qn → Q

n
indicates the positions of the nonzero elements of the stacked sign

sequence. For example,

type

(
+
0 −

−
0 +−

+
0

)
= {2, 4, 5}.

Similarly the group Z
n−1
2 acts on Zn and Ln. The set of orbits denoted L

n
is the same

in both cases. Every element of Ln is fixed by Z
n−1
2 . Hence the set of orbits L

n ∼= Ln.

The quotient map Zn → L
n

just forgets the signs of the signed set.
The maps supp : Σn → Ln and lune : Qn → Zn induce the map Q

n
→ L

n
which is

an isomorphism sending a subset to its complement.

Remark We have explained combinatorially all the objects and maps that occur in
diagram (5.4) for this particular example.

Remark The distance map d : Cn × Cn → Z
n−1
2 sends (C,D) to the product of those

si’s for which Ci 6= Di. The order of the si’s is not important since Z
n−1
2 is abelian. In

fact, the family Z
n
2 , as n varies, are the only abelian Coxeter groups.
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5.5.4 The maps Des, GDes and Θ

Definition 5.5.1 The notion of descent and global descent coincides for this example.
We have

Des(C,D) = GDes(C,D) = F, where F i =

{
0 if Ci = Di,

Di otherwise.

For example, Des(+−−+,−+−+) = −+ 00.

Definition 5.5.2 For the map Θ, we have

Θ(F,D) = (C,D), where

{
Ci = Di if F i = 0,

Ci 6= Di if F i 6= 0.

For example, Θ(+00−,+ +−−) = (−+−+,+ +−−).

5.5.5 The maps des, gdes and θ

Note that as a set, Z
n−1
2 can be indentified with the set of words of length n− 1 in the

alphabet {0, 1}. For example, for n = 6,

s2s4 ←→ (0, 1, 0, 1, 0).

Passing to orbits, we obtain the map des, gdes : Z
n−1
2

∼=−→ Q
n

that sends a word to the
subset that indicates the positions of the 1’s. It is an isomorphism in this case. The

induced map θ : Q
n ∼=
−→ Z

n−1
2 is the inverse to the above map.

5.6 The commutative diagram (5.8)

The goal of this section is to prove the following theorem.

Theorem 5.6.1 For Σ a left regular band (LRB), the following diagram of vector spaces
commutes.

KΣ
b∗ //

supp

����
Υ∗

��8
88

88
88

88
88

88
88

88
88

88
8 KQ

Θ //

lune

����
Ψ

%%KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK K(C × C)

s

&&MMMMMMMMMM

K(C × C)∗

Road

��

KL
b∗ //

Φ

""F
FFFFFFFFFFFFFF KZ

Υ

))SSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

KZ∗ � � lune∗ //

b��

KQ∗

b��
KL∗ � �

supp∗
//
KΣ∗

(5.8)

For simplicity, we have abbreviated the base map to the letter b. If Σ is the Coxeter
complex of a Coxeter group W then the above is a commutative diagram of W -modules.

Note on the proof The proof is given in two parts. Cutting along the map Ψ, the
above diagram splits into two halves. The commutativity of each half is proved separately
(Propositions 5.6.1 and 5.6.7). The organization is as below.

Let Σ be a Coxeter complex. Recall from Sections 5.2.3 and 5.2.4 that given Σ, one
can construct posets L,Q,Z and C × C. As remarked at the end of Section 5.2, apart
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from the absence of the partial orders ≤′ and �, everything works the same for the
poset of faces of any central hyperplane arrangement. In Section 5.6.1, we explain how
the ten objects in diagram (5.8) are constructed from these posets. In Sections 5.6.2
and 5.6.3, we define the maps s, Θ, Road and Ψ and in Section 5.6.4 show that they fit
in a commutative diagram (Proposition 5.6.1). The maps Θ and Road are defined using
the corresponding maps in Section 5.2. We then explain how to adapt the proof to the
case when Σ is a LRB, or a projection poset. This is the top half of diagram (5.8).

For the bottom half of diagram (5.8), we directly work with a LRB. We use the results
from Sections 2.2 and 2.5, where most of the work is done. The strategy is to break the
diagram into five smaller diagrams as below. In Section 5.6.5, we define the maps supp,
lune and base∗ and show that they fit in a commutative diagram. In Section 5.6.6, we
dualize to get four more maps and the dual commutative diagram. In Section 5.6.7, we
explain the maps Φ and Υ. In Section 5.6.8, we draw three more commutative diagrams,
which then imply the result (Proposition 5.6.7).

2

Remark Observe that scaling the five maps, namely, s,Ψ,Φ,Υ and Υ∗ by the same
factor does not affect the commutativity of the diagram.

5.6.1 The objects in diagram (5.8)

Let Σ be a Coxeter complex. The ten objects we consider are the vector spaces KΣ, KL,
KQ, KZ, K(C × C) over K and their duals. The superscript ∗ refers to the dual space or
the dual map. Since each space is constructed by linearizing a poset, it has a canonical
basis. However, in certain cases, it is better to use the partial order to define more bases,
see Table 5.2.

Table 5.2: Vector spaces associated to Σ and their bases.

Vector space Bases Dual space Dual bases

KΣ H KΣ∗ M

KQ R,H,K KQ∗ S,M,F

K(C × C) R,H,K K(C × C)∗ S,M,F

KL h, q KL∗ m, p

KZ h KZ∗ m

For example, for both KQ and K(C × C), we let K be the canonical basis. We then
define the R and H bases by the first two formulas below.

HA =
∑

B≤A

KB, RA =
∑

B�A

KB, RA =
∑

B≤′A

HB , (5.9)

where A and B are elements of the underlying poset, and ≤, � and ≤′ are the partial
orders given in Definitions 5.2.2 and 5.2.3. The last equality above follows from definitions
of the partial orders. For example,

H(E,C) =
∑

(D,C)≤(E,C)

K(D,C) in K(C × C) and H(P,C) =
∑

Q≤P

K(Q,C) in KQ,
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and so on. The M (resp. F ) basis is defined as dual to the H (resp. K) basis. It follows
from (5.9) that

FB =
∑

B≤A

MA, FB =
∑

B�A

SA, MB =
∑

B≤′A

SA. (5.10)

The case of KL is a little different. Instead of the H and K bases, we have the h and
q bases related by

hX =
∑

X≤Y

qY in KL. (5.11)

Dually, KL∗ has the m and p bases related by

pY =
∑

X≤Y

mX in KL∗. (5.12)

The motivation for the q and p bases comes from the algebra structure of KL, see
Lemma 5.6.3.

Remark The R and S bases are specific to the Coxeter case, since they involve the
partial orders ≤′ and �. Apart from that, the above discussion and what follows works
for the poset of faces of any central hyperplane arrangement.

Example Recall from Section 5.4 that for the symmetric group Sn, the poset L, which
we denoted Ln, is indexed by partitions of the set [n]. In this case, the graded vector
space

ΠL∗ = ⊕
n≥0

K(Ln)∗

is called the space of symmetric functions in noncommuting variables. It has a theory
similar to that of symmetric functions. The definitions of the p and m bases above
coincide with those considered by Gebhard, Rosas and Sagan [33, 83]; namely, p and
m are the power and monomial basis respectively. The map Φ is an isomorphism in
this case. If we push the h basis from KL to KL∗ using Φ then it gives a basis of ΠL∗ ,
denoted by the same letter in [83]. The map Φ is induced by a bilinear form on KL, see
Definition 5.6.4. Pushing this form to KL∗ via Φ gives an inner product on ΠL∗ , with
the h and m bases being dual. The p basis is a lift of the power sum basis of symmetric
functions. For more explanation, see Section 5.7.1 and Definition 5.7.8.

Remark The spaces Π (short for ΠL∗) and NΛ provide different noncommutative ana-
logues to Λ, the space of symmetric functions (Section 3.2). Our treatment brings clarity
to this distinction.

5.6.2 The maps s, Θ and Road

Definition 5.6.1 We define the switch map s : K(C × C)→ K(C × C)∗ by

K(D,C) 7→ F(C,D).

Lemma 5.6.1 Let Θ : Q→ C × C be the map defined in Section 5.2. The following are
three equivalent definitions of the map Θ : KQ→ K(C × C).

Θ(K(P,C)) =
∑

Des(D,C)=P

K(D,C) (K basis).

Θ(H(P,C)) = HΘ(P,C) (H basis).

Θ(R(P,C)) = RΘ(P,C) (R basis).
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Proof The equivalence of the first two definitions can be seen by a simple computation.
We use the formula in the K basis to derive the formula in the H basis.

Θ(H(P,C)) =
∑

(Q,C)≤(P,C)

Θ(K(Q,C)) =
∑

Road(D,C)≤(P,C)

K(D,C)

=
∑

(D,C)≤Θ(P,C)

K(D,C) = HΘ(P,C).

For the third equality, we used Proposition 5.2.5, part (i). The first and last equalities
follow from (5.9), which is the relation between the H and K bases.

Replacing H by R and ≤ by � in the computation, and using Proposition 5.2.5, part
(i), one gets the equivalence between the first and third definitions.

�

The map Road : K(C × C)∗ → KQ∗ is defined as the dual to the map Θ : KQ →
K(C × C). By duality, Lemma 5.6.1 gives:

Lemma 5.6.2 The following are three equivalent definitions of the map Road : K(C ×
C)∗ → KQ∗.

Road(F(C,D)) = FRoad(C,D) (F basis).

Road(M(C,D)) =





MRoad (C,D) if (C,D) = Θ(Road(C,D))

0 otherwise.
(M basis).

By replacing M by S, one gets the expression on the S basis.

A particularly useful expression for the map Θ is obtained when we start in the H
basis and end in the K basis. It is given by the equation

Θ(H(P,C)) =
∑

D: PD=C

K(D,C). (5.13)

This can be seen by using the first part of the computation in Lemma 5.6.1 and Equa-
tion (5.5). Similarly, an useful expression for Road is obtained by going from the F basis
to the M basis. It is given by

Road(F(C,D)) =
∑

F : FC=D

M(F,D). (5.14)

An important feature of the above two formulas is that they are defined solely in terms
of projection maps, and thus make sense not only for hyperplane arrangements or LRBs,
but also for projection posets. We will exploit this feature in Chapter 6.

5.6.3 The bilinear form on KQ

Define a symmetric bilinear form on KQ by

〈H(P,C), H(F,D)〉 =





1 if FC = D and PD = C,

0 otherwise.

The above bilinear form induces a map Ψ : KQ 7→ KQ∗ given by

Ψ(H(P,C)) =
∑

(F,D)

〈(P,C), (F,D)〉 M(F,D). (5.15)

A detailed discussion on this bilinear form is given in Section 2.5.
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5.6.4 The top half of diagram (5.8)

Proposition 5.6.1 For Σ a LRB, or more generally, a projection poset, the top half of
diagram (5.8) commutes.

KQ
Θ //

Ψ

��

K(C × C)

s

��
KQ∗

K(C × C)∗
Road

oo

Proof First, let Σ be a central hyperplane arrangement. We want to show that Ψ =
Road ◦s ◦ Θ. This is a direct computation. From Equation (5.13) and Definition 5.6.1,
we obtain

s ◦Θ(H(P,C)) =
∑

D: PD=C

F(C,D).

Now by Equation (5.14),

Road ◦s ◦Θ(H(P,C)) =
∑

D: PD=C

∑

F : FC=D

M(F,D) =
∑

(F,D)

〈(P,C), (F,D)〉 M(F,D).

The proposition now follows from the definition of Ψ.
Now let Σ be any projection poset. Given Σ, one can define the objects Q and C ×C,

as in Section 2.2. Note that, in this generality, the partial order on C × C is not at
all clear. Hence, we only consider the K basis on K(C × C) and dually the F basis on
K(C ×C)∗, and define the maps Θ and Road by Equations (5.13) and (5.14) respectively.
The advantage of these definitions is that they only involve projection maps, and hence
make sense for any projection poset. Similarly, the bilinear form on KQ and hence the
map Ψ : KQ→ KQ∗ can be defined for any projection poset, as in Section 2.5. The same
computation as above then proves Proposition 5.6.1 for projection posets.

�

Remark The map Road in the generality of projection posets may not be surjective.
For example, take Σ to be a commutative LRB. Then it has a single chamber and
surjectivity is not possible.

5.6.5 The maps supp, lune and base∗

Definition 5.6.2 We define the maps supp, lune and base∗ in diagram (5.8). For that,
we use the maps supp, lune and base of Section 5.2.3.

• supp : KΣ→ KL given by HP 7→ hsuppP .

• lune : KQ→ KZ given by H(P,C) 7→ hlune(P,C).

• base∗ : KΣ→ KQ given by HP 7→
∑

C: P≤C

H(P,C).

In other words, we sum over all pointed faces whose base is P .

• base∗ : KL→ KZ given by hX 7→
∑

L: baseL=X

hL.

Proposition 5.6.2 For Σ a LRB, the following diagram commutes.

KΣ
base∗ //

supp

����

KQ

lune

����
KL

base∗
//
KZ
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The content of this proposition is that the map base∗ on the bottom is well defined. This
is explained in diagram (2.5).

5.6.6 The dual maps supp∗, lune∗ and base

Definition 5.6.3 By dualizing the maps in Definition 5.6.2, we obtain the maps supp∗,
lune∗ and base.

• supp∗ : KL∗ → KΣ∗ given by mY 7→
∑

F : suppF=Y

MF .

• lune∗ : KZ∗ → KQ∗ given by mL 7→
∑

(F,D): lune(F,D)=L

M(F,D).

• base : KQ∗ → KΣ∗ given by M(F,D) 7→MF .

We recall that F is the base of the pointed face (F,D).

• base : KZ∗ → KL∗ given by mL 7→ mbaseL.

By duality, we obtain:

Proposition 5.6.3 For Σ a LRB, the following diagram commutes.

KZ∗ lune∗ //

base

����

KQ∗

base

����
KL∗

supp∗
//
KΣ∗

5.6.7 The maps Φ and Υ

In Section 2.3.4, we proposed a second approach to lunes. Namely, we defined an object
Z′ closely related to Z and maps reg : Q→ Z′ and zone : Z→ Z′.

Definition 5.6.4 We now define the map Φ and the maps related to the space KZ′.

• reg : KQ→ KZ′ given by H(P,C) → hreg(P,C).

• zone : KZ→ KZ′ given by hlune(P,C) → hreg(P,C).

• Υ : KZ′ → KΣ∗ given by hL 7→
∑
F∈L

MF .

• Φ : KL → KL∗ given by Φ(hX) =
∑
Y 〈X,Y 〉L mY , where 〈 , 〉L is the bilinear

form given in Section 2.5.4.

5.6.8 The bottom half of diagram (5.8)

By combining Lemmas 2.3.1 and 2.5.1, we obtain:

Proposition 5.6.4 The following diagram commutes.

KQ

reg
��

base ◦Ψ

''OOOOOOOOOO
lune

wwoooooooooo

KZ zone
//
KZ′

Υ
//
KΣ∗
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The map base ◦Ψ : KQ→ KΣ∗ is given by

H(P,C) 7→
∑

F∈reg(P,C)

MF .

For the poset of faces of central hyperplane arrangements, by Lemma 2.3.3, there is no
difference between KZ′ and KZ. Hence, to avoid unnecessary complications, we have
omitted KZ′ from diagram (5.8), and referred to the composite Υ◦ zone as simply Υ. By
duality, we obtain:

Proposition 5.6.5 The following diagram commutes.

KΣ

Υ∗

��

Ψ◦base∗

''PPPPPPPPPPPPP

KZ′∗

zone∗

��

reg∗
// KQ∗

KZ∗

lune∗

77nnnnnnnnnnnn

By Lemma 2.5.3, we obtain:

Proposition 5.6.6 The following diagram commutes.

KΣ
base ◦Ψ◦base∗ //

supp

����

KΣ∗

KL
Φ

//
KL∗

?�

supp∗

OO

The map base ◦Ψ ◦ base∗ : KΣ→ KΣ∗ is given by

base ◦Ψ ◦ base∗(HP ) =
∑

F

〈P, F 〉Σ MF ,

where 〈P, F 〉Σ is the bilinear form given in Section 2.5.3.

Proposition 5.6.7 The bottom half of diagram (5.8) commutes.

Proof This follows from Propositions 5.6.2-5.6.6.

�

5.6.9 The algebra KL

The spaces KΣ and KL are algebras with the products

HFHK = HFK and hXhY = hX∨Y

respectively. The content of Equation (2.3) is that the map supp : KΣ → KL in Def-
inition 5.6.2 is a map of algebras. The structure of the algebra KL is explained in
Section 2.5.5. Here we restate Lemma 2.5.4, making explicit the significance of the q
basis of KL.
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Lemma 5.6.3 Elements of the q basis of KL are the primitive idempotents for the split
semisimple algebra KL. Further, the q basis is an orthogonal basis for KL with respect
to the bilinear form on KL. More precisely,

〈qX , qY 〉L = nXδX,Y , (5.16)

with nX as in Definition 2.5.1.

Proof Following Section 2.5.5, there is an algebra isomorphism KL
∼=
−→ K

L given by
hX 7→

∑
X≤Y δY . Comparing with Equation (5.11), we see that qX 7→ δX under this

isomorphism. This proves the first part of the lemma. The second part is same as
Equation (2.14).

�

5.7 The coinvariant commutative diagram (5.17)

In this section, we prove the following theorem. It is specific to the Coxeter case.

Theorem 5.7.1 For W a Coxeter group, the following diagram of vector spaces com-
mutes.

KQ
� � θ //

supp

���� ψ
HHHHHHHHH

$$H
HHHHHHHH

KW
s
$$J

JJ
J

KW ∗

des

����
KL

φ
##FF

FF

KL
∗ � �

supp∗
//
KQ

∗

(5.17)

Recall that the partial orders on W and Q are given by the weak left Bruhat order and
subset inclusion respectively. And L is the poset defined in Section 5.2.3. The maps in
the diagram above are given in Definitions 5.7.9-5.7.15. The maps θ and des are written
in terms of the corresponding maps of Section 5.3.

Note on the proof Recall a simple fact. For G a group and V a G-module, let
V ∗ be the dual G-module and V G and VG be the space of invariants and coinvariants
respectively. Then there is a canonical identification (V G)∗ ∼= (V ∗)G.

Recall from Section 5.2 that ΣW ∼= QW
∼= Q, and (C ×C)W ∼= W and LW ∼= ZW ∼= L.

By linearizing, we obtain (KΣ)W ∼= (KQ)W ∼= KQ, and so on, where —W refers to
the space of coinvariants. We have similar statements for the space of invariants. Now
the Coxeter group W acts on the commutative diagram (5.8). If we take W -invariants
for the spaces KΣ, KL, KQ, KZ and K(C × C) and W -coinvariants for their duals then
diagram (5.8) immediately induces a diagram of the above form. All that remains to be
done is to make the above isomorphisms and the induced maps explicit. For this, the
reader should consult Propositions 5.7.1-5.7.4.

2

Remark For G a finite group and V a G-module, the composite map

V G →֒ V ։ VG

is an isomorphism in characteristic 0. In other words, invariants and coinvariants can
be identified in this case. Hence by removing invariants from the picture, one may also
view diagram (5.17) as a coinvariant quotient of diagram (5.8). This different viewpoint
is explained in Section 5.7.6.
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The identification of W -invariants and W -coinvariants in our examples involves a fac-
tor of |W |, see the proof of Proposition 5.7.5. This is the reason why such a normalization
factor is required in Section 5.7.4.

Notation We know that ΣW ∼= Q and LW ∼= L. For T ∈ Q and λ ∈ L, it is convenient
to let OT and Oλ denote the orbits in Σ and L corresponding to T in Q and λ in L
respectively.

5.7.1 The objects in diagram (5.17)

Let W , Q and L be the posets in Section 5.2 and K be a field of characteristic zero. The
six objects we consider are the vector spaces KW , KQ and KL, and their duals. For each
of them, we define two bases as shown in Table 5.3.

Table 5.3: Vector spaces associated to W and their bases.

Vector space Bases Dual objects Dual bases

KQ H,K KQ
∗

M,F

KW H,K KW ∗ M,F

KL h, q KL
∗

m, p

The H and K basis are related by

Hu =
∑

v≤u

Kv in KW and HT =
∑

U≤T

KU in KQ.

Dually, the M and F basis are related by

Fv =
∑

v≤u

Mu in KW ∗ and FU =
∑

U≤T

MT in KQ
∗
.

Analogous to the situation for L, the poset L is a little different. The change of basis
formulas are

hµ =
∑

µ≤λ

Rλµqλ in KL and pλ =
∑

µ≤λ

Rλµmµ in KL
∗
.

The coefficients Rλµ are defined using Definition 5.7.8 and Equation (5.12). This means
that

pλ =
∑

X:X≤Y

|µ| mµ, (5.18)

where Y ∈ Oλ is a fixed set partition and µ is defined by X ∈ Oµ. Note that X ≤ Y

implies that µ ≤ λ, with the partial order on partitions given in Definition 3.2.1. It is
then clear that the Rλµ are nonnegative. We do not make them any more explicit in
this generality; for the type A case, see Fact 5.7.2. The q and p basis are relevant to the
algebra structure of KL, see Lemma 5.7.1.

Example Recall from Section 5.4 that for the symmetric group Sn, the poset L, which
we denoted L

n
, is indexed by partitions of n. In this case, the graded vector space

ΛL∗ = ⊕
n≥0

K(L
n
)∗



5.7. THE COINVARIANT COMMUTATIVE DIAGRAM (5.17) 67

is the familiar space of symmetric functions (Section 3.2.1). And the p and m bases
defined above are the power and monomial basis respectively of ΛL∗ . The map φ is an
isomorphism in this case. If we push the h basis of KL to KL

∗
using φ then it gives the

homogeneous basis of ΛL∗ . The map φ is induced by a nondegenerate bilinear form on
KL, see Definition 5.7.15. If we push this form to KL

∗
via φ then we recover the usual

inner product on symmetric functions, with the h and m bases being dual.

5.7.2 The maps from invariants

Proposition 5.7.1 The following diagram of vector spaces commutes.

KΣ
base∗ //

����

KQ
� � Θ //

����

K(C × C)

KQ
.
�

==zzzzz

����

� � // KW
+
�

99rrrrrr

KL
base∗

//
KZ

KL
-



;;xxxx

(5.19)

For the maps from the invariants, we make specific choices of normalization factors.
They are given in Definitions 5.7.1-5.7.4 below. The induced maps KQ → KW and
KQ→ KL are given in Definitions 5.7.10 and 5.7.12 below.

The proof is a straightforward check and is omitted.

Definition 5.7.1 The map KQ→ KΣ is given by

HT 7→
∑

P∈ΣT

HP ,

where ΣT is the set of all faces of type T . Note that ΣT = OT .

Definition 5.7.2 By composing with the map base∗ : KΣ →֒ KQ, we get:
On the H basis, the map KQ→ KQ is given by

HT 7→
∑

P≤C,P∈ΣT

H(P,C).

Observe that the map has the same expression on the K basis as well.

Definition 5.7.3 On the K basis, the map KW → K(C × C) is given by

Kw 7→
∑

d(D,C)=w

K(D,C).

The map has the same expression on the H basis also. On the R basis, one has

Hw 7→ R(D,C0)
,

with D such that d(D,C0) = w.

Definition 5.7.4 On the h basis, the map KL→ KL is given by

hλ 7→ |λ|
∑

X∈Oλ

hX ,
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where |λ| = |OT |
|Oλ|

for any T ∈ Q such that suppT = λ. As the notation suggests, this

number only depends on λ and not on the specific choice of T . The reason for this is
that if w ∈ W fixes a face P ∈ Σ then it fixes suppP pointwise.

On the q basis, the map KL→ KL is given by

qλ 7→
∑

X∈Oλ

qX .

Example Recall from Section 5.4 that for the symmetric group Sn, the poset L is
indexed by partitions of n and L is indexed by partitions of the set [n]. Say, λ =
(λ1, λ2, . . . , λk) with λ1 ≥ λ2 ≥ . . . ≥ λk > 0. Another common way to write λ is
1r12r2 . . .mrm , which says that 1 occurs r1 times, 2 occurs r2 times, and so on. Then

|Oλ| =
n!

λ1!λ2! . . . λk!r1! . . . rm!
. (5.20)

An element T ∈ Q such that suppT = λ is any composition α = (α1, α2, . . . , αk) with
underlying partition λ, that is, the numbers α1, α2, . . . , αk are some permutation of
λ1, λ2, . . . , λk. First observe that

|Oα| =
n!

α1!α2! . . . αk!
.

This shows that |λ| = r1! . . . rm!.

Fact 5.7.1 For µ = (µ1, . . . , µk) and any X ∈ Oµ, we have that |µ| is the number of
compositions F = F 1| · · · |F k with suppF = X and |F i| = µi.

Proof A composition F as above is obtained by arranging the parts of X in decreasing
order of size. There are precisely |µ| choices for doing this since the parts of X of the
same size can be arranged amongst themselves in any order.

�

For completeness, we derive the description of the coefficientsRλµ given in Stanley [94,
Proposition 7.7.1].

Fact 5.7.2 Let λ = (λ1, . . . , λl) and µ = (µ1, . . . , µk). Then Rλµ is the number of
compositions B = B1| · · · |Bk of the set [l] such that

µj =
∑

i∈Bj

λi, 1 ≤ j ≤ k. (5.21)

We note that the above count is nonzero only if µ ≤ λ, with the partial order on partitions
given in Definition 3.2.1. This is consistent with what we expect.

Proof Let Y = {Y 1, . . . , Y l} be a fixed set partition with |Y i| = λi. From Equa-
tion (5.18) and the previous fact, we have

Rλµ = {F = F 1| · · · |F k
∣∣ suppF ≤ Y and |F i| = µi}.

The set compositions F such that suppF ≤ Y can be identified with compositions
of the set Y , or equivalently, compositions of the set [l]. It is clear that under this
correspondence, the condition |F i| = µi corresponds to Equation (5.21).

�
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5.7.3 The maps to coinvariants

Proposition 5.7.2 The following diagram of vector spaces commutes.

K(C × C)∗

wwwwppp
ppp

Road

����

KW ∗

����

KZ∗ � � //

base

��

KQ∗

base

����
KL∗

{{{{www
ww

� � //
KΣ∗

xxxxpppppp

KL
∗ � � //

KQ
∗

(5.22)

The diagram above is obtained by dualizing diagram (5.19). Hence no proof is necessary.
The explicit maps to coinvariants are written down in Definitions 5.7.5-5.7.8 below for
completeness. The maps KW ∗ → KQ

∗
and KL

∗
→ KQ

∗
are given by Definitions 5.7.11

and 5.7.13 below.

Definition 5.7.5 The map KΣ∗ → KQ
∗

is given by

MF 7→MtypeF .

Definition 5.7.6 On the M basis, the map KQ∗ → KQ
∗

is given by

M(F,D) 7→MtypeF .

Observe that the map has the same expression on the F basis as well.

Definition 5.7.7 On the F basis, the map K(C × C)∗ → KW ∗ is given by

F(C,D) 7→ Fd(C,D).

The map has the same expression on the M basis also. On the S basis, one has

S(C,D) 7→





Md(C,D) if D = C0,

0 otherwise.

Definition 5.7.8 On the m basis, the map KL∗ → KL
∗

is given by

mX 7→ |λ| mλ,

where λ is defined by X ∈ Oλ, and |λ| is as in Definition 5.7.4.

On the p basis, the map KL∗ → KL
∗

is given by

pX 7→ pλ,

with λ as above.

For type An−1, these two maps have been considered by Rosas and Sagan [83]. This
idea of studying partitions by lifting them to set partitions goes back to Doubilet [24].
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5.7.4 The maps in diagram (5.17)

In this section, we normalize the maps s,Ψ,Φ,Υ and Υ∗ in diagram (5.8) by the factor
1
|C| = 1

|W | and indicate the difference with an overline, see the remark before Section 5.6.1.

In analogy with Section 5.6, the maps θ and des in diagram (5.17) are defined in both
the F and M bases. The equivalence between the two definitions can be derived using
Proposition 5.3.5.

Definition 5.7.9 The switch map s : KW → KW ∗ is given by

Kw 7→ Fw−1 .

Proposition 5.7.3 The following diagram commutes.

K(C × C)
s // K(C × C)∗

����
KW s

//?�

OO

KW ∗

The proof is a simple check.

Definition 5.7.10 On the H basis, the map θ : KQ→ KW is given by

HT 7→ Hθ(T ).

On the K basis, the map θ : KQ→ KW is given by

KT 7→
∑

des(w)=T

Kw.

Definition 5.7.11 On the F basis, the map des : KW ∗ → KQ
∗

is given by

Fw 7→ Fdes(w).

For type An−1, this map was defined by Malvenuto in her thesis [61].

On the M basis, the map des : KW ∗ → KQ
∗

is given by

des(Mw) =





Mdes(w) if w = θ(des(w)),

0 otherwise.

For type An−1, this formula was obtained in [4].

Definition 5.7.12 The map supp : KQ→ KL is given by

HT 7→ hsuppT .

Definition 5.7.13 The map supp∗ : KL
∗
→ KQ

∗
is given by

mλ 7→
∑

suppT=λ

MT .
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Definition 5.7.14 The map ψ : KQ 7→ KQ
∗

is given by

ψ(HT ) =
∑

U

〈T, U〉 MU .

The bilinear form on KΣ in Section 2.5.3 via Definition 5.7.1 induces a bilinear form on
KQ. The notation 〈 , 〉 above refers to this form, divided by the factor of |W |. In other
words,

〈T, U〉 =
1

|W |
〈σT , σU 〉,

where 〈σT , σU 〉 is defined by Equation (2.16).

Definition 5.7.15 The map φ : KL 7→ KL
∗

is given by

φ(hλ) =
∑

µ

〈λ, µ〉 mµ.

The bilinear form on KL in Section 2.5.4 via Definition 5.7.4 induces a bilinear form on
KL. The notation 〈 , 〉 above refers to this form, divided by the factor of |W |.

From the above two definitions, we obtain:

Proposition 5.7.4 The following diagrams commute.

KΣ
base ◦Ψ◦base∗ //

KΣ∗

����
KQ

ψ
//

?�

OO

KQ
∗

KL
Φ //

KL∗

����
KL

φ
//?�

OO

KL
∗

5.7.5 The algebra KL

Recall that KL
∼=
−→ (KL)W . Since the algebra structure and the bilinear form on KL

commute with the action of W , we obtain an induced algebra structure and bilinear form
on KL. The specific choice KL →֒ KL for the map is given in Definition 5.7.4. In analogy
with Section 5.6.9, we now make explicit the significance of the q basis of KL.

For λ ∈ L, let

zλ =
|W |

|Oλ|nX
,

with X any element of L in the orbit Oλ and nX as in Definition 2.5.1.

Example For the example of type An−1, for a partition λ = (1r12r2 . . .mrm), we obtain
the standard formula

zλ =

m∏

i=1

iriri!

as in Macdonald [59] or Stanley [94, Equation 7.17]. This follows from Equations (5.20)
and (2.15).

Going back to the general case, we have the following analogue of Lemma 5.6.3.

Lemma 5.7.1 Elements of the q basis of KL are the primitive idempotents for the split
semisimple algebra KL. Further, the q basis is an orthogonal basis with respect to the
bilinear form on KL. More precisely,

〈qλ, qµ〉 = z−1
λ δλ,µ.
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In particular, the form on (KL)W is nondegenerate ⇐⇒ nX 6= 0 for each X ∈ L. This
was also written in Lemma 2.6.5.

Proof The first part follows from Lemma 5.6.3 and Definition 5.7.4 on the q basis. For
the second part, we have

〈qλ, qµ〉 = 1
|W | 〈

∑
X∈Oλ

qX ,
∑

X∈Oµ

qX〉L

= |Oλ|
|W | 〈qX , qX〉Lδλ,µ

= |Oλ|
|W | nXδλ,µ

= z−1
λ δλ,µ

The second and third equalities follow from Lemma 5.6.3.
�

Corollary 5.7.1 We have φ(qλ) = z−1
λ pλ.

5.7.6 A different viewpoint relating diagrams (5.8) and (5.17)

So far, we regarded diagram (5.17) as a partly invariant and partly coinvariant picture
of the diagram (5.8), see Propositions 5.7.1 and 5.7.2. One may also consider it as
just coinvariants of diagram (5.8). This viewpoint, though unnecessary for the internal
structure, is well suited for studying external structure, which is initiated in the next two
chapters.

Proposition 5.7.5 With Definitions 5.7.5-5.7.8 and Definitions 5.7.16-5.7.18 as below,
the diagram (5.8) projects onto the diagram (5.17).

