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Abstract. This paper explores several applications of Möbius func-
tions to the representation theory of finite semigroups. We extend
Solomon’s approach to the semigroup algebra of a finite semilattice via
Möbius functions to arbitrary finite inverse semigroups. This allows us
to explicitly calculate the orthogonal central idempotents decomposing
an inverse semigroup algebra into a direct product of matrix algebras
over group rings. We also extend work of Bidigare, Hanlon, Rockmore
and Brown on calculating eigenvalues of random walks associated to
certain classes of finite semigroups; again Möbius functions play an im-
portant role.

1. Introduction

The characters of commutative semigroups were studied independently by
Schwarz [29] and by Hewitt and Zuckerman [9, 10]. In particular the char-
acters of a finite semilattice (that is idempotent, commutative semigroup)
were shown to correspond to prime ideals and the semigroup algebra was
shown to be a direct product of fields (see [7, Chapter 5] for an account of
this work). Solomon [30] later gave a very explicit isomorphism between the
semigroup algebra of a finite semilattice and a direct product of fields, us-
ing the Möbius function of the semilattice, from which the character results
described above are easily deduced.

A semilattice is just an idempotent inverse semigroup. Inverse semigroups
are semigroups that admit a faithful representation as a semigroup of partial
permutations closed under inversion [7, 11]. By a partial permutation of a
set X, we mean a bijection ϕ : Y → Z between subsets Y and Z of X; in
other words an injective partial function from X to X. For example

σ =

(

1 2 3 4
− 3 2 1

)

is a partial permutation of the set {1, 2, 3, 4}. Inverse semigroups capture
partial symmetry in much the same way that groups capture symmetry
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[11]; they have recently become quite fashionable in Analysis in the guise of
semigroups of partial isometries of a Hilbert space [19]. Inverse semigroups
also play an important role in the theory of algebraic monoids, where the
so-called Renner inverse monoid takes the place of the Weyl group in the
analogue of the Bruhat decomposition [20, 21, 31, 22]. The semilattice
of idempotents in this case is isomorphic to the face lattice of a rational
polytope [20] and so the Möbius function can be computed by the classical
formula [33].

Munn [14, 15] studied the semigroup algebra of a finite inverse semigroup
and showed that in good characteristic it is always semisimple. His ap-
proach was to construct an ideal series in which the quotients are matrix
algebras over the group rings of the maximal subgroups (see [7, Chapter 5]);
in fact, the associated exact sequences are easily seen to split [18] and so the
semigroup algebra is isomorphic to a direct product of such matrix algebras.

In this paper, we generalize Solomon’s approach and we explicitly calcu-
late the orthogonal central idempotents giving the direct sum decomposition
of the algebra of an inverse semigroup into matrix algebras over group rings
using the Möbius function of the natural partial order on the inverse semi-
group. This involves calculating an isomorphism between the algebra of an
inverse semigroup and the algebra [19] of its associated groupoid [11]. The
relationship with the Schützenberger representation by monomial matrices
is studied, as well (c.f. [24]). Our results then allow for an explicit formula,
in terms of characters, for the central primitive idempotents corresponding
to the irreducible representations of the semigroup algebra of a finite inverse
semigroup, again using Möbius functions.

More generally, Munn’s results show that whenever a semigroup algebra is
semisimple, there is a natural ideal series such that the quotients are matrix
algebras over the group rings of maximal subgroups. The Möbius function
of the J -order can be used to show how to relate the identities of these
ideals to the identities of these matrix algebras.

Bidigare, Hanlon and Rockmore [4] discovered a pleasant formula for the
eigenvalues, and their multiplicities, of the transition matrix of the random
walk on the minimal ideal of the face semigroup associated to a hyperplane
arrangement [4]; such random walks include well-known Markov chains like
the Tsetlin library [4]. Brown extended these results, first to left regular
bands [5] and then to bands in general [6]. These results all make use of
Möbius functions. We extend these results to the largest class of finite
semigroups for which they hold: the so-called semilattices of combinatorial
archimedean semigroups, also called semilattices of locally trivial semigroups
and also called members of the pseudovariety DA [1]. These are precisely
the finite semigroups that can be faithfully represented by upper triangular
matrices, with diagonal entries zero or one, over a field of characteristic 0.
They can be characterized algebraically as semigroups whose von Neumann
regular elements are precisely the idempotents.
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There is also a well-known description of eigenvalues for random walks on
Cayley graphs of finite Abelian groups in terms of irreducible characters. By
combining the ideas of [4] with the proof of [17], we simultaneously generalize
these results to random walks on minimal left ideals of semigroups in the
pseudovariety DO(Ab) of finite semigroups whose regular J -classes are
orthodox semigroups with Abelian maximal subgroups. A more natural way
to describe DO(Ab) is as the pseudovariety of semigroups with a faithful
representation over the complex field C by upper triangular matrices.

