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REPRESENTATION THEORY OF FINITE SEMIGROUPS,
SEMIGROUP RADICALS AND FORMAL LANGUAGE THEORY

JORGE ALMEIDA, STUART MARGOLIS, BENJAMIN STEINBERG,
AND MIKHAIL VOLKOV

Abstract. In this paper we characterize the congruence associated to the
direct sum of all irreducible representations of a finite semigroup over an ar-
bitrary field, generalizing results of Rhodes for the field of complex numbers.
Applications are given to obtain many new results, as well as easier proofs of
several results in the literature, involving: triangularizability of finite semi-
groups; which semigroups have (split) basic semigroup algebras, two-sided
semidirect product decompositions of finite monoids; unambiguous products
of rational languages; products of rational languages with counter; and Černý’s
conjecture for an important class of automata.

1. Introduction

For over 100 years, the theory of linear representations has played a fundamental
role in studying finite groups, finite dimensional algebras and Lie algebras as well as
other parts of algebra. By way of contrast, the theory of semigroup representations,
which was intensively developed during the 1950s and 1960s in classic work such
as Clifford [15], Munn [29, 30] and Ponizovsky (see [16, Chapter 5] for an account
of this work, as well as [26, 56] for nicer treatments restricting to the case of finite
semigroups) has found almost no applications in the theory of finite semigroups. It
was pointed out by McAlister in his survey of 1971 [28] that the only paper applying
representation theoretic results to finite semigroups was the paper [51] of Rhodes.
This paper determined the congruence on a finite semigroup S associated to the
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direct sum of the irreducible representations of S over the field of complex numbers.
Rhodes applied this result to calculate the Krohn-Rhodes complexity [24, 25] of
completely regular semigroups. Around the time of McAlister’s survey, there also
appeared a paper of Zalcstein [72] trying to apply representation theory to finite
semigroup theory.

For many years, the representation theory of finite semigroups remained dor-
mant until Putcha, in a series of papers (cf. [43, 44, 45, 46] and others), revived the
theme. Putcha was primarily interested in relating semigroup theory with modern
areas in representation theory such as quasi-hereditary algebras, weights for repre-
sentations of finite groups of Lie type and with calculating quivers of algebras of
finite semigroups. However, his research was not aimed at applying the represen-
tation theory of semigroups to the study of finite semigroups in their own right.
While to some extent we continue in the vein of relating finite semigroup theory
to the rest of modern algebra — for instance we determine over an arbitrary field
K which finite semigroups have basic or split basic semigroup algebras over K —
we very much focus on using representation theory precisely for the purpose of
answering questions from finite semigroup theory. We are particularly interested
in varieties of finite semigroups and their connections with formal language theory
and other aspects of theoretical computer science, as exposited in the two treatises
by Eilenberg [18]. Nonetheless we expect that the first four sections of this paper
should be of interest to readers in Algebraic Combinatorics, Representation Theory
and Finite Semigroup Theory.

Let us briefly survey the contents of the paper. Following the preliminaries, we
define the Rhodes radical of a finite semigroup S with respect to a field K to be the
congruence on S induced by the Jacobson radical of its semigroup algebra KS over
K. Using classical Wedderburn theory, we give a more conceptual proof of Rhodes’s
characterization [51] of this radical in characteristic zero and extend it to charac-
teristic p. Further, the radical is shown to be intimately related with the Mal’cev
product, which is an integral part of the varietal theory of finite semigroups. We
also give an alternative semigroup representation theoretic proof of the description
of the Rhodes radical, along the original lines of Rhodes [51], that allows a more
precise and usable characterization of the radical.

Part of our aim is to render things in a form understandable to both specialists
and non-specialists. Recent work of Bidigaire et al. [10] and Brown [12, 13], for
instance, spends quite some time in redeveloping basic aspects of the representation
theory of idempotent semigroups (known as bands) that were already in the litera-
ture [28, 56, 31, 26], but perhaps not in a form accessible to most mathematicians.
Our results handle the general case in a form that both semigroup theorists as well
as workers in finite dimensional algebras, group representation theory and other
related fields should find useful.

We then proceed to applications. The first application gives abstract, algebraic
characterizations of finite semigroups that are triangularizable over a field K; in the
language of the theory of finite dimensional algebras, we characterize those finite
semigroups whose semigroup algebras are split basic K-algebras. The case of a
finite field was handled by three of the authors in [4] without using representation
theory, leading to a much more complicated proof. Here we handle all fields K in a
uniform manner by simply characterizing those semigroups all of whose irreducible
representations over K have degree one. It turns out that the collection of finite
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semigroups triangularizable over a given field K is a variety of finite semigroups
(that of course depends on K) and that those “triangularizable” varieties are in
fact some of the most commonly studied varieties in finite semigroup theory.

Our next application is to obtain simpler proofs of some bilateral semidirect
product decomposition results of Rhodes, Tilson and Weil [54, 55] using repre-
sentation theory. The original proofs rely on a case-by-case analysis of Rhodes’s
classification of maximal proper surjective morphisms.

After purely algebraic applications, we switch to those dealing with important
objects of theoretical computer science such as formal languages and finite au-
tomata. We use modular representation theory to give simpler proofs of results of
Péladeau and Weil [36, 71] on marked products with modular counter and char-
acteristic zero representation theory to obtain simpler proofs of results of Pin,
Straubing and Thérien [41] on unambiguous marked products. Our final applica-
tion uses representation theory to confirm the longstanding Černý conjecture on
synchronizing automata in the special case that the transition monoid belongs to
the much-studied variety DS.

Further applications of our results have been obtained by the third author [62,
63]; in particular the results of Bidigaire et al. [10] and Brown [12, 13] on random
walks on hyperplane arrangements and on bands have been extended to the varieties
DA and DO ∩Ab, which is as far as these results can be extended.

We have tried to make the representation part (Section 3) of this paper accessi-
ble both to readers from semigroup theory and readers familiar with representation
theory from other contexts. Having the latter category of readers in mind, in the
next section we give a concise overview of standard notions and terminology of
semigroup theory needed for the representation part. The application part (Sec-
tions 4–7) requires further background in semigroup theory, formal languages and
automata.

2. Preliminaries

Good sources for semigroup theory, in particular finite semigroup theory, are [16,
25, 18, 40, 1]. Here we introduce some standard notions and terminology. The
reader is welcome to skip this section, referring back only as needed.

A congruence on a semigroup S is an equivalence relation ≡ such that

s ≡ s′ =⇒ ts ≡ ts′, st ≡ s′t

for all s, s′, t ∈ S. Left and right congruences are defined analogously. If ϕ : S → T
is a morphism, then the congruence associated to ϕ is defined by s ≡ϕ t if and only
if sϕ = tϕ.

An idempotent e of a semigroup is an element such that e = e2. It is well known
that in a finite semigroup S some power of each element is an idempotent; namely,
for all s ∈ S, one verifies that s|S|! is an idempotent. The set of idempotents of a
semigroup S is denoted E(S). It is a partially ordered set via the order

(2.1) e ≤ f ⇐⇒ ef = fe = e.

A semilattice E is an idempotent commutative semigroup. In this case, the order
(2.1) has all finite meets, the meet being given by the product in E.

A right ideal of a semigroup S is a subset R such that RS ⊆ R. Left ideals
and (two-sided) ideals are defined similarly. If s ∈ S, we use R(s), L(s), J(s) for
the respective right, left and two-sided principal ideals generated by s. This leads
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to the definitions of Green’s relations [20, 25, 16], which play an essential role in
semigroup theory. We define an equivalence relation R on S by setting, for s, t ∈ S,
s R t if and only if R(s) = R(t); in this case one writes Rs for the R-class of s.
One similarly defines the equivalence relations L and J , whose classes of s are
denoted Ls and Js, respectively. Define s H t if s R t and s L t; the H-class of
s is denoted Hs. There are also associated preorders. For instance, s ≤R t if and
only if R(s) ⊆ R(t). It is easy to see that R is a left congruence and L is a right
congruence.

In a finite semigroup (or even in an algebraic semigroup [42, 48]), the following
stability relations hold [25]:

s J st ⇐⇒ s R st, t J st ⇐⇒ t L st.

From these relations, it follows that in a finite semigroup, if s J t, then there exists
u ∈ S such that s R u L t and v ∈ S such that s L v R t. In the case that Js is a
subsemigroup one can take u and v to be idempotents as every H-class within Js

contains an idempotent.
An element s ∈ S is called (von Neumann) regular if s ∈ sSs. In a finite

semigroup, s is regular if and only if Js contains an idempotent if and only if
Rs contains an idempotent if and only if Ls contains an idempotent. A J -class
(respectively, R-class, L-class) is called regular if it contains an idempotent. If e
is an idempotent, then He is a group, called the maximal subgroup at e. It is the
group of units of the local monoid eSe and so it is the largest subgroup of S with
identity e. By a subgroup of a semigroup S, we mean simply a subsemigroup that is
a group; it need not have the same identity as S in the case that S is a monoid. The
local monoid eSe is the largest subsemigroup of S with identity e. For example, if
S is the monoid of n×n matrices over K and e is an idempotent of rank r, then eSe
is isomorphic to the monoid of r × r matrices over K and the maximal subgroup
He is isomorphic to the general linear group of degree r over K.

If S is a semigroup, we set S1 to be S with an adjoined identity if S is not a
monoid and S otherwise. We shall frequently use the following fact: suppose that
e, f ∈ E(S); then

e L f ⇔ ef = e, fe = f,

e R f ⇔ ef = f, fe = e.
(2.2)

For instance, if e L f , then e = xf for some x ∈ S1. Hence

ef = xff = xf = e;

the other equalities are handled similarly.
A semigroup is called simple if it has no proper (two-sided) ideals. A semigroup

S with 0 is called 0-simple if S2 = {st | s, t ∈ S} 
= 0 and the only ideals of S are
{0} and S. Finite simple semigroups and finite 0-simple semigroups were classified
up to isomorphism by Rees and Suschewitsch [16]. We shall need in the sequel only
the following properties that are the content of [68, XI. Propositions 1.2–1.4].

Proposition 2.1. Let S be a finite simple semigroup. Then every element of S
belongs to a subgroup of S. For any idempotents e, f ∈ S, there exist x ∈ eSf and
y ∈ fSe such that e = xy and f = yx. Moreover, eSe is the group He, fSf is the
group Hf and the map He → Hf given by h �→ yhx is a group isomorphism.
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This proposition says that the idempotents of a simple semigroup are conjugate
and that the local monoids are the maximal subgroups; moreover, they are all
isomorphic to the same group.

An ideal of a semigroup S is called minimal if it contains no other ideal of S;
the minimal ideal of a finite semigroup is a simple semigroup and is a regular J -
class [16]. An ideal of a semigroup S with 0 is called 0-minimal if the only ideal of
S properly contained in it is {0}; a 0-minimal ideal I of a finite semigroup is either
0-simple (and then I \ {0} is a regular J -class) or it is null, meaning I2 = 0.

The following definition, introduced by Eilenberg and Schützenberger [19, 18], is
crucial in finite semigroup theory. A class V of semigroups closed under formation of
finite direct products, subsemigroups and homomorphic images is called a variety of
finite semigroups (or sometimes a pseudovariety of semigroups). Varieties of finite
monoids and groups are defined analogously. We remark that in universal algebra,
the term variety is used differently, but since we shall not consider such varieties,
no confusion should arise.

