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Foreword

In the study of a mathematical system, algebraic structures allow for the discovery of
more information. This is the motor behind the success of many areas of mathematics
such as algebraic geometry, algebraic combinatorics, algebraic topology and others. This
was certainly the motivation behind the observation of G.-C. Rota stating that various
combinatorial objects possess natural product and coproduct structures. These struc-
tures give rise to a graded Hopf algebra, which is usually referred to as a combinatorial
Hopf algebra. Typically, it is a graded vector space where the homogeneous components
are spanned by finite sets of combinatorial objects of a given type and the algebraic
structures are given by some constructions on those objects.

Recent foundational work has constructed many interesting combinatorial Hopf al-
gebras and uncovered new connections between diverse subjects such as combinatorics,
algebra, geometry, and theoretical physics. This has expanded the new and vibrant
subject of combinatorial Hopf algebras. To give a few instances:

e Connes and Kreimer showed that a certain renormalization problem in quantum
field theory can be encoded and solved using a Hopf algebra indexed by rooted
trees.

e Loday and Ronco showed that a Hopf algebra indexed by planar binary trees is the
free dendriform algebra on one generator. This is true for many types of algebras;
the free algebra on one generator is a combinatorial Hopf algebra.

e In the context of polytope theory, some interesting enumerative combinatorial in-
variants induce a Hopf morphism from a Hopf algebra of posets to the Hopf algebra
of quasi-symmetric functions.

e Krob and Thibon showed that the representation theory of the Hecke algebras
at ¢ = 0 is intimately related to the Hopf algebra structure of quasi-symmetric
functions and non-commutative symmetric functions.

Some of the latest research in these areas has been the subject of a series of recent
meetings, including an AMS/CMS meeting in Montré al in May 2002, a BIRS workshop
in Banff in August 2004, and a CIRM workshop in Luminy in April 2005. It was suggested
at the BIRS meeting that the draft text of M. Aguiar and S. Mahajan be expanded into
the first monograph on the subject. Both are outstanding communicators. Their unified
geometric approach using Coxeter complexes and projection maps allows us to construct
many of the combinatorial Hopf algebras currently under study and further to understand
their properties (freeness, cofreeness, etc.) and to describe morphisms among them.

The current monograph is the result of this great effort and it is for me a great
pleasure to introduce it.

Nantel Bergeron
Canada Research Chair
York University
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Preface

This research monograph deals with the interaction between the theory of Coxeter groups
on one hand and the relationships among several Hopf algebras of recent interest on the
other hand. It is aimed at upper-level graduate students and researchers in these areas.
The viewpoint is new and leads to a lot of simplification.

0.1 The first part: Chapters 1-3

The first part, barring Chapter 2, consists of standard material. The first two chapters
are related to Coxeter theory, while the third chapter is related to Hopf algebras. We
hope that they will make the second part more accessible.

Chapter 1 provides an introduction to some standard Coxeter theory written in lan-
guage suitable for our purposes. The emphasis is on the gate property and the projection
maps of Tits, which are crucial in almost everything that we do. The reader may be re-
quired to accept many facts on faith, since most proofs are omitted. This chapter is a
prerequisite for Chapter 5.

Chapter 2 is completely self-contained. It begins with some standard material on
left regular bands (LRBs). We then develop some new material on pointed faces, lunes
and bilinear forms on LRBs, largely inspired from the descent theory of Coxeter groups
(Chapter 5). We also introduce the concept of a projection poset which generalizes the
concept of a LRB to take into account some nonassociative examples.

Chapter 3 provides a brief discussion on cofree coalgebras, the coradical filtration and
the antipode, which are standard notions in the theory of Hopf algebras. We then briefly
discuss three examples of Hopf algebras which have now become standard: namely, the
Hopf algebras of symmetric functions A, noncommutative symmetric functions NA and
quasi-symmetric functions QA.

0.2 The second part: Chapters 4-8

The second part consists of mostly original work. The well-prepared reader may start
directly with this part and refer back to the first part as necessary. Chapter 4 provides
a brief overview of this work, which is spread over the next four chapters. Chapter 5 is
related to Coxeter theory, while Chapters 6, 7 and 8 are related to Hopf algebras. Each
of them is kept as self-contained as possible; the reader may even read them as different
papers. A more detailed overview is given in the introduction section of each of these
four chapters. The results in the second part, which are stated without credit, are new
to our knowledge.

0.3 Future work

At many points in this monograph we say, “This will be explained in a future work”. We
plan to write a follow-up to this monograph, where these issues will be taken up. Our



ii PREFACE

main motivation is not merely to prove new results or reprove existing results but rather
to show that these ideas have a promising future.

0.4 Acknowledgements

We would like to acknowledge our debt to Jacques Tits, whose work provided the main
foundation for this monograph. The work of Kenneth Brown on random walks and the
literature on Hopf algebras, to which many mathematicians have contributed, provided
us important guidelines. We would like to thank Nantel Bergeron for taking publishing
initiative, Carl Riehm and Thomas Salisbury for publishing this volume in the Fields
monograph series, the referees for their comments and V. Nandagopal for providing TeX
assistance.

M. Aguiar is supported by NSF grant DMS-0302423. S. Mahajan would like to thank
Cornell University, Vrije Universiteit Brussel (VUB) and the Tata Institute of Funda-
mental Research (TIFR), where parts of this work were done. While at VUB, he was
supported by the project G.0278.01 “Construction and applications of non-commutative
geometry: from algebra to physics” from FWO Vlaanderen.

0.5 Notation

K stands for a field of characteristic 0. For P a set, we write KP for the vector space over
K with basis the elements of P and KP* for its dual space. A word is written in italics
if it is being defined at that place. While looking for a particular concept, the reader is
advised to search both the notation and the subject index. The notation [n] stands for

the set {1,2,...,n}. The table below indicates the main letter conventions that we use.
subsets S, T,U,V
compositions a, B,
partitions Ay Wy P
faces or set compositions F,G,H, K, N, P, Q
chambers C,D, E
pointed faces or fully nested set compositions (F, D), (P,C)

flats or set partitions X, Y
lunes or nested set partitions L, M

We write ¥ for the set of faces, and C for the set of chambers. Otherwise we use
the roman script for the above sets. For example, Q is the set of pointed faces and L
is the set of flats. For the coalgebras and algebras constructed from such sets, we use
the calligraphic script M, A/ and so on. There are some inevitable conflicts of notation;
however, the context should keep things clear. For example, we also use the above letters
F, M, K, H and S to denote various bases, V for a vector space, H for a Hopf algebra
and S for an antipode.



Chapter 1

Coxeter groups

In this chapter, we review the necessary ideas on regular cell complexes, hyperplane
arrangements and Coxeter groups. The material is for the most part standard; parts of
it are taken from Brown [18].

1.1 Regular cell complexes and simplicial complexes

For some basic information on regular cell complexes, the reader may look at the book by
Cooke and Finney [22]. Another reference is the book on oriented matroids by Bjorner,
Las Vergnas, Sturmfels, White and Ziegler [14, Appendix 4.7].

Let X be a pure regular cell complex, that is, the maximal cells have the same dimen-
sion. In particular, ¥ could be a pure simplicial complex. We will see some examples in
the forthcoming sections. Elements of 3 are called faces and maximal faces are called
chambers. Let C be the set of chambers.

We say two chambers are adjacent if they have a common codimension 1 face. A
gallery is a sequence of chambers such that consecutive chambers are adjacent. We say
that X is gallery connected if for any two chambers C and D, there is a gallery from C
to D. For any C, D € C, we then define the gallery distance dist(C, D) to be the minimal
length of a gallery connecting C' and D. And any gallery which achieves this minimum
is called a minimum gallery from C to D.

1.1.1 Gate property

An important concept related to the gallery metric is the gate property. It originated in
the work of Tits on Coxeter complexes and buildings [99, Section 3.19.6]. The concept
was first abstracted by Dress and Scharlau [86, 25]. The reader may also look at Abels [1],
Miihlherr [66] and Mahajan [60] for some later work.

JAVAN
: VAY

Figure 1.1: The gate property.

Gate property. For any face F' € ¥ and chamber C' € C, there exists a chamber D
containing F' such that dist(C, D) < dist(C, F), where E is any chamber containing F'.

1
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Furthermore, dist(C, E) = dist(C, D) + dist(D, E).

Figure 1.1 shows a part of a simplicial complex and illustrates the gate property. For F' a
face of X, let X consist of those faces which contain F'. This is the star region of F', also
denoted star(F). Let Cr be the set of chambers containing F'. The gate property says
that the star region star(F') when viewed from any chamber in the complex ¥ appears
to have a gate. In the above notation, the chamber D is the gate of star(F') when viewed
from the chamber C.

A complex may or may not have the gate property. For instance, a polygon with an
odd number of sides is a complex without the gate property. The gate property implies
that X is strongly connected; that is, star(F) is gallery connected for all F' € X. In fact
it implies that Cr is a convex subset of C; that is, if D and E are any two chambers in
Cp then any minimum gallery from D to E lies entirely in star(F') (hence in Cg).

1.1.2 Link and join

We will need to deal with the concepts of link and join only for simplicial complexes.
Hence for simplicity, we assume that ¥ is a simplicial complex, but not necessarily pure.

We say that two faces of ¥ are joinable if there is a third face containing both of
them. The link of a face F', denoted link(F'), is the subcomplex of ¥ consisting of those
faces which are disjoint from F' but joinable to F. As a poset, link(F') is isomorphic to
star(F'). In Figure 1.1, for example, star(F') consists of the vertex F', and the six edges
and six triangles which contain it. And link(F') is the outer hexagon, consisting of six
vertices, six edges and the empty face.

Let ! and X2 be simplicial complexes with vertex sets V; and V5 respectively. Then
the join of ! and X2, denoted X' x X2, is the simplicial complex with vertex set V7 LVa,
and one face Iy U F;, for every Fy € ! and F», € 2. We denote I, U F, by F; * F», and
call it the join of F} and F5.

1.2 Hyperplane arrangements

A good reference for this section is Brown [18, Appendix A]. For more details, we rec-
ommend Brown [17, Chapter I]. The reader may also look at Orlik and Terao [71] or
Ziegler [103]. The discussion below generalizes to oriented matroids [14]. A part of it
(Sections 1.2.1 and 1.2.2) generalizes further to left regular bands (Section 2.2).

A hyperplane arrangement is a finite set of hyperplanes in a real vector space V. The
arrangement is called central if all the hyperplanes pass through the origin, and essential
if the intersection of all the hyperplanes is the zero subspace.

1.2.1 Faces

Let {H;};er be an essential central hyperplane arrangement. For each i, let H:r and H;
be the two open half-spaces defined by H;. The choice of + and — is arbitrary but fixed.
We say that H; is the supporting hyperplane of Hj and H; . An open half-space together
with its supporting hyperplane is a closed half-space. A face of the arrangement is a
subset of V' of the form

o,

il
where ¢; € {+,0,—} and HY = H;. The totality X of all the faces is a poset under
inclusion. The maximal faces are called chambers. A codimension one face of a chamber
is called a facet. An arrangement is called simplicial if the chambers are simplicial cones.
Note that each face F' can be defined by a sign sequence (€;(F));cr, where ¢;(F) is
0, + or —, depending on whether F' lies in H;, H;" or H; respectively. It is clear that a
chamber is a face F for which ¢;(F) # 0 for each i. Each face F has an opposite face F'
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obtained by replacing each €;(F') in the sign sequence defining F' by its negative. We say
that a hyperplane H; separates faces F and K if ¢;(F) and ¢;(K) have opposite signs.
Less obviously, ¥ is a semigroup. The product F K is the face with sign sequence
Ei(F) lfel(F)#O,
Ei(K) if El(F) =0.

¢i(FK) = (1.1)

We note some elementary but important properties of this product.

e The above product is associative. The zero subspace {0} whose sign sequence is
identically zero serves as the identity for this product.

e The set of chambers C is a two sided ideal in X.

e For a face F, we have FF = F. And given faces F and P, if there exists a face G
such that FPG = FPG, then FP = FP = F.

The product has a geometric meaning. Namely, if we move from a point of F' to a
point of K along a straight line then F K is the face that we are in after moving a small
positive distance.

Remark A fairly complete study of the semigroup algebra associated to ¥ can be found
in recent work of Saliola [85].

1.2.2 Flats

Let L be the intersection lattice of the arrangement. It consists of those subspaces of V
which can be obtained by intersecting some subset of hyperplanes in the arrangement.
One may check that L is a poset under inclusion with a meet and join. In other words, L
is a lattice, also referred to as the lattice of flats. We warn the reader that many authors
order L by reverse inclusion, contrary to our convention.

Let supp : ¥ — L be the map that sends a face F' to its linear span. Equivalently,
supp F' is the intersection of the hyperplanes containing F. The support map satisfies
the property

supp F'G = supp F' V supp G. (1.2)

Hence one may say that the support map is a semigroup homomorphism, with the product
in L given by the join.

Let C be a chamber. The support of a codimension one face of C is called a wall of
C. The set of walls of C is the unique minimal subset of hyperplanes which define C,
see [17, Chapter 1, Section 4B, Proposition 1].

Remark There are various axiomatic approaches to oriented matroids, one of which
uses covectors [14, Section 4.1.1]. In this approach, an oriented matroid is an appropriate
collection of sign sequences which are closed under the product in (1.1). In this context,
L is the underlying matroid obtained by forgetting the + and — signs, and Equation (1.2)
holds. This is summarized in [14, Proposition 4.1.13], which is attributed to Edmonds
and Mandel [63].

