SYNCHRONIZING GROUPS AND AUTOMATA

FREDRICK ARNOLD AND BENJAMIN STEINBERG

ABSTRACT. Pin showed that every p-state automaton (p a prime) con-
taining a cyclic permutation and a non-permutation has a synchronizing
word of length at most (p — 1)2. In this paper we consider permutation
automata with the property that adding any non-permutation will lead
to a synchronizing word and establish bounds on the lengths of such
synchronizing words. In particular, we show that permutation groups
whose permutation character over the rationals splits into a sum of only
two irreducible characters have the desired property.

1. INTRODUCTION

An automaton is called synchronizing if there is a word, called a synchro-
nizing word, that sends each state to the same element. Cerny conjectured
that every sychronizing automaton with n states has a synchronizing word
of length at most (n—1)? [2]. This problem has been open now for over forty
years. One of the first breakthroughs was the following theorem of Pin.

Theorem 1.1 (Pin). An automaton with a prime number of states p whose
alphabet contains a cyclic permutation and at least one non-permutation s
automatically synchronizing and has a synchronizing word of length at most
(»—1)%

Cerny’s conjecture has since been proved for all automata with a cyclic
permutation by Dubuc [5], but in the general situation one does not obtain
automatic synchronization.

This motivates us to consider permutation automata with the property
that as soon as a non-permutation is added to the automaton, the automaton
can be synchronized.

More precisely, we denote by T,, the full transformation monoid on the
set [n] = {1,...,n}; the group of units of 7, is the symmetric group S,. A
permutation group of degree n is a subgroup G < S,,. We say that G has the
synchronization property if whenever f € T, \ S, the submonoid (GU{f})
generated by G and f contains a constant map. In this terminology, the
first part of Pin’s theorem says that a permutation group of prime degree
containing a cyclic permutation has the synchronizing property. On the
other hand, it is well known that any doubly transitive permutation group
has the sychronization property (Zalcstein [10] attributes this to Rhodes).
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Using representation theory, we give a common generalization of these
two cases, which includes several new cases. Also we obtain bounds on the
size of synchronizing words in the case GG is given by generators, letting us
obtain the full strength of Pin’s theorem as well as some new examples where
Cerny’s conjecture holds.

2. SYNCHRONIZING AUTOMATA

For us, an automaton of degree n (that is with n states in the usual
terminology) will be a subset A of T),. If A* denotes the free monoid on A,
then each word w € A* has a natural interpretation as an element of 7;, and
we do not distinguish between the word and its interpretation. If i € [n]
and w € A*, we use iw for the image of i under w. By M(A) we denote the
transition monoid of A; it is precisely the submonoid of T" generated by A. A
word w € A* is called a synchronizing word if the element of T}, it represents
is a constant map. An automaton A C T, is said to be sychronizing if it
admits a synchronizing word; that is M(A) contains a constant map. If
f € T,, by the rank of f we mean the size of the image of f. So a constant
map is the same thing as a rank one map.

For w € A* and S C [n], we set

Swt = {i|iw e S}.

Our strategy for finding synchronizing words will then be to show that, given
0 # S C [n], we can find a word u € A* such that [Su~!| > |S|. Then we
will be able to find a synchronizing word by starting with a one element set
and expanding repeatedly. If u can always be chosen to have size at most
k, then we can construct a synchronizing word of size at most 1 + (n — 2)k.
Indeed, we can expand a one element set with a single letter and then we
have to expand n — 2 more times using our bound k. In particular, if £k = n,
then we get 1+ (n — 2)n = (n — 1)2. We now state Cerny’s conjecture.

Conjecture 1 (Cerny’s conjecture [2]). Ewvery synchronizing automaton
with n states has a synchronizing word with length at most (n —1)2.

The intuition is that on average we should be able to expand a set going
backwards via a word of size n.