Some varieties that shall play an important role in this paper are the trivial
variety I (containing only the trivial semigroup) and the variety of finite p-groups
(p a prime) Gp. The variety of finite Abelian groups is denoted Ab. The variety
of finite semilattices is denoted Sl.

The following notion shall be used throughout this paper. If V is a variety of
finite semigroups, a morphism ϕ : S → T is called a V-morphism if, for each
idempotent e ∈ T , its preimage eϕ−1 (which is then a subsemigroup in S) belongs
to V. The congruence associated to a V-morphism is called a V-congruence. In
other words, a congruence on S is a V-congruence if and only if all its congruence
classes that are subsemigroups belong to V. For instance, if ϕ : G → H is a group
homomorphism, then ϕ is a V-morphism if and only if kerϕ ∈ V.

Finally, we recall two fundamental varietal constructions. If V is a variety of
finite monoids, then LV denotes the class of all finite semigroups S such that, for
each idempotent e ∈ S, the local monoid eSe belongs to V. It is easy to see that
LV is a variety of finite semigroups. If V and W are varieties of finite semigroups,
their Mal’cev product V©m W consists of all finite semigroups S such that there
is a finite semigroup T mapping homomorphically onto S such that T admits a
V-morphism to a semigroup in W. Again, it is well known and easy to verify that
V©m W is a variety of finite semigroups.

The most important example is when V is a variety of finite groups. A semi-
group is a local group if eSe is a group for each idempotent e. For instance, by
Proposition 2.1, simple semigroups are local groups. If one considers all n×n upper
triangular matrices over a field K that have a fixed zero/non-zero pattern on the
diagonal, we will see in Section 4 that one obtains a local group. Thus the monoid
of all upper triangular matrices is a disjoint union of local groups.

Our goal is to state the well-known version of Proposition 2.1 for local groups.
Unfortunately, even though this is folklore in semigroup theory, we could not pin-
point an exact reference. First we need the following well-known finiteness result,
which is a “Pumping Lemma” for finite semigroups [1, Proposition 5.4.1]. Set Sn to
be the ideal of S consisting of all elements of S that can be expressed as a product
of n elements of S.

Lemma 2.2 (Pumping Lemma). Let S be a semigroup with n elements. Then
Sn = SE(S)S.
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Now we can state the main property of local groups.

Proposition 2.3. Let S be a finite semigroup. Then the following are equivalent:
(1) S is a local group;
(2) Sn is a simple semigroup for some n > 0 (i.e. S is a nilpotent ideal exten-

sion of a simple semigroup);
(3) Sn is the minimal ideal of S for some n > 0 (i.e. S is a nilpotent extension

of its minimal ideal);
(4) S does not contain a semigroup isomorphic to the two-element semilattice

{0, 1} with multiplication.
Furthermore for any idempotents e, f ∈ S, there exist x ∈ eSf and y ∈ fSe such
that e = xy and f = yx. Moreover, the groups eSe and fSf are isomorphic via the
map eSe → fSf given by h �→ yhx.

Proof. Suppose first that (1) holds. Then (4) must hold since if {e, f} ⊆ S is
isomorphic to {0, 1} with e as the identity, then efe = f and so e, f ∈ eSe, showing
that eSe is not a group.

For (4) implies (3), let I be the minimal ideal of S. We show that E(S) ⊆ I.
Suppose e ∈ E(S)\I. Let s ∈ I be any element and set n = |S|. Then f = (ese)n! is
an idempotent belonging to I (so in particular f 
= e) and ef = fe = f . Thus {e, f}
is a subsemigroup isomorphic to {0, 1}. This contradiction shows that E(S) ⊆ I.
Now by the Pumping Lemma, if n = |S|, then Sn = SE(S)S ⊆ I. However,
SE(S)S is clearly an ideal, so I ⊆ SE(S)S. Hence Sn = I.

We noted that the minimal ideal of any finite semigroup is a simple semigroup so
the implication (3) implies (2) is trivial. For (2) implies (1), suppose that T = Sn

is a simple semigroup. Notice that E(S) ⊆ T and that eSe ⊆ T for any idempotent
e since e ∈ Sn for all n. Thus

eSe = e(eSe)e ⊆ eTe ⊆ eSe,

so eSe = eTe. But eTe is a group by Proposition 2.1. This proves (1).
The proof that (2) implies (1) shows that in a local group S with minimal ideal I,

one has that I contains all the idempotents of S and eSe = eIe for each idempotent
e of S. Proposition 2.1 then implies the final statement of the proposition. �

3. The Rhodes radical

3.1. Background and motivation. Let K be a field and S a finite semigroup.
The semigroup algebra of S over K is denoted KS. Recall that this is the K-vector
space with basis S and the multiplication extending the multiplication in S. If A
is a finite dimensional K-algebra (for instance KS), then it has a largest nilpotent
ideal Rad(A), called its (Jacobson) radical. Consider the composite mapping

S → KS → KS/Rad(KS);

this is a morphism of semigroups where the latter two are viewed with respect to
their multiplicative structure. We define RadK(S), called the Rhodes radical of S,
to be the associated congruence on S. Let us briefly discuss the role of the Rhodes
radical for the representation theory of finite semigroups.

Let V be a K-vector space of finite dimension n. Then EndK(V ) denotes the
monoid of K-endomorphisms of V . We shall identify EndK(V ) with the monoid
Mn(K) of n × n matrices over K whenever it is convenient. A representation
of a finite semigroup S over K of degree n is a morphism ρ : S → Mn(K) or,
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equivalently, a morphism ρ : S → EndK(V ) where V is an n-dimensional vector
space over K. It is easy to see that via ρ we can view V as a finite dimensional
(right) KS-module and that all finite dimensional (right) KS-modules arise in this
way. The regular representation of S is the faithful representation on the K-vector
space with basis S1 and where the action is induced by right multiplication of S on
the basis elements.

A subsemigroup S of EndK(V ) is called irreducible if there is no proper, non-zero
subspace of V that is invariant under S. A representation ρ : S → EndK(V ) of a
semigroup S is called irreducible if Sρ is an irreducible subsemigroup of EndK(V ).
A representation is irreducible if and only if the associated KS-module is simple.

It is well known that the radical Rad(A) of a finite dimensional K-algebra A is
the intersection of the kernels of the irreducible representations of A. Since every ir-
reducible representation ρ : S → EndK(V ) of a finite semigroup S uniquely extends
to an irreducible representation of the semigroup algebra KS, and vice versa, every
irreducible representation of KS restricts to an irreducible representation of S, we
conclude that the Rhodes radical RadK(S) of S is precisely the intersection of the
congruences of the form ≡ρ where ρ : S → EndK(V ) is an irreducible representation
of S. Thus, the Rhodes radical in the finite semigroup setting naturally corresponds
to the (Jacobson) radical in the setting of finite dimensional algebras. Moreover, in
spite of the fact that the irreducible representations of S and KS are basically the
same objects, we will see that working with the Rhodes radical RadK(S) has some
advantages over considering the radical Rad(KS) of the corresponding semigroup
algebra. The point is that, as we are going to show, the Rhodes radical RadK(S)
can be explicitly calculated in terms that are internal with respect to the semigroup
S, while determining the radical Rad(KS) requires studying invertibility of certain
matrices in the matrix ring over the algebras KH for all maximal subgroups H of
S (cf. [22]), which is, generally speaking, a highly non-trivial task.

Rhodes [51] calculated RadK(S) for K the field of complex numbers, but his
arguments work for any field of characteristic 0. Extensions of these results in a
more general context have been obtained by Okniński [32], but without the varietal
viewpoint [18] that we use to tie the results to language theory. Here we furnish
two descriptions of the Rhodes radical. The first proceeds via an argument using
the theory of finite dimensional algebras. Afterwards we give a description along
the lines of Rhodes [51], using the semigroup representation theory developed by
Clifford, Munn and Ponizovsky [16, 56, 26] and the semi-local theory of Krohn,
Rhodes and Tilson [25]. Both proofs are informative, the first being technically
easier, the second giving a more concrete description of the congruence.

Given a field K, let

GK =

{
I char K = 0,

Gp char K = p.

It is well known that this is the variety of finite groups that are “unipotent” over K
(i. e. a finite group G has a faithful unitriangular representation over K if and only
if G ∈ GK). This notation will allow us to phrase our results in a characteristic-free
manner.

We shall also often encounter the variety LGK . By Proposition 2.3, a finite
semigroup S belongs to this variety if and only if there is an integer n such that Sn

is a simple semigroup U , all of whose maximal subgroups are in GK . Equivalently,
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S ∈ LGK if and only if it does not contain a copy of the two element semilattice
{e, f | ef = fe = e2 = e, f2 = f} and the maximal subgroups of S belong to GK .

3.2. Rhodes radical via Wedderburn theory. Our first goal is to relate the
notion of a V-morphism to algebra morphisms.

Lemma 3.1. Let ϕ : A → B be a morphism of K-algebras with kerϕ nilpotent.
Let S be a finite subsemigroup of A. Then ϕ|S is an LGK-morphism.

Proof. Without loss of generality, we may assume that S spans A and hence that
A is finite dimensional. Let e0 ∈ E(B) and U = e0ϕ|−1

S . First we show that U does
not contain a copy of the two element semilattice. Indeed, suppose that e, f ∈ E(U)
and ef = fe = e. Then

(f − e)2 = f2 − ef − fe + e2 = f − e.

Since f − e ∈ ker ϕ, a nilpotent ideal, we conclude f − e = 0; that is, f = e.
Now let G be a maximal subgroup of U with identity e. Then g − e ∈ kerϕ.

Since g and e commute, if the characteristic is p, then, for large enough n,

0 = (g − e)pn

= gpn

− e

and so G is a p-group. If the characteristic is 0, then we observe that (g − e)n = 0
for some n (take n minimal). So by taking the regular representation ρ of G, we
see that gρ is a matrix with minimal polynomial of the form (gρ − 1)n; that is, gρ
is unipotent. A quick consideration of the Jordan canonical form for such gρ shows
that if gρ 
= 1, then it has infinite order. It follows that g = e and so G is trivial.
This completes the proof that U ∈ LGK . �

Let ϕ : S → T be a morphism and let ϕ : KS → KT denote the linear extension
of ϕ to the semigroup algebra KS. Our goal is to prove the converse of Lemma 3.1
for ϕ. Of particular importance is the case where T is the trivial semigroup. In this
case, kerϕ is called the augmentation ideal, denoted ωKS, and ϕ the augmentation
map. It is worth observing that if U is a subsemigroup of S, then the augmentation
map for U is the restriction of the augmentation map of S and hence ωKU =
ωKS ∩ KU . So we begin by giving a varietal characterization of finite semigroups
with nilpotent augmentation ideal.

First we prove a classical lemma showing how to find generators for the ideal
ker ϕ in terms of ϕ : S → T .

Lemma 3.2. Let ϕ : S → T be a morphism and let ϕ : KS → KT denote the
linear extension of f to the semigroup algebra KS. Then the set

X = {s1 − s2 | s1ϕ = s2ϕ}
generates the ideal ker ϕ as a vector space over K.

