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We analyze random walks on a class of semigroups called ``left-regular bands.''
These walks include the hyperplane chamber walks of Bidigare, Hanlon, and
Rockmore. Using methods of ring theory, we show that the transition matrices
are diagonalizable and we calculate the eigenvalues and multiplicities. The
methods lead to explicit formulas for the projections onto the eigenspaces. As
examples of these semigroup walks, we construct a random walk on the maxi-
mal chains of any distributive lattice, as well as two random walks associated
with any matroid. The examples include a q-analogue of the Tsetlin library. The
multiplicities of the eigenvalues in the matroid walks are ``generalized derange-
ment numbers,'' which may be of independent interest.

KEY WORDS: Random walk; Markov chain; semigroup; hyperplane arrange-
ment; diagonalization; matroid; derangement number.

1. INTRODUCTION

There are many tools available for the study of random walks on finite
groups, an important one being representation theory.(15) For finite semi-
groups, on the other hand, there is no representation theory comparable to
that for groups. And, although there is some general theory of random
walks, (22, 17) much less is known for semigroups than for groups. We con-
sider here a special class of finite semigroups whose irreducible representa-
tions can be worked out explcitly (they are all 1-dimensional), and we use
this information to analyze the random walks. In particular, we calculate
the eigenvalues, which turn out to be real.

The semigroups we treat are called ``left-regular bands'' in the semi-
group literature. There are many interesting examples of them, including
the hyperplane chamber walks introduced by Bidigare et al., (6) as well as
several new examples. Our approach via representation theory provides a
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clear conceptual explanation for some of the remarkable features of the
hyperplane chamber walks proved in Bidigare et al.(6) and Brown and
Diaconis.(11)

1.1. Random Walks on Left-Regular Bands

A left-regular band, or LRB, is a semigroup S that satisfies the identities

x2=x and xyx=xy (D)

for all x, y # S. We call (D) the ``deletion property,'' because it admits the
following restatement: Whenever we have a product x1 x2 } } } xn in S, we
can delete any factor that has occurred earlier without changing the value
of the product. Information about LRBs can be found in Grillet(20) and
Petrich.(26�27) Early references to the identity xyx=xy are Klein-Barmen(24)

and Schu� tzenberger.(29)

Our LRBs will always be finite and, for simplicity, will usually have an
identity. The second assumption involves no loss of generality, since we can
always adjoin an identity to S and property (D) still holds. And even the
first assumption involves very little loss of generality, since (D) implies that
S is finite if it is finitely generated.

To run a random walk on S, start with a probability distribution
[wx]x # S on S. A step in the walk then goes from s to xs, where x # S is
chosen with probability wx . Thus there is a transition from s to t with
probability

P(s, t)= :
xs=t

wx (1)

As we will see in the examples below, it is natural to consider a slight
variant of this walk, in which we confine ourselves to elements of a left
ideal I�S, i.e., a nonempty subset that is closed under left-multiplication
by arbitrary elements of S. If the walk starts in I then it stays there, so we
have a Markov chain on I with transition matrix given by (1) for s, t # I.

The next three subsections give examples of LRBs and the associated
random walks.

1.2. Example: Hyperplane Face Semigroups

These are the motivating examples that led to the present paper.
Briefly, a finite set of affine hyperplanes in a real vector space V divides V
into regions called chambers. These are polyhedral sets, which have faces.
The totality F of all the faces is a poset under the face relation. Less
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obviously, F admits a product, making it a LRB. See Appendix A for
details. Assume for simplicity that the arrangement is central (i.e., that the
hyperplanes have a nonempty intersection); in this case F has an identity.

The set C of chambers is an ideal, so we can run a random walk on
it. A step in the walk goes from a chamber C to the chamber FC, where F
is chosen according to some probability distribution [wF ]F # F . Examples
in Bidigare;(5) Bidigare et al.;(6) Billera et al.;(7) Brown and Diaconis;(11)

and Diaconis(14) show that these hyperplane chamber walks include a wide
variety of interesting processes. The references also explain a geometric
interpretation of the step from C to FC: Namely, FC is the chamber closest
to C having F as a face.