Hopefully these various results make a convincing case for the importance
of Möbius functions in semigroup representation theory.

2. Möbius Functions

Let (P,≤) be a locally finite partially ordered set (that is, intervals are
finite) and A a unital ring. We identify the order ≤ with its graph

{(p, q) ∈ P × P | p ≤ q}.

The incidence algebra over A of P , which we denote A[[≤]], is the algebra of
functions f :≤→ A with the convolution product

f ∗ g(x, y) =
∑

x≤z≤y

f(x, z)g(z, y).

A[[≤]] is a ring with unit the Kronecker delta function δ [8, 33]. A function
f ∈ A[[≤]] is invertible if and only if f(x, x) is a unit of A for all x ∈ P . In
fact

• f−1(x, x) = f(x, x)−1

• f−1(x, y) = −f(x, x)−1
∑

x<z≤y f(x, z)f−1(z, y)

serves as an inductive definition of f−1.
The zeta function of P is the element of A[[≤]] that takes on the constant

value of 1. It is invertible over any ring A and the inverse is called the
Möbius function of P , denoted µ(x, y). Recall that an order ideal in a
partially ordered set P is a subset I such that x ≤ y ∈ I implies x ∈ I. If
p ∈ P , then p↓ denotes the principal order ideal generated by p. We observe
that the Möbius function for p↓ is the restriction of the Möbius function for
P .

The following is the Möbius Inversion Theorem [8, 33].

Theorem 2.1 (Möbius Inversion Theorem). Let (P,≤) be a locally finite
partially ordered set in which each principal ideal has a minimum and G
be an Abelian group. Suppose that f : P → G is a function and define
g : P → G by

g(x) =
∑

y≤x

f(y).

Then
f(x) =

∑

y≤x

g(y)µ(y, x).
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An inverse semigroup is a semigroup S such that, for each x ∈ S, there
is a unique y ∈ S such that xyx = x, yxy = y; one denotes y by x−1 [7, 11].
The idempotents of S commute and hence form a semilattice subsemigroup
[7, 11]. If S is an inverse semigroup, then (S,≤) is a partially ordered
set where x ≤ y if and only if xx−1y = x [7, 11]. This is equivalent to
yx−1x = x and to x ∈ E(S)y = yE(S) where E(S) is the semilattice of
idempotents of S. Notice that the order restricted to E(S) is the usual
order on idempotents given by e ≤ f if and only if e = ef = fe. Assume
that E(S) is finite. Then (S,≤) is locally finite. In fact, s↓ = sE(S) is finite;
moreover, it is isomorphic as a poset to the lattice of idempotents f ≤ ss−1

and hence has a minimum. It follows that the Möbius function µS of S is
completely determined by the Möbius function µE(S) of E(S) via

µS(t, s) = µE(S)(tt
−1, ss−1) = µE(S)(t

−1t, s−1s). (1)

The symmetric inverse monoid IX on a finite set X [7, 11] (also known
as the rook monoid [32]) is the inverse monoid of all partial permutations
of the set X. It can also be described as the monoid of all n× n monomial
matrices with entries consisting of only zeroes and ones (also called rook
matrices since they correspond to placements of non-attacking rooks on an
n × n chessboard) [7, 32]. In this case, E(IX) ∼= 2X ordered by inclusion.
The Möbius function of 2X is well known [8, 33]:

µ2X (Y,Z) = (−1)|Z|−|Y |.

Hence by (1), for t ≤ s,

µIX (t, s) = (−1)rank(s)−rank(t) (2)

where rank(s) = |dom(s)| = |ran(s)|. In this note we shall view elements of
IX as acting on the right of X.