Proof. Clearly, X ⊆ kerϕ. Now take an arbitrary u =
∑

s∈S css ∈ kerϕ, where
cs ∈ K. Applying the morphism ϕ to u, we obtain

0 =
∑
t∈Sϕ

(
∑
sϕ=t

cs)t,

whence for each t ∈ Sϕ,

(3.1)
∑
sϕ=t

cs = 0
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as elements of T form a basis of KT . Now picking for each t ∈ Sϕ a representative
st ∈ S with stϕ = t and using (3.1), we can rewrite the element u as follows:

u =
∑
t∈Sϕ

(
∑
sϕ=t

cs(s − st)),

that is, as a linear combination of elements in X. �

We recall a standard result from the theory of finite dimensional algebras due to
Wedderburn [70].

Lemma 3.3. Let A be a finite dimensional associative algebra over a field K.
Assume that A is generated as a K-vector space by a set of nilpotent elements.
Then A is a nilpotent algebra.

The following can be proved using the representation theory of finite semigroups
or extracted from a general result of Ovsyannikov [34]. We give a simple direct
proof using the above lemma. A similar proof for groups can be found, for instance,
in [35].

Proposition 3.4. Let S be a finite semigroup. Then the augmentation ideal ωKS
is nilpotent if and only if S ∈ LGK .

Proof. Recall that ωKS is the kernel of the morphism KS → K induced by the
trivial morphism S → {1}; it consists of all elements

∑
s∈S css ∈ KS such that∑

s∈S cs = 0.
Suppose first that S ∈ LGK . By Lemmas 3.2 and 3.3, it suffices to prove that

s − t is a nilpotent element of KS for all s, t ∈ S.
We first make some reductions. By Proposition 2.3, there is an integer n such

that every product of at least n elements in S belongs to its minimal ideal U .
In particular, for all s, t ∈ S, (s − t)n belongs to KU ∩ ωKS = ωKU . Thus it
suffices to show ωKU is nilpotent. In other words, we may assume without loss of
generality that S is simple with maximal subgroups in GK , and we change notation
accordingly.

Since S is a simple semigroup, it constitutes a single J -class, whence, as observed
in Section 2, for every two s, t ∈ S, there exists an idempotent e ∈ S such that
s R e and e L t. Then

s − t = (s − e) + (e − t).

So the augmentation ideal of S is generated as a vector space by differences of
elements in either the same R-class or the same L-class, with one of them being an
idempotent.

Assume that s R e or s L e and let f = f2 be the idempotent in the H-class of
s. Then

s − e = (s − f) + (f − e).

Thus we see that the augmentation ideal is generated as a vector space by elements
that are either the difference of an element and the idempotent in its H-class or
the difference of two idempotents in the same R-class or the same L-class.

Consider an element s − f , where f2 = f H s. If char K = 0, then s = f , since
GK is the trivial variety and there is nothing to prove. If char K = p, then there
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is an n such that spn

= f and since s commutes with f , we have

(s − f)pn

= spn − f = 0,

so in all cases s − f is a nilpotent element.
Now consider an element f − e where e and f are idempotents and either f L e

or f R e. Then
(f − e)2 = f2 − ef − fe + e2 = 0

by (2.2).
Therefore, the augmentation ideal is generated as a vector space by nilpotent

elements and we have shown ωKS is nilpotent.
The converse is a consequence of Lemma 3.1 with A = KS, B = K and ϕ the

augmentation map. �
Theorem 3.5. Let ϕ : S → T be a morphism of finite semigroups. Then ϕ is an
LGK-morphism if and only if kerϕ is a nilpotent ideal of KS.

Proof. Sufficiency is immediate from Lemma 3.1. For necessity, suppose ϕ is an
LGK-morphism. Then by Lemmas 3.2 and 3.3, it suffices to prove that s1 − s2 is
a nilpotent element of KS for each s1, s2 ∈ S with s1ϕ = s2ϕ.

Let n be an integer such that (s1ϕ)n is an idempotent f of T . Since ϕ is an
LGK-morphism, U = fϕ−1 is in LGK . Also any product involving n elements of
the set {s1, s2} belongs to U . Therefore,

(s1 − s2)n ∈ KU ∩ ωKS = ωKU

and is hence nilpotent by Proposition 3.4. It follows that s1 − s2 is nilpotent, as
desired. �

Theorem 3.5 is a semigroup theorist’s version of a classical and central result
of the theory of finite dimensional algebras and holds in an appropriate sense for
all finite dimensional algebras. Indeed, it has been known since the early 1900s
that if A is a finite dimensional algebra and N is a nilpotent ideal of A, then
every idempotent of A/N lifts to an idempotent of A. Furthermore, if we assume
that algebras have identity elements, then two lifts of an idempotent in A/N are
conjugate by an element of the group of units of A of the form g = 1 + n, n ∈ N
and more generally, a conjugacy class of idempotents of A/N can be lifted to a
single conjugacy class of idempotents in A. Lastly, two idempotents e, f of a finite
dimensional algebra A are conjugate by an element of the group of units of A if
and only if e J f in the multiplicative monoid of A. Putting this all together, it
can be shown that, considered as a morphism between multiplicative monoids, the
morphism from A to A/N is an LG-morphism.

Theorem 3.6. The Rhodes radical of a finite semigroup S over a field K is the
largest LGK-congruence on S.

Proof. Since the map KS → KS/Rad(KS) has nilpotent kernel, Lemma 3.1 shows
that RadK(S) is an LGK-congruence. If ϕ : S � T is any LGK-morphism, then
ϕ : KS � KT has nilpotent kernel by Theorem 3.5, whence kerϕ ⊆ Rad(KS).
Thus if s1ϕ = s2ϕ, then s1 − s2 ∈ kerϕ ⊆ Rad(KS), showing that (s1, s2) ∈
RadK(S), as desired. �

As a consequence we now give a simpler proof of some results of Krohn–Rhodes–
Tilson [25, 52, 67].
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Lemma 3.7. Let ϕ : S � T be a surjective morphism of finite semigroups. Then
ϕ induces a surjective morphism ϕ̃ : S/RadK(S) � T/RadK(T ).

Proof. Clearly Rad(KS)ϕ is a nilpotent ideal of KT and hence contained in
Rad(KT ). Therefore a morphism KS/Rad(KS) � KT/Rad(KT ) is well de-
fined. �

Theorem 3.8. Let V be a variety of finite semigroups and S a finite semigroup.
Then the following are equivalent:

(1) S ∈ LGK ©m V;
(2) S/RadK(S) ∈ V;
(3) there is an LGK-morphism ϕ : S → T with T ∈ V.

Proof. Since RadK(S) is an LGK-congruence, (2) implies (3). Clearly (3) implies
(1). For (1) implies (2), suppose ϕ : T � S and ψ : T � U are surjective morphisms
with U ∈ V and ψ is an LGK-morphism. Then, by Theorem 3.6, the canonical
morphism T � T/RadK(T ) factors through ψ and so T/RadK(T ) is a quotient of U
and hence belongs to V. It now follows from Lemma 3.7 that S/RadK(S) ∈ V. �

The central question about a variety of finite semigroups is usually the decid-
ability of its membership problem. We say that a variety V is said to have de-
cidable membership if there exists an algorithm to recognize whether a given finite
semigroup S belongs to V. The above results imply that the Mal’cev product
LGK ©m V has decidable membership whenever the variety V has. Indeed, given
a finite semigroup S, one effectively constructs its Rhodes radical RadK(S) as the
largest LGK-congruence on S and then verifies, using decidability of membership
in V, the condition (2) of Theorem 3.8. This observation is important because
Mal’cev products of decidable pseudovarieties need not be decidable in general.
See [53, 9].

3.3. Rhodes radical via semigroup theory. We now indicate how to prove
Theorem 3.6 using semigroup representation theory. Here we use the characteriza-
tion of the Rhodes radical as the intersection of the congruences corresponding to
all irreducible representations of S over K. This method will give us an explicit
description of RadK(S).

Krohn and Rhodes introduced the notion of a generalized group mapping semi-
group in [24]. A semigroup S is called generalized group mapping [25, 24] (GGM) if
it has a (0-)minimal ideal I on which it acts faithfully on both the left and right by
left and right multiplication, respectively. This ideal I is uniquely determined and
is of the form I = J(∪{0}) where J is a regular J -class. We shall call I the apex of
S, written Apx(S). We aim to show that finite irreducible matrix semigroups are
generalized group mapping.

The following result was stated by Rhodes for the case of the field of complex
numbers [51, 56] but holds true in general. Our proof for the general case uses the
results of Munn and Ponizovsky [16, 56].

Theorem 3.9. Let K be a field, V be a finite dimensional K-vector space and
S ≤ EndK(V ) be a finite, irreducible subsemigroup. Then S is generalized group
mapping.

Proof. If S is the trivial semigroup, then it is clearly generalized group mapping.
So we may assume S is non-trivial. Let I be a 0-minimal ideal of S; if S has no
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zero, take I to be the minimal ideal. It is shown in [16, Theorem 5.33] that the
identity of EndK(V ) is a linear combination of elements of I. We shall provide a
proof of this for the sake of completeness. It will then immediately follow that S
acts faithfully on both the left and right of I by left and right multiplication.

The proof proceeds in several steps. Let I⊥ = {v ∈ V | vI = 0}. We first show
that I⊥ = 0. To do this, we begin by showing that I⊥ is S-invariant. Indeed, if
s ∈ S, t ∈ I and v ∈ I⊥, then using that st ∈ I, we have

(vs)t = v(st) = 0,

showing that vs ∈ I⊥. Since I 
= {0}, we cannot have I⊥ = V ; thus I⊥ = 0 by the
irreducibility of S.

Next we show that I itself is irreducible. Let {0} 
= W ≤ V be an I-invariant
subspace. Let W0 = Span{wt | w ∈ W, t ∈ I}. Notice that W0 ⊆ W . If w ∈ W ,
t ∈ I and s ∈ S, then (wt)s = w(ts) ∈ W since ts ∈ I and W is I-invariant. Hence
W0 is S-invariant and so W0 is either {0} or V . Since I⊥ = 0, we cannot have that
W0 = {0} and so W ⊇ W0 = V , establishing that W = V . We conclude that I is
irreducible.

Let A be the K-span of I inside of EndK(V ). Then A is an irreducible algebra
acting on V and hence is a simple algebra by a well-known result of Burnside [27, 16].
Thus A has an identity element e by Wedderburn’s theorem. But e commutes with
the irreducible semigroup I and hence, by Schur’s lemma, is non-singular. But the
only non-singular idempotent endomorphism of V is the identity map and so the
identity map belongs to A, the linear span of I. �
Corollary 3.10. A finite irreducible subsemigroup of Mn(K) has a unique 0-
minimal ideal, which is regular.

We recall some notions and results of Krohn and Rhodes. The reader is referred
to [25] for details. Fix a finite semigroup S. Choose for each regular J -class J a
fixed maximal subgroup GJ .

Proposition 3.11 ([25, Fact 7.2.1]). Let ϕ : S � T be a surjective morphism. Let
J ′ be a J -class of T and let J be a ≤J -minimal J -class of S with Jϕ ∩ J ′ 
= ∅.
Then Jϕ = J ′. Moreover if J ′ is regular, then J is unique and regular, and the
images of the maximal subgroups of J are precisely the maximal subgroups of J ′.

If T is GGM and J ′ = Apx(T ) \ {0}, then we shall call the J -class J of the
above proposition the apex of ϕ, denoted Apx(ϕ). Let Kϕ be the group theoretic
kernel of ϕ|GApx(ϕ) . We call Kϕ the kernel of ϕ. Krohn and Rhodes showed [25]
that ϕ is completely determined by its apex and kernel.