The new maps we need to define are:

Definition 5.7.16 On the H basis, the map KQ→ KQ is given by

H(P,C) 7→ HtypeP .

Observe that the map has the same expression on the K basis as well.

Definition 5.7.17 On the K basis, the map K(C × C)→ KW is given by

K(C,D) 7→ Kd(C,D).

The map has the same expression on the H basis also. On the R basis,

R(C,D) 7→ κ Hd(C,D),

where κ is the number of elements less than (C,D) in the partial order ≤′.

Definition 5.7.18 The map KZ→ KL is given by

hL 7→ hλ,

where λ represents the orbit of the element L in Z.
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Proof of Proposition 5.7.5 We recall some notation and facts from Sections 2.2
and 2.5. For P ∈ Σ, let cP = |CP | be the number of chambers C ∈ C such that P ≤ C.
We know from Lemma 2.2.1 that cP depends only on suppP . Hence for each X ∈ L, let
cX be the number of chambers C ∈ C such that C ≥ P , where P is any fixed element
of Σ having support X . As explained in the proof of Lemma 2.6.2, if typeP = T then
cP |ΣT | = |W |.

Now using the definitions of the maps in this section, we make some simple compu-
tations. The map KW →֒ K(C × C) ։ KW sends

Kw 7−→
∑

d(D,C)=w

K(D,C) 7−→ |W |Kw.

Next the map KQ →֒ KQ ։ KQ sends

HT 7−→
∑

P≤C, P∈ΣT

H(P,C) 7−→ cP |ΣT |hT = |W |hT .

Next the map KL →֒ KL ։ KL sends

hλ 7−→ |λ|
∑

X∈Oλ

hX 7−→ |λ||Oλ|cXhλ = |OT |cXhλ = |W |hλ,

where X ∈ Oλ and T = typeP for any P such that suppP = X .
Thus in each case, the composite map is simply multiplication by |W |. The result is

now implied by Propositions 5.7.1-5.7.4.
2
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Chapter 6

The construction of Hopf

algebras

6.1 Introduction

In the introduction to Chapter 5, we outlined a program for organizing together some
graded Hopf algebras of recent interest. These included the Malvenuto-Reutenauer Hopf
algebra [61] and the Hopf algebras of symmetric functions [34, 102], quasi-symmetric
functions [36, 61, 46] and noncommutative symmetric functions [35]. These Hopf algebras,
which we denote by SΛ, Λ, QΛ and NΛ respectively, fit in a commutative diagram as
follows.

NΛ
� � //

����

SΛ

����
Λ

� � // QΛ

(6.1)

In this chapter, we construct some new graded Hopf algebras and show that they fit in a
commutative diagram (Theorem 6.1.3). The diagram (6.4) projects onto diagram (6.1)
and hence is more fundamental. In Coxeter or Lie theory, the symmetric group Sn is
known as the group of type An−1. All the above Hopf algebras are related to the family
of symmetric groups Sn, n ≥ 0 in some way; hence one may say that they are objects of
type A.

6.1.1 A diagram of vector spaces for a LRB

We saw in Chapter 5 that the graded pieces of the above Hopf algebras display a rich
internal structure. This internal theory is not specific to type A; it works for any Coxeter
group, and more generally, for any left regular band (LRB). We recall some notation from
Chapter 2.

Let Σ be a LRB, and C be the set of chambers in Σ,

Q = {(F,D) | F ≤ D} ⊆ Σ× C

be the set of pointed faces, and L and Z be the support and lune posets associated to Σ
and Q respectively. For P a poset, let KP be the vector space over the field K with basis
the elements of P , and let KP ∗ be its dual space. Now recall Theorem 5.6.1.

75
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Theorem For Σ a LRB, the following diagram of vector spaces commutes.

KΣ
b∗ //

supp

����
Υ∗

��8
88

88
88

88
88

88
88

88
88

88
8 KQ

Θ //

lune

���� Ψ
KKKKKKKKKKKKKKKK

%%KKKKKKKKKKKKKKKK

K(C × C)

s

∼= &&MMMMMMMMMM

K(C × C)∗

Road

��

KL
b∗ //

Φ

""F
FFFFFFFFFFFFFF KZ

Υ

))SSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

KZ∗ � � lune∗ //

b��

KQ∗

b��
KL∗ � �

supp∗
//
KΣ∗

(6.2)

The maps in the above diagram were defined in Sections 5.6.2-5.6.3 and Sections 5.6.5-
5.6.7. The part of the diagram excluding KL, KZ and their duals generalized further to
projection posets, a concept introduced in Section 2.7.

6.1.2 A diagram of coalgebras and algebras for a family of LRBs

The goal of this chapter is to study external structure related to diagram (6.2). For that,
let {Σn}n≥0 be a family of LRBs. As mentioned in Section 6.1.1, for each LRB Σn, one
can define

Qn = {(F,D) | F ≤ C} ⊆ Σn × Cn,

the set of pairs of chambers Cn×Cn, and the support and lune posets Ln and Zn. Using
them, one can construct graded vector spaces as shown in Table 6.1.

Table 6.1: Graded vector spaces for a family of LRBs.

Name Vector space Basis Name Dual space Dual basis

M ⊕KΣn H P ⊕K(Σn)∗ M

N ⊕KQn H Q ⊕K(Qn)∗ M

R ⊕K(Cn × Cn) K S ⊕K(Cn × Cn)∗ F

AL ⊕KLn h AL∗ ⊕K(Ln)∗ m

AZ ⊕KZn h AZ∗ ⊕K(Zn)∗ m

For example,

M = ⊕
n≥0

KΣn, P = ⊕
n≥0

K(Σn)∗,

and so on. The letters H and M , and K and F for the bases are used for book-keeping,
see the discussion in Section 5.6.1 for more information on this notation. In Section 5.6.1,
we consider more than one basis for a given vector space. That is not the case in this
chapter; only the basis mentioned in Table 6.1 will be used. Now by taking direct sums
of the diagrams (6.2) for varying n, and using the notation of Table 6.1, we obtain the
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following commutative diagram.

M
b∗ //

supp

���� Υ

��8
88

88
88

88
88

88
88

88
88

88
N

Θ //

lune

���� Ψ
DD

DD
DD

DD
DD

DD

!!D
DD

DDD
DDD

DDD

R
s

∼=   @
@@

@@
@@

S

Road

��

AL
b∗ //

Φ

""E
EE

EE
EE

EE
EE

EE
EE
AZ

Υ∗

&&NNNNNNNNNNNNNNNNNNNNNN

AZ∗
� � lune∗ //

b��
Q
b��

AL∗
� �

supp∗
// P

(6.3)

For the moment, the above is just a diagram of graded vector spaces. We show that
under suitable assumptions on the family {Σn}n≥0, one can say more:

Theorem 6.1.1 Let {Σn}n≥0 be a family of LRBs, that satisfies all coalgebra axioms
(C1)− (CP ). Then diagram (6.3) is a diagram of coalgebras.

Theorem 6.1.2 Let {Σn}n≥0 be a family of LRBs, that satisfies all algebra axioms
(A1)− (AP ). Then diagram (6.3) is a diagram of algebras.

The coalgebra and algebra axioms, along with examples, are defined in Sections 6.3
and 6.6 respectively. The above theorems are proved in Sections 6.5 and 6.8 respectively.

6.1.3 The example of type A

A beautiful illustration of the above theorems is given by the type A example, that is,
when Σn is the Coxeter complex of type An−1. They can then be put together in one
theorem as below.

Theorem 6.1.3 The following is a commutative diagram of graded Hopf algebras.

MΠ
b∗ //

supp

���� Υ

��8
88

88
88

88
88

88
88

88
88

88
NΠ

� � Θ //

lune

���� Ψ
FF

FF
FF

FF
FF

FF
F

""F
FF

FF
FF

FF
FF

FF

RΠ
s

∼= ""E
EE

EE
EE

E

SΠ

Road

����

ΠL
b∗ //

Φ

∼=

""E
EE

EEE
EEE

EEE
EEE

ΠZ

Υ∗

''OOOOOOOOOOOOOOOOOOOOOOO

ΠZ∗
� � lune∗ //

b��

QΠ
b��

ΠL∗
� �

supp∗
// PΠ

(6.4)

The graded vector spaces MΠ, NΠ, etc. and the algebra and coalgebra structures on them
are defined in Section 6.2.

Proof There are three steps in the proof.

• For n ≥ 0, let Σn be the Coxeter complex of type An−1. For this example, the vector
spaces M, N , etc. in diagram (6.3) specialize to MΠ, NΠ, etc. The material in
Section 5.4 is useful to make this translation. Hence, as vector spaces, diagram (6.4)
is a special case of diagram (6.3) and so it commutes.



78 CHAPTER 6. THE CONSTRUCTION OF HOPF ALGEBRAS

• For type A, we show that the family {Σn}n≥0 satisfies the coalgebra and algebra
axioms (Lemmas 6.3.2 and 6.6.2). Specializing Theorems 6.1.1 and 6.1.2, one con-
cludes that diagram (6.4) is a diagram of both coalgebras and algebras, see the
corollaries to Propositions 6.5.1 and 6.8.1 for more details.

• The algebra and coalgebra structures on SΠ, or equivalently RΠ, are compatible;
hence it is a Hopf algebra. This can be checked directly from the definition. We
omit this computation. From the surjectivity of the maps Road, base, supp and
lune and the injectivity of their duals, it follows that the remaining spaces are also
Hopf algebras.

�

Remark The Hopf algebra ΠL∗ , or equivalently ΠL, is the algebra of symmetric func-
tions in noncommuting variables introduced by Wolf [100] and further studied by Geb-
hard, Rosas and Sagan [83, 33]. In addition to ΠL, some of the other Hopf algebras,
particularly MΠ and PΠ, have been considered recently in the literature from various
points of view, independent of our work. Chapoton [21] defines a Hopf algebra structure
on the faces of the permutahedron (dual of the Coxeter complex of type A) that is the
same as PΠ. Hivert considered a polynomial realization of this algebra in his thesis [45].
Palacios and Ronco [72] and Novelli and Thibon [68] deal with PΠ as a dendriform
trialgebra. Patras and Reutenauer [74] and Patras and Schocker [75] deal with the in-
ternal structure of MΠ. Bergeron, Hohlweg, Rosas and Zabrocki [8] and Bergeron and
Zabrocki [9] deal with ΠL and PΠ.

The remaining Hopf algebras in diagram (6.4) are probably considered here for the
first time. It is our unified geometric approach to these objects that we consider most
valuable.

Theorem 6.1.4 The diagram (6.4) projects onto diagram (6.1) as Hopf algebras, or
more precisely onto the diagram below.

NΛ
� � θ //

supp

���� ψ
GG

GG
GG

GG
G

##G
GGGGGGG

RΛ
s

∼=
##H

HH

SΛ

des

����
ΛL

φ

∼=
##F

FF

ΛL∗
� �

supp∗
// QΛ

(6.5)

The maps involved in the projection, namely NΠ,MΠ → NΛ, and SΠ → SΛ, and
RΠ → RΛ, and QΠ,PΠ → QΛ, and ΠZ,ΠL → ΛL and ΠZ∗ ,ΠL∗ → ΛL∗ are given
in Definitions 5.7.5-5.7.8, 5.7.16-5.7.18.

Proof We showed in Proposition 5.7.5 that diagram (6.4) projects onto diagram (6.5)
as vector spaces. In this regard, we recall that Sn acts on the nth graded piece of each
Hopf algebra in diagram (6.4), and taking the coinvariants of this action, we obtain the
corresponding Hopf algebra in diagram (6.5). Now to finish the proof, one needs to check
that the quotient maps NΠ → NΛ, etc. are maps of Hopf algebras. These are simple
checks that we leave to the reader.

�

Remark Let H = ⊕
n≥0

KHn be a graded Hopf algebra, with the symmetric group Sn

acting on the set Hn. Then under what conditions on H do we get an induced Hopf
algebra on the quotient

H = ⊕
n≥0

K(Hn)Sn
?
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The Hopf algebras in the above theorem, for example H = QΠ and H = QΛ, all fit in
this framework. Hence a good answer to this question can simplify matters a lot. This
issue will be taken up in a future work.

In light of the theorems presented so far, one can ask the following question.

Open Question For a family {Σn}n≥0 of LRBs, can one define compatibility axioms
such that if a family satisfies the coalgebra, algebra and compatibility axioms then dia-
gram (6.3) is a diagram of Hopf algebras?

We make two comments about this question. Firstly, there must be enough exam-
ples to justify an axiomatic approach; at the moment, there is only one example (Theo-
rem 6.1.3). Secondly, we believe that the solution may require modification of the present
coalgebra and algebra axioms themselves.

6.2 The Hopf algebras of type A

In this section, we define (without proof) the Hopf algebras in diagram (6.4). That is, we
do not check the (co)associativity of the (co)products or the compatibility of the products
and coproducts. These facts follow from the general considerations of later sections, see
the proof of Theorem 6.1.3 for a summary.

6.2.1 Summary

Table 6.2: Hopf algebras and their indexing sets.

Hopf algebras Indexing set

PΠ MΠ Σn = compositions of [n]

QΠ NΠ Qn = fully nested compositions of [n]

ΠL∗ ΠL Ln = partitions of [n]

ΠZ∗ ΠZ Zn = fully nested partitions of [n]

SΠ RΠ Cn × Cn = pairs of permutations of [n]

Table 6.3: Unified description of the Hopf algebras.

Hopf algebras Coproduct Product

PΠ, QΠ, ΠL∗ , ΠZ∗ Local vertex Quasi-shuffle

MΠ, NΠ, ΠL, ΠZ Global vertex Join

We showed in Section 5.4 that for the example of type A, the objects in diagram (6.3)
can be described combinatorially, using the notions of (fully nested) set compositions
and partitions. Each one of them indexes two Hopf algebras, as shown in Table 6.2.
We recall these four definitions in Sections 6.2.3, 6.2.6, 6.2.9 and 6.2.12, and for each
one define the notion of a local vertex, a global vertex, a quasi-shuffle and a join. The
geometric meaning of the first two notions can be found in Tables 6.5 and 6.6. With
these notions, the first eight Hopf algebras in Table 6.2 can be described in a unified
way as summarized in Table 6.3. The formal definitions are given in Sections 6.2.4-6.2.5,
6.2.7-6.2.8, 6.2.10-6.2.11, and 6.2.13-6.2.14. For example, the coproduct of PΠ, QΠ, ΠL∗
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and ΠZ∗ can be written using the notion of a local vertex of a composition, a fully nested
composition, a partition and a fully nested partition of [n] respectively, and so on. The
Hopf algebras SΠ and RΠ are a little different and are defined towards the end of this
section (Sections 6.2.15-6.2.16).

6.2.2 The structure of the Hopf algebras of type A

Table 6.4: Hopf algebras and their structure.

Hopf algebra Comm. Cocomm. Structure

RΠ, SΠ No No Free and cofree

MΠ No Yes Free

PΠ No No Free and cofree

NΠ No No Free

QΠ No No Cofree

ΠL, ΠL∗ No Yes Free

ΠZ No No Free

ΠZ∗ No Yes

We now make a few comments about the structure of the Hopf algebras that we
construct. Table 6.4 summarizes what is known so far. We note that the Hopf algebra
MΠ is not dual to PΠ, the Hopf algebra ΠZ is not dual to ΠZ∗ ; similarly the Hopf algebra
Π (short for ΠL∗ and ΠL) is not self-dual. This is clear by looking at the commutativity
and cocommutativity columns. This nonduality mystery will be explained in a future
work.

The fact that MΠ and NΠ, and Π and ΠZ are free follows directly from the definitions
on the H and h basis respectively. The freeness and cofreeness of SΠ, or equivalently,
RΠ, as well as the cofreeness of PΠ and QΠ will be proved in Chapter 7. The freeness
of PΠ will be a consequence of further theory that we will develop in a follow-up to this
work.

Remark The freeness and cofreeness of PΠ also appears in Bergeron and Zabrocki [9].
Many other interesting Hopf algebras of a similar combinatorial nature are defined by
Hivert, Novelli and Thibon [45, 67, 68, 69, 44]. They are constructed as subalgebras of the
free algebra on countably many generators. This important point of view is not pursued
in this monograph. For other related work, see the references given in Section 6.1.3.

6.2.3 Set compositions

Definition 6.2.1 A vertex of a set N is an ordered splitting of N into two subsets. If
one of the subsets is empty then we have a virtual vertex. For example,

134
↓

25 ; 134 and 25

is a vertex of the set [5]. And
↓

12345 and 12345
↓

are the two virtual vertices of [5].

Definition 6.2.2 A set composition is an ordered set partition. For example, 6|34|125
is a composition of [6].
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Definition 6.2.3 There is a unique order preserving map st from any n-set N of the
integers to the standard n-set [n]. Using this map, one can standardize a composition of
N to a composition of [n]. For example,

st(9|36|58) = 5|13|24.

In the same way, we may standardize a composition of N to a composition of any n-set,
say A, of the integers. We denote this map by stA.

Definition 6.2.4 A local vertex of a set composition F is an ordered splitting of F into
two set compositions. For example,

F 1|F 2|F 3
↓

|F 4
; F 1|F 2|F 3 and F 4.

If one of the two set compositions is empty then we have a virtual local vertex. Every
set composition F has exactly two virtual local vertices.

F 1|F 2|F 3|F 4
↓

; F 1|F 2|F 3|F 4 and ∅.

↓

F 1|F 2|F 3|F 4
; ∅ and F 1|F 2|F 3|F 4.

Definition 6.2.5 A “shuffle” of set compositions F1 and F2 is a shuffle of the components
of F1 and F2. For example,

5|mar|ce|21|34|lo|6 is a “shuffle” of 5|21|34|6 and mar|ce|lo.

This definition is not fully precise since we need to ensure that the shuffled sets are
disjoint. For that, we work with the following definition.

Let K = K1

↓

K2 be a vertex of the set N . And let F1 and F2 be compositions of the
sets N1 and N2 such that |N1| = |K1| and |N2| = |K2|. Then a K-shuffle of F1 and F2 is

a shuffle of the components of stK1
(F1) and stK2

(F2). For example, for K = 245679
↓

138,

26|18|479|3|5 is a K-shuffle of 14|256|3 and 13|2.

We mostly deal with the special case when F1 and F2 are compositions of [g1] and [g2], and
we shuffle them by shifting the indices of F2 by g1 and then shuffling their components.

Definition 6.2.6 A “quasi-shuffle” of set compositions F1 and F2 is a shuffle of the
components of F1 and F2, where in addition we are allowed to substitute a disjoint set of
pairs of components (F i1 , F

j
2 ) for F i1∪F

j
2 , if they are adjacent in the shuffle. For example,

5sw|ap|21|34nil|6 is a “quasi-shuffle” of 5|21|34|6 and sw|ap|nil.

We leave it to the reader to make this precise by defining the notion of a K-quasi-shuffle,
as in the previous definition.

Definition 6.2.7 A global vertex of a set composition P = P 1|P 2| · · · |P l is a choice of
a vertex for each set P i for 1 ≤ i ≤ l. This allows us to split P into two ordered set
compositions. For example,

12
↓

5|347
↓

|8
↓

69 ; 12|347|8 and 5|69.

Note that there are two virtual global vertices that create an empty set composition after
splitting.
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Definition 6.2.8 The join of a composition P1 of [g1] and a composition P2 of [g2] is
the composition j(P1 × P2) of [g1 + g2] obtained by shifting up the indices of P2 by g1
and then placing it after P1. For example,

j(31|2× 23|14|5) = 31|2|56|47|8.

Remark The notion of a standardization map (Definition 6.2.3) and a virtual vertex
(both local and global) exists and plays the same role for nested set compositions and
(nested) set partitions also. We omit their definitions to avoid unnecessary repetition.
Similarly, we do not repeat the issue of index shifting in the subsequent definitions of
quasi-shuffles.

6.2.4 The Hopf algebra PΠ

Let PΠ = ⊕
n≥0

K(Σn)∗, where Σn is the set of compositions of [n]. Write MF for the basis

element corresponding to F ∈ Σn, n > 0 and 1 for the basis element of degree 0.

Definition 6.2.9 The coproduct on PΠ is given by

∆(MF ) =
∑

local vertices of F

MF1
⊗MF2

. (6.6)

A local vertex, by definition, splits F into two ordered parts. The F1 and F2 in the above
formula are obtained by standardizing these two parts respectively. The two virtual local
vertices of F contribute to the terms 1⊗MF and MF ⊗ 1. More explicitly,

∆(MF 1|···|F l) =

l∑

i=0

Mst(F 1|···|F i) ⊗Mst(F i+1|···|F l).

For example,

∆(M136|25|47) = 1⊗M136|25|47 +M123 ⊗M13|24 +M135|24 ⊗M12 +M136|25|47 ⊗ 1.

Definition 6.2.10 The product on PΠ is given by

MF1
∗MF2

=
∑

F : F a quasi-shuffle of F1 and F2

MF . (6.7)

If F1 and F2 are compositions of [g1] and [g2] respectively then the understanding is that
we shift up the indices of F2 by g1 and then quasi-shuffle. For example,

M13|2 ∗M12 = M13|2|45 +M13|45|2 +M45|13|2 +M13|245 +M1345|2.

These formulas for the product and coproduct agree with Formulas (1) and (2) of
Chapoton [21].

6.2.5 The Hopf algebra MΠ

Let MΠ = ⊕
n≥0

KΣn, where Σn is the set of compositions of [n]. Write HP for the basis

element corresponding to P ∈ Σn, n > 0 and 1 for the basis element of degree 0.

Definition 6.2.11 The coproduct on MΠ is given by

∆(HP ) =
∑

global vertices of P

HP1
⊗HP2

. (6.8)
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A global vertex splits P into two ordered parts. The P1 and P2 in the above formula are
obtained by standardizing these two parts respectively. The two virtual global vertices
of P contribute to the terms 1⊗HP and HP ⊗ 1. For example,

∆(H1|2|3) = 1⊗H1|2|3 + 3(H1 ⊗H1|2 +H1|2 ⊗H1) +H1|2|3 ⊗ 1.

The global vertices 1
↓

|
↓

2|
↓

3,
↓

1|2
↓

|
↓

3,
↓

1|
↓

2|3
↓

each give the term H1 ⊗ H1|2, the global

vertices 1
↓

|2
↓

|
↓

3,
↓

1|2
↓

|3
↓

, 1
↓

|
↓

2|3
↓

each give the term H1|2 ⊗ H1, and the two virtual
global vertices give the end terms.

In contrast to the local case, different global vertices of P can give rise to the same
P1 and P2.

Remark The Hopf algebra MΠ is cocommutative.

5
↓

12|3
↓

74|689
↓

; 5|3|689 and 12|74.

12
↓

5|74
↓

3|
↓

689 ; 12|74 and 5|3|689.

As illustrated above, there is an involution without fixed points on the set of global
vertices of P obtained by switching the order of the two parts in each component of P . If
a global vertex K splits P into P1 and P2 then K, the image of K under the involution,
splits P into P2 and P1. This shows that MΠ is cocommutative.

Definition 6.2.12 The product on MΠ is given by

HP1
∗HP2

= Hj(P1×P2). (6.9)

For example,

H31|2 ∗H12 = H13|2|45.

6.2.6 Nested set compositions

Definition 6.2.13 A nested set composition is a sequence F = F 1|F 2| . . . |F l, in which

each F i is a set composition of Ai, and A1| . . . |Al is a set composition of [n]. For example,

(3|15|7|48|29|6)

is a nested composition of [9]. A fully nested set composition is a nested set composition
with singleton blocks.

Equivalently, a nested set composition is a pair (F,H) of set compositions such that
F ≤ H . In the above example, the pair is (135|24789|6, 3|15|7|48|29|6). And a fully
nested set composition is a pair (F,D) with F ≤ D and D a chamber.

We use both the notations depending on our convenience.

Definition 6.2.14 A local vertex of a nested set composition (F,H) is simply a local
vertex of F , as given in Definition 6.2.4. For example,

3|15

↓

|7|48|29|6 ; 3|15 and 7|48|29|6.

In other words, a local vertex is either a choice of a big bar, or one of the two extreme
choices on either side corresponding to the virtual local vertices.
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Definition 6.2.15 A quasi-shuffle of two fully nested set compositions (F1, D1) and
(F2, D2) is a fully nested set composition (F,D), where F is a quasi-shuffle of F1 and F2

and D is the underlying shuffle of D1 and D2. For example,

3|1|b|a|c|5|4|2|d|6 is a quasi-shuffle of 3|1|5|4|2|6 and b|a|c|d.
In other words, we quasi-shuffle with respect to the big bars, and if two blocks get merged
in the quasi-shuffle then we write them one after the other with a small bar in between.

Definition 6.2.16 A global vertex of a fully nested set composition P 1|P 2| . . . |P l is a

choice of a local vertex for each set composition P i. This allows us to split P into two
ordered fully nested set compositions. For example,

3
↓

|1|5|4
↓

|2|7|
↓

6|8 ; 3|5|4 and 1|2|7|6|8.

Definition 6.2.17 The join of a nested set composition (P1, Q1) of [g1] and a nested set
composition (P2, Q2) of [g2] is the nested set composition of [g1 + g2] given by (j(P1 ×
P2), j(Q1 ×Q2)), with the notation as in Definition 6.2.8. For example,

j(3|1|2× 23|1|4|5) = 3|1|2|56|4|7|8.

Remark Note that we defined a quasi-shuffle and global vertex only for fully nested
set compositions. These notions for nested set compositions are more complicated. Since
they are not necessary for this chapter, we omit them.

6.2.7 The Hopf algebra QΠ

Let QΠ = ⊕
n≥0

K(Qn)∗, where Qn is the set of fully nested compositions of [n]. Write

M(F,D) for the basis element corresponding to (F,D) ∈ Qn, n > 0 and 1 for the basis
element of degree 0.

Definition 6.2.18 The coproduct and product on QΠ are given by Equations (6.6)
and (6.7), but where local vertex and quasi-shuffle are now given by Definitions 6.2.14
and 6.2.15. As an example, for the coproduct,

∆(M
3|1|5|4|2|6) = 1⊗M

3|1|5|4|2|6 +M3|1|5 ⊗M
2|1|3 +M

3|1|5|4|2 ⊗M1 +M
3|1|5|4|2|6 ⊗ 1.

The number of terms is two more than the number of big bars in the nested set compo-
sition.

As an example, for the product,

M
2|3|1|4 ∗M2|1 = M

2|3|1|4|6|5 +M
2|3|6|5|1|4 +M

6|5|2|3|1|4 +M
2|3|1|4|6|5 +M

2|3|6|5|1|4.

6.2.8 The Hopf algebra NΠ

Let NΠ = ⊕
n≥0

KQn, where Qn is the set of fully nested compositions of [n]. Write H(P,C)

for the basis element corresponding to (P,C) ∈ Qn, n > 0 and 1 for the basis element of
degree 0.

Definition 6.2.19 The coproduct and product on NΠ are given by Equations (6.8)
and (6.9), but where global vertex and join are now given by Definitions 6.2.16 and 6.2.17.
For example, for the coproduct,

∆(H
3|1|2) = 1⊗H

3|1|2 +H1 ⊗H2|1 +H1 ⊗H
1|2 +H

2|1 ⊗H1 +H2|1 ⊗H1 +H
3|1|2 ⊗ 1.
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The fully nested set composition 3|1|2 has 3 ∗ 2 = 6 global vertices, namely,

↓

3|1|
↓

2 ,
↓

3|1|2
↓

, 3
↓

|1|
↓

2 , 3
↓

|1|2
↓

, 3|1
↓

|
↓

2 , 3|1
↓

|2
↓

.

Each one of these contributes to a term in the coproduct.
The product is quite simple and involves only one term. For example,

H
2|3|1|4 ∗H2|1 = H

2|3|1|4|6|5.

6.2.9 Set partitions

We denote a set partition by X = {X1, X2, . . . , X l}. For example, {134, 56, 2} is a
partition of the set [6].

Definition 6.2.20 A local vertex of a set partition X is an ordered splitting of X into
two set partitions. For example,

{X1, X2, X3, X4} ; {X1, X2, X4} and {X3}.

Definition 6.2.21 A quasi-shuffle of set partitions X1 and X2 is the union of X1 and
X2, where in addition we are allowed to substitute a disjoint set of pairs of components
(X i

1, X
j
2) for X i

1 ∪X
j
2 . For example,

{34a, 15bd, 6, c} is a quasi-shuffle of {15, 34, 6} and {a, bd, c}.

Definition 6.2.22 A global vertex of a set partition Y = {Y 1, Y 2, . . . , Y l} is a choice
of a vertex for each set Y i. For example,

{36
↓

4, 7
↓

1, 2
↓

5} ; {36, 7, 2} and {4, 1, 5}.

Definition 6.2.23 The join of a partition Y1 of [g1] and a partition Y2 of [g2] is a
partition j(Y1 × Y2) of [g1 + g2] obtained by shifting up the indices of Y2 by g1 and then
taking union with Y1. For example,

j({31, 2} × {23, 14, 5}) = {31, 2, 56, 47, 8}.

6.2.10 The Hopf algebra ΠL∗

Let ΠL∗ = ⊕
n≥0

K(Ln)∗, where Ln is the set of partitions of [n]. Write mX for the basis

element corresponding to X ∈ Ln, n > 0 and 1 for the basis element of degree 0.

Definition 6.2.24 The coproduct and product on ΠL∗ are given by Equations (6.6)
and (6.7), but where local vertex and quasi-shuffle are now given by Definitions 6.2.20
and 6.2.21. As an example, for the coproduct,

∆(m{13,2}) = 1⊗m{13,2} +m{12} ⊗m{1} +m{1} ⊗m{12} +m{13,2} ⊗ 1.

As an example, for the product,

m{13,2} ∗m{12} = m{13,2,45} +m{13,245} +m{1345,2}.

It is clear that the coproduct is cocommutative.
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6.2.11 The Hopf algebra ΠL

Let ΠL = ⊕
n≥0

KLn, where Ln is the set of partitions of [n]. Write hY for the basis element

corresponding to Y ∈ Ln, n > 0 and 1 for the basis element of degree 0.

Definition 6.2.25 The coproduct and product on ΠL are given by Equations (6.8)
and (6.9), but where global vertex and join are now given by Definitions 6.2.22 and 6.2.23.
For example, for the coproduct,

∆(h{12,3}) = 1⊗ h{12,3} + 2(h{1} ⊗ h{1,2} + h{1,2} ⊗ h{1})+

(h{1} ⊗ h{12} + h{12} ⊗ h{1}) + h{12,3} ⊗ 1.

The product is quite simple and involves only one term. For example,

h{134,2} ∗ h{1,23} = h{134,2,5,67}.

Note that using the reasoning given for MΠ, it follows that the coalgebra ΠL is also
cocommutative. We may also use the fact that the quotient of a cocommutative coalgebra
is again cocommutative. As mentioned before, this Hopf algebra is not self-dual.

Remark The Hopf algebras ΠL and ΠL∗ are isomorphic. This is a part of the claim
made in Theorem 6.1.3.

6.2.12 Nested set partitions

Definition 6.2.26 A nested set partition is a set L = {L1, . . . , Ll}, in which each Li is
a set composition of Ai, and {A1, . . . , Al} is a set partition of [n]. For example,

{3|56, 2|17, 4}

is a nested partition of [7]. A fully nested set partition is a nested set partition with
singleton blocks.

Definition 6.2.27 A local vertex of a nested set partition L is an ordered splitting of L
into two nested set partitions. For example,

{L1, L2, L3, L4} ; {L1, L2, L4} and {L3}.

Definition 6.2.28 A quasi-shuffle of two fully nested set partitions L1 and L2 is a union
of L1 and L2, where in addition we are allowed to substitute a disjoint set of pairs of
components (Li1, L

j
2) for the composition Li1|L

j
2. For example,

{3|4|a, 1|6|c|d, b, 2|7} is a quasi-shuffle of {1|6, 3|4, 2|7} and {a, c|d, b}.

Definition 6.2.29 A global vertex of a fully nested set partition M = {M1, . . . ,M l} is
a choice of a local vertex for each set composition M i. For example,

{
↓

3|6|4, 7|8|1
↓

|9, 2
↓

|5} ; {7|8|1, 2} and {3|6|4, 9, 5}.

Definition 6.2.30 The join of nested partitions M1 of [g1] and M2 of [g2] is a nested
partition j(M1 ×M2) of [g1 + g2] obtained by shifting up the indices of M2 by g1 and
then taking union with M1. For example,

j({3|1, 2} × {23, 1|4, 5}) = {3|1, 2, 56, 4|7, 8}.