3. GROUPS WITH THE SYNCHRONIZATION PROPERTY

As per the introduction, we say that G < S, has the synchronization
property if, for all f € T,,\ S, the automaton GU{ f} has the synchronization
property. It is immediate from the definition that any permutation group
of degree one or two has the synchronization property. Another immediate
observation is that if G < H < §5,, and G has the synchronization property,
then so does H. It is clear that any permutation group of degree at most 2
has the synchronization property. So in what follows we shall always tacitly
assume that the degree is greater than 2.
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Before continuing, we need some basic notations from the theory of per-
mutation groups; a good reference is the book of Dixon and Mortimer [4]. A
permutation group G < S, is said to be transitive if, for all i, j € [n], there
exists g € G with ig = j. In this case, the action is isomorphic to the action
of G on G/H where H is the stabilizer of 1. The group G is said to be doubly
transitive if given i # j and k # [ in [n], there is an element g € G such
that ig = k and jg = [; for instance .S, is doubly transitive all n > 2 and
A, is doubly transitive for n > 4. The group G is said to be 2-homogeneous
if for all ¢ # j and k # [ in [n] there exists g € G with {ig,jg} = {kg,lg}.
It is clear that double transitivity implies 2-homogeneity but the converse
is false.

Finally, we turn to primitivity. A permutation group G < S, is called
primitive if there is no equivalence relation R on [n] such that the blocks of
the partition associated to R are permuted by G, that is such that

iRj = g Rjy,
except the identity relation and the universal relation. If n > 2, primitivity
implies transitivity since the orbits of G give such an equivalence relation.
Many authors include transitivity in the definition of primitivity to avoid
the trivial case n = 2 where primitivity in our sense is automatic but not
transitivity.

If G <5, is a transitive permutation group, then, as mentioned above,
we can identify [n] with G/H where H is the stabilizer of 1. In this case,
one can easily show that G is primitive if and only if H is a maximal proper
subgroup of G [4]. The following lemma is well known, we include a proof
for completeness.

Lemma 3.1. Let G < S, be a permutation group with p > 2 prime. Then
the following are equivalent:

(1) G contains a cyclic permutation of [p|;
(2) G is transitive;
(3) G is primitive.

If p=2, then (1) and (3) are equivalent.

Proof. Clearly if G contains a cyclic permutation of [p], then G is transitive.
Suppose that G is transitive. Then we know that p = [G : H]| where H is
the stabilizer of 1. Hence p | |G| and so G has an element g of order p. Since
¢ is not trivial, it must have a non-trivial orbit. But since the size of any
orbit of g must divide the order of g, which is p, we see that g has an orbit
of size p and hence is a cyclic permutation of [p].

If G is transitive, then the stabilizer H of 1 has index p and so is a maximal
subgroup. Thus G is primitive. If G is primitive, then G must be transitive
in the case p > 2. ([l

We now show that primitivity is necessary in order to have the synchro-
nization property.



4 FREDRICK ARNOLD AND BENJAMIN STEINBERG

Proposition 3.2. Suppose G < S,, has the synchronization property. Then
G is primitive.

Proof. Suppose that G is not primitive. Let R be a non-trivial equivalence
relation on [n] whose blocks {By,...,B,} are permuted by G. For each
block B; choose a representative b;. Define an idempotent map f € T, by
xf = b; where x € B;. We claim that G U {f} is not synchronizing. Indeed,
if M = (GU{f}), then M has a natural action of [n]/R since G preserves the
relation R and so does f (by construction). If M contains a constant map,
then so would the action of M on [n]/R. But since f acts as the identity
on [n]/R, we see that the action of M on [n]/R is by permutations and so
cannot contain a constant map as |[n]/R| > 1. This contradiction shows
that G must be primitive. O

From Pin’s Theorem and Proposition 3.2 we immediately obtain:

Corollary 3.3. A permutation group of prime degree p has the synchroniza-
tion property if and only if it is primitive. This is equivalent to transitivity
forp>2.

Another case, as mentioned in the introduction, where the synchroniza-
tion property holds is the 2-homogeneous case. This is a folklore result, the
earliest attribution I know of is to Rhodes [10].

Proposition 3.4. A 2-homogeneous permutation group G < S, has the
synchronization property. In particular doubly transitive permutation groups
have the synchronization property.