Let J be a regular J -class of S and N � GJ be a normal subgroup. We denote
by Ra, a ∈ A, the R-classes of J and by Lb, b ∈ B, the L-classes of J . Suppose
that GJ = R1∩L1. For each a ∈ A, b ∈ B, choose according to Green’s Lemma [16]
ra ∈ J such that s �→ ras is a bijection Ra → R1 and lb ∈ J such that s �→ slb
is a bijection Lb → L1. With this notation if Hab = Ra ∩ Lb, then s �→ raslb is a
bijection Hab → GJ .

We define a congruence by s ≡(J,GJ ,N) t if and only if, for all x, y ∈ J ,

(3.2) xsy ∈ J ⇐⇒ xty ∈ J

and, in the case where xsy ∈ J , if x ∈ Ra and y ∈ Lb, then

(3.3) raxsylbN = raxtylbN.
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The quotient S/≡(J,GJ ,N) is denoted GGM(J, GJ , N) [25]. The following result is
the content of [25, Proposition 8.3.28, Remark 8.3.29].

Theorem 3.12. Let S be a finite semigroup and J a regular J -class with maximal
subgroup GJ . Suppose ϕ : S � T is a surjective morphism with T a generalized
group mapping semigroup. Let J = Apx(ϕ) and let Kϕ be the kernel. Then the
congruence associated to ϕ is ≡(J,GJ ,Kϕ). In particular, T ∼= GGM(J, GJ , Kϕ).

It follows from the above theorem that the definition of GGM(J, GJ , Kϕ) doesn’t
depend on the choices made. The following result from [25] is an immediate conse-
quence of the definition of ≡(J,GJ ,N).

Corollary 3.13. Let ϕ1 : S � T1, ϕ2 : S � T2 be surjective morphisms to
generalized group mapping semigroups with Apx(ϕ1) = Apx(ϕ2). Then ϕ2 factors
through ϕ1 if and only if Kϕ1 ≤ Kϕ2 .

We shall need the following fundamental result on semigroup representations,
due to Clifford, Munn and Ponizovsky, which is one of the main results of [16,
Chapter 5] (see also [56]).

Theorem 3.14. Let S be a finite semigroup, J a regular J -class of S and GJ a
maximal subgroup of J . Then any irreducible representation ρ : GJ → GL(V ) can
be extended uniquely to an irreducible representation of S with apex J .

It is proved in [16, 56] that every irreducible representation of a finite semigroup
S is obtained by extending an irreducible representation of a maximal subgroup
GJ for some regular J -class J , although we shall not need this result.

We are now ready to prove Theorem 3.6 via representation theoretic means.
First we need the following classical result, which is a consequence of Maschke’s
theorem and Clifford’s theorem from finite group representation theory, handling
the group case [27, Corollary 8.6].1 If G is a finite group, we define GK , called the
unipotent radical of G, to be the largest normal subgroup of G belonging to GK .

Theorem 3.15. Let G be a group and K be a field. Then RadK(G) is the congru-
ence whose classes are the cosets of GK .

We remark that Theorem 3.15 also follows from our first proof of Theorem 3.6
since the largest LGK congruence on a finite group clearly has kernel GK .

Theorem 3.16. Let S be a semigroup and K be a field. Then RadK(S) is the
congruence associated to the direct sum over all regular J -classes J of the maps

(3.4) S � GGM(J, GJ , (GJ)K).

Proof. Let ∼ be the congruence associated to the direct sum of the maps (3.4).
Let ϕ be an irreducible representation of S with apex J = Apx(ϕ). Then, by
Theorem 3.15, (GJ)K ≤ Kϕ and so, by Corollary 3.13, ϕ factors through S �
GGM(J, GJ , (GJ)K). Thus ∼ ⊆ RadK(S).

For the reverse inclusion, it suffices to show that the congruence associated to
each map S � GGM(J, GJ , (GJ)K) can be realized by a direct sum of irreducible
representations. Fix a regular J -class J and let {Ni} be a collection of normal
subgroups of GJ . Then the congruence associated to the direct sum of the maps
S � GGM(J, GJ , Ni) is the congruence associated to S � GGM(J, GJ ,

⋂
Ni). In

1We thank John Dixon for pointing this result out to us.
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particular, consider the collection {Kϕ} where ϕ is an irreducible representation of
S with apex J . Then, by Theorem 3.14, the Kϕ run over all kernels of irreducible
representations of GJ , so by Theorem 3.15, we obtain

⋂
Kϕ = (GJ)K . The theorem

now follows. �
Notice that this theorem allows for an explicit determination of RadK(S) via

(3.2) and (3.3). The fact that the above congruence is the largest LGK-congruence
is contained in [25, 52, 67].

4. Applications to diagonalizability and triangularizability

Our first application of the Rhodes radical is to the question of diagonalizablity
and triangularizability of finite semigroups. In [4], three of the authors characterized
the varieties of finite semigroups that can be (uni)triangularized over finite fields.
Using our techniques, we give a shorter, more conceptual proof that works over a
general field.

Let K be a field. Define AbK to be the variety of finite Abelian groups generated
by all finite subgroups of K∗. It is well known that any finite subgroup G of K∗

is cyclic and is the set of roots of x|G| − 1. Moreover, there is a cyclic subgroup of
K∗ of order m if and only if xm − 1 splits into distinct linear factors over K. It
is not hard to see that if xe − 1 and xf − 1 split into distinct linear factors, then
so does xlcm(e,f) − 1. Also if xe − 1 splits into linear factors, then so does xd − 1
for any divisor d of e. Hence AbK can be described as the variety of all finite
Abelian groups whose exponent e has the property that xe − 1 splits into e distinct
linear factors over K. We remark that if the characteristic of K is p > 0, then
e and p must be relatively prime for this to happen. If K is algebraically closed
of characteristic 0, then AbK = Ab. If K is algebraically closed of characteristic
p > 0, then AbK consists of all finite Abelian p′-groups, that is, of all finite Abelian
groups whose orders are relatively prime to p.

If H is a variety of finite groups, then the elements of the variety H©m Sl are re-
ferred to as semilattices of groups from H. Such semigroups are naturally “graded”
by a semilattice in such a way that the homogeneous components (which are the
H-classes) are groups from H. It turns out that H©m Sl is the varietal join Sl∨H.
See [16, 1] for more details. The following exercise in Linear Algebra captures
diagonalizability.

Theorem 4.1. Let K be a field and S a finite semigroup. Then the following are
equivalent:

(1) S is commutative and satisfies an identity xm+1 = x where xm − 1 splits
into distinct linear factors over K;

(2) S is a semilattice of Abelian groups from AbK ;
(3) every representation of S is diagonalizable;
(4) S is isomorphic to a subsemigroup of Kn for n = |S1|.

Proof. The equivalence of (1) and (2) follows from Clifford’s Theorem [16, Theorem
4.11]. For (1) implies (3), suppose ρ : S → EndK(V ) is a representation. Since
S satisfies xm+1 = x, we must have that sρ satisfies x(xm − 1) = 0. It follows
that the minimal polynomial of sρ for any s ∈ S has distinct roots and splits over
K. Hence sρ is diagonalizable for all s ∈ S. To show that ρ is diagonalizable
we induct on the degree of the representation. If ρ is of degree one, then clearly
it is diagonalizable. If Sρ is contained in the scalar matrices, then we may also
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deduce that the representation is diagonalizable. Otherwise, there is an element
s ∈ S such that sρ is not a scalar matrix. Since sρ is diagonalizable, we can
write V =

⊕
λ∈Spec(sρ) Eλ, where Eλ is the eigenspace of λ. We claim that Eλ is

S-invariant. Indeed, if t ∈ S and u ∈ Eλ, then

utρsρ = usρtρ = λutρ

and so utρ ∈ Eλ. Since sρ is not a scalar, each Eλ has smaller dimension and so
the restriction of ρ can be diagonalized by induction. Thus we have diagonalized ρ.

(3) implies (4) follows immediately from considering the right regular represen-
tation of S, that is, by having S act on S1 by right multiplication and extending
linearly. To show that (4) implies (1), first observe that S embeds in a direct prod-
uct of finite subsemigroups of K. A finite subsemigroup of K is commutative and
must satisfy an identity of the form xi = xp+i, for some i ≥ 0, p > 0. Since K is a
field, we deduce that S satisfies an identity of the form xm+1 = x for some m ≥ 0.
If m is minimum, then xm −1 splits into distinct linear factors, as discussed above.
This completes the proof. �

With a little more work, we can improve condition (4) in the previous theorem
a bit. It is easy to prove that any semilattice of groups S acts faithfully by right
multiplication on S considered as a set, even if S does not have an identity. Thus we
can replace condition (4) by S is isomorphic to a subsemigroup of Kn for n = |S|.
From this it immediately follows that the finite semigroups described in Theorem
4.1 are precisely the finite semigroups S such that KS ∼= Kn where n = |S|. Details
are left to the reader.

The semigroups satisfying the conditions of the above theorem for diagonaliz-
ability form a variety of finite semigroups that we denote by DK . It is precisely
the variety AbK ©m Sl by Clifford’s Theorem [16, Theorem 4.11]. It is the varietal
join Sl∨AbK , which can be seen from the above theorem. For example, if K = C,
then DK consists precisely of semilattices of Abelian groups (i.e. commutative in-
verse semigroups). If K = Fq, the finite field of q elements, then DK consists of
semilattices of Abelian groups with exponent dividing q − 1. If K is the algebraic
closure of Fp, then DK consists of semilattices of Abelian p′-groups.

We shall call a matrix unidiagonal if it is diagonal and its entries are contained
in {0, 1}. We have the following analogue of Theorem 4.1 whose proof we leave to
the reader.

Theorem 4.2. Let K be a field and S a finite semigroup. Then the following are
equivalent:

(1) S is a semilattice;
(2) every representation of S is unidiagonalizable;
(3) KS ∼= Kn for n = |S| and the image of S under this isomorphism is

contained in {0, 1}n;
(4) S is isomorphic to a subsemigroup of {0, 1}n for some n.

The above theorem shows that Sl is the variety of finite unidiagonalizable semi-
groups.

Let K be a field. Let Tn(K) denote the semigroup of upper triangular n × n
matrices over K. Recall that a finite dimensional K-algebra A is called basic if
A/Rad(A) is commutative. If A/ Rad(A) ∼= Kn for some n, then A is called a split
basic K-algebra.
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Theorem 4.3. Let S be a finite semigroup and K a field. Then the following are
equivalent:

(1) S ∈ LGK ©m DK ;
(2) S/RadK(S) ∈ DK ;
(3) KS/Rad(KS) ∼= Km for some m;
(4) KS is a split basic K-algebra;
(5) every irreducible representation of S over K has degree one;
(6) every representation of S is triangularizable;
(7) S ≤ Tn(K), n = |S1|;
(8) S ≤ Tm(K), some m.

Proof. We have already seen the equivalence of (1) and (2). For (2) implies (3),
let T = S/RadK(S). Then KT � KS/Rad(KS). By Theorem 4.1, KT = K |T |.
Hence KS/Rad(KS) is a direct product of copies of K. The equivalence of (3) and
(4) is the definition.

