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ABSTRACT. In 1979, Norton showed that the representation theory of the 0-
Hecke algebra admits a rich combinatorial description. Her constructions rely
heavily on some triangularity property of the product, but do not use explicitly
that the 0-Hecke algebra is a monoid algebra.

The thesis of this paper is that considering the general setting of monoids
admitting such a triangularity, namely J-trivial monoids, sheds further light
on the topic. This is a step in an ongoing effort to use representation theory to
automatically extract combinatorial structures from (monoid) algebras, often
in the form of posets and lattices, both from a theoretical and computational
point of view, and with an implementation in Sage.

Motivated by ongoing work on related monoids associated to Coxeter sys-
tems, and building on well-known results in the semi-group community (such
as the description of the simple modules or the radical), we describe how most
of the data associated to the representation theory (Cartan matrix, quiver)
of the algebra of any [J-trivial monoid M can be expressed combinatorially
by counting appropriate elements in M itself. As a consequence, this data
does not depend on the ground field and can be calculated in O(n2), if not
O(nm), where n = |M| and m is the number of generators. Along the way,
we construct a triangular decomposition of the identity into orthogonal idem-
potents, using the usual Md&bius inversion formula in the semi-simple quotient
(a lattice), followed by an algorithmic lifting step.

Applying our results to the 0-Hecke algebra (in all finite types), we recover
previously known results and additionally provide an explicit labeling of the
edges of the quiver. We further explore special classes of [J-trivial monoids,
and in particular monoids of order preserving regressive functions on a poset,
generalizing known results on the monoids of nondecreasing parking functions.
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1. INTRODUCTION

The representation theory of the 0-Hecke algebra (also called degenerate Hecke
algebra) was first studied by P.-N. Norton [Nor79| in type A and expanded to
other types by Carter [Car86]. Using an analogue of Young symmetrizers, they
describe the simple and indecomposable projective modules together with the Car-
tan matrix. An interesting combinatorial application was then found by Krob
and Thibon [KT97] who explained how induction and restriction of these mod-
ules gives an interpretation of the products and coproducts of the Hopf algebras of
noncommutative symmetric functions and quasi-symmetric functions. Two other
important steps were further made by Duchamp-Hivert—-Thibon [DHT02] for type
A and Fayers [Fay05] for other types, using the Frobenius structure to get more
results, including a description of the Ext-quiver. More recently, a family of mini-
mal orthogonal idempotents was described in [Denl0al [Denl0b]. Through divided
difference (Demazure operator), the 0-Hecke algebra has a central role in Schubert
calculus and also appeared has connection with K-theory [Dem74l [Las01] Las04]
Mil05), BKST08, [LSS10].

Like several algebras whose representation theory was studied in recent years
in the algebraic combinatorics community (such as degenerated left regular bands,
Solomon-Tits algebras, ...), the 0-Hecke algebra is the algebra of a finite monoid
endowed with special properties. Yet this fact was seldom used (including by the
authors), despite a large body of literature on finite semi-groups, including repre-
sentation theory results [Put96l [Put98, [Sal07, [Sal08, MS08, [Sch08, [Ste06, [Ste08],
AMV05, [AMSV09, [GMS09, TRS10]. From these, one can see that much of the
representation theory of a semi-group algebra is combinatorial in nature (provided
the representation theory of groups is known). One can expect, for example, that
for aperiodic semi-groups (which are semi-groups which contain only trivial sub-
groups) most of the numerical information (dimensions of the simple/projective
indecomposable modules, induction/restriction constants, Cartan matrix) can be
computed without using any linear algebra. In a monoid with partial inverses, one
finds (non-trivial) local groups and an understanding of the representation theory
of these groups is necessary for the full representation theory of the monoid. In this
sense, the notion of aperiodic monoids is orthogonal to that of groups as they con-
tain only trivial group-like structure (there are no elements with partial inverses).
On the same token, their representation theory is orthogonal to that of groups.
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The main goal of this paper is to complete this program for the class of J-trivial
monoids (a monoid M is J-trivial provided that there exists a partial ordering <
on M such that for all z,y € M, one has zy < x and zy < y). In this case, we
show that most of the combinatorial data of the representation theory, including
the Cartan matrix and the quiver can be expressed by counting particular elements
in the monoid itself. A second goal is to provide a self-contained introduction to
the representation theory of finite monoids, targeted at the algebraic combinatorics
audience, and focusing on the simple yet rich case of J-trivial monoids.

The class of J-trivial monoids is by itself an active subject of research (see
e.g. [ST88, [HPOO, [Ver08|), and contains many monoids of interest, starting with
the 0-Hecke monoid. Another classical J-trivial monoid is that of nondecreasing
parking functions, or monoid of order preserving regressive functions on a chain.
Hivert and Thiéry [HT06, [HT09] showed that it is a natural quotient of the 0-Hecke
monoid and used this fact to derive its complete representation theory. It is also a
quotient of Kiselman’s monoid which is studied in [KM09] with some representation
theory results. Ganyushkin and Mazorchuk [GMI10] pursued a similar line with a
larger family of quotients of both the 0-Hecke monoid and Kiselman’s monoid.

The extension of the program to larger classes of monoids, like R-trivial or aperi-
odic monoids, is the topic of a forthcoming paper. Some complications necessarily
arise since the simple modules are not necessarily one-dimensional in the latter
case. The approach taken there is to suppress the dependence upon specific prop-
erties of orthogonal idempotents. Following a complementary line, Berg, Bergeron,
Bhargava, and Saliola [BBBSI0] have very recently provided a construction for a
decomposition of the identity into orthogonal idempotents for the class of R-trivial
monoids.

The paper is arranged as follows. In Section [2| we recall the definition of a
number of classes of monoids, including the J-trivial monoids, define some running
examples of J-trivial monoids, and establish notation.

In Section |3| we establish the promised results on the representation theory of
J-trivial monoids, and illustrates them on several examples including the 0-Hecke
monoid. We describe the radical, construct combinatorial models for the projective
and simple modules, give a lifting construction to obtain orthogonal idempotents,
and describe the Cartan matrix and the quiver, with an explicit labelling of the
edges of the latter. We briefly comment on the complexity of the algorithms to
compute the various pieces of information, and their implementation in Sage. All
the constructions and proofs involve only combinatorics in the monoid or linear
algebra with unitriangular matrices. Due to this, the results do not depend on the
ground field K. In fact, we have checked that all the arguments pass to K = Z and
therefore to any ring (note however that the definition of the quiver that we took
comes from [ARO97], where it is assumed that K is a field). It sounds likely that
the theory would apply mutatis-mutandis to semi-rings, in the spirit of [IRS10].

Finally, in Section [d] we examine the monoid of order preserving regressive func-
tions on a poset P, which generalizes the monoid of nondecreasing parking functions
on the set {1,..., N}. We give combinatorial constructions for idempotents in the
monoid and also prove that the Cartan matrix is upper triangular. In the case
where P is a meet semi-lattice (or, in particular, a lattice), we establish an idem-
potent generating set for the monoid, and present a conjectural recursive formula
for orthogonal idempotents in the algebra.
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2. BACKGROUND AND NOTATION

A monoid is a set M together with a binary operation - : M x M — M such that
we have closure (z-y € M for all z,y € M), associativity ( (x-y)-z=z-(y-z) for
all z,y,z € M), and the existence of an identity element 1 € M (which satistfies
l-z =x-1=uzfor all x € M). In this paper, unless explicitly mentioned, all
monoids are finite. We use the convention that A C B denotes A a subset of B,
and A C B denotes A a proper subset of B.

Monoids come with a far richer diversity of features than groups, but collections
of monoids can often be described as wvarieties satisfying a collection of algebraic
identities and closed under subquotients and finite products (see e.g. [Pin86l [Pin10a]
or [Pin10al, Chapter VII]). Groups are an example of a variety of monoids, as are all
of the classes of monoids described in this paper. In this section, we recall the basic
tools for monoids, and describe in more detail some of the varieties of monoids that
are relevant to this paper. A summary of those is given in Figure [I}

In 1951 Green introduced several preorders on monoids which are essential for
the study of their structures (see for example [Pinl0al Chapter V]). Let M be a
monoid and define <, </, <7, <y for z,y € M as follows:

r <gr y if and only if z = yu for some u € M
x <,y if and only if z = uy for some u € M
x <7y if and only if z = uyv for some u,v € M
r<yy ifandonlyif x < y and x <. y.
These preorders give rise to equivalence relations:
xRy if and only if M = yM
x Ly if and only if Mz = My
x Jy if and only if MaM = MyM
xHy ifand onlyif z Ry and z L y.

We further add the relation <g (and its associated equivalence relation B) defined
as the finest preorder such that x < 1, and

x <p y implies that uzv <p uyv for all z,y,u,v € M.

(One can view <g as the intersection of all preorders with the above property; there
exists at least one such preorder, namely z < y for all z,y € M).
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FIGURE 1. Classes of finite monoids, with examples

Beware that 1 is the largest element of these (pre)-orders. This is the usual
convention in the semi-group community, but is the converse convention from the
closely related notions of left /right /Bruhat order in Coxeter groups.

Definition 2.1. A monoid M is called K-trivial if all K-classes are of cardinality
one, where K € {R, L, T, H,B}.

An equivalent formulation of K-triviality is given in terms of ordered monoids.

A monoid M is called:

right ordered if vy <z for all xz,y € M

left ordered ifey <y foral z,yec M

left-right ordered ifey <zand zy <y forall z,y e M
two-sided ordered if ey =yz <y forall z,y,z € M with xy = yz

ordered with 1 on top ifx <1forallxz € M, and x <y
implies uzv < uyv for all z,y,u,v € M

for some partial order < on M.

Proposition 2.2. M is right ordered (resp. left ordered, left-right ordered, two-
sided ordered, ordered with 1 on top) if and only if M is R-trivial (resp. L-trivial,
J -trivial, H-trivial, B-trivial).

When M is K-trivial for K € {R, L, T, H, B}, then <x is a partial order, called
K-order. Furthermore, the partial order < is finer than <k: for any x,y € M,
r <k vy itmplies z < y.

Proof. We give the proof for right-order as the other cases can be proved in a similar
fashion.
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Suppose M is right ordered and that x,y € M are in the same R-class. Then
x = ya and y = xb for some a,b € M. This implies that z < y and y < x so that
T =y.

Conversely, suppose that all R-classes are singletons. Then z <g y and y <p =
imply that = y, so that the R-preorder turns into a partial order. Hence M is
right ordered using zy <g . O

2.1. Aperiodic and R-trivial monoids. The class of H-trivial monoids coincides
with that of aperiodic monoids (see for example [Pinl0al Proposition 4.9]): a monoid
is called aperiodic if for any x € M, there exists some positive integer NV such that
2N = N+l The element zv := 2N = N+ = 2V¥+2 = ... i5 then an idempotent
(the idempotent * can in fact be defined for any element of any monoid [PinI0al
Chapter VI.2.3], even infinite monoids; however, the period k such that xV = zN+¥
need no longer be 1). We write E(M) := {z* | x € M} for the set of idempotents
of M.

Our favorite example of a monoid which is aperiodic, but not R-trivial, is the
biHecke monoid studied in [HSTT0al [HST10b]. This is the submonoid of functions
from a finite Coxeter group W to itself generated simultaneously by the elementary
bubble sorting and antisorting operators 7; and m;

(21) M(W) = <7Tl,7T27...,ﬂ'n,fl,fg,...,frJ.

See [HSTT10al Definition 1.1] and [HST10a, Proposition 3.8].

The smaller class of R-trivial monoids coincides with the class of so-called weakly
ordered monoids as defined by Schocker [Sch08]. Also, via the right regular rep-
resentation, any R-trivial monoid can be represented as a monoid of regressive
functions on some finite poset P (a function f : P — P is called regressive if
f(z) < z for every & € P); reciprocally any such monoid is R-trivial. We now
present an example of a monoid which is R-trivial, but not J-trivial.