1.2.3 Spherical picture

The poset X has the structure of a regular cell complex homeomorphic to the sphere. This
is obtained by cutting the hyperplane arrangement by the unit sphere, and identifying
faces of the arrangement with cells on the sphere. The face F' = {0} is not visible in the
spherical picture; it corresponds to the empty cell. In particular, the regular cell complex
so obtained is pure. If the arrangement is simplicial then ¥ becomes a pure simplicial
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complex. As far as notation goes, we do not distinguish between the linear and spherical
models of ¥. The notions of Section 1.1 can now be applied to hyperplane arrangements,
and in this case, we can say a lot more.

1.2.4 Gate property and other facts

The cell complex ¥ of an hyperplane arrangement is gallery connected. The gallery
distance dist(C, D) is equal to the number of hyperplanes which separate C' and D. The
maximum gallery distance is dist(C,C), which is independent of C' and equal to the
number of hyperplanes in the arrangement.

For chambers E, D, C € C, let the notation E—...— D —...—C mean that there is a
minimum gallery from E to C' passing through D. Sometimes we use the more compact
notation £ — D — C. Then one can show that

If a hyperplane H separates C' and D

E-D-C then it also separates E and C.

(1.3)

This fact implies that a minimum gallery from C to D can always be extended to a

minimum gallery C — D — C.

Proposition 1.2.1 The cell complex of faces of a central hyperplane arrangement sat-
isfies the gate property.

In fact, the gate of star(F) when viewed from C is the chamber FC, obtained by
multiplying F' and C using the product described in (1.1). This gives the combinatorial

W\J//

Figure 1.2: The projection map at work.

content of the geometry in the product on . Namely, FC is the chamber closest to
C in the gallery metric having F' as a face. This is shown in Figure 1.2. We call FC
the projection of C' on F. The product in ¥ can be recovered from the projection of
chambers by
FP= () FC.
C: P<C

We call F'P the projection of P on F'.

1.3 Reflection arrangements

We review the basic facts that we need about a finite Coxeter group and its associated
simplicial complex. The foundations of this theory were laid down by Tits [99]. Details
can be found in Brown [17] and Mahajan [60]. The reader may also refer to Grove and
Benson [39], Humphreys [47] or Bourbaki [16]. The example of type A,,_1 is explained
in the next section.

1.3.1 Finite reflection groups

A finite reflection group W on a real inner product space V is a finite group of orthogonal
transformations of V' generated by reflections sy with respect to hyperplanes H through
the origin. The set of hyperplanes H such that sy € W is the reflection arrangement
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associated with W. This arrangement is central but not necessarily essential. In the
latter case, we can pass to an essential arrangement by taking the quotient of V' by the
subspace obtained by intersecting all the hyperplanes. The regular cell complex X of this
essential arrangement is called the Coxeter complexr of W. It turns out that the Coxeter
complex ¥ is always a simplicial complex. Furthermore, the action of W on V induces
an action of W on X, and this action is simply transitive on the chambers. Thus the set
C of chambers can be identified with W, once a “fundamental chamber” Cj is chosen.
We write wCy for the chamber corresponding to the element w of W.

The Coxeter complex has the structure of a semigroup given by (1.1), which commutes
with the group action. In other words,

w(FK) = w(F)w(K)

for w € W and F,K € X. This product appeared in the work of Tits on Coxeter
complexes and buildings [99, Section 2.30]. He used the notation projz G instead of FG,
since he viewed this operation as a geometric tool rather than as a product.

1.3.2 Types of faces

The number r of vertices of a chamber of 3 is called the rank of ¥ (and of W); thus the
dimension of ¥ as a pure simplicial complex is r — 1. It is known that one can color the
vertices of ¥ with r colors in such a way that vertices connected by an edge have distinct
colors. The color of a vertex is also called its label, or its type, and we denote the set of all
types by S. We can also define type(F) for any F € ¥; it is the subset of S consisting of
the types of the vertices of F. For example, every chamber has type S, while the empty
face has type (). The action of W is type-preserving; moreover, two faces are in the same
W-orbit if and only if they have the same type.

1.3.3 The Coxeter diagram

Choose a fundamental chamber Cy. It is known that the reflections s; in the facets of
Cy generate W. In fact, W has a presentation of the form

(1,580 | (8485)™4) (1.4)

with m;; = 1 and m;; = m;; > 2. A group with a presentation of this form is called
a Cozeter group. The set of generators {s1,...,s,} is usually denoted S and one says
that the pair (W,S) is a Cozeter system. This terminology is due to Tits [99] and it
recognizes the fact that the class of finite groups with a presentation as above were first
studied by Coxeter [23]. With the condition of finiteness, it is the same as the class of
finite reflection groups defined earlier.

The data in a Coxeter system is conveniently encoded in a picture called the Cozeter
diagram of W. This diagram is a graph, with vertices and edges, defined as follows:
There are r vertices, one for each generator s;, and the vertices corresponding to s; and
s; are connected by an edge if and only if m;; > 3. If m;; > 4 then we simply label the
edge with the number m;;. Figure 1.3 shows the Coxeter diagrams of type A,,—1 and B,,.

It is customary to use the generators of W, or equivalently, the vertices of the Coxeter
diagram to label the vertices of its Coxeter complex X. The rule is as follows.

A vertex of the fundamental chamber C is labeled s; if it is fixed by all the fundamen-
tal reflections except s;. Since W acts transitively on C and the action is type-preserving,
this determines the type of all the vertices of 3.
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Type Ap—1 O O e e
S1 S9 Sn—1
Type B, : o o . o2 o
S1 52 Sn—1 Sn

Figure 1.3: The Coxeter diagrams of type A,_; and B,,.

1.3.4 The distance map

We write {(w) for the minimum length of w expressed as a word using elements of S.
Then the gallery metric is given by

dist(uCp, vCo) = I(uv).
This further suggests that we can define the W-valued gallery distance function
d:CxC—-W

by the formula
d(uCy,vCp) = u™tv.

It follows that this function is invariant under the diagonal action of W on C x C. In
other words,

d(C,D) =d(C’',D") <= There exists a unique w such that wC = C', wD = D".

Also it is clear that
d(E,C) =d(E,D)d(D,C). (1.5)

The set C x C of pairs of chambers will play a central role in our theory.

1.3.5 The Bruhat order

We say that v < v in the weak left Bruhat order on W if there is a minimum gallery
E — D — C such that d(D,C) = u and d(E,C) = v.
Alternatively,

u<vin W <= There is a minimum gallery v~ 'Cy — u~'Cy — Cp.
<= There is a minimum gallery Cy — vu~1Cy — vCy.

The first gallery condition is illustrated in Figure 1.4. The second gallery above is ob-
tained from the first by multiplying by v.

Figure 1.4: A minimum gallery that illustrates the partial order on W.
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By letting d(E, D) = w in the first definition above, one obtains a more combinatorial
description of the weak left Bruhat order. Namely,

u<v <= v=wuand l(v)=1l(w)+I(u).

The left in the notation refers to the fact that w appears to the left of u in the expression
v = wWu.
One can define the weak right Bruhat order on W, denoted <,;, by the equation

U <ppV <= ut Sv_l.

The partial order < will be used crucially in Chapters 5, 7 and 8, while the partial order
<,p will only make a brief appearance in Chapter 7. Hence whenever we refer to the
partial order on W, it always means the weak left Bruhat order.

1.3.6 The descent algebra: A geometric approach

For a Coxeter system (W, .5), let
Q={T|T<5}
be the poset of subsets of S ordered by inclusion. Let des : W — Q be the descent map
des(w) ={s € S| l(ws) < l(w)}.
Let KW be the group algebra of W over the field K. Solomon [92] showed that the
elements
dT = Z w,

des(w)<T

as T varies, give a basis for a subalgebra of KI¥. This subalgebra is known as the descent
algebra. Further Solomon also computed the radical of this algebra [92, Theorem 3]. A
geometric version of his result is given in Lemma 2.6.6.

Let ¥ be the Coxeter complex of W and KX be its semigroup algebra. Let (KX)W
be the algebra of invariants of the W-action on KX. A basis for (KX)" is given by

orT = Z F,

type(F)=T
as T ranges over all subsets of S. Bidigare [11] proved that the map
(KL)W — KW,

that sends o7 to dr is an algebra anti-homomorphism. It is easy to see that this map is
injective and its image is precisely the descent algebra. Hence (KX)W is anti-isomorphic
to the descent algebra. The proof, which is conceptual and short, is also explained in
Brown [18, Section 9.6].

1.3.7 Link and join

The relevance to us of the link and join operations on simplicial complexes is that Coxeter
complexes are well behaved with respect to these operations. The facts written below
will be crucially needed in Chapters 6, 7 and 8.
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Link

Let ' € X be a face of type T < S. And let Wg\7 be the subgroup of W generated
by S\ T. Then the link of F in ¥, denoted link(F'), is again a Coxeter complex. The
Coxeter group of link(F') can be viewed as a subgroup of W and it is a conjugate of
Wa\r. A subgroup of W of this form is known as a parabolic subgroup. The Coxeter
diagram of link(F') is obtained from the Coxeter diagram of ¥ by deleting all the vertices
whose type is contained in 7. The map

Y — link(F),

that sends the face K to the face in link(F') which corresponds to F K, is a semigroup
homomorphism. For convenience, we usually identify link(F') with star(F") and work with
the map ¥ — star(F') that sends K to F'K. This map also preserves opposites. Namely,
if K and K are opposite faces in ¥ then FK and FK are opposite faces in star(F).

Remark It is clear that if F' and F” are faces of the same type then link(F') 2 link(F”).

Join

The join X! * ¥2 of two Coxeter complexes is again a Coxeter complex, whose diagram
is the disjoint union of the diagrams of X! and ¥2. Its Coxeter group is the cartesian
product of the two smaller Coxeter groups. Further, the join operation is compatible
with the projection maps and the distance map, that is,

(Hy % Ny)(Hy % Ny) = (HyHy * N1 No), where H;, N; € %°.
d(C*C',Dx D") = (d(C, D),d(C’, D")).

In addition, a minimum gallery in ¥!%X? yields a minimum gallery in $! and a minimum
gallery in ¥2. And using the galleries in the two smaller complexes, one can reconstruct
the original gallery. We refer to this fact as the compatibility of galleries with joins.

1.4 The Coxeter group of type A, _;

The symmetric group S,, on n letters can be generated by n — 1 transpositions s, So,
.+, Sp—1, where s; interchanges ¢ and ¢ + 1 and fixes the other letters. These generators
satisfy the relations

s? =1, (sisi41)° =1, (s;5;)® = 1 if i and j differ by more than 1.

This gives rise to a presentation for S,,, which is of the form written in (1.4). Hence S,
is a Coxeter group, which is also known as the Coxeter group of type A,_1. Its Coxeter
diagram is shown in Figure 1.3.

1.4.1 The braid arrangement

The reflection arrangement in this case is the braid arrangement in R™. It is discussed in
detail in [11, 12, 13, 19]. It consists of the (’2’) hyperplanes H;; defined by x; = x;, where
1 <i < j < n. The intersection of all these hyperplanes is the line 1 = x2 = ... = x,;
so the arrangement is not essential. Each chamber is determined by an ordering of the
coordinates, so it corresponds to a permutation. The faces of a chamber are obtained by
changing to equalities some of the inequalities defining that chamber.

When n = 4, the arrangement consists of six planes in R*. By taking the quotient
of R* by the line #1 = z2 = 23 = x4, and cutting by the unit sphere, we obtain the
spherical picture shown in Figure 1.5. It has been reproduced from Billera, Brown and
Diaconis [13]. As an example, the permutation 2314 corresponds to the inequality

To < X3 <1 < 4.
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Figure 1.5: The braid arrangement when n = 4.

1.4.2 Types of faces

The symmetric group S,, acts on the braid arrangement by permuting the coordinates.
We fix 1 < 2 < ... < x, to be the fundamental chamber Cy. The supports of the
facets of Cy are hyperplanes of the form x; = z;11, where 1 <7 < n — 1. The reflection
in the hyperplane x; = x;11 corresponds to the generator s; of S,, that interchanges the
coordinates x; and x;41. The chamber Cy has n — 1 vertices, namely

S1 ¢ 1 <Tyg=...=Tp,
Sg I X1 =Ty < T3=...= Ty,
Sp—1  T1=...=Tp-1 < Tp.
The letters s1, s2, ..., Sp—1 on the left are labels assigned to each vertex by the rule

mentioned in Section 1.3.3. Applying the action of W we see, for example, that

Trl) < Tp2) = -+ = Tn(n)

gives all vertices of type s; as 7 varies over the permutations of [n].

1.4.3 Set compositions and partitions

A composition of the set [n] is an ordered partition F1|...|F* of [n]. That is, F*!, ..., F¥
are disjoint nonempty sets whose union is [n], and their order counts. We can encode the
system of equalities and inequalities defining a face by a composition of [n]; the equalities
are used to define the blocks and the inequalities to order them. For example, for n = 4,

1 =23 < T2 = T4 — 13|24

Thus the faces of ¥ are compositions of the set [n]. Observe that the vertices of type s;
are two block compositions such that the first block is a singleton. Note that F is a face
of H if and only if H consists of a composition of F! followed by a composition of F2,
and so on, that is, if and only if H is a refinement of F.

The product in X is also easy to describe in this language. We multiply two com-
positions by taking intersections and ordering them lexicographically; more precisely, if
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F=F'...|Fland H=H'|...|H™, then
FH=(F'nHY...|[F*nH™|...|[F'nHY...|[F'nH™),

where the hat means “delete empty intersections”. The 1-block composition is the iden-
tity for the product.
The lattice of flats L is the lattice of set partitions ordered by refinement. For example,
for n = 4,
Tr1 = T3, Ty = T4 — {13, 24}

The product or join of two set partitions is their smallest common refinement. More
precisely, we multiply partitions by taking intersections of the parts and deleting empty
intersections. The similarity between the product in ¥ and L is explained by the support
map. The support map ¥ — L forgets the ordering of the blocks. For example, for n = 4,
the support map sends the face 13|24 to {13,24}.