Remark As for nested set compositions, to avoid complications, we have defined a
quasi-shuffle and global vertex only for fully nested set partitions.



6.2. THE HOPF ALGEBRAS OF TYPE A 87

6.2.13 The Hopf algebra ΠZ∗

Let ΠZ∗ = ⊕
n≥0

K(Zn)∗, where Zn is the set of fully nested partitions of [n]. Write mL for

the basis element corresponding to L ∈ Zn, n > 0 and 1 for the basis element of degree
0.

Definition 6.2.31 The coproduct and product on ΠZ∗ are given by Equations (6.6)
and (6.7), but where local vertex and quasi-shuffle are now given by Definitions 6.2.27
and 6.2.28. As an example, for the coproduct,

∆(m{1|3,4|2}) = 1⊗m{1|3,4|2} +m{1|2} ⊗m{2|1} +m{2|1} ⊗m{1|2} +m{1|3,4|2} ⊗ 1.

As an example, for the product,

m{1|4|3,2} ∗m{1|2} = m{1|4|3,2,5|6} +m{1|4|3,2|5|6} +m{1|4|3|5|6,2}.

It is clear that the coproduct is cocommutative.

6.2.14 The Hopf algebra ΠZ

Let ΠZ = ⊕
n≥0

KZn, where Zn is the set of fully nested partitions of [n]. Write hM for the

basis element corresponding to M ∈ Zn, n > 0 and 1 for the basis element of degree 0.

Definition 6.2.32 The coproduct and product on ΠZ are given by Equations (6.8)
and (6.9), but where global vertex and join are now given by Definitions 6.2.29 and 6.2.30.
For example,

∆(h{3|1,2}) = 1⊗ h{3|1,2} + h{1} ⊗ h{2|1} + h{2|1} ⊗ h{1}

+h{1} ⊗ h{1,2} + h{1,2} ⊗ h{1} + h{3|1,2} ⊗ 1.

The product is quite simple and involves only one term. For example,

h{1|4|3,2} ∗ h{1,2|3} = h{1|4|3,2,5,6|7}.

Remark The Hopf algebras ΠZ and ΠZ∗ are neither isomorphic nor dual to each other.

6.2.15 The Hopf algebra SΠ

Let SΠ = ⊕
n≥0

K(Cn × Cn)∗, where Cn are the chambers in Σn and can be identified with

permutations. Write F(C,D) for the basis element (C,D) ∈ Cn × Cn, n > 0 and 1 for the
basis element of degree 0. Let C = C1|C2| . . . |Cn and D = D1|D2| . . . |Dn.

Definition 6.2.33 The coproduct on SΠ is given by

∆(F(C,D)) =
n∑

i=0

Fst(C̃1|···|C̃i,D1|···|Di) ⊗ Fst(C̃i+1|···|C̃n,Di+1|···|Dn),

where C̃1, . . . , C̃i are the letters in the set {D1, . . . , Di} and C̃i+1, . . . , C̃n are the letters
in the set {Di+1, . . . , Dn} written in the order in which they appear in C1| · · · |Cn. For
example,

∆(F2|3|1|4,4|2|1|3) = 1⊗ F2|3|1|4,4|2|1|3 + F1,1 ⊗ F2|3|1,2|1|3 + F1|2,2|1 ⊗ F2|1,1|2+

F2|1|3,3|2|1 ⊗ F1,1 + F2|3|1|4,4|2|1|3 ⊗ 1.
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Definition 6.2.34 The product on SΠ is given by

F(C1,D1) ∗ F(C2,D2) =
∑

D: D a shuffle of D1 and D2

F(j(C1×C2),D).

The term j(C1 ×C2) refers to the join of C1 and C2 given in Definition 6.2.8. If D1 and
D2 are compositions of [g1] and [g2] respectively then the understanding is that we shift
up the indices of D2 by g1 and then shuffle. For example,

F(2|1,2|1) ∗ F(2|1,1|2) = F(2|1|4|3,2|1|3|4) + F(2|1|4|3,2|3|1|4) + F(2|1|4|3,3|2|1|4)+

F(2|1|4|3,2|3|4|1) + F(2|1|4|3,3|2|4|1) + F(2|1|4|3,3|4|2|1).

6.2.16 The Hopf algebra RΠ

Let RΠ = ⊕
n≥0

K(Cn × Cn), where Cn are the chambers in Σn and can be identified with

permutations. Write K(D,C) for the basis element (D,C) ∈ Cn × Cn, n > 0 and 1 for the
basis element of degree 0. We define a product and coproduct on RΠ (see below) such
that:

Proposition 6.2.1 The switch map s : RΠ → SΠ which sends K(D,C) → F(C,D) is an
isomorphism of Hopf algebras.

Definition 6.2.35 The coproduct on RΠ is given by

∆(K(D,C)) =

n∑

i=0

Kst(D1|···|Di,C̃1|···|C̃i) ⊗Kst(Di+1|···|Dn,C̃i+1|···|C̃n).

where C̃1, . . . , C̃n are as in Definition 6.2.33.

Definition 6.2.36 The product on RΠ is given by

K(D1,C1) ∗K(D2,C2) =
∑

D: D a shuffle of D1 and D2

K(D,j(C1×C2)).

Remark As mentioned above, the Hopf algebras RΠ and SΠ are clearly isomorphic.
However for book-keeping purposes, we prefer to keep them separate.

6.3 The coalgebra axioms and examples

In this section, we give the coalgebra axioms for a family of posets (Section 6.3.1). They
appear very abstract at first glance; however they are natural, that is, there are many
examples (Sections 6.3.2-6.3.4). The motivation is that one can construct the coalgebras
in diagram (6.3) starting with a family of posets that satisfies these axioms.

Our first example (Section 6.3.2) is based on compositions. It is simple yet nontrivial
enough to help the reader gain some understanding of the axioms. The next example
(Section 6.3.3) arises from the Coxeter group of type A. It is the motivating example
which led us to the axioms. We give two viewpoints for this example, one geometric and
the other combinatorial, stressing the former. In Section 6.3.4, we give another example
from Coxeter theory.
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6.3.1 The coalgebra axioms

Consider the family {Σn}n≥0, where Σn is a finite graded poset of rank n − 1 with a
unique minimum element that we denote ∅. Further let Σ0 and Σ1 be singleton sets with
the unique element ∅. For K a face of Σ, let

ΣnK = {F ∈ Σn | K ≤ F}.

Let Cn be the set of chambers (maximal elements) in Σn and CnF = {D ∈ Cn | F ≤ D}.
Let degK = rankK + 1, where rank denotes the rank of an element.

We give three coalgebra axioms for such a family of posets.

Axiom (C1). For every face F of Σn, there exists a composition (f1, f2, . . . , fdegF ) of n
and a poset isomorphism

bF : ΣnF → Σf1 × Σf2 × . . .× Σfdeg F . (6.10)

For F = ∅, the composition is (n) and the poset isomorphism b∅ is the identity map
id : Σn → Σn.

GFED@ABCbF

66lllllllll //

((RRRRRRRRR

Figure 6.1: The break map bF .

Figure 6.1 shows a schematic picture for the break map bF for degF = 3. The circle
at the center is an apparatus which takes one input larger than F and produces three
ordered outputs.

Axiom (C2). The maps bF in axiom (C1) are “associative” in the following sense.
Let K be a face of F . First apply the axiom (C1) to the face K of Σn to get a

composition (k1, k2, . . . , kdegK) of n and a poset isomorphism

bK : ΣnK → Σk1 × Σk2 × . . .× Σkdeg K .

Under this map, let F 7→ F1 × F2 × . . .× FdegK . This induces an isomorphism

bK : ΣnF → Σk1F1
× Σk2F2

× . . .× Σ
kdeg K

Fdeg K
.

Apply the axiom (C1) to the face Fi of Σki to get a composition (fi1, fi2, . . . , fidegFi
) of

ki and a poset isomorphism

bFi
: Σki

Fi
→ Σfi1 × Σfi2 × . . .× Σfideg Fi for 1 ≤ i ≤ degK.

Then, we have
bF = (bF1

× bF2
× . . .× bFdeg K

) ◦ bK , (6.11)

where bF is the poset map given by the axiom (C1) for the face F . In particular, we
require that

(f1, f2, . . . , fdegF ) = (f11, f12, . . . , f1degF1
, f21, . . . , fmdegFm

), (6.12)

where m = degK.
Figure 6.2 shows a schematic picture for the associativity of the break map. It sum-

marizes what is going on without using the above menagerie of symbols.

Axiom (C3). Every rank 2 face H of Σn has exactly two rank 1 faces, say K and G.
Further the poset isomorphisms bK : ΣnK → Σk1 ×Σk2 and bG : ΣnG → Σg1 ×Σg2 map H
to ∅ ×K ′ and G′ × ∅ respectively for some rank 1 faces K ′ ∈ Σk2 and G′ ∈ Σg1 .



90 CHAPTER 6. THE CONSTRUCTION OF HOPF ALGEBRAS
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Figure 6.2: The break map is associative.

Remark The content of this axiom is not the existence of K ′ and G′ but the fact that
they belong to the second and first coordinate respectively of the range.

In addition to the above three coalgebra axioms, we define a projection axiom. For
that assume, in addition, that each Σn is a projection poset, as defined in Section 2.7.
This includes the case when Σn is a LRB.

Axiom (CP ). The poset maps respect the product structure of Σn; that is, for any
F ≤ H,N ∈ Σn, we have

bF (HN) = bF (H)bF (N),

where bF is the poset isomorphism associated to F by the axiom (C1).

Remark The elements of rank 1, or equivalently, degree 2 in Σn have a special role
to play when we consider coproducts. We also refer to them as vertices, since Σn is a
simplicial complex in our examples.

Proposition 6.3.1 Let {Σn}n≥0 satisfy the coalgebra axioms (C1) and (C2). Then for
each n > 0, there are poset maps

type : Σn → Q
n
,

where Q
n

is the poset of compositions of n.

Proof The map type sends a face F ∈ Σn to the composition (f1, f2, . . . , fdegF ) of n
as given by the axiom (C1). The axiom (C2), in particular Equation (6.12), implies that
this is a poset map.

�

Remark In our examples, the map type : Σn → Q
n

is a map from a simplicial complex
of rank n− 1 to the simplex of rank n− 1. It will always be surjective and have a “nice”
section Q

n
→֒ Σn. This section is important for the algebra axioms that we consider in

Section 6.6.

6.3.2 The warm-up example of compositions

Let Σn = Q
n

be the simplex of rank n − 1, n ≥ 0. As a poset, it consists of subsets of
[n− 1], or equivalently, compositions of n. Recall that a composition of n of degree l is a

sequence α = (α1, . . . , αl) of positive integers such that
∑l
i=1 αi = n. The partial order

of Q
n

is given by subset inclusion, or equivalently, refinement of compositions. The poset
Q
n

has only one chamber D, namely the n-tuple

(1, 1, . . . , 1︸ ︷︷ ︸
n

)
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and a unique minimum element ∅ = (n). It is a commutative LRB with the product
being union of subsets. Let

Q
n

α = {β ∈ Q
n
| α ≤ β}.

Our goal is to show the following.

Lemma 6.3.1 The family of LRBs {Q
n
}n≥0 satisfies all coalgebra axioms (C1)− (CP ).

Proof The map in Proposition 6.3.1, in this case, is the identity isomorphism Q
n
→ Q

n
.

So the situation is as simple as can be. The break map is defined as below.

Definition 6.3.1 For α = (α1, . . . , αk), a composition of n and degree k, we define a
poset isomorphism

bα : Q
n

α → Q
α1
×Q

α2
× . . .×Q

αk

as follows.

Let β ∈ Q
n

α be a refinement of α. Then the image of β on the ith factor is obtained by
lumping together the parts of β that refine αi. For example, for n = 9 and α = (2, 4, 3),

the map Q
9

α → Q
2
×Q

4
×Q

3
sends β = (2, 1, 3, 2, 1) to (2)× (1, 3)× (2, 1).

It is easy but instructive to check the axioms (C2) and (CP ) from this definition.
This is left to the reader. We check the axiom (C3). Let α = (α1, α2, α3) be a rank 2
face. Then it has two rank 1 faces, namely, β = (α1, α2 + α3) and γ = (α1 + α2, α3).

Further, the maps Q
n

β → Q
α1
×Q

α2+α3
and Q

n

γ → Q
α1+α2

×Q
α3

send α to (α1)×(α2, α3)
and (α1, α2)× (α3) respectively, in accordance with the axiom (C3). Remember that (n)
stands for the empty face ∅ in Q

n
.

�

Remark The idea behind Definition 6.3.1 is better seen in the language of subsets. It
will also be useful for the next example. Let V be a subset of [n− 1] of cardinality k− 1.
Then

[n− 1] \ V =

k⊔

j=1

Ij

is a disjoint union of k intervals. To every T such that V ⊆ T ⊆ [n−1], one can associate
Tj ⊆ Ij by the identity

T = V
⊔



k⊔

j=1

Tj



 . (6.13)

This defines a poset isomorphism

Q
n

V −→
k
×
j=1
{subsets of Ij},

equivalent to the one in Definition 6.3.1, that sends T to T1 × T2 × . . .× Tk.

6.3.3 The motivating example of type An−1

The motivation for the coalgebra axioms comes from the theory of Coxeter groups. Let
(W,S) be a Coxeter system, Σ its Coxeter complex and C the set of chambers in Σ. We
recall some key facts from Chapters 1 and 2.
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Fact 6.3.1 A Coxeter complex Σ is a left regular band (LRB). For F ∈ Σ and C ∈ C,
the chamber FC is that chamber in CF = {D | F ≤ D} which is closest in the gallery
metric to C. This is shown in Figure 1.2. The product in Σ is then given by

FP =
⋂

P≤C

FC.

We call FP the projection of P on F .

Fact 6.3.2 Let F ∈ Σ be a face of type T ≤ S. Then the link of F in Σ, denoted
link(F ), is again a Coxeter complex. In our notation, link(F ) ∼= ΣF as posets. Further
the Coxeter diagram of link(F ) is obtained from the Coxeter diagram of Σ by deleting
all the vertices whose type is contained in T .

Fact 6.3.3 The join Σ1∗Σ2 of two Coxeter complexes is again a Coxeter complex, whose
diagram is the disjoint union of the diagrams of Σ1 and Σ2. Further, the join operation
is compatible with the projection maps, that is,

(H1 ∗N1)(H2 ∗N2) = (H1H2 ∗N1N2), where Hi, Ni ∈ Σi.

Geometry

Recall from Section 1.4 that for type An−1, the Coxeter group W is Sn, the symmetric
group on n letters and S = {s1, . . . , sn−1}, where si is the transposition that interchanges
i and i+1. Let Σn be the Coxeter complex of Sn. Identify Q

n
, the poset of compositions

of n under refinement, with the poset of subsets of S under inclusion in the usual way.

��������
s1

��������
s2

. . . ��������
sn−1

Figure 6.3: The Coxeter diagram of type An−1.

Lemma 6.3.2 The family of LRBs {Σn}n≥0 satisfies all coalgebra axioms (C1)− (CP ).

Proof Our goal here is two-fold, to prove the above lemma; at the same time, to use
this example, to motivate the axioms themselves.

Axiom (C1). Let F ∈ Σ be a face of type T ≤ S. Observe that deleting |T | = rankF
vertices breaks the Coxeter diagram of type A, shown in Figure 6.3, into

degF = rankF + 1,

possibly empty, disjoint parts, each part again being of type A. Further, these parts can
be ordered in a natural way. In other words, using Facts 6.3.2 and 6.3.3,

bF : ΣnF
∼=
−→ Σf1 × Σf2 × . . .× Σfdeg F , (6.14)

where fi = 1+ (number of vertices in the ith part) and where × refers to the join of
simplicial complexes. It is the cartesian product at the level of posets. This is the origin
of the coalgebra axiom (C1). There is still one difference though. The above isomorphism
bF is specified only upto the symmetric groups involved. To pick out a specific bF , one
needs to do the following.
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Fix a fundamental chamber Cn0 in Σn for all n ≥ 1. Now define bF to be the unique
isomorphism that maps

FCn0 7→ C
f1
0 × C

f2
0 × . . .× C

fdeg F

0 . (6.15)

In this case, Proposition 6.3.1 specializes to the following.

Proposition 6.3.2 The poset map type : Σn → Q
n

sends F ∈ Σn to type(F ) ≤ S.

This explains the origin of the name “type”. The above map is clearly surjective and
has a “nice” section that sends T ≤ S to the face of the fundamental chamber Cn0 of type
T .

Axiom (CP ). With bF as defined in Equation (6.14), it follows from Fact 6.3.3 that
{Σn}n≥0 satisfies the axiom (CP ).

Axiom (C2). We now show that {Σn}n≥0 satisfies the axiom (C2). In other words,
we show that Equation (6.11) holds. We use the notation of the axioms (C1) and (C2),
and further set m = degK for notational simplicity. The first requirement is that Equa-
tion (6.12) holds.

To get the composition of n in the left hand side of Equation (6.12) , we delete those
vertices from the Coxeter diagram of Σn whose type is contained in type(F ). And to
get the composition of n in the right hand side, we first delete those vertices whose type
is contained in type(K) and then from the ith part delete those vertices whose type is
contained in type(Fi), for 1 ≤ i ≤ m. The point is that in both cases we delete the same
vertices because

type(F ) = type(K)
⊔



m⊔

j=1

type(Fj)



 . (6.16)

since bK(F ) = F1 × F2 × . . .× Fm. This proves Equation (6.12). It is also instructive to
compare Equations (6.16) and (6.13).

Hence both sides of Equation (6.11) specify an isomorphism

ΣnF → Σf11 × Σf12 × . . .Σf1deg F1 × Σf21 × . . .× Σfm deg Fm .

To see that they specify the same isomorphism, one needs to check that

bF (FCn0 ) = (bF1
× bF2

× . . .× bFm
) ◦ bK(FCn0 ). (6.17)

For the left hand side, by (6.15), we have

bF (FCn0 ) = C
f11
0 × Cf120 × . . . C

f1deg F1

0 × Cf210 × . . .× C
fm deg Fm

0 .

The right hand side requires more work. Since K ≤ F , we have FCn0 = FKCn0 . Hence,
first by the axiom (CP ), which we proved, and then applying (6.15) to bK , we obtain

bK(FCn0 ) = bK(F )bK(KCn0 ) = F1C
k1
0 × F2C

k2
0 × . . .× FmC

km

0 .

Applying (bF1
× bF2

× . . .× bFm
) to both sides and applying (6.15) to each bFi

, we obtain

(bF1
× bF2

× . . .× bFm
) ◦ bK(FCn0 ) = C

f11
0 ×Cf120 × . . . C

f1deg F1

0 ×Cf210 × . . .×C
fm deg Fm

0 .

This proves Equation (6.17) and consequently the axiom (C2).

Axiom (C3). Note that Σn is a simplicial complex. Hence, a rank 2 face H in an edge
in Σn and has 2 rank 1 faces, or vertices, say K and G. If type(H) = {si, sj} with
i < j then assume for concreteness that K has type si and G has type sj . Note that
if we delete the vertex of type si (resp. sj) then the Coxeter diagram of Σn, shown in
Figure 6.3, breaks into two ordered parts with sj (resp. si) in the second (resp. first)
part. This is the content of the axiom (C3).

�
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Combinatorics

We now explain the combinatorial content of the geometry. The Coxeter complex Σn

can be identified with Bn, the poset of set compositions. Namely, the elements of Bn are
compositions F = F 1| . . . |F l of the set [n]. For example, 347|16|258 is an element of B8.
The equivalence between the geometry and the combinatorics is explained in detail in
Section 1.4, with further details in Section 5.4.

Definition 6.3.2 Multiply two set compositions by taking intersections and ordering
them lexicographically; more precisely, if F = F 1| . . . |F l and H = H1| . . . |Hm, then

FH = (F 1 ∩H1| . . . |F 1 ∩Hm| . . . |F l ∩H1| . . . |F l ∩Hm) ,̂

where the hat means “delete empty intersections”. For example,

(347|16|258)(6|157|28|34) = (7|34|6|1|5|28).

For the partial order of Bn, we say F ≤ H if H is a refinement of F . The minimum
element in Bn is the one block partition 12 . . . n. An element of rank 1 in Bn is a two block
ordered partition F 1|F 2 of [n]. The set of chambers Cn in Σn consists of set compositions
with singleton blocks, so they correspond to permutations of [n].

Lemma 6.3.3 The family of LRBs {Bn}n≥0 satisfies all coalgebra axioms (C1)− (CP ).

In principle, we already proved this in Lemma 6.3.2. So what is happening is lan-
guage translation. For the fundamental chamber Cn0 in Σn, we take the set composition
1|2| . . . |n. The geometric procedure then yields the following.

Definition 6.3.3 For F = F 1| . . . |F l, a composition of the set [n], we have l = degF .
Let fi be the cardinality of F i for 1 ≤ i ≤ l. The poset isomorphism

bF : BnF → B
f1 × Bf2 × . . .× Bfl

is defined as follows.

LetH ∈ BnF be a refinement of F . Then the image ofH on the ith factor is obtained by
lumping together the blocks of H that refine F i and standardizing (see Definition 6.2.3)
so that the result is a composition of the set [fi].

For example, for n = 9 and F = 18|2357|469, the map bF : B9
F → B

2×B4×B3 sends
H = 18|5|3|27|9|46 to the triplet 12× 3|2|14× 3|12.

The combinatorial content of Proposition 6.3.2 is the following.

Proposition 6.3.3 The poset map type : Bn ։ Q
n
, sends a composition of the set [n]

to its underlying composition of n.

The “nice” section Q
n
→֒ Bn sends a composition (α1, α2, . . . , αk) of n to the set com-

position

12 . . . α1|α1 + 1 . . . α1 + α2| . . . | . . . n.

We know from Lemma 6.3.2 that the axioms (C2) − (CP ) hold. But it is fun and
instructive to check them directly using Definitions 6.3.2 and 6.3.3. For example, to
check the axiom (C3), let H = H1|H2|H3 be a rank 2 face. As a concrete example, take
H = 136|25|47. Then its two rank 1 faces are K = 136|2457 and G = 12356|47. The
map bK maps H to 123× 13|24 and bG maps H to 135|24× 12. Remember that 123 and
12 are the empty faces in Σ3 and Σ2 respectively.
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6.3.4 The example of type A
×(n−1)
1

Geometry

Recall from Section 5.5 that for type A
×(n−1)
1 , the Coxeter group is Z

n−1
2 and S =

{s1, . . . , sn−1}, where si is the generator in the ith coordinate. Let Σn be the Coxeter
complex of Z

n−1
2 . Its Coxeter diagram is shown in Figure 6.4. Identify Q

n
, the poset of

compositions of n under refinement, with the poset of subsets of S under inclusion in the
usual way.

��������
s1

��������
s2

. . . ��������
sn−1

Figure 6.4: The Coxeter diagram of type A
×(n−1)
1 .

Lemma 6.3.4 The family of LRBs {Σn}n≥0 satisfies all coalgebra axioms (C1)− (CP ).

Proof The situation is quite similar to the type A example. Recall that for type A, the
poset map bF in (6.14) was defined using the following key property.

For F ∈ Σ, a face of type T ≤ S, deleting |T | = rankF vertices breaks the
Coxeter diagram of type A, shown in Figure 6.3, into degF = rankF + 1,
possibly empty, disjoint parts, each part again being of type A. Further, these
parts can be ordered in a natural way.

Now note the similarity between the Coxeter diagrams of type A
×(n−1)
1 and An−1. In

both cases, there are n−1 vertices labelled, s1, . . . , sn−1. For type A
×(n−1)
1 , there are no

edges in the diagram; however, the above property holds for the same reason as before.
The proof is now identical to the proof of Lemma 6.3.2.

�

In this case, Proposition 6.3.1 specializes to Proposition 6.3.2, with the understanding

that Σn now refers to the Coxeter complex of type A
×(n−1)
1 .

Combinatorics

We make things combinatorially explicit (Section 5.5). The Coxeter complex Σn of type

A
×(n−1)
1 can be identified with Wn, the poset of words of length n − 1 in the alphabet
{+,−, 0}. Namely, elements of Wn are sequences F = F 1F 2 . . . Fn−1 of length n− 1 in
the alphabet {+, 0,−}. The poset W1 consists of the empty word, which we write as ǫ.

Definition 6.3.4 The product FP is the face with sign sequence

(FP )i =





F i if F i 6= 0,

P i if F i = 0.

This is the usual product rule in an oriented matroid.
For the partial order, we say that F ≤ H in Wn if H is obtained by replacing some

of the zeroes in F by either a + or a −. The minimum element in Wn is the word

00 . . .0︸ ︷︷ ︸
n−1

.



96 CHAPTER 6. THE CONSTRUCTION OF HOPF ALGEBRAS

The chambers in Wn are sequences of length n− 1 in the alphabet {+,−}. For the fixed
chamber Cn0 in Σn, we take

+ + . . .+︸ ︷︷ ︸
n−1

.

Definition 6.3.5 The rank of a word F in Wn is the number of nonzero letters in it.
For 1 ≤ i ≤ rankF , let pi be the position of the ith nonzero letter in F . Also let p0 = 0
and pdegF = n. Let fi = pi − pi−1 for 1 ≤ i ≤ degF . We define

bF :Wn
F →W

f1 ×Wf2 × . . .×Wfdeg F

as follows.
Let H ≥ F . Then the image of H on the ith factor is the subword of H between

positions pi−1 and pi. For example, for F = +00− 000 +− and H = + + 0− 0 + 0 +−,
the map bF :W10

F →W
1 ×W3 ×W4 ×W1 ×W1 sends H to ǫ× (+0)× (0 + 0)× ǫ× ǫ.

We know from Lemma 6.3.4 that the axioms (C2) − (CP ) hold. However it is also
easy to check them directly using Definitions 6.3.4 and 6.3.5.

6.4 From coalgebra axioms to coalgebras

Starting with a family {Σn}n≥0 of projection posets that satisfies the coalgebra axioms
in Section 6.3, one can construct many graded coalgebras. The formal coalgebra con-
structions are given in the next section. However in this section, we do explain the basic
idea behind the coproducts and then establish some results that are central to the coas-
sociativity issue. The reader may just skim this section and refer back to these results,
as necessary.

6.4.1 The coproducts

Let {Σn}n≥0 be a family of projection posets that satisfies the coalgebra axioms. Let
K ∈ Σn and rankK = 1. Then by the axiom (C1), there exists a composition (k1, k2) of
n and a poset isomorphism

bK : ΣnK → Σk1 × Σk2 . (6.18)

Using this map, one can define coproducts on the graded vector spaces P , Q, S, R, N
andM that occur in Table 6.1. In other words, the rank 1 faces, or vertices, in Σn hold
the key. The remaining axioms are necessary to prove coassociativity and that the maps
relating these objects are morphisms of coalgebras. Details are given in the next section,
see Theorem 6.5.1.

To get the full picture in diagram (6.3), one needs to assume that {Σn}n≥0 is a
family of LRBs. This is because the supp and lune maps are defined only for LRBs.
The coproducts on AL and AZ are forced by the surjectivity of the supp and lune maps;
similarly, the coproducts on AZ∗ and AL∗ are forced by the injectivity of the supp∗ and
lune∗ maps.

6.4.2 Coassociativity of the coproducts

No matter which coalgebra we are considering, the coproduct ∆ of an element of degree
n is always related to the rank 1 faces of Σn. Similarly, the k-fold coproduct ∆(k) is
related to the rank k faces of Σn. But before one can talk of ∆(k), one needs to show
that (∆ ⊗ id) ◦∆ and (id⊗∆) ◦∆ coincide and can be written unambiguously as ∆(2).
For this purpose, it is useful to formulate a special case of the axiom (C2), which we
state as a proposition below.
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Proposition 6.4.1 Let {Σn} satisfy the coalgebra axioms (C1)− (C3). Let H be a rank
2 face of Σn with type (h1, h2, h3) and poset map bH given by the axiom (C1). Let K,
G, K ′, G′ be as defined by the axiom (C3). They have rank 1 in their respective posets.
Namely, K and G are the two rank 1 faces of H and

bK(H) = ∅ ×K ′ and bG(H) = G′ × ∅, (6.19)

where bK and bG are the poset maps of K and G respectively. Following the notation of
the axiom (C1), let K have type (k1, k2) and poset map bK and so on. Then

bH = (id×bK′) ◦ bK and h = (bG′ × id) ◦ bG. (6.20)

Further, we have (h1, h2, h3) = (k1, k
′
1, k

′
2) = (g′1, g

′
2, g2), where (k′1, k

′
2) and (g′1, g

′
2) are

compositions of k2 and g1 respectively.

Definition 6.4.1 Define three sets, namely Left, Middle and Right as follows.

Left = {(G′, G) | G ∈ Σn, rankG = 1, G′ ∈ Σg1 , rankG′ = 1}

Middle = {H | H ∈ Σn, rankH = 2} and

Right = {(K,K ′) | K ∈ Σn, rankK = 1, K ′ ∈ Σk2 , rankK ′ = 1},

where G has type (g1, g2) and K has type (k1, k2).

We define a map Middle→ Right that sends H to (K,K ′) and a map Middle→ Left
that sends H to (G′, G), where K, G, K ′, G′ are as defined by the axiom (C3). Since
the poset maps are isomorphisms, it follows that:

Proposition 6.4.2 The maps Middle→ Left and Middle→ Right are bijections.

The sets Left and Right will show up as index sets when we consider (∆ ⊗ id) ◦ ∆
and (id⊗∆) ◦∆ respectively. This should be somewhat clear from the discussion so far.
As a requirement for coassociativity, one needs a bijection between Left and Right. We
showed this in the above proposition by using the third set Middle as a go-between the
two. The set Middle will then give an unbiased index set for the definition of ∆(2).

6.4.3 Useful results for coassociativity

In Section 6.4.2, we explained the basic principle behind coassociativity. However, de-
pending on the coalgebra at hand, one requires more specialized results, which we give
here. To avoid repetition, we omit the set Left from the discussion.

Proposition 6.4.3 Let P be a fixed face of Σn. Then the bijection Middle → Right
restricts to a bijection between the subsets

{H ∈ Middle | H ≤ P} and {(K,K ′) ∈ Right | K ≤ P, K ′ ≤ P ′},

where P ′, which depends on K, is defined by

bK(P ) = P1 × P
′.

Proof The proposition follows from the fact that bK is a poset isomorphism.
�

Proposition 6.4.4 Let H be a rank 2 face of Σn and H 7→ (K,K ′) under the bijection
Middle→ Right. Then, we have

bH(HP ) = (id×bK′)((∅ ×K ′)bK(KP )),

for any face P of Σn.
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Proof The proposition follows from the following sequence of equalities.

bH(HP ) = (id×bK′) ◦ bK(HP ) (Equation (6.20))

= (id×bK′) ◦ bK(HKP ) (K ≤ H)

= (id×bK′)(bK(H)bK(KP )) (Coalgebra axiom (CP ))

= (id×bK′)((∅ ×K ′)bK(KP )) (Equation (6.19))

For the second equality, we used that HP = HKP forK ≤ H , which holds for projection
posets by Lemma 2.7.2.

�

Proposition 6.4.5 Let H be a rank 2 face of Σn and H 7→ (K,K ′) under the bijection
Middle→ Right. Let P ≤ C and

bK(KP ) = P1 × P
′ and bK(KC) = C1 × C

′.

Then

P ′K ′ ≤ C′ ⇐⇒ KPH ≤ KC.

Proof The proposition follows from the following sequence of equalities.

P ′K ′ ≤ C′ ⇐⇒ (P1 × P ′)(∅ ×K ′) ≤ C1 × C′ (P1 ≤ C1)

⇐⇒ bK(KP )bK(H) ≤ bK(KC) (Equation (6.19))

⇐⇒ bK(KPH) ≤ bK(KC) (Coalgebra axiom (CP ))

⇐⇒ KPH ≤ KC. (bK a poset isomorphism)

�

Corollary 6.4.1 With the notation as above,

PH ≤ C ⇐⇒ PK ≤ C and P ′K ′ ≤ C′.

Proof It was shown in Lemma 2.7.8 that for P , K, H , C such that K ≤ H ,

PH ≤ C ⇐⇒ PK ≤ C and KPH ≤ KC.

The result now follows from the previous proposition.
�

6.5 Construction of coalgebras

The goal of this section is to prove Theorem 6.1.1. In particular, starting with a family
{Σn}n≥0 of LRBs that satisfies the coalgebra axioms defined in Section 6.3, we construct
many graded coalgebras. Throughout this section, we use the notation and definitions
in Section 6.1.2. We first show the following.