Surprisingly, the eigenvalues of the transition matrix turn out to be
real. In fact, they are certain partial sums of the weights wF . To say which
partial sums occur, we need the intersection lattice L, consisting of all
subspaces X�V that are intersections of some of the given hyperplanes;
we order L by inclusion. The result, then, is that there is an eigenvalue
*X=�F�X wF for each X # L, with multiplicity mX=|+(X, V )|, where + is
the Mo� bius function of L. This was proved by Bidigare et al.(6) A different
proof is given by Brown and Diaconis, (11) who show further that the transi-
tion matrix is diagonalizable.

1.3. Example: The Free LRB

The free LRB with identity on n generators, denoted Fn , may be con-
structed as follows: The elements of Fn are sequences x=(x1 ,..., xl ) of
distinct elements of the set [n]=[1,..., n], 0�l�n. We multiply two such
sequences by

(x1 ,..., xl )( y1 ,..., ym)=(x1 ,..., xl , y1 ,..., ym)@

where the hat means ``delete any element that has occurred earlier.'' For
example,

(2 1)(3 5 4 1 6)=(2 1 3 5 4 6)

One can think of the elements of Fn as reduced words on an alphabet of
n letters, where ``reduced'' means that the word cannot be shortened by
applying (D).

The ideal I on which we will run our random walk is the set of
reduced words of length n; these can be identified with permutations. If the
weights wx are concentrated on the n generators, then the resulting random
walk can be pictured as follows: Think of (x1 ,..., xn) as the set of labels on
a deck of n cards. Then a step in the walk consists of removing the card
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labeled i with probability wi and replacing it on top. This is the well-
studied Tsetlin library, or weighted random-to-top shuffle, which arises in
the study of dynamic list-management in computer science. See Fill(18) and
the references cited there.

The eigenvalues were first found by Phatarfod; (28) see also Bidigare; (5)

Bidigare et al.;(6) Brown and Diaconis;(11) Fill(18) for other proofs. The
result is that there is one eigenvalue *X=�i # X wi for each subset X�[n],
with multiplicity equal to the derangement number dn&|X | . Here dk is the
number of fixed-point-free permutations of k elements. (Note that d1=0,
so *X does not actually occur as an eigenvalue if |X |=n&1.)

1.4. Example: A q-Analogue

Let V be the n-dimensional vector space Fn
q , where Fq is the field with

q-elements. Let Fn, q be the set of ordered linearly independent sets
(x1 ,..., x l ) in V; two such are multiplied by

(x1 ,..., xl )( y1 ,..., ym)=(x1 ,..., xl , y1 ,..., ym)@

where the hat means ``delete any vector that is linearly dependent on the
earlier vectors.'' Alternatively, we can think of the elements of Fn, q as
n-rowed matrices over Fq with independent columns; we multiply two such
matrices by juxtaposing them and then deleting the columns that are
linearly dependent on earlier columns.

A natural ideal to use is the set of ordered bases of V or, equivalently,
the set of invertible matrices. If we now assign weights wv summing to 1 to
the nonzero vectors v # V (i.e., to the sequences x as above of length 1), we
get a Markov chain on invertible matrices that can be described as follows:
Given an invertible matrix, pick a nonzero vector v with probability wv and
adjoin it as a new first column; delete the unique column that is linearly
dependent on the earlier ones.

This chain does not seem to have been considered before. We will see,
as a consequence of our main theorem, that its transition matrix is
diagonalizable, with an eigenvalue

*X= :
v # X

wv

for each subspace X�V. The multiplicity mX of this eigenvalue is the
number of elements of GLn(Fq) with X as fixed subspace, i.e., the number of
elements that fix X pointwise and act as a derangement on the set-theoretic
complement V&X.
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This Markov chain is, in some sense, a q-analogue of the Tsetlin
library. We will construct in Section 5 a quotient F� n, q of Fn, q , for which the
random walk is more deserving of the name ``q-analogue of the Tsetlin
library.''