Example 2.3. Take the free left regular band B generated by two idempotents
a,b. Multiplication is given by concatenation taking into account the idempotent
relations, and then selecting only the two left factors (see for example [Sal07]). So
B = {1,a,b,ab,ba} and 1B = B, aB = {a,ab}, bB = {b,ba}, abB = {ab}, and
baBB = {ba}. This shows that all R-classes consist of only one element and hence B
is R-trivial.

On the other hand, B is not L-trivial since {ab,ba} forms an £L-class since b-ab =
ba and a - ba = ab. Hence B is also not J-trivial.

2.2. J-trivial monoids. The most important for our paper is the class of J-trivial
monoids. In fact, our main motivation stems from the fact that the submonoid
M, ={f € M| f(1) = 1} of the biHecke monoid M in of functions that fix
the identity, is J-trivial (see [HST10al Corollary 4.2] and [HSTIO0D]).

Example 2.4. The following example of a J-trivial monoid is given in [STSS].
Take M = {1,x,y, 2,0} with relations 22 = x, y?> = y, 1z = 2y = 2z, and all other
products are equal to 0. Then M1M = M, MazM = {z,z,0}, MyM = {y, z,0},
MzM = {z,0}, and MOM = {0}, which shows that M is indeed J-trivial. Note
also that M is left-right ordered with the order 1 > = > y > z > 0, which by
Proposition [2.2| is equivalent J-triviality.
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2.3. Ordered monoids (with 1 on top). Ordered monoids M with 1 on top
form a subclass of J-trivial monoids. To see this suppose that x,y € M are in the
same R-class, that is z = ya and y = b for some a,b € M. Since a < 1, this
implies = ya < y and y = b < x so that x = y. Hence M is R-trivial. By
analogous arguments, M is also L-trivial. Since M is finite, this implies that M is
J-trivial (see [Pinl0al Chapter V, Theorem 1.9]).

The next example shows that ordered monoids with 1 on top form a proper
subclass of J-trivial monoids.

Example 2.5. The monoid M of Example is not ordered. To see this suppose
that < is an order on M with maximal element 1. The relation y < 1 implies
0 =y? <y ==xyz < zz = 0 which contradicts y # 0.

It was shown by Straubing and Thérien [ST88] and Henckell and Pin [HPOO]
that every J-trivial monoid is a quotient of an ordered monoid with 1 on top.

In the next two subsections we present two important examples of ordered
monoids with 1 on top: the 0-Hecke monoid and the monoid of regressive order
preserving functions, which generalizes nondecreasing parking functions.

2.4. 0-Hecke monoids. Let W be a finite Coxeter group. It has a presentation
(2.2) W = (siforiel | (sis;)™%) Vijel),

where I is a finite set, m(s;,s;) € {1,2,...,00}, and m(s;,s;) = 1. The elements
s; with ¢ € I are called simple reflections, and the relations can be rewritten as:

si=1 forallie I,

(2.3) 5i5j8i8j8; -+ = 5;5;5;8;85--+ foralli,jel,

m(siss5) m(sis;)

where 1 denotes the identity in W. An expression w = s;, ---s;, for w € W is
called reduced if it is of minimal length ¢. See [BB05, [Hum90] for further details on
Coxeter groups.

The Coxeter group of type A,_1 is the symmetric group &, with generators
{s1,...,8n—1} and relations:
$2=1 forl<i<n-—1,
(2.4) 8i8; = 8;8; for |i — j| > 2,

SiSi4+1Si = Si+1SiSi+1 for 1 < 1 <n-— 2;

the last two relations are called the braid relations.

Definition 2.6 (0-Hecke monoid). The 0-Hecke monoid Ho(W) = (m; | i € I)
of a Coxeter group W is generated by the simple projections m; with relations

W?:m foralliel,

(2.5) MMy - = Wymmm -~ foralli,j el .

m(si,s;) m(si,s;)

Thanks to these relations, the elements of Ho(W) are canonically indezed by the
elements of W by setting m,, 1= m;, - --m;, for any reduced word i1 .. .1 of w.
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Bruhat order is a partial order defined on any Coxeter group W and hence also
the corresponding 0-Hecke monoid Ho(W). Let w = s;, 8, - S;, be a reduced
expression for w € W. Then, in Bruhat order <g,

u<pw if there exists a reduced expression u = s;, - - - 5,
where j; ... j is a subword of iy ... .

In Bruhat order, 1 is the minimal element. Hence, it is not hard to check that, with
reverse Bruhat order, the 0-Hecke monoid is indeed an ordered monoid with 1 on
top.

In fact, the orders <., <g, <7, <g on Ho(W) correspond exactly to the usual
(reversed) left, right, left-right, and Bruhat order on the Coxeter group W.

2.5. Monoid of regressive order preserving functions. For any partially or-
dered set P, there is a particular [J-trivial monoid which has some very nice prop-
erties and that we investigate further in Section [d] Notice that we use the right
action in this paper, so that for x € P and a function f : P — P we write z.f for
the value of x under f.

Definition 2.7 (Monoid of regressive order preserving functions). Let
(P,<p) be a poset. The set OR(P) of functions f : P — P which are

e order preserving, that is, for all z,y € P, x <p y implies x.f <p y.f
e regressive, that is, for all x € P one has x.f <p x

is a monoid under composition.

Proof. 1t is trivial that the identity function is order preserving and regressive and
that the composition of two order preserving and regressive functions is as well. [

According to [GM09] 14.5.3], not much is known about these monoids.

When P is a chain on N elements, we obtain the monoid NDPF y of nondecreas-
ing parking functions on the set {1,..., N} (see e.g. [Sol96]; it also is described
under the notation C,, in e.g. [Pinl0al Chapter XI.4] and, together with many vari-
ants, in [GM09, Chapter 14]). This monoid can be obtained as a quotient of the
0-Hecke monoid [HT06, HT09, [GMI10] or of Kiselman’s monoid [GMI10), [KM09).

To see that OR(P) is indeed a subclass of ordered monoids with 1 on top, note
that we can define a partial order by saying f < g for f,g € OR(P) if z.f <p x.g
for all x € P. By regressiveness, this implies that f < id for all f € OR(P) so
that indeed id is the maximal element. Now take f,g,h € OR(P) with f < g. By
definition z.f <p x.g for all x € P and hence by the order preserving property
(z.f).h <p (x.g).h, so that fh < gh. Similarly since f < g, (z.h).f <p (z.h).g so
that hf < hg. This shows that OR(P) is ordered.

The submonoid M; of the biHecke monoid , and Ho(W) C My, are sub-
monoids of the monoid of regressive order preserving functions acting on the Bruhat
poset.

2.6. Monoid of unitriangular Boolean matrices. Finally, we define the [J-
trivial monoid U,, of unitriangular Boolean matrices, that is of n X n matrices m
over the Boolean semi-ring which are unitriangular: mli,i] = 1 and ml[é,j] = 0
for i« > j. Equivalently (through the adjacency matrix), this is the monoid of
the binary reflexive relations contained in the usual order on {1,...,n} (and thus
antisymmetric), equipped with the usual composition of relations. Ignoring loops,
it is convenient to depict such relations by acyclic digraphs admitting 1,...,n as
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linear extension. The product of g and h contains the edges of g, of h, as well as
and the transitivity edges i —k obtained from one edge i —j in g and one edge j —k
in h. Hence, g% = ¢ if and only if g is transitively closed.

The family of monoids (U, ), (resp. (NDPF,,),,) plays a special role, because any
J-trivial monoid is a subquotient of U,, (resp. NDPF,,) for n large enough [Pin10a),
Chapter XI.4]. In particular, NDPF,, itself is a natural submonoid of U,.

Remark 2.8. NDPF,, is isomorphic to the submonoid of relations A such that for
any i >35>k >1,ifi—l € A then j —k € A; the morphisms being given by the
map A € U, — fa € NDPF,, where

u- fo=min{v | u—v € A}.
The converse bijection f € NDPF,, — A; € U, is given by
u—v € Ay if and only if u- f <w.

3. REPRESENTATION THEORY OF J-TRIVIAL MONOIDS

In this section we study the representation theory of J-trivial monoids M, using
the 0-Hecke monoid Hy(W) of a finite Coxeter group as running example. In Sec-
tion[3:I]we construct the simple modules of M and derive a description of the radical
rad KM of the monoid algebra of M. We then introduce a star product on the set
E(M) of idempotents in Theorem [3.4] which makes it into a semi-lattice, and prove
in Corollary that the semi-simple quotient of the monoid algebra KM /rad KM
is the monoid algebra of (E(M),*). In Section [3.2] we construct orthogonal idempo-
tents in KM/ rad KM which are lifted to a complete set of orthogonal idempotents
in KM in Theorem B.1T]in Section[3.3l In Section[3.4we describe the Cartan matrix
of M. We study several types of factorizations in Section[3.5] derive a combinatorial
description of the quiver of M in Section [3.6] and apply it in Section [3.7] to several
examples. Finally, in Section |3.8] we briefly comment on the complexity of the
algorithms to compute the various pieces of information, and their implementation
in Sage.

3.1. Simple modules, radical, star product, and semi-simple quotient.
The goal of this subsection is to construct the simple modules of the algebra of
a J-trivial monoid M, and to derive a description of its radical and its semi-
simple quotient. The proof techniques are similar to those of Norton [Nor79] for
the 0-Hecke algebra. However, putting them in the context of J-trivial monoids
makes the proofs more transparent. In fact, most of the results in this section
are already known, and many admit natural generalizations in larger classes of
monoids (R-trivial, ...). For example, the description of the radical is a special case
of Almeida-Margolis-Steinberg-Volkov [AMSV09]. Also, the description of the semi-
simple quotient is often derived alternatively from the description of the radical, by
noting that it is the algebra of a monoid which is J-trivial and idempotent (which is
equivalent to being a semi-lattice; see e.g. [Pin10al Chapter VII, Proposition 4.12]).

Proposition 3.1. Let M be a J-trivial monoid and x € M. Let S, be the 1-
dimensional vector space spanned by an element €., and define the right action of
anyy € M by

(31) ol = {Ex lf Yy =,

0  otherwise.
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Then S, is a right M-module. Moreover, any simple module is isomorphic to S,
for some x € M and is in particular one-dimensional.

Note that some S, may be isomorphic to each other, and that the S, can be
similarly endowed with a left M-module structure.

Proof. Recall that, if M is J-trivial, then <7 is a partial order called J-order (see
Proposition . Let (z1,xa,...,x,) be a linear extension of J-order, that is an
enumeration of the elements of M such that x; <7 z; implies ¢ < j. For 0 <7 < n,
define F; = K{z; | j < ¢} and set Fy = {Ox}. Clearly the F;’s are ideals of KM
such that the sequence

FhCF CF,C---CF,_1CF,
is a composition series for the regular representation F,, = KM of M. Moreover,
for any ¢ > 0, the quotient F;/F;_; is a one-dimensional M-module isomorphic to
Sz,. Since any simple M-module must appear in any composition series for the
regular representation, it has to be isomorphic to F;/F;_1 = S,, for some i. (]

Corollary 3.2. Let M be a J-trivial monoid. Then, the quotient of its monoid
algebra KM by its radical is commutative.

Note that the radical rad KM is not necessarily generated as an ideal by {gh—hg |
g,h € M}. For example, in the commutative monoid {1,z,0} with 22 = 0, the
radical is K(x — 0). However, thanks to the following this is true if M is generated
by idempotents (see Corollary .

The following proposition gives an alternative description of the radical of KM.

Proposition 3.3. Let M be a J-trivial monoid. Then
(3.2) {z—a%|ze M\EM)}

is a basis for rad KM.
Moreover (Se)eep(ar) is a complete set of pairwise non-isomorphic representa-
tives of isomorphism classes of simple M -modules.

Proof. For any x,y € M, either yr = y and then yz* = y, or yr <7 y and then

yax* <z y. Therefore x —2* is in rad KM because for any y the product e, (z —z*)

vanishes. Since z“ < z, by triangularity with respect to J-order, the family
{r—2¥|2e M\E(M)} UE(M)

is a basis of KM. There remains to show that the radical is of dimension at most the
number of non-idempotents in M, which we do by showing that the simple modules
(Se)ecE(a) are not pairwise isomorphic. Assume that S, and Sy are isomorphic.
Then, since €.e = €., it must be that €. f = €. so that ef = e. Similarly fe = f, so
that e and f are in the same J-class and therefore equal. O

The following theorem elucidates the structure of the semi-simple quotient of the
monoid algebra KM.