3. Groupoids and Groupoid Algebras

By a groupoid, we mean a small category in which all arrows are isomor-
phisms. A small category is a category whose objects form a set rather than
a class[12]. We use the notation dom, ran for respectively the domain and
range of an arrow. We follow the convention above and define composition
fg when ran(f) = dom(g). One says G is connected if G(e, f) 6= ∅ for all
objects e and f . Connected components are defined in the natural way. If
e is an object, the local group is Ge = G(e, e). If e is isomorphic to f , then
Ge and Gf are conjugate in G and hence isomorphic. We identify G with
its arrow set, rather than having two distinct notations.

A typical example is the groupoid whose objects are the subsets of a finite
set X and whose arrows are isomorphisms between these subsets. Clearly
this groupoid is entirely encoded by IX , but IX has extra structure since all
elements can be multiplied. We shall see that at the level of algebras, this
difference disappears. This holds more generally.
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Let A be a unital ring and G a groupoid. Then the groupoid algebra
[19] of G is the ring AG of all functions f : G → A of finite support with
multiplication given by convolution:

fg(z) =
∑

w, dom(w)=dom(z)

f(w)g(w−1z).

We identify an arrow g ∈ G with the characterstic function of {g}. One
can make G0 = G ∪ 0 into an inverse semigroup by defining all undefined
products to be 0; AG is then the contracted semigroup algebra of G0 [7].

If S is an inverse semigroup, then there is an associated groupoid [11, 26]
G(S) with objects E(S) and arrows

G(s) = ss−1 s
−→ s−1s.

The composition is the restriction of the multiplication of S. The identity
at e is G(e). The groupoid G(IX ) is the groupoid discussed above.

The following proposition is obvious.

Proposition 3.1. Let G be a groupoid with connected components Gi, i ∈ I.
Then AG ∼=

⊕

i∈I AGi.

Now we study the structure of the algebra of a connected groupoid with
finitely many objects. This is essentially due to Munn [14, 7], using inverse
semigroup language. If A is a ring, Mn(A) will denote the ring of n × n
matrices over A.

Theorem 3.2. Let G be a connected groupoid with object set {1, ..., n}.
Then AG ∼= Mn(AG[1]) where G[1] is the connected component of the object

1. The identity matrix is given by
∑n

i=1 1i.

Proof. Fix, for each i, an element pi ∈ G(1, i). We take p1 = 11. Define a
map ϕ : AG→Mn(AG[1]) on a basis element g ∈ G(i, j) by

ϕ(g) = pigp
−1
j Eij

where Eij is the matrix unit. Then if g ∈ G(i, j), g ′ ∈ G(j, k), one calculates

ϕ(g)ϕ(h) = pigp
−1
j pjhp

−1
k = pighp

−1
k = ϕ(gh).

Thus ϕ induces a homomorphism.
If we define ψ : Mn(AG[1]) → AG on basis elements by ψ(gEij) = p−1

i gpj ,
then clearly ϕψ and ψϕ are the identity on basis elements and so ϕ is an
isomorphism.

The last statement is clear since

ϕ

(

n
∑

i=1

1i

)

=
n
∑

i=1

pip
−1
i Eii =

n
∑

i=1

Eii.

�
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In the case of G(IX ), two elements are in the same connected component
if and only if they have the same rank. If Jr is the component of elements of
rank r, the natural object to choose is the identity of the set [r] = {1, . . . , r}.
If K is any subset of size r, the natural choice of p1K

is the unique order-
preserving map from [r] to K.

4. The Schützenberger Representation and the Isomorphism of

Algebras

Let S be an inverse semigroup with E(S) finite and let µ be its Möbius
function. Let A be a unital ring. Two elements s, t of an inverse semigroup
are said to be D-equivalent if G(s) and G(t) are in the same connected
component [11, 7]. If e ∈ E(S), the maximal subgroup at e is denoted
He; it is the same as the local group at e of G(S). If D is a D-class of
S, then the Schützenberger representation with respect to D is the map
ϕD : S → AG(D) given by

ϕD(s) =
∑

t≤s, t∈D

G(t). (3)

This representation is normally expressed in terms of monomial matrices (or
so-called rook matrices) over He [7, 27] and was defined by Schützenberger
[27] in a more general context. Indeed, suppose E(D) = {e1, . . . , en} and
consider the isomorphism AG(D) ∼= Mn(He). Then (using the above nota-
tion)

ϕD(s) =
∑

ei≤ss−1, ej=s−1eis

pieisp
−1
j Eij , (4)

so ϕD(s) is a monomial matrix over He. See [24, 23] for more on the connec-
tion between the Schützenberger representation and semigroup representa-
tion theory in the general case.