Thus we see that set compositions and partitions emerge naturally in this example.
In fact, one can explain this example in purely combinatorial terms without reference to
hyperplane arrangements. More details are given in Section 5.4.

1.4.4 The Bruhat order

Let Inv(u) be the set of inversions of a permutation u € S,,, that is,

Inv(u) = {(i,4) € [n] x [n] } i< jand u(i) >wu(j)}.
The inversion set determines the permutation. Given v and v in S,,, we write u < v if
Inv(u) C Inv(v). This gives the weak left Bruhat order on S,,.

Note that Inv(u) can be identified with the set of hyperplanes which separate Cj and
u~1Cy, by letting the pair (i,5) correspond to the hyperplane x; = z;. As an illustrative
example, take u = 3|4|2|1. Then (1,3) € Inv(u). And note that the hyperplane x; = z3
separates

r1<To<wz3<wy and x4 <x3<x1 < T,
which are the chambers Cy and u~*Cy respectively. Now using (1.3), one sees that the

above definition of the weak left Bruhat order is same as the gallery definition given
earlier.

4321
|
4312 4231 3421

o > N

4213 4132 3412 3241 2431

[N XN/

4123 3214 3142 2413 2341 1432

VN N\ X

3124 2314 2143 1423 1342
S N
2134 1324 1243
I
1234
Figure 1.6: The weak left Bruhat order on Sy.

Figure 1.6, which is taken from [4], shows the partial order on S4. It can also be
drawn from Figure 1.5 by replacing each permutation by its inverse and drawing an edge
between adjacent chambers.



Chapter 2

Left regular bands

Left regular bands, or LRBs for short, are semigroups that have been of recent interest
in random walk theory. They are easy to define and work with and have a rich source of
examples. For more details, see the seminal paper of Brown [18]. The main example is the
poset of faces of a hyperplane arrangement defined in Section 1.2. The LRB terminology
we use is motivated by this example. Coxeter complexes fall in this category as they
arise from reflection arrangements. As a slightly more general example, we have the
poset of covectors of an oriented matroid. More information about LRBs can be found in
Grillet [38] and Petrich [76, 77]. The origin of LRBs can be traced to Schiitzenberger [90].

2.1 Why LRBs?

The main motivation for LRBs is that many of our results in Chapter 5 generalize to
LRBs. Coxeter complexes, and more generally, the poset of faces of a hyperplane ar-
rangement, to which most of the theory is applied, can be viewed as special cases. To
effect this generalization, one is forced to develop the standard theory of LRBs further.
We begin with the standard material in Section 2.2 and then present the new material
in Sections 2.3-2.7.

In Section 2.3, we introduce the concept of a pointed face. This notion will allow us
to properly formulate the adjointness properties of the descent map to be considered in
Chapter 5. Similarly, Section 2.4 on sub and quotient LRBs is motivated by the Hopf
algebra considerations in Chapter 6.

In Section 2.5, we define and study a bilinear form on any LRB X. This bilinear
form controls the commutativity in diagram (5.8), which we will encounter in Chapter 5.
We show that the radical of this form contains the radical of the semigroup algebra KX,
which was computed by Bidigare [11] and Brown [18]. Further we give a computable
criterion for the equality of radicals to hold.

In Section 2.6, we specialize to the case when ¥ is the Coxeter complex of a Coxeter
group. In this situation, one can pass to invariants and induce a bilinear form on (KX)"W,
which can be identified with KQ defined in Section 1.3.6. We know that (KX)" is anti-
isomorphic to the descent algebra (Section 1.3.6). Following the method in Section 2.5,
we show that the radical of the above form contains the radical of the descent algebra.
Further we show that the two radicals are equal if the above mentioned criterion is
satisfied.

Some of our results in the second part of Chapter 5 generalize further to projection
posets, which is a notion that we introduce in Section 2.7. This allows us to consider
nonassociative structures like buildings and modular lattices.

11
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2.2 Faces and flats

The material in this section is taken from Brown [18, Appendix B]. In this section and
the next, we define the basic objects related to LRBs. Towards the end of each section,
we explain the examples of a hyperplane arrangement and the free LRB. The example of
the braid arrangement is explicitly worked out in Sections 1.4 and 5.4. The reader may
want to read these sections in parallel with the material below.

2.2.1 Faces

Let X be a left-reqular band, or a LRB for short. It is a semigroup that satisfies the
identities

> =2 and xyr=xy (2.1)

for all z,y € X. Early references to this concept occur in Klein-Barmen [50] and
Schiitzenberger [90]. For simplicity, we assume that ¥ is finite and has a unit. In this
case, the first identity follows from the second.
The relation
TSy = Y=Y

defines a partial order on 3. Elements of ¥ are called faces and for z <y, one says that
x is a face of y.

o If z <y then zx < zy for any z; however, zz < yz may not hold.

o If there is z such that zz = y then x < y. In other words, x is always a face of zz.

The above properties follow from the definitions. A complete list of properties which
we will need to use later is given in Section 2.7.2.

2.2.2 Flats

Define another relation < on ¥ by <y <= yx = y. This is transitive and reflexive,
but not necessarily antisymmetric. We therefore obtain a poset L by identifying x and y
if < y and y < . We denote the quotient map by supp: ¥ — L. Then

Yr =1y < suppz < suppy
holds by definition. Elements of L are called flats. It follows that
xy =z and yr =y <= Suppx = suppy. (2.2)

The support map is order preserving. To see this, suppose that x < y, that is, xy = y.
Premultiplying by y and using Equation (2.1), we conclude that yz = y and hence
suppz < suppy. Following [18, Appendix B], it can also be shown that L is a join
semilattice and that

supp xy = supp« V supp y. (2.3)
In other words, the support map is a map of semigroups, with the product in L given by
the join.

2.2.3 Chambers
We call an element ¢ € X a chamber if supp ¢ = 1, where 1 is the largest element of L.

Proposition 2.2.1 [18, Proposition 9] The following conditions on an element ¢ € ¥
are equivalent:
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1. ¢ is a chamber.
2. cx=c forallz € X.
8. ¢ is mazximal in the poset 3.

For a partial generalization, see Lemma 2.7.6. Thus the set C of chambers consists
of the maximal elements of ¥ and is a two sided ideal in ¥. Let C, = {c € C | = < ¢}.
Observe the following.

Lemma 2.2.1 If zy = = and yz = y then there is a bijection C, — C, given by c — yc
and with inverse d — xd.

For a generalization of this result to projection posets, see Lemma 2.7.7.

2.2.4 Examples

Example The motivating example of a LRB is the poset of faces of a central hyperplane
arrangement, with the product as given in (1.1). The notion of flats and the support
map given by the LRB theory agree with those described in Section 1.2. The reader may
compare Equations (2.3) and (1.2).

Example The free LRB on n letters consists of words with no letter repetitions. The
product of  and v is the concatenation (uv)”, where the hat means “delete the letters in
v that have occurred in «”. The empty word is the identity for this product. And u < v
if u is an initial subword of v. The chambers are the permutations of the n letters. The
lattice of flats consists of subsets of the n letters, and the support map sends a word to
the subset of letters it contains.

2.3 Pointed faces and lunes

There is an analogue of Sections 2.2.1 and 2.2.2 with faces and flats replaced by pointed
faces and lunes respectively. Details are as below.

2.3.1 Pointed faces
Let Q = {(z,¢) | # < ¢} C X x C. Define a partial order on Q by
(z,¢) < (y,d) <= c=dand z <y.

Elements of Q are called pointed faces.

2.3.2 Lunes

Define another relation < on Q by (z,¢) <X (y,d) <= yx = y and yc = d. This is
transitive and reflexive, but not necessarily antisymmetric. We therefore obtain a poset
Z by identifying (z,¢) and (y,d) if (z,¢) < (y,d) and (y,d) < (x,¢). We denote the
quotient map by lune: Q — Z. Then

yr=yand yc=d <= lune(z,c) < lune(y,d)

holds by definition. Elements of Z are called lunes and lune(z, ¢) is called the lune of x
and c. It follows that

zy=x, zd=c, yr=y and yc=d <= lune(z,c) = lune(y, d). (2.4)

The lune map is order preserving. To see this, suppose that (z,¢) < (y, ¢), that is, zy = y.
Argue as for the support map to conclude that yz = y and hence lune(z, ¢) < lune(y, ¢).
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2.3.3 The relation of Q and Z with ¥ and L

For a poset P, let KP be the vector space over K with basis the elements of P. Note that
KXY and KL are semigroup algebras. The relation of Q and Z with ¥ and L respectively
can be seen as follows. Define the map base : Q — X by (z,¢) — =z and the map
base” : KX — KQ by z — Y. (,¢). These maps induce maps Z — L and KL — KZ

c: z<c
so that the following diagrams commute.
> base Q KEC base™ KQ
SUPPi llunc SUPPi lune (25)
L base Z KL base™ Kz

Proof For the first diagram, we need to show that
lune(z, ¢) = lune(y,d) = suppx = suppy.
This follows from (2.2) and (2.4).
For the second diagram, we need to show that
suppx = suppy — Z lune(z, ¢) = Z lune(y, d).
c€C, dec,

This follows from (2.2), (2.4) and Lemma 2.2.1.

2.3.4 Lunar regions

There is another approach one can take to lunes, which is closer to intuition and which
justifies the terminology. Namely, define a map reg: Q — {R | R C X} by

reg(z,c) ={y | 2y < c}. (2.6)

The terminology R and reg(z,c) indicate that these are “regions” in ¥.. We say that
reg(z, ¢) is the lunar region of z and ¢ in ¥. Let Z’' be the image of the map reg. The
sets Z' and Z are closely related; the precise relation between them is as follows.

Lemma 2.3.1 There is a commutative diagram

Q
lune reg
s
Equivalently, by (2.4), for z < ¢ and y < d, we have
zy=x, xd=c, yr=y and yc=d = reg(x,c) =reg(y,d). (2.7)
We call the induced map Z — Z’ the zone map.
Proof Let x,y,c,d be as in the left hand side of (2.7). Now let z € reg(z,¢), that is,

rzc = c. Then
yzd = yrzyc = yrze = yc = d.

For the first equality, we used y = yx and d = yc. For the second equality, we used
Equation (2.1). From the above equation, we conclude that z € reg(y,d). This shows
that reg(x, ¢) C reg(y, d) and the result follows by symmetry.

(I
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Open Question Identify the class of LRBs for which the zone map is a bijection; in
other words, for which the reverse implication in (2.7) holds.

We give a partial answer to this question. The zone map is a bijection for the poset
of faces of hyperplane arrangements, see Lemma 2.3.3. However, this fails for the free
LRB, see Section 2.3.5. In the general case, one can say the following.

reg(x,c) =reg(y,d) = reg(zx,c) = reg(zy, c) = reg(y,d) = reg(yz, d). (2.8)

Note that reg(x, ¢) = reg(y, d) implies that y € reg(z, ¢), that is, zy < c. Hence the term
reg(zy, c) written above makes sense.

Proof By symmetry, it is enough to show that reg(z,c) = reg(ay, ). This follows by
the following string of equivalences.

z €reg(ay,c) < ayz < c¢ < yz €reg(x,c) < yz € reg(y,d)

yz €regy,d) < yyz <d <= z €reg(y,d) < z € reg(z,c)

The third and last equivalence hold by the assumption reg(z, ¢) = reg(y, d) and the rest
hold by the definition of a lunar region given in (2.6).
O

2.3.5 Examples

Example We return to the example of hyperplane arrangements and first describe the
set of lunar regions Z’. More material on lunes can be found in Billera, Brown and
Diaconis [13] or Mahajan [60, Chapter 1]. Just as an element of L is an intersection of
hyperplanes, an element of 7’ is an intersection of a special set of closed half-spaces.

Lemma 2.3.2 The lunar region of F and D, namely reg(F, D), is the intersection of
those closed half-spaces which contain D and whose supporting hyperplane contains F.
More precisely, reg(F, D) consists of those faces which lie in the above intersection.

Proof Using (1.1), we obtain:

If a hyperplane H contains F' then it

< <
FK<D does not separate K and D.

The lemma now follows from the definition of a lunar region given in (2.6).

Remark We note that reg(F, D) is a chamber in the subarrangement consisting of
those hyperplanes which contain F. The walls of this chamber are same as the walls
of D which contain F. This requires an extra argument which we leave to the reader.
Hence reg(F, D) is in fact the intersection of those closed half-spaces which contain D
and whose supporting hyperplane contains F' and is a wall of D.

Remark In the lemma below, we will identify lunes and lunar regions. Hence we may
say that the base of the lunar region reg(F, D) is supp F'.

In Figure 2.1, we have shown two schematic spherical pictures for lunar regions in a
rank 3 arrangement. Note that hyperplanes in this case are great circles on the sphere.
In the first picture, F' is a vertex of the two dimensional chamber D; hence there are two
supporting hyperplanes in question. The two great circles intersect at F' and its opposite
vertex P, dividing the sphere into four regions. The region containing D is the lunar
region reg(F, D) and its base consists of the two vertices F' and P.

In the second picture, F' is an edge; hence there is only one supporting hyperplane
in question. It divides the sphere into two regions. The region containing D is the lunar
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Figure 2.1: Two low dimensional pictures of the lunar regions reg(P, C) = reg(F, D).

region reg(F, D) and its base is the hyperplane itself, which is shown as the ellipse passing
through F' and P. For a more concrete example of a lunar region, see the shaded region
in Figure 7.2.

Lemma 2.3.3 For the poset of faces of a central hyperplane arrangement, the zone map
Z — 7' in Lemma 2.3.1 is a bijection.

Proof By (2.7) and (2.8), it is enough to show that
reg(F, D) =reg(FP,D) = F =FP,

where F' and P are arbitrary faces with P € reg(F, D).