Theorem 3.4. Let M be a J-trivial monoid. Define a product x on E(M) by:
(3.3) ex f:=(ef)”.

Then, the restriction of <7 on E(M) is a lattice such that

(3.4) eNg f=exf,
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where eA 7 f is the meet or infimum of e and f in the lattice. In particular (E(M),*)
is an idempotent commutative J -trivial monoid.

We start with two preliminary easy lemmas (which are consequences of e.g. [Pin10al
Chapter VII, Proposition 4.10]).

Lemma 3.5. Ife € E(M) is such e = ab for some a,b € M, then
e =ea=be = ae = eb.

Proof. For e € E(M), one has e = € so that e = eabe. As a consequence, e <7
ea <7 eande <5 be <7 e, sothat e = ea = be. In addition e = e? = eab = eb
and e = e = abe = ae. ([

Lemma 3.6. Fore € E(M) andy € M, the following three statements are equiv-
alent:

(3.5) e<gv, e = ey, e=ye.

Proof. Suppose that e,y are such that e <7 y. Then e = ayb for some a,b € M.
Applying Lemma [3.5] we obtain e = ea = be so that eye = eaybe = eee = e since
e € E(M). A second application of Lemma shows that ey = eye = e and
ye = eye = e. The converse implications hold by the definition of < ;. O

Proof of Theorem[3]} We first show that, for any e, f € F(M) the product ex f is
the greatest lower bound e Ay f of e and f so that the latter exists. It is clear that
(ef)¥ <z eand (ef)* <z f. Take now z € E(M) satisfying z <7 e and z <7 f.
Applying Lemma z = ze = zf, and therefore z = z(ef)¥. Applying Lemma
backward, z <7 (ef)“, as desired.

Hence (E(M), <) is a meet semi-lattice with a greatest element which is the
unit of M. It is therefore a lattice (see e.g. [Sta97, [Wik1Q]). Since lower bound
is a commutative associative operation, (E(M),*) is a commutative idempotent
monoid. (]

We can now state the main result of this section.

Corollary 3.7. Let M be a J-trivial monoid. Then, (KE(M),*) is isomorphic to
KM/rad KM and ¢ : x — a* is the canonical algebra morphism associated to this
quotient.

Proof. Denote by v : KM — KM/rad KM the canonical algebra morphism. It
follows from Proposition [3.3] that, for any 2 (idempotent or not), 1(z) = #(2*) and
that {¢(e) | e € E(M)} is a basis for the quotient. Finally, x coincides with the
product in the quotient: for any e, f € E(M),

P(e)y(f) =v(ef) = v((ef)”) = d(ex f). O

Corollary 3.8. Let M be a J-trivial monoid generated by idempotents. Then the
radical rad KM of its monoid algebra is generated as an ideal by

(3.6) {gh—hg|g,h € M}.

Proof. Denote by C the ideal generated by {gh — hg | g,h € M}. Since rad KM is
the linear span of (x — )¢, it is sufficient to show that for any « € M one has
x = z? (mod C). Now write z = ej - - - e, where e; are all idempotent. Then,

r=el---e2=e ---eper ey, =2° (mod C). O
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Example 3.9 (Representation theory of Hy(W)). Consider the 0-Hecke monoid
Hy(W) of a finite Coxeter group W, with index set I = {1,2,...,n}. For any
J C I, we can consider the parabolic submonoid Ho (W) generated by {m; | i € J}.
Each parabolic submonoid contains a unique longest element m;. The collection
{m; | J C I} is exactly the set of idempotents in Hy(WW).

For each i € I, we can construct the evaluation maps ® and ®; defined on
generators by:

oS : CHo(W)— CHo(Wn ()

or(m) = {0 Hi=J

m; ifi#j,

and

®; : CHo(W)— CHy(Wn ()

_ 0 ifi=j,

(I)i (7Tj> = { oo .

m;  if i # g,

One can easily check that these maps extend to algebra morphisms from Hy(W) —
Ho(Wp\(iy). For any J, define @j as the composition of the maps <I>;r for i € J,
and define ®7 analogously (the map <I>‘J]r is the parabolic map studied by Billey,
Fan, and Losonczy [BFL99]). Then, the simple representations of Ho(W) are given
by the maps A\; = <I>JJ“ ) <I>;, where J = I \ J. This is clearly a one-dimensional
representation.

3.2. Orthogonal idempotents. We describe here a decomposition of the identity
of the semi-simple quotient into minimal orthogonal idempotents. We include a
proof for the sake of completeness, though the result is classical. It appears for
example in a combinatorial context in [Stad7, Section 3.9] and in the context of
semi-groups in [Sol67] [Ste06].

For e € E(M), define

(3.7) gei= D Heret,
e'<ge

where g is the Mobius function of <7, so that

(38) € = Z Ge' -
e'<ge

Proposition 3.10. The family {g. | e € E(M)} is the unique mazimal decompo-
sition of the identity into orthogonal idempotents for x that is in KM /rad KM.

Proof. First note that 1,y = >, g by (3.8).
Consider now the new product ¢ on KE(M) = K{g. | ¢ € E(M)} defined by

Gu ® Gv = 5u,vgu- Then,
uey = Z Gu' ® ngzz Z GJuw =UNFV=uUx*x0.
u'<gu v'<gv w’' <uA gv

Hence the product e coincides with *.
Uniqueness follows from semi-simplicity and the fact that all simple modules are
one-dimensional. [
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3.3. Lifting the idempotents. In the following we will need a decomposition of
the identity in the algebra of the monoid with some particular properties. The goal
of this section is to construct such a decomposition. The idempotent lifting is a
well-known technique (see [CR06, Chapter 7.7]), however we prove the result from
scratch in order to obtain a lifting with particular properties. Moreover, the proof
provided here is very constructive.

Theorem 3.11. Let M be a J-trivial monoid. There exists a family (fe)ee ()
of elements of KM such that

e (fe) is a decomposition of the identity of KM into orthogonal idempotents:
(3.9) 1= Y fo  with fofo=0celfe.
ecE(M)

e (fe) is compatible with the semi-simple quotient:

(3.10) O(fe) = ge with ¢ as in Corollary[3.7
o (fe) is uni-triangular with respect to J-order of M :
(3.11) fe=e+ Z Cz,eT
r<ge

for some scalars ¢y ¢.

This theorem will follow directly from Proposition below. In the proof, we
will use the following proposition:

Proposition 3.12. Let A be a finite-dimensional K-algebra and ¢ the canonical
algebra morphism from A to A/rad A. Let x € A be such that e = ¢(x) is idempo-
tent. Then, there exists a polynomial P € xZ[z] (i.e. without constant term) such
that y = P(x) is idempotent and ¢(y) = e. Moreover, one can choose P so that it
only depends on the dimension of A (and not on x or A).

Let us start with two lemmas, where we keep the same assumptions as in Propo-
sition namely z € A such that ¢(z) = e is an idempotent:
Lemma 3.13. z(z — 1) is nilpotent: (x(x — 1))* =0 for some u.
Proof. e = ¢(x) is idempotent so that e(e — 1) = 0. Hence z(x — 1) € rad A and is
therefore nilpotent. O

For any number a denote by [a] the smallest integer larger than a.

Lemma 3.14. Suppose that (z(z—1))* = 0 and define y := 1—(1—22)% = 222 —2*.
Then (y(y —1))" = 0 with v = [§].

Proof. Tt suffices to expand and factor y(y — 1) = 2?(x — 1)%(x + 1)3(2? — 2).
Therefore (y(y — 1)) is divisible by (xz(z — 1))" and must vanishes. O
Proof of Proposition[3.13 Define yo := z and y,11 := 1 — (1 — y2)%. Then by
Lemma3.13|there is a ug such that (yo(yo—1))"* = 0. Define u,, 41 = [%+]. Clearly
there is an N such that uy = 1. Then let y = yy. Clearly y is a polynomial in z
and y(y — 1) = 0 so that y is idempotent. Finally if ¢(y,) = e then

(3.12) Fyn+1) =0(1-(1-9p)") =1-(1-e)?=1-(1-¢) =e,

so that ¢(y) = e by induction.
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Note that the nilpotency order ug is smaller than the dimension of the algebra.
Hence the choice N = [log,(dim(A))] is correct for all x € A. O

In practical implementations, the given bound is much too large. A better
method is to test during the iteration of y,+1 := 1 — (1 —52)? whether 32 = y,, and
to stop if it holds.

For a given [J-trivial monoid, we choose P according to the size of the monoid
and therefore, for a given z, denote by P(z) the corresponding idempotent.

Recall that in the semi-simple quotient, Equation defines a maximal decom-
position of the identity 1 =3 . B(M) Je using the Mobius function. Furthermore,
ge is uni-triangular and moreover by Lemma Je = €Je = gee.

Now pick an enumeration (that is a total ordering) of the set of idempotents:

(3.13) E(M)={e1,e2,...,ex} and Gi = Ge, -

Then define recursively

(3.14) fi=P(g1), fo:=P(1- fi)g2(1—f1)),

(3.15) and fori>1, fi=P|(1=> f)gal->_f)
j<i j<i

We are now in position to prove Theorem [3.11

Proposition 3.15. The f; defined above form a uni-triangular decomposition of
the identity compatible with the semi-simple quotient.

Proof. First it is clear that the f; are pairwise orthogonal idempotents. Indeed,
since P has no constant term one can write f; as

(3.16) fi=(1=> f)U.

j<i
Now, assuming that the (f;);<; are orthogonal, the product f; f; with k& < ¢ must
vanish since fi(1 -3, fj) = fx — f = 0. Therefore one obtains by induction

that for all j <4, f; f; = 0. The same reasoning shows that f;f; = 0 with j <.
Next, assuming that ¢(f;) = g; holds for all j < ¢, one has

(3.17) Sl A= e => ] =0=> 990> 9)=0-
j<i j<i j<i j<i
As a consequence ¢(f;) = ¢(P(g:)) = P(¢(g:)) = gi- So that again by induction

¢(fi) = gi holds for all i. Now ¢(3_; fi) = >_;9i = 1. As a consequence 1 — ), f;
lies in the radical and must therefore be nilpotent. But, by orthogonality of the f;
it must be idempotent as well:

(818) (L= fi)*=1-23 fi+(Q fi)*=1-23 fi+> fi=
L=2) fit ) fi=1-> fi.
The only possibility is that 1 — >, fi = 0.

It remains to show triangularity. Since the polynomial P has no constant term
fi is of the form f; = Ag;B for A, B € KM. One can therefore write f; = Ae;g;B.
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By definition of the J-order, any element of the monoid appearing with a nonzero
coefficient in f; must be smaller than or equal to e;. Finally, using ¢ one shows
that the coefficient of e; in f; must be 1 because the coefficient of e; in g; is 1 and
that if z <7 e; then ¢(z) = 2 <7 €;. O

3.4. The Cartan matrix and indecomposable projective modules. In this
subsection, we give a combinatorial description of the Cartan invariants of a [J-
trivial monoid as well as its left and right indecomposable projective modules. The
main ingredient is the notion of lfix and rfix which generalize left and right descent
classes in Ho(W).

Proposition 3.16. For any z € M, the set
(3.19) rAut(z) :={u € M | zu =z}

is a submonoid of M. Moreover, its J-smallest element rfix(x) is the unique idem-
potent such that

(3.20) rAut(z) = {v € M | rfix(z) <7 u}.
The same holds for the left: there exists a unique idempotent lfix(x) such that
(3.21) lAut(z) :={ue M |ur =z} ={ue M | lfix(x) <z u}.

Proof. The reasoning is clearly the same on the left and on the right. We write the
right one. The fact that rAut(x) is a submonoid is clear. Pick a random order on
rAut(x) and define

w

(3.22) ri= H u

u€rAut(z)

Clearly, r is an idempotent which belongs to rAut(z). Moreover, by the definition
of r, for any u € rAut(z), the inequality r <7 w holds. Hence rfix(z) = r exists.
Finally it is unique by antisymmetry of <7 (since M is J-trivial). |

Note that, by Lemma (3.6

(3.23) rfix(z) = min{e € E(M) | ze =z},
(3.24) lfix(z) = min{e € E(M) | ex =z},

the min being taken for the J-order.
We recover some classical properties of descents:

Proposition 3.17. Ifix is decreasing for the R-order. Similarly, rfix is decreasing
for the L-order.