The implication (3) implies (5) follows immediately from the Wedderburn the-
ory, since the only irreducible representations of a direct product of fields are the
projections. For (5) implies (6), let ϕ : S → Mm(K) be a representation. Then
by choosing a composition series for the right KS-module associated to ϕ, we can
put Sϕ in block upper triangular form where the diagonal blocks are irreducible
representations or the zero representation. But since all such are of degree one, we
conclude that Sϕ has been brought to triangular form.

One establishes (6) implies (7) by considering the regular representation of S.
That (7) implies (8) is trivial. For (8) implies (1), observe that the projection ϕ
from Tm(K) to the diagonal is an algebra homomorphism with nilpotent kernel.
Thus ϕ|S is an LGK-morphism by Lemma 3.1 and so (1) follows from Theorem
4.1. �

Let UTn(K) denote the semigroup of upper unitriangular n×n matrices over K,
where by unitriangular we mean triangular with only 1’s and 0’s on the diagonal.
By a trivial representation of S, we mean a homomorphism ϕ : S → {0, 1}. The
following theorem is proved similarly to the above theorem. We omit the proof.

Theorem 4.4. Let S be a finite semigroup and K a field. Then the following are
equivalent:

(1) S ∈ LGK ©m Sl;
(2) S/RadK(S) ∈ Sl;
(3) KS/Rad(KS) ∼= Km for some m and the image of S is contained in

{0, 1}m;
(4) every irreducible representation of S over K is trivial;
(5) every representation of S is unitriangularizable;
(6) S ≤ UTn(K), n = |S1|;
(7) S ≤ UTm(K), some m.

Notice that unitriangularizability depends only on the characteristic and not the
field. The proofs of condition (6) in the above theorems show that a [uni]triangular-
izable monoid can be realized as a submonoid of S ≤ Tn(K) [S ≤ UTn(K)] and a
[uni]triangular group can be realized as a subgroup of T ∗

n(K) [UT ∗
n(K)] (where here

∗ denotes the group of units of a monoid). We remark that if a finite semigroup S is
triangularizable over the algebraic closure K of K, then it is triangularizable over a
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finite extension of K. Indeed, S can be faithfully represented in Tn(K) (UTn(K)),
where n = |S1|. Since only finitely many entries appear amongst the entries of S,
we can just take the extension field generated by these entries. The same remarks
apply to diagonalization.

We now determine the above varieties. Recall that if H is a variety of finite
groups, then H denotes the variety of finite semigroups all of whose subgroups
belong to H. Usually I is denoted A (for aperiodic). If V is a variety of finite
semigroups, then DV is the variety of semigroups whose regular J -classes are
subsemigroups that belong to V. If H is a variety of finite groups, then Sl ∨ H
is the variety of semilattices of groups from H [1]. We denote by O the variety of
finite orthodox simple semigroups. A simple semigroup S is orthodox if E(S) is
a subsemigroup. If V is a variety of finite semigroups, EV is the variety of finite
semigroups S such that E(S) generates a subsemigroup in V.

To handle the case of characteristic zero, we need a result that can easily be
verified by direct calculations with generalized-group-mapping congruences. Since
a syntactic proof can be found in [2, Corollary 3.3] we skip the proof.

Lemma 4.5. Let H be a variety of finite groups. Then

LI©m (Sl ∨ H) = DO ∩H.

In particular we obtain the following corollary:

Corollary 4.6. The variety of unitriangularizable semigroups in characteristic zero
is DA. The variety of triangularizable semigroups over a field K of characteristic
zero is DO ∩ AbK . In particular, the variety of triangularizable semigroups over
an algebraically closed field of characteristic zero is DO ∩ Ab.

Of course DA and DO ∩ Ab are decidable varieties. In general, decidability of
DO ∩ AbK depends on K. Notice that DA contains all finite bands, that is, all
finite idempotent semigroups. The triangularizability of bands can be found in the
work of [12, 13]. Corollary 4.6 is useful for computing spectra of random walks on
semigroups in DA or DO ∩ AbK [62]. In particular, some famous Markov chains,
such as the Tsetlin library, arise as random walks on bands [10, 12, 13]. Another
consequence of Corollary 4.6 is that the semigroup algebra of a finite semigroup S
is split basic over the reals if and only if S ∈ DO and every subgroup of S has
exponent two.

We now turn to the case of characteristic p.

Lemma 4.7. Let p be a prime and let H be a variety of finite p′-groups. Then

(4.1) LGp ©m (Sl ∨ H) = D(Gp ©m H) ∩ EGp.

Proof. To see that the left hand side of (4.1) is contained in the right hand side,
suppose S ∈ LGp ©m (Sl ∨ H). Let T = S/RadFp

(S) and let ϕ : S → T be the
canonical homomorphism. Then ϕ is an LGp-morphism and T ∈ Sl ∨ H by The-
orem 3.8. Hence if J is a regular J -class of T , then Jϕ−1 is a nilpotent extension
of a simple semigroup by Proposition 2.3. It easily follows that S ∈ DS (since
regular J -classes are mapped into regular J -classes). Suppose G is a subgroup of
S. Then Gϕ ∈ H and kerϕ|G ∈ Gp since ϕ is an LGp-morphism. We conclude
S ∈ D(Gp ©m H). Let J be a regular J -class of S. Let E(J) be the idempotents
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of J . Then E(J)ϕ is the unique idempotent f of the J -class Jϕ of T (since T is
a semilattice of groups). Hence 〈E(J)〉ϕ = f . Since fϕ−1 ∈ LGp it follows that
every maximal subgroup of 〈E(J)〉 belongs to Gp. This shows that S ∈ EGp. This
establishes the inclusion from left to right in (4.1).

For the reverse inclusion, it suffices to show that if J is a regular J -class of a
finite semigroup S in the right hand side of (4.1), then

GGM(J, GJ , (GJ)Fp
) ∈ Sl ∨H.

First note that since H consists of p′-groups, GJ ∈ Gp ©m H means precisely that
GJ has a normal p-Sylow subgroup N and that GJ/N ∈ H. We remark that N is
the p-radical (GJ)Fp

. By the results of [21], there is a Rees matrix representation
M0(GJ , A, B, C) of J0 with the entries of C generating the maximal subgroup K of
the idempotent-generated subsemigroup. Since S ∈ EGp, K is a p-subgroup of GJ

and hence contained in N . According to [25, 8.2.22 Fact (e)]) to obtain the image of
J in GGM(J, GJ , (GJ)Fp

), we project to M0(GJ/N, A, B, C), where C is obtained
from C by first reducing modulo N , and then identifying proportional rows and
columns. But since the entries of C belong to N , this results in identifying all rows
and columns and so the image of J in GGM(J, GJ , (GJ)Fp

) is simply GJ/N . Since
GGM(J, GJ , (GJ)Fp

) acts faithfully on the right of its apex by partially defined right
translations and the only non-zero, partially defined right translations of a group
are zero and right translations by elements of the group, we see that

GGM(J, GJ , (GJ)Fp
) = GJ/N or (GJ/N) ∪ 0

(depending on whether J is the minimal ideal, or not). Thus

GGM(J, GJ , (GJ)Fp
) ∈ Sl ∨H

as desired. �

Observing that extensions of p-groups by Abelian groups are the same thing as
extensions of p-groups by Abelian p′-groups, we have the following corollary.

Corollary 4.8. The variety of unitriangularizable semigroups over any field of
characteristic p is DGp. The variety of triangularizable semigroups over a field K

of characteristic p is D(Gp ©m AbK)∩EGp. In particular, the variety of semigroups
triangularizable over an algebraically closed field of characteristic p is D(Gp ©m Ab)
∩ EGp.

In particular, commutative semigroups are triangularizable over any character-
istic. More precisely, every finite commutative semigroup is triangularizable over
some field of characteristic 0 and for some field of characteristic p for each prime p.
In fact, the semigroups triangularizable over any characteristic are precisely those
in DO ∩ Ab. Pseudoidentities for many of these varieties can be found in [4]. A
method of constructing pseudoidentities for LI©m V from those of V can be found
in [47] and for LGp ©m V from those of V can be found in [5].

We now turn to characterize those finite semigroups whose semigroup algebras
are basic over a field K. The case of split basic K-algebras has already been
handled in Theorem 4.3. Recall that a finite dimensional K-algebra A is called
basic if A/Rad(A) is commutative, or equivalently, a direct product of fields. Since
KS/Rad(KS) is generated as an algebra by S/RadK(S), to be basic S/RadK(S)
must be a semilattice of Abelian groups (embedding in a direct product of fields).
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Conversely, if S/RadK(S) is a semilattice of Abelian groups, then KS/Rad(KS)
(being generated by S/RadK(S)) must be a commutative algebra. Thus we have
proved:

Corollary 4.9. Let S be a finite semigroup and K a field. Then KS is a basic
algebra if and only if

S ∈ LGK ©m (Sl ∨ Ab) =

{
DO ∩ Ab char K = 0,

D(Gp ©m Ab) ∩ EGp char K = p.

5. Applications to semigroup decomposition theory

Our next application of the Rhodes radical is to recover some deep algebraic
decomposition results of Rhodes–Tilson–Weil. For the remainder of the paper we
will deal with monoids and varieties of finite monoids.

First of all we recall the definition of the two-sided semidirect product of two
monoids. Let M and N be monoids and suppose that N has a bi-action on M (that
is, commuting left and right actions on N). For convenience we write M additively
and N multiplicatively although we assume no commutativity. Then the two-sided

semidirect product M �� N consists of all 2× 2 upper triangular matrices
(

n m
0 n

)
with the usual matrix multiplication. There is an obvious projection to N via the
diagonal. The variety generated by two-sided semidirect products M �� N with
M ∈ V and N ∈ W is denoted V ∗∗ W.

Rhodes and Tilson introduced in [54] the kernel category as a way to determine
membership in V ∗∗ W. We restrict ourselves to considering the kernel category of
a morphism and to a special case of the results of [54] to avoid getting technical. Let
ϕ : M → N be a homomorphism. Following [54], we define a category Kϕ, called the
kernel category of ϕ. The object set is N×N . The arrows are equivalence classes of
triples (nL, m, nR) ∈ N × M × N , where (nL, m, nR) : (nL, mϕnR) → (nLmϕ, nR)
and two coterminal triples (nL, m, nR) and (nL, m′, nR) are identified if and only if
mLmmR = mLm′mR for all mL ∈ nLϕ−1, mR ∈ nRϕ−1. Composition is given by

[(nL, m, m′ϕnR)][(nLmϕ, m′, nR)] = [(nL, mm′, nR)];

the identity at (nL, nR) is [(nL, 1, nR)].
We consider categories as partial algebras whose elements consist of all of its

arrows. If C is a category and c is an object of C, then the collection of all arrows
C(c, c) from c to itself is a monoid called the local monoid at c. It is clear that if we
add a new zero element to C, we obtain a semigroup C0 called the consolidation of
C. In C0, the identity element ec at c is an idempotent and then it is easy to see
that C(c, c) is isomorphic to the local monoid (in the sense of our previous usage
of that term in semigroup theory) ecC(c, c)ec.

Let V be a variety of finite monoids. A category C is said to be locally in V
if each of the local monoids C(c, c) belongs to V; we use the notation C(c) as a
shorthand for C(c, c). The collection of categories locally in V is denoted �V. The
following is an amalgamation of results of [69] and a special case of the results of
[54].