Proposition 4.1. The Schützenberger representation ϕD : S → AG(D) is
a homomorphism.

Proof. First we calculate:

ϕD(s)ϕD(t) =





∑

s′≤s, s′∈D

G(s′)









∑

t′≤t, t′∈D

G(t′)



 (5)

=
∑

s′≤s, t′≤t, s′,t′,s′t′∈D

G(s′t′) (6)

Suppose now that u ∈ D and u ≤ st. Then uu−1stu−1u = u. Hence
uu−1s, tu−1u ∈ D and uu−1s ≤ s, tu−1u ≤ t. Thus G(u) appears (6). It
follows that ϕD(st) = ϕD(s)ϕD(t). �

Since each D-class contains an idempotent, our assumption that E(S)
is finite implies we have finitely many D-classes. Thus we can define the
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Schützenberger representation ϕ : S → AG(S) by

ϕ(s) =
∑

D

ϕD(s) =
∑

t≤s

G(t), (7)

where the middle sum runs over all the D-classes of S. Since AG(S) ∼=
⊕

D AG(D), this is a well defined homomorphism.

Theorem 4.2. Let S be an inverse semigroup with E(S) finite. Let µ be the
Möbius function for (S,≤). Then the Schützenberger representation extends
to an isomorphism ϕ : AS → AG(S). The inverse ψ : AG(S) → AS is
given on the basis by

ψ(G(s)) =
∑

t≤s

tµ(t, s). (8)

Proof. All that remains to be proved is that ϕ and ψ are inverses. Indeed

ϕψ(G(s)) = ϕ





∑

t≤s

tµ(t, s)





=
∑

t≤s

ϕ(t)µ(t, s)

= G(s)

where the last equality follows from the Möbius Inversion Theorem and (7).
Conversely,

ψ(ϕ(s)) = ψ





∑

t≤s

G(t)





=
∑

t≤s

ψ(G(t))

=
∑

t≤s

∑

u≤t

uµ(u, t)

=
∑

u≤s

u
∑

u≤t≤s

µ(u, t)ζ(t, s)

=
∑

u≤s

uδ(u, s) = s

Thus ψ is inverse to ϕ and hence they are isomorphisms. �

We remark that if S is a finite semilattice, then the groupoidG(S) consists
of just the identities at the idempotents and so AG(S) is then just the direct
product of |E(S)| copies of the ring A. The isomorphism then reduces to
the case studied in [30, 33].

The following consequence of Theorems 3.2 and 4.2 is due essentially to
Munn [14, 15, 18, 7], the new twist being the explicit description of the



8 BENJAMIN STEINBERG

central idempotents (which had been observed by Solomon [32] and Dlab,
amongst others for IX). If s ∈ S, we denote by Ds the D-class of s.

Theorem 4.3. Let S be an inverse semigroup with |E(S)| < ∞ and A a
unital ring. Then

AS ∼= AG(S) ∼=
⊕

e∈E(S)/D

M|E(De)|(He).

The central idempotent corresponding to a D-class D in this decomposition
is given by the formula:

eD =
∑

f∈D

∑

e≤f

eµ(e, f).

The special case of S = IX (X finite) and D = Jr, gives the famous
formula

eJr =
∑

Z⊆X, |Z|=r

∑

Y⊆Z

(−1)|Z|−|Y |1Y .

In fact, one has the following theorem.

Theorem 4.4. Let In be the symmetric inverse monoid on n letters, Sr the
symmetric group on r letters and A a unital ring. If K ⊆ {1, . . . , n} with
|K| = r, let pK : {1, . . . , r} → K be the unique order-preserving bijection.
Then there is an isomorphism

ϕ : AIn →
n
⊕

r=0

M(n
r)

(ASr)

given by

ϕ(s) =
∑

K⊆dom(s)

pKs|Kp
−1
KsEK,Ks

with inverse given on basis elements σ ∈ Sr and EK,J with |K| = r = |J | by

σEK,J 7−→
∑

X⊆K

(−1)|K|−|X|(p−1
K σpJ)|X .

Theorem 4.3 recovers Munn’s result on the semisimplicity of finite inverse
semigroup algebras.

Corollary 4.5. Let S be a finite inverse semigroup and K a field. Then
KS is semisimple if and only charK - |He| for each idempotent e.