Proof. Let f € T), \ Sy, and let M = (GU{f}). We show that given h € M
that is not a constant map, there exists h' € M of strictly smaller rank.
It will then follow that any minimal rank element of M is a constant map.
So suppose i # j € [n]h. Since f € T, \ Sp, there exist k,l € [n] such
that kf = If. By 2-homogeneity there exists ¢ € G with {ig, jg} = {k,l}.
Clearly, then rank(hgf) < rank(h). This completes the proof. O

A well-known theorem of Schur [9] says that a primitive permutation
group of degree n, with n a composite number, is necessarily doubly tran-
sitive. Putting this together with the previous result for the prime case we
obtain.

Proposition 3.5. A permutation group containing a cyclic permutation has
the synchronization property if and only if it is primitive.

We do not know of an example of a primitive permutation group that
does not have the synchronization property but we are sure they exist. The
problem lies in the ability to do hand computations since primitive groups
of small degree tend to fall into the cases we have covered above.

Our main goal in this paper is to give a simultaneous generalization of
the prime degree and the doubly transitive cases. To describe our results
we need to use some representation theoretic language.
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4. LINEARIZATION OF THE PROBLEM

Let M be a monoid and K a field of characteristic 0. Then a representa-
tion of M of degree n over K is a (monoid) homomorphism ¢ : M — M, (K),
where M, (K) denotes the monoid of n x n matrices with entries in K. The
vector space V' = K™ is called the representation space of p. Sometimes we
say that V carries the representation ¢. A subspace W C V is said to be
M -invariant, if WM C W. The representation ¢ is said to be irreducible
if the only M-invariant subspaces of V' are {0} and V itself.

For a representation ¢ : G — M, (K), the trivial component is the sub-
space V& of the representation space V' consisting of those vectors fixed by
Gy. A projection of V onto V¢ is given by \%I >_gec 9% [8]. We include the
proof for completeness.

Proposition 4.1. Let ¢ be a representation of G over a field of character-
istic 0. Then ﬁ deG gy is a projection to VC.

Proof. Let p = ‘—é' > gec 9% Tt suffices to show that p fixes each element of
V& and that the image of p is contained in V<. So suppose v € V&. Then

1 1
vp:—nggpz—Zv:v.
Gl 4= Gl =2

Now if v € V is arbitrary and h € G, then

1 |
vphe = i > vgphp = @l > w(gh)e = vp
geG geqG

where the last equality holds by making the change of variables g — gh™!.
O

We fix for the rest of the section a transformation monoid M < T, of
degree n and a field K of characteristic 0. Then we define the standard
representation of M as follows. We consider the vector space V = K" with
canonical basis {e1, ..., e, }. We define a representation ¢ : M (A) — M, (K)
by f+— f¢ where

eifo = eif
for f € M(A). Notice that ¢ gives a faithful representation of M.

If f € M, then fo' denotes the transpose of fo. The following observation

is key to what follows.

0 else.

(o) = {1 wir=r (4.1)

So it is reasonable to define f~lp = fil.

If M is a finite monoid, its reqular representation is the standard repre-
sentation associated to the action of M on the right of itself (viewed as an
automaton with generators M ). For example if M = Z,, this representation
has basis e1, ..., e, and the generator acts by the cyclic permutation matrix.
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We also associate to each S C [n] its characteristic vector [S] given by:

1 ifies;
[S]iZ{

0 else.

To avoid cumbersome notation, we shall write [n] for the characteristic vector
of [n]. So, [n] = (1,...,1).
With this notation we have the following proposition.

Proposition 4.2. If S C [n| and f € M, then
[SF~1 =[S 1e = [S]f¢'.
Proof. First observe

(1S1f )i = ([S1f¢")s

k=1
= [Sliy
where the last equality follows from (4.1). Hence,
_ 1 ifi- fes,;
(Sl )i =
0 else
1 ifiessTh
|0 else.
Thus, [S]/ 1 = [S/71] O

Recall that our strategy for obtaining a synchronizing word for an au-
tomaton is to find, for each non-empty, proper subset S C [n], a word
u € A* such that |Su=!| > |S|. We wish to reformulate this in terms of the
standard representation. Let V be the representation space of the standard
representation. We equip it with the usual inner product (-,-) that makes

the canonical basis an orthonormal basis. We then have
n

|51 =Y_[S]i = ([8], [n))-

i=1
Thus, for f € M, we have
1S = ([S1f e, [nl) = ([S1f¢", [n]) = ([S], [n] fe)-
Definition 4.3. Define, for f € M and a subset S C [n],
fas=|Sf7H = S.
We aim to compute fag. First a lemma.