Proof. By definition, lfix(a)ab = ab, so that lfix(a) € 1Aut(ab). One concludes that
Ifix(ab) <g lfix(a). O
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3.4.1. The Cartan matriz. We now can state the key technical lemma toward the
construction of the Cartan matrix and indecomposable projective modules.

Lemma 3.18. For any x € M, the tuple (Ifix(x), rfix(z)) is the unique tuple (i,7)
in E(M) x E(M) such that f;x and xf; have a nonzero coefficient on x.

Proof. By Proposition for any y € KM, the coefficient of x in zy is the same
as the coefficient of €, in €,y. Now since S, is a simple module, the action of y
on it is the same as the action of ¢(y). As a consequence, €, fifix(z) = €xYrfix(z)-
Now e, rfix(z) = €, and e;e = 0 for any e <z rfix(x), so that €;gfix(z) = €. and
6chlrﬁx(a:) = €g.

It remains to prove the unicity of f;. We need to prove that for any e # rfix(z),
the coefficient of x in z f. is zero. Since this coefficient is equal to the coefficient of
€z in €, f it must be zero because €, fe = € fifix(z) fe = €20 = 0 by the orthogonality
of the f;. O

During the proof, we have seen that the coefficient is actually 1:

Corollary 3.19. For any x € M, we denote by := fiix(2)T [rfix(x)- Then,
(3.25) by =2+ Z Yy,

y<gx
with ¢, € K. Consequently, (by)zenm is a basis for KM.

Theorem 3.20. The Cartan matriz of KM defined by ¢; ; := dim(f;KM f;) for
i,j € E(M) is given by ¢; ; = |C; |, where

(3.26) Cij={r e M|i=Iix(z) and j = rfix(x)}.

Proof. For any i,j € E(M), and z € C,;; it is clear that b, belongs to f;KM f;.
Now because (bz)zenr is a basis of KM and since KM = €D, ;cp(ar) [iKM fj, it
must be true that (b;).cc, ; is a basis for f;KM f;. O

Example 3.21 (Representation theory of Ho(W), continued). Recall that, the left
and right descent sets and content of w € W can be respectively defined by:

Dr(w) = {iell|l(sw)<t(w)},
Dr(w) = {iel[lws;) <l(w)},
cont(w) = {i€I]|s; appears in some reduced word for w},

and that the above conditions on s;w and ws; are respectively equivalent to m;m,, =
T and 7, m; = Ty. Furthermore, writing w ; for the longest element of the parabolic
subgroup W, so that m; = m,,, one has cont(r;) = Dr(wy), or equivalently
cont(ry) = Dgr(wy). Then, for any w € W, we have % = Teong(w), fix(my) =
Dy (w)s and rfix(my,) = Tp (w)-

Thus, the entry ajx of the Cartan matrix is given by the number of elements
w € W having those left and right descent sets.
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3.4.2. Projective modules. By the same reasoning we have the following corollary:

Corollary 3.22. The family {b, | lfix(x) = e} is a basis for the right projective
module associated to S,.

Actually one can be more precise: the projective modules are combinatorial.

Theorem 3.23. For any idempotent e denote by R(e) = eM,
R_(e) ={x €eM |lfix(x) =e} and Rc(e)={zx € eM |lfix(x) <gr e}.

Then, the projective module P, associated to S is isomorphic to KR(e)/KR«(e).
In particular, the projective module P, is combinatorial: taking as basis the image
of R=(e) in the quotient, the action of m € M on x € R_(e) is given by:

{xm if lfix(xm) = e,
T -m=

0 otherwise.

(3.27)

Proof. By Proposition R(e) and R (e) are two ideals in the monoid, so that
A :=KR(e)/KR.(e) is a right M-module. In order to show that A is isomorphic
to P., we first show that A/rad A is isomorphic to S. and then use projectivity and
dimension counting to conclude the statement.

We claim that

(3.28) K(R=(e)\{e}) Crad A.

Take indeed x € R—(e)\{e}. Then, z* is in KR (e) since lfix(z*) = 2% <g z <g e.
If follows that, in A, z = z — 2¥ = e(x — 2*) which, by Proposition is in rad A.

Since rad A C A, the inclusion in is in fact an equality, and A/rad A is
isomorphic to S.. Then, by the definition of projectivity, any isomorphism from
Se = P./rad P, to A/ rad A extends to a surjective morphism from P, to A which,
by dimension count, must be an isomorphism. O

Example 3.24 (Representation theory of Hyo(W), continued). The right projective
modules of Hy(W) are combinatorial, and described by the decomposition of the
right order along left descent classes, as illustrated in Figure 2] Namely, let P;
be the right projective module of Hy(W) corresponding to the idempotent ;. Its
basis b,, is indexed by the elements of w having J as left descent set. The action of
m; coincides with the usual right action, except that b,,.m; = 0 if w.m; has a strictly
larger left descent set than w.

Here we reproduce Norton’s construction of P; [Nor79], as it is close to an explicit
description of the isomorphism in the proof of Theorem [3.:23] First, notice that the
elements {m; = (1 —m;) | ¢ € I} are idempotent and satisfy the same Coxeter
relations as the ;. Thus, the set {m; } generates a monoid isomorphic to Ho(W).
For each J C I, let 7 be the longest element in the parabolic submonoid associated
to J generated by the m; generators, and 7rj-' = 7y. For each subset J C I, let
J =1I\J. Define f; = w;x}. Then, fym, = 0if J C Dr(w). It follows that
the right module f;Hy(W) is isomorphic to Py and its basis {fsm, | Dr(w) = J}
realizes the combinatorial module of P;.

One should notice that the elements 7T37T}r are, in general, neither idempotent

nor orthogonal. Furthermore, 7T;7T}_H0(W) is not a submodule of 7;Hy(W) as in
the proof of Theorem [3:23]
The description of left projective modules is symmetric.
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J={2}
J={1,2} J={1} = J={3} ={2,3}
J={1,3}
J= ’ ’ }

FIGURE 2. The decomposition of Hy(S,4) into indecomposable
right projective modules. This decomposition follows the parti-
tion of &4 into left descent classes, each labelled by its descent set
J. The blue, red, and green lines indicate the action of 7y, w2, and
w3 respectively. The darker circles indicate idempotent elements of
the monoid.

3.5. Factorizations. It is well-known that the notion of factorization z = uv and
of irreducibility play an important role in the study of [J-trivial monoids M. For
example, the irreducible elements of M form the unique minimal generating set of
M. In this section, we further refine these notions, in order to obtain in the next
section a combinatorial description of the quiver of the algebra of M.

Let z be an element of M, and e := lfix(x) and f := rfix(z). By Proposition [3.16]
if £ = wv is a factorization of x such that eu = e (or equivalently e <7 w), then
u € lAut(x), that is ux = x. Similarly on the right side, vf = f implies that
xv = x. The existence of such trivial factorizations for any element of M, beyond
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the usual x = 1z = z1, motivate the introduction of refinements of the usual notion
of proper factorizations.

Definition 3.25. Take x € M, and let e := lfix(x) and f := rfix(z). A factoriza-
tion x = uv is
e proper if u # x and v # x;
e non-trivial if eu # e and vf # f (or equivalently e £7 u and f L7 v, or
u ¢ 1Aut(z) and v ¢ rAut(z));
e compatible if u and v are non-idempotent and

lfix(u) =e, rfix(v)=f and rfix(u)=1fix(v).

Example 3.26. Among the factorizations of mammsmy in Hy(S4), the following
are non-proper and trivial:

(id, momimama)  (mo, momimsme) (Wamimama,id) (memimyTe, Ta) -
The two following factorizations are proper and trivial:
(T, mmam2)  (mam1Ts, M2) -
Here are the non-trivial and incompatible factorization:
(momy, m3T2) (moms, m1T2) (momy, T3 TY)
(moms, mimam2) (mamimy, MiM2)  (Mamims, T3M2) -
The only non-trivial and compatible factorization is:
(7T27T17T3,7T17737T2) .

Lemma 3.27. Any non-trivial factorization is also proper.

Proof. Indeed by contraposition, if # = zv then v € rAut(z) and therefore rfix(x) <7
v. The case x = vx can be proved similarly. O

Lemma 3.28. If x is an idempotent, x admits only trivial factorizations.

Proof. Indeed if z is idempotent then z = rfix(x) = lfix(z). Then from z = uv, one
obtains that © = zuv. Therefore x <7 zu <7 x and therefore = = zu. g

Lemma 3.29. Any compatible factorization is non-trivial.

Proof. Let © = wv be a compatible factorization. Then lfix(u) = e implies that
eu = u. Since u is not idempotent it cannot be equal to e so that eu # e. The same
holds on the other side. O

We order the factorizations of x by the product J-order: Suppose that z = uv =
uw'v’. Then we write (u,v) <7 (v/,v) if and only if u <7 v and v <7 v'.

Lemma 3.30. If x = wv is a non-trivial factorization which is minimal for the
product J-order, then it is compatible.

Proof. Let © = wv be a minimal non-trivial factorization. Then (eu,vf) with
e = lfix(x) and f = rfix(x) is a factorization of x which is also clearly non-trivial.
By minimality we must have that « = euw and v = vf. On the other hand, lfix(u)z =
Ifix(u)uv = uv = z, so that e = lfix(z) <7 lfix(u) and therefore e = lfix(u). This
in turn implies that u is non-idempotent since it is different from its left fix. The
same holds on the right side.



20 TOM DENTON, FLORENT HIVERT, ANNE SCHILLING, AND NICOLAS M. THIERY

It remains to show that rfix(u) = lfix(v). If ¢ is an idempotent such that ug = u,
then x = u(gv) is a non-trivial factorization, because gvf <7 vf <z f so that
guf # f. Therefore by minimality, gv = v. By symmetry ug = u is equivalent to
qu = . [

Putting together these two last lemmas we obtain:

Proposition 3.31. Take x € M. Then the following are equivalent:

(1) = admits a non-trivial factorization;
(2) x admits a compatible factorization.

Definition 3.32. An element is called irreducible if it admits no proper factoriza-
tion. The set of all irreducible elements of a monoid M is denoted by Irred(M).
An element is called c-irreducible if it admits no non-trivial factorization. The
set of all c-irreducible elements of a monoid M is denoted by c-Irred(M).
We also denote by Q(M) the set of c-irreducible non-idempotent elements.

Remark 3.33. By Lemma[3.27, Irred(M) C c-Irred(M). In particular c-Irred(M)
generates M.

3.6. The Ext-quiver. The goal of this section is to give a combinatorial descrip-
tion of the quiver of the algebra of a J-trivial monoid. We start by recalling some
well-known facts about algebras and quivers.

Recall that a quiver @ is a directed graph where loops and multiple arrows
between two vertices are allowed. The path algebra K@ of @ is defined as follows.
A path in @ is a sequence of arrows a,a,_1 - - - agaza; such that the head of a; 41 is
equal to the tail of a;. The product of the path algebra is defined by concatenating
paths if tail and head matches and by zero otherwise. Let F' denote the ideal in KQ
generated by the arrows of ). An ideal I C K@ is said to be admissible if there
exists an integer m > 2 such that F™ C I C F?. An algebra is called split basic if
and only if all the simple A-modules are one-dimensional. The relevance of quivers
comes from the following theorem:

Theorem 3.34 (See e.g. [ARO97]). For any finite-dimensional split basic algebra
A, there is a unique quiver Q such that A is isomorphic to KQ/I for some admissible

ideal I.

In other words, the quiver () can be seen as a first order approximation of the
algebra A. Note however that the ideal I is not necessarily unique.

The quiver of a split basic K-algebra A can be computed as follows: Let {f; | i €
E} be a complete system of primitive orthogonal idempotents. There is one vertex
v; in @ for each 7 € E. If 4, j € E, then the number of arrows in @ from v; to v; is
dim fi(rad A/rad2 A) fj- This construction does not depend on the chosen system
of idempotents.