Let reg(F, D) = reg(F P, D) and P be the opposite face to P. Since PP = P, we have
FPP = FP < D. Hence by definition P € reg(FP, D), which by assumption implies
P € reg(F, D). Therefore we obtain FP, FP < D. By applying the third elementary
property of the product listed in Section 1.2.1, we conclude that FP = FP = F.

O

Remark As one can see from the proof, the existence of an opposite makes central
hyperplane arrangements special among LRBs.

Example We return to the example of the free LRB on n letters. From the definition,
we have lune(zx, ¢) = lune(y, d) if z and y contain the same letters and the subword of
¢ obtained by deleting the initial segment x is same as the subword of d obtained by
deleting the initial segment y. Thus the set Z can be identified with the set of words in
the n letters without repetition, which is the same as 3. The lune map then sends the
pointed face (z, ¢) to the subword of ¢ obtained by deleting the initial segment x. In this
notation, a word y is an element of zone(z) if the letters which are common to both x
and y form an initial segment of z. In particular, the zone of a one letter word is the
entire set 3. This shows that the zone map is not injective. To give a concrete example,
take n = 3 and the letters to be x, y and z. Then

reg(zy, vyz) = reg(yz,yzx) but lune(xy,zyz) # lune(yz,yzx),

which says that zone(z) = zone(x).

2.4 Link and join of LRBs

In Chapter 6, we will construct Hopf algebras from the family of LRBs {X"},,>0, where
> is the Coxeter complex of S,,. In this section, we state two simple but useful lemmas
in the construction. They are valid for any LRB.
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2.4.1 SubLRB and quotient LRB
Let ¥ be a LRB and Q, L and Z be as above. Let

Ye={yeX |z <y}

Then ¥, is a LRB in its own right, which we may also call the link or star region of x in
Y. Denote its corresponding objects by Q.., L, and Z, respectively. Explicitly, we have

Q ={(y;d) €Qlz<y<d}
L,={XeL]| suppzr < X}, and
Z, ={lune(y,d) € Z|z<y<d}={LeZ| suppz < base L}.
In addition to a subLRB, one can view X, as a quotient LRB of ¥. The quotient map
T —» Mg

sends y to zy. This induces the map z- : Q - Q. which sends (y,d) to (zy, zd), the
map z- : L - L, which sends X to X V suppz, and the map x- : Z - Z, which sends
lune(y, d) to lune(xy, xzd).

Lemma 2.4.1 The following diagrams commute.

z- -
DI by g QxS Q Qo
supp supp supp lune lune lune
Lw( L Lm Zac( 7 Zac

x -

The proof is a direct consequence of the definitions.

2.4.2 Product of LRBs

For i = 1,2, let ¢ be a LRB and Q, L? and Z’ be the associated objects. Then the
cartesian product ¥ = £! x ¥? is a LRB with componentwise multiplication; we may
call ¥ the join of X! and 2.

Lemma 2.4.2 The associated posets of ¥ = 3! x 32 are Q = Q' x Q%, L =L! x L2 and
Z=17" %172

2.5 Bilinear forms related to a LRB

In this section, we initiate a study of three bilinear forms related to a LRB. They are
defined on KQ, KXY and KL respectively. The material in Sections 2.5.1-2.5.3, except
Lemma 2.5.1 and Corollary 2.5.1, generalizes to projection posets, which are defined in
Section 2.7.

2.5.1 The bilinear form on KQ
Define a symmetric bilinear form on KQ by

if yc = d and xd = ¢, or equivalently,
if ¢ € reg(y,d) and d € reg(z, ¢),
(z,0), (y,d)) = gy, d) g(z,c)

0 otherwise.
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In Figure 2.2, we have shown the schematic picture of two intersecting lunar regions.
It illustrates the case when ((P,C), (F, D)) = 1 for the poset of faces of a hyperplane
arrangement.

Figure 2.2: The pointed faces (P,C) and (F, D) lie in each other’s lunar regions.

Open Question The above form is degenerate in general. Compute its radical.

As a partial answer, we give one source of degeneracy in the Coxeter case. In this
case, by passing to invariants, we obtain an induced form on (KQ)" = KQ, which we
show to be degenerate in Section 2.6. This implies by general principles that the original
form was also degenerate. For example, for T, U < S, if T'— U is in the radical of the
induced form then

> (Tp,D) - (Up, D) (2.9)

DecC

belongs to the radical of the original form. Here Tp refers to the face of D which is of
type T.

Example For type A, the elements of ¥ and Q are set compositions and fully nested
set compositions respectively, see Section 5.4. One can give an explicit combinatorial
definition for the bilinear form on KQ. We illustrate it by the following example.

(612/35/1|417), (4] 617|251 [3)) = 1.

This is because 6|2|3]5|1]4|7 is a shuffle of 4, 6]7,2|5|1,3 and 4|6]|7|2|5|1|3 is a shuffle of
6|2|3,5|1,4|7. This should make the general definition clear. The reader can also play
with Figure 1.5 and match the geometric and combinatorial definitions for n = 4.

To obtain an element in the radical of this form, one can take T and U to be two
compositions, say (1,2,1) and (2,1, 1), with the same underlying partition, and then use
formula (2.9).

2.5.2 The pairing between KQ and K¥

Consider the diagram

KQ x KX
— ~~
KXY x KXY KQ x KQ — K, (2.10)
~ T
KY x KQ

induced by the map base™ : KX — KQ given by x — > (x,¢). The rightmost map is
c: z<c
the bilinear form defined in Section 2.5.1.
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Explicitly, the map KQ x KX — K is given by
1 if zyc = ¢, or equivalently, y € reg(z, c),
(z,c),y) = Y . q Y, ¥ g(z,c)
0 otherwise.

From the definition of the map reg : Q — Z’, we have the following.

Lemma 2.5.1 The kernel of the map reg : KQ — KZ' lies in the left radical of the map
KQ x K¥ — K. Hence there is a commutative diagram

KQ x KX
—

KZ' x KX

K

2.5.3 The bilinear form on KX

Note that diagram (2.10) defines a symmetric bilinear form on KX. It is given by

(z,9)2 = [{(c,d) | 2d = ¢, yc=d}|. (2.11)

There is an alternate way to define this bilinear form. For each z € X, let ¢, = |C;| be
the number of chambers ¢ € C such that ¢ > x. Define a linear map ¢ : KX — K by

¢(x) = ¢y (2.12)
Lemma 2.5.2 We have {x,y)s = ((zy).

Proof Since supp(zy) = supp(yz), by Lemma 2.2.1, there is a bijection
bij : Czy — Cyx

given by ¢ — yxc with inverse d — zyd.
Let (C x C)y,y = {(c,d) | yc=d, xzd = c}. Then

(c,d) € (CxC)zy <= c¢€Csy, deCys, bij(c) =d.

To see the forward implication, note that (¢,d) € (C x C);, implies y < d and z < c.
Hence yc = y(xc) = d. This says that yx < d and bij(¢) = d. Similarly zy < ¢. The
backward implication is similar. This proves the lemma.

O

Corollary 2.5.1 The form { , }s. on KX is invariant. In other words,
<(E, yz)z = <$y7 Z>E'

2.5.4 The bilinear form on KL

The bilinear form on KX is far from being nondegenerate. We know from Lemma 2.2.1
that ¢, depends only on supp . Hence for each X € L, let cx be the number of chambers
¢ € C such that ¢ > z, where x is any fixed element of ¥ having support X. The map (
factors through KL giving a function ¢ : KL — K with

((X) = cx. (2.13)

Now (z,y)s = ((zy) = ((supp zy) = {(supp = V suppy). This shows the following.
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Lemma 2.5.3 The form (, )y : KEXKY — K and the map ¢ : KE — K factor through
KL to give a form (, )1 : KL x KL — K and a map ¢ : KL — K satisfying

<X7 Y>L = <(X v Y)

In other words, there are two commutative diagrams

KY x KX K¥ ¢
supp X supp \ K supp \ K
/ /
KL x KL KL

2.5.5 The nondegeneracy of the form on KL

Now we discuss conditions under which the induced form (, )1, on KL is nondegenerate.

Definition 2.5.1 We define numbers nx by the equation

E ny = Cx,

X<y

for each X € L. Equivalently, nx = > vy u(X,Y)cy, where p is the Mobius function
of the lattice L. B

The numbers ny, in this generality, were defined by Brown. They are the generic
multiplicities of certain random walks on the chambers of a LRB, see [18, Theorem 1].
For the special case of hyperplane arrangements, nx = |u(X, i)|7 where 1 is the maximum
element of L and p is its Mébius function. This follows from a formula of Zaslavsky [101].
The connection of these numbers to random walks was first made by Bidigare, Hanlon
and Rockmore [11, 12].

Lemma 2.5.4 The semigroup algebra KL is split semisimple, that is, it is isomorphic
to a product of copies of K. Further, the form ( , )1, : KL x KL — K is nondegenerate
<= nx #0 for each X € L.

The first part is due to Solomon [91], see also Greene [37] and Stanley [93, Section 3.9].
It holds for any finite semilattice.

Proof Explicitly, for the first part, if K denotes the algebra of functions from L to K,
then there is an algebra isomorphism KL =, KE given by X — 3"\, 0y, where dy is
defined to be 1 at Y and 0 elsewhere. -

For the second part, let gx be the element of KL, which corresponds to §x under this
isomorphism. Then gx are the orthogonal idempotents for the algebra KL. It follows
from Definition 2.5.1 that {(¢x) = nx. We now compute the form ( , )1, on the {gx}
basis.

<QXa CIY>L = C(QXC]Y) = C(QX)(SX,Y = nx(sxﬁy, (2.14)

where dx y denotes the Kronecker delta. The result follows.
O

Lemma 2.5.5 The kernel of the support map KX — KL is rad(KX), where rad(KX)
stands for the Jacobson radical of KX.

This result is due to Bidigare and Brown.
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Proof Bidigare [11] showed that for ¥ arising from hyperplane arrangements, the kernel
of the support map KX — KL is nilpotent. And since KL is semisimple, the result follows.
The same proof was generalized to LRBs by Brown [18, Section 7.2].

O

Corollary 2.5.2 We have nx # 0 for each X € L <= rad(, )y = rad(KX).

This follows from the previous two lemmas and gives a computable criterion to check
equality of the radicals.

Open Question Identify the class of LRBs for which the above criterion holds.

It is known that the above criterion holds for ¥ arising from hyperplane arrangements;
see Orlik and Terao [71, Theorem 2.47]. We thank Victor Reiner for this reference.
However one can check that the criterion fails for the free LRB. The reader who has
come this far may be convinced that free LRBs are good for producing counterexamples.

Example We recall that for type A, the elements of 3 and L are set compositions and
set partitions respectively.

If F = FYF?|...|F* is a set composition then cp = fi!fo!... fx! where f; = |F.
Note that this depends only on the cardinalities of the F* and not on their order. In
other words, cr only depends on supp F' = {F!, F2 ... F*}, as expected.

Using the formula for the Mobius function of the poset of set partitions, we obtain:

nx = |u(X, 1) = (z1 — D!... (z — 1), (2.15)

where X = {X' X2,...,X*} and z; = |X?|. Note that ny # 0 for each X € L, as
already claimed above.

Remark In the Coxeter case, the numbers nx are related to the invariant theory of
the Coxeter group W. If X is the minimum element of L, then ny = |u(X,1)| is the
product of the exponents of W, and hence in particular is nonzero. This is an old result
of Orlik and Solomon [70], see also Orlik and Terao [71, Corollary 6.62]. For any other
element X in the lattice, the interval [X, 1] is isomorphic to the intersection lattice for
another Coxeter group W', which is a parabolic subgroup of W; hence the above result
applies.

2.6 Bilinear forms related to a Coxeter group

Let (W, S) be a Coxeter system and 3 be the Coxeter complex of W. Then the diagram

KQ = (K)Y = K¥.

suppi lsupp

KL 2 (KL)V & KL

commutes. In Section 2.5, we studied bilinear forms on KQ, KX and KL for any LRB
3. In the setting of Coxeter groups, it is clear that these forms are invariant under the
W-action, and hence induce symmetric bilinear forms on KQ = (KQ)" = (KX)" and
KL = (KL)". In this section, we study these two induced bilinear forms.

We have encountered the object Q in the context of the descent algebra (Section 1.3.6).
The object L is new; it is defined as the set of W-orbits in L. In fact, it has a partial
order which it inherits from L.
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2.6.1 The bilinear form on (KX)V

In this subsection, we give some interesting descriptions of the bilinear form on (KX)"W.
We recall that a basis for (KX)W is given by

or = Z F‘7

type(F)=T

as T ranges over all subsets of S.

Lemma 2.6.1 We have

1
W<UT,O'U> =HweW | des(w) < T, des(w™) < U}

Compare this equation with [4, Proposition 9.4].

Proof Consider the set
(C X C)T,U = {(C, D) | TeD =C and UpC = D},

where T is the face of C of type T, and Up is the face of D of type U. It is clear that
this set is closed under the diagonal action of W on C x C. From (2.11), we see that the
left hand side of the above equation counts the number of W-orbits in this set. Further
note that each W-orbit can be indexed by an element w € W using the rule d(C, D) = w.
Hence one has to determine those w € W, which occur as orbits in (C x C)p,y. This is
done by translating the condition on the projection maps into a condition on des(w) and
des(w™!). This will be the content of Proposition 5.3.2. This gives the right hand side
of the above equation.

O

Using Lemma 2.5.2, the bilinear form on (KX)" can be written as

(or,00) = ((oroUV), (2.16)

where ( is given by (2.12). Now write

E |4
oroy = Aoy .
v<s

Since (KX)"W is anti-isomorphic to the descent algebra, the constants a¥U may also
be regarded as the structure constants of the descent algebra (Section 1.3.6). We now
describe the bilinear form using these constants.