Lemma 4.4. [n|(fe—1I) L [n].
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Proof. To prove this lemma, we must show that ([n],[n](fe — I)) = 0.
Indeed,

([n), nl(fo — 1)) = (Inlf¢", [n]) = ([n]. [n])- (4.2)
But, [n]f¢! = [[n]f~!] = [n]. Therefore, the right hand side of (4.2) is equal
to zero. g

Set Vi = Span{[n]}; this is then the space of constant vectors. The
subscript 1 is used because in some sense V; is a trivial subspace for us. In
representation theory [8], the orthogonal complement of V; plays a key role.
So set

V():Vﬂ-:{v:(ch...,cn)GK”‘614_...4_6”:0}‘

Notice that dim(Vp) = n — 1. The fact that this dimension is n — 1 was used
by Kari [6] to obtain good bounds for synchronizing words.
The following proposition appears in some form in [5, 6].

Proposition 4.5. Let f € M < T, and S C [n]. Also, let [S] =S + U,
where 8" € Vy and U € V4, be the orthogonal decomposition. Then
fas =(S'f¢', [n))
= (9", [n]fe)
= (5", [nl(fe - 1))
= (S'(f¢" = 1), [n]).
Proof. We begin by calculating
fas=|Sf7 =18
([S1f¢", [n]) = ([S], [n])
([S1(f¢" = 1), [n])
([S], In)(fe — 1))
= (S"+ U, In](fe 1))
= (8", [nl(fo — 1)) + (U, [n](f — 1))
= (5", [nl(fe - 1))
by Lemma 4.4 since U € V; and [n](fo — I) € Vo = V.

Thus we have shown that fag = (S, [n](fe — I)). Since S’ € [n]*, we
may finish the proof as follows:

fos = (5", [n](fe—1))
= (5", [n]fe) — (5", [n])
= (5", [nlfe)-
This completes the proof. ([l

We now wish to show that Vj is an M (A)-invariant subspace.
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Proposition 4.6. Vj is an M(A)-invariant subspace. That is, if v € Vp,
then vfp € Vi for all w € A*.

Proof. Let vy € Vj. Then,

(vof e, [n]) = (vo, [n] f¢")
(vo, [[n]f ]
(vo,[n]) =0
So, vofp € Vo = Vi-. O

)

o,
o,

5. THE SYNCHRONIZATION PROPERTY AND IRREDUCIBLE
REPRESENTATIONS

We are almost ready to formulate our main result. Let G < S, be a per-
mutation group of degree n. We shall, following Dixon [3], call G a QI-group
if, for the standard representation ¢ : G — M, (Q), the subrepresentation
carried by Vo = {(c1,...,¢n) | c1 + -+ + ¢ = 0} is irreducible. It is clear
from the definition that if G < H < S, and G is a Ql-group, then so is
H. Every permutation group of degree two is a QI-group since in this case
dim(Vp) = 1. Permutation groups of degree one are vacuously QI-groups.
Our main result is that QI-groups have the synchronization property.

Before proving this we remark that every doubly transitive group is a QI-
group. Indeed it is a well-known result of Burnside that G < S, is doubly
transitive if and only if, for the standard representation ¢ : G — M, (C),
the subrepresentation carried by Vj (defined as above) is irreducible [8].
This immediately implies that the subrepresentation carried by Vg over Q is
irreducible.