Theorem 5.1. Let M be a finite monoid, H a non-trivial variety of finite groups
and V a variety of finite monoids. Then M ∈ H ∗∗ V if and only if there is a
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finite monoid N mapping onto M that admits a morphism ϕ : N → V ∈ V such
that Kϕ ∈ �H.

Notice that �I is a variety of finite categories [69], from which it easily follows that
the collection of finite monoids M that are quotients of finite monoids N admitting
a morphism to ϕ : N → V ∈ V with Kϕ ∈ �I is a variety of finite monoids, which
we denote �I ∗∗ V. This variety plays an important role in language theory [41],
as we shall see below.

Let Ab(p) denote the variety of finite Abelian groups of exponent p, where p is
a prime. Our goal is to prove the following two important cases of the results of
Rhodes–Tilson–Weil [54, 55] (see also [41]).

Theorem 5.2. Let V be a variety of finite monoids and p a prime. Then the
smallest variety of finite monoids containing V and closed under the operations
W �→ �I ∗∗ W, respectively W �→ Ab(p) ∗∗ W, is LI©m V, respectively LGp ©m V.

The original proof of Theorem 5.2 is a case-by-case analysis using Rhodes’s clas-
sification of maximal proper surjective morphisms [50, 55, 25]. We give a conceptual
proof via representation theory. First we make some preliminary observations.

It is well known [54, 25, 52, 67] that a morphism is an LI-morphism (respectively
LGp-morphism) if and only if it is injective on two element semilattices and on sub-
groups (respectively on p′-subgroups). It follows immediately that LI-morphisms
(respectively LGp-morphisms) are closed under composition. Thus if K is a field,

(5.1) LGK ©m (LGK ©m V) = LGK ©m V.

The following is well known (cf. [54, 55, 41]), but we include the proof for com-
pleteness.

Proposition 5.3. Let V be a variety of finite monoids and ϕ : M → N be a mor-
phism with Kϕ locally in V. Then ϕ is an LV-morphism.

Proof. Let f ∈ E(N). Set Mf = fϕ−1 and let m ∈ fϕ−1. Then [(f, m, f)] :
(f, f) → (f, f) is an arrow of Kϕ. Let e ∈ E(fϕ−1) and define a map ψ : eMfe →
Kϕ((f, f), (f, f)) by m �→ [(f, m, f)]. Clearly this is a morphism; we show it is
injective. Suppose mψ = m′ψ. Then since e ∈ fϕ−1, this implies m = eme =
em′e = m′. Thus eMfe ∈ V and so Mf ∈ LV, establishing that ϕ is an LV-
morphism. �

Let Mm,r(K) denote the collection of m×r matrices over a field K. The following
lemma will afford us the decompositions needed for our proof of Theorem 5.2.

Lemma 5.4. Let K be a ring and M ≤ Mn(K) be a finite monoid of block upper
triangular matrices of the form{(

A B
0 C

)
| A ∈ Mm(K), B ∈ Mm,r(K), C ∈ Mr(K)

}
.

Let N be the quotient of M obtained by projecting to the block diagonal and let ϕ
be the projection. Then each local monoid of Kϕ embeds in the additive group of
Mm,r(K). In particular, if K is a field, then

Kϕ ∈
{

�I char K = 0,

�Ab(p) char K = p.
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Proof. Elements of N are certain pairs (A, C) with A ∈ Mm(K) and C ∈ Mr(K).
Let S = Kϕ(((X, Y ), (U, V ))). We define a map ψ : S → Mm,r(K) as follows. Given

an arrow a = [((X, Y ), m, (U, V ))] ∈ S with m =
(

A B
0 C

)
, define aψ = XBV . To

see that ψ is well defined, first observe that

(5.2) XA = X, Y C = Y, AU = U, CV = V.

Using this we calculate

(5.3)
(

X Z
0 Y

) (
A B
0 C

) (
U W
0 V

)
=

(
XU XW + XBV + ZV
0 Y V

)
.

Subtracting XW + ZV (which doesn’t depend on the choice of a representative of
a) from the upper right hand corner shows that aψ is well defined. In fact it is
evident from (5.3) that ψ is injective. We show that ψ is a morphism to the additive
group of Mm,r(K). It clearly sends the identity matrix to 0. Also if a, b ∈ S with
respective middle coordinates (

A B
0 C

)
,

(
A′ B′

0 C ′

)
,

then aψ + bψ = XBV + XB′V. But the middle coordinate of ab is(
AA′ AB′ + BC ′

0 CC ′

)
.

So (ab)ψ = X(AB′ + BC ′)V = XAB′V + XBC ′V = XB′V + XBV since a, b ∈ S
(cf. (5.2)). Hence S is isomorphic to a finite subgroup of the additive group of
Mm,r(K). In particular, if K is a field and char K = 0, then S must be trivial; if
char K = p, then S ∈ Ab(p). The lemma follows. �
Proof of Theorem 5.2. Let K be a field and V be a variety. Let U be the smallest
variety containing V such that �I ∗∗ U = U if char K = 0 or Ab(p) ∗∗ U = U
if char K = p. Proposition 5.3 and (5.1) immediately imply U ⊆ LGK ©m V. To
prove the converse, we need the following.

Lemma 5.5. Suppose M is a finite submonoid of Mn(K) in block upper triangular
form with diagonal block monoids M1, . . . , Mk belonging to V. Then M ∈ U.

Proof. We induct on k. If k = 1, then M = M1 ∈ V ⊆ U. In general, note that
we can repartition n into two blocks, one corresponding to the union of the first
k− 1 of our original blocks and the other corresponding to the last block. We then
obtain a block upper triangular matrix monoid with two diagonal block monoids
M ′ and Mk. By induction M ′ ∈ U (being block upper triangular with k − 1
diagonal blocks M1, . . . , Mk−1 belonging to V) whilst Mk ∈ V ⊆ U. Therefore
M ′ × Mk ∈ U. Lemma 5.4 shows that the kernel category of the projection to
M ′ × Mk belongs to �I, respectively �Ab(p), according to the characteristic of K.
Hence M ∈ U. �

To complete the proof of Theorem 5.2, suppose M ∈ LGK ©m V. Consider the
regular representation of M . By finding a composition series for M , we can put M
in block upper triangular form where the diagonal blocks M1, . . . , Mk are the action
monoids of the irreducible representations of M over K. Since, by Theorem 3.8,
M/RadK(M) ∈ V, the Mi belong to V. The previous lemma then shows that
M ∈ U, establishing Theorem 5.2.
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6. Applications to formal language theory

Another application of the Rhodes radical is to Formal Language Theory, namely
to unambiguous marked products and marked products with counter. Some of these
results were announced in [3].

Recall that a word u over a finite alphabet Σ is said to be a subword of a word
v ∈ Σ∗ if, for some n ≥ 1, there exist words u1, . . . , un, v0, v1, . . . , vn ∈ Σ∗ such that
u = u1u2 · · ·un and

(6.1) v = v0u1v1u2v2 · · ·unvn.

The subword relation reveals interesting combinatorial properties and plays a
prominent role in formal language theory, as well as in the theory of Coxeter groups
via its relation to the Bruhat order [11]. For instance, recall that languages con-
sisting of all words over Σ having a given word u ∈ Σ∗ as a subword serve as a
generating system for the Boolean algebra of so-called piecewise testable languages.
It was a deep study of combinatorics of the subword relation that led Simon [59, 60]
to his elegant algebraic characterization of piecewise testable languages. Further,
the natural idea to put certain rational constraints on the factors v0, v1, . . . , vn

that may appear in a decomposition of the form (6.1) gave rise to the useful no-
tion of a marked product of languages studied from the algebraic viewpoint by
Schützenberger [57], Reutenauer [49], Straubing [64], Simon [61], amongst others.

Yet another natural idea is to count how many times a word v ∈ Σ∗ contains
a given word u as a subword, that is, to count different decompositions of the
form (6.1). Clearly, if one wants to stay within the realm of rational languages,
one can only count up to a certain threshold and/or modulo a certain number.
For instance, one may consider Boolean combinations of languages consisting of
all words over Σ having t modulo p occurrences of a given word u ∈ Σ∗ (where
p is a given prime number). This class of languages also admits a nice algebraic
characterization; see [18, Sections VIII.9 and VIII.10] and also [66]. Combining
modular counting with rational constraints led to the idea of marked products with
modular counters explored, in particular, by Weil [71] and Péladeau [36].

The most natural version of threshold counting is formalized via the notion of an
unambiguous marked product in which one considers words v ∈ Σ∗ having exactly
one decomposition (6.1) with a given subword u and given rational constraints on
the factors v0, v1, . . . , vn. Such unambiguous marked products have been investi-
gated by Schützenberger [58], Pin [38], Pin, Straubing, and Thérien [41], amongst
others.

Many known facts on marked products rely on rather difficult techniques from
finite semigroup theory, namely, on the bilateral semidirect product decomposition
results of Rhodes et al. [54, 55] mentioned above. These results are proved using
Rhodes’s classification of maximal proper surmorphisms [50, 55, 25] via case-by-
case analysis of the kernel categories of such maps [54, 55]. The aim of the present
section is to give easier and — we hope — more conceptual proofs of several crucial
facts about marked products by using matrix representations of finite semigroups
as a main tool. In particular, we are able to prove the results of Péladeau and Weil
in one step, without any case-by-case analysis and without using the machinery of
categories. Rather we adapt Simon’s analysis of the combinatorics of multiplying
upper triangular matrices [61] from the case of Schützenberger products to block
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upper triangular matrices. We failed to obtain such a purely combinatorial argu-
ment for the case of unambiguous products; we still need to use a lemma on kernel
categories. Nevertheless we have succeeded in avoiding the decomposition results
and case-by-case analysis.

Recall that Eilenberg established [18, Vol. B, Chap. VII] a correspondence be-
tween varieties of finite monoids and so-called varieties of languages. If V is a
variety of finite monoids and Σ a finite alphabet, then V(Σ∗) denotes the set of all
languages over Σ that can be recognized by monoids in V. (Such languages are
often referred to as V-languages.) The operator V that assigns each free monoid Σ∗

the set V(Σ∗) is said to be the variety of languages associated to V. The syntactic
monoid [18, loc. cit.] of a rational language L will be denoted ML. It is known that
L is a V-language if and only if ML ∈ V.

6.1. Products with counter. Our first application is to prove the results of
Péladeau and Weil [36, 71] on products with counter.

Let L0, . . . , Lm ⊆ Σ∗, a1, . . . , am ∈ Σ and let n be an integer. Then the marked
product with modulo n counter L = (L0a1L1 · · · amLm)r,n is the language of all
words w ∈ Σ∗ with r factorizations modulo n of the form w = u0a1u1 · · · amum

with each ui ∈ Li. One can show that L is rational [71] (see also the proof of
Theorem 6.2 below). Using a decomposition result of Rhodes and Tilson [54] (see
also [55]) based on case-by-case analysis of kernel categories of maximal proper
surmorphisms (see [50, 55, 25]), Weil characterized the closure of a variety V un-
der marked products with modulo p counter. This required iterated usage of the
so-called “block product” principle. But Weil missed that the Boolean algebra gen-
erated by V(Σ∗) and marked products with modulo p counters of members V(Σ∗)
is already closed under marked products with modulo p counters; this was later
observed by Péladeau [36]. The difficulty arises because it is not so clear how to
combine marked products with modulo p counters into new marked products with
modulo p counters.