Lemma 2.6.2 We have (o7,0p) = [W| Y a¥y.
v<s

Proof Using the above equations, we have (or,00) = > ayy((ov). It remains to
vV<s

show that
Cloy) =|W| forall V <S.

The left hand side counts pairs (F, D) with F' < D and type F' = V. Since every chamber
has a unique face of type V, this is same as the number of chambers, which is |[W]|.
O

Lemma 2.6.3 Let FF < H and typeF' = T and type H = V. Then 04¥U counts the
number of faces N of type U such that FN = H.
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This lemma follows from the definition. Combining Lemmas 2.6.2 and 2.6.3 gives us
the following description.

Lemma 2.6.4 Let FF < D and type FF =T. Then

1
W<0T70U> = |{V € reg(F, D) | type N =U}|.
Note that the symmetry of the bilinear form is not at all clear from the right hand
side. Hence we can use the symmetry along with this lemma to derive a nontrivial result

about lunar regions as follows.

Corollary 2.6.1 The number of faces of type U in X, say fu, is equal to the number of
chambers in the lunar region reg(F, D), where F is any face of type U and F < D.

This result is also implied by Mahajan [60, Lemma 5].

Proof Recall that S is the set of reflections and any chamber D is of type S. By the
symmetry of the bilinear form on (KX)W', we have

1 1
—<057UU> = —<UU50'S>'

(W W
Now use Lemma 2.6.4 on both sides. Note that reg(D, D) = . Hence the left hand side
is the number of faces of type U in . And the right hand side is the number of chambers
in the lunar region reg(F, D), where F' is any face of type U and F < D.
O

2.6.2 The bilinear form on (KL)" and its nondegeneracy

It is clear that the bilinear form on (KX)W factors through the map (K¥)" — (KL)W
to give a bilinear form ( , ) : (KL)" x (KL)" — K. In analogy with Lemma 2.5.4, one
can show:

Lemma 2.6.5 The algebra (KL)W is split semisimple. Further, the form {, ) : (KL)" x
(KL)W — K is nondegenerate <= nx # 0 for each X € L.

The proof is straightforward and is given in Lemma 5.7.1. The main step is to
construct a basis for (KL)% such that each basis element when viewed as an element of
KL is a sum of primitive idempotents.

Lemma 2.6.6 The kernel of the support map (KX)W — (KL)W is rad((KX)W).

Proof The kernel is nilpotent because it sits inside rad(KX) which is nilpotent. And
since (KL)" is semisimple, the result follows.
O

The above result (phrased in a different language) was obtained by Solomon [92,
Theorem 3]. For other proofs and additional related results, see Atkinson [6], Garsia and
Reutenauer [32] and Krob, Leclerc and Thibon [51, Corollary 3.11]. A lift of the the
primitive idempotents of (KL)" to (KX)W is given by Bergeron, Bergeron, Howlett and
Taylor [7]. For a recent survey on the descent algebra, see Schocker [89].

The previous two lemmas give us the following corollary relating the radical of the
descent algebra to the radical of the bilinear form on it.

Corollary 2.6.2 We have nx # 0 for each X € L <= rad(, )gsyw = rad((Kx)").

Note that the criterion for the equality of the radicals in the coinvariant case is the
same as the criterion obtained in Corollary 2.5.2.
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2.7 Projection posets

In this section, we introduce projection posets, which are more general than LRBs.
The main motivation is that some of our results hold in this generality. However, the
constructions of the objects L and Z are specific to LRBs; they do not generalize to
projection posets.

2.7.1 Definition and examples

Definition 2.7.1 A projection poset ¥ is a poset with a (not necessarily associative)
product ¥ x ¥ — ¥ that satisfies:

(1) The product zq1xs ...z, is well-defined if there exist y, z such that for every 1 <
i <mn, either x; <y or z; < z.

(2) ¥* =y and yzy = y.
B)yz=2z <= y<z

(4) The set of chambers (maximal elements) C is a left ideal in X.
Proposition 2.7.1 Fvery LRB is a projection poset.

Proof Since the product in a LRB is associative, z12s ...z, is always well-defined; so
(1) holds. Property (2) holds by definition. The next two properties are a part of LRB
foundations, which were discussed in Section 2.2. Note that the definition of a LRB does
not involve any poset. The point is to first define a relation on a LRB using property (3)
and then to prove that it is a partial order.

O

A projection poset is not an empty generalization of a LRB. The generalization does
indeed give new examples.

Proposition 2.7.2 The poset of faces of a building and the order complex of a modular
lattice are projection posets.

Proof A building is a simplicial complex obtained by gluing together Coxeter com-
plexes. These Coxeter complexes are called the apartments of the building. For a building
A, given y, z € A, one can always choose an apartment containing y and z. Details can
be found in Brown [17]. Tits defined a product (not necessarily associative) on the poset
of faces of a building [99, Section 3.19]. One way to describe the product yz is to first
choose an apartment containing y and z, and then take the product in that apartment.

Readers may now readily see the origin of property (1). Namely, one can choose an
apartment containing the elements x1,xs,...,x,. The product z125 ...z, is then well-
defined because the product within an apartment is associative. Similarly, buildings also
satisfy properties (2) — (4). All of them involve at most two distinct elements, hence one
can always choose an apartment containing them and argue as above.

In [1], Abels showed that the order complex of any modular lattice behaves like the
building of type A. The role of apartments is played by distributive lattices. The order
complex of a distributive lattice corresponds to a convex set of chambers in the braid
arrangement [1, Proposition 2.5]. Hence it is an example of a LRB; in particular, its
product is associative. The same argument as for buildings then shows that the order

complex of a modular lattice is a projection poset.
O

The examples in the proposition above were referred to as nonassociative LRBs in
Mahajan [60, Chapter 1], where related material can be found.



2.7. PROJECTION POSETS 25

2.7.2 Elementary facts

We now generalize some known facts about LRBs to projection posets. These facts,
though elementary, are important. They will allow us to use projection posets as the
basis for an axiomatic treatment of Hopf algebras in Chapter 6.

Lemma 2.7.1 We have y < yz.

Proof By property (1), we know that yyz is well-defined. By property (2), we have
y? = y; hence y(yz) = (yy)z = yz. Now, applying property (3), we obtain y < yz.
O

Lemma 2.7.2 Ify < z then zy = z.

Proof Let y < z. Then by property (3), we have yz = z. Premultiplying by z, we get
2yz = z2. Property (3) now implies that zy = z.
O

Lemma 2.7.3 Ifz <y < z and xw = z then yw = z.

Proof This follows from the sequence of equalities yw = yaxw = yz = z. The first

equality uses Lemma 2.7.2.
O

Lemma 2.7.4 An element 0 is the identity in X if and only if O is the unique minimal
element in X.

Proof From property (3), we have
fr=xforallz < 0<zforall 2.

Also by Lemma 2.7.2, if ) < z for all = then z{) = z for all .

Lemma 2.7.5 Ify < z then zy < zz.

Proof Let y < z. Then zyzz is well-defined by property (1). By properties (2) and
(3), we have ayxz = xyz = xz. Therefore, we get zy(xz) = xz, which by property (3)
says that zy < zz.

(I

The set of chambers C in 3 can also be characterized using the product in ¥ as below,
also see Proposition 2.2.1.

Lemma 2.7.6 We have that ¢ is a chamber in ¥ <= cx =c for allx € X.

Proof For the forward implication, note by Lemma 2.7.1 that ¢ < cx for all z,c € X;
so if ¢ is maximal then ¢ = cx for all x € ¥. Conversely, if cx = ¢ for all z € ¥ then c is
maximal because c<r — cr =2 — c= 1.

O

Let C; = {c € C | x < ¢}. The following is a generalization of Lemma 2.2.1.

Lemma 2.7.7 If vy = = and yx = y then there is a bijection C, — C, given by c — yc
and with inverse d — xd.
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Proof By property (4), we know that the maps in the lemma are well-defined. We want
to show that they are inverse to each other. By symmetry, it is enough to show that for
x < ¢, we have z(yc) = c¢. By property (1), we know that zyc is well-defined. Further,
from assumption and property (3), we get xyc = xc = c.

O

Corollary 2.7.1 There is a bijection Cyy — Cyy given by c — yxc with inverse d — xyd.

Proof By property (1), we know that yzxy is well-defined and by property (2), we have
yxxy = yz. Similarly, we have zyyx = zy. The assertion now follows from the previous
lemma.

O

Lemma 2.7.8 Let y < z. Then
rz<c <= zy <candyxrz <yc.

This result will be crucially used in Chapter 6, see the corollary to Proposition 6.4.5. If
z is a chamber, say d, then we may say

rxd=c <= zy <candyxd=yc.
This result will be used in Proposition 6.5.6.

Proof Since y < z, by Lemma 2.7.5, we get xy < xz. The forward implication is easy.
Let zz < ¢. Then using the above inequality, zy < zz < c¢. This proves one part. And
by Lemma 2.7.5, we have yxz < yc, which proves the second part.

Conversely, let xy < c and yxz < yc. From Lemma 2.7.5 and the second assumption,
we have zyxrz < zyc. Note that since y < z and = < ¢, both sides are well-defined by
property (1). Further by properties (2) and (3), we have zyzz = zyz = xz. And by the
first assumption and property (3), we have zyc = ¢. Hence zz < c.

O



Chapter 3

Hopf algebras

For the definition of a Hopf algebra and basic examples, the reader may refer to Kas-
sel [49], Montgomery [65] or Sweedler [95]. Roughly a Hopf algebra is a vector space with
a product and a unit, a coproduct and a counit and an antipode; the structures being
compatible in an appropriate sense.

Our Hopf algebras will have linear bases indexed by combinatorial objects of various
kinds. The study of Hopf algebras of this type was initiated by Joni and Rota [48] and
continued by Schmitt [87, 88], Ehrenborg [29] and others.

3.1 Hopf algebras

In this section, we review the notions of cofree graded coalgebras, coradical filtration and
antipode, which are relevant to us. The material is directly taken from [4].

3.1.1 Cofree graded coalgebras

Let V be a vector space over K and set

Q) == Ve,

k>0

The space Q(V), graded by k, becomes a graded coalgebra with the deconcatenation
coproduct

k
A(U1®...®Uk) = Z (U1®"'®Uz’)®(vi+1®"'®Uk)7 (3.1)
=0

2

and counit €(v; ® -+ - @ vg) = 0 for k > 1. The coalgebra Q(V) is connected, in the sense
that the component of degree 0 is identified with the base field via e.

We call Q(V) the cofree graded coalgebra cogenerated by V. The canonical projection
7w : Q(V) — V satisfies the following universal property. Given a graded coalgebra
C = @k>0C* and a linear map ¢ : C — V where ¢(C*) = 0 when k # 1, there is a
unique morphism of graded coalgebras ¢ : C' — Q(V') such that the following diagram
commutes

C---~<-->Q)
EN\ /4{
1%
Explicitly, ¢ is defined by
@Ick = <P®kA(k71) )
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where A*=1) is the iterated coproduct explained in Section 3.1.3. In particular,

Ploo =€ Plon =¥, and @), = (p®p)A.

For more explanation, see Sweedler [95, Lemma 12.2.7]. For a more general result, see
Quillen [79, Appendix B] and Loday and Ronco [55].

3.1.2 The coradical filtration

Let C be a graded connected coalgebra. The coradical C(©) of C' is the 1-dimensional
component in degree 0 (identified with the base field via the counit). The primitive
elements of C' are

PC) = {zeC|Alx)=21+1xxa}.
Set CM) := C©) @ P(C), the first level of the coradical filtration. More generally, the
k-th level of the coradical filtration is
ck) = (Aw))—l( d c¥ec® ®c®j).

i+j=k

We have CO ccW co®@ c...cC= Ukzo C®) . and
AC®) ¢ Y cWecy),
iti=k

Thus, the coradical filtration measures the complexity of iterated coproducts.

Suppose now that C is the cofree graded coalgebra Q(V'). Then the space of primitive
elements is just V', and the k-th level of the coradical filtration is @fZOV@. These are
straightforward consequences of the definition of the deconcatenation coproduct.

3.1.3 Antipode

There is a general formula for the antipode of a graded connected Hopf algebra H, due
to Takeuchi [96, Lemma 14] (see also Milnor and Moore [64]). Let H be an arbitrary
bialgebra with structure maps: multiplication m: H ® H — H, unit u: K — H, comul-
tiplication A: H — H ® H, and counit e: H — K. Set m™) =m, A = A, and for any
k> 2,

m® = mm®* Y gid) : H®*' - H,  and

AR — (A®D @id)A : H — HOL,
These are the higher or iterated products and coproducts. We also set
mY = K — H,
ACY = ¢ H 5K, and
m® = A® = id:H—H.
If f: H — H is any linear map, the convolution powers of f are, for any k > 0,
f*k _ m(kfl)f®kA(k71) ]

In particular, f*° = ue and f*!' = f.
We set 7 := id —ue. If 7 is locally nilpotent with respect to convolution, then id =
ue + 7 is invertible with respect to convolution, with inverse

S =Y (—m* = ) (—1)FmEaPkAGT (3.2)

k>0 k>0
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This is certainly the case if H is a graded connected bialgebra, in which case 7 annihilates
the component of degree 0 (and hence 7** annihilates components of degree < k). Thus
Equation (3.2) is a general formula for the antipode of a graded connected Hopf algebra.

In general, the interest is in finding an explicit formula for the structure constants of
the antipode, which formula (3.2) does not always give because many cancellations often
take place. This problem won’t be pursued in the examples we will consider.

3.2 Hopf algebras: Examples

We are interested in the following diagram of connected graded Hopf algebras that relates
the Hopf algebra of permutations SA and the Hopf algebra of symmetric functions A,
noncommutative symmetric functions NA and quasi-symmetric functions QA.

i i (3.3)
A~ QA KD"—K(@Q")*

The diagram on the right shows the nth graded pieces of these Hopf algebras. For P a
set, we write KP for the vector space over K with basis the elements of P, and KP* for
its dual space. The three sets, namely fn, Qn and S,,, and also the structure of these
Hopf algebras, are summarized in Table 3.1.