Theorem 3.35. Let M be a J-trivial monoid. The quiver of the algebra of M is
the following:

o There is one vertex v. for each idempotent e € E(M).
o There is an arrow from vVigy(z) 0 Vrfix() for any c-irreducible element x €

Q(M).
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This theorem follows from Corollary [3.41] below.

Lemma 3.36. Let © € Q(M) and set e = lfix(z) and f = rfix(x). Whenever
x = uv, then either eu = e or vf = f. In particular,

(3.29) [z e[r={ue M |eu=u#e and uf = z}.

Proof. Obviously, {u € M | eu = u # e and uf = z} C [z,e[r. Now take u €
[z,e[r. Then, u = ea for some a € M and hence eu = eea = ea = u # e.
Furthermore, we can choose v such that x = uv with vf = v. Since z admits no
non-trivial factorization, we must have v = f. ]

Proposition 3.37. Take x € Q(M) and let e := lfix(x) and f := rfix(x). Then,
there exists a combinatorial module M, with basis € = €,,& = &, and action given

by
e ifmelelr

(3.30) eem:=<¢& ifmelzr,1lr\[e1]r and
0 otherwise,
(3.31) £-mi= § ifmelfllr
. . 0 otherwise.

This module of dimension 2 is indecomposable, with composition factors given by
[e] + [£]-
Proof. We give a concrete realization of M. Let I, := eM \ [z, e]g. This is a right
ideal, and we endow the interval [z, e]g with the quotient structure of eM/I,. The
second step is to further quotient this module by identifying all elements in [z, e[z.
Namely, define

[Ia G]R — M,
(3.32) O: (e — e

u — ¢ foru € [z, er.
It remains to prove that this map is compatible with the right action of M. This
boils down to checking that, for u € [z,e[g and y € M:
(3.33) uwy € [z, el = ye[f,lr.

Recall that, by Lemma uf = x. Hence, for y € [f,1]r, vy >r uf = z. Also,
since u € [z,e[r we have that uy <r e. Now take y such that uy € [z,e[g, and
let v =yf. Then, uwv = uyf = x, while v = vf. Therefore, since x is c-irreducible,
v=f. O

Corollary 3.38. The family (x — x“),cq(mr) 15 free modulo rad® KM.

Proof. We use a triangularity argument: If some y € KM lies in rad? KM it must
act by zero on all modules without square radical. In particular it must act by zero
on all 2-dimensional modules. Suppose that

(334) Z Cw(x - xw)
z€Q(M)

with ¢, € K acts by zero on all the previously constructed modules M,. Suppose
that some ¢, is nonzero and choose such an xg maximal in J-order. Consider the
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module M := M,,. Then xq is not idempotent so that =§ <7 z¢ <z rfix(zg). As
a consequence

(3.35) €+ X0 = Eup and €z 2G5 = 0.

Moreover, if = is not bigger than xg in J-order, then it is x is also not bigger than
2o in R-order, so that e,, - © = 0. Therefore

(3.36) €xo * Z ex(x — %) | = cppéa
z€Q(M)
which must vanish in contradiction with the assumption. ([

We now show that the square radical rad? KM is at least as large as the number
of factorizable elements:

Proposition 3.39. Suppose that x = uv is a non-trivial factorization of x. Then

(3.37) (u—u?)(v—0*)=z+ Z Cyy

for some scalars ¢, € K.

Proof. We need to show that u“v and uv* are both different from z. Suppose
that u“v = . Then u¥z = z so that lfix(x) <7 u¥. Then z <7 u¥ <7 u. But
since uv is a non-trivial factorization v = lfix(z)u <7 lfix(z). A a consequence
u = lfix(x) must be idempotent which is absurd. The same reasoning shows that
u® <g . O

Corollary 3.40. The family (x — 2*),cqm) is a basis of rad KM/ rad? KM.

Proof. By Corollary we know that rad KM/ rad® KM is at least of dimension
Card(Q(M)). We just showed that rad® KM is at least of dimension Card(M) —
Card(E(M))—Card(Q(M)). Therefore all those inequalities must be equalities. O

We conclude by an explicit description of the arrows of the quiver as elements of
the monoid algebra.

Corollary 3.41. For any idempotents i,j € E(M), the family (f;(x—a*)f;) where
x runs along the set of non-idempotent c-irreducible elements such that lfix(x) = i
and vfix(x) = j is a basis for f;KM f; modulo rad®> KM.

Proof. By Corollary one has (fizf;) =2+ 32, ., cyy. Since 2¥ <z , such
a triangularity must also hold for (f;(z — %) f;). O

Remark 3.42. By Remark a J-trivial monoid M is generated by (the labels
of ) the vertices and the arrows of its quiver.

Lemma 3.43. If x is in the quiver, then it is of the form x = epf with p irreducible
and e and f the left and right symbols of x. Furthermore, if p is idempotent, then
r=ef.
Proof. Since x = ex = xf, one can always write z as * = eyf. Assume that y is
not irreducible, and write y = uv with u,v <7 y. Then, since x is in the quiver,
one has either eu = e or vf = f, and therefore x = euf or x = evf. Repeating the
process inductively eventually leads to = = epf with p irreducible.

Assume further that p is an idempotent. Then, z = (ep)(pf) and therefore
ep=-ceor pf = f. In both cases, x = ef. O
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Corollary 3.44. In a J-trivial monoid generated by idempotents, the quiver is
given by a subset of all products ef with e and f idempotents such that e and f are
respectively the left and right symbols of ef.

3.7. Examples of Cartan matrices and quivers. We now use the results of
the previous sections to describe the Cartan matrix and quiver of several monoids.
Along the way, we discuss briefly some attempts at describing the radical filtration,
and illustrate how certain properties of the monoids (quotients, (anti)automorphisms,
...) can sometimes be exploited.

3.7.1. Representation theory of Hy(W) (continued). We start by recovering the de-
scription of the quiver of the 0-Hecke algebra of Duchamp-Hivert-Thibon [DHT02]
in type A and of Fayers [Fay05] in general type. We further refine it by providing
a natural indexation of the arrows of the quiver by certain elements of Ho(W).

Proposition 3.45. The quiver elements x € Q(M) are exactly the products x =
mymg where J and K are two incomparable subsets of I such that, for any j € J\ K
and k € K\ J, the generators w; and m, do not commute.

Proof. The statements about the Cartan matrix and projective modules are imme-
diate.
Recall that the idempotents of Ho(WW) are exactly the m; for all subsets J and
that by Corollary the c-irreducible elements are among the products 7 7.
First of all if J C K then mynmg = wgmy; = 7k so that, for mymg to be c-
irreducible, J and K have to be incomparable. Now suppose that there exists some
j€J\ K and k € K\ J such that mjm, = mp7m;. Then

(3.38) TITRK = TTjTpTK = TJTET;TK -

But since k ¢ J, one has mym, # my. Similarly, mjmx # mx. This implies that
(mymg, TjTK ) is a non-trivial factorization of m k.

Reciprocally, suppose that there exists a non-trivial factorization wymrr = uwv.
Since 7 yu # my, there must exist some k ¢ J\K such that u <7 7 (or equivalently
7, appears in some and therefore any reduced word for u). Similarly, one can find
some j € K\J such that v <z m;. We claim that 77, = m7;, for otherwise
the product m;m,m;my is reduced, which contradicts the fact that it is less than
TjuvT = T in Bruhat order. ([

3.7.2. About the radical filtration. Proposition suggests to search for a natural
indexation by elements of the monoid not only of the quiver, but of the full Loewy
filtration.

Problem 3.46. Find some statistic v(m) for m € M such that, for any two idem-
potents i,j and any integer k,
(3.39) dim fi(radk A/ radF ! A)fj =
Card{m € M | r(m) =k, lfix(m) =1, rfix(m) = j}.
Such a statistic is not known for Hy(W), even in type A. Its expected generating

series for small Coxeter group is shown in Table Note that all the coefficients
appearing there are even. This is a general fact:

Proposition 3.47. Let W be a Coxeter group and Ho(W) its 0-Hecke monoid.
Then, for any k, the dimension d* := dimrad” KHy(W) is an even number.
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Type Generating series
Ay 2
AQ 2(] + 4
As 6¢> + 10g + 8
Ay 10g* + 24¢3 + 38¢% + 32¢ + 16
As 14¢" + 48¢% + 72¢° + 144¢* + 172¢3 + 150¢% + 88¢ + 32
B, 2 +2q+4
Bs 6¢* 4+ 10¢> + 14¢®> + 10q + 8
By | 12¢% 4+ 24¢" + 464° + 60¢° + T6¢* + 64¢> + 54¢> + 32q + 16
D, 4
Dy 6¢> + 10g + 8
Dy 6¢° + 12¢° + 20¢* + 38¢> + 62¢> + 38¢ + 16
Hs | 6¢° +10¢7 + 14¢° + 18¢° + 22¢* 4 18¢> + 144 + 10q + 8
I 2¢° + 24> +2q + 4
Is 2¢" +2¢° +2¢° + 2+ 4
I, 2" 24+ 4+ 2¢° +2¢+ 4

TABLE 1. The generating series ), dim (radk A/ radF ! A) ¢* for
the 0-Hecke algebras A = KHy (W) of the small Coxeter groups.

Proof. This is a consequence of the involutive algebra automorphism 6 : w; —
1 — ;. This automorphism exchanges the eigenvalues 0 and 1 for the idempotent
m;. Therefore it exchanges the projective module P; associated to the descent set J
(see Example for the definition of P;) with the projective module P associated
to the complementary descent set J = I\ J. As a consequence it must exchange
rad® P; and rad® P5 which therefore have the same dimensions. Since there is no
self-complementary descent set, d¥ = JCI rad® P; must be even. O

Also, as suggested by Table[l| Problem admits a simple solution for Hy(I},).

Proposition 3.48. Let W be the n-th dihedral group (type I,) and KHo(W) its
0-Hecke algebra. Define ap, = mimamima - -+ and by = wom1mamy - - - where both words
are of length k. Recall that the longest element of Ho(W) is w = a, = b,. Then,
for all k > 0, the set

(3.40) Ry :={a;—w, bj—w]|k<i<n}

is a basis for vad® KHo(W). In particular, one can take as statistic r(w) = £(w)—1:
for0 <k <n—1, {ari1,bes1} is a basis of rad® KHy(W)/ rad" ™ KHy(W).

Proof. The case k = 1 follows from Proposition [3.3] and by Proposition [3.40] the
quiver is given by as —w and by —w. The other cases are then proved by induction,
using the following relations:

(a2 —w)(a; —w) = ajp2 —w (a3 —w)(bj —w) =aj41 —w

(b2 —w)(bj —w) =bji2—w (b2 —w)(aj —w) =bj11 —w. O

A natural approach to try to define such a statistic r(m) is to use iterated
compatible factorizations. For example, one can define a new product e, called the
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compatible product on M U {0}, as follows:

zy if lfix(z) = lfix(zy) and rfix(y) = rfix(zy) and rfix(z) = lfix(y),
rey =
Y 0  otherwise.

However this product is usually not associative. Take for example x = 714352, ¥y =
T31254 and z = mas314 in Ho(S5). Then, xy = m41352, Y2 = 735214 and xy2z = mMys312.
The following table shows the left and right descents of those elements:

left right
T = T14352 {2> 3} {2a 4}
y=ma1254 | 12,4} | {1,4}

Z = T25314 {174} {27 3}
TY = T41352 {2,3} {1,4}
yz = m3s214 | {1,2,4} | {2,3}
TYZ = T45312 {2, 3} {2, 3}

Consequently (zey)ez = (xy)ez = xyz whereas yeoz = 0 and therefore ze(yez) = 0.

Due to the lack of associativity there is no immediate definition for r(m) as the
“length of the longest compatible factorization”, and our various attempts to define
this concept all failed for the 0-Hecke algebra in type Dy.

3.7.3. Nondecreasing parking functions. We present, without proof, how the de-
scription of the Cartan matrix of NDPF,, in [HTO06, [HTQ9] fits within the theory,
and derive its quiver from that of Hy(S,,).