1.5. The Main Result

If S is any finite LRB with identity, one can construct an associated
lattice L, along with a ``support map'' supp: S ��L. For the hyperplane
face semigroup, L is the intersection lattice, the support of a face being its
affine span. For S=Fn , L is the lattice of subsets of [n], and the support
of a word (x1 ,..., x l ) is the underlying set [x1 ,..., xl ] of letters. And for
S=Fn, q , L is the lattice of subspaces of Fn

q , the support of (x1 ,..., xl ) being
the subspace spanned by [x1 ,..., x l ]. The ideal on which we run our
random walk is the set C of all c # S with supp c=1� , where 1� is the largest
element of L. Borrowing terminology from the hyperplane example, we call
the elements of C chambers. Our main result, illustrated by the examples
above, can be stated roughly as follows:

Main Theorem (Informal statement). The transition matrix of the
walk on chambers is diagonalizable, with one eigenvalue

*X= :
supp y�X

wy

for each X # L. The multiplicity mX of this eigenvalue depends on com-
binatorial data derived from S and L.

Unfortunately, the formula for mX is somewhat technical. See
Theorem 1 in Section 3 for the precise statement.

1.6. Stationary Distribution and Convergence Rate

For the hyperplane chamber walk, Brown and Diaconis(11) describe
the stationary distribution and estimate the rate of convergence to station-
arity. These results and their proofs apply without change to the present
setup. For completeness, we state the results here. Note first that we can
run, along with our walk on the chambers, a random walk on S starting
at the identity; after m steps it is at xm } } } x2x1 , where x1 , x2 ,... are i.i.d.
with distribution [wx]. If S is generated by [x # S : wx{0], then this walk
is eventually in C with probability 1. Let T be the first time m that
xm } } } x2x1 # C.
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Theorem 0. Let S be a finite LRB with identity, and let L be the
associated lattice. Let [wx] be a probability distribution on S such that S
is generated by [x # S : wx{0]. Then the random walk on the ideal C of
chambers has a unique stationary distribution ?; it is the distribution of the
infinite product c=x1x2 } } } , where x1 , x2 ,... are i.i.d. with distribution [wx].
The total variation distance from stationarity after m steps for the walk
started at any chamber c0 satisfies

&Pm
c0

&?&�Pr[T>m]�:
H

*m
H

where H ranges over the maximal elements (co-atoms) of L.

The fact that the infinite product converges (i.e., that the partial sums
are eventually constant) is an immediate consequence of property (D). See
[11, Section 3] for other descriptions of ?, involving sampling without
replacement, that can be obtained by making systematic use of (D).

1.7. Organization of the Paper

We begin by restarting the theory of LRBs in Section 2, adopting a
definition slightly different from (but equivalent to) the one in Section 1.1.
This allows us to get more quickly to the main ideas of the paper without
getting bogged down in semigroup theory. We can then give in Section 3
the precise statement of our main theorem, with the multiplicities mX

spelled out. We also give some easy examples in that section.
Sections 4�6 contain more elaborate examples. Readers who wish to

proceed to the proof of the main theorem may skip ahead to Section 7. In
Section 4 we consider a convex, open, polyhedral subset U/Rn, divided
into chambers by hyperplanes that cut across it. There is a random walk
on these chambers, generalizing the walk of Section 1.2. From a technical
point of view, this is a fairly trivial generalization; but it leads to new
examples, including a random walk on the maximal chains of any finite
distributive lattice. An amusing special case of this is the ``kids walk.''
Section 5 treats the q-analogue of the Tsetlin library mentioned above. The
multiplicities mX for this walk are the q-derangement numbers studied by
Wachs.(36) And Section 6 gives a matroid generalization of the Tsetlin
library, including both the Tsetlin library and its q-analogue. Applying the
theory to graphical matroids, we obtain a random walk on the edge-
ordered spanning trees of a graph, as well as a random walk that has a
(speculative) connection with phylogenetic trees.

In Section 7 we begin the proof of the main theorem. We find the radi-
cal and semisimple quotient of the semigroup algebra RS using ideas of
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Bidigare, (5) and from this we can read off the irreducible representations
of S. The eigenvalue formulas follow easily, but not the diagonalizability of
the transition matrix.