Theorem 6.5.1 Let {Σn}n≥0 be a family of projection posets, that satisfies all coalgebra
axioms (C1)− (CP ). Then

M
base∗
−→ N

Θ
−→ R

s
−→ S

Road
−→ Q

base
−→ P

is a diagram of coalgebras.
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Proof There are two parts to this theorem. Firstly, we define coproducts on the objects
(see Definitions 6.5.1-6.5.6) and show that they are coassociative (see Lemmas 6.5.1-
6.5.6). Secondly, we show that the maps are morphisms of coalgebras (see Proposi-
tions 6.5.2-6.5.6).

�

We restate Theorem 6.1.1 here for convenience.

Theorem Let {Σn}n≥0 be a family of LRBs, that satisfies all coalgebra axioms (C1)−
(CP ). Then diagram (6.3) is a diagram of coalgebras.

Proof A LRB is a special case of a projection poset. Hence, in view of Theorem 6.5.1,
one only needs to show that the surjective supp and lune maps induce coproducts on AL

and AZ and similarly the injective supp∗ and lune∗ maps induce coproducts on AL∗ and
AZ∗ . This is the content of Definitions 6.5.7, 6.5.8 and Proposition 6.5.7.

�

6.5.1 Examples

In Sections 6.3.2-6.3.4, we gave three examples that satisfy the coalgebra axioms. So the
coalgebra constructions in this section can be applied to them. We mainly concentrate
on the example of type A.

Proposition 6.5.1 For the example of type A, the coalgebras P, Q, S, R, N and M
and AZ , AL, AZ∗ and AL∗ as defined in this section respectively give the coalgebras PΠ,
QΠ, SΠ, RΠ, NΠ and MΠ and ΠZ, ΠL, ΠZ∗ and ΠL∗ as defined in Section 6.2.

Proof The definitions of the coalgebras P , Q, S, R, N andM involve two ingredients:
the product of the projection poset Σn and the poset isomorphisms in the axiom (C1).
For the example of type A, explicit descriptions of these two were given in Definitions 6.3.2
and 6.3.3. Hence the proof is a matter of unwinding definitions, see Facts 6.5.2, 6.5.4,
6.5.5, 6.5.6 and 6.5.7.

The part of the proposition dealing with the coalgebras A— and Π— is left as an
exercise to the reader, also see the remark before Proposition 6.5.7.

�

Corollary 6.5.1 Diagram (6.4) is a diagram of coalgebras.

6.5.2 The coproducts and local and global vertices

The coproducts we define have the form

∆(x) = 1⊗ x+ x⊗ 1 + ∆+(x),

where 1 is the basis element of degree 0 and ∆+ only involves terms of degree greater
than 0. If x is of degree n then ∆+(x) is written as a sum over a subset of the vertices
of Σn. This was partly motivated in Section 6.4.1. The specific subset of vertices to use
will depend on the kind of object that x is.

Now recall that the coproducts in Section 6.2 were defined by summing over either
the local or global vertices. These notions are not specific to type A, and can be defined
in more generality. Such an approach also clarifies the geometric meaning of local or
global vertices, see Tables 6.5 and 6.6, which are valid for projection posets and LRBs
respectively. Needless to say, these ideas will play a key role in the coalgebras that we
define in this section. We recall that

reg(F,D) = {N | FN ≤ D} (6.21)
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Table 6.5: Local and global vertex of a face and pointed face.

Object Local vertex Global vertex

Face F ∈ Σ A vertex of F Any vertex of Σ

Pointed face (F,D) ∈ Q A vertex of F A vertex in reg(F,D)

Table 6.6: Local and global vertex of a flat and lune.

Object Local vertex Global vertex

Flat X ∈ L A vertex with support in X Any vertex of Σ

Lune L ∈ Z A vertex with support in base(L) A vertex in zone(L)

is the lunar region of F and D. The definition of the maps base and zone and related
information can be found in Sections 2.3 and 2.4.

6.5.3 The coalgebra P

Let P = ⊕
n≥0

K(Σn)∗. Write MF for the basis element corresponding to F ∈ Σn, n > 0

and 1 for the basis element of degree 0.

Definition 6.5.1 The coproduct on P is given by

∆(MF ) = 1⊗MF +MF ⊗ 1 + ∆+(MF ), where

∆+(MF ) =
∑

K: rankK=1, K≤F

MF1
⊗MF2

,

where for bK : ΣnK → Σk1 ×Σk2 , we have bK(F ) = F1 × F2. In other words, to compute
∆+(F ), we sum over all the vertices of F and for each vertex K, the map bK specifies a
way to break F into two ordered parts F1 and F2.

We now explain how this definition works in the examples (Sections 6.3.2-6.3.4).

Example of compositions

For the example in Section 6.3.2, the LRB Σn is the poset of compositions Q
n

of n. Let
P∆ = ⊕

n≥0
K(Q

n
)∗.

Fact 6.5.1 The coproduct on P∆ given by Definition 6.5.1 is as follows.

∆+(M(α1,α2,...,αk)) =

k−1∑

i=1

M(α1,...,αi) ⊗M(αi+1,...,αk).

Note that this is precisely how the coproduct is defined on the M basis of the Hopf
algebra QΛ of quasi-symmetric functions (Section 3.2.2).
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Example of type An−1

Recall from Section 6.3.3 or from Table 6.2 in Section 6.2 that for type A, the LRB Σn

is the poset of compositions Bn of the set [n]. Let PΠ = ⊕
n≥0

K(Bn)∗.

Fact 6.5.2 The coproduct on PΠ given by Definition 6.5.1 coincides with the one given
by Definition 6.2.9.

Proof To be concrete, take F = 347|18|29|56 ∈ Σ9. The three vertices of F are
347|125689, 13478|2569 and 1234789|56. Each one of them contributes one term to
∆+(MF ) by Definition 6.5.1. Namely,

∆+(M347|18|29|56) = M123 ⊗M15|26|34 +M234|15 ⊗M14|23 +M345|16|27 ⊗M12.

These terms were computed using the definition of the poset maps for type A given by
Definition 6.3.3. Namely, for each vertex, we split F at the bar indicated by that vertex
and standardize the two parts. This is precisely how the coproduct on PΠ was given in
Definition 6.2.9. This proves the first of the 10 parts of Proposition 6.5.1.

�

Example of type A
×(n−1)
1

Now we consider the example in Section 6.3.4. Let PΓ = ⊕
n≥0

K(Wn)∗, where Wn is the

poset of words of length n− 1 in the alphabet {+,−, 0}. The letter Γ, which is the greek
equivalent of the letter C, stands for “cube” to remind us that the faces of the Coxeter
complex in this case correspond to the faces of the cube. Now observe that:

Fact 6.5.3 The coproduct on PΓ given by Definitions 6.5.1 and 6.3.5 is as follows.

∆+(MF 1F 2···Fn) =
∑

F i is nonzero

MF 1···F i−1 ⊗MF i+1···Fn .

For example,

∆+(M+−0−0) = Mǫ ⊗M−0−0 +M+ ⊗M0−0 +M+−0 ⊗M0.

We now return to the general definition.

Lemma 6.5.1 The coproduct on P is coassociative. We have

∆
(2)
+ (MF ) =

∑

H: rankH=2, H≤F

MF1
⊗MF2

⊗MF3
,

where for bH : ΣnH → Σh1 × Σh2 × Σh3 , we have bH(F ) = F1 × F2 × F3.

Proof The skeleton of the computation is as follows. The index sets Middle and Right
that occur in the computation are as in Definition 6.4.1. The term (id⊗∆+) ◦∆+(MF )
is equal to

=
∑

K: rankK=1, K≤F

MF1
⊗∆+(MF ′) (bK(F ) = F1 × F ′)

=
∑

(K,K′)∈Right:
K≤F, K′≤F ′

MF1
⊗MF2

⊗MF3
((id×bK′)bK(F ) = F1 × F2 × F3)

=
∑

H∈Middle: H≤F

MF1
⊗MF2

⊗MF3
. (bH(F ) = F1 × F2 × F3)
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The first two equalities are clear; but the third requires some justification. By Propo-
sition 6.4.3, the indexing sets in the second and third sum are in bijection. This is
the restriction of the bijection Middle → Right given by Definition 6.4.1. Further from
Equation (6.20), we see that

bH(F ) = (id×bK′) ◦ bK(F ). (6.22)

This shows that corresponding indices give rise to the same term. This justifies the third
equality and shows that

(id⊗∆+) ◦∆+(MF ) = ∆
(2)
+ (MF ),

with ∆
(2)
+ (MF ) as defined in the lemma. The term (∆+ ⊗ id) ◦∆+(MF ) can be handled

similarly and shown equal to ∆
(2)
+ (MF ).

�

6.5.4 The coalgebra M

Let M = ⊕
n≥0

KΣn. Write HP for the basis element corresponding to P ∈ Σn, n > 0 and

1 for the basis element of degree 0.

Definition 6.5.2 The coproduct onM is given by

∆(HP ) = 1⊗HP +HP ⊗ 1 + ∆+(HP ), where

∆+(HP ) =
∑

K: rankK=1

HP1
⊗HP2

,

where for bK : ΣnK → Σk1 × Σk2 , we have bK(KP ) = P1 × P2.

Example of type An−1

Recall from Section 6.3.3 that for type A, the LRB Σn is the poset of compositions Bn

of the set [n]. Let MΠ = ⊕
n≥0

KBn.

Fact 6.5.4 The coproduct on MΠ given by Definition 6.5.2 coincides with the one given
by Definition 6.2.11.

Proof In Definition 6.2.11, to compute ∆+(HP ), we sum over the nonvirtual global
vertices of P ∈ Σn; whereas in Definition 6.5.2, we sum over all the vertices of Σn. There
is a bijection between these two indexing sets given as follows.

A global vertex v of P specifies a way to split P into two ordered set compositions,
say P ′

1 and P ′
2, see Definition 6.2.7. We define a bijection that sends v to the vertex

K = K1|K2 of Σn, where K1 (resp. K2) contains the letters that occur in P ′
1 (resp. P ′

2).
For example, for P = 125|347|689,

v = 12
↓

5|347
↓

|8
↓

69 7→ K = 123478|569.

Carrying this example further,

KP = 12|347|8|5|69,

which is simply P ′
1 = 12|347|8 and P ′

2 = 5|69 placed next to each other. In Defini-
tions 6.5.2 and 6.2.11, the next step is to standardize P ′

1 and P ′
2 (Definition 6.2.3).

Hence both v and K give rise to the same term, namely H12|345|6 ⊗H1|23. The general
proof should be clear from this illustration.

�
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Remark It is clear from the proof that

{P | bK(KP ) = P1 × P2} = {P | P is a K-quasi-shuffle of P1 and P2}. (6.23)

One can say that the left hand set is the geometric meaning of a K-quasi-shuffle (Defi-
nition 6.2.6). Similarly, it is easy to show that

bK(KP ) = P1 × P2, PK = P ⇐⇒ P is a K-shuffle of P1 and P2,

which gives the geometric meaning of a K-shuffle.

Let us compare the coproducts ∆+(MF ) in P and ∆+(HP ) inM. There are two differ-
ences.

• In ∆+(MF ), we sum only over the vertices of F , whereas in ∆+(HP ), we sum over
all the vertices. This is precisely the difference between the local and global vertices
of an element of Σ given in Table 6.5.

• The poset map bK can only be applied to faces ≥ K. This does not create any
problem for ∆+(MF ); however for ∆+(HP ), we first modify P to KP and then
apply bK . Note that K ≤ KP for any P .

Lemma 6.5.2 The coproduct on M is coassociative. We have

∆
(2)
+ (HP ) =

∑

H: rankH=2

HP1
⊗HP2

⊗HP3
,

where for bH : ΣnH → Σh1 × Σh2 × Σh3 , we have bH(HP ) = P1 × P2 × P3.

Proof Let the sets Middle and Right be as in Definition 6.4.1. Following the lines of
the computation in Lemma 6.5.1,

(id⊗∆+) ◦∆+(HP ) =
∑

(K,K′)∈Right

HP1
⊗HP2

⊗HP3
, where

(id×bK′)((∅ ×K ′)bK(KP )) = P1 × P2 × P3.

To see that this is the same as ∆
(2)
+ (HP ), one needs to show that

bH(HP ) = (id×bK′)((∅ ×K ′)bK(KP )), (6.24)

where H 7→ (K,K ′) under the bijection Middle→ Right of Definition 6.4.1. This is true
by Proposition 6.4.4.

�

6.5.5 The coalgebra Q

Let Q = ⊕
n≥0

K(Qn)∗. Write M(F,D) for the basis element corresponding to (F,D) ∈

Qn, n > 0 and 1 for the basis element of degree 0.
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Definition 6.5.3 The coproduct on Q is given by

∆(M(F,D)) = 1⊗M(F,D) +M(F,D) ⊗ 1 + ∆+(M(F,D)), where

∆+(M(F,D)) =
∑

K: rankK=1, K≤F

M(F1,D1) ⊗M(F2,D2),

where for bK : ΣnK → Σk1 × Σk2 , we have bK(F ) = F1 × F2 and bK(D) = D1 ×D2.

Remark Note that the above coproduct is similar in spirit to the one that we gave for
P . Since K ≤ F ≤ D, the poset map bK can be applied to both F and D. Also, bK
being a poset isomorphism sends a chamber D to a pair of chambers D1 and D2.

Example of type An−1

Recall from Table 6.2 in Section 6.2 that for type A, the set Qn is the poset of fully
nested compositions of the set [n]. Let QΠ = ⊕

n≥0
K(Qn)∗.

Fact 6.5.5 The coproduct on QΠ given by Definition 6.5.3 coincides with the one given
by Definition 6.2.18.

Proof This is an easy extension of the proof of Fact 6.5.2.
�

Lemma 6.5.3 The coproduct on Q is coassociative. We have

∆
(2)
+ (M(F,D)) =

∑

H: rankH=2, H≤F

M(F1,D1) ⊗M(F2,D2) ⊗M(F3,D3),

where for bH : ΣnH → Σh1 × Σh2 × Σh3 , we have bH(F ) = F1 × F2 × F3 and bH(D) =
D1 ×D2 ×D3.

Proof We want to show that

(id⊗∆+) ◦∆+(M(F,D)) = ∆
(2)
+ (M(F,D)).

For that, repeat the steps in the proof of Lemma 6.5.1. The difference is that now we
need both

bH(F ) = (id×bK′) ◦ bK(F ) and bH(D) = (id×bK′) ◦ bK(D)

to hold. As before, this follows from the identity bH = (id×bK′) ◦ bK given by Equa-
tion (6.20).

�

Proposition 6.5.2 The map base : Q → P given by M(F,D) 7→ MF is a morphism of
coalgebras.

Proof Clear from Definitions 6.5.1 and 6.5.3.
�
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6.5.6 The coalgebra N

Let N = ⊕
n≥0

KQn. Write H(P,C) for the basis element corresponding to (P,C) ∈ Qn, n >

0 and 1 for the basis element of degree 0. We would like to define a coproduct on N
using the one onM just as we defined a coproduct on Q using the one on P . However,
the definition is not the one that would immediately come to mind.

Definition 6.5.4 The coproduct on N is given by

∆(H(P,C)) = 1⊗H(P,C) +H(P,C) ⊗ 1 + ∆+(H(P,C)), where

∆+(H(P,C)) =
∑

K: rankK=1, PK≤C

H(P1,C1) ⊗H(P2,C2),

where for bK : ΣnK → Σk1 × Σk2 , we have bK(KP ) = P1 × P2 and bK(KC) = C1 × C2.

Remark Let us compare the coproducts ∆+(M(F,D)) in Q and ∆+(H(P,C)) in N . The
comparison is similar to the one we made for P and M.

• In ∆+(M(F,D)), we sum over the vertices of F , whereas in ∆+(H(P,C)), we sum over
the vertices which lie in the lunar region reg(P,C) = {N | PN ≤ C}, see Equa-
tion (6.21). This is precisely the difference between the local and global vertices of
an element of Q given in Table 6.5.

• The poset map bK does not create any problem for ∆+(M(F,D)), since K ≤ F ≤
D; however for ∆+(H(P,C)), we first need to modify P and C to KP and KC

respectively and then apply bK .

Example of type An−1

Recall from Table 6.2 in Section 6.2 that for type A, the set Qn is the poset of fully
nested compositions of the set [n]. Let NΠ = ⊕

n≥0
KQn.

Fact 6.5.6 The coproduct on NΠ given by Definition 6.5.4 coincides with the one given
by Definition 6.2.19.

Proof This is an extension of the proof of Fact 6.5.4. The key fact is that there is a
bijection between the nonvirtual global vertices of a nested set composition (P,C) (see
Definition 6.2.16) and the vertices which lie in the lunar region reg(P,C) = {N | PN ≤
C}. It is defined the same way as in the proof of Fact 6.5.4. The rest is simple checking
and left to the reader.

�

Lemma 6.5.4 The coproduct on N is coassociative. We have

∆
(2)
+ (H(P,C)) =

∑

H: rankH=2, PH≤C

H(P1,C1) ⊗H(P2,C2) ⊗H(P3,C3),

where for bH : ΣnH → Σh1 ×Σh2 ×Σh3 , we have bH(HP ) = P1×P2×P3 and bH(HC) =
C1 × C2 × C3.
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Proof Let the sets Middle and Right be as in Definition 6.4.1 and P ′, C′ ∈ Σk2 be
as in Proposition 6.4.5. Following the lines of the computation for the coalgebra M in
Lemma 6.5.2, one obtains

(id⊗∆+) ◦∆+(H(P,C)) =
∑

(K,K′)∈Right:
PK≤C, P ′K′≤C′

H(P1,C1) ⊗H(P2,C2) ⊗H(P3,C3),

where

(id×bK′)((∅ ×K ′)bK(KP )) = P1 × P2 × P3 and

(id×bK′)((∅ ×K ′)bK(KC)) = C1 × C2 × C3.

Comparing with the proof of Lemma 6.5.2, the additional fact one needs to show is

PH ≤ C ⇐⇒ PK ≤ C and P ′K ′ ≤ C′.

This is precisely the content of the Corollary to Proposition 6.4.5.

�

Proposition 6.5.3 The map base∗ :M→ N given by HP 7→
∑

C: P≤C
H(P,C) is a mor-

phism of coalgebras.

Proof This is a little more complicated than the proof of Proposition 6.5.2. We outline
all the steps without getting into details. For similar ideas, see the proofs of Proposi-
tions 6.5.5 and 6.5.6. We need to show that

∆ ◦ base∗(HP ) = (base∗⊗ base∗) ◦∆(HP ).

The LHS is a sum over the set

IC = {(K,C) | rankK = 1, PK ≤ C}

and the pair (K,C) yields the term H(P1,C1)⊗H(P2,C2), where for bK : ΣnK → Σk1 ×Σk2 ,
we have bK(KP ) = P1 × P2 and bK(KC) = C1 × C2.

The RHS is a sum over the set

JC = {(K,C1, C2) | rankK = 1, P1 ≤ C1, P2 ≤ C2},

where P1 and P2 are given by bK(KP ) = P1 × P2 and the triple (K,C1, C2) yields the
term H(P1,C1) ⊗H(P2,C2).

There is an obvious map IC → JC between the index sets, which sends (K,C) to
(K,C1, C2), where C1 and C2 are given by bK(KC) = C1×C2. One needs to check that
this map is well-defined and a bijection. This is a consequence of the bijection between
the set of chambers CPK and CKP that maps C to KPC with inverse sending D to PKD,
see the corollary to Lemma 2.7.7. And clearly, corresponding elements contribute the
same term to the coproduct.

�

6.5.7 The coalgebra S

Let S = ⊕
n≥0

K(Cn × Cn)∗, where Cn is the set of chambers in Σn. Write F(C,D) for the

basis element (C,D) ∈ Cn × Cn, n > 0 and 1 for the basis element of degree 0.
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Definition 6.5.5 Define a coproduct on S by

∆+(F(C,D)) =
∑

K: rankK=1, K≤D

F(C1,D1) ⊗ F(C2,D2),

where for bK : ΣnK → Σk1 × Σk2 , we have bK(D) = D1 ×D2 and bK(KC) = C1 × C2.

Note that the above coproduct combines the ideas used in defining the coproducts
for M and P . In the pair (C,D), the first (resp. second) coordinate is treated like the
coordinate in M (resp. P).

• We again emphasize that the poset map bK can be applied only to faces containing
K. Hence to compute C1 and C2 from C in the above formula, we first modify C
to KC and then apply bK . For D, there is no problem since K ≤ D.

• The set of chambers C is a left ideal in Σ. Hence if C ∈ C then KC ∈ C.

• The map bK being a poset isomorphism sends a chamber D to a pair of chambers
D1 and D2.

Remark Observe that Definition 6.5.5 can be used to define a coproduct on

⊕
n≥0

K(Σn × Σn)∗.

This will be taken up in a future work.

Example of type An−1

Recall from Section 6.3.3 that for type A, the LRB Σn is the poset of compositions of
the set [n]. Let SΠ = ⊕

n≥0
K(Cn × Cn)∗, where Cn is the set of chambers in Σn and can

be identified with the set of permutations Sn.

Fact 6.5.7 The coproduct on SΠ given by Definition 6.5.5 coincides with the one given
by Definition 6.2.33.

Proof Let D = D1| · · · |Dn be an element of Cn, that is, a permutation. We begin with
Definition 6.5.5. The vertices of D are

K = D1 · · ·Di|Di+1 · · ·Dn, for 1 ≤ i ≤ n− 1.

From Definition 6.3.3, if bK(D) = D1 × D2 then D1 = st(D1| · · · |Di) and D2 =
st(Di+1| · · · |Dn). This is precisely how the second coordinate works in Definition 6.2.33.
The proof so far is identical to the proof of Fact 6.5.2. The first coordinate involves an
extra step, which is to compute KC. Note that by Definition 6.3.2,

KC = C̃1| · · · |C̃i|C̃i+1| · · · |C̃n,

with notation as in Definition 6.2.33. Now repeating the above argument finishes the
proof.

�
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Example of type A
×(n−1)
1

Now we consider the example in Section 6.3.4. Let SΓ = ⊕
n≥0

K(Cn × Cn)∗, where Cn is

the set of chambers in Wn, the poset of words of length n− 1 in the alphabet {+,−, 0}.
Then observe that:

Fact 6.5.8 The coproduct on SΓ given by Definitions 6.5.5 and 6.3.5 is as follows.

∆+(F(C1C2···Cn,D1D2···Dn)) =

n∑

i=1

F(C1···Ci−1,D1···Di−1) ⊗ F(Ci+1···Cn,Di+1···Dn).

For example,

∆+(F+−+,−−+) = Fǫ,ǫ ⊗ F−+,−+ + F+,− ⊗ F+,+ + F+−,−− ⊗ Fǫ,ǫ.

Lemma 6.5.5 The coproduct on S is coassociative. We have

∆
(2)
+ (F(C,D)) =

∑

H: rankH=2, H≤D

F(C1,D1) ⊗ F(C2,D2) ⊗ F(C3,D3),

where for bH : ΣnH → Σh1 ×Σh2 ×Σh3 , we have bH(D) = D1 ×D2 ×D3 and bH(HC) =
C1 × C2 × C3.

Proof This is simply putting together the proofs of coassociativity for the coalgebras
P and M. To compute (id⊗∆+) ◦∆+(F(C,D)), repeat the three steps in Lemma 6.5.1.
The indexing sets in the sums remain the same, with D instead of F . The summands
are a little different with (C1, D1) for F1 and so on. To now justify the third equality,
use Equation (6.22) with D for F and Equation (6.24) with C for F .

�

6.5.8 The coalgebra R

Let R = ⊕
n≥0

K(Cn × Cn), where Cn is the set of chambers in Σn. Write K(D,C) for the

basis element (D,C) ∈ Cn×Cn, n > 0 and 1 for the basis element of degree 0. We define
a coproduct on R such that:

Proposition 6.5.4 The switch map s : R → S which sends K(D,C) → F(C,D) is an
isomorphism of coalgebras.

Definition 6.5.6 Define a coproduct on R by

∆+(K(D,C)) =
∑

K: rankK=1, K≤D

K(D1,C1) ⊗K(D2,C2),

where for bK : ΣnK → Σk1 × Σk2 , we have bK(D) = D1 ×D2 and bK(KC) = C1 × C2.

Lemma 6.5.6 The coproduct on R is coassociative. We have

∆
(2)
+ (K(D,C)) =

∑

H: rankH=2, H≤D

K(D1,C1) ⊗K(D2,C2) ⊗K(D3,C3),

where for bH : ΣnH → Σh1 ×Σh2 ×Σh3 , we have bH(D) = D1 ×D2 ×D3 and bH(HC) =
C1 × C2 × C3.
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6.5.9 The maps Road : S → Q and Θ : N → R

So far, we have defined the coalgebras that occur in Theorem 6.5.1, and showed that
they are coassociative. We also showed that the maps base∗, s and base are morphisms
of coalgebras. To complete the proof, we now show that the maps Road and Θ are
morphisms of coalgebras.

Proposition 6.5.5 The map Road : S → Q that sends F(C,D) to
∑

F : FC=D

M(F,D) is a

morphism of coalgebras.

Proof We need to show that

∆ ◦ Road(F(C,D)) = (Road⊗Road) ◦∆(F(C,D)).

From the definitions,

∆ ◦ Road(F(C,D)) =
∑

(K,F )∈IC

M(F1,D1) ⊗M(F2,D2),

where
IC = {(K,F ) | K ≤ F ≤ D, rankK = 1, FC = D},

and where for bK : ΣnK → Σk1 × Σk2 , we have bK(F ) = F1 × F2 and bK(D) = D1 ×D2.
Similarly,

(Road⊗Road) ◦∆(F(C,D)) =
∑

(K,F1,F2)∈JC

M(F1,D1) ⊗M(F2,D2),

where

JC = {(K,F1, F2) | K ≤ D, rankK = 1, F1C1 = D1, F2C2 = D2},

and where the chambers Ci and Di vary with K and are given by bK(D) = D1×D2 and
bK(KC) = C1 × C2.

There is an obvious map IC → JC between the index sets, which sends (K,F ) to
(K,F1, F2), with F1 and F2 given by bK(F ) = F1 × F2. This map is well-defined and a
bijection because for K ≤ F , we have

FC = D ⇐⇒ FKC = D ⇐⇒ bK(F )bK(KC) = bK(D) ⇐⇒ FiCi = Di.

For the first equivalence, we used F = FK for K ≤ F . For the second equivalence, we
used the coalgebra axiom (CP ) and the fact that bK is a poset isomorphism.

�

Proposition 6.5.6 The map Θ : N → R that sends H(P,C) to
∑

D: PD=C

K(D,C) is a

morphism of coalgebras.

Proof The argument is very similar to the previous proof. Hence we will be brief. We
need to show that

∆ ◦Θ(H(P,C)) = (Θ⊗Θ) ◦∆(H(P,C)).

The LHS is a sum over the set

IC = {(K,D) | K ≤ D, rankK = 1, PD = C},

and the pair (K,D) yields the term K(D1,C1)⊗K(D2,C2), where for bK : ΣnK → Σk1×Σk2 ,
we have bK(D) = D1 ×D2 and bK(KC) = C1 × C2.
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The RHS is a sum over the set

JC = {(K,D1, D2) | PK ≤ C, rankK = 1, P1D1 = C1, P2D2 = C2},

where Pi and Ci vary withK and are given by bK(KP ) = P1×P2 and bK(KC) = C1×C2.
The triple (K,D1, D2) yields the term K(D1,C1) ⊗K(D2,C2).

As before, there is an obvious map IC → JC between the index sets, which sends
(K,D) to (K,D1, D2) given by bK(D) = D1 × D2. This map is well-defined and a
bijection because for K ≤ D, we have

PD = C ⇐⇒ PK ≤ C and KPD = KC (Lemma (2.7.8))

⇐⇒ PK ≤ C and bK(KP )bK(D) = bK(KC) (Axiom (CP ))

⇐⇒ PK ≤ C and PiDi = Ci.

�

6.5.10 The coalgebras AZ, AL, AZ∗ and AL∗

Thus far, we have proved Theorem 6.5.1. In the rest of this section, we prove the
remaining part of Theorem 6.1.1. It involves the maps supp and lune and their duals.
For that we recall the content of Lemmas 2.4.1 and 2.4.2.

For a vertex K ∈ Σn with type (k1, k2), one has the following two commutative
diagrams.

ΣnK
� � //

suppn
K

����

Σn
K· // //

suppn

����

ΣnK

suppn
K

����
LnK

� � // Ln
K·

// // LnK

ΣnK

suppn
K

����

bK

∼=
// Σk1 × Σk2

suppk1 × suppk2

����
LnK bK

∼= // Lk1 × Lk2

(6.25)

where

LnK = {X ∈ Ln | suppn(K) ≤ X}

is the poset of flats of ΣnK , and suppnK , suppk1 and suppk2 are the support maps of ΣnK ,
Σk1 and Σk2 respectively. The map K· : Σn → ΣnK sends F to KF . One also has the
same two diagrams above with Σ and L replaced by Q and Z respectively, and the map
supp replaced by the map lune.

Definition 6.5.7 Define a coproduct on AL∗ and AZ∗ by

∆+(mX) =
∑

K: rankK=1, X∈Ln
K

mX1
⊗mX2

,

∆+(mL) =
∑

K: rankK=1, L∈Zn
K

mL1
⊗mL2

,

where for bK : LnK → Lk1 ×Lk2 , we have bK(X) = X1×X2 and for bK : ZnK → Zk1 ×Zk2 ,
we have bK(L) = L1 × L2.

Definition 6.5.8 Define a coproduct on AL and AZ by

∆+(hX) =
∑

K: rankK=1

hX1
⊗ hX2

,

∆+(hL) =
∑

K: rankK=1, K∈zone(L)

hL1
⊗ hL2

,
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where for bK : LnK → Lk1×Lk2 , we have bK(K ·X) = X1×X2 and for bK : ZnK → Zk1×Zk2 ,
we have bK(K · L) = L1 × L2.

The set zone(L) is discussed in Section 2.3.4. If lune(P,C) = L then

K ∈ zone(L) ⇐⇒ K ∈ reg(P,C) ⇐⇒ PK ≤ C.

A comparison with Definition 6.5.4 should make the presence of the condition K ∈
zone(L) clear.

Remark For the coproducts in AL∗ and AL, we sum over the local and global vertices
respectively of an element of L, as defined in Table 6.6. The same statement holds for
the coproducts in AZ∗ and AZ .

Remark For the example of type An−1, one can make explicit the maps K· in the
diagram (6.25) above, as also the break maps bK : LnK → Lk1 × Lk2 and bK : ZnK →
Zk1 × Zk2 . It is then easy to check that the above formulas reduce to the definitions of
the corresponding coalgebras in Section 6.2.

Proposition 6.5.7 Let {Σn} be a family of LRBs, and let P, M, Q and N be the
coalgebras as given in Definitions 6.5.1-6.5.4.

(1) The injective maps supp∗ : AL∗ → P that sends mX to
∑

F : suppF=X

MF and lune∗ :

AZ∗ → Q that sends mL to
∑

(F,D): lune(F,D)=L

M(F,D) are maps of coalgebras.

(2) The surjective maps supp :M։ AL that sends HP to hsuppP and lune : N ։ AZ

that sends H(P,C) to hlune(P,C) are maps of coalgebras.

Proof We only give the proof for the supp and supp∗ maps.

(1) The following computation shows that the map supp∗ : AL∗ ։ P is a map of
coalgebras. The term ∆+(supp∗(mX)) equals

= ∆+

(
∑

F : suppF=X

MF

)

=
∑

F : suppF=X

∑
K:rankK=1, K≤F

MF1
⊗MF2

(bK(F ) = F1 × F2)

=
∑

K: rankK=1, suppK≤X

∑
F : K≤F, suppF=X

MF1
⊗MF2

(Switching sums)

=
∑

K: rankK=1, X∈LK

∑
Fi: suppFi=Xi

MF1
⊗MF2

, (Diagram (6.25))

which is equal to (supp∗⊗ supp∗)(∆+(mX)).

(2) We now deal with the map supp :M։ AL. Let P ∈ Σn with suppn(P ) = X . Using
Definition 6.5.2,

(supp⊗ supp)(∆+(HP )) =
∑

K: rankK=1

hX1
⊗ hX2

,

where Xi = supp(Pi) for bK(KP ) = P1 × P2. Now from diagram (6.25), we have

bK(K ·X) = bK(K · suppP ) = bK(supp(KP )) = (supp× supp)(bK(KP )).