Proposition 3.49. The idempotents of NDPF,, are characterized by their image
sets, and there is one such idempotent for each subset of {1,...,n} containing 1.
For f an element of NDPF,,, tfix(f) is given by the image set of f, whereas lfix(f)
is given by the set of all lowest point in each fiber of f; furthermore, f is completely
characterized by fix(f) and rfix(f).

The Cartan matriz is 0,1, with ¢y g =1 if I = {iy < --- < i} and J = {j; <
oo < Jk} are two subsets of the same cardinality k with i, < j; for all .

Proposition 3.50. Let M be a J-trivial monoid generated by idempotents. Sup-
pose that N is a quotient of M such that E(N) = E(M). Then, the quiver of N is
a subgraph of the quiver of M.

Note that the hypothesis implies that M and N have the same generating set.

Proof. Tt is easy to see that lfix and rfix are the same in M and N. Moreover, any
compatible factorization in M is still a compatible factorization in N. O

As a consequence one recovers the quiver of NDPF,,:

Proposition 3.51. The quiver elements of NDPF,, are the products m j iy T jugi+1}
where J C{1,...,n—1} and i,i+1 ¢ J.

Proof. This is a consequence of the fact that NDPF,, is a the quotient of Hy(&,,)
by the relation m;m;417m; = m;417;. Specializing Proposition to type A,_1, one
obtains that there are four types of quiver elements:

® TufiyTiufi+1} Where J C{1,...,n—1} and i,i+1¢ J,

® Tjufi+13Taugiy Where J C{1,...,n—1} and i,i+1¢ J,

® TxU{ii+2}TrU{i+1} Where K C{l,...,n—1}and4,i+1,i+2¢ K,
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® TRU{i+1}TKU{4,i+2} where K C {1, e, = 1} and Z,Z + 1,Z + 2 ¢ K.
One can easily check that the three following factorizations are non-trivial:

® Tju{i+1}TJu{i} = (WJU{¢+1}7T2', 7Ti+17TJU{i})a

® TRU{ii+2}TKU{i+1} — (WKU{¢,¢+2}7U+1, 7Ti+27rKU{i+1})7

® TKRU{i+1}TKU{4,i+2} — (ﬂKu{iﬂ}m‘, 7ri+17TKu{i,i+2})-
Conversely, any non-trivial factorization of 7y sufi+1y in NDPF,, would have
been non-trivial in the Hecke monoid. (|

3.7.4. The incidence algebra of a poset. We show now that we can recover the well-
known representation theory of the incidence algebra of a partially ordered set.

Let (P, <) be a partially ordered set. Recall that the incidence algebra of P is
the algebra KP whose basis is the set of pairs (x,y) of comparable elements z < y
with the product rule

if y =z,
0 otherwise.

(3.41) (@, 9)(z,1) = {(‘”’t)

The incidence algebra is very close to the algebra of a monoid except that 0 and
1 are missing. We therefore build a monoid by adding 0 and 1 artificially and
removing them at the end:

Definition 3.52. Let (P, <) be a partially ordered set. Let Zero and One be two ele-
ments not in P. The incidence monoid of P is the monoid M (P), whose underlying
set is

M(P) :={(z,y) € P |z <y} U{Zero,One},

with the product rule given by Equation [3.41] plus One being neutral and Zero ab-
sorbing.

Proposition 3.53. Define an order < on M(P) by
(3.42) (x,y) 2 (2,t) ifandonlyif z<z<t<y,

and One and Zero being the largest and the smallest element, respectively. The
monoid M(P) is left-right ordered for < and thus J-trivial.

Proof. This is trivial by the product rule. [l

One can now use all the results on J-trivial monoids to obtain the representation
theory of M (P). One gets back to KP thanks to the following result.

Proposition 3.54. As an algebra, KM (P) is isomorphic to KOne & KP &
K Zero.

Proof. In the monoid algebra KM (P), the elements (x, z) are orthogonal idempo-
tents. Thus e := ) _p(x,2) is itself an idempotent and it is easily seen that KP
is isomorphic to e(KM (P))e. O

One can then easily deduce the representation theory of KP:



ON THE REPRESENTATION THEORY OF FINITE J-TRIVIAL MONOIDS 27

Proposition 3.55. Let (P, <) be a partially ordered set and KP its incidence
algebra. Then the Cartan matriz C = (¢z )z yep of KP is indexed by P and given

by
1 ifz<y,
C =
Y 0 otherwise.

The arrows of the quiver are x — y whenever (x,y) is a cover in P, that is, x <y
and there is no z such that r < z < y.

Proof. Clearly lfix(z,y) = (x, ) and rfix(z,y) = (y,y). Moreover, the compatible
factorizations of (x,y) are exactly (z,z)(z,y) with < z < y. O

3.7.5. Unitriangular Boolean matrices. Next we consider the monoid of unitrian-
gular Boolean matrices U,,.

Remark 3.56. The idempotents of U,, are in bijection with the posets admitting
1,...,n as linear extension (sequence A006455 in [Se03)]).

Let m € U,, and g be the corresponding digraph. Then m® is the transitive closure
of g, and Ifix(g) and rfix(g) are given respectively by the largest “prefix” and “postfiz”
of g which are posets: namely, 1fix(g) (resp. rfix(g)) correspond to the subgraph of
g containing the edges i—j (resp. j—k) of g such that i —k is in g whenever j —k
(resp. i—j) is.

Figure [3| displays the Cartan matrix and quiver of Uy; as expected, their nodes
are labelled by the 40 subposets of the chain. This figure further suggests that they
are acyclic and enjoy a certain symmetry, properties which we now prove in general.

The monoid U,, admits a natural antiautomorphism ¢; it maps an upper trian-
gular Boolean matrix to its transpose along the second diagonal or, equivalently,
relabels the vertices of the corresponding digraph by ¢ — n — ¢ and then takes the
dual.

Proposition 3.57. The Cartan matriz of U, seen as a graph, and its quiver are
preserved by the non-trivial antiautomorphism induced by ¢.

Proof. Remark that any antiautomorphism ¢ flips lfix and rfix:
lfix(¢(z)) = rfix(x) and rix(¢(x)) = lfix(x),
and that the definition of c-irreducible is symmetric. O

Fix an ordering of the pairs (i,7) with ¢ < j such that (i,7j) always comes
before (j, k) (for example using lexicographic order). Compare two elements of U,
lexicographically by writing them as bit vectors along the chosen enumeration of
the pairs (3, 5).

Proposition 3.58. The Cartan matriz of U, is unitriangular with respect to the
chosen order, and therefore its quiver is acyclic.

Proof. We prove that, if e = lfix(g) and f = rfix(g), then e < f, with equality if
and only if g is idempotent.

If g is idempotent, then e = f = g, and we are done. Assume now that g is not
idempotent, so that e # g and f # g. Take the smallest edge j —k which is in g but
not in f. Then, there exists ¢ < j such that ¢ —k is not in g but ¢ —j is. Therefore
1—7 is not in e, whereas by minimality it is in f. Hence, f > e, as desired. (]
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FIGURE 3. On top, the Cartan matrix (drawn as a graph) and at
the bottom the quiver of U;. The edge labels have not been drawn
for readability; for the quiver, they can be recovered as the product
of two vertices. Those pictures have been produced automatically
by Sage, dot2tex, and graphviz, up to a manual reorganization
of the connected components using inkscape.

Looking further at Figure [3]suggests that the quiver is obtained as the transitive
reduction of the Cartan matrix; we checked on computer that this property still
holds for n =5 and n = 6.
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3.7.6. J-trivial monoids built from quivers. We conclude with a collection of ex-
amples showing in particular that any quiver can be obtained as quiver of a finite
J-trivial monoid.

Example 3.59. Consider a finite commutative idempotent [J-trivial monoid, that
is a finite lattice L endowed with its meet operation. Denote accordingly by 0 and
1 the bottom and top elements of L. Extend L by a new generator p, subject to the
relations pep = 0 for all e in L, to get a J-trivial monoid M with elements given
by LW {epf |e, f € L}.

Then, the quiver of M is a complete digraph: its vertices are the elements of L,
and between any two elements e and f of L, there is a single edge which is labelled

by epf.
Example 3.60. Consider any finite quiver G = (E, V), that is a digraph, possibly
with loops, cycles, or multiple arrows, and with distinct labels on all edges. We

denote by e—l>f an arrow from e to f with label .
Define a monoid M(G) on the set EWV W{0,1} by the following product rules:

e?=e forall e € F,
ee—l>f:e—l>f for alle—l>f€V,
ebff=elyf for all e 5f € V,

together with the usual product rule for 1, and all other products being 0. In
other words, this is the quotient of the path monoid P(G) of G (which is J-trivial)
obtained by setting p = 0 for all paths p of length at least two.

Then, M(G) is a J-trivial monoid, and its quiver is G with 0 and 1 added
as extra isolated vertices. Those extra vertices can be eliminated by considering
instead the analogous quotient of the path algebra of G' (i.e. setting 057y = Ox

and 1M(G) = deE g).

Example 3.61. Choose further a lattice structure L on E U {0,1}. Define a J-
trivial monoid M (G, L) on the set EwWV W {0,1} by the following product rules:

ef=eVp f foralle, f € F,
ebff =ely for all e-5f € V and f' € E with f <, f',
debf=ebf for all e-5f € V and ¢’ € E with e <; ¢/,

together with the usual product rule for 1, and all other products being 0. Note
that the monoid M (G) of the previous example is obtained by taking for L the
lattice where the vertices of G form an antichain. Then, the semi-simple quotient
of M(G, L) is L and its quiver is G (with 0 and 1 added as extra isolated vertices).

Example 3.62. We now assume that G = (F, V) is a simple quiver. Namely, there
are no loops, and between two distinct vertices e and f there is at most one arrow
which we denote by e — f for short. Define a monoid structure M’(G) on the set
EWV w{0,1} by the following product rules:
ef =e—f foralle—f eV,
ee—~f=e—f foralle—f eV,
e—~ff=e=f foralle—f €V,
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together with the usual product rule for 1, and all other products being O.
Then, M'(G) is a J-trivial monoid generated by the idempotents in E and its
quiver is G (with 0 and 1 added as extra isolated vertices).

Exercise 3.63. Let L be a lattice structure on E U {0,1}. Find compatibility
conditions between G and L for the existence of a J-trivial monoid generated by
idempotents having L as semi-simple quotient and G (with 0 and 1 added as extra
isolated vertices) as quiver.

3.8. Implementation and complexity. The combinatorial description of the
representation theoretical properties of a J-trivial monoid (idempotents, Cartan
matrix, quiver) translate straightforwardly into algorithms. Those algorithms have
been implemented by the authors, in the open source mathematical system Sage [S™09],
in order to support their own research. The code is publicly available from the
Sage-Combinat patch server [SCc08], and is being integrated into the main Sage
library and generalized to larger classes of monoids in collaboration with other
Sage-Combinat developers. It is also possible to delegate all the low-level monoid
calculations (Cayley graphs, J-order, ...) to the blazingly fast C library Semi-
groupe by Jean-Eric Pin [Pini0b].
We start with a quick overview of the complexity of the algorithms.

Proposition 3.64. In the statements below, M is a J-trivial monoid of cardi-
nality n, constructed from a set of m < n generators si,...,Sy, in some ambient
monoid. The product in the ambient monoid is assumed to be O(1). All complexity
statements are upper bounds, with no claim for optimality. In practice, the number
of generators is usually small; however the number of idempotents, which condition
the size of the Cartan matriz and of the quiver, can be as large as 2.

(a) Construction of the left / right Cayley graph: O(nm) (in practice it usually
requires little more than n operations in the ambient monoid);

(b) Sorting of elements according to J-order: O(nm);

(c¢) Selection of idempotents: O(n);

(d) Calculation of all left and right symbols: O(nm);

(e) Calculation of the Cartan matriz: O(nm);

(f) Calculation of the quiver: O(n?).

Proof. [} See [EP97]

[ This is a topological sort calculation for the two sided Cayley graph which
has n nodes and 2nm edges.

[¢d Brute force selection.