Table 3.1: Hopf algebras, their indexing sets and structure.

‘ Hopf algebra ‘ Indexing set ‘ Comm. ‘ Cocomm. Structure
A L' = partitions of n Yes Yes Self-dual, free comm. and cofree cocomm.
QA Qn = compositions of n Yes No Free comm. and cofree
NA Qn = compositions of n No Yes Free and cofree cocomm.
SA S, = permutations of n No No Self-dual, free and cofree

The Hopf algebra SA defined by Malvenuto [61] will be adequately dealt in Chapter 7.
In this section, we explain the remaining three Hopf algebras. For a recent survey on
related topics, see Hazewinkel [42, 43]. For an extensive theory and applications to
representation theory of the symmetric group, see Blessenohl and Schocker [15].

3.2.1 The Hopf algebra A

The Hopf algebra A of symmetric functions is most often viewed as a subalgebra of the
algebra of formal power series in countably many variables x1,x2,.... Details can be
found in Fulton [31], Macdonald [59], Sagan [84] and Stanley [94]. However, we treat A
as an intrinsic object.

Definition 3.2.1 A partition X = (A1, A2, ..., \;) of n is a nonincreasing finite sequence
of positive integers which add up to n. We write parts(A) for the number of parts in A.
We denote partitions by the letters A, x and p.

We say that A < p if u refines A, that is, u is obtained by refining each part in A
and then rearranging the parts in descending order. This defines a partial order on fn,
the set of partitions of n. We warn the reader that this is different from the standard
containment or dominance partial orders on partitions.



30 CHAPTER 3. HOPF ALGEBRAS

A false-shuffie of partitions A and p is a shuffle of the components of \ written is
some order and the components of y written is some order. For example, (2,1,3,1,3,1)
is a false-shuffle of (3,2,1) and (3,1, 1).

A shuffle of partitions A and p is a false-shuffle of A and u, whose entries are nonin-
creasing. For example, (3,3,2,1,1,1) and (3,3,2,1,1,1) are distinct shuffles of (3,2,1)
and (3,1,1).

A quasi-shuffle of partitions A and p is a false-shuffle of A and p, where in addition we
may replace any number of pairs of consecutive components (A;, 11;) in the false-shuffle
by Ai + 5, and the resulting entries are nonincreasing. For example, (3,3,1+1,2,1) is
a quasi-shuffle of (3,2,1) and (3,1,1).

The space A is equipped with a variety of basis, all indexed by partitions. We will
mainly deal with the monomial m basis, the homogeneous h basis and the power sum
p basis. The change of bases matrices can be found in the references mentioned above.
The product in the h and p basis is given by

h)\h,u = h)\u,u and PAPp = Paups

where LI denotes the union as multisets. This follows because the h and p basis are
defined by

h>\ = h(Al)h(Ag) e h(Ak) and P = p(Al)p()Q) .. .p()\k)

for A = (A1, A2,..., ). It is true that p) = my for all 4; however my is defined
differently from py. The product in the m basis is given by

mamy, = E M.

p: p a quasi-shuffle of A and u

Remark The definition of a quasi-shuffle is concocted so that the above formula holds.
Note that the definition is a little complicated and involves ordering the components of
the partitions, which is not so natural.

There are two ways in which one can make things easier. One way is to work with QA,
the Hopf algebra of ordered partitions or compositions (Section 3.2.2). The definition
of a quasi-shuffle for compositions is much simpler. Another way is to work with II,
the Hopf algebra of set partitions (Section 6.2.10). The definition of a quasi-shuffle for
set partitions is also simple, and more importantly, can be given without ordering the
components of the partitions.

The coalgebra structure of A was first pointed out by Geissinger [34] who also showed
that A is a self-dual Hopf algebra. The isomorphism of A with its dual is via the standard
inner product on A with the m and h as dual bases. The Hopf algebra viewpoint on sym-
metric functions can be found in Zelevinsky [102]. As an algebra, A is free commutative
on hy, hay, . ... The formula

Alhy) =Y iy @ hin—sy, (3.4)
1=0

extended as an algebra map defines the coproduct on A. The reader may write down the
general expression for A(hy). It is clear that A is both commutative and cocommutative.
Hence A is the cofree graded connected cocommutative coalgebra cogenerated by P(A)
by the Milnor-Moore theorem, see [64, Theorem 5.18] or Quillen [79, Theorem 4.5].

Remark The cofreeness of A is in the category of cocommutative coalgebras, and hence
a little different from the setup in Section 3.1.1.
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On the m basis, the coproduct is as follows.

A(my) = Zmu @ mp,

where the sum is over all ordered pairs (u, p) such that Ll p = X as multisets. It is
clear that m (1), ma), ... forms a basis for the space of primitive elements of A. Since
Py = My for all 7, the p(;)’s are primitive. One can now check that the coproduct on
the p basis has the same expression as on the m basis.

The antipode of A is given by the formulas

S(py) = (=P py, Stmy) = (=D)PN Y exumy,,
PEA

where parts(A) is the number of parts of A, the partial order on partitions is as given
in Definition 3.2.1, and ¢y, is the number of compositions with underlying partition A,
which refine p.

3.2.2 The Hopf algebra QA

Quasi-symmetric functions QA were introduced by Gessel [36] as a subalgebra of the
algebra of formal power series in countably many variables x1,zs,... (although with
hindsight one can recognize them in work of Cartier [20]). A discussion can be found
in Stanley [94, Section 7.19], Reutenauer [82, Section 9.4] and Bertet, Krob, Morvan,
Novelli, Phan and Thibon [10]. The Hopf algebra structure of QA was introduced by
Malvenuto [61, Section 4.1]. The description of the product in some form or another can
be found in Cartier [20, Formula (7)], Hoffman [46], Hazewinkel [41] and Ehrenborg [29,
Lemma 3.3]. We recall some standard notions.

Definition 3.2.2 A composition a = (a1, @2, ..., ax) of n is a finite sequence of positive
integers which add up to n. If we replace positive by nonnegative, then we get a weak
composition. We denote compositions by the letters «, 8 and ~.

We say that a < g if 3 refines . This defines a partial order on Qn, the set of
compositions of n.

A shuffle of compositions o and [ is a shuffle of the components of o and (. For
example, (3,4,2,5,7,2,8) is a shuffle of (3,5,2,8) and (4,2,7).

A quasi-shuffle of compositions a and 3 is a shuffle of the components of o and (3,
where in addition we may replace any number of pairs of consecutive components (o, 3;)
in the shuffle by o; + 8;. For example, (1 +4,1,3 +1,2,2) is a quasi-shuffle of (1,3, 2)
and (4,1,1,2).

For a composition a, we let supp(a) denote the underlying partition of a.

The Hopf algebra QA has two well-known basis, the monomial basis M, and the
fundamental basis F,, both indexed by compositions. They are related by the equation

Fo = > Mp.
a<p
The inclusion map A — QA sends
ma— Y M, (3.5)
a: supp(a)=XA

The Hopf algebra structure of QA on the M basis is defined as below. The formulas on
the F basis are discussed in Section 8.4.

k

A(M(Ol17a2;~~~7ak)) = Z M(a17~~~;ai) ® M(ai+1;~~~;0¢k)
=0
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Comparing the coproduct with Equation (3.1) shows that QA is a cofree graded coalgebra,
with M, graded by the number of parts in a.

Ma *Mﬁ = Z M’Y'

7: v a quasi-shuffle of o and 8

We would like to clarify a small point about the definition of this product. The terms
(1+4,1,341,2,2) and (1+4,1,3+1,2,2) are both distinct quasi-shuffles of (1, 3,2)
and (4,1,1,2), though they have the same underlying composition. Hence Ms,1,4,2,2)
appears with a coefficient of 2 in the product My 32) * M4112)-
One may now check directly that A is a subHopf algebra of QA. The antipode of QA
is given by the formula
S(Ma) = (=1)P=() ; Mg,

where parts(a) is the number of parts of o, and if 8 = (31, B2, ..., Bx) then 3 is 3 written
in reverse order (0, ..., B2, 51).

3.2.3 The Hopf algebra NA

The Hopf algebra NA was introduced as a noncommutative analog of symmetric func-
tions by Gelfand, Krob, Lascoux, Leclerc, Retakh and Thibon [35]. Accordingly, it can
be viewed as a subalgebra of the algebra of formal power series in countably many non-
commutative variables. This object has been the center of intense activity; the lecture
notes by Thibon [98] may be a good place to start. There is a series of papers on this
topic [51, 28, 53, 54, 26, 27|, apart from numerous other references.

In analogy with A, one can define the complete H basis for NA, again indexed by
compositions. The product in NA in the H basis is given by

Ha * Hﬁ = H(a)ﬁ).

It is then clear that NA is free on H(y), H(z), .... The coproduct is again defined by
Equation (3.4), with H instead of h, and extended as an algebra map. Explicitly,

A(Hy) =) Ha® Hp,

the sum being over pairs (&, B) of weak compositions such that & and B do not have a 0
in the same place, v = & + B, and deleting the 0 entries gives o and 3.

One may check that NA is a graded Hopf algebra with the above product and coprod-
uct. The cofreeness of NA as a graded connected cocommutative coalgebra follows from
the Milnor-Moore theorem again. The primitive elements are described in [35, Proposi-
tion 3.10] and [62]. In the latter paper, Malvenuto and Reutenauer identify the primitive
elements with a free Lie algebra. To mention another fact, the Hopf algebra NA has an
internal product which is isomorphic to the product in the descent algebra of type A
[36, 62, 35].

3.2.4 The duality between QA and NA

One may observe that NA is the graded Hopf algebra dual of QA, with the H being the
dual of the M basis, see [35, 62]. Hence by duality, QA is free as a commutative algebra
over K. Hazewinkel has shown that in fact QA is free over the integers [40]. It is also
clear that the map NA — A which sends H, to Hgypp(a) is @ map of Hopf algebras and
is dual to the one in (3.5). It is natural to consider the dual of the F basis of QA; we
call this the K basis of NA. The product and coproduct formulas in the K basis can be
written by dualizing the formulas in the F' basis which are given in Section 8.4.



Chapter 4

A brief overview

We briefly summarize the contents of the second part of the monograph.

4.1 Abstract: Chapter 5

In Chapter 5, we initiate a systematic study of the descent theory for Coxeter groups.
This brings to the fore two posets, namely C x C and Q, which are defined in terms of the
Coxeter complex ¥ associated to a Coxeter system (W, .S). We have already encountered
the poset Q in Section 2.2 in the more general context of LRBs. The poset C xC consisting
of pairs of chambers is more specific to the Coxeter case. Its partial order mimics the
weak left Bruhat order on W.

The descent theory consists of three order preserving maps denoted Road, GRoad
and © that relate the two posets C x C and Q. The maps themselves are related to one
another in an interesting way, namely, Road and GRoad are the left and right adjoints
to O respectively. The arguments in the proofs involve repeated use of the gate property
satisfied by ¥ (Proposition 1.2.1).

Road /deb\
CxC—2"qQ W~—"—0Qq
GRoad gdes

Figure 4.1: The descent theory.

The Coxeter group W acts on C x C and Q and also on the maps relating them. By
taking W-coinvariants, we obtain maps denoted des, gdes and 6 that relate the posets W
under the weak left Bruhat order and Q = {T' | T' < S} under subset inclusion. These
are shown in Figure 4.1. This gives us the notion of descent and global descent of an
element of W. The map des, already defined in Section 1.3.6, is standard while the map
gdes is new. It generalizes the notion of global descent of a permutation [4].

Let KX be the semigroup algebra over K with basis the elements of ¥. The radical of
this algebra is well understood (Lemma 2.5.5). Its semisimple quotient is KL, where L is
the poset of flats of 3. In Section 2.5, we defined a symmetric and invariant bilinear form
on KX. In the second part of Chapter 5, we will see how this form emerges naturally
from descent theory. The relation between the radical of the form and the radical of the
algebra was given in Corollary 2.5.2.

33
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Ky KQ— K(C x C)*

$ KQ—— KW
kG i |
KL ujz* KL— K(Q)*

Figure 4.2: The commutative diagrams.

The bilinear form on KX allows us to define a commutative diagram that relates K,
KQ, K(C x C), KL and their duals. A part of this diagram is shown in Figure 4.2 on
the left. The composite map from KX to KX* is the one induced by the bilinear form
on K. By taking W-coinvariants, we obtain a quotient diagram, which is shown on the
right. For type A, this coincides with the right part of diagram (3.3).

The abstract setting enables us to generalize some of the results by replacing 3 by
a left regular band (Chapter 2). In order to incorporate nonassociative examples like
buildings and modular lattices, we generalize even further to projection posets, which is
a notion that we introduced in Section 2.7.

4.2 Abstract: Chapter 6

In Chapter 6, we study how Hopf algebras enter in this context. We start with the
family of symmetric groups S,,, for n > 0. For each n, we have the corresponding objects
denoted KX", KQ™, K(C™ x C™) and so on and the commutative diagram relating them,
shown in Figure 4.2. By taking the direct sum over all n, we obtain a diagram of graded
vector spaces, a part of which is shown on the left below in Figure 4.3.

MII“— NI SII
$ NAG——SA
an |
{ A QA
“————=PII

Figure 4.3: The external commutative diagrams.

We put a graded Hopf algebra structure on each object in the diagram on the left
and then show that all the maps are in fact morphisms of Hopf algebras. The semigroup
structure of ¥ plays an important role in the definition of these Hopf algebras, as well as
in the proofs. The combinatorial structures that arise in this theory are set partitions, set
compositions, pairs of permutations and so on. We have seen some of this in Section 1.4.
To achieve more clarity, we write down abstract algebra and coalgebra axioms for a family
of projection posets and show that the above example is then a special case.