Permutation groups of prime degree containing a cyclic permutation are
QI-groups. This follows from standard representation theory, but we give an
argument for completeness. Let ¢ be a prime. It suffices to show that if p =
(1...q) then G = (p) < S, is a QI-group. Let V' be the representation space
for the standard representation of G, V7 be the space of constant vectors
and Vp = VIJ-. The space Vj has basis fo,..., f;—2 where f; = ¢e; —e;41. The
action of py is given by

o ) i i Fq—2
Jire = {23_02 ~fi i=q-2. (5.1)

On the other hand, let w be a primitive ¢ root of unity and consider the
action of w on the cyclotomic field Q[w] by right multiplication. Since ¢ is
prime, w has minimal polynomial 1+ x + 22 + --- 4+ 297! over Q and Q[w]
has Q-basis {1,w,w?,..., w9 2}. Thus

Wit = —wt. (5.2)
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Viewing G and (w) as isomorphic copies of the cyclic group Z,, we see by
comparing (5.1) and (5.2) that the map V — Q|w] given by f; +— w' is
an isomorphism of representations of the group Z,;. Now a Zg-invariant
subspace of Q[w] is the same thing as an additive subgroup of Q[w] closed
under right multiplication by elements of Q and by w; in other words, it is
the same thing as an ideal in Q[w]. But Q[w] is a field, so its only ideals are
{0} and Q[w]. Thus the representation of G on Vj is irreducible.

The paper of Dixon [3] gives a partial classification of QI-groups. In
particular, he proves they are primitive (this will also follow from our main
result and Proposition 3.2) and that they must be almost simple or of affine
type. In the case of affine type, if G < 5, is a QI-group, then there is a
doubly transitive group H < S, such that [H, H] < G < H where [H, H] is
the commutator subgroup of H. There are further restrictions, we refer the
reader to [3, Theorem 4]. Dixon also gives a “procedure” to construct such
groups [3].

For the almost simple case, Dixon shows that a QI-group with socle iso-
morphic to A, with n > 5 must be doubly transitive. On the other hand
he shows that there are Ql-groups that are not doubly transitive of degree
2F=1(2k — 1) with socle the simple group PSL(2,2%) when 2¥ — 1 is prime;
moreover, these are the only conditions for which PSL(2, ¢) can be the socle
of a Ql-group [3, Theorem 11].

To apply our results to the Cerny problem, we need the following defini-
tion. Let A < T, be an automaton and M < M(A). Then diam4 (M) (read
the diameter of M) denotes the least integer n such that every element of
M can be represented by a word of A* of at length at most n.

Theorem 5.1. Let G < S,, be a QI-group (n > 2). Then G has the syn-
chronization property. Suppose, moreover, that A < T, is an automaton
with G < M(A) and M(A) £ S,. Then a synchronizing word for A can be
found of length at most 1+ (n — 2)(diam4(G) + 1).

Proof. Let G < S, be a QIl-group. We carry over the notation from the
previous section. We may assume that n > 2 since otherwise the conclusion
of the theorem is trivial.

To prove the theorem it suffices to show that if A < T, is any automaton
with G < M(A) containing an element a ¢ T),, then A is synchronizing and
has a synchronizing word of length at most m = 14 (n — 1)(diam4(G) + 1).
Let ¢ : M(A) — M,(Q) be the standard representation. We shall use the
strategy of Section 2. So let ) # S C [n]. We want to find a word w € A*
of length at most m such that |Sw™t| > |S].

Recall from Definition 4.3 that, for f € M(A), fas = |Sf~| —|S]|. As
before, let [S] = S" + U be the orthogonal decomposition with S” € V), and
U € V4, as in Proposition 4.5. Since ) # S C [n], [S] ¢ V41 and so we have
S £ 0.