We use representation theory to prove the result in one fell swoop. Our ap-
proach is inspired by a paper of Simon [61] dealing with marked products and the
Schützenberger product of finite semigroups.

Lemma 6.1. Let V be a variety of finite monoids, ϕ : Σ∗ → M be a morphism with
M finite. Let K be a field of characteristic p and suppose that M can be represented
faithfully by block upper triangular matrices over K so that the monoids formed by
the diagonal blocks of the matrices in the image of M all belong to V. Let F ⊆ M .
Then L = Fϕ−1 is a Boolean combination of members of V(Σ∗) and of marked
products with modulo p counter (L0a1L1 · · · anLn)r,p with the Li ∈ V(Σ∗).

Proof. Suppose M ≤ Mt(K) and t = t1 + · · · + tk is the partition of t giving rise
to the block upper triangular form. Let Mi be the monoid formed by the ti × ti
matrices over K arising as the ith diagonal blocks of the matrices in the image of
M . Given w ∈ Σ∗ and i, j ∈ {1, . . . , k}, define ϕi,j : Σ∗ → Mti,tj

(K) by setting
wϕi,j to be the ti × tj matrix that is the (i, j)-block of the block upper triangular
form. So in particular wϕi,j = 0 for j < i. Also ϕi,i is a morphism ϕi,i : Σ∗ → Mi

for all i.
First we observe that we may take F to be a singleton {uϕ}. For each 1 ≤ i ≤

j ≤ k, let
Li,j = {w ∈ Σ∗ | wϕi,j = uϕi,j}.
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Then clearly

uϕϕ−1 =
⋂

1≤i≤j≤k

Li,j .

Since Li,i is recognized by Mi, it suffices to show Li,j , where 1 ≤ i < j ≤ k, can
be written as a Boolean combination of marked products with modulo p counter
of languages recognized by the Ml. Changing notation, it suffices to show that if
1 ≤ i < j ≤ k and C ∈ Mti,tj

(K), then

(6.2) L(C) = {w ∈ Σ∗ | wϕi,j = C}

is a Boolean combination of marked products with modulo p counter of languages
recognized by the Mi.

The following definitions are inspired by [61], though what Simon terms an “ob-
ject”, we term a “walk”. A walk from i to j is a sequence

(6.3) w = (i0, m0, a1, i1, m1, . . . , ar, ir, mr),

where i = i0 < i1 < · · · < ir = j, al ∈ Σ and ml ∈ Mil
. There are only finitely

many walks. The set of walks will be denoted W. Given a walk w, we define its
value to be

v(w) = m0(a1ϕi0,i1)m1 · · · (arϕir−1,ir
)mr ∈ Mti,tj

(K).

If w is a walk, we define the language of w to be the marked product

L(w) = (m0ϕ
−1
i0,i0

)a1(m1ϕ
−1
i1,i1

) · · · ar(mrϕ
−1
ir,ir

).

If w ∈ Σ∗ and w is a walk of the form (6.3), we define w(w) to be the multi-
plicity of w in L(w), that is, the number of factorizations w = u0a1u1 · · · arur with
ulϕil,il

= ml; this number is taken to be 0 if there are no such factorizations. If
0 ≤ n < p, we establish the shorthand

L(w)n,p =
(
(m0ϕ

−1
i0,i0

)a1(m1ϕ
−1
i1,i1

) · · ·ar(mrϕ
−1
ir,ir

)
)
n,p

.

Notice that L(w)n,p consists of all words w with w(w) ≡ n mod p and is a marked
product with modulo p counter of V(Σ∗) languages.

The following is a variant of [61, Lemma 7].

Claim 1. Let w ∈ Σ∗. Then

(6.4) wϕi,j =
∑

w∈W

w(w)v(w).

Proof. Let w = b1 · · · br be the factorization of w in letters. Then the formula for
matrix multiplication gives

(6.5) wϕi,j =
∑

(b1ϕi0,i1)(b2ϕi1,i2) · · · (brϕir−1,ir
),

where the sum extends over all il such that i0 = i, ir = j and il ∈ {1, . . . , k} for
0 < l < r. Since vϕl,n = 0 for l > n, it suffices to consider sequences such that
i = i0 ≤ i1 ≤ · · · ≤ ir = j. For such a sequence, we may group together neighboring
indices that are equal. Then since all the ϕn,n are morphisms, we see that each
summand in (6.5) is the value of a walk w and that w appears exactly w(w) times
in the sum. �
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To complete the proof of Lemma 6.1, we observe that L(C) (defined in (6.2)) is
a Boolean combination of languages of the form L(w)n,p. Let X be the set of all
functions f : W → {0, . . . , p − 1} such that∑

w∈W

f(w)v(w) = C.

It is then immediate from (6.4) and charK = p that

L(C) =
⋃

f∈X

⋂
w∈W

L(w)f(w),p,

completing the proof. �

Theorem 6.2. Let L ⊆ Σ∗ be a rational language, V be a variety of finite monoids
and K be a field of characteristic p. Then the following are equivalent:

(1) ML ∈ LGp ©m V;
(2) ML/RadK(ML) ∈ V;
(3) ML can be faithfully represented by block upper triangular matrices over K

so that the monoids formed by the diagonal blocks of the matrices in the
image of ML all belong to V;

(4) L is a Boolean combination of members of V(Σ∗) and languages
(L0a1L1 · · · anLn)r,p with the Li ∈ V(Σ∗).

Proof. The equivalence of (1) and (2) was established in Theorem 3.8.
For (2) implies (3), take a composition series for the regular representation of

ML over K: it is then in block upper triangular form and, by (2), the monoids
formed by diagonal blocks of matrices in the image of ML all belong to V, being
the action monoids from the irreducible representations of ML over K.

(3) implies (4) is immediate from Lemma 6.1.
For (4) implies (1), it suffices to deal with a marked product with counter L =

(L0a1L1 · · · anLn)r,p. Let Ai be the minimal trim deterministic automaton [18,
Vol. A] of Li. Let A be the non-deterministic automaton obtained from the disjoint
union of the Ai by attaching an edge labelled ai from each final state of Ai−1 to
the initial state of Ai. To each letter a ∈ Σ, we associate the matrix aϕ of the
relation that a induces on the states. Since aϕ is a {0, 1}-matrix, we can view it as
a matrix over Fp. In this way we obtain a morphism ϕ : Σ∗ → Mk(Fp), where k is
the number of states of A. Let M = Σ∗ϕ. Trivially, M is finite. We observe that
M is block upper triangular with diagonal blocks the syntactic monoids MLi

(the
partition of k arises from taking the states of each Ai). Notice that M recognizes
L, since L consists of all words w such that (wϕ)s,f = r, where s is the start state
of A0 and f is a final state of An. Applying Lemma 3.1 to the projection to the
diagonal blocks gives that M and its quotient ML belong to LGp ©m V. �

The proof of (4) implies (1) gives a fairly easy argument that marked products
of rational languages with mod p counter are rational.

Since the operator LGp ©m ( ) is idempotent, we immediately obtain the following
result of [36, 71].
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Corollary 6.3. Let V be a variety of finite monoids and W = LGp ©m V. Let W
be the corresponding variety of languages. Then

(1) W(Σ∗) is the smallest class of languages containing V(Σ∗), which is closed
under Boolean operations and formation of marked products with modulo p
counters.

(2) W(Σ∗) consists of all Boolean combinations of elements of V(Σ∗) and
marked products with modulo p counters of elements of V(Σ∗).

Some special cases are the following. If V is the trivial variety of monoids,
then LGp ©m V = Gp and we obtain Eilenberg’s result [18, Section VIII.10] that
the Gp languages consist of the Boolean combinations of languages of the form
(Σ∗a1Σ∗ · · · anΣ∗)r,p. Notice that Gp consists of the groups unitriangularizable
over characteristic p. The languages over Σ∗ associated to LGp ©m Sl (as observed
in [4] and Theorem 4.4, this variety consists of the unitriangularizable monoids over
characteristic p) are the Boolean combinations of languages of the forms

Σ∗aΣ∗ and (Σ∗
0a1Σ∗

1 · · · anΣ∗
n)r,p,

where Σi ⊆ Σ.
We remark that Weil shows [71] that closing V(Σ∗) under marked products with

modulo pn counters, for n > 1, does not take you out of the LGp ©m V-languages.

6.2. Unambiguous products. Our next application is to recover results of
Schützenberger, Pin, Straubing, and Thérien concerning unambiguous products.
Our proof of one direction is along the lines of [41], but our usage of representation
theory allows us to avoid using results relying on case-by-case analysis of maximal
proper surmorphisms.

Let Σ be a finite alphabet, L0, . . . , Ln ⊆ Σ∗ be rational languages and a1, . . . , an

∈ Σ. Then the marked product L = L0a1L1 · · · anLn is called unambiguous if each
word w ∈ L has exactly one factorization of the form u0a1u1 · · · anun, where each
ui ∈ Li. We also allow the degenerate case n = 0.

We shall need to use a well-known and straightforward consequence of the dis-
tributivity of concatenation over union (cf. [41]), namely, if L0, . . . , Ln are disjoint
unions of unambiguous marked products of elements of V(Σ∗), then the same is
true for any unambiguous product L0a1L1 · · · anLn. We also need a lemma about
languages recognized by finite monoids of block upper triangular matrices in char-
acteristic 0.

Lemma 6.4. Let V be a variety of finite monoids, ϕ : Σ∗ → M be a morphism
with M finite. Let K be a field of characteristic 0 and suppose that M can be
represented faithfully by block upper triangular matrices over K so that the monoids
M1, . . . , Mk formed by diagonal blocks of matrices in the image of M all belong to
V. Let F ⊆ M . Then L = Fϕ−1 is a disjoint union of unambiguous marked
products L0a1L1 · · · anLn with the Li ∈ V(Σ∗).

Proof. We induct on the number k of diagonal blocks. If there is only one block we
are done.

Now let k > 1. We can repartition n into two blocks, one corresponding to the
union of the first k−1 of our original blocks and the other corresponding to the last
block. The first diagonal block, call it N , is block upper triangular with diagonal
blocks M1, . . . , Mk−1; the second is just Mk. By induction, any language recognized
by N is a disjoint union of unambiguous marked products L0a1L1 · · · arLr with the
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Li ∈ V(Σ∗). Since Mk ∈ V it is easy to check that any language recognized by
N × Mk is also a disjoint union of unambiguous marked products L0a1L1 · · · arLr

with the Li ∈ V(Σ∗). Thus to prove the result, it suffices to show that L is a disjoint
union of unambiguous marked products L0a1L1 · · · anLn with the Li recognized by
N × Mk. By Lemma 5.4, the projection from M to N × Mk has locally trivial
kernel category. Then [41, Proposition 2.2] shows us that L is a disjoint union of
such unambiguous marked products. �

We ask whether there is a simple combinatorial proof of this lemma that avoids
the use of [41, Proposition 2.2] along the lines of the proof of Lemma 6.1.

Theorem 6.5. Let L ⊆ Σ∗ be a rational language, V be a variety of finite monoids
and K a field of characteristic 0. Then the following are equivalent:

(1) ML ∈ LI©m V;
(2) ML/RadK(ML) ∈ V;
(3) ML can be faithfully represented by block upper triangular matrices over K

so that the monoids formed by the diagonal blocks of the matrices in the
image of ML all belong to V;

(4) L is a disjoint union of unambiguous products L0a1L1 · · · anLn with the
Li ∈ V(Σ∗).