For each of the following steps, we propose a simple algorithm satisfying the
claimed complexity.

[d} Construct, for each element  of the monoid, two bit-vectors I(z) = (1, ..., lm)
and 7(x) = (r1,...,7m) With [; = 5,4, and r; = g, - This information is trivial
to extract in O(nm) from the left and right Cayley graphs, and could typically
be constructed as a side effect of @ Those bit-vectors describe uniquely 1Aut(z)
and rAut(z). From that, one can recover all lfix(x) and rfix(z) in O(nm): as a
precomputation, run through all idempotents e of M to construct a binary prefix
tree T' which maps I(e) = r(e) to e; then, for each x in M, use T to recover lfix(z)
and rfix(z) from the bit vectors I(z) and r(z).

e} Obviously O(n) once all left and right symbols have been calculated; so O(nm)
altogether.
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A crude algorithm is to compute all products zy in the monoid, check whether

the factorization is compatible, and if yes cross the result out of the quiver (brute
force sieve). This can be improved by running only through the products zy with
rfix(z) = lfix(y); however this does not change the worst case complexity (consider a
monoid with only 2 idempotents 0 and 1, like N™ truncated by any ideal containing
all but n — 2 elements, so that lfix(x) = rfix(z) = 1 for all = # 0). O

We conclude with a sample session illustrating typical calculations, using Sage

4.5.

on a

2 together with the Sage-Combinat patches, running on Ubuntu Linux 10.5
Macbook Pro 4.1. Note that the interface is subject to minor changes before

the final integration into Sage. The authors will gladly provide help in using the
software.

We start by constructing the 0-Hecke monoid of the symmetric group W = Sy,
through its action on W:

sage: W = SymmetricGroup(4)
sage: S = semigroupe.AutomaticSemigroup(W.simple_projections(), W.one(),

sage: S.cardinality()

24

by_action = True, category=FiniteJTrivialMonoids())

We check that it is indeed J-trivial, and compute its 8 idempotents:

sage: S._test_j_trivial()
sage: S.idempotents()

L

1, 111, [21, (31, [1, 31, [1, 2, 11, [2, 3, 2], [1, 2, 1, 3, 2, 1]]

Here is its Cartan matrix and its quiver:

sage: S.cartan_matrix_as_graph().adjacency_matrix(), S.quiver().adjacency_matrix()

(

[ooO0O0O0OO0OO0OO0O [00O0OOOOODO]
[00101100] [00101100]
[01001000] [01000000O0]
[ooO0O0O0O0OO0OO0O] [0O0OOOOODO]
[01100000] [01000000O0]
[01000011] [0100001 1]
[oo0O000101] [00OOOO10 0]
[o0O000O110], [00000100]
)

In the following example, we check that, for any of the 318 posets P on 6 vertices,

the

Cartan matrix m of the monoid OR(P) of order preserving nondecreasing

functions on P is unitriangular. To this end, we check that the digraph having

m —
sage
sage

1 as adjacency matrix is acyclic.

: from sage.combinat.j_trivial_monoids import x*
: @parallel

...def check_cartan_matrix(P):

sage

return DiGraph(NDPFMonoidPoset (P).cartan_matrix()-1).is_directed_acyclic()
: time all(res[1] for res in check_cartan_matrix(list(Posets(6))))

CPU times: user 5.68 s, sys: 2.00 s, total: 7.68 s

Wall
True

time: 255.53 s

Note: the calculation was run in parallel on two processors, and the displayed CPU

time

is just that of the master process, which is not much relevant. The same

calculation on a eight processors machine takes about 71 seconds.
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We conclude with the calculation of the representation theory of a larger example
(the monoid U, of unitriangular Boolean matrices). The current implementation is
far from optimized: in principle, the cost of calculating the Cartan matrix should be
of the same order of magnitude as generating the monoid. Yet, this implementation
makes it possible to explore routinely, if not instantly, large Cartan matrices or
quivers that were completely out of reach using general purpose representation
theory software.

M = semigroupe.UnitriangularBooleanMatrixSemigroup(6)
Loading Sage library. Current Mercurial branch is: combinat
sage: time M.cardinality()

CPU times: user 0.14 s, sys: 0.02 s, total: 0.16 s
Wall time: 0.16 s

32768

sage: time M.cartan_matrix()

CPU times: user 27.50 s, sys: 0.09 s, total: 27.59 s
Wall time: 27.77 s

4824 x 4824 sparse matrix over Integer Ring

sage: time M.quiver()

CPU times: user 512.73 s, sys: 2.81 s, total: 515.54 s
Wall time: 517.55 s

Digraph on 4824 vertices

Figure [3] displays the results in the case n = 4.

4. MONOID OF ORDER PRESERVING REGRESSIVE FUNCTIONS ON A POSET P

In this section, we discuss the monoid OR(P) of order preserving regressive
functions on a poset P. Recall that this is the monoid of functions f on P such
that for any t <y € P, z.f <z and z.f < y.f.

In Section [4.1] we discuss constructions for idempotents in OR(P) in terms of the
image sets of the idempotents, as well as methods for obtaining lfix(f) and rfix(f)
for any given function f. In Section[4.2] we show that the Cartan matrix for OR(P)
is upper uni-triangular with respect to any linear extension of P. In Section [4.3] we
specialize to OR(L) where L is a meet semi-lattice, describing a minimal generating
set of idempotents. Finally, in Section we describe a simple construction for a
set of orthogonal idempotents in NDPF 5, and present a conjectural construction
for orthogonal idempotents for OR(L).

4.1. Combinatorics of idempotents. The goal of this section is to describe the
idempotents in OR(P) using order considerations. We begin by giving the definition
of joins, even in the setting when the poset P is not a lattice.

Definition 4.1. Let P be a finite poset and S C P. Then z € P is called a join of
S if x < z holds for any x € S, and z is minimal with that property.

We denote Joins(S) the set of joins of S, and Joins(x,y) for short if S = {z,y}.
If Joins(S) (resp. Joins(z,y)) is a singleton (for example because P is a lattice)
then we denote \/ S (resp. xV y) the unique join. Finally, we define Joins() to be
the set of minimal elements in P.

Lemma 4.2. Let P be some poset, and f € OR(P). If x and y are fized points of
f, and z is a join of x and vy, then z is a fized point of f.
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Proof. Since x < z and y < 2z, one has x = z.f < z.f and y = y.f < z.f. Since
furthermore z.f < z, by minimality of z the equality z.f = z must hold. ([

Lemma 4.3. Let I be a subset of P which contains all the minimal elements of P
and is stable under joins. Then, for any x € P, the set {y € I | y < x} admits a
unique mazimal element which we denote by sup;(x) € I. Furthermore, the map
sup; : @ — sup;(z) is an idempotent in OR(P).

Proof. The first statement is immediate.

Using that sup;(z) < x and sup;(x) € I, e := sup; is a regressive idempotent by
construction. Furthermore, it is is order preserving: for x < z, x.e and z.e must be
comparable or else there would be two maximal elements in I under z. Since z.e is
maximal under z, we have z.e > z.e. O

Reciprocally, all idempotents are of this form:

Lemma 4.4. Let P be some poset, and f € OR(P) be an idempotent. Then the
image im(f) of f satisfies the following:
(1) All minimal elements of P are contained in im(f).
(2) Each x € im(f) is a fized point of f.
(8) The setim(f) is stable under joins: if S C im(f) then Joins(S) C im(f) .
(4) For any z € P, the image f(x) is the upper bound sup;, s ().

Proof. Statement follows from the fact that z.f < x so that minimal elements
must be fixed points and hence in im(f).

For any = = a.f, if  is not a fixed point then z.f = (a.f).f # a.f, contradicting
the idempotence of f. Thus, the second statement holds.

Statement follows directly from the second statement and Lemma

If y € im(f) and y <  then y = y.f < x.f. Since this holds for every element
of {y € im(f) | y <z} and z.f is itself in this set, statement holds. O

Thus, putting together Lemmas and one obtains a complete description
of the idempotents of OR(P).

Proposition 4.5. The idempotents of OR(P) are given by the maps sup;, where I
ranges through the subsets of P which contain the minimal elements and are stable
under joins.

For f € OR(P) and y € P, let f~1(y) be the fiber of y under f, that is, the set
of all x € P such that z.f = y.

Definition 4.6. Given S a subset of P, the join closure C(S) is recursively defined
as SU{x € P | x is a join of some elements in S}. A set is join-closed if C(S) =
S. Define
F(f) = J{z € £ (v) | & minimal in f~*(y)}
yePrP
to be the collection of minimal points in the fibers of f.

Corollary 4.7. Let X be the join-closure of the set of minimal points of P. Then
X is fized by every f € OR(P).
Lemma 4.8 (Description of left and right symbols). For any f € OR(P), there

exists a minimal idempotent f, whose image set is C(im(f)), and f, = rfix(f).
There also exists a minimal idempotent f; whose image set is C(F(f)), and fi; =

Ifix(f).
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Proof. The rfix(f) must fix every element of im(f), and the image of rfix(f) must
be join-closed by Lemma[4.4] f, is the smallest idempotent satisfying these require-
ments, and is thus the rfix(f).

Likewise, lfix(f) must fix the minimal elements of each fiber of f, and so must
fix all of C(F(f)). For any y € F(f), find z < y such that x.f = y.f and z € F(f).
Then z =z.f; < y.fi <y. For any z with x < 2 <y, we have z.f < z.f < y.f =
x.f, so z is in the same fiber as y. Then we have (y.f;).f = y.f, so f; fixes f on
the left. Minimality then ensures that f; = lfix(f). a

Let P be a poset, and P’ be the poset obtained by removing a maximal element
x of P. Then, the following rule holds:

Proposition 4.9 (Branching of idempotents). Let e = sup; be an idempotent in
OR(P'). If I C P is still stable under joins in P, then there exist two idempotents
in OR(P) with respective image sets I and I U {x}. Otherwise, there exists an
idempotent in OR(P) with image set I U {x}. Every idempotent in OR(P) is
uniquely obtained by this branching.

Proof. This follows from straightforward reasoning on the subsets I which contain
the minimal elements and are stable under joins, in P and in P’ O

4.2. The Cartan matrix for OR(P) is upper uni-triangular. We have seen
that the left and right fix of an element of OR(P) can be identified with the subsets
of P closed under joins. We put a total order <js, on such subsets by writing them
as bit vectors along a linear extension pi,...,p, of P, and comparing those bit
vectors lexicographically.

Proposition 4.10. Let f € OR(P). Then, im(lfix(f)) <iex im(rfix(f)), with
equality if and only if f is an idempotent.

Proof. Let n = |P| and p1,...,p, a linear extension of P. For k € {0,...,n} set
respectively L, = im(Ifix(f)) N {p1,...,pr} and Ry = im(efix(f)) N {p1,....px}.

As a first step, we prove the property (Hy): if Ly = Ry then f restricted to
{p1,...,pr} is an idempotent with image set Rj. Obviously, (Hy) holds. Take now
k > 0 such that Ly = Ry; then Ly_; = Ri_1 and we may use by induction (Hy_1).

Case 1: pi & im(lfix(f)); then py is not a minimal element in its fiber; taking
Di <lex Pk in the same fiber, we have (px.f).f = (pi.f).f = pi-f = pr.f. Further-
more, Ry, = Ry—1 ={p1,..-,pk—1}-f ={p1,.- - 0k }.f-

Case 2: py is a join of two smaller elements x and y of Ly = Ry; in particular,
pr € Ri. By induction, x and y are fixed by f, and therefore py.f = pi by
Lemma [£.2]

Case 3: py is the smallest point in its fiber; this implies that py € Ly = Ry. By
(Hi—1), pk-f <iex Pr gives a contradiction: py.f € Rg_1, and therefore py.f is in
the same fiber as pi. Hence py.f = pi.

In all three cases above, we deduce that f restricted to {p1,...,px} is an idem-
potent with image set Ry, as desired.