Following the philosophy of Chapter 5, we take the coinvariant quotient of the di-
agram on the left. This yields the diagram on the right, which we have met before
(Diagram (3.3)).
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4.3 Abstract: Chapters 7 and 8

In Chapter 7, we give an application of our methods. Namely, we study the Hopf algebra

SII = @& K(C™ x C™)*,
n>0

indexed by pairs of permutations that is introduced in Chapter 6. In particular, we show
that it is free and cofree. The method of proof is similar to the one used in [4] to study
the Hopf algebra SA of permutations. Namely, we compute the product and coproduct of
SII in different bases. A notable difference is our extensive use of the semigroup structure
of ¥. The above two Hopf algebras are related. Namely, there is a quotient map from
SIT to SA. Using this map, one obtains some known as well as new results on SA.

In Chapter 8, in a similar way, we study and relate the Hopf algebra QII, also intro-
duced in Chapter 6, and the Hopf algebra QA of quasi-symmetric functions.
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Chapter 5

The descent theory for Coxeter
groups

5.1 Introduction

In this chapter, we initiate a systematic study of a generalized descent theory for finite
Coxeter groups. We construct a commutative diagram involving interesting objects re-
lated to Coxeter groups, which is central to the study of some Hopf algebras of recent
interest. The connection with Hopf algebras will be treated in detail in the next chapters.
The current chapter is divided into two parts, whose contents we summarize briefly.

5.1.1 The first part: Sections 5.2-5.5

Standard material

Let S,, be the symmetric group on n letters and regard it as a poset under the weak left
Bruhat order. Let Q" denote the poset of subsets of [n — 1] under inclusion. It is the
same as the poset of compositions of length n under refinement. In [4], Aguiar and Sottile
considered two order preserving maps des, gdes : S,, — Qn that map a permutation to
its descent and global descent set respectively. Further they considered a third order
preserving map 6 : Qn — S,, and showed that the maps des and gdes are the left and
right adjoints respectively to 6. They used these ideas to study SA, the graded Hopf
algebra of permutations introduced by Malvenuto [61].

In the first part of this chapter, we generalize the above results to any finite Coxeter
group W. The papers by Reading [81, 80] generalize these ideas in a different direction
from the one we take.

New material

The picture so far should be regarded as existing on the W-invariant-coinvariant level,
and which can be derived from a more fundamental picture. Accordingly, in Section 5.2,
we define three maps Road, GRoad and © and develop a descent theory. In particular,
we show that the maps Road and GRoad are the left and right adjoints respectively to
O. We refer to this as the lifted picture. The motivation for the “road” terminology is
also given in Section 5.2.

The maps Road, GRoad and ©® commute with the action of the Coxeter group W,
and by moding out the action, one recovers the original maps, namely, des, gdes and 6.
This philosophy is summarized in Proposition 5.2.1. The descriptions of the maps des,
gdes and 6 are given in Section 5.3. The notion of shuffles for arbitrary Coxeter groups is
well-known (minimal coset representatives of parabolic subgroups), see Humphreys [47,
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Section 1.10]. In Section 5.3, we discuss this notion, but from a geometric viewpoint.
In Sections 5.4 and 5.5, we discuss the examples of type A,_; and Alx(nfl)
combinatorial terms.

The advantage of working with the lifted picture is both greater generality and con-
ceptual clarity. For example, for the most part, the Coxeter group W is not necessary for
the lifted picture and one may work with any central hyperplane arrangement. However
there are problems if one wants to generalize further to left regular bands, see the open

question at the end of Section 5.2.

in explicit

5.1.2 The second part: Sections 5.6-5.7
Standard material

The Hopf algebra of permutations SA of Malvenuto [61] is related to three other graded
Hopf algebras by a commutative diagram as follows.

NAC————=SA

(5.1)

where A, QA and NA are the Hopf algebras of symmetric functions [34, 102], quasi-
symmetric functions [36, 61, 46] and noncommutative symmetric functions [35] respec-
tively. For more details, see Section 3.2.

For P a poset, let KP be the vector space over the field K with basis the elements
of P, and let KP* be its dual space. The maps des, gdes and 6 play a key role in the
definition of the maps in diagram (5.1). The vector spaces in degree n of these graded
Hopf algebras are as follows.

KQ'—KS,

L

KL —K(@Q")*
Here L" is the poset of partitions of n, with partial order as given in Definition 3.2.1.

New material

Let (W, S) be a Coxeter system and let X be its Coxeter complex. In the second part of
this chapter, we construct a commutative diagram as above for any Coxeter group W,
see diagram (5.17) in Section 5.7. It is a slightly expanded form of diagram (5.2). We
replace S,, by W, and Qn by

Q={T|T <35}

and L" by something appropriate, see Section 5.2.3. The main tool in the construction is
a bilinear form on KQ. However, we mention that the construction of the Hopf algebras
in diagram (5.1) is special to the example of type A, the symmetric groups.

In the summary of the first part of the chapter above, we mentioned that the maps
des, gdes and 6 can be derived from more fundamental maps, namely Road, GRoad
and © respectively. We continue with this philosophy in the second part of the chapter.
Namely, in Section 5.6, we define the commutative diagram (5.8) to go along with these
lifted maps. In this case, the commutativity in the lifted diagram (5.8) is controlled by a
bilinear form on K¥. Note that the W-orbits in ¥ can be identified with Q. By moding
out the action of W, we recover diagram (5.17). In particular, for the example of type
Ap_1, one can view diagram (5.2) as a quotient of a more fundamental diagram.
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As in the first part, the lifted picture works for any central hyperplane arrangement.
However, in contrast to the first part, the second part generalizes to LRBs in a satisfactory
way. And a part of it generalizes further to projection posets.

5.2 The descent theory for Coxeter groups

In this section and the next, we present the descent theory for any Coxeter group W, as
was outlined briefly in the introduction.

5.2.1 Preliminaries

We recall some definitions and facts from Chapter 1. Let (W, S) be a Coxeter system and
Y be the Coxeter complex of W. Then the Coxeter complex X is a chamber complex, that
is, a gallery connected pure simplicial complex. It follows that 3 is a meet semilattice
with the partial order given by face inclusion and the meet of F' and G given by their
intersection FFNG. Further X has the structure of a semigroup. For F, G € X, we call the
product F'G as the projection of G on F'. Let C be the set of chambers in 3. Then C is a
two sided ideal in 3. We use the letters C, D and E to denote chambers. Associated to
Y is a lattice L and an order preserving surjective map supp : 3 — L, called the support
map, such that
supp F'G = supp F' V supp G.

Let
Q={(FD)|F<D}CExC and Q={T|T<S5}.

The Coxeter group W acts on X and hence on C, the set of chambers in ¥. Further the
action on C is simply transitive. The action of W induces diagonal actions on C x C and
Q. Let d: C x C - W and type : Q — Q, where d is the distance map and type maps
(F, D) to the type of the face F'. These maps are invariant under the W-action on C x C
and X respectively. In fact, we get induced isomorphisms

CxCw —W and Sy —Q

from the respective spaces of orbits. The notation —y refers to the set of W-orbits in

5.2.2 Summary

We now summarize the content of this section and the next section.

Proposition 5.2.1 The following diagrams commute.

CxC—ts>Ww CxC—Lsw CxC—Ltsw
Roadi ides GRoadi igdes @T (4 (53)
type Q type Q Q type Q

All objects are posets and all maps are order preserving.

Note on the proof In Section 5.2.4, we define three partial orders each on C x C and
Q. The ones relevant to this proposition are < and <. The partial order on W is the
weak left Bruhat order and on Q is subset inclusion.

In Sections 5.2.5-5.2.7, we define the maps Road, GRoad and © respectively and
show that they are order preserving for < and <. It is clear from the definitions that
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they commute with the action of the Coxeter group W. Hence we get induced order
preserving maps on the orbit spaces des, gdes : (C xC)w — Qw and 8 : Qw — (C X C)w
In Lemmas 5.2.1 and 5.2.2, we show respectively that the maps d and type are order
preserving, and that the identifications

CxCw —W and Sy —Q

are in fact poset isomorphisms. This yields the right hand columns of diagram (5.3).
They are described in detail in Section 5.3.
O

In Section 5.2.3, we discuss the objects Z and L that are used in the second part
of the chapter. In Sections 5.2.4-5.2.7, we discuss the various aspects in the proof of
Proposition 5.2.1 as explained above. In Section 5.2.8, we show that the maps Road
and GRoad are the left and right adjoints respectively to © (Proposition 5.2.5). We
also consider the maps Des and GDes, which are obtained from Road and GRoad by
composing with the projection @ — X on the first coordinate. By construction, it
follows that the maps des and gdes are the left and right adjoints respectively to 6
(Proposition 5.3.5). As mentioned in the introduction, for the symmetric group S,,, this
result was obtained in [4].

Remark The reader may omit the discussion pertaining to the partial orders <’ and
=< on a first reading of this section.

5.2.3 The posets Z and L

Associated to Q is a poset Z and an order preserving surjective map lune : Q — Z.
The partial order < on Q is the one relevant to this statement. This is explained in the
general setting of a LRB in Section 2.3. The construction of Z from Q is analogous to the
construction of the poset of flats L from ¥. Further the map base : Q — X that sends
(F, D) to F induces a map base : Z — L.

base

type A

, Q
supp lune
| (5.4)

Note that Qw = Sy = Q as posets. Similarly, it is true that Zw = L. We call
this quotient poset L. The map Q — L in diagram (5.4) is the induced map on the orbit
spaces from both the supp and lune maps.

5.2.4 The partial orders on C x C and Q

Recall that the Coxeter group W acts simply transitively on the set of chambers C. Fix
a fundamental chamber Cj in ¥ and use it as a reference point to identify C with W.
We use the notation discussed in Section 1.3 that wCy is the chamber that corresponds
to w € W. Note that d(Co, wCp) = w.

Definition 5.2.1 Let < be the weak left Bruhat order on W. Define a partial order on
the set C by
uCop <pvCy in C <= u<wv in W.
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The subscript “b” stands for Bruhat.

Notation As mentioned in Chapter 1, the notation Cy; — C7; — D indicates a minimum
gallery Cy — ... — C; — ... — D from C5 to D passing through C'.

Definition 5.2.2 We define three partial orders on C x C.

(Cl,Dl)S(CQ,Dg) < Dy =Dy=D and CQ—Cl—D.
D1 = D2 =D and d(Cl,Dl) S d(Cg,Dg).

—
(Cl,Dl) S/ (CQ,DQ) < D1 <p D2 and d(Cl,Dl) = d(OQ,DQ).
<

(Ol,Dl) = (CQ,DQ) dF > (Ol,Dl) < (E,Dl) and (E,Dl) S/ (CQ,DQ).

Figure 5.1: A minimum gallery that illustrates the partial order < on C x C.

We make some elementary observations.

e In the definition of <, only one E can satisfy the required condition; namely the
one that satisfies d(F, D1) = d(C3, D2).

e Unlike <, the partial orders <’ and =< depend on the choice of the fundamental
chamber Cj, since they involve the partial order <.

e It is clear that (C1, D1) < (Ca, D2) implies (C1, D1) =< (Ca, D3). The converse is of
course not true. However if (C1, D1) < (Cq, D2) then there exists a unique element,
say (E, D7), in the same W-orbit as (Cy, Ds) for which (C1,D;) < (F,D;p). We
conclude that < and =< induce the same partial order on (C x C)w .

Lemma 5.2.1 For the partial orders <, < and < on C xC, the map d :C x C — W 1is
order preserving. This induces a poset map (C x C)w — W, which is a set isomorphism.
And for < and =<, the induced map is, in fact, a poset isomorphism.

Proof For < and <’, it is clear that d is order preserving; compare Figures 1.4 and 5.1.
And these two facts imply that d is order preserving for < as well.

In view of the third observation made above, it is enough to prove the second claim
for <. Note that, as a poset, C x C is made of |W| disjoint components. Each component
is obtained by fixing the second coordinate and varying the first. Further W acts simply
transitively on the set of components, and d maps each component isomorphically onto
W as a poset. This proves the second claim for <.

O

Remark In Chapter 7, we will use the partial orders < and =< to study the structure
of the Hopf algebra SII of pairs of permutations. This provides a separate motivation.
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Definition 5.2.3 Let Q = {(F, D) | F < D} C X x C be the set of pointed faces. Define
three partial orders on Q as follows.

(Fl,Dl) < (FQ,DQ) < D1 = DQ and Fl < F2.
(Fl,Dl) SI (FQ,DQ) <~ Dl Sb D2 and typeF1 = typng.
(Fl,Dl) = (FQ,DQ) <~— dH > (Fl,Dl) < (H,Dl) and (H, Dl) SI (FQ,DQ).

In analogy with C x C, we make the following observations.

e In the definition of <, only one H can satisfy the required condition; namely the
face of D1 whose type is the same as that of F5.

e Unlike <, the partial orders <’ and =< depend on the choice of the fundamental
chamber Cj.

e It is clear that (F1,D1) < (Fs, D) implies (Fy,D1) = (Fa,D2). The converse
is not true. However if (Fy, Dy) =< (F3, D2) then there exists a unique element,
say (H,D;), in the same W-orbit as (Fy, D2) for which (Fy,D1) < (H, D). We
conclude that < and < induce the same partial order on Q.

Let type : Q — Q map (F, D) to the type of the face F. It is invariant under the

W-action on Q and there is an induced isomorphism Qu =, Q of sets.

Lemma 5.2.2 For the partial orders <, <’ and = on Q, the map type : Q — Q is order
preserving. This induces a poset map Qw — Q, which is a set isomorphism. And for <
and =X, the induced map is, in fact, a poset isomorphism.