This shows that the right hand side above equals ∆+(hX), thus completing the proof.
�
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6.6 The algebra axioms and examples

In the rest of this chapter, we deal with the algebra analogues of Sections 6.3, 6.4 and 6.5.
In this section, we give the algebra axioms for a family of posets (Section 6.6.1). The
motivation is that one can construct the algebras in diagram (6.3) starting with a family of
posets that satisfies these axioms. In Sections 6.6.2-6.6.4, we revisit our earlier examples
(Sections 6.3.2-6.3.4), and show that they satisfy the algebra axioms.

6.6.1 The algebra axioms

Consider the family {Σn}n≥0, where Σn is a finite graded poset of rank n − 1 with a
unique minimum element that we denote ∅. Further let Σ0 and Σ1 be singleton sets with
the unique element ∅. For K a face of Σ, let

ΣnK = {F ∈ Σn | K ≤ F}.

Let Cn be the set of chambers (maximal elements) in Σn and CnF = {D ∈ Cn | F ≤ D}.
Let degK = rankK + 1, where rank denotes the rank of an element.

We give two algebra axioms for such a family of posets.

Axiom (A1). For every composition (f1, f2, . . . , fk) of n, there exists a face F of Σn of
degree k, and a poset isomorphism

jF : Σf1 × Σf2 × . . .× Σfk → ΣnF . (6.26)

Further, distinct compositions give distinct faces; so it is unambiguous to use the notation
jF for the poset map. If the composition is (n) then F = ∅ and the poset isomorphism
j∅ is the identity map id : Σn → Σn.

GFED@ABCjFoo

lllllllll

RRRRRRRRR

Figure 6.5: The join map jF .

Axiom (A2). The maps jF in axiom (A1) are “associative” in the following sense.
Let (g1, g2, . . . , gm) be a composition of n and for 1 ≤ i ≤ m, let (fi1, fi2, . . . , fiki

) be
a composition of gi. First apply the axiom (A1) to the composition of gi to get a face Fi
of Σn of degree ki, and a poset isomorphism

jFi
: Σfi1 × Σfi2 × . . .× Σfiki → Σgi

Fi
for 1 ≤ i ≤ m.

Next apply the axiom (A1) to the composition (g1, g2, . . . , gm) of n to get a face G of
degree m and a poset isomorphism

jG : Σg1 × Σg2 × . . .× Σgm → ΣnG.

Under this map, let F1 × F2 × . . .× Fm 7→ F ′ (say). This induces an isomorphism

jG : Σg1F1
× Σg2F2

× . . .× Σgm

Fm
→ ΣnF ′ with G ≤ F ′.

Now consider the composition of n

(f11, f12, . . . , f1k1 , f21, . . . , f2k2 , . . . , fm1, . . . , fmkm
),
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Figure 6.6: The join map is associative.

which is the concatenation of the m compositions that we started with. Apply the axiom
(A1) to it to get a face F ∈ Σn. Then,

jF = jG ◦ (jF1
× jF2

× . . .× jFm
). (6.27)

In particular, we require that F = F ′.

Remark Figures 6.5 and 6.6 give schematic pictures for the axioms (A1) and (A2).
They are obtained by reversing the arrows in Figures 6.1 and 6.2. Just as we used the
letter b for “break”, the letter j stands for “join”.

In addition to the above two algebra axioms, we define a projection axiom. For that
assume, in addition, that each Σn is a projection poset, as defined in Section 2.7. This
includes the case when Σn is a LRB.

Axiom (AP ). The poset maps in the axiom (A1) respect the product structure of Σn,
that is,

j−1
F (HN) = j−1

F (H)j−1
F (N),

for F ≤ H,N ∈ Σn.

Proposition 6.6.1 Let {Σn}n≥0 satisfy the algebra axioms (A1) and (A2). Then for
each n ≥ 0, there are injective poset maps

Q
n
→ Σn,

where Q
n

is the poset of compositions of n, defined in Section 6.3.2.

Proof For a given n, the above map sends the composition (f1, f2, . . . , fk) of n to the
face F ∈ Σn as given by the axiom (A1). The axiom (A2) implies that this is a poset
map.

�

Remark In our examples, the map in Proposition 6.6.1 is a section to the map in
Proposition 6.3.1. We refer to the elements in its image as the fundamental faces of Σn.
The terminology is motivated by the theory of Coxeter groups (Proposition 6.6.2).

6.6.2 The warm-up example of compositions

Let Σn = Q
n

be the poset of compositions of n, see the beginning of Section 6.3.2 for
more details.

Lemma 6.6.1 The family of LRBs {Q
n
}n≥0 satisfies all algebra axioms (A1)− (AP ).
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Proof The map in Proposition 6.6.1, in this case, is an isomorphism and the inverse to
the map in Proposition 6.3.1. The definition of the join map is as below.

Definition 6.6.1 For (α1, . . . , αk) = α, a composition of n and of degree k, we define a
poset isomorphism

jα : Q
α1
×Q

α2
× . . .×Q

αk
→ Q

n

α

as follows.

Let βi be a composition of αi for 1 ≤ i ≤ k. Then the above map sends β1 × β2 ×
. . .× βk to (β1, β2, . . . , βk). For example, for n = 9 and (α1, α2, α3) = (2, 4, 3), the map

Q
2
×Q

4
×Q

3
→ Q

9

α sends (2)× (1, 3)× (2, 1) to β = (2, 1, 3, 2, 1).

With this definition, the reader may check the axioms (A2) and (AP ) directly.

�

6.6.3 The motivating example of type An−1

The motivation for the algebra axioms comes from the theory of Coxeter groups. In
Section 6.3.3, we recalled some of their key properties, see Facts 6.3.1-6.3.3.

Geometry

Recall from Section 6.3.3 that for type An−1, the Coxeter group W is Sn, the symmetric
group on n letters and S = {s1, . . . , sn−1}, where si is the transposition that interchanges
i and i+1. Let Σn be the Coxeter complex of Sn and fix a fundamental chamber Cn0 ∈ Σn.
Identify Q

n
, the poset of compositions of n under refinement, with the poset of subsets

of S under inclusion in the usual way.

Lemma 6.6.2 The family of LRBs {Σn}n≥0 satisfies all algebra axioms (A1)− (AP ).

Proof This lemma is proved in the same way as Lemma 6.3.2, shedding light on the
geometry that underlies the axioms.

Axiom (A1). Let (f1, f2, . . . , fk) be a composition of n, or equivalently, a subset T ≤ S.
Associate to this subset, the face F of Cn0 of type T . Then F has degree k and there is
a unique poset isomorphism

jF : Σf1 × Σf2 × . . .× Σfdeg F
∼=
−→ ΣnF , (6.28)

such that

C
f1
0 × C

f2
0 × . . .× C

fdeg F

0 7→ Cn0 . (6.29)

For more details, see the explanation for the poset isomorphism in (6.14). In this case,
Proposition 6.6.1 specializes to the following.

Proposition 6.6.2 The poset map Q
n
→ Σn sends T ≤ S to the face of the fundamental

chamber Cn0 of type T .

Note that the above map is injective and a section to the type map Σn ։ Q
n

given
by Proposition 6.3.2.

Axiom (AP ). With jF as defined in (6.28), it follows from Fact 6.3.3 that {Σn}n≥0

satisfies the projection axiom (AP ).
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Axiom (A2). We now show that {Σn}n≥0 satisfies the axiom (A2). In other words, we
show that Equation (6.27) holds. Let G, F , F ′ and Fi for 1 ≤ i ≤ m with m = degG be
as defined in the axiom (A2). Then the type of both F and F ′ is given by

type(G)
⊔




m⊔

j=1

type(Fj)



 ,

and they are both faces of Cn0 ; hence F = F ′. It is instructive to look at the deriva-
tion of Equation (6.16) in this context. Hence both sides of Equation (6.27) specify an
isomorphism

Σf11 × Σf12 × . . .Σf1deg F1 × Σf21 × . . .× Σfm deg Fm → ΣnF .

And further they specify the same isomorphism because

C
f11
0 × Cf120 × . . . C

f1deg F1

0 × Cf210 × . . .× C
fm deg Fm

0 7→ Cn0

in both cases. This proves the axiom (A2).

�

Combinatorics

Recall from Section 6.3.3 that the Coxeter complex Σn can be identified with Bn, the
poset of compositions of [n].

Lemma 6.6.3 The family of LRBs {Bn}n≥0 satisfies all algebra axioms (A1)− (AP ).

This is a restatement of Lemma 6.6.2. For the fixed chamber Cn0 in Σn, we take the
set composition 1|2| . . . |n. The translation from geometry to combinatorics yields the
following.

Definition 6.6.2 For a composition (f1, . . . , fk) of n, let F = F 1| . . . |F k be the compo-
sition of the set [n], where F 1 = 12 . . . f1, F

2 = f1 + 1 . . . f1 + f2, and so on. Then define
a poset isomorphism

jF : Bf1 × Bf2 × . . .× Bfk → BnF

as follows.

Let Fi ∈ Bfi be a composition of the set [fi]. Then the image of F1 × F2 × . . .× Fk
is obtained by shifting up the indices of F2 by f1, F3 by f1 + f2, and so on and then
placing them next to one another. The case k = 2 was also explained in Definition 6.2.8.
For example, for the composition (2, 4, 3) of 9, we have F = 12|3456|789, and the map
jF : B2 × B4 × B3 → B9

F sends 12× 3|2|14× 3|12 to the set composition 12|5|4|36|9|78.

The combinatorial content of Proposition 6.6.2 is the following. It is already present
in Definition 6.6.2.

Proposition 6.6.3 The poset map Q
n
→ Bn sends a composition (α1, α2, . . . , αk) of n

to the set composition

12 . . . α1|α1 + 1 . . . α1 + α2| . . . | . . . n.

The reader may also check the axioms (A2) and (AP ) directly using Definitions 6.3.2
and 6.6.2.
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6.6.4 The example of type A
×(n−1)
1

Recall from Section 6.3.4 that for type A
×(n−1)
1 , the Coxeter group is Z

n−1
2 and the

generating set S = {s1, . . . , sn−1}, where si is the generator in the ith coordinate. Let
Σn be the Coxeter complex of Z

n−1
2 .

Geometry

Lemma 6.6.4 The family of LRBs {Σn}n≥0 satisfies all algebra axioms (A1)− (AP ).

Proof Follow the proof of Lemma 6.6.2. The point of similarity between the examples

of type An−1 and A
×(n−1)
1 was explained in the proof of Lemma 6.3.4.

�

Combinatorics

The Coxeter complex Σn of type A
×(n−1)
1 can be identified withWn, the poset of words of

length n−1 in the alphabet {+,−, 0}. For more details, see the beginning of Section 6.3.4.

Definition 6.6.3 For a composition (f1, . . . , fk) of n, let

F = 0 . . . 0︸ ︷︷ ︸
f1−1

+ 0 . . .0︸ ︷︷ ︸
f2−1

+ . . .+ 0 . . . 0︸ ︷︷ ︸
fk−1

∈ Σn

be the word of length n− 1. Define a poset isomorphism

jF : Σf1 × Σf2 × . . .× Σfk → ΣnF ,

which sends F1 × F2 × . . . × Fk to the word F1 + F2 + . . . + Fk. For example, for the
composition (1, 3, 4, 1, 1) of 10, we have F = +00 + 000 + + and the map

jF : Σ1 × Σ3 × Σ4 × Σ1 × Σ1 → Σ10
F

sends ǫ× (+0)× (0 + 0)× ǫ× ǫ to the word + + 0 + 0 + 0 + +.

The reader may also check the axioms (A2) and (AP ) directly using Definitions 6.3.4
and 6.6.3.

6.7 From algebra axioms to algebras

In this section, we explain how the algebra axioms allow us to define associative products
on the vector spaces in diagram (6.3). The formal algebra constructions are given in the
next section.

6.7.1 The products

Let {Σn}n≥0 be a family of projection posets that satisfies the algebra axioms. Then by
the axiom (A1), for every composition (g1, g2) of n, there is a poset inclusion

jG : Σg1 × Σg2 →֒ Σn. (6.30)

Further, the image of this map is ΣnG for some rank 1 face G ∈ Σn. Analogous to
Section 6.4.1, using this map, one can define products on the graded vector spaces in
diagram (6.3).
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6.7.2 Associativity of the products

We first formulate a special case of the axiom (A2), which we state as a proposition.

Proposition 6.7.1 Let {Σn} satisfy the algebra axioms (A1) and (A2). For the com-
position (h1, h2, h3) of n, let H be the rank 2 fundamental face of Σn and jH , the poset
map given by the axiom (A1). Similarly, let G, K, G′, K ′ be the fundamental faces
corresponding to the compositions (h1, h2 + h3), (h1 + h2, h3), (h2, h3) and (h1, h2) re-
spectively. Note that they have rank 1 in their respective posets and G and K are faces
of H. Let jG, jK , jG′ , jK′ denote the respective poset maps. Then

jH = jG ◦ (id×jG′) and jH = jK ◦ (jK′ × id). (6.31)

In particular, we have

H = jG(∅ ×G′) and H = jK(K ′ × ∅). (6.32)

No matter which algebra we are considering, the following simple principle controls
associativity.

Proposition 6.7.2 Let Fi ∈ Σhi for 1 ≤ i ≤ 3. With the notation as above,

jG(F1 × jG′(F2 × F3)) = jK(jK′(F1 × F2)× F3) ∈ Σh1+h2+h3 .

Proof From Equation (6.31), both the sides are equal to jH(F1 × F2 × F3).
�

6.7.3 Useful results for associativity

In Section 6.7.2, we explained the basic principle for associativity. However, depending
on the algebra at hand, one requires more specialized results, which we now give. To
avoid repetition, we omit K and K ′ from the discussion.

Proposition 6.7.3 Let H, G and G′ be the fundamental faces for the compositions
(h1, h2, h3), (h1, h2 + h3) and (h2, h3) respectively. Then we have

j−1
H (HF ) = (id×j−1

G′ )((∅ ×G′)j−1
G (GF )),

for any face F .

Proof By definition, we have G ≤ H . The proposition now follows from the following
sequence of equalities.

j−1
H (HF ) = (id×j−1

G′ ) ◦ j−1
G (HF ) (Equation (6.31))

= (id×j−1
G′ ) ◦ j−1

G (HGF ) (HG = H)

= (id×j−1
G′ )(j−1

G (H)j−1
G (GF )) (Algebra axiom (AP ))

= (id×j−1
G′ )((∅ ×G′)j−1

G (GF )). (Equation (6.32))

�

Proposition 6.7.4 Let H, G and G′ be the fundamental faces for the compositions
(h1, h2, h3), (h1, h2 + h3) and (h2, h3) respectively. Let GF = F1×F ′ and Di ∈ Σhi with
F1 ≤ D1. Then, we have

FjG(D1 × F
′jG′(D2 ×D3)) = FjH(D1 ×D2 ×D3).
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Proof This follows from the sequence of equalities below. The left hand side is equal
to

= FjG(F1 × F ′)jG(D1 × jG′(D2 ×D3)) (F1 ≤ D1 and axiom(AP ))

= FGFjH(D1 ×D2 ×D3) (GF = jG(F1 × F
′))

= FGjH(D1 ×D2 ×D3) (FGF = FG)

= FjH(D1 ×D2 ×D3), (G ≤ jH(D1 ×D2 ×D3))

which equals the right hand side.

�

6.8 Construction of algebras

This section is the algebra analogue of Section 6.5 and the goal is to prove Theorem 6.1.2.
In particular, starting with a family {Σn}n≥0 of LRBs that satisfies the algebra axioms
defined in Section 6.6, we construct many graded algebras. Throughout this section, we
use the notation and definitions in Section 6.1.2. We first show the following.

Theorem 6.8.1 Let {Σn}n≥0 be a family of projection posets, that satisfies all algebra
axioms (A1)− (AP ). Then

M
base∗
−→ N

Θ
−→ R

s
−→ S

Road
−→ Q

base
−→ P

is a diagram of algebras.

Proof There are two parts to this theorem. Firstly, we define products on the objects
(see Definitions 6.8.1-6.8.6) and show that they are associative (see Lemmas 6.8.1-6.8.6).
Secondly, we show that the maps are morphisms of algebras (see Propositions 6.8.2-6.8.6).

�

We restate Theorem 6.1.2 here for convenience.

Theorem Let {Σn}n≥0 be a family of LRBs, that satisfies all algebra axioms (A1) −
(AP ). Then diagram (6.3) is a diagram of algebras.

Proof A LRB is a special case of a projection poset. Hence, in view of the above
theorem, one only needs to show that the surjective supp and lune maps induce products
on AL and AZ and similarly the injective supp∗ and lune∗ maps induce products on AL∗

and AZ∗ . This is the content of Definitions 6.8.7, 6.8.8 and Proposition 6.8.7.

�

6.8.1 Examples

In Sections 6.6.2-6.6.4, we gave three examples that satisfy the algebra axioms. So the
algebra constructions in this section can be applied to them. We mainly concentrate on
the example of type A.

Proposition 6.8.1 For the example of type A, the algebras P, Q, S, R, N and M and
AZ , AL, AZ∗ and AL∗ as defined in this section respectively give the algebras PΠ, QΠ,
SΠ, RΠ, NΠ and MΠ and ΠZ, ΠL, ΠZ∗ and ΠL∗ as defined in Section 6.2.
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Proof The definitions of the algebras P , Q, S, R, N and M involve two ingredients:
the product of the projection poset Σn and the poset isomorphism in the axiom (A1). For
the example of type A, explicit descriptions of these two were given in Definitions 6.3.2
and 6.6.2. Hence the proof is a matter of unwinding definitions, see Facts 6.8.2, 6.8.4,
6.8.5, 6.8.6 and 6.8.7.

The part of the proposition dealing with the algebras A— and Π— is left as an exercise
to the reader, also see the remark before Proposition 6.8.7.

�

Corollary 6.8.1 Diagram (6.4) is a diagram of algebras.

6.8.2 The algebra P

Let P = ⊕
n≥0

K(Σn)∗. Write MF for the basis element corresponding to F ∈ Σn, n > 0

and 1 for the basis element of degree 0.

Definition 6.8.1 The product on P is given by

MF1
∗MF2

=
∑

F : GF=jG(F1×F2)

MF .

The vertex G ∈ Σn is fixed in the above sum. It is the fundamental vertex given by the
axiom (A1) for the composition (g1, g2) of n, where Fi ∈ Σgi , also see (6.30). We say
that a F as above is a quasi-shuffle of F1 and F2, see (6.33) below.

We now explain how this definition works in the examples (Sections 6.6.2-6.6.4).

Example of compositions

Recall from Section 6.6.2 that Q
n

is the poset of compositions of n. Let P∆ = ⊕
n≥0

K(Q
n
)∗.

Fact 6.8.1 The product on P∆ given by Definition 6.8.1 is as follows.

M(α1,α2,...,αi) ∗M(β1,β2,...,βj) = M(α1,...,αk,β1,...,βj) +M(α1,...,αk+β1,...,βj).

We point out that, in contrast to the coproduct on P∆, this is not how the product
is defined on the M basis of the Hopf algebra QΛ of quasi-symmetric functions (Sec-
tion 3.2.2). Rather this is how the product is defined on the K basis of the Hopf algebra
NΛ (Section 3.2.4). We also remark that the product and coproduct we have obtained
on P∆ from the warm-up example of compositions are not compatible.

Example of type An−1

Recall from Section 6.6.3 that for type A, the LRB Σn is the poset of compositions Bn

of the set [n]. Let PΠ = ⊕
n≥0

K(Bn)∗.

Fact 6.8.2 The product on PΠ given by Definition 6.8.1 coincides with the one given
by Definition 6.2.10.

Proof With the notations as in Definitions 6.8.1 and 6.2.10, we want to show that

{F | GF = jG(F1 × F2)} = {F | F is a quasi-shuffle of F1 and F2}. (6.33)
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One can say that the left hand set is the geometric meaning of a quasi-shuffle. We
illustrate this with an example.

Let F1 = 23|14|5 and F2 = 3|124. Then in the notation of Definition 6.8.1, we have
(g1, g2) = (5, 4), the vertex G = 12345|6789 ∈ B9 and jG(F1 × F2) = 23|14|5|8|679 by
Definition 6.6.2. Now let F ∈ B9 be such that GF = jG(F1×F2). Then by the definition
of the product (see Definition 6.3.2), this occurs precisely if 23, 14 and 5 (resp. 8 and
679) occur in different blocks of F and the blocks are in the order 23 < 14 < 5 (resp.
8 < 679). An example of this is F = 238|14|5679. This is precisely a quasi-shuffle of F1

and F2 as given in Definition 6.2.6.
�

Remark It is an easy exercise to see that

GF = jG(F1 × F2), FG = F ⇐⇒ F is a shuffle of F1 and F2.

This gives the geometric meaning of a shuffle.

Example of type A
×(n−1)
1

Now we consider the example in Section 6.6.4. Let PΓ = ⊕
n≥0

K(Wn)∗, where Wn is the

poset of words of length n− 1 in the alphabet {+,−, 0}. Then observe that:

Fact 6.8.3 The product on PΓ given by Definitions 6.8.1 and 6.6.3 is as follows.

MF 1···F i ∗MH1···Hj = MF 1···F i+H1···Hj +MF 1···F i−H1···Hj +MF 1···F i0H1···Hj .

For example,
M+−0 ∗M0 = M+−0+0 +M+−0−0 +M+−000.

We remark that the product and coproduct we have obtained on PΓ from the example

of type A
×(n−1)
1 are not compatible.

We now return to the general definition.

Lemma 6.8.1 The product on P is associative. We have

MF1
∗MF2

∗MF3
=

∑

F : HF=jH (F1×F2×F3)

MF .

The face H ∈ Σn is fixed in the above sum. It is the rank 2 fundamental face given by
the axiom (A1) for the composition (h1, h2, h3) of n, where Fi ∈ Σhi .

Proof LetG andG′ be the fundamental faces of Σn and Σh2+h3 given by the axiom (A1)
for the compositions (h1, h2 + h3) and (h2, h3) respectively. They are fixed throughout
this computation.

MF1
∗ (MF2

∗MF3
) =

∑
F ′: G′F ′=jG′ (F2×F3)

MF1
∗MF ′

=
∑

F ′: G′F ′=jG′ (F2×F3)

∑
F : GF=jG(F1×F ′)

MF

=
∑

F : GF=jG(F1×F ′), G′F ′=jG′ (F2×F3)

MF .

An alternate way of writing the condition on F in the last sum is

(id×j−1
G′ )((∅ ×G′)j−1

G (GF )) = F1 × F2 × F3.
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In order to see that MF1
∗ (MF2

∗MF3
) = MF1

∗MF2
∗MF3

, with the right hand side as
defined in the lemma, one needs to show that

j−1
H (HF ) = (id×j−1

G′ )((∅ ×G′)j−1
G (GF )). (6.34)

This is true by Proposition 6.7.3. The term (MF1
∗MF2

) ∗MF3
can be handled similarly.

�

6.8.3 The algebra M

Let M = ⊕
n≥0

KΣn. Write HP for the basis element corresponding to P ∈ Σn, n > 0 and

1 for the basis element of degree 0.

Definition 6.8.2 The product on M is given by

HP1
∗HP2

= HjG(P1×P2).

The vertexG ∈ Σn is the fundamental vertex given by the axiom (A1) for the composition
(g1, g2) of n, where Fi ∈ Σgi . We say that jG(P1×P2) is the join of the faces P1 and P2.

Example of type An−1

Recall from Section 6.6.3 that for type A, the LRB Σn is the poset of compositions Bn

of the set [n]. Let MΠ = ⊕
n≥0

KBn.

Fact 6.8.4 The product on MΠ given by Definition 6.8.2 coincides with the one given
by Definition 6.2.12.

Proof Follows directly from Definitions 6.6.2 and 6.2.8.

�

Lemma 6.8.2 The product on M is associative. We have

HP1
∗HP2

∗HP3
= HjH (P1×P2×P3).

The face H ∈ Σn is the rank 2 fundamental face given by the axiom (A1) for the compo-
sition (h1, h2, h3) of n, where Pi ∈ Σhi .

Proof Clear from Proposition 6.7.2.

�

6.8.4 The algebra Q

Let Q = ⊕
n≥0

K(Qn)∗. Write M(F,D) for the basis element corresponding to (F,D) ∈

Qn, n > 0 and 1 for the basis element of degree 0.
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Definition 6.8.3 The product on Q is given by

M(F1,D1) ∗M(F2,D2) =
∑

F : GF=jG(F1×F2)

M(F,FjG(D1×D2)).

The vertex G ∈ Σn is fixed in the above sum. It is the fundamental vertex given by the
axiom (A1) for the composition (g1, g2) of n, where Fi ∈ Σgi .

Remark Note that the above product is quite similar to the one that we gave for P .
The index set in the summation is identical in both cases. The additional ingredient is
the presence of the second coordinate.

Observe that D = FjG(D1 × D2) satisfies GD = jG(D1 × D2) and G ∈ reg(F,D).
One may readily check that

M(F1,D1) ∗M(F2,D2) =
∑

(F,D):
GF=jG(F1×F2)
GD=jG(D1×D2)
G∈reg(F,D)

M(F,D).

This way of writing will be useful later. We say that a (F,D) as above is a quasi-shuffle
of the pointed faces (F1, D1) and (F2, D2).

Example of type An−1

Recall from Section 6.3.3 that for type A, the set Qn is the poset of fully nested compo-
sitions of the set [n]. Let QΠ = ⊕

n≥0
K(Qn)∗.

Fact 6.8.5 The product on QΠ given by Definition 6.8.3 coincides with the one given
by Definition 6.2.18.

Proof This is an easy extension of the proof of Fact 6.8.2.
�

Lemma 6.8.3 The product on Q is associative. We have

M(F1,D1) ∗M(F2,D2) ∗M(F3,D3) =
∑

F : HF=jH (F1×F2×F3)

M(F,FjH(D1×D2×D3)).

The face H ∈ Σn is fixed in the above sum. It is the rank 2 fundamental face given by
the axiom (A1) for the composition (h1, h2, h3) of n, where Fi ∈ Σhi .

Proof In view of the above remark, the work on the first coordinate is done in the proof
of Lemma 6.8.1. The extra ingredient is to check that the second coordinate works out
correctly. This follows from Proposition 6.7.4.

�

Proposition 6.8.2 The map base : Q → P given by M(F,D) 7→ MF is a morphism of
algebras.

Proof Clear from Definitions 6.8.1 and 6.8.3.
�
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6.8.5 The algebra N

Let N = ⊕
n≥0

KQn. Write H(P,C) for the basis element corresponding to (P,C) ∈ Qn, n >

0 and 1 for the basis element of degree 0.

Definition 6.8.4 The product on N is given by

H(P1,C1) ∗H(P2,C2) = H(jG(P1×P2),jG(C1×C2)).

The vertexG ∈ Σn is the fundamental vertex given by the axiom (A1) for the composition
(g1, g2) of n, where Pi ∈ Σgi . We say that (jG(P1 × P2), jG(C1 × C2)) is the join of the
pointed faces (P1, C1) and (P2, C2).

Example of type An−1

Recall from Section 6.3.3 that for type A, the set Qn is the poset of fully nested compo-
sitions of the set [n]. Let NΠ = ⊕

n≥0
KQn.

Fact 6.8.6 The product on NΠ given by Definition 6.8.4 coincides with the one given
by Definition 6.2.19.

Proof Follows directly from Definitions 6.6.2 and 6.2.17.

�

Lemma 6.8.4 The product on N is associative. We have

H(P1,C1) ∗H(P2,C2) ∗H(P3,C3) = H(jH (P1×P2×P3),jH(C1×C2×C3)).

The face H ∈ Σn is the rank 2 fundamental face given by the axiom (A1) for the compo-
sition (h1, h2, h3) of n, where Pi ∈ Σhi .

Proof Clear from Proposition 6.7.2.

�

Proposition 6.8.3 The map base∗ :M→ N given by HP 7→
∑

C: P≤C
H(P,C) is a mor-

phism of algebras.

Proof This is a simple consequence of the axiom (A1).

�

6.8.6 The algebra S

Let S = ⊕
n≥0

K(Cn × Cn)∗, where Cn is the set of chambers in Σn. Write F(C,D) for the

basis element (C,D) ∈ Cn × Cn, n > 0 and 1 for the basis element of degree 0.
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Definition 6.8.5 Define a product on S by

F(C1,D1) ∗ F(C2,D2) =
∑

D: GD=jG(D1×D2)

F(jG(C1×C2),D).

The vertex G ∈ Σn is fixed in the above sum. It is the fundamental vertex given by the
axiom (A1) for the composition (g1, g2) of n, where Ci ∈ Σgi .

Note that the above product combines the ideas used in defining the products for
M and P . In the pair (C,D), the first (resp. second) coordinate is treated like the
coordinate in M (resp. P).

Remark Observe that Definition 6.8.5 can be used to define a product on

⊕
n≥0

K(Σn × Σn)∗.

This will be taken up in a future work.

Example of type An−1

Recall from Section 6.6.3 that for type A, the LRB Σn is the poset of compositions of
the set [n]. Let SΠ = ⊕

n≥0
K(Cn × Cn)∗, where Cn is the set of chambers in Σn and can

be identified with permutations.

Fact 6.8.7 The product on SΠ given by Definition 6.8.5 coincides with the one given by
Definition 6.2.34.

Proof Comparing Definitions 6.8.5 and 6.2.34, we see that the first coordinate presents
no difficulty. To complete the proof, we want to show that

{D : D a permutation, GD = jG(D1 ×D2)} = {D : D a shuffle of D1 and D2}.

This follows from Equation (6.33) and the following simple observation.
A quasi-shuffle D of two permutations D1 and D2 is a permutation if and only if D

is a shuffle of D1 and D2.
�

Example of type A
×(n−1)
1

Now we consider the example in Section 6.6.4. Let SΓ = ⊕
n≥0

K(Cn × Cn)∗, where Cn is

the set of chambers in Wn, the poset of words of length n− 1 in the alphabet {+,−, 0}.
Then observe that:

Fact 6.8.8 The product on SΓ given by Definitions 6.8.5 and 6.6.3 is as follows.

F(C1···Ci,D1···Di) ∗ F(C̃1···C̃j,D̃1···D̃j) = F(C1···Ci+C̃1···C̃j ,D1···Di+D̃1···D̃j)

+ F(C1···Ci+C̃1···C̃j,D1···Di−D̃1···D̃j).

For example,

F(+,−) ∗ F(+−,−+) = F(+++−,−+−+) + F(+++−,−−−+).

We remark that the product and coproduct we have obtained on SΓ from the example

of type A
×(n−1)
1 are not compatible.
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Lemma 6.8.5 The product on S is associative. We have

F(C1,D1) ∗ F(C2,D2) ∗ F(C3,D3) =
∑

D: HD=jH (D1×D2×D3)

F(jH (C1×C2×C3),D).

The face H ∈ Σn is fixed in the above sum. It is the fundamental face given by the axiom
(A1) for the composition (h1, h2, h3) of n, where Fi ∈ Σhi .

Proof One can look at the two coordinates separately. The associativity in the first
coordinate is clear (Proposition 6.7.2). For the second coordinate, we repeat the proof
of Lemma 6.8.1 with Fi and F ′ replaced by Di and D′ respectively.

�

6.8.7 The algebra R

Let R = ⊕
n≥0

K(Cn × Cn), where Cn is the set of chambers in Σn. Write K(D,C) for the

basis element (D,C) ∈ Cn×Cn, n > 0 and 1 for the basis element of degree 0. We define
a product on R such that:

Proposition 6.8.4 The switch map s : R → S which sends K(D,C) → F(C,D) is an
isomorphism of algebras.

Definition 6.8.6 Define a product on R by

K(D1,C1) ∗K(D2,C2) =
∑

D: GD=jG(D1×D2)

K(D,jG(C1×C2)).

Lemma 6.8.6 The product on R is associative. We have

K(D1,C1) ∗K(D2,C2) ∗K(D3,C3) =
∑

D: HD=jH (D1×D2×D3)

K(D,jH(C1×C2×C3)).

6.8.8 The maps Road : S → Q and Θ : N → R

So far, we have defined the algebras that occur in Theorem 6.8.1, and showed that they
are associative. We also showed that the maps base∗, s and base are morphisms of
algebras. To complete the proof, we now show that the maps Road and Θ are morphisms
of algebras.