5. Characters of Inverse Semigroups

Let K be a field and S a finite inverse semigroup. Theorem 4.3 implies
that the irreducible representations of S are in bijection with the irreducible
representations of maximal subgroups. Suppose ψ : He → Mn(K) is an
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irreducible representation. Set D = De and |E(D)| = k. Then ψ extends to
an irreducible representation ψ∗ : Mk(He) →Mnk(K) by

ψ∗(
∑

ij

gijEij) = ψ(gij) ⊗Eij

(see [24, 23] for a more general result relating irreducible representations to
the Schützenberger representation). Hence the corresponding irreducible
representation ψSHe

: S → Mnk(K) is given by ψ∗ϕD where ϕD is the
Schützenberger representation (4) by monomial matrices over He. The rep-
resentation ψSHe

is hence by block monomial matrices, the blocks coming
from ψ. To calculate the character χψS

He
, it suffices to calculate the diagonal

elements of ϕD(s) and take their character with respect to ψ. From (4) we
obtain the formula

χψS
He

(s) =
∑

f∈D, f≤ss−1, f=s−1fs

χψ(pfsp
−1
f ), (9)

where for each f ∈ E(D), we have chosen pf ∈ D with pfp
−1
f = e, p−1

f pf = f .
Using this, one can compute in principle the characters of a finite inverse

semigroup, knowing the characters of the maximal subgroups. We mention
the observation, made independently by McAlister, Munn and Rhodes and
Zalcstein [16, 13, 24], that if s ∈ S and sω is the unique idempotent power of
s, then it follows easily from (9) that, for any character χ of s, χ(s) = χ(ssω).
Thus one need only calculate characters on group elements. This allows one
to define a character table, which is invertible as a matrix [16, 13, 24].

We end this section by computing the central primitive idempotent asso-
ciated to an irreducible representation of S.

Theorem 5.1. Suppose S is a finite inverse semigroup, K is a field such
that char(K) - |He| for all e ∈ E(S). Let µ be the Möbius function of S.
Let χ be an irreducible character of S coming from a D-class D. Then the
central primitive idempotent corresponding to χ is given by

eχ =
∑

e∈E(D)





χ(e)

|He|

∑

s∈He

χ(s)
∑

t≤s

t−1µ(t, s)



 . (10)

Proof. If H is a finite group, then it is well known that the central primitive
idempotent associated to a character χ0 is

eχ0
=
χ0(1)

|H|

∑

h∈H

χ0(h)h
−1.

Hence if χ∗
0 is the induced character on Mn(KH), clearly the associated

central primitive idempotent is

eχ∗
0

=

n
∑

i=1

eχ0
Eii.
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The theorem now follows from our previous results and the fact that inver-
sion is an order isomorphism between s↓ and (s−1)↓. �

Of course (9) shows how to write (10) entirely in terms of the characters
of the maximal subgroups.

5.1. Semisimple Semigroup Algebras and the Möbius Function. We
briefly remark on another application of Möbius functions, although this is
really more of a remark than anything else.

Let S be a finite semigroup. Then Munn [7] gave necessary and sufficient
conditions for the semigroup algebra KS over a field K to be semisimple.
An element s ∈ S is called (von Neumann) regular if there exists t ∈ S
such that sts = s. A necessary condition for KS to be semisimple is that
all elements of S are regular [7]. Let us recall Green’s quasi-order ≤J [7].
Define s ≤J t if s is in the principal two-sided ideal generated by t. We
write s J t if s ≤J t and t ≤J s. Then the set of J -classes is a partially
ordered set denoted S/ J . For finite semigroups, J and D coincide [7]. Let
µ be the Möbius function of ≤J on S/ J .

There is a sequence of principal two-sided ideals I0 ⊂ I1 . . . ⊂ In = S of S
such that Ij/Ij−1 = J0

j for some J -class Jj; moreover all J -classes arise in

this way [7]. In the case that KS is semisimple, then the algebras KIj and
KIj/KIj−1 = K0J

0
j are semisimple (here K0J

0 is the contracted semigroup

algebra of J0 [7]). Hence KIj has an identity ηJj
. By semisimplicity, K0J

0
j

is an internal direct summand of KIj. Let εJj
be the corresponding central

orthogonal idempotent. Then it is easy to see that

ηJj
=

∑

J≤J Jj

εJ

We thus obtain the following formula via Möbius inversion:

εJj
=

∑

J≤J Jj

ηJµ(J, Jj).