The proof is along the same lines as that for Lemma 5.2.1.

5.2.5 The map Road

We begin by explaining the notion of a descent.

Definition 5.2.4 The chamber D has a descent with respect to the chamber C' at a
vertex v of D if there is a minimal gallery from C' to D that passes through the facet
D\ v in the final step, that is, if the support of D\ v separates C' and D. This is illustrated
in Figure 5.2.

W\J/ )

Figure 5.2: The chamber D has a descent with respect to the chamber C' at v.

And Des(C, D) is the face of D spanned by the vertices v of D at which D has a descent
with respect to C. This defines a map Des : C x C — ¥ and a map Road : C x C — Q by

Road(C, D) = (Des(C, D), D).

Remark One may say that Asc(C, D) = D \ Des(C, D) consists of those vertices v at
which D has an ascent with respect to C. In this sense, the map Road keeps both the
descent and the ascent information; hence the name.
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Descent sets can be characterized in terms of the semigroup structure on X as follows.
Proposition 5.2.2 Given chambers C, D and a face F < D, we have
FC =D <= Des(C,D) <F.
Thus Des(C, D) is the smallest face F' < D such that FC = D.
The above observation is due to Brown [18, Proposition 4].

Lemma 5.2.3 For < and =, the map Road : C x C — Q is order preserving.

Proof We prove the lemma only for the partial order <. Let (Cy,D) < (Co, D) and
v < Des(C1, D). To prove the lemma, we need to show that v < Des(Cs, D).

The first assumption gives a minimum gallery Co —...— C7; —...— D and the second
gives a minimum gallery C; —...— F Dwp. Replacing the second part of the first gallery
by the second gallery, one obtains a minimum gallery Co —... —C1 —...— F P\v . This

shows that v < Des(Caq, D).
O

5.2.6 The map GRoad

Next we introduce global descents. This notion is meaningful only when W is finite.
Recall that in this case, there exists the notion of opposite faces. Let ~ : ¥ — X be the
opposite map that sends a face F' to its opposite face F'.

Definition 5.2.5 The chamber D has a global descent with respect to the chamber C
at the vertex v of D if, for every chamber E € star(v), the star region of v, there is a
minimal gallery from C to E that passes through the facet £\ v in the final step.

And GDes(C, D) is the face of D spanned by the vertices v of D at which D has a
global descent with respect to C. This defines a map GDes : C x C — X and a map
GRoad : C x C — Q by

GRoad(C, D) = (GDes(C, D), D).

Note that by definition GDes(C, D) < Des(C, D).

S
v

Figure 5.3: The chamber D has a global descent with respect to the chamber C' at v.

Proposition 5.2.3 We have GDes(C,D) = DNC.

Proof Suppose that D has a global descent with respect to C' at v, see Figure 5.3. The
definition implies that all chambers in star(v) have a descent (and global descent) with
respect to C' at v. The fact mentioned after Equation (1.3) now implies that the opposite
chamber C' € star(v).

Conversely, if C € star(v) then the convexity of star(v) implies that all chambers in
star(v) have a descent with respect to C' at v.
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Lemma 5.2.4 For < and =, the map GRoad : C x C — Q is order preserving.

Proof We only prove the lemma for the partial order <. Let (Cy,D) < (Co, D) and
v < GDes(Cy, D) = D N Cq, that is, D,C; € star(v). To prove the lemma, we need to
show that Cy € star(7).

T

The first assumption gives a minimum gallery C — ... — Cy — ... — D, which we can
extend to D — ... — Co—...—C1—... — D. Hence by restriction, we have a minimum
gallery D —...— Cy —...— Cy such that D, C; € star(v). The convexity of a star region

now implies that Cy € star(7v).
O

5.2.7 The map ©

Next we introduce the map ©. We continue to assume that W is finite. We first prove a
preliminary fact.

Fact 5.2.1 Let FF < D and C be any chamber. Then
FD—-C-D <= FC=D += C creg(F,D).

The last equivalence is just the definition of reg(F, D), which is the lunar region of F'
and D, as given in (2.6).

Bl
B!

Figure 5.4: A chamber C in the lunar region reg(F, D).

Proof The first equivalence is a consequence of the following three statements.

If a hyperplane H separates C' and D

FC=D then it does not pass through F'.

H separates FD and D <= H does not pass through F.

If a hyperplane H separates C' and D

FD-C=-D <« then it also separates FD and D.

Figure 5.4 shows the lunar region reg(F, D) and illustrates the situation in all the state-
ments above. For the first two statements, one can argue with sign sequences using (1.1).

The third statement is same as (1.3).
O
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Definition 5.2.6 Let © : Q — C x C, where for F, D fixed, O(F, D) is the maximal
element of the poset {(C, D) | FC = D} in the partial order < on C x C.

For © to be well-defined, we need to show that there is a unique maximum. First
note that FFD = FD = D. Hence (FD,D) € {(C,D) | FC = D}. Now Fact 5.2.1
implies that (F'D, D) is the maximal element in {(C, D) | FC = D} in the partial order
< on C x C. We have shown the following.

Proposition 5.2.4 We have O(F, D) = (FD, D).

ree 2

We also have (C, D) = ©(F,D) < (D,C)=06(F,C).

It follows from the gate property and the above proposition that:

Lemma 5.2.5 For < and =, the map © : Q — C x C is order preserving.

5.2.8 Connection among the three maps

Proposition 5.2.5 For < and =, the maps Road and GRoad are the left and right
adjoints respectively to ©. In other words,

(i) Road(C, D) < (F,D) <= (C,D) < O(F,D).
(ii) (F,D) < GRoad(C, D) <= O(F,D) < (C, D).

And the same statement with < replaced by <.

Proof We prove the proposition only for the partial order <. Note that the result for
= can be deduced using the result for <. To see (i), note that

Road(C, D) < (F,D) <= FC =D <= (C,D) < O(F,D). (5.5)

The first equivalence follows from Proposition 5.2.2 and the second from Fact 5.2.1 and
Proposition 5.2.4.
To see (it), note that

(F,D) < GRoad(C,D) <= F<C — F<
<~ D-C-FD-D <= C-FD-D
< O(F,D) < (C,D).

The first equivalence is by Proposition 5.2.3. For the third equivalence, we use the gate
property in one direction and the convexity of star(F') and F' < D in the other direction.
For the fourth equivalence, we use the fact mentioned after Equation (1.3). And for the

last equivalence, we use Proposition 5.2.4.
O

Proposition 5.2.6 The map © is a section to both Road and GRoad. In particular, it
implies that © is injective and Road and GRoad are surjective.
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Proof Let (C,D) = ©(F, D). Then by Proposition 5.2.5,
Road(C, D) < (F, D) < GRoad(C, D).
However by definition, GRoad(C, D) < Road(C, D). Hence
Road(©(F, D)) = (F,D) = GRoad(O(F, D)),

which proves the proposition.
O

Remark It is clear that many results in this section hold for hyperplane arrangements.
The objects W, Q, and L and the maps involving them, for example d and type, are
special to the Coxeter case. The remaining part, with the exception of the partial orders
<’ and =, is valid for any central hyperplane arrangement.

Open Question It is not clear how to generalize the results in this section to LRBs.
The problem starts right with defining the descent map. For that, one needs to assume
that a LRB satisfies the projection axiom (P2). These projection axioms were defined in
Mahajan [60, Chapter 1, page 15]. They are not to be confused with the axioms that we
will define in Chapter 6. Formulate the correct abstract framework to define descents,
global descents and so forth.

5.3 The coinvariant descent theory for Coxeter groups

Let [ : W — Z be the length function. In the previous section, we proved the existence
of the maps des,gdes : W — Q and 0 : Q — W. In Sections 5.3.1-5.3.3, we explicitly
describe these maps. As expected, they have very similar descriptions to the ones for
the maps Des, GDes and ©. In Section 5.3.4, we deduce that the maps des and gdes
are the left and right adjoints respectively to 6. In the rest of the section, we look at
some additional results. In Section 5.3.5, we discuss shuffles, and in Section 5.3.6, we
consider some sets that show up in the product in the M basis of the Hopf algebra of
permutations SA. The later part will be relevant to Chapter 7.

Notation For T'< .S and D € C, it is convenient to write Tp for the face of D of type
T.

5.3.1 The map des

Let C,D € C be such that d(C, D) = w. Then by definition, des(w) is the type of the
face Des(C, D). Let E € C be such that d(D, E) = s. Hence from Equation (1.5), we
have d(C, E) = ws. Then in analogy with Definition 5.2.4, one can say:

The element w € W has a descent at s € S if there is a minimum gallery C — E — D,
or equivalently, if [(ws) < I(w). In other words:

Proposition 5.3.1 We have des(w) = {s € S | I(ws) < l(w)}.

Thus, we recover the familiar notion of descent. Alternatively, from Proposition 5.2.2:

Proposition 5.3.2 Let C,D € C and T < S. Further let d(C,D) = w and Tp be the
face of D of type T'. Then

TpC =D <= des(w) <T.
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wsCy | wCy > s

~ =

Figure 5.5: A descent at s for an element w € W.

Since d(Cy,wCy) = w, we can take for example C' = Cy and D = wCj and say that
des(w) is the type of the face Des(Cp, wCy). In analogy with Definition 5.2.4, one says:

The element w € W has a descent at s € S if there is a minimum gallery from Cy to
wCy passing through wsCy. This is illustrated in Figure 5.5.

Alternatively, from the above proposition, des(w) is the type of the smallest face F'
such that FCy = wC.

Remark Following our earlier terminology, one should denote the map des by the term
“road”. However in this particular case, such a distinction is not necessary because by
taking complement in the set S, the descent and ascent sets determine each other.

5.3.2 The map gdes

Let C, D € C be such that d(C, D) = w. Then by definition, gdes(w) is the type of the
face GDes(C, D). Since d(Cp, wCy) = w, we can take C = Cy and D = wCj and say
that gdes(w) is the type of the face GDes(Cy, wCy). Applying Definition 5.2.5 gives us
the following.

Let v be the vertex of wCj of type s. Then the element w € W has a global descent
at s € S if s € des(u) for every uCy € star(v).

B,
M

Figure 5.6: A global descent at s for an element w € W.

The chambers in star(v) are characterized by the set {wzCy | z is any word written
using generators other than s}. Hence w € W has a global descent at s € S if l(wzs) <
l(wz), for any word z written using generators other than s.

Proposition 5.3.3 We have gdes(w) = {s € S | l(wzs) < l(wz) for any word z written
using generators other than s}.

5.3.3 The map 6

Let 6 : Q — W be the map induced from © : Q — CxC. The analogy with Definition 5.2.6
is given later in Proposition 5.3.7. In analogy with Proposition 5.3.4, one can say:

Proposition 5.3.4 For T € Q, let Tp be the face of type T of D. Then 0 : Q — W is
given by T — 0(T) where §(T) = d(TpD, D).
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Corollary 5.3.1 For T € Q, let T, be the face of type T of Co. Then 6 :Q — W is
given by T +— 0(T) where

0(T) = d(Co,Tg,Co), or equivalently, 6(T)Co = Tg, Co.

Tg,

Proof Take D = Tz Cp in the previous proposition. The face T of type T" of D is
Tg,- Hence T—éoD = T—@Tﬁo Co = T—a)co = ().
O

Remark It may not be true that T, = T¢,, where T¢, is the face of type T' of Cp.
This is because the opposite map does not preserve types in general.

W e

Figure 5.7: The image of the § map in rank 3.

The corollary says that except for Cy, the image of the map 6 viewed as distance
from Cj, is concentrated around C. Alternatively, it isolates a set of “long” elements of
W. Consider the rank 3 case when W has 3 generators. The image of the # map then
consists of 23 = 8 chambers. A schematic picture for that is shown in Figure 5.7.

5.3.4 Connection among the three maps

The map d : C x C — W has a section given by w — (w=1Cp, Cp). Similarly, the map
type : Q — Q has a section given by T + (T¢,,Cy), where T, is the face of type T’ of
Cy. Further, both the sections are order preserving for each of the partial orders < and
<.

Note that the second coordinate in the image of both maps is always Cy. Further,
the maps Road, GRoad and © preserve the second coordinate. Since the action of W
is simply transitive on C, and W and Q are the orbit spaces of C x C and Q respectively,

we obtain three commutative diagrams.

CxC~—>W CxC<~—>W CxC<~—>W
Roadi ides GRoadi igdes (—)T T@ (56)
Q=—Q Q<—7Q Q<—21Q

Using diagrams (5.3) and (5.6), now Propositions 5.2.5 and 5.2.6 yield the following
corollaries respectively.
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Proposition 5.3.5 The maps des and gdes are the left and right adjoints respectively to
0. In other words,

(i) des(w) < T <= w < (7).

(i) T < gdes(w) <= 6(T) < w.

Proposition 5.3.6 The map 0 is a section to both des and gdes.

5.3.5 Shuflles

This subsection is optional. By using the map des, we define the notion of shuffles for a
Coxeter group. We then describe it by more geometric objects and explain how the map
0 fits into the picture. The motivation for the terminology comes from the example of
type A,_1 given in Section 5.4.6.

Definition 5.3.1 For T' < S, define the set of T-shuffles by
Shy ={oc e W | deso < T}.
Let X7 be the set of faces in ¥ of type T'. For a fixed T' < S, one can write

c= || ¢r, whereCr={D|F<D}.
FeXr

This is because every chamber D € C has a unique face of type T

Recall that we have fixed a fundamental chamber Cj in C. In each star region Cp,
by the gate property, there is a special chamber, namely F'Cj, closest to Cy in the
gallery metric. Under the identification of C with W it corresponds to a T-shuffle. More
precisely:

Lemma 5.3.1 There is a bijection
7 2 — Shyp

gwen by ' — o, where FCy = 0Cy, or