Proposition 6.8.5 The map Road : S → Q that sends F(C,D) to
∑

F : FC=D

M(F,D) is a

morphism of algebras.

Proof We need to show that

Road(F(C1,D1) ∗ F(C2,D2)) = Road(F(C1,D1)) ∗ Road(F(C2,D2)).

From the definitions,

LHS =
∑

D: GD=jG(D1×D2)

Road(F(jG(C1×C2),D))

=
∑

D: GD=jG(D1×D2)

∑
F : FjG(C1×C2)=D

M(F,D)

=
∑

F : GFjG(C1×C2)=jG(D1×D2)

M(F,FjG(C1×C2)).
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Similarly, from the definitions,

RHS =
∑

F1,F2: FiCi=Di

M(F1,D1) ∗M(F2,D2)

=
∑

F1,F2: FiCi=Di

∑
F : GF=jG(F1×F2)

M(F,FjG(D1×D2))

=
∑

F : GFjG(C1×C2)=jG(D1×D2)

M(F,FjG(D1×D2)).

Using FGF = FG and G ≤ jG(C1 × C2), observe that

FjG(D1 ×D2) = FGFjG(C1 × C2) = FGjG(C1 × C2) = FjG(C1 × C2).

This shows that the left and right hand sides are equal.
�

Proposition 6.8.6 The map Θ : N → R that sends H(P,C) to
∑

D: PD=C

K(D,C) is a

morphism of algebras.

Proof We need to show that

Θ(H(P1,C1) ∗H(P2,C2)) = Θ(H(P1,C1)) ∗Θ(H(P2,C2)).

From the definitions,

LHS = Θ(H(jG(P1×P2),jG(C1×C2))) =
∑

D: jG(P1×P2)D=jG(C1×C2)

K(D,jG(C1×C2)).

Similarly, from the definitions,

RHS =
∑

D1,D2: PiDi=Ci

K(D1,C1) ∗K(D2,C2)

=
∑

D1,D2: PiDi=Ci

∑
D: GD=jG(D1×D2)

K(D,jG(C1×C2))

=
∑

D: jG(P1×P2)GD=jG(C1×C2)

K(D,jG(C1×C2)).

Since G ≤ jG(P1 × P2), we have jG(P1 × P2)G = jG(P1 × P2). Hence the left and right
hand sides are equal.

�

6.8.9 The algebras AZ, AL, AZ∗ and AL∗

Thus far, we have proved Theorem 6.8.1. In the rest of this section, we prove the
remaining part of Theorem 6.1.2. It involves the maps supp and lune and their duals.
For that we recall the content of Lemmas 2.4.1 and 2.4.2.

Let G ∈ Σn be the fundamental vertex with type (g1, g2). Then one has the following
two commutative diagrams.

ΣnG
� � //

suppn
G

����

Σn
G· // //

suppn

����

ΣnG

suppn
G

����
LnG

� � // Ln
G·

// // LnG

Σg1 × Σg2

suppg1 × suppg2

����

jG

∼=
// ΣnG

suppn
G

����
Lg1 × Lg2

jG

∼= // LnG

(6.35)
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where
LnG = {X ∈ Ln | suppn(G) ≤ X}

is the poset of flats of ΣnG, and suppnG, suppg1 and suppg2 are the support maps of ΣnG,
Σg1 and Σg2 respectively. The map G· : Σn → ΣnG sends F to GF . One also has the
same two diagrams above with Σ and L replaced by Q and Z respectively, and the map
supp replaced by the map lune.

Definition 6.8.7 Define a product on AL∗ and AZ∗ by

mX1
∗mX2

=
∑

X: G·X=jG(X1×X2)

mX ,

mL1
∗mL2

=
∑

L: G·L=jG(L1×L2), G∈zone(L)

mL.

The set zone(L) is discussed in Section 2.3.4. It also made an appearance in the coproduct
formula for AZ , see Definition 6.5.8. One way to justify its presence is by the condition
G ∈ reg(F,D) which occurs in the second product formula for Q, see the remark after
Definition 6.8.3.

We say that a X (resp. L) as above is a quasi-shuffle of the flats X1 and X2 (resp.
lunes L1 and L2).

Definition 6.8.8 Define a product on AL and AZ by

hX1
∗ hX2

= hjG(X1×X2),

hL1
∗ hL2

= hjG(L1×L2).

We say that jG(X1×X2) (resp. jG(L1×L2)) is the join of the flats X1 and X2 (resp.
lunes L1 and L2).

Remark For the example of type An−1, one can make explicit the maps G· in the
diagram (6.35) above, as also the join maps jG : Lg1 × Lg2 → LnG and jG : Zg1 × Zg2 →
ZnG. It is then easy to check that the above formulas reduce to the definitions of the
corresponding algebras in Section 6.2.

Proposition 6.8.7 Let {Σn} be a family of LRBs, and let P, M, Q and N be the
algebras as given in Definitions 6.8.1-6.8.4.

(1) The injective maps supp∗ : AL∗ → P that sends mX to
∑

F : suppF=X

MF and lune∗ :

AZ∗ → Q that sends mL to
∑

(F,D): lune(F,D)=L

M(F,D) are maps of algebras.

(2) The surjective maps supp :M։ AL that sends HP to hsuppP and lune : N ։ AZ

that sends H(P,C) to hlune(P,C) are maps of algebras.

Proof We only give the proof for the supp and supp∗ maps.

(1) The following computation shows that the map supp∗ : AL∗ →֒ P is a morphism of
algebras. The term supp∗(mX1

) ∗ supp∗(mX2
) equals

=
∑

Fi: suppFi=Xi

MF1
∗MF2

=
∑

Fi: suppFi=Xi

∑
F : GF=jG(F1×F2)

MF

=
∑

F : supp(GF )=jG(X1×X2)

MF (Diagram (6.35))

=
∑

F : supp(G)∨supp(F )=jG(X1×X2)

MF

=
∑

X: G·X=jG(X1×X2)

∑
F : suppF=X

mF ,
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which equals supp∗(mX1
∗mX2

).

(2) It follows from diagram (6.35) that

supp(jG(P1 × P2)) = jG(supp(P1)× supp(P2)).

This proves that the map supp :M։ AL is a morphism of algebras.
�



Chapter 7

The Hopf algebra of pairs of

permutations

7.1 Introduction

In this chapter, we study in detail the Hopf algebra SΠ indexed by pairs of permutations
that was introduced in Chapter 6.

7.1.1 The basic setup

We recall some notation from Chapter 1, see Section 1.4 in particular. More background
material for this chapter can be found in Section 5.4.

Let Sn be the symmetric group on n letters and Σn be its Coxeter complex. The group
Sn is generated by S = {s1, . . . , sn−1}, where si is the transposition that interchanges i
and i+ 1. Identify Q

n
, the poset of compositions of n under refinement, with the poset

of subsets of S under inclusion in the usual way. Let Cn be the set of chambers in Σn.
Since Sn acts simply transitively on Cn, one can identify

Cn ←→ Sn (7.1)

after fixing a fundamental chamber Cn0 ∈ C
n. We use the standard notation that wCn0 is

the chamber that corresponds to w ∈ Sn.
Let d : Cn×Cn → Sn be the distance map, and type : Σn → Q

n
map a face to its type.

Note that d(Cn0 , wC
n
0 ) = w. We sometimes drop the superscript n to avoid overloading

the notation. We write F for the opposite of the face F ∈ Σn. The letters C, D and E

always stand for chambers.

7.1.2 The main result

Standard material

In [61], Malvenuto introduced the Hopf algebra

SΛ =
∑

n≥0

K(Sn)
∗,

indexed by permutations, and related it to the Hopf algebra of quasi-symmetric functions
QΛ via the descent map. Recall that:

Theorem 7.1.1 SΛ is a self-dual free and cofree graded Hopf algebra.

129
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Table 7.1: Hopf algebras and their indexing sets and bases.

Name Vector space Bases Name Dual space Dual bases

RΠ K(Cn × Cn) R,H,K SΠ K(Cn × Cn)∗ S,M,F

RΛ KSn H,K SΛ K(Sn)
∗ M,F

The self-duality appears in Malvenuto’s thesis [61, Section 5.2] and Malvenuto and
Reutenauer [62, Theorem 3.3] and the freeness was established by Poirier and Reutenauer [78].
For ideas related to the Hopf algebra SΛ, see Reutenauer [82], Patras and Reutenauer [73],
Loday and Ronco [56, 57], Duchamp, Hivert and Thibon [26, 27], Foissy [30] and Aguiar
and Sottile [4, 3, 5].

New material

In Chapter 5, we initiated a systematic study of the descent theory of Coxeter groups.
This pointed us to the fact that one should be able to realize the Hopf algebra SΛ as a
quotient of a bigger Hopf algebra indexed by pairs of permutations. This goal was realized
in Chapter 6, where we constructed many new Hopf algebras following this philosophy.
Among them was the Hopf algebra

SΠ = ⊕
n≥0

K(Cn × Cn)∗, (7.2)

indexed by pairs of permutations. The definitions of the Hopf algebras SΠ and SΛ are
recalled in Section 7.2.

The goal of this chapter is to study in detail the Hopf algebra SΠ. Using the quotient
map SΠ ։ SΛ, one can then quickly derive some of the results obtained in [4] for SΛ.
The main result of this chapter is:

Theorem 7.1.2 SΠ is a free and cofree graded Hopf algebra.

Note that we do not claim SΠ to be self-dual. The proof of Theorem 7.1.2 is a conse-
quence of Theorems 7.4.3 and 7.5.4 that we establish in this chapter. In Sections 7.1.3-
7.1.5 below, we recall relevant ideas from Chapters 5 and 6. In Section 7.1.6, we provide
an outline of the proof of Theorem 7.1.2, and explain the organization of the rest of the
chapter.

7.1.3 The Hopf algebras RΠ and RΛ

For book-keeping purposes, we introduce two more Hopf algebras RΠ and RΛ, which
are isomorphic copies of SΠ and SΛ respectively, see Table 7.1. The nth graded piece
of each Hopf algebra is indicated in the vector space column, see Equation (7.2) in this
regard. For each Hopf algebra, we consider a number of useful bases. They are related
to one another via certain partial orders on Cn × Cn and Sn. This theory was developed
in Chapter 5 for any Coxeter group. We recall the main definitions in Sections 7.1.4
and 7.1.5 below.

The precise relation among the above four Hopf algebras is given by the following
special case of Theorem 6.1.4.
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Proposition 7.1.1 The following is a commutative diagram of graded Hopf algebras.

RΠ

d

����

∼=

s // SΠ

d

����
RΛ

∼=
s

// SΛ

where the switch map s : RΠ→ SΠ sends K(D,C) to F(C,D), and s : RΛ→ SΛ sends Kw

to Fw−1 . The distance map d is given by

A(C,D) 7→ Ad(C,D)

for A = F,M,H and K. On the S basis, one has

S(C,D) 7→





Md(C,D) if D = C0,

0 otherwise.

Proof The commutativity of the diagram follows from the definitions of the maps. The
Hopf algebras RΠ and RΛ are defined from the Hopf algebras SΠ and SΛ respectively,
using the isomorphism s. So the content of the proposition is that the distance map
d : SΠ→ SΛ is a map of Hopf algebras. This is an easy check.

�

Remark It follows directly from the definitions in the F and K basis that RΛ ∼= SΛ∗

as Hopf algebras with Kw = F ∗
w.

7.1.4 Three partial orders on Cn × Cn

We recall some definitions and facts from Section 5.2.4 and Section 1.3.5.

Definition 7.1.1 Let ≤ be the weak left Bruhat order on Sn. Using the identification
in (7.1), define a partial order ≤b on the set Cn as follows.

uCn0 ≤b vC
n
0 in Cn ⇐⇒ u ≤ v in Sn.

This occurs precisely if there is a minimum gallery

Cn0 − vu
−1Cn0 − vC

n
0 .

The subscript “b” stands for Bruhat. Note that this partial order depends on the choice
of the fundamental chamber Cn0 in Cn.

Similarly, we write ≤rb for the partial order on Cn defined using the weak right Bruhat
order on Sn. The only purpose of the partial order ≤rb is to allow us to make a comment
about the product of SΛ, see Definition 7.2.13.

Definition 7.1.2 We define three partial orders on Cn × Cn.

(C1, D1) ≤ (C2, D2) ⇐⇒ D1 = D2 = D and C2 − C1 −D.

⇐⇒ D1 = D2 = D and d(C1, D1) ≤ d(C2, D2).

(C1, D1) ≤′ (C2, D2) ⇐⇒ D1 ≤b D2 and d(C1, D1) = d(C2, D2).

(C1, D1) � (C2, D2) ⇐⇒ ∃E ∋ (C1, D1) ≤ (E,D1) and (E,D1) ≤′ (C2, D2).

Note that in the definition of�, only one E can satisfy the required condition; namely the
one that satisfies d(E,D1) = d(C2, D2). Unlike ≤, the partial orders ≤′ and � depend
on the choice of the fundamental chamber Cn0 .
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7.1.5 The different bases of SΠ and SΛ

We recall some definitions from Section 5.6.1 and Section 5.7.1. The M basis of SΛ was
introduced in [4]. It is related to the F basis by the weak left Bruhat order ≤ on Sn as
follows.

Fv =
∑

u: v≤u

Mu.

Let RΛ be the graded dual of SΛ as a Hopf algebra, and H and K be the bases dual to
M and F respectively. Then

Hu =
∑

v: v≤u

Kv.

In the literature, it is RΛ rather than SΛ that is sometimes referred to as the Malvenuto-
Reutenauer Hopf algebra.

Similarly, using the partial orders in Definition 7.1.2, we define the S, M and F bases
of SΠ. They are related by

F(E,D) =
∑

C: (E,D)≤(C,D)

M(C,D), M(C′,D′) =
∑

(C′,D′)≤′(C,D)

S(C,D). (7.3)

Observe from the above formulas that the F basis is related to the S basis via the partial
order � as follows.

F(C′,D′) =
∑

(C′,D′)�(C,D)

S(C,D).

Let RΠ be the graded dual of SΠ as a vector space. Then the R, H and K dual bases
are related by

H(E,C) =
∑

D: (D,C)≤(E,C)

K(D,C), R(D′,C′) =
∑

(D,C)≤′(D′,C′)

H(D,C). (7.4)

We draw the reader’s attention to the fact that RΠ is not defined as the graded Hopf
algebra dual of SΠ.

7.1.6 The proof method and the organization of the chapter

Standard material

We first review the method for proving Theorem 7.1.1. It follows directly from the
definitions in the F and K basis that RΛ ∼= SΛ∗ as Hopf algebras with Kw = F ∗

w. This

implies that SΛ is a self-dual Hopf algebra with SΛ∗
∼=
−→ SΛ given by F ∗

w 7→ Fw−1 . As
mentioned before, freeness and cofreeness of SΛ follows from results of Malvenuto, Poirier,
and Reutenauer [61, 62, 78]. Other proofs are given in [27, 4]. Explicit expressions for
the product and coproduct in the M basis are given in [4].

New material

In order to prove Theorem 7.1.2, we apply similar ideas. However it is not true that
RΠ ∼= SΠ∗ as Hopf algebras with K(D,C) = F ∗

(D,C). So one cannot conclude that SΠ is
self-dual. This doubles our work and one has to prove the freeness and cofreeness of SΠ
separately.

In Section 7.2, we recall the definition of the Hopf algebra SΠ in the F basis as given
in Chapter 6. In Section 7.3, we compute the coproduct and product in the M basis
of SΠ. The formulas for SΛ in the M basis obtained in [4] follow directly from these.
However, unlike for SΛ, one cannot conclude cofreeness of SΠ from the coproduct formula
in the M basis, since it produces some unwanted terms.
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This flaw is rectified by replacing theM basis by the S basis. The coproduct computa-
tion in the S basis in Section 7.4 produces exactly the terms that we want. In particular,
it shows that SΠ is cofree, thus proving one part of Theorem 7.1.2. For completeness,
we also write down the product in the S basis.

In Section 7.5, we compute the coproduct and product in the H basis of RΠ. The
freeness of RΠ, and hence SΠ, follows from the product formula in the H basis of RΠ,
proving the second part of Theorem 7.1.2.

Open Question For completeness, one would also like to compute the formulas in
the R basis of RΠ and formulas for the antipode in the various bases. These are open
problems at the moment.

Remark There is a way to recover the “self-duality” of SΠ by viewing it as a Hopf
monoid in a certain category of species. One can also derive the antipode formulas for
SΛ obtained in [4] by this approach. These ideas will be explained in a future work.

7.2 The Hopf algebra SΠ

In this section, we recall the definition of the Hopf algebra SΠ in the F basis in both com-
binatorial and geometric terms as given in Chapter 6. Then we recall the combinatorial
definition of SΛ in the F basis and give a new geometric definition.

7.2.1 Preliminary definitions

We first give a few preliminary definitions, some of which were written in Section 6.2.3.

Definition 7.2.1 A set composition is an ordered set partition. For example, 6|34|125
is a composition of [6].

Definition 7.2.2 There is a unique order preserving map from any n-set N of integers
to the standard n-set [n]. Using this map, one can standardize compositions of N to
compositions of [n]. For example,

st(8|36|59) = 4|13|25.

Definition 7.2.3 The join of a composition F1 of [g1] and a composition F2 of [g2] is a
composition j(F1 × F2) of [g1 + g2] obtained by shifting up the indices of F2 by g1 and
then placing it after F1. For example,

j(31|2× 23|14|5) = 31|2|56|47|8.

We also define j(F1 × F2) to be the composition of [g1 + g2] obtained by shifting up the
indices of F2 by g1 and then placing it before F1. For example,

j(31|2× 23|14|5) = 56|47|8|31|2.

Further, we define j′(F1 × F2) to be the composition of [g1 + g2] obtained by shifting up
the indices of F1 by g2 and then placing it before F2. For example,

j′(31|2× 23|14|5) = 86|7|23|14|5.

Further, we define j′′(F1×F2) to be the composition of [g1 + g2] obtained by shifting up
the indices of F1 by g2 and then placing it after F2. For example,

j′′(31|2× 23|14|5) = 23|14|5|86|7.
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Definition 7.2.4 A shuffle of set compositions F1 and F2 is a shuffle of the components
of F1 and F2. For example,

5|bc|af |21|34|deg|6 is a shuffle of 5|21|34|6 and bc|af |deg.

Definition 7.2.5 A quasi-shuffle of set compositions F1 and F2 is a shuffle of the com-
ponents of F1 and F2, where in addition we are allowed to substitute a disjoint set of
pairs of components (F i1 , F

j
2 ) for F i1∪F

j
2 , if they are adjacent in the shuffle. For example,

5bc|af |21|34deg|6 is a quasi-shuffle of 5|21|34|6 and bc|af |deg.

The above definitions of a shuffle and quasi-shuffle are not fully precise since one
needs to ensure that the shuffled sets are disjoint, see Section 6.2.3 for more details.

7.2.2 Combinatorial definition

The Coxeter complex Σn can be identified with the poset of set compositions under
refinement. This allows us to define SΠ in combinatorial terms, without any reference
to Coxeter complexes, as below. Let C = C1|C2| . . . |Cn and D = D1|D2| . . . |Dn be two
permutations.

Definition 7.2.6 The coproduct on SΠ is given by

∆(F(C,D)) =

n∑

i=0

Fst(C̃1|···|C̃i,D1|···|Di) ⊗ Fst(C̃i+1|···|C̃n,Di+1|···|Dn),

where C̃1, . . . , C̃i are the letters in the set {D1, . . . , Di} and C̃i+1, . . . , C̃n are the letters
in the set {Di+1, . . . , Dn} written in the order in which they appear in C1| · · · |Cn. For
example,

∆(F2|3|1|4,4|1|2|3) = 1⊗ F2|3|1|4,4|1|2|3 + F1,1 ⊗ F2|3|1,1|2|3 + F1|2,2|1 ⊗ F1|2,1|2+

F2|1|3,3|1|2 ⊗ F1,1 + F2|3|1|4,4|1|2|3 ⊗ 1.

Definition 7.2.7 The product on SΠ is given by

F(C1,D1) ∗ F(C2,D2) =
∑

D: D a shuffle of D1 and D2

F(j(C1×C2),D).

The term j(C1 ×C2) refers to the join of C1 and C2 given in Definition 7.2.3. If D1 and
D2 are compositions of [g1] and [g2] respectively then the understanding is that we shift
up the indices of D2 by g1 and then shuffle. For example,

F(2|1,1|2) ∗ F(1|2,2|1) = F(2|1|3|4,1|2|4|3) + F(2|1|3|4,1|4|2|3) + F(2|1|3|4,1|4|3|2)+

F(2|1|3|4,4|1|2|3) + F(2|1|3|4,4|1|3|2) + F(2|1|3|4,4|3|1|2).

Note that the first coordinate is the same in each term in the right hand side.

Proposition 7.2.1 With the coproduct and product as above, SΠ is a Hopf algebra.

We leave the proof to the reader.
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7.2.3 The break and join operations

We recall the construction of the break and join operations for the family {Σn}, as n
varies (Sections 6.3.3 and 6.6.3). Let

ΣnK = {F ∈ Σn | K ≤ F}

be the star region of the face K. It can be identified with link(K), which is a Coxeter
complex in its own right.

For a vertex K ∈ Σn of type (k1, k2), we have an isomorphism

ΣnK
∼=
−→ Σk1 ∗ Σk2 ,

where Σk1 ∗ Σk2 is the join of Σk1 and Σk2 . This is because deleting a vertex in the
Coxeter diagram of type A results in two smaller diagrams both of type A. However
there is a choice involved in this isomorphism because of the action of the symmetric
groups Sk1 and Sk2 . We fix an isomorphism

bK : ΣnK
∼=
−→ Σk1 × Σk2 , by demanding that KCn0 7→ Ck10 × C

k2
0 ,

where KCn0 is the projection of Cn0 on K, see Figure 1.2. Recall from Section 1.3.1 that
these projection maps define a semigroup structure on Σn. For F,G ∈ Σn, we denote the
product by FG, and call it the projection of G on F .

Similarly, one defines an isomorphism

jG : Σg1 × Σg2
∼=
−→ ΣnG, by demanding that C

g1
0 × C

g2
0 7→ Cn0 ,

where G ∈ Cn0 is the fundamental vertex of type (g1, g2).
The letters b and j stand for “break” and “join” respectively. In our arguments, we

often refer to the compatibility of galleries with the maps bK and jG. This is same as
the compatibility of galleries with joins (Section 1.3.7).

7.2.4 Geometric definition

The Hopf algebra SΠ can be described geometrically using the semigroup structure of
Σn and the maps bK and jG as below.

Definition 7.2.8 The coproduct on SΠ is given by

∆(F(C,D)) = 1⊗ F(C,D) + F(C,D) ⊗ 1 + ∆+(F(C,D)), where

∆+(F(C,D)) =
∑

K: rankK=1, K≤D

F(C1,D1) ⊗ F(C2,D2),

where for bK : ΣnK → Σk1 × Σk2 , we have bK(D) = D1 ×D2 and bK(KC) = C1 × C2.

Definition 7.2.9 The product on SΠ is given by

F(C1,D1) ∗ F(C2,D2) =
∑

D: GD=jG(D1×D2)

F(jG(C1×C2),D).

The vertex G ∈ Σn is fixed in the above sum. It is the vertex of Cn0 of type (g1, g2),
where Ci ∈ Σgi .

Equivalently, the sum ranges over the chambers D in reg(G,D′), which is the lunar
region of G and D′ = jG(D1 ×D2), as shown in Figure 7.1. A more concrete example is
given in Figure 7.2.

For a discussion of lunes, see Section 2.3 and the references therein. The maps bK ,
jG and the semigroup structure of Σn can be described combinatorially. Using them,
one can recover the combinatorial definitions of the product and coproduct for SΠ given
earlier. This is explained in some detail in Chapter 6.
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G D′

D

Figure 7.1: A chamber D in reg(G,D′), the lunar region of G and D′.

7.2.5 The Hopf algebra SΛ

In this subsection, we use chambers rather than permutations to index SΛ. We first recall
the combinatorial definition of SΛ in the F basis.

Definition 7.2.10 The coproduct on SΛ is given by

∆(FD) =

n∑

i=0

Fst(D1|···|Di) ⊗ Fst(Di+1|···|Dn).

Definition 7.2.11 The product on SΛ is given by

FD1
∗ FD2

=
∑

D: D a shuffle of D1 and D2

FD.

In geometric terms, the definitions are as follows.

Definition 7.2.12 The coproduct on SΛ is given by

∆(FD) = 1⊗ FD + FD ⊗ 1 +
∑

K: rankK=1, K≤D

FD1
⊗ FD2

,

where for bK : ΣnK → Σk1 × Σk2 , we have bK(D) = D1 ×D2.

Definition 7.2.13 The product on SΛ is given by

FD1
∗ FD2

=
∑

D: GD=jG(D1×D2)

FD.

The vertex G ∈ Σn is the vertex of Cn0 of type (g1, g2), where Ci ∈ Σgi .
By definition, the sum ranges over the chambers D in reg(G,D′), which is the lunar

region of G and D′ = jG(D1 ×D2). Equivalently, the sum ranges over D such that

D′ ≤rb D ≤rb GD
′

in the weak right Bruhat order ≤rb on Cn given in Definition 7.1.1. This relation of the
product in SΛ to the weak right Bruhat order appears in Loday and Ronco [57]. From
the remark after Lemma 5.3.2, it is clear that one can also define the product in SΛ by
summing over T -shuffles where T = typeG.

As an example,

F2|1 ∗ F1|2 = F2|1|3|4 + F2|3|1|4 + F2|3|4|1 + F3|2|1|4 + F3|2|4|1 + F3|4|2|1.

The chambers that occur in the right hand side are precisely those in reg(12|34, 2|1|3|4),
which is the shaded region in Figure 7.2.

From the discussion in this section, one also observes that:

Proposition 7.2.2 The map SΠ → SΛ that sends F(C,D) → FD is a map of Hopf
algebras.
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Figure 7.2: A lunar region in the Coxeter complex Σ4.

7.3 The Hopf algebra SΠ in the M basis

In this section, we write down formulas for the coproduct and product in the M basis
of SΠ. We also show how they can be used to deduce the corresponding formulas for
SΛ obtained in [4]. The global descent maps GDes : Cn × Cn → Σn and gdes : Sn → S

appear in the computations. For more details on these maps, see Sections 5.2-5.4.

7.3.1 A preliminary result

In order to compare the coproducts in the F and M basis, we need to relate the partial
order ≤ in Σn to the same partial order restricted to a star region ΣnK . The precise
fact which is needed is stated below and it is valid for the poset of faces of any central
hyperplane arrangement.

Fact 7.3.1 Let K ≤ C,D. Then

(E,D) ≤ (C,D) ⇐⇒ (KE,D) ≤ (KC,D).

Proof The reader may refer to Figure 7.3. The assumption K ≤ C,D implies that
KC and C are opposite chambers in star(K). The lemma follows from the following
equivalences.

(E,D) ≤ (C,D) ⇐⇒ C − E −D (Definition 7.1.1)

⇐⇒ C − E −KE −D (Gate property)

⇐⇒ C −KE −D − C

⇐⇒ C −KC −KE −D − C (Gate property)

⇐⇒ KC −KE −D

⇐⇒ (KE,D) ≤ (KC,D) (Definition 7.1.1).

For the backward implication of the third equivalence, note that we always have the
gallery C − E − C. By the gate property, we then get C − E −KE − C, which along
with KE−D−C gives the gallery C −E−KE−D. For the second to last equivalence,
we use the observation made at the beginning of the proof.

�
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7.3.2 Coproduct in the M basis

Theorem 7.3.1 The coproduct on SΠ is given by

∆(M(C,D)) = 1⊗M(C,D) +M(C,D) ⊗ 1 + ∆+(M(C,D)), where

∆+(M(C,D)) =
∑

K: rankK=1, K≤D, K≤C

M(C1,D1) ⊗M(C2,D2),

where for bK : ΣnK → Σk1 × Σk2 , we have bK(D) = D1 ×D2 and bK(KC) = C1 × C2.

Comparing with Definition 7.2.8, the coproduct in the M basis has fewer terms than in
the F basis due to the additional condition K ≤ C on K. Since GDes(C,D) = D ∩ C,
one can equivalently write the condition on K as K ≤ GDes(C,D), rankK = 1.

Proof To prove the theorem, we start with the above formula and derive the coproduct
in the F basis. The chambers D and E are fixed in the computation and K is a vertex
that varies.

KK

D

E

KE

C = KC ′ C
′ = KC C

Figure 7.3: The close relation between the star regions of K and K.

It is useful to keep Figure 7.3 in mind. The steps in the computation are as below.
The justification for the main steps are provided after the computation.

∆+(F(E,D)) =
∑

C: (E,D)≤(C,D)

∆+(M(C,D)) (Relation (7.3))

=
∑

(K,C): rankK=1

K≤D, K≤C, (E,D)≤(C,D)

M(C1,D1) ⊗M(C2,D2)

(
bK(D)=D1×D2

bK(KC)=C1×C2.

)

=
∑

(K,C′): rankK=1
K≤D, K≤C′, (KE,D)≤(C′,D)

M(C1,D1) ⊗M(C2,D2)

(
bK(D)=D1×D2

bK(C′)=C1×C2.

)

=
∑

(K,C1,C2): rankK=1
K≤D, (Ei,Di)≤(Ci,Di)

M(C1,D1) ⊗M(C2,D2)

(
bK(D)=D1×D2

bK(KE)=E1×E2.

)

=
∑

K: rankK=1, K≤D

F(E1,D1) ⊗ F(E2,D2). (Relation (7.3))

For the third equality, given K, the chambers C and C′ determine each other by the
relations C′ = KC and C = KC′, as indicated in Figure 7.3. The equivalence between
the conditions (E,D) ≤ (C,D) and (KE,D) ≤ (C′, D) in this situation is the content of
Fact 7.3.1, which was proved above. We now recall that star regions are convex. Since
the partial order ≤ is defined by a gallery condition, we have

(KE,D) ≤ (C′, D) in the complex Σn ⇐⇒ (KE,D) ≤ (C′, D) in the complex ΣnK .

Hence all the action is now happening in the smaller Coxeter complex ΣnK .
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For the fourth equality, given K, the chamber C′ and the pair (C1, C2) determine
each other because the map bK is an isomorphism. The equivalence of the conditions
(KE,D) ≤ (C′, D) and (Ei, Di) ≤ (Ci, Di) is due to the compatibility of galleries with
the map bK .

�

Let C = C1|C2| . . . |Cn and D = D1|D2| . . . |Dn be two permutations. Recall that
Definition 5.4.4 implies that

si ∈ type(GDes(C,D)) ⇐⇒ Dj appears after Dk in C for all j ≤ i and i+ 1 ≤ k.

If this happens then one says that the chamber D has a global descent of type si, or
at position i, with respect to the chamber C. This fact can be used to derive the
combinatorial content of Theorem 7.3.1 given below. We omit the details, since they are
similar to those involved in showing that Definitions 7.2.6 and 7.2.8 are equivalent.

Theorem 7.3.2 The coproduct on SΠ is given by ∆+(M(C,D)) =

∑

si: si∈type(GDes(C,D))

Mst(Cn−i+1|···|Cn,D1|···|Di) ⊗Mst(C1|···|Cn−i,Di+1|···|Dn).

As an example,

∆(M(2|1|3,1|3|2)) = 1⊗M(2|1|3,1|3|2) +M(2|1|3,1|3|2) ⊗ 1 +M(1|2,1|2) ⊗M(1,1).

Remark From the above theorem, one cannot conclude that SΠ is cofree. This is
because, given M(C1,D1) and M(C2,D2), one cannot uniquely recover M(C,D). However,
the M basis is much better than the F basis to study the coradical filtration of SΠ. For
example, one sees directly that the elements in the set

{M(C,D) | GDes(C,D) = D ∩ C = ∅}

are primitive. The graded cardinalities of the above set are 1, 2, 18, etc. Direct hand
computation from the coproduct formula shows that the graded dimensions of the space of
primitive elements are 1, 3, 29, etc. In the first two degrees, M(1,1), M(1|2,1|2), M(2|1,2|1),
and M(1|2,2|1) −M(2|1,1|2) provide a basis for the primitive elements.

Theorem 7.3.3 [4, Theorem 3.1] Let w = w1| . . . |wn be a permutation. The coproduct
on SΛ is given by

∆(Mw) = 1⊗Mw +Mw ⊗ 1 +
∑

si: si∈gdes(w)

Mst(w1|...|wi) ⊗Mst(wi+1|...|wn).