If L,, = R,,, we are done. Otherwise, take k minimal such that Ly # Rj. Assume
that py € L but not in Ry. In particular, py is not a join of two elements = and y
in Lp_1 = Ri_1; hence pg is minimal in its fiber, and by the same argument as in
Case 3 above, we get a contradiction. O

Corollary 4.11. The Cartan matriz of OR(P) is upper uni-triangular with respect
to any linear extension of P.
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Problem 4.12. Find larger classes of monoids where this property still holds. Note
that this fails for the 0-Hecke monoid which is a submonoid of an OR(B) where B
is Bruhat order.

4.3. Restriction to meet semi-lattices. For the remainder of this section, let L
be a meet semi-lattice and we consider the monoid OR(L). Recall that L is a meet
semi-lattice if every pair of elements z,y € L has a unique meet.

For a > b, define an idempotent e, in OR(L) by:

zAb ifx <a,
T.Cqb = .
T otherwise.

Remark 4.13. Thde function e, is the (pointwise) largest element of OR(L) such
that a.f = b.

For a > b > ¢, egpepc = €qc. In the case where L is a chain, that is
OR(L) = NDPF|y, those idempotents further satisfy the following braid-like re-

lation: ey c€q.b€p,c = €a,bEb,cCab = €a,c-

Proof. The first statement is clear. Take now a > b > ¢ in a meet semi-lattice. For
any « < a, we have z.e,p =t Ab < b, 50 z.(eqpepc) =TAbDACc=1xAc, since b > c.
On the other hand, x.e, . = A ¢, which proves the desired equality.

Now consider the braid-like relation in NDPF|z|. Using the previous result, one
gets that ep ceq pep.c = €p,ca,c aNd €4 p€p c€ap = €q,c€qp. FOr T > a, x is fixed by
€a,cs €q,p and ep ., and is thus fixed by the composition. The other cases can be
checked analogously. O

Proposition 4.14. The family (eqp)a,p, where (a,b) runs through the covers of L,
minimally generates the idempotents of OR(L).

Proof. Given f idempotent in OR(L), we can factorize f as a product of the idem-
potents e p. Take a linear extension of the monoid P, and recursively assume that
f is the identity on all elements above some least element a of the linear extension.
Then define a function g by:
{a if z = a,
r.g =

x.f otherwise.

We claim that f = geqq.5, and g € OR(L). There are a number of cases that must
be checked:

e Suppose x < a. Thenz.geq 0.5 = (2.f).€q,0.f =x.fAa.f =z.f,sincex <a
implies z.f < a.f.

e Suppose > a. Then x.geq a5 = (2.f).€q,0.f = T-€q,a.f = = x.f, since
is fixed by f by assumption.

e Suppose z not related to a, and z.f < a.f. Then z.geq q. 5 = (z.f).€q0. 5 =

e Suppose z not related to a, and a.f < z.f < a. By the idempotence of f
we have a.f = a.f.f < x.f.f < a.f, so x.f = a.f, which reduces to the
previous case.

e For x not related to a, and x.f not related to a or x.f > a, we have z.f
fixed by eq,q.f, which implies that x.geq q.f = ..

e Finally for = a we have a.geqo.f = @.€qa5 =aNa.f =a.f.
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Thus, f = geq,a.f-

For all x < a, we have z.f < a.f < a, so that x.g < a.g = a. For all x > a,
we have z fixed by g by assumption, and for all other x, the OR(L) conditions are
inherited from f. Thus g is in OR(L).

For all x # a, we have x.g = x.f = x.f.f. Since all z > a are fixed by f, there
is no y such that y.f = a. Then x.f.f = x.g.g for all x # a. Finally, a is fixed by
g, so a = a.g.g. Thus g is idempotent.

Applying this procedure recursively gives a factorization of f into a composition
of functions €4 q.r. We can further refine this factorization using Remark on
each ey a5 BY €aa.f = €ap,a1€ar a0 " €ap_1,ars Where ag = a, ar = a.f, and a;
covers a;_1 for each 7. Then we can express f as a product of functions e, where
a covers b.

This set of generators is minimal because e, ; where a covers b is the pointwise
smallest function in OR(L) mapping a to b. O

As a byproduct of the proof, we obtain a canonical factorization of any idempo-
tent f € OR(L).

Example 4.15. The set of functions e, ; do not in general generate OR(L). Let L
be the Boolean lattice on three elements. Label the nodes of L by triples ijk with
i,5,k € {0,1}, and abe > ijk if a <i,b < j,e < k.

Define f by f(000) = 000, f(100) = 110, f(010) = 011, f(001) = 101, and
f(z) =111 for all other x. Simple inspection shows that f # ge, oy for any choice
of g and a.

4.4. Orthogonal idempotents. For {1,2,..., N} a chain, one can explicitly write
down orthogonal idempotents for NDPF . In this case, the minimal generators for
NDPF y are the elements m; = e;41,; whose relations are given by:

(4.1) mm; =m;m;  forall |i —j| > 1,
(4.2) MiMi—1 = MM 1T = T 1M1 -
In fact, NDPF x can be considered as a quotient of the 0-Hecke monoid by this

extra relation. By analogy with the 0-Hecke algebra, set 7T;'_ =mandm, =1—m;.
We also observe the following relations, which can be checked easily.

Lemma 4.16. Let k =i — 1. Then the following relations hold:

(1) 7% 177 ™ 1—7T+7Tz+17

’L
(3) 7Tz+ _— j_:ﬂ—’—ﬁz 1’
(4) m; ™ Jr—17r *7Tz+ 175 s
(5) mimmiy = m

Definition 4.17. Let D be a signed diagram, that is an assignment of a + or —
to each of the generators of NDPF . By abuse of notation, we will write i € D
if the generator m; is assigned a + sign. Let P = {Py, P,,..., Py} be the partition
of the generators such that adjacent generators with the same sign are in the same
set, and generators with different signs are in different sets. Let mp, be the longest
element in the generators in P;, according to the sign in D. Define:

[ ] LD Z:7Tp17l'p2~'~7'rpk,
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o Rp:=mp,mp,—1-" TP,
e and CD = LDRD.

Example 4.18. Let D = +4+++———++. Then P = {{1,2,3,4},{5,6,7},{8,9}},
and the associated long elements are: 7@1 = afrinin], Tp, = Ty Mg 77, and
W;S = 71';_7'(;_. Then

Lp = mp,mp,mh, = (mfm w3 mi ) (w5 mg m7 ) (mg 7)),

Rp =np,mp,mp, = (ng mf) (w5 mg w7 ) (mi mi w3 my).

The elements Cp are the images, under the natural quotient map from the 0-
Hecke algebra, of the diagram demipotents constructed in [DenlOal [DenlOb]. An
element = of an algebra is demipotent if there exists some finite integer n such
that 2" = 2"! is idempotent. It was shown in [Denl0al [Denl0Ob] that, in the
0-Hecke algebra, raising the diagram demipotents to the power N yields a set of
primitive orthogonal idempotents for the 0-Hecke algebra. It turns out that, under
the quotient to NDPF y, these elements Cp are right away orthogonal idempotents,
which we prove now.

Remark 4.19. Fiz i, and assume that [ is an element in the monoid generated by
iyt Ty and WZCH, . 77;(,, Then, applying repeatedly Lemma yields
m, frm; =7 f and W;"fﬂ'j' :fﬂ'j'.
The following proposition states that the elements Cp are also the images of

Norton’s generators of the projective modules of the 0-Hecke algebra through the
natural quotient map to NDPF .

Proposition 4.20. Let D be a signed diagram. Then,
Cp = H u H 7rj'.
i=1,...,n, i@D i=n,...,1, i€D

In other words Cp reduces to one of the following two forms:
(= - + .+ +
o Cp=(mp 7p, ~-7rp2ki1)(7rP27rP4 CThy ), OT
(= - + + +
e Cp = (ﬂ—P2ﬂ—P4 T 7rP21c)(T‘—Plﬂ—Pa e 7TP21«i1)'
Proof. Let D be a signed diagram. If it is of the form —F, where E is a signed
diagram for the generators ma, ..., my_1, then using Remark [£.19]

CD = F;CEF; :W;CE
Similarly, if it is of the form +F, then:
CD = W?CETFT_ = CETFT_ .

Using induction on the isomorphic copy of NDPFy_; generated by 7o, ..., mn_1
yields the desired formula. O

Proposition 4.21. The collection of all Cp forms a complete set of orthogonal
idempotents for NDPF .

Proof. First note that Cp is never zero; for example, it is clear from Proposition [£.20]

that the full expansion of Cp has coefficient Lon [[,_, | ,cp .
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Take now D and D’ two signed diagrams. If they differ in the first position, it
is clear that CpCpr = 0. Otherwise, write D = €F, and D’ = eE’. Then, using
Remark and induction,

CpCh = n{CeriniCrn = n{Cpm{Cr/ ¢
== WTCECE/TFT = WiéE,E’CEﬂ'i = 6D,D’CD .

Therefore, the Cp’s form a collection of 2V~! nonzero orthogonal idempotents,

which has to be complete by cardinality. (|

One can interpret the diagram demipotents for NDPFy as branching from the
diagram demipotents for NDPF n_; in the following way. For any Cp = LpRp in
NDPFy_1, the leading term of C'p will be the longest element in the generators
marked by plusses in D. This leading idempotent has an image set which we
will denote im(D) by abuse of notation. Now in NDPFy we can associated two
‘children’ to Cp:

CD+ = LDW]—CRD and OD_ = LDﬂ'R,RD.

Then we have Cpy + Cp_ = Cp, im(D+) = im(D) and im(D—) = im(D) [ J{N}.

We now generalize this branching construction to any meet semi-lattice to derive
a conjectural recursive formula for a decomposition of the identity into orthogonal
idempotents. This construction relies on the branching rule for the idempotents of
OR(L), and the existence of the maximal idempotents e, of Remark

Let L be a meet semi-lattice, and fix a linear extension of L. For simplicity,
we assume that the elements of L are labelled 1,..., N along this linear extension.
Recall that, by Proposition the idempotents are indexed by the subsets of L
which contain the minimal elements of L and are stable under joins. In order to
distinguish subsets of {1,..., N} and subsets of, say, {1,..., N — 1}, even if they
have the same elements, it is convenient to identify them with +— diagrams as
we did for NDPF . The valid diagrams are those corresponding to subsets which
contain the minimal elements and are stable under joins. A prefix of length k of a
valid diagram is still a valid diagram (for L restricted to {1,...,k}), and they are
therefore naturally organized in a binary prefix tree.

Let D be a valid diagram, e = supp be the corresponding idempotent. If L is
empty, D = {}, and we set Ly = Rgy = 1. Otherwise, let L’ be the meet semi-
lattice obtained by restriction of L to {1,..., N — 1}, and D’ the restriction of D
to {1,...,N —1}.

Case 1 N is the join of two elements of im(D’) (and in particular, N € im(D)).
Then, set LD = LD/ and RD = RD/.

Case 2 N €im(D). Then, set Lp = Lp/mn n.e and Rp = nn n.eRp:.

Case 3 N € 1m(D) Then, set LD = LD/(]. - 7TN,N.e) and RD = (1 - WN,N‘E)RD,'

Finally, set CD = LDRD.

Remark 4.22 (Branching rule). Fiz now D’ a valid diagram for L'. If N is the

join of two elements of I', then Cp: = Cpry. Otherwise Cpr = Cp— + Cpry.
Hence, in the prefix tree of valid diagrams, the two sums of all Cp’s at depth k

and at depth k + 1 respectively coincide. Branching recursively all the way down to
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the root of the prefix tree, it follows that the elements Cp form a decomposition of
the identity. Namely,
1= > Cp.

D walid diagram

Conjecture 4.23. Let L be a meet semi-lattice. Then, the set {Cp | D valid diagram}
forms a set of demipotent elements for OR(L) which, raised each to a sufficiently
high power, yield a set of primitive orthogonal idempotents.

This conjecture is supported by Proposition as well as by computer ex-
ploration on all 1377 meet semi-lattices with at most 8 elements and on a set of
meet semi-lattices of larger size which were considered likely to be problematic by
the authors. In all cases, the demipotents were directly idempotents, which might
suggest that Conjecture |4.23| could be strengthened to state that the collection
{Cp | D valid diagram} forms directly a set of primitive orthogonal idempotents
for OR(L).
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