M. Putcha (unpublished) has a related formula relating these idempotents
in terms of coset representatives.

6. Random Walks on Finite Semigroups

A semigroup is called a band if every element is idempotent. A left reg-
ular band is a band satisfying the identity xyx = xy; in other words left
regular bands are R-trivial bands, where R is Green’s relation associated to
principal right ideals [7]. Examples include the face semigroups associated
to hyperplane arrangements [4, 5].

Recall that if S is a finite semigroup with finite generating set X and
{wx}x∈X are weights describing a probability measure supported by X, then
the left random walk on S is the Markov chain on the set S whose probability
of transition from s to t is

∑

x∈X, xs=twx. The interpretation is that a walker
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starts at the vertex s of the left Cayley graph of S and moves along the edge
labelled by x with probability wx. Results of Rosenblatt [25] show that such
a walk eventually enters a minimal left ideal L and so it is customary to
restrict the Markov chain to the subset L. The transition matrix is easily
seen to be independent of the choice of L since all minimal left ideals are
isomorphic via right multiplication by a semigroup element [7].

An algebraic way to describe the transition matrix is to consider the
semigroup algebra CS. Then CL is a left ideal and one easily verifies (c.f.
[5, 6]) that if we take L as a basis for CL and take the matrix for the element

M =
∑

x∈X

wxx,

then the transition matrix for our Markov chain is the transpose of the
matrix for M .

Bidigare et al. used representation theory to compute the eigenvalues and
their multiplicities for face algebras of hyperplane arrangements [4]. Brown
extended this to left regular bands [5] and then to bands [6]. In this section
we generalize these results to the largest class of semigroups for which they
hold.

On the other hand, it is well known [17] that the eigenvalues of the random
walk on an Abelian group G correspond to the irreducible characters. More
precisely, if G is a finite Abelian group generated by a subsetX and {wx}x∈X
is a probability distribution on X, then the eigenvalues of the transition
matrix are of the form λχ where χ is an irreducible character of G and

λχ =
∑

x∈X

wx · χ(x). (11)

In this section we obtain a simultaneous generalization of the results of
[4, 5, 6] and (11). Unfortunately, this section will also assume quite a bit
more of background in semigroup theory than the previous sections.

6.1. Representations for semigroups in DO(Ab). The class DO(Ab)
consists of all finite semigroups whose regular J -classes are orthodox semi-
groups and whose maximal subgroups are Abelian [1]. The maximal sub-
group of a finite semigroup S at an idempotent e is the group of units of
the submonoid eSe; it depends only on the J -class of e up to isomorphism
[1, 7]. A regular semigroup is called orthodox if its idempotents form a
subsemigroup [7].

Alternatively, S ∈ DO(Ab) if and only if it admits a surjective homomor-
phism ϕ : S � I, with I a commutative inverse semigroup, such that the
inverse image under ϕ of each idempotent is a locally trivial semigroup (see
[2, Proposition 3.2] and [28, 1]). A semigroup T is locally trivial if eTe = e
for all idempotents e ∈ T , or equivalently T is a nilpotent extension of a
simple semigroup. A nicer description of DO(Ab) is as the class of finite
semigroups admitting a faithful complex representation by upper triangular
matrices (see below).
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A semigroup is called aperiodic if its maximal subgroups are trivial. The
class of aperiodic members of DO(Ab) is denoted DA. It consists of those
finite semigroups whose regular elements are precisely the idempotents [1].
In particular, every band belongs to DA and the regular semigroups in
DA are precisely bands. Alternatively, DA consists of all finite semigroups
admitting a surjective homomorphism ϕ : S � E, with E a semilattice, such
that the inverse image under ϕ of each element is a locally trivial semigroup
[28, 1, 2].

The following result was proved in [3], although one could deduce it with
a little work from the results of [23, 24].

Theorem 6.1. Let S be a finite semigroup. Then the following are equiva-
lent:

(1) S ∈ DO(Ab) (respectively, S ∈ DA);
(2) Every irreducible complex representation of S is a homomorphism

ϕ : S → C (respectively, every irreducible representation of S over a
field of characteristic 0 is a homomorphism ϕ : S → {0, 1});

(3) Every complex representation of S is equivalent to one by upper tri-
angular matrices (respectively, every representation of S over a field
of characteristic 0 is equivalent to one by upper triangular matrices
with zeroes and ones on the diagonal);

(4) S admits a faithful complex representation by upper triangular matri-
ces (respectively, S admits a faithful representation over the rationals
by upper triangular matrices with zeroes and ones on the diagonal).