Proof Take C = Cn0 = 1|2| . . . |n and D = wCn0 in the previous theorem and then
project down the formula to SΛ via the distance map. The result follows by noting that
d(Cn0 , uC

n
0 ) = u and type(GDes(Cn0 , wC

n
0 )) = gdes(w).

�

For si ∈ gdes(w), given w1 = st(w1| . . . |wi) and w2 = st(wi+1| . . . |wn), one can
uniquely recover w as j′(w1 × w2), with j′ as in Definition 7.2.3. Hence, in contrast
to the situation for SΠ, the formula in the M basis shows that SΛ is cofree. This is
explained in detail in the proof of [4, Theorem 6.1].
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7.3.3 Product in the M basis

Theorem 7.3.4 The product on SΠ is given by

M(C1,D1) ∗M(C2,D2) =
∑

(C,D):
M(i): GD=jG(D1×D2)
M(ii): GC=jG(C1×C2)
M(iii): C−GC−GD−D

M(C,D).

The vertex G ∈ Σn is as in Definition 7.2.9.

G

C

D

E

C ′ D′

GG

Figure 7.4: The term M(C,D) occurring in the product M(C1,D1) ∗M(C2,D2).

In Figure 7.4, we have used the notation C′ = jG(C1 ×C2) and D′ = jG(D1 ×D2). The
two lunar regions shown in the figure lie on a sphere and are supposed to meet at G, the
vertex opposite to G. For simplicity, this is not shown in the figure, where there are two
vertices labeled G.

Proof As in Theorem 7.3.1, to prove this theorem, we start with the above formula
and derive the product in the F basis. We use the following simple consequence of the
gate property.

For G ≤ E, C −GC − E −GD −D ⇐⇒ C − E −D. (7.5)

Let M(1) denote the condition

(jG(E1 × E2), jG(D1 ×D2)) ≤ (jG(C1 × C2), jG(D1 ×D2)),

or equivalently, jG(C1 × C2)− jG(E1 × E2)− jG(D1 ×D2).
The vertex G and the chambers E1, E2, D1 and D2 are fixed in the computation

below. For the simplicity of notation, we denote the conditions M(1), M(i), M(ii) and
M(iii) simply as (1),(i),(ii) and (iii) respectively.

F(E1,D1) ∗ F(E2,D2) =
∑

C1,C2:
(1)

M(C1,D1) ∗M(C2,D2)

(
Compatibility of
galleries with the
map jG.

)

=
∑

C1,C2:
(1)

∑
C,D:

(i),(ii),(iii)

M(C,D) (Theorem 7.3.4)

=
∑
D:
(i)

∑
C:

(1),(ii),(iii)

M(C,D)

(
Switching the order of
the summations.

)

=
∑
D:
(i)

∑
C:

C−jG(E1×E2)−D

M(C,D) (7.5)

=
∑
D:
(i)

F(jG(E1×E2),D). (Relation (7.3))

For the third equality, also note that C determines C1 and C2, since jG is an isomorphism.
Hence we can get rid of them from the summation.

�
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The combinatorial content of the above statement is as below. Let (Ci, Di) ∈ Σgi for
i = 1, 2 and let [g1 + 1, g1 + g2] = {g1 + 1, . . . , g1 + g2}.

Theorem 7.3.5 The product on SΠ is given by

M(C1,D1) ∗M(C2,D2) =
∑

(C,D): —

M(C,D),

where — says that C (resp. D) is a shuffle of C1 and C2 (resp. D1 and D2) such that
if ∗1 ∈ [g1] and ∗2 ∈ [g1 + 1, g1 + g2] then ∗2 does not appear before ∗1 in both C and D.

As an example,

M(1|2,2|1) ∗M(1,1) = M(1|2|3,2|1|3) +M(1|3|2,2|1|3) +M(3|1|2,2|1|3)

+M(1|2|3,2|3|1) +M(1|3|2,2|3|1) +M(1|2|3,3|2|1).

Theorem 7.3.6 [4, Theorem 4.1] Let u ∈ Sg1 , v ∈ Sg2 with g1 + g2 = n. Also let
G = 1 . . . g1|g1 + 1 . . . n be the fundamental vertex in Σn of type (g1, g2). The product on
SΛ is given by

Mu ∗Mv =
∑

w

|S0
w(u × v)| Mw,

where

S0
w(u× v) =





(C,D) ∈ Cn × Cn, d(C,D) = w,GD = Cn0

∣∣∣∣
C −GC −GD −D

GC = (u−1 × v−1)Cn0 .






There are two more sets S+
w (u × v) and S−

w (u × v), more combinatorial in nature, with
the same cardinality as S0

w(u × v). This is explained in detail in Lemma 5.3.2. The
description in [4] for the above product is given using the set S+

w (u× v).

Proof Specialize Theorem 7.3.4 to the chambers C1 = u−1C
g1
0 , C2 = v−1C

g2
0 , D1 = C

g1
0

and D2 = C
g2
0 . Then note that d(C1, D1) = u and d(C2, D2) = v. Now the result follows

by projecting to SΛ via the distance map and noting that jG(Cg10 × C
g2
0 ) = Cn0 .

�

7.3.4 The switch map on the M basis

We note a striking feature of the formulas in the M basis of SΠ. In contrast to the
formulas in the F basis, the two coordinates of C × C now play a symmetric role. We
formulate this precisely as a corollary to Theorems 7.3.1 and 7.3.4.

Corollary 7.3.1 The map SΠ→ SΠ that sends M(C,D) to M(D,C) is a map of algebras
and a map of anti-coalgebras.

Proof The algebra part is clear. The coalgebra part follows from the following fact.

bK(D) = D1 ×D2, bK(KD) = D′
1 ×D

′
2 =⇒ D′

1 = D2, D
′
2 = D1.

In other words, shifting from K to K has the effect of interchanging the factors.
�

Applying the map SΠ ։ SΛ of Hopf algebras that sends M(C,D) to Md(C,D), one
obtains:

Corollary 7.3.2 The map SΛ → SΛ that sends Mw to Mw−1 is a map of algebras and
a map of anti-coalgebras.
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7.4 The Hopf algebra SΠ in the S basis

In this section, we write down formulas for the coproduct and product in the S basis of
SΠ. From the coproduct formula, we conclude that SΠ is a cofree coalgebra, thus proving
one half of Theorem 7.1.2.

7.4.1 Two preliminary results

In order to compare the coproducts in the M and S basis, we need to relate the partial
order ≤′ in Σn to the same partial order restricted to a star region ΣnK′ . In particular, we
need to undertake such a study for the distance map d and the partial order ≤b, which
are a part of ≤′. The crucial facts about d and ≤b which are needed are stated below.
They are valid for any Coxeter complex Σ. A special case of the second fact was proved
in Chapter 5, see Proposition 5.3.7.

Fact 7.4.1 Let K and K ′ be faces of Σ of the same type. Also let C, D, C′ and D′ be
chambers with K ≤ D,C and K ′ ≤ D′, C′. Then

d(C,D) = d(C′, D′) ⇐⇒ d(KC,D) = d(K ′C′, D′).

Proof The reader may refer to Figure 7.6.

For the forward implication, let w ∈ W be such that wC = C′ and wD = D′. Then
since the action of W on Σ is type-preserving, we get wK = K ′. This implies that
w(KC) = w(K ′C′), which proves the right hand side.

For the backward implication, let w ∈ W be such that w(KC) = K ′C′ and wD = D′.
Then since the action of W on Σ is type-preserving, we get wK = K ′, which implies
wK = K ′. Now K ≤ C and K ′ ≤ C′ implies that C = K(KC) and C′ = K ′(K ′C).
Hence we obtain wC = C′, which proves the left hand side.

Fact 7.4.2 Let C0 be the chosen fundamental chamber in Σ. Also let K and K ′ be faces
of Σ of the same type, with K ≤ C0. Then using the type-preserving action of W on Σ,
we have an isomorphism

ΣK
∼=−→ ΣK′ ,

sending KC0 7→ K ′C0, or equivalently, KC0 7→ K ′C0. Further, let

D ∈ ΣK ←→ D′′ ∈ ΣK′

correspond to each other under the above isomorphism. In other words,

d(KC0, D) = d(K ′C0, D
′′) or equivalently, d(D,C0) = d(D′′,K ′C0). (7.6)

Let K ′ ≤ D′. Then

D′ ≤b D in the complex (Σ, C0) ⇐⇒ D′ ≤b D
′′ in the complex (ΣK′ ,K ′C0).

We recall that the partial order ≤b depends on the choice of a fundamental chamber.
This should clarify our use of the notation (Σ, C0) and (ΣK′ ,K ′C0).

As a special case, we obtain

D′′ ≤b D, and in particular, K ′C0 ≤b KC0.

The last conclusion was the content of Proposition 5.3.7; its alternative proof is being
generalized here.
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KK ′

KC0

D

C0

D
′

D′′

C0K ′C0 K ′C0

Figure 7.5: A comparison of two star regions.

Proof To get an idea of what is going on, the reader may refer to Figure 7.5. It shows
two bold dots, which are the faces K and K ′ of the same type. The hexagonal regions
give a schematic picture of their star regions.

In order to use the definition of≤b, we first need to name chambers by group elements.
Accordingly, letD = wC0, D

′ = w′C0, andD′′ = w′′C0. Then observe that w(w′)−1D′ =
D and hence w(w′)−1K ′ = K. The fact now follows from the following sequence of
equivalences.

D′ ≤b D in (Σ, C0) ⇐⇒ C0 − w(w′)−1C0 −D (Definition 7.1.1)

⇐⇒ KC0 −K(w(w′)−1C0)−D (Fact 7.3.1)

⇐⇒ KC0 − w(w′)−1(K ′C0)−D (w(w′)−1K ′ = K)

⇐⇒ K ′C0 − w′′(w′)−1(K ′C0)−D′′

(
Multiplying
by w′′w−1

)

⇐⇒ D′ ≤b D′′ in (ΣK′ ,K ′C0) (Definition 7.1.1).

We made use of the hypothesis K ≤ C0 in the second equivalence. In the fourth equiva-
lence, we used Equation (7.6) to conclude that w′′(w′)−1 sends KC0 to K ′C0.

�

7.4.2 Coproduct in the S basis

Theorem 7.4.1 The coproduct on SΠ is given by

∆(S(C,D)) = 1⊗ S(C,D) + S(C,D) ⊗ 1 + ∆+(S(C,D)), where

∆+(S(C,D)) =
∑

K: rankK=1, K≤D, K≤C,C0

S(C1,D1) ⊗ S(C2,D2),

where for bK : ΣnK → Σk1 × Σk2 , we have bK(D) = D1 ×D2 and bK(KC) = C1 × C2.

Comparing with Theorem 7.3.1, the coproduct in the S basis has fewer terms than in
the M basis due to the additional condition K ≤ C0 on K. In other words, the term
GDes(C,D) is now replaced by C ∩D ∩ C0.

Proof To prove the theorem, we start with the above formula and derive the coproduct
in the M basis given by Theorem 7.3.1. The chambers C′ and D′ are fixed in the
computation and K and K ′ are vertices that vary.

It is useful to bear Figure 7.6 in mind. The main steps, which are as below, are
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KK ′

K

KC

D

C

D
′

C ′

D′′

C
′′

C0

C0

K
′
C
′

K ′C0

K ′

Figure 7.6: The relation between the coproducts in the M and S basis.

justified after the computation.

∆+(M(C′,D′)) =
∑

(C,D): (C′,D′)≤′(C,D)

∆+(S(C,D)) (Relation (7.3))

=
∑

(K,C,D): rankK=1

K≤D,C,C0, (C′,D′)≤′(C,D)

S(C1,D1) ⊗ S(C2,D2)

(
bK(D)=D1×D2

bK(KC)=C1×C2.

)

=
∑

(K′,C′′,D′′): rankK′=1

K′≤D′,C′, (K′C′,D′)≤′(C′′,D′′)

S(C1,D1) ⊗ S(C2,D2)

(
bK′ (D′′)=D1×D2

bK′ (C′′)=C1×C2.

)

=
∑

(K′,C1,C2,D1,D2): rankK′=1

K′≤D′,C′, (C′
i,D

′
i)≤

′(Ci,Di)

S(C1,D1) ⊗ S(C2,D2)

(
bK′(D′)=D′

1×D
′
2

bK′ (K′C′)=C′
1×C

′
2.

)

=
∑

K′: rankK′=1
K′≤D′,C′

M(C′
1,D

′
1) ⊗M(C′

2,D
′
2)

(Relation (7.3))

We first point out that in the third step above, for lack of space, we have shortened the
expression

(K ′C′, D′) ≤′ (C′′, D′′) in the complex (ΣnK′ ,K ′C0),

to simply (K ′C′, D′) ≤′ (C′′, D′′). The heart of the proof lies in this step.
The triplets (K,C,D) and (K ′, C′′, D′′), which index the summations on either side,

are related to each other by the relations

typeK = typeK ′, d(D,C0) = d(D′′,K ′C0) and d(KC,C0) = d(C′′,K ′C0),

as indicated in Figure 7.6. The reader should check that under these relations the triplets
determine each other. For example, given (K,C,D), one can define K ′ as the face of D′

of the same type as K, and so forth.
The conditions (C′, D′) ≤′ (C,D) and (K ′C′, D′) ≤′ (C′′, D′′) are equivalent under

this correspondence. This follows from the following two facts.

d(C′, D′) = d(C,D) ⇐⇒ d(K ′C′, D′) = d(KC,D) (Fact 7.4.1)

⇐⇒ d(K ′C′, D′) = d(C′′, D′′) (Equation (1.5))

D′ ≤b D in (Σ, C0) ⇐⇒ D′ ≤b D′′ in (ΣK′ ,K ′C0) (Fact 7.4.2).

For the fourth equality, we require that

(K ′C′, D′) ≤′ (C′′, D′′) in (ΣK′ ,K ′C0) ⇐⇒ (C′
i, D

′
i) ≤

′ (Ci, Di) in (Σgi , C
gi

0 ),
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where we have bK′(D′′) = D1 × D2, bK′(C′′) = C1 × C2, bK′(D′) = D′
1 × D′

2 and
bK′(K ′C′) = C′

1 × C′
2. This follows from the compatibility of the distance map and

galleries with joins. Also observe that bK′(K ′C0) = C
g1
0 × C

g2
0 . This is important since

the partial order ≤′ depends on the fundamental chamber.
�

Theorem 7.4.2 The combinatorial formula for the coproduct in the S basis is given by
Theorem 7.3.2 with the term GDes(C,D) replaced by C ∩D ∩ C0.

Also, from the definitions, one has

si ∈ type(C ∩D ∩ C0) ⇐⇒
D has a global descent at position i and
C has a global ascent at position n− i,

with the natural definition for a global ascent. As an example,

∆(S(1|3|2,2|3|1)) = 1⊗ S(1|3|2,2|3|1) + S(1|3|2,2|3|1) ⊗ 1 + S(2|1,1|2) ⊗ S(1,1).

The S basis does precisely what the M basis failed to do. Namely, it allows us to conclude
that SΠ is cofree. This is because, given S(C1,D1) and S(C2,D2), one can uniquely recover
S(C,D), by the formula D = j′(D1 × D2) and C = j′′(C1 × C2), with j′ and j′′ as in
Definition 7.2.3. More precisely, let S0 = {1} and for k ≥ 1, let

Sk = {(C,D)
∣∣ rank(C ∩D ∩ C0) = k − 1}.

Let SΠk be the vector subspace of SΠ spanned by {S(C,D) | (C,D) ∈ Sk}.

Theorem 7.4.3 With the above grading, SΠ is a cofree graded coalgebra. A basis for
the kth level of the coradical filtration of SΠ is

k∐

i=0

Sk.

In particular, a basis for the space of primitive elements is

{S(C,D) | C ∩D ∩ C0 = ∅}.

This follows directly from the definitions (Sections 3.1.1-3.1.2).

Remark We mention that Theorem 7.3.3 can also be deduced from Theorem 7.4.1 in
the same way as from Theorem 7.3.1.

7.4.3 Product in the S basis

Theorem 7.4.4 The product on SΠ is given by

S(C1,D1) ∗ S(C2,D2) =
∑

(K,C,D):
S(i): bK(KD)=D1×D2

S(ii): bK(KC)=C1×C2

S(iii): C−KC−KD−D
S(iv): C0−KC0−KD−D

S(C,D).

The proof is left as an exercise to the reader. Unlike the product in the M basis given
by Theorem 7.3.4, we note that the above product depends on C0. The coefficient of
S(C,D) continues to be nonnegative but it can be greater than 1.

The combinatorial content of the above statement is as below. We recall that a vertex
of type (g1, g2) is a two block composition of the set [g1+g2], with underlying composition
(g1, g2). Now let (Ci, Di) ∈ Σgi for i = 1, 2.
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Theorem 7.4.5 The product on SΠ is given by

S(C1,D1) ∗ S(C2,D2) =
∑

K=K1|K2:
a vertex of type (g1,g2)

∑

(C,D): —

S(C,D),

where — says that C (resp. D) is a K-shuffle of C1 and C2 (resp. D1 and D2) such that
if ∗1 ∈ K1 and ∗2 ∈ K2 and ∗2 appears before ∗1 in D then ∗2 appears after ∗1 in both
C and C0.

The definition of a K-shuffle can be found in Definition 6.2.5, and its relation with
conditions such as S(i) and S(ii) can be found in Equation (6.23). The condition above
involving ∗1 and ∗2 is a translation of the gallery conditions S(iii) and S(iv). As an
example, the product S(1|2,2|1) ∗ S(1,1) equals

S(1|2|3,2|1|3) + S(1|3|2,2|1|3) + S(3|1|2,2|1|3) + S(1|2|3,2|3|1) + S(1|3|2,2|3|1) + S(1|2|3,3|2|1)

+S(1|3|2,3|1|2) + S(1|2|3,3|1|2) + S(2|1|3,3|1|2) + S(1|3|2,3|2|1) + S(1|2|3,3|2|1)

+S(2|3|1,3|2|1) + S(2|1|3,3|2|1) + S(1|2|3,3|2|1).

The three rows correspond to the vertices 12|3, 13|2 and 23|1 respectively, which are of
type (2, 1). Note that the term S(1|2|3,3|2|1) appears with coefficient 3.

Remark We mention that Theorem 7.3.6 can also be deduced from Theorem 7.4.4 in
the same way as from Theorem 7.3.4.

7.5 The Hopf algebra RΠ in the H basis

In this section, we write down formulas for the coproduct and product in the H basis of
RΠ. From the product formula, we conclude that RΠ, and hence SΠ, is a free graded
algebra, thus proving the second half of Theorem 7.1.2. We also show how they can be
used to deduce the formulas for the quotient RΛ, and observe that, as expected, they are
dual to the formulas for SΛ deduced in Section 7.3.

The formulas in the K basis of RΠ are written in Definitions 6.5.6 and 6.8.6. They are
simply obtained from Definitions 7.2.8 and 7.2.9 by changing F to K and interchanging
the two coordinates. We use this in the computations.

7.5.1 Coproduct in the H basis

Theorem 7.5.1 The coproduct on RΠ is given by

∆(H(D,C)) = 1⊗H(D,C) +H(D,C) ⊗ 1 + ∆+(H(D,C)), where

∆+(H(D,C)) =
∑

K: rankK=1, D−KD−KC−C

H(D1,C1) ⊗H(D2,C2),

where for bK : ΣnK → Σk1 × Σk2 , we have bK(KD) = D1 ×D2 and bK(KC) = C1 × C2.
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Proof This is a straightforward computation.

∆+(H(D,C)) =
∑

E: D−E−C
∆+(K(E,C)) (Relation (7.4))

=
∑
E:

D−E−C

∑
K: rankK=1

K≤E

K(E1,C1) ⊗K(E2,C2)

(
bK(E)=E1×E2

bK(KC)=C1×C2.

)

=
∑

(K,E): rankK=1, K≤E
D−KD−E−KC−C

K(E1,C1) ⊗K(E2,C2) (Gate property)

=
∑

K: rankK=1
D−KD−KC−C

∑
E: K≤E

KD−E−KC

K(E1,C1) ⊗K(E2,C2)

=
∑

K: rankK=1
D−KD−KC−C

∑
E1,E2:

Di−Ei−Ci

K(E1,C1) ⊗K(E2,C2)

(
bK(KD)=D1×D2

bK(KC)=C1×C2.

)

=
∑

K: rankK=1
D−KD−KC−C

H(D1,C1) ⊗H(D2,C2). (Relation (7.4))

For the fifth equality, we used the compatibility of galleries with the map bK .

�

Theorem 7.5.2 The coproduct on RΛ is given by

∆(Hw) = 1⊗Hw +Hw ⊗ 1 +
∑

u,v

|S−
w (u× v)| Hu ⊗Hv.

To avoid repetition, we refer the reader to Section 5.3.6 for the definition of the set
S−
w (u× v). We note that this result is dual to that in Theorem 7.3.6, consistent with the

fact that RΛ ∼= SΛ∗ as Hopf algebras with Hw = M∗
w. A proof is strictly not necessary;

but we give it to show how this result follows from the previous theorem.

Proof As in the proof of Theorem 7.3.3, we put D = Cn0 in the previous theorem, which
implies that D1 = C

g1
0 and D2 = C

g2
0 , where typeK = (g1, g2). Now let C = wCn0 ,

C1 = uC
g1
0 and C2 = vC

g2
0 , and apply the distance map. The coefficient of Hu ⊗Hv is

the number of vertices K of type (g1, g2) such that

C0 −K(wC0)− wC0 and bK(K(wC0)) = (u× v)C0.

Let σ be the (g1, g2)-shuffle which corresponds to K. Then the two conditions above
correspond to the conditions (i) and (ii) respectively in the set S−

w (u× v).

�

7.5.2 Product in the H basis

Theorem 7.5.3 The product on RΠ is given by

H(D1,C1) ∗H(D2,C2) = H(GjG(D1×D2),jG(C1×C2))

= H(j(D1×D2),j(C1×C2))
. (Definition 7.2.3)

The vertex G ∈ Σn is as in Definition 7.2.9.
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Proof The second equality above follows from the first by using Definition 7.2.3. We
now prove the first equality.

H(D1,C1) ∗H(D2,C2) =
∑

E1,E2:
Di−Ei−Ci

K(E1,C1) ⊗K(E2,C2)

=
∑

E1,E2:
Di−Ei−Ci

∑
E:

GE=jG(E1×E2)

K(E,jG(C1×C2))

=
∑
E:

jG(D1×D2)−GE−jG(C1×C2)

K(E,jG(C1×C2))

=
∑
E:

GjG(D1×D2)−E−jG(C1×C2)

K(E,jG(C1×C2))

= H(GjG(D1×D2),jG(C1×C2))
.

For the third equality, note that E determines E1, E2 because the map jG is an iso-
morphism. We also used the compatibility of galleries with the map jG. For the fourth
equality, we used the fact that

For G ≤ C,D we have D −GE − C ⇐⇒ GD − E − C.

Note that this is a reformulation of Fact 7.3.1.
�

As an illustration of the theorem,

H(2|1|3,1|3|2) ∗H(4|2|1|3,2|4|3|1) = H(7|5|4|6|2|1|3,1|3|2|5|7|6|4).

Note that in the pair of permutations on the right hand side, the first has a global descent
at position 4 while the second has a global ascent at position 3. And these two positions
are complementary, that is, 3 + 4 = 7. It should now be fairly clear that:

Theorem 7.5.4 The Hopf algebra RΠ, and hence SΠ, is a free graded algebra on the
space spanned by

{
H(D,C)

∣∣∣∣
D does not have a global descent
and C a global ascent at comple-
mentary positions.

}
= {H(D,C) | C ∩D ∩ C0 = ∅}.

Theorem 7.5.5 The product on RΛ is given by

Hu−1 ∗Hv−1 = Hj(u×v)−1 or equivalently, Hu ∗Hv = Hj′(u×v).

Proof Specialize Theorem 7.5.3 to the chambers C1 = uC
g1
0 , C2 = vC

g2
0 , D1 = C

g1
0 and

D2 = C
g2
0 . Then note that d(C1, D1) = u−1 and d(C2, D2) = v−1. Now the first claim

follows by projecting to SΛ via the distance map and noting that jG(Cg10 × C
g2
0 ) = Cn0 .

The second claim can be proved from the first. We leave that as an exercise.
�

7.5.3 The switch map on the H basis

As was the case with the M basis of SΠ, we note some symmetry in the two coordinates
of C × C in the formulas in the H basis as well. More precisely:

Corollary 7.5.1 The map RΠ → RΠ that sends H(D,C) to H(C,D) is a map of coalge-
bras.
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Note that the above is not a map of anti-algebras. However, this problem disappears
at the level of RΛ. Namely:

Corollary 7.5.2 The map RΛ→ RΛ that sends Hw to Hw−1 is a map of coalgebras and
a map of anti-algebras.

This is consistent with Corollary 7.3.2.

Remark It may be a little disconcerting that the switch map on the H basis is not so
nice as on the M basis. A conceptual explanation of why this occurs can be given using
the theory of species, which will be explained in a future work.
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Chapter 8

The Hopf algebra of pointed

faces

8.1 Introduction

In Chapter 7, we studied the Hopf algebra SΠ of pairs of permutations and related it
to the study of the Hopf algebra SΛ of permutations [61]. In this chapter, we study
the Hopf algebra of pointed faces QΠ, and the Hopf algebra of faces PΠ, which were
introduced in Chapter 6, and relate them to the Hopf algebra QΛ of quasi-symmetric
functions [36, 61, 46], which was discussed in Section 3.2.2. For missing definitions or
details, the reader should refer to Chapter 7.

8.1.1 The basic setup

We quickly recall some basic notation and facts from the previous chapters. Let Σn be
the Coxeter complex of Sn and Cn be the set of chambers in Σn. Let

Qn = {(F,D) | F ≤ D} ⊆ Σn × Cn

be the set of pointed faces and

QΠ = ⊕
n≥0

K(Qn)∗ and PΠ = ⊕
n≥0

K(Σn)∗.

The definitions of QΠ and PΠ as Hopf algebras are recalled in Sections 8.2 and 8.3.
Recall the following special case of Theorem 6.1.4.

Proposition 8.1.1 The following is a commutative diagram of graded Hopf algebras.

SΠ

d

����

Road // QΠ

type

����

// // PΠ

type

}}}}||
||

||
||

||
||

SΛ
des // QΛ

The map des relating SΛ and QΛ is the descent map defined by Malvenuto [61]. The
map Road relating SΠ and PΠ is a lift of the descent map, which was explained in detail
in Chapter 5. We recall its form in different bases in Section 8.1.5. The Hopf algebra PΠ
is the quotient of QΠ via the map which forgets the second coordinate on the M basis.
The quotient maps d and type are the usual distance and type map in Coxeter theory.

151



152 CHAPTER 8. THE HOPF ALGEBRA OF POINTED FACES

8.1.2 Cofreeness

Our goal in this chapter is to prove the following result. Part of this appears in Bergeron
and Zabrocki [9].

Theorem 8.1.1 The Hopf algebras QΠ and PΠ are cofree graded coalgebras.

This is a consequence of Theorem 8.2.2 and the remark after Theorem 8.3.1. It gives
an analogue to the following well known result, see the remark after Theorem 8.4.1, or
the discussion in Section 3.2.2.

Theorem 8.1.2 The Hopf algebra QΛ is a cofree graded coalgebra.

The method of proof is the same as for the Hopf algebras SΠ and SΛ. Namely, we com-
pute the coproduct in a basis different from the standard basis. In Sections 8.1.3-8.1.5, we
recall the relevant notions from Chapter 5 and later in Sections 8.2, 8.3 and 8.4, we give
product and coproduct formulas in the various bases of QΠ, PΠ and QΛ respectively.
By using the quotient map SΠ → QΠ, the results for QΠ follow in a straightforward
manner from those for SΠ obtained in Chapter 7. As an example, consider the following
analogue of Corollaries 7.3.1 and 7.3.2, related to the switch map.

Theorem 8.1.3 The map QΠ→ QΠ that sends M(F,D) to M(F,FD), the map PΠ→ PΠ
that sends MF to MF and the map QΛ → QΛ that sends M(α1,...,αk) to M(αk,...,α1) are
maps of algebras and anti-coalgebras.

Proof The result for QΠ follows from Corollary 7.3.1 and the expression for the quotient
map SΠ→ QΠ on the M basis, as recorded in Lemma 8.1.1. The result for QΠ implies
the result for PΠ and QΛ by using the quotient maps recorded in Proposition 8.1.1.

�

By virtue of studying QΠ and PΠ, we also derive an interesting expression for the
product in the F basis of QΛ, see Theorem 8.4.2.

8.1.3 Three partial orders on Qn

Recall the following from Definition 5.2.3.

Definition 8.1.1 Define three partial orders on Qn as follows.

(F1, D1) ≤ (F2, D2) ⇐⇒ D1 = D2 and F1 ≤ F2.

(F1, D1) ≤′ (F2, D2) ⇐⇒ D1 ≤b D2 and typeF1 = typeF2.

(F1, D1) � (F2, D2) ⇐⇒ ∃H ∋ (F1, D1) ≤ (H,D1) and (H,D1) ≤′ (F2, D2).

The partial order ≤b is the weak left Bruhat order of Definition 7.1.1. Note that in the
definition of �, only one H can satisfy the required condition; namely the face of D1

whose type is the same as that of F2. Unlike ≤, the partial orders ≤′ and � depend on
the choice of the fundamental chamber C0, since they involve ≤b.
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8.1.4 The different bases of QΠ

Next we recall the following from Section 5.6.1. Using the partial orders in Defini-
tion 8.1.1, one can define the S, M and F bases of QΠ. They are related by

F(F,D) =
∑

F≤H≤D

M(H,D), M(H′,D′) =
∑

(H′,D′)≤′(H,D)

S(H,D). (8.1)

Observe from the above formulas that the F basis is related to the S basis via the partial
order � as follows.

F(H′,D′) =
∑

(H′,D′)�(H,D)

S(H,D).

8.1.5 The connection between SΠ and QΠ

Recall from Section 5.2 that for the partial orders ≤ and �, we had defined order pre-
serving maps Road : Cn × Cn → Qn and Θ : Qn → Cn × Cn, which were adjoint to each
other and shown the following in Lemma 5.6.2.

Lemma 8.1.1 The following are three equivalent definitions of the map Road : SΠ →
QΠ.

Road(F(C,D)) = FRoad(C,D) (F basis).

Road(M(C,D)) =





MRoad (C,D) if (C,D) = Θ(Road(C,D))

0 otherwise.
(M basis).

By replacing M by S, one gets the expression on the S basis.

8.2 The Hopf algebra QΠ

In Chapter 6, we had defined QΠ on the M basis and shown that the map SΠ→ QΠ is
a map of Hopf algebras, see Propositions 6.5.5 and 6.8.5. In Theorems 8.2.1 and 8.2.3
below, we define QΠ on the S and F basis.

8.2.1 Geometric definition

We first describe QΠ in geometric terms. The proof of the coproduct and product
formulas are indicated together.

Theorem 8.2.1 The following are three equivalent definitions of the coproduct on QΠ.

∆+(M(F,D)) =
∑

K: rankK=1, K≤F

M(F1,D1) ⊗M(F2,D2)

∆+(S(F,D)) =
∑

K: rankK=1, K≤F,C0

S(F1,D1) ⊗ S(F2,D2)

∆+(F(F,D)) =
∑

K: rankK=1, K≤D

F(F1,D1) ⊗ F(F2,D2),

where for bK : ΣnK → Σk1 ×Σk2 , we have bK(KF ) = F1 × F2 and bK(D) = D1 ×D2. In
the first two formulas, KF = F .

Consider the coproduct formula on the S basis. Suppose we are given S(F1,D1) and

S(F2,D2). Then one can recover the indexing vertex K as the vertex of C0 of the type

determined by F1 and F2. Since bK is an isomorphism, one then recovers F = b−1
K (F1×F2)
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and D = b−1
K (D1×D2), and hence S(F,D). This shows that QΠ is cofree. More precisely,

let Q0 = {1} and for k ≥ 1, let

Qk = {(F,D) | rank(F ∩C0) = k − 1}.

Let QΠk be the vector subspace of QΠ spanned by {S(F,D) | (F,D) ∈ Qk}.

Theorem 8.2.2 With the above grading, QΠ is a cofree graded coalgebra. A basis for
the kth level of the coradical filtration of QΠ is

k∐

i=0

Qk.

In particular, a basis for the space of primitive elements is

{S(F,D) | F ∩ C0 = ∅}.