Claim 1. Let ) # S C [n]. Suppose a € A is any non-permutation. Then
there exists g € G such that agag # 0.
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Proof. First, note that [n](ap — I) # 0. Indeed, if [n](ap — I) =0, then
[n]ap = [n] and hence, a is a permutation, contradicting our choice of a.
Now, set
W = Span{[n](ap — I)gp | g € G}.
Note that W # {0} since [n](ap — I) € W. By definition, W is G-invariant.
Hence, since Vj is G-irreducible, W = V. Thus S’ € Vj = W and so, since
0 # S, we have S’ ¢ W+, Since W is spanned by [n](ap — I)gp, g € G,
there exists g € G such that
0 # (S, [n](ap — I)gep) (5:3)
= (', [naege) — (', [n]ge) (5.4)
= agas — (5", [n]) (5.5)
= agag (5.6)
where the passage from (5.4) to (5.5) follows from Proposition 4.5 and the

fact that gp is a permutation matrix, while the last equality follows since
S 1 [n]. O

Recall that V& denotes the space of vectors in V fixed by G. We claim
that V¢ N1y = {0}. Indeed, if 0 # v € V& NV}, then we have that
Span(v) C Vj is fixed by G and hence G-invariant. By G-irreducibility of V
we obtain that Vp = Span(v), showing dim(Vp) = 1 and thus n = 2, contrary
to our assumption.

Let p = ﬁ > hem M. Then Vop C Vj since V) is G-invariant. Proposition

4.1 shows that p is a projection to V. Hence Vop C VE NV, = {0}
establishing:
Claim 2. Suppose v € Vy. Then v(}_,cq he) = 0. O

In Claim 1, we found some g € G such that (ag)ag # 0. We calculate
Zhec<ah)a5 as follows,

Z(ah)ag = Z(S', [n]aphe) (by Propostion 4.5)
heG heG

= (5", [nlaw( ) he)) (5.7)

heG
= (S, [nl(ap = 1)(D_ he))
heG
The last equality holds because
(8, [n)(ap = I)(Y_ he)) = (5", [nlap(D_ he)) = (", [0](D_ hp)).
heG heG heG
But, [n]he = [n] for all h € G, since hy is a permutation matrix. Thus,

(S',[n] > hep) = (S, |G|[n]) = 0

heG
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since S’ L [n].
Since [n](ap — I) € Vp by Lemma 4.4, we have by Claim 2 that

[n)(ap = DD hep) =0

heG
Thus, by (5.7),

> (ah)ag =0. (5.8)
heG
But, we already found some g € G such that (ag)ag # 0. Therefore, in
order for (5.8) to hold, not all the (ah)ag can be negative and so there
exists ¢’ € G such that (ag’)as > 0. This implies that

|S(ag") ™| = IS| > 0.

Thus, if u € A* represents ag’, then |[Su~!| > |S|. We conclude, since S
was arbitrary, that there must be a synchronizing word for A, as per the
strategy of Section 2.

To bound the size of a synchronizing word, according to the aforemen-
tioned strategy, we must bound the length of w. Since u represents ag’,
we can clearly choose u of length at most diam4(G) + 1. The strategy in
Section 2 then shows that A has a synchronizing word of length at most
1+ (n —2)(diam4(G) + 1). This completes the proof. O

We can now deduce Pin’s theorem, Theorem 1.1, as a corollary to Theo-
rem 5.1 (though it should be mentioned that in this special case, our proof
boils down to a “fancy” version of his proof in the language of representa-
tion theory). Indeed, let A < T,, with p prime be an automaton containing
a cyclic permutation g and some non-permutation. We saw earlier that
G = (g) is a QI-group. Since

G = {1797"'7gp_1}7

we see that diamy(G) < p — 1 and so we obtain from Theorem 5.1 a syn-
chronizing word of length at most 1+ (p — 2)p = (p — 1)2.

One can obtain new cases of the Cerny conjecture from QI-groups G < S,
as long as one chooses generators for G so that the diameter is at most
n — 1. For instance, if G = S,, and one chooses the transpositions (ii + 1),
i = 1,...,n as generators, then the diameter of S, is (3), so one would
only obtain from the above theorem a cubic bound after adding a non-
permutation. On the other hand, if we take as the generating set all the
transpositions, then the diameter of S, is n — 1 and so the bound of (n — 1)?
can be obtained from the above theorem when adding a non-permutation. If
we take all of S, as a generating set, then we would get a diameter of 1 and
so a synchronzing word of length at most 2n — 3 can be obtained as soon
as a non-permutation is adjoined (this last case is of course artificial but
emphasizes the dependence on the generating set). Similar considerations

apply to any QI-group.
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