The key ingredient to prove this theorem is the following result from [3].

Theorem 6.2. Let K be a field of characteristic 0 and ϕ : S → T a ho-
momorphism of finite semigroups. Then the induced map KS → KT has
nilpotent kernel if and only if, for each idempotent e ∈ T , ϕ−1(e) is a locally
trivial semigroup.

It follows that if S ∈ DO(Ab) (respectively, S ∈ DA) and ϕ : S → I
(respectively, ϕ : S → E) is the map alluded to above with I a commutative
inverse semigroup (respectively, E a semilattice) such that the inverse image
of each idempotent is locally trivial [1], then the induced map ϕ : KS → KI
(respectively, ϕ : S → E) is the semisimple quotient for any field K of char-
acteristic 0. Here we are using that the semigroup algebra of a finite inverse
semigroup is semisimple in characteristic 0. From here we can easily com-
pute the irreducible representations and the eigenvalues (with multiplicities
for semigroups in DA) for the random walk on a minimal left ideal of a
semigroup in DO(Ab).

To do this we first describe I and ϕ. Details can be found, for instance, in
[2, Proposition 3.2] or [1]. Since we care primarily about the representations
of I, we just describe G(I) and E(I). When S ∈ DO(Ab), it turns out
that the set E of regular J -classes ordered by ≤J is a meet semilattice.
Fix a maximal subgroup HJ for each regular J -class J ∈ E (the choice of
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idempotent from J does not change the group up to isomorphism [7, 1]);
let eJ be the identity of HJ . The inverse semigroup I has semilattice of
idempotents E. The groupoid G(I) has object set E. If J, J ′ are regular
J -classes of S, then

G(I)(J, J ′) =

{

HJ J = J ′

∅ J 6= J ′.

The map ϕ : S → I is given by

s 7−→ eJsω seJsω ∈ HJsω = G(I)(Jsω , Jsω)

where Jsω is the J -class of sω. The multiplication in I is the unique multi-
plication making ϕ a homomorphism. In the case S ∈ DA, the semilattice
E is the set of regular J -classes of S and the map ϕ takes s to the J -class
of sω.

The results of Section 4, applied to the commutative inverse semigroup
I, show that the irreducible representations of I are parameterized by pairs
of the form (J, χ), with J ∈ E and χ an irreducible character of the Abelian
group HJ . The associated irreducible representation ψ(J,χ) of I has the
following formula, where s ∈ I and we recall that we are viewing regular
J -classes of S as idempotents of I,

ψ(J,χ)(s) =

{

χ(s · J) s ≥J J

0 else.

In the case that S ∈ DA we have, using [30], that the irreducible represen-
tations of E are of the form ψJ , J ∈ E, where

ψJ (J ′) =

{

1 J ′ ≥J J

0 else.

So if S ∈ DO(Ab), then its irreducible complex representations are of the
form ϕ(J,χ) where J is a regular J -class of S, χ is an irreducible character
of HJ and

ϕ(J,χ)(s) =

{

χ(eJseJ) s ≥J J

0 else.
(12)

In particular, each complex irreducible representation of S is one dimen-
sional. If the maximal subgroups of S have exponent 2, then each irreducible
representation of S is rational-valued.

Specializing to the case S ∈ DA, we see that the irreducible complex
representations are parameterized by regular J -classes. The representation
ϕJ associated to a regular J -class J is given by

ϕJ (s) =

{

1 s ≥J J

0 else.



14 BENJAMIN STEINBERG

6.2. Eigenvalues. We proceed to our main theorem of this section, which
extends the results of [4, 5, 6] as well as the results for Abelian groups [17]:

Theorem 6.3. Let S ∈ DO(Ab) with generating set X and let L be a
minimal left ideal. Assume that S has a left identity. Choose a maximal
subgroup HJ , with identity eJ , for each regular J -class J . Let {wx}x∈X be a
probability distribution on X. Then the transition matrix for the left random
walk on L can be placed in upper triangular form over C. Moreover, there
is an eigenvalue λ(J,χ) for each regular J -class J and irreducible character
χ of HJ given by the formula:

λ(J,χ) =
∑

x∈X, x≥J J

wx · χ(eJxeJ). (13)

Proof. Let ρ : S → EndC(CL) be the representation induced via left multi-
plication. Let

M =
∑

x∈X

wxx ∈ CS.