Diagonalizability is deduced in Section 8 from a more precise result,
asserting that the subalgebra R[w]�RS generated by w=�x # S wxx is
split semisimple (isomorphic to a direct product of copies of R). We use
here a criterion that deserves to be better known, involving the poles of the
generating function for the powers of w. As a byproduct of the proof, we
obtain an explicit (though complicated) formula for the primitive idem-
potents in R[w], and hence for the projections onto the eigenspaces of P.
Our methods are inspired by the work of Fill(18) on the Tsetlin library, and
some of our formulas may be essentially the same as unpublished results of
his. Finally, we specialize in Section 9 to the hyperplane face semigroup of
a reflection arrangement, and we give connections with Solomon's descent
algebra. Here again we make crucial use of results of Bidigare.(5)

There are three appendices that provide supplementary material.
Appendix A summarizes the facts about hyperplane arrangements that we
use. This appendix is not logically necessary, but it is cited in many examples
and it provides the motivation for several definitions that would otherwise
seem quite strange. Appendix B lays the foundations for the theory of LRBs;
in particular, it is here that we reconcile the definition given in Section 1.1
with the one in Section 2. Finally, in Appendix C we discuss a generalization
of the derangement numbers. These arise naturally in connection with the
matroid examples of Section 6.

Convention. For simplicity, all semigroups are assumed to be finite
and to have an identity, unless the contrary is stated explicitly.

2. LEFT-REGULAR BANDS

Let S be a semigroup (finite, with identity). It is convenient to redefine
``LRB'' so that the lattice L, whose existence was asserted in Section 1.5, is
built into the definition. The interested reader can refer to Appendix B for
a proof that the present definition is equivalent to the one in Section 1.1,
as well as for other characterizations of LRBs.

2.1. Definition

We say that S is a LRB if there are a lattice L and a surjection
supp: S �� L satisfying

supp xy=supp x6 supp y (2)

877Semigroups, Rings, and Markov Chains



and

xy=x if supp y�supp x (3)

Here 6 denotes the join operation (least upper bound) in L. It follows
from these axioms that every x # S is idempotent (x2=x) and that S
satisfies the identity

xyx=xy (4)

for all x, y # S. Thus S has the deletion property (D) stated in Section 1.1.
The motivation for (2) and (3) comes from the theory of hyperplane

arrangements (Appendix A); this theory, then, provides a huge supply of
examples, one of which is discussed in detail in Section 2.3. Further examples
have been given in Sections 1.3 and 1.4, and many more will be given in
Sections 4�6.

2.2. Partial Order

If S is a LRB, we can define a partial order on S by setting

x� y � xy= y (5)

(For motivation, see Eq. (33) in Appendix A.) This relation is reflexive
because every element of S is idempotent. And it is transitive because if
xy= y and yz=z, then xz=x( yz)=(xy) z= yz=z. To check antisym-
metry, suppose x� y and y�x. Then xy= y and yx=x, hence x= yx=
(xy) x=xy= y, where the second-to-last equality uses (4); so S is indeed a
poset.

Note that left multiplication by x is a projection (idempotent operator)
mapping S onto S�x=[ y # S : y�x]. The latter is a LRB in its own right,
the associated lattice being the interval [X, 1� ] in L, where X=supp x and
1� is the largest element of L. Note also that S�x depends only on X, up
to isomorphism. Indeed, if we also have supp x$=X, then the projections
(left multiplications) defined by x and x$ give mutually inverse semigroup
isomorphisms between S�x and S�x$ ; this is a straightforward consequence
of the axioms. We may therefore write S�X instead of S�x . Thus

S�X$[ y # S : y�x]

for any fixed x with supp x=X. Note that the random walk studied in this
paper is defined in terms of the projection operators restricted to chambers,
mapping C onto C�x . For the hyperplane face semigroup these projections
have a geometric meaning that we mentioned in Section 1.2.
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Finally, we remark that there is also a LRB

S�X=[ y # S : supp y�X ]

whose associated lattice is the interval [0� , X ], where 0� is the smallest
element of L.