Proof. The equivalence of (1) and (2) follows from Theorem 3.8.
For (2) implies (3), take a composition series for the regular representation of

ML over K: it is then in block upper triangular form and, by (2), the monoids
formed by diagonal blocks of matrices in the image of ML all belong to V.

(3) implies (4) is immediate from Lemma 6.4.
For (4) implies (1), it suffices to deal with a single unambiguous marked product

L = L0a1L1 · · · anLn. Let Ai be the minimal trim deterministic automaton for Li

and let A be the non-deterministic automaton obtained from the disjoint union of
the Li by attaching an edge labelled ai from each final state of Ai−1 to the initial
state of Ai. To each letter a ∈ A, we associate the matrix aϕ of the relation that
a induces on the states. In this way we obtain a morphism ϕ : Σ∗ → Mk(Q) where
k is the number of states of A. Let M = Σ∗ϕ. We observe that M is block upper
triangular with diagonal blocks the syntactic monoids MLi

(the partition of k arises
from taking the states of each Ai). Notice that M recognizes L, since L consists
of all words w such that (wϕ)s,f > 0 where s is the start state of A0 and f is a
final state of An. First we show that M is finite. In fact, we claim M contains only
(0, 1)-matrices (and hence must be finite). Indeed, suppose (wϕ)i,j > 1 for some i, j.
Since each MLi

consists of {0, 1}-matrices, we must have that i is a state of some
Al and j a state of some Ar with l < r. But (wϕ)i,j is the number of paths labelled
by w from i to j in A. Thus if u, v are words reading respectively from the start
state of A0 to i and from j to a final state of An (such exist since the Ai are trim),
then uwv has at least two factorizations witnessing membership in L, contradicting
that L was unambiguous. Since the collection of all block upper triangular matrices
is an algebra over Q, as is the collection of block diagonal matrices, an application
of Lemma 3.1 to the projection to the diagonal blocks gives that M ∈ LI©m V and
so, since M � ML, we have ML ∈ LI©m V. �

Since the operator LI©m ( ) is idempotent, we immediately obtain the following
result of [38, 41].
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Corollary 6.6. Let V be a variety of finite monoids and W = LI©m V. Let W be
the corresponding variety of languages. Then

(1) W(Σ∗) is the smallest class of languages containing V(Σ∗), which is closed
under Boolean operations and formation of unambiguous marked products.

(2) W(Σ∗) consists of all finite disjoint unions of unambiguous marked products
of elements of V(Σ∗).

Recall that the Malcev product of the pseudovariety LI with the pseudovari-
ety Sl of semilattices (idempotent commutative monoids) is equal to the famous
pseudovariety DA of all finite monoids whose regular D-classes are idempotent
subsemigroups (see [65] for a nice survey of combinatorial, logical and automata-
theoretic characterizations of DA). Applying the above corollary, one obtains the
classical result of Schützenberger [58] that DA(Σ∗) consists of disjoint unions of
unambiguous products of the form Σ∗

0a1Σ∗
1 · · · anΣ∗

n with Σi ⊆ Σ for all i. We
saw in Corollary 4.6 that DA consists of precisely those finite monoids that can
be faithfully represented by upper triangular matrices with zeroes and ones on the
diagonal over Q.

7. Černý’s conjecture for DS

A deterministic automaton A = (Q, A) is called synchronizing if there is a word
w ∈ A∗ such that |Qw| = 1; that is, w acts as a constant map on Q. Such a
word w is called a synchronizing word. Černý raised the following question: how
large can a minimal length synchronizing word for a synchronizing automaton be
as a function of the number of states of the automaton? He showed that for each
n > 1, there are n state synchronizing automata with minimal synchronizing words
of size (n− 1)2 [14]. The best known upper bound, due to Pin [39], is n3−n

6 . Černý
conjectured that in fact (n − 1)2 is the exact answer. Many special cases of the
conjecture have been proved (for instance, [37, 17, 23, 6]), but the conjecture in
general remains wide open.

In this section we show, using representation theory, that Černý’s conjecture is
true for synchronizing automata with transition monoids in the variety DS. We
begin by giving a representation theoretic rephrasing of the problem from the thesis
of Steinberg’s Master’s student Arnold [7].

Let A = (Q, A) be a deterministic automaton and let M be its transition monoid.
Set n = |Q|. Let V be the Q-vector space with basis B = {eq | q ∈ Q}. Then there
is a faithful representation ϕ : M → EndQ(V ) defined on the basis by

eqmϕ = eqm.

We consider V with the usual inner product. Let

V1 = Span{
∑
q∈Q

eq} and V0 = V ⊥
1 .

We claim that V0 is M -invariant. Indeed, suppose v ∈ V0 and m ∈ M . Let
v1 =

∑
q∈Q eq. Then

〈vmϕ, v1〉 = 〈v, v1(mϕ)T 〉
(where ()T denotes transposition). With respect to the basis B, mϕ is a row
monomial matrix (meaning each row has precisely one non-zero entry) and hence
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mϕT is column monomial. On the other hand, in the basis B, the vector v1 is the
vector of all ones; hence v1 is fixed by any column monomial matrix. Thus

〈vmϕ, v1〉 = 〈v, v1(mϕ)T 〉 = 〈v, v1〉 = 0,

establishing that vmϕ ∈ V0, as desired. We conclude that V0 is M -invariant. Let
ψ : M → EndQ(V0) be the associated representation.

Without loss of generality, let us assume Q = {1, . . . , n}. Then V0 has basis
B0 = {f1, . . . , fn−1} where fi = en − ei. Also fimψ = en·m − ei·m. In particular,
mψ = 0 if and only if n · m = i · m for all i = 1, . . . , n − 1, that is, if and only if m
is a constant map. Thus w ∈ A∗ is a synchronizing word if and only if [w]ψ = 0,
where [w] is the image of w in M . In particular, A is synchronizing if and only if
Mψ contains the zero matrix. Since V0 has dimension n − 1, we will have proved
C̆erný’s conjecture for the case that M belongs to DS once we have proven the
following theorem, which can be viewed as the “mortality problem” for DS.

Theorem 7.1. Let K be a field and let A be a finite alphabet. Let M be a finite
A-generated submonoid of Mk(K) belonging to DS and suppose that 0 ∈ M . Then
there exists a word w ∈ A∗ of length at most k2 such that w maps to 0 in M .

Before proving this theorem, we need a lemma.

Lemma 7.2. Let S ∈ DS be a non-trivial generalized group mapping semigroup
with a zero element 0. Then S \ {0} is a subsemigroup.

Proof. By definition, S has a (0-)minimal ideal I on which it acts faithfully on
both the left and right. Since S is non-trivial, I cannot be the ideal 0. Thus I is
0-minimal. Since I is regular, I \ {0} is a regular J -class J . Suppose s, t ≥J J .
Then, since S ∈ DS, we have st ≥J J ; see [1, Section 8.1]. Since S acts faithfully
on I, only 0 is not J -above J . Thus S \ {0} is indeed a subsemigroup. �

Proof of Theorem 7.1. By choosing a composition series for the KM -module Kk,
we can place M in block upper triangular form where the diagonal block monoids
M1, . . . , Mr, with 1 ≤ r ≤ k, are irreducible. Since each Mi is a homomorphic
image of M , each has a zero element and each belongs to DS. Being irreducible,
they are generalized group mapping monoids by Theorem 3.9. Thus Mi \ {0} is a
submonoid by Lemma 7.2. Let α : M → M1 ×· · ·×Mr be the projection. Suppose
w ∈ A∗ maps to zero in M , then wα = 0 and hence, for each i = 1, . . . , r, there is
a letter ai ∈ A with the ith coordinate of aiα equal to zero (using that the product
of non-zero elements of Mi remains non-zero). Thus we can find a word u ∈ A∗

of length at most r ≤ k such that u represents an element m of M with zeroes
on the diagonal blocks. But then m is nilpotent of index at most k since it is a
k × k upper triangular matrix with zeroes on the diagonal. Thus uk represents 0
and |uk| ≤ k2. �

We remark that the proof gives a bound of min{|A|, r} ·r, where r is the number
of irreducible constituents of M . This is because in forming u we do not need to
repeat letters and because the nilpotency index is actually bounded by the number
of zero blocks on the diagonal. Hence if either |A| or r is small, then we can do
better than k2.

Applying the above theorem in the context of the representation ψ of the tran-
sition monoid of an automaton on V0 discussed above, we obtain the following
theorem, verifying C̆erný’s conjecture for DS.
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Theorem 7.3. Every synchronizing automaton on n states with transition monoid
in DS has a synchronizing word of length at most (n − 1)2.

We do not know whether (n − 1)2 is sharp when restricted to automata with
transition monoids in DS.

A further application of the representation theory to Černý’s conjecture can be
found in a recent paper by F. Arnold and the third author [8].
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1979, Lect. Notes Comp. Sci. 67, Springer, Berlin, 1979, 260–265. MR568110 (82a:68154)

50. J. Rhodes, A homomorphism theorem for finite semigroups, Math. Systems Theory 1 (1967),
289–304. MR0223473 (36:6521)

51. J. Rhodes, Characters and complexity of finite semigroups, J. Comb. Theory 6 (1969), 67–85.
MR0236293 (38:4590)

52. J. Rhodes, Algebraic theory of finite semigroups: Structure numbers and structure theorems
for finite semigroups, in: “Semigroups”, ed. K. Folley, Academic Press, New York, 1969,
125–162. MR0281817 (43:7531)

53. J. Rhodes, Undecidability, automata and pseudovarieties of finite semigroups, Internat. J.
Algebra Comput. 9 (1999), 455–473. MR1723477 (2000j:20112)

54. J. Rhodes and B. Tilson, The kernel of monoid morphisms, J. Pure Appl. Algebra 62 (1989),
227–268. MR1026876 (92j:18005)

55. J. Rhodes and P. Weil, Decomposition techniques for finite semigroups using categories, I, II,
J. Pure Appl. Algebra 62 (1989), 269–284; ibid. 62 (1989), 285–312. MR1026877 (91e:20043)

56. J. Rhodes and Y. Zalcstein, Elementary representation and character theory of finite semi-
groups and its application in: “Monoids and semigroups with applications” (Berkeley,
CA, 1989), ed. J. Rhodes, World Scientific, River Edge, NJ, 1991, 334–367. MR1142387
(92k:20129)

57. M. P. Schützenberger, On finite monoids having only trivial subgroups, Inform. Control 8
(1965), 190–194. MR0176883 (31:1154)

58. M. P. Schützenberger, Sur le produit de concatenation non ambigu, Semigroup Forum 13
(1976), 47–75. MR0444824 (56:3171)

59. I. Simon, “Hierarchies of events of dot-depth one”, Ph. D. Thesis, University of Waterloo,
1972.

60. I. Simon, Piecewise testable events, Proc. 2nd GI Conf., Kaiserslautern, 1975, Lect. Notes
Comp. Sci. 33, Springer, Berlin, 1975, 214–222. MR0427498 (55:530)

61. I. Simon, The product of rational languages, 20th ICALP, Lect. Notes Comput. Sci. 700,
Springer, Berlin, 1993, 430–444. MR1252424 (94k:68117)
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