Then the matrix in which we are interested is the transpose of the matrix
for the operator ρ(M), so we may restrict attention to M .

By choosing a composition series for the left CS-module CL and recall-
ing that the complex irreducible representations of S are one dimensional,
we may choose a basis for CL so that ρ is in upper triangular form with
the irreducible constituents of ρ on the diagonal (c.f. Theorem 6.1). Our
assumption that S has a a left identity guarantees that the zero represen-
tation does not appear in our composition series. Hence ρ(M) is in upper
triangular form and the diagonal elements are just the values of ϕ(J,χ)(M),
J a regular J -class and χ an irreducible character of HJ , with multiplicity
the same as the multiplicity of ϕ(J,χ) as a constituent of ρ. But (12) gives
us that

ϕ(J,χ)(M) =
∑

x∈X

wx · ϕ(J,χ)(x) =
∑

x∈X, x≥J J

wx · χ(eJxeJ ) = λJ ,

establishing (13). �

We remark that the case where S is an Abelian group gives (11). It
is possible that the eigenvalue λ(J,χ) can appear with multiplicity zero. We
leave it as an open question to determine the multiplicities in this generality.
However, if we restrict ourselves to DA, we can calculate the multiplicities
of the eigenvalues as well, generalizing the results of [4, 5, 6].

To state our result, we need one last notation. Let J be a regular J -
class of S and e ∈ J an idempotent (recall that each regular J -class has an
idempotent [7]). Define

cJ = |eS ∩ L| (14)

First we observe that cJ is independent of the choice of e. Indeed, any two
principal right ideals generated elements of J are in bijection via left multi-
plication by an element of S by Green’s Lemma [7]. Since left multiplication
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preserves L (L being a left ideal), it follows that if e, f ∈ J are idempotents,
then eS ∩ L and fS ∩ L are in bijection via left multiplication by some
element of S. Thus cJ is well defined.

Theorem 6.4. Let S ∈ DA with generating set X and let L be a minimal
left ideal. Suppose that S has a left identity. Let {wx}x∈X be a probability
distribution on X. Then the transition matrix for the left random walk on
L can be placed in upper triangular form over R. Moreover, there is an
eigenvalue λJ for each regular J -class J given by the formula

λJ =
∑

x∈X, x≥J J

wx (15)

with multiplicity mJ given by

mJ =
∑

J ′≤J J

cJ ′ · µ(J ′, J) (16)

where µ is the Möbius function of the semilattice of regular J -classes of S
(and the sum in (16) only includes regular J -classes J ′).

Proof. This time we let ρ : S → EndR(RL) be the representation induced
via left multiplication and let

M =
∑

x∈X

wxx ∈ RS.

As before we are interested in the eigenvalues of M . Since the irreducible
representations over R of S take on only the values 0 and 1 (Theorem 6.1),
we can place, as in the previous theorem, ρ into upper triangular form,
but this time over R, with the irreducible constituents of ρ appearing on
the diagonal with their multiplicities as constituents of ρ. Again the zero
representation does not appear because S has a left identity. Theorem 6.3
implies (15) (recalling that HJ is trivial for each J), so we just need to
calculate the multiplicities. We follow the approach of [5, 6].

To calculate the multiplicity of ϕJ , choose an idempotent e ∈ J . Since
e = e2, ρ(e) is a projection and hence its eigenvalues are zero and one. The
multiplicity of one is just the rank of ρ(e). But it is clear that ρ(e)(RL) is
the linear span of eL = eS ∩ L. Hence ρ has rank cJ . But counting this
multiplicity via the ϕJ ′ , we obtain

cJ =
∑

J ′≤J J

mJ ′ . (17)

An application of Möbius inversion to (17) then gives (16), completing the
proof. �

We remark that it is possible that mJ = 0, meaning that λJ does not
really occur.

Many well known Markov chains [4, 5, 6] have been obtained by consid-
ering left regular bands, including the Tsetlin library [5, 6], which can be
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obtained by taking the free left regular band. It would be interesting to find
more examples using semigroups from DA.
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