2.3. Example: The Semigroup of Ordered Partitions

One of the standard examples of a hyperplane arrangement is the
braid arrangement, which is discussed in detail in Bidigare;(5) Bidigare et
al.;(6) Billera et al.;(7) Brown and Diaconis;(11) see also Section A.5 of the
present paper. Its face semigroup B is easy to describe combinatorially,
without reference to hyperplane arrangements: The elements of B are
ordered partitions B=(B1 ,..., Bl ) of the set [n]=[1, 2,..., n]. Thus the Bi

are nonempty sets that partition [n], and their order matters. We multiply
two ordered partitions by taking intersections and ordering them lexico-
graphically; more precisely, if B=(B1 ,..., Bl ) and C=(C1 ,..., Cm), then

BC=(B1 & C1 ,..., B1 & Cm ,..., Bl & C1 ,..., B l & Cm)@

where the hat means ``delete empty intersections.'' This product makes B

a LRB, with the 1-block ordered partition as identity. The associated
lattice L is the lattice of unordered set partitions 6, with 6�6$ if 6$ is
a refinement of 6. Thus the smallest element 0� of L is the 1-block partition,
and the largest element 1� is the partition into singletons. The support map
B �� L forgets the ordering of the blocks.

The partial order on B is also given by refinement, taking account
of the block ordering. Thus B�C if and only if C consists of an ordered
partition of B1 followed by an ordered partition of B2 , and so on. The
chambers are the ordered partitions into singletons, so they correspond to
the permutations of [n].

It is useful to have a second description of B. Ordered partitions
(B1 ,..., Bl ) of [n] are in 1�1 correspondence with chains of subsets <=
E0<E1< } } } <El=[n], the correspondence being given by Bi=Ei&Ei&1 .
So we may identify B with the set of such chains. The product is
then described as follows: Given a chain E as above and a second chain
F : <=F0<F1< } } } <Fm=[n], their product EF is obtained by using F
to refine E. More precisely, consider the sets Gij=(Ei&1 _ F j ) & Ei=
Ei&1 _ (Fj & Ei ). For each i=1, 2,..., l we have

Ei&1=Gi0�Gi1� } } } �Gim=Ei
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Deleting repetitions gives a chain from Ei&1 to Ei , and combining these for
all i gives the desired refinement EF of E.

This construction is used in one of the standard proofs of the Jordan�
Ho� lder theorem.

3. STATEMENT OF THE MAIN THEOREM

We are now in a position to complete the statement of our main result
by spelling out the multiplicities mX mentioned in Section 1.5. Let S be a
LRB with lattice of supports L. For each X # L let cX be the number of
chambers in S�X , i.e., the number of chambers c # C such that c�x, where
x is any fixed element of S having support X. Our main theorem is:

Theorem 1. Let S be a finite LRB with identity, let [wx] be a prob-
ability distribution on S, and let P be the transition matrix of the random
walk on chambers:

P(c, d )= :
xc=d

wx (6)

for c, d # C. Then P is diagonalizable. It has an eigenvalue

*X= :
supp y�X

wy

for each X # L, with multiplicity mX , where

:
Y�X

mY=cX (7)

for each X # L. Equivalently,

mX= :
Y�X

+(X, Y ) cY (8)

where + is the Mo� bius function of the lattice L.

Note that mX depends only on the semigroup S�X . With this in mind,
there is an easy way to remember the formula (7). It says that for the
random walk generated by any set of weights on S�X , the sum of the
multiplicities of the eigenvalues is equal to the number of chambers.

Here are a few easy examples. More complicated examples will be
discussed in Sections 4�6.
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Example 1. Consider the chamber walk associated with a central
hyperplane arrangement in a vector space V. We have cX=�Y�X |+(Y, V )|
by Zaslavsky.(39) Comparing this with (7), we conclude that mX=|+(X, V )|.
Thus Theorem 1 gives the results cited in Section 1.2. The same results
remain valid for noncentral arrangements. This was already shown by
Brown and Diaconis(11) by different methods. To see how it follows from
Theorem 1, one argues exactly as in the central case, with one complication:
The face semigroup F need not have an identity, and the poset L of supports
of the faces is only a semilattice (it has least upper bounds but not necessarily
greatest lower bounds). Before applying the theorem, one has to adjoin an
identity to F to get a LRB F� with identity, and one has to adjoin a
smallest element 0� to L to get a lattice L� . The theorem would seem, then,
to give an extra eigenvalue *0� =0. But Zaslavsky(39) showed that c0� , the
total number of chambers, is �Y # L |+(Y, V )|. One can now deduce from
(7) that m0� =0 and hence that *0� does not really occur as an eigenvalue.