This follows directly from the definitions (Sections 3.1.1-3.1.2).

Theorem 8.2.3 The following are three equivalent definitions of the product on QΠ.

M(F1,D1) ∗M(F2,D2) =
∑

F : GF=jG(F1×F2)

M(F,FjG(D1×D2)).

S(F1,D1) ∗ S(F2,D2) =
∑

(K,F ): rankK=1
bK(KF )=F1×F2

C0−KC0−Fb
−1

K
(D1×D2).

S(F,Fb−1
K (D1×D2)).

F(F1,D1) ∗ F(F2,D2) =
∑

D: GD=jG(D1×D2)

FRoad(jG(F 1×F 2)D,D).

Proof of Theorems 8.2.1 and 8.2.3 The Hopf algebra QΠ was defined in Chapter 6
using the M basis. So we can take those formulas as a known quantity.

F basis. There are two ways to derive the formulas on the F basis. One can either use
the formulas on the M basis along with Relation (8.1), or one can project the formulas
on the F basis of SΠ using the map SΠ ։ QΠ in Lemma 8.1.1. We use the second
approach.

We know from Propositions 5.2.4 and 5.2.6 that Θ is a section of Road and that
Θ(F,D) = (FD,D). Hence Road(FD,D) = (F,D).

We first deal with the coproduct. From Definition 7.2.8, we have

∆+(F(FD,D)) =
∑

K: rankK=1, K≤D

F(C1,D1) ⊗ F(C2,D2),

where for bK : ΣnK → Σk1 × Σk2 , we have bK(D) = D1 × D2 and bK(KFD) = C1 ×
C2. Now let bK(KF ) = F1 × F2. Then bK(KF ) = F 1 × F 2. Now using the formula
bK(KFD) = bK(KF )bK(D), we obtain C1 = F 1D1 and C2 = F 2D2. Hence the above
formula can be rewritten as

∆+(F(FD,D)) =
∑

K: rankK=1, K≤D

F(F 1D1,D1) ⊗ F(F 2D2,D2)
,

where for bK : ΣnK → Σk1 × Σk2 , we have bK(D) = D1 × D2 and bK(KF ) = F1 × F2.
Now applying the map Road, we get the formula for the coproduct in the F basis in
Theorem 8.2.1.
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We apply the same method to compute the product in the F basis. From Defini-
tion 7.2.9, we obtain

F(F 1D1,D1)
∗ F(F 2D2,D2)

=
∑

D: GD=jG(D1×D2)

F(jG(F 1D1×F 2D2),D).

=
∑

D: GD=jG(D1×D2)

F(jG(F 1×F 2)jG(D1×D2),D).

=
∑

D: GD=jG(D1×D2)

F(jG(F 1×F 2)D,D).

For the third equality, we used that jG(F 1 ×F 2) ≥ G. Now applying the map Road, we
get the formula for the product in the F basis in Theorem 8.2.3.

S basis. We derive the formulas on the M basis of QΠ by projecting the formulas on the
M basis of SΠ. We leave it to the reader to modify the steps in this proof by replacing
M by S, and derive the formulas on the S basis.

For the coproduct formula, from Theorem 7.3.1, we have

∆+(M(FD,D)) =
∑

K: rankK=1, K≤F

M(C1,D1) ⊗M(C2,D2),

where for bK : ΣnK → Σk1 × Σk2 , we have bK(D) = D1 ×D2 and bK(KFD) = C1 × C2.
Since

D ∩ FD = D ∩ FD = F,

the condition K ≤ F in the summation index is justified. The rest is similar to the F
basis proof.

For the product formula, from Theorem 7.3.4, we have

M(F1D1,D1)
∗M(F 2D2,D2)

=
∑

(C,D):
M(i),M(ii),M(iii)

M(C,D).

Now applying the map Road, only those M(C,D) survive for which C = FD for some
F ≤ D. Further in this situation, we have GF = jG(F1 × F2); hence dropping condition
M(ii), we obtain

M(F 1D1,D1)
∗M(F 2D2,D2)

=
∑

(F,D):
M(i),M(iii)

GF=jG(F1×F2)

M(FD,D) + irrelevant terms.

The condition M(iii) can be replaced by G ∈ reg(F,D), that is, FG ≤ D. And D is
determined by F because FjG(D1 ×D2) = FGD = D. Hence

M(F1D1,D1) ∗M(F 2D2,D2)
=

∑

F :
GF=jG(F1×F2)

M(FjG(D1×D2),jG(D1×D2))
,

since M(i) and M(iii) are both implied after we substitute for D. This gives the formula
on the M basis.

2

8.2.2 Combinatorial definition

We now describe QΠ in combinatorial terms in the M , S and F basis. The translation
from geometry to combinatorics is straightforward and is left to the reader.

We begin with the coproduct. Let F = F 1|F 2| · · · |F k be a face of the chamber
D = D1|D2| · · · |Dn.
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Theorem 8.2.4 The following are three equivalent definitions of the coproduct on QΠ.

∆+(M(F,D)) =
k−1∑
i=1

Mst(F 1|···|F i,D′) ⊗Mst(F i+1|···|Fk,D′′)

∆+(S(F,D)) =
∑

i∈gdes(F )

Sst(F 1|···|F i,D′) ⊗ Sst(F i+1|···|Fk,D′′)

∆+(F(F,D)) =
n−1∑
i=1

Fst(F ′,D1|···|Di) ⊗ Fst(F ′′,Di+1|···|Dn),

We explain the above notation.

- D′ and D′′ are the restrictions of D, to the letters in the sets {F 1, . . . , F i} and
{F i+1, . . . , F k} respectively,

- F ′ and F ′′ are the restrictions of F to the letters in the sets {D1, . . . , Di} and
{Di+1, . . . , Dn} respectively,

- The map st is the standardization map in Definition 7.2.2.

- gdes(F ) consists of those 1 ≤ i ≤ k − 1 such that the letters in {F 1, . . . , F i} are
greater than those in {F i+1, . . . , F k}. Observe that this generalizes gdes(w), which
is the set of global descents of a permutation. In a future work, we will generalize
the descent theory in Chapter 5, where the set gdes(F ) will appear naturally.

The following examples will make things clearer.

∆+(M43|25|1,4|3|2|5|1) = M21,2|1 ⊗M23|1,2|3|1 +M32|14,3|2|1|4 ⊗M1,1.

∆+(F43|25|1,4|3|2|5|1) = F1,1 ⊗ F3|24|1,3|2|4|1 + F21,2|1 ⊗ F23|1,2|3|1+

F23|1,3|2|1 ⊗ F2|1,2|1 + F32|14,3|2|1|4 ⊗ F1,1.

∆+(S43|25|1,4|3|2|5|1) = S32|14,3|2|1|4 ⊗ S1,1.

Before describing the product, we review some notation and facts. A vertex K of
type (g1, g2) is a two block composition K1|K2 of the set [g1 + g2] such that |Ki| = gi.
The definition of a K-quasi-shuffle of set compositions can be found in Definition 6.2.5.
This concept shows up in the product of QΠ on the S basis. We have already seen this
happen for SΠ in Section 7.4.3. A quasi-shuffle, as explained in Definition 7.2.5, is a
special case of a K-quasi-shuffle. Now let (Fi, Di) ∈ Σgi for i = 1, 2.

Theorem 8.2.5 The following are two equivalent definitions of the product on QΠ.

M(F1,D1) ∗M(F2,D2) =
∑

F : F a quasi-shuffle of F1 and F2

M(F,D′).

S(F1,D1) ∗ S(F2,D2) =
∑

K=K1|K2:
a vertex of type (g1,g2)

∑
F : —

S(F,E).

F(F1,D1) ∗ F(F2,D2) =
∑

D: D a shuffle of D1 and D2

F(F ′,D).

where — says that F is a K-quasi-shuffle of F1 and F2 such that if ∗1 ∈ K1 and ∗2 ∈ K2

and ∗2 appears before ∗1 in F then ∗1 < ∗2.
We now explain the rest of the notation.

- D′ is the unique shuffle of D1 and D2, that refines F and keeps the blocks of D1

before D2, whenever there is such a choice.
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- E is the unique K-shuffle of D1 and D2, that refines F and keeps the blocks of D1

before D2, whenever there is such a choice.

- F ′ is the face of D = D1|D2| · · · |Dn obtained as below. Di and Di+1 occur in
different blocks of F ′ iff

– Di belongs to F ′
2 and Di+1 belongs to F1, or

– Di and Di+1 both belong to F1 and Di appears before Di+1 in F1, or

– Di and Di+1 both belong to F ′
2 and Di appears before Di+1 in F ′

2,

where F ′
2 is F2 shifted up by g1.

The following examples will make things clearer.

M(21,2|1) ∗M(1|2,1|2) = M(21|3|4,2|1|3|4) +M(3|21|4,3|2|1|4) +M(3|4|21,3|4|2|1)+

M(213|4,2|1|3|4) +M(3|214,3|2|1|4).

S(1,1) ∗ S(1|2,1|2) = S(12|3,1|2|3) + S(12|3,2|1|3) + S(13|2,3|1|2) + S(2|13,2|1|3)+

S(1|2|3,1|2|3) + S(2|3|1,2|3|1) + 2 S(2|1|3,2|1|3) + S(3|1|2,3|1|2).

F(21,2|1) ∗ F(1|2,1|2) = F(213|4,2|1|3|4) + F(23|14,2|3|1|4) + F(3|124,3|2|1|4)+

F(23|4|1,2|3|4|1) + F(3|24|1,3|2|4|1) + F(3|4|12,3|4|2|1).

8.3 The Hopf algebra PΠ

We now want a cofreeness result for the Hopf algebra PΠ. Ideally we would like to deduce
the result right away by making use of Theorem 8.2.1. However there seem to be some
problems with this approach. So we proceed more directly as below.

Definition 8.3.1 Define the partial order ≤′ on Σn as follows.

F1 ≤′ F2 in Σn ⇐⇒ (F1, F1C0) ≤′ (F2, F2C0) in Qn

⇐⇒ F1C0 ≤b F2C0 and typeF1 = typeF2.

The partial order ≤b is as given in Definition 7.1.1. Next define the S basis of the Hopf
algebra PΠ by the equation

MF ′ =
∑

F ′≤′F

SF .

We now state without proof the formulas on the M and S basis of PΠ. The interested
reader may take this as an exercise. The combinatorial descriptions, which we also omit,
are along the lines of QΠ.

Theorem 8.3.1 The following are two equivalent definitions of the coproduct on PΠ.

∆+(MF ) =
∑

K: rankK=1, K≤F

MF1
⊗MF2

∆+(SF ) =
∑

K: rankK=1, K≤F,C0

SF1
⊗ SF2

where for bK : ΣnK → Σk1 × Σk2 , we have bK(F ) = F1 × F2.

Remark The coproduct formula on the S basis shows that PΠ is cofree.
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Theorem 8.3.2 The following are two equivalent definitions of the product on PΠ.

MF1
∗MF2

=
∑

F : GF=jG(F1×F2)

MF .

SF1
∗ SF2

=
∑

(K,F ): rankK=1
bK(KF )=F1×F2

C0−KC0−FC0.

SF

The product formula in the S basis is only of academic interest. In any case, it is
interesting that the coefficients involved are nonnegative. As an example,

S1 ∗ S1|2 = S12|3 + S2|13 + S1|2|3 + 2 S2|1|3 + S2|3|1 + S3|1|2.

Remark The partial order ≤′ on Σ is different from the one defined by Krob, Latapy,
Novelli, Phan and Schwer [52] and Palacios and Ronco [78]. In a future work, we will
give a more conceptual motivation for the partial order ≤′, and prove the above results.
Namely, we will define another Hopf algebra isomorphic to PΠ such that its F and M

basis correspond to the M and S basis respectively of PΠ.

8.4 The Hopf algebra QΛ of quasi-symmetric func-

tions

In this section, we describe QΛ in the F and M basis. Recall that

QΛ = ⊕
n≥0

K(Q
n
)∗,

where Q
n

is the poset of compositions of n. Equivalently, it is the set of subsets of [n−1],
or the set of words of length n− 1 in the alphabet {+,−}. As an illustration,

(2, 1, 2, 3) ←→ {2, 3, 5} ←→ −+ +−+−−

The quotient map QΠ ։ QΛ is given by M(F,D) 7→ MtypeF , or equivalently, F(F,D) 7→
FtypeF . It is independent of the second coordinate D. As an example,

M(25|16|473,2|5|1|6|4|7|3) 7→ M(2,2,3) = M−+−+−−.

Using this map, one can use Theorems 8.2.4 and 8.2.5 to describe the Hopf algebra QΛ
in the M and F basis, as below. It is convenient to use the composition notation for the
M basis and the alphabet notation for the F basis.

Theorem 8.4.1 The following are two equivalent definitions of the coproduct on QΛ.

∆+(M(α1,α2,...,αk)) =
k−1∑
i=1

M(α1,...,αi) ⊗M(αi+1,...,αk)

∆+(F(ξ1ξ2...ξn−1)) =
n−1∑
i=1

F(ξ1...ξi−1) ⊗ F(ξi+1...ξn−1)

Remark These formulas are well known. The coproduct formula on the M basis shows
that QΛ is cofree.

Before we can describe the products, we need a definition. Let S be a shuffle of the
compositions 1|2| · · · |g1 and 1|2| · · · |g2. This can be shown by a diagram as below, where
we have taken g1 = 6 and g2 = 7 for illustration.

S =

1 // 2

����
��

��
�

3

��>
>>

>>
>>

4 // 5

��

6

1 // 2 // 3

OO

4

OO

5 // 6 // 7

^^>>>>>>>
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Now suppose we have two sign sequences ξ = ξ1ξ2 . . . ξg1−1 and η = η1η2 . . . ηg2−1 of
lengths g1 − 1 and g2 − 1 respectively. Then, using the shuffle S, we can define a sign
sequence S(ξ, η) of length g1 + g2 − 1 as illustrated below.

S(ξ, η) =

ξ1 // ξ2

−

����
��

��
��

�
ξ3

−
��?

??
??

??
??

ξ4 // ξ5

−

��
η1

//
η2

//

+

OO

η3

+

OO

η4 η5
//

η6
//

+

__?????????

Namely, first draw the diagram for the shuffle S. Then put a − sign on the arrows going
down and a + sign on the arrows going up. The horizontal arrows get labeled ξi or ηi.
In the example above, S(ξ, η) = ξ1 − η1η2 +−+ ξ4 − η5η6+.

Theorem 8.4.2 The following are two equivalent definitions of the product on QΛ.

Mα ∗Mβ =
∑

γ: γ a quasi-shuffle of α and β

Mγ .

Fξ ∗ Fη =
∑

S: S a shuffle of 1| · · · |g1 and 1| · · · |g2

FS(ξ,η),

where ξ and η are sign sequences of length g1 − 1 and g2 − 1 respectively.

For example, in the M basis,

M(2) ∗M(1,1) = M(2,1,1) +M(1,2,1) +M(1,1,2) +M(3,1) +M(1,3).

In the F basis,

F− ∗ F+ = F−−+ + F−++ + F−+− + F+−+ + F++− + F+−−

− //
−

����
��

��

+
//

−

−
��

+
//

+

OO
−

−
��

−
��

+

+
??������

−

− ��?
??

??
?

+

+

OO
+

OO
− //

+
//

+
__??????

− //

−
��

+

+

OO

Below each term, we have drawn the diagram from which it arises.
In the literature, the product in the F basis is usually described in terms of permu-

tations, by appealing to the fact that QΛ is a quotient of SΛ. The description given in
Theorem 8.4.2 in terms of sign sequences may be new. For an expression in terms of
compositions, see Bertet, Krob, et al [10, Proposition 3.7].

Remark The Loday-Ronco Hopf algebra Y Λ of planar binary trees [56, 57] sits between
SΛ and QΛ. We claim that there is a Hopf algebra YΠ that lifts Y Λ and sits between
SΠ and QΠ; see Chapoton [21], Palacios and Ronco [72], Novelli and Thibon [68] and
Loday and Ronco [58] for related ideas. There is a similar story for the Hopf algebra of
tableau, see Poirier and Reutenauer [78] and also Taskin [97] for related ideas. The way
trees and tableau fit into this theory will be explained in a future work.

Remark The Hopf algebra QΛ satisfies a certain universal property [2]. What can we
say about QΠ and PΠ; do they satisfy any universal properties? This will be explained
in a future work.
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l’algèbre des descents, Ph.D. thesis, Laboratoire de combinatoire et d’informatique
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Notation Index

algebra
(KL)W , 23
(KΣ)W , 7, 22
KL, 14, 20, 64
KL, 71
KΣ, 7, 14, 64

basis
H , K, M , F , 59, 66, 130
R, S, 59, 130
h, m, 59, 66
q, p, 59, 64, 66, 71

bilinear form
on (KL)W , 23
on (KΣ)W , 11, 22
on KL, 19
on KQ, 17, 61
on KΣ, 11, 19

chamber
C, D, E, ii

coalgebra
C, 27

composition
α, β and γ, 31

elements of an algebra
σT , 7
dT , 7

face
F , G, H , K, N , P , Q, ii

field
K, ii

flat
X , Y , ii

graded
algebra
AZ , AL, AZ∗ and AL∗ , 126
P∆, 119
PΓ, 120
SΓ, 124
P , Q, S, R, N andM, 118

coalgebra
AZ , AL, AZ∗ and AL∗ , 110
P∆, 100
PΓ, 101
Q(V ), 27
SΓ, 108
P , Q, S, R, N andM, 98

group

W , 4
WS\T , 7
Sn, 8
Z
n−1
2 , 56

group generators
si, 5
sH, 4, 8

half-space
H+
i , H−

i , 2
Hopf algebra

MΠ of set compositions
H basis, 77, 79, 82, 102, 121

NΛ of noncommutative symmetric
functions, 29, 38

H basis, 32
K basis, 32, 119

NΠ of fully nested set compositions
H basis, 77, 79, 84, 105, 123

PΠ of set compositions
M basis, 77, 79, 82, 101, 119, 157
S basis, 157

QΛ of quasi-symmetric functions, 29,
31, 38

F basis, 31, 158
M basis, 31, 100, 119, 158

QΠ of fully nested set compositions
F basis, 153
M basis, 77, 79, 84, 104, 122, 153
S basis, 153

RΛ of permutations, 130
RΠ of pairs of permutations, 130
H basis, 146
K basis, 77, 79, 88

SΛ of permutations
F basis, 136
M basis, 137

SΠ of pairs of permutations
F basis, 77, 79, 87, 107, 124, 133
M basis, 137
S basis, 142

Y Λ of planar binary trees, 159
Λ of symmetric functions, 29, 38, 66
h basis, 29
m basis, 29
p basis, 29
q basis, 66, 72

ΠL and ΠL∗ of set partitions
h basis, 60, 77, 79, 86
m basis, 60, 77, 79, 85
p basis, 60
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q basis, 60
ΠZ∗ of fully nested set partitions
m basis, 77, 79, 87

ΠZ of fully nested set partitions
h basis, 77, 79, 87

hyperplane
Hi, 2

lune
L, M , ii

map
S antipode, 28
∆ coproduct, 27
Des, 42, 54, 58
GDes, 43, 54, 58
GRoad, 43
Φ, 60, 63
Ψ, 61
Road, 42, 60, 109, 125
Θ, 44, 54, 58, 60, 109, 126
Υ, 63
base, 63, 104, 122
base∗, 62, 106, 123
deg, 89, 112
des, 7, 46, 55, 58
dist, 1
ǫ counit, 28
gdes, 47, 55, 58
lune, 13, 53, 57, 62, 111, 127
lune∗, 63, 111, 127
φ, 65, 66, 78
ψ, 65, 78
rank, 89, 154
reg, 14, 63
road, 47
st, 80
supp, 12, 53, 56, 62, 111, 127
supp∗, 63, 111, 127
θ, 47, 55, 58
type, 39, 54, 57, 90
ζ, 19
zone, 14, 63
j, j, j′, j′′ join, 133
l length, 6, 46, 55
m product, 28
s switch, 60, 88
u unit, 28
x·, 17
break bK

axioms, 89, 111
example, 91, 92, 94, 96, 135

join jG
axioms, 112, 127

example, 113–116, 135
minimum gallery

E −D − C, 4

number
Rλµ, 66, 68
|λ|, 67, 68
dist(C,D), 2
κ, 72
parts(α), 32
parts(λ), 31
cX , 19, 21
cx, 19
cλµ, 31
mij , 5
nX , 20, 21, 23, 71
zλ, 71

orbit space
(C × C)W , 39
LW , 39
QW , 39
ΣW , 39
ZW , 39

partial order
≤ on W , 6
≤, ≤′ and � on C × C, 41, 131
≤, ≤′ and � on Q, 42, 152
≤′ on Σ, 157
≤b on C, 40, 131
≤rb on W , 6
≤rb on C, 131, 136

partition
λ, µ and ρ, 29

pointed face
(F,D), (P,C), ii

poset
W , 6, 39
C × C, 39
L, 12
Ln, 53, 56
L, 21, 40
L
n
, 29, 54, 57

Q, 13, 39
Qn, 53, 57
Q, 7, 21, 39
Q
n
, 31, 54, 57

Σ, 1, 2, 4, 12
Σn, 53, 56
Sn, 10
Z, 13, 40
Zn, 53, 57

set
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S+
w (u × v), 141
S−
w (u × v), 141, 147
S0
w(u × v), 141
S0
w(x), S+

w (x) and S−
w (x), 51

C, 1
CF , 2, 49, 89, 112
Cx, 12
Left, Middle and Right, 97, 101, 103,

105
OT , 66
Oα, 68
Oλ, 66, 68, 71
ShT , 49, 56
ΣF , 2
ΣK , 89, 112
ΣT , 49
Σx, Lx, Zx, 17
Z′ of lunar regions, 14, 15, 63
link(F ), 2
reg(F,D), 15
reg(x, c), 14
star(F ), 2

sign sequence
S(ξ, η), 159

subset
S, T , U , V , ii

vector space
P (C), 28
V , 27
KP , ii
KP ∗, ii
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Subject Index

action
of the Coxeter group, 4, 39
simply transitive, 4, 40
type-preserving, 5

adjoint functors, 45, 48
algebra, 116

associative, 117
free, 29, 32, 129
from axioms, 116
iterated product, 28
primitive idempotent in, 23, 64, 71
radical of, 11, 20, 23
semigroup, 7
semisimple, 20, 23, 64, 71

alphabet, 56, 158
antipode, see Hopf algebra
apartment, see building
ascent

of a pair of chambers, 42
of an element of W , 47

axiom
algebra, 112
coalgebra, 89, 96
compatible, 79
projection, 90, 113

bars
big, 53, 83
small, 53, 83

basis
canonical, 59
dual, 30, 60, 66, 132
orthogonal, 64, 71

bialgebra, 28
bijection

chambers in two star regions, 13, 25
controlling coassociativity, 97
lunes and lunar regions, 16

bilinear form
invariant, 19
nondegenerate, 20, 23
on faces, 19
on flats, 19
on orbit space of flats, 23
on pointed faces, 17, 61
on subsets or compositions, 22
radical of, 11, 20, 23

braid arrangement, 8, 52
Bruhat order

of permutations, 10
weak left, 6, 37, 131

weak right, 6, 131
building, 24

apartment, 24

chamber
adjacent, 1
fundamental, 4, 40, 49, 92
of a LRB, 12
of a projection poset, 24
of a regular cell complex, 1
of a simplicial complex, 1
of an arrangement, 2
pair of, 6
wall of, 3, 15

chamber complex, 39
coalgebra

coassociative, 96
cofree, 27, 129, 152, 158
connected, 27
coradical filtration of, 28, 145, 154
coradical of, 28
deconcatenation coproduct, 27
from axioms, 96
iterated coproduct, 27
primitive element in, 28, 30, 32, 139,

145, 154
universal property, 27

cofree coalgebra, see coalgebra
coinvariants

maps to, 69
of the W action, 37

commutative diagram
of type A, 77
related to C × C, 58
related to W , 65

composition, 31, 54, 90, 113, 158
bilinear form on, 22
internal product, 32
partial order on, 31, 54
quasi-shuffle of, 31, 159
support of, 31
weak, 31, 32

convex, 1, 44, 45
convolution, 28
coordinate arrangement, 56
coradical, see coalgebra
coradical filtration, see coalgebra
Coxeter

complex, 4
diagram, 5

of type A
×(n−1)
1 , 95
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of type An−1, 5, 92, 135
of type Bn, 5

group, 5, 39
cartesian product of, 7
exponent, 21
invariant theory, 21

of type A
×(n−1)
1 , 56, 95, 116

of type An−1, 8, 52, 92, 114
presentation, 5, 8, 56

parabolic subgroup, 7, 21, 37, 51
system, 5, 39

criterion on radicals, 11

deconcatenation coproduct, see coalge-
bra

dendriform trialgebra, 78
descent

of a pair of chambers, 42
of a pair of permutations, 54
of a pair of words, 58
of a permutation, 55
of a word, 58
of an element of W , 7, 46

descent algebra, 7, 23
structure constants, 22

distance, see map
distributive lattice, see lattice

exponent, see Coxeter group
external structure, 56, 72, 76

face
bilinear form on, 19
fundamental, 113
global vertex of, 99
join of, 121
joinable, 2
local vertex of, 99
of a LRB, 12
of a simplicial complex, 1
of an arrangement, 2
opposite, 2, 43, 53, 56
partial order on, 12, 157
quasi-shuffle of, 119
type of, 5, 9

facet, see hyperplane arrangement
flat

bilinear form on, 19
global vertex of, 99
join of, 127
local vertex of, 99
of a LRB, 12
of an arrangement, 3
partial order on, 12
quasi-shuffle of, 127

free algebra, see algebra
free Lie algebra, 32
free LRB, see left regular band (LRB)

gallery, 1
connected, 1, 2, 4
distance, 1, 4, 6
metric, 1, 4, 6, 49, 91
minimum, 1, 2, 4, 6, 8, 41–43

gate property, 1
application of, 45, 50–52, 137, 140,

147
of hyperplane arrangements, 3

global ascent
of a pair of permutations, 145, 148

global descent
of a pair of chambers, 43
of a pair of permutations, 54, 137,

139, 145, 148
of a pair of words, 58
of a permutation, 55
of a word, 58
of an element of W , 47

global vertex
of faces, 99
of flats, 99
of fully nested set compositions, 83
of fully nested set partitions, 86
of lunes, 99
of pointed faces, 99
of set compositions, 80
of set partitions, 85

great circle, 15

half-space
closed, 2, 15
open, 2

Hopf algebra, 27
antipode, 28, 133
examples, 29, 77, 79
self-dual, 29, 129
structural results, 29, 80
structure maps, 28
universal property, 159

hyperplane
separates, 2, 4, 10, 42, 44
supporting, 2, 15

hyperplane arrangement, 2
as a LRB, 13
central, 2
chamber of, 2
essential, 2
face of, 2
facet of, 2
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flat of, 3
lunar region in, 15, 44, 135
product in, 2
projection map in, 4
rank 3 example, 15
subarrangement, 15

ideal, see semigroup
inner product, 4, 30, 60, 66
internal product

composition, 32
set composition, 9
set partition, 9

internal structure, 72, 75, 78
intersection lattice, see lattice
invariant theory, see Coxeter group
invariants

maps from, 67
of the W action, 37

inversions, see permutation
isomorphism

ΛL and ΛL∗ , 66
ΠL and ΠL∗ , 60

iterated coproduct, see coalgebra
iterated product, see algebra

join
in a poset, 39
of Coxeter complexes, 7, 92
of faces, 121
of flats, 127
of LRBs, 17
of lunes, 127
of nested set compositions, 83
of nested set partitions, 86
of pointed faces, 123
of set compositions, 80
of set partitions, 85
of simplicial complexes, 2

joinable, see face

lattice
distributive, 24
intersection, 3, 21
modular, 24
of flats, 3
semilattice, 12, 39

left regular band (LRB), 12
chamber of, 12
face of, 12
family of, 76
flat of, 12
free, 13, 16, 21
link in, 17
lune in, 13, 99

nonassociative, 24
product of, 17
quotient, 17
star region in, 17
sub, 17

length, see map
link

in a Coxeter complex, 7, 92, 135
in a LRB, 17
in a simplicial complex, 2

local vertex
of faces, 99
of flats, 99
of lunes, 99
of nested set compositions, 83
of nested set partitions, 86
of pointed faces, 99
of set compositions, 80
of set partitions, 85

LRB, see left regular band
lunar region

base of, 15
in a LRB, 14
in an arrangement, 15, 44, 50, 135

lune
global vertex of, 99
in a LRB, 13, 99
join of, 127
local vertex of, 99
quasi-shuffle of, 127

Möbius function, see poset
map

distance, 6, 39, 57
length, 6, 46
opposite, 43, 53, 56
order preserving, 12, 13, 41–45
standardization, 80
support, 3, 12
switch, 60, 88

on the H basis, 148
on the M basis, 141

matroid, 3
meet, see poset
minimum gallery, see gallery
modular lattice, see lattice

nilpotent, 20, 23, 28
nonassociative, 11, 24
noncommutative, 32, 60, 78

open questions, 15, 18, 21, 46, 79, 133
opposite, see face, map
orbit, 39
order complex, 24
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order preserving, see map
oriented matroid, 2, 3, 15, 56

pair, see chamber,permutation
parabolic subgroup, see Coxeter
partial order

compositions, 31, 54
faces, 12, 157
flats, 12
fully nested set compositions, 53
fully nested set partitions, 53
pairs of chambers, 41
pairs of permutations, 131
partitions, 29, 54
permutations, 10
pointed faces, 13, 42, 152
set compositions, 9
set partitions, 9

partition, 29, 54, 66
false-shuffle of, 29
partial order on, 29, 54
quasi-shuffle of, 29
shuffle of, 29

permutahedron, 78
permutation

Bruhat order on, 10
descent of, 55
global descent of, 55
inversions of, 10
pair of, 79

pointed face, 13
bilinear form on, 17
global vertex of, 99
join of, 123
local vertex of, 99
partial order on, 13, 42
quasi-shuffle of, 122

polygon, 2
polynomial realization, 78
poset

Möbius function of, 20, 21
cartesian product of, 92
family of, 89, 112
graded, 89, 112
join in a, 39
meet in a, 39
quotient, 40, 54, 57

power series, 29, 31
presentation, see Coxeter group
primitive element, see coalgebra
primitive idempotent, see algebra
projection map

in a Coxeter complex, 5, 91
in an arrangement, 4

in type A, 9, 53

in type A
×(n−1)
1 , 56

projection poset
definition, 24
family of, 96, 98, 116, 118
in algebra axioms, 113
in coalgebra axioms, 90

pure, see regular cell complex

quasi-shuffle
of compositions, 31, 159
of faces, 119
of flats, 127
of fully nested set compositions, 83
of fully nested set partitions, 86
of lunes, 127
of partitions, 29
of pointed faces, 122
of set compositions, 80

geometric meaning, 103, 120
of set partitions, 85

radical, see algebra
random walk, 20
rank, 5, 89, 112
reflection

arrangement, 4
group, 4

regular cell complex, 1, 3
gallery connected, 1
pure, 1
strongly connected, 1

representation theory, 29

section to a surjective map, 45, 49, 113
self-dual, see Hopf algebra
semigroup, 2, 5, 12, see algebra

ideal in, 2, 13
semilattice, see lattice
semisimple, see algebra
set composition, 9, 53, 79, 80

fully nested, 53, 79, 83
internal product, 9
nested, 53, 83
partial order on, 9

set partition, 9, 53, 60, 79, 85
fully nested, 53, 79, 86
internal product, 9
nested, 53, 86
partial order on, 9

shuffle
for a Coxeter group, 49
of compositions, 31
of partitions, 29
of set compositions, 56, 80, 159
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geometric meaning, 103, 120
sign sequence, 2, 56

stacked, 57
simplicial complex, 1, 3

gallery connected, 1, 39
join of, 2, 92
link in, 2
pure, 1, 39
strongly connected, 1

simply transitive, see action
Solomon’s descent algebra, see descent

algebra
standardize, see map
star region

in a complex, 1, 43, 47
in a LRB, 17

strongly connected, see regular cell com-
plex

support, see map
supporting hyperplane, see hyperplane
symmetric group

Bruhat order on, 10
combinatorial approach, 52
geometric approach, 8
presentation, 8

tableau, 159
trees, 159
type, see face,vertex
type-preserving, see action

universal property, see coalgebra, Hopf
algebra

vertex
fundamental, 119, 135
of a set, 80
type of, 5, 9

wall, see chamber
weak composition, see composition

zone, 14