Example 2. Let S=Fn . As we stated in Section 1.3, mX is the derange-
ment number dn&|X | for any X�[n]. To deduce this from Theorem 1, we
need only observe that

:
Y$X

dn&|Y |=cX (9)

for each X�[n]. Indeed, one can check that cX=(n&|X | )!, which is the
number of permutations of [n] that fix X pointwise; and the left-hand-side
of (9) counts these according to their fixed-point sets.

Example 3. Let S=Fn, q . We claimed in Section 1.4 that mX for a
subspace X�Fn

q is the number of elements of GLn(Fq) with X as fixed sub-
space. To see this, note that cX is the number of ways to extend a given
ordered basis of X to an ordered basis of Fn

q . This is also the number of
elements of GLn(Fq) that fix X pointwise, and the claim now follows from
(7) exactly as in Example 2.

4. EXAMPLES: CONVEX SETS, DISTRIBUTIVE LATTICES,
AND THE KIDS WALK

The examples in this section were first treated in unpublished joint
work with Persi Diaconis, using the techniques of Brown and Diaconis(11)

rather than semigroup methods.
Let U/Rn be a nonempty set that is a finite intersection of open

halfspaces. A finite set of hyperplanes cutting across U divides U into
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regions. We are interested in a random walk on these regions driven by a
set of weights on their faces. A convenient way to set this up is to combine
the hyperplanes defining U with the hyperplanes cutting across U; this
yields a hyperplane arrangement A, and the regions into which U is cut
form a subset D of the set C of chambers of A. Section 4.1 spells out this
point of view in more detail. We then construct and analyze a random walk
on D in Section 4.2. We show in Section 4.3 how the theory yields a ran-
dom walk on the maximal chains of a distributive lattice, and we illustrate
this in Section 4.4 by discussing the ``kids walk.''

4.1. Convex Sets of Chambers

Let A=[Hi ] i # I be a hyperplane arrangement in a real vector space V,
let F be its face semigroup, and let C be the ideal of chambers. We do not
assume that A is central, so F need not have an identity. Let D�C be
a convex set of chambers, as defined in Section A.7. Thus there is a subset
J�I and a set of signs _i # [+, &] (i # J ) such that

D=[C # C : _i (C )=_i for all i # J ]

We may assume that each _i=+. The open set U referred to above is then
�i # J H +

i .
As a simple example, consider the braid arrangement in R4 (Sec-

tion A.5). The region U defined by x1>x2 and x3>x4 contains six chambers,
corresponding to the permutations 1234, 1324, 1342, 3124, 3142, 3412. As
explained in Section A.6, it is possible to represent the arrangement by
means of a picture on the 2-sphere. In this picture (Fig. 7 in Section A.6)
U corresponds to one of the open lunes determined by the great circles 1�2
and 3�4. Figure 1 gives a better view of this lune.

4.2. A Walk on the Chambers

Let G be the set of faces of the chambers D # D; equivalently,

G=[G # F : _i (G)�0 for all i # J ]

(To see that the right side is contained in the left, suppose _i (G)�0 for all
i # J. Choose an arbitrary D # D. Then we have G�GD # D, hence G # G.)
Then G is a subsemigroup of F, hence a LRB (possibly without identity)
in its own right. Its set of chambers is D. Thus we can run a random walk
on D driven by a set of weights on G. To describe the eigenvalues, we need
some further notation.
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Fig. 1. A convex subset of the braid arrangement.

Let G0=[G # G : _i (G)=+]. In other words, G0 is the set of faces that
are contained in our open set U=�i # J H +

i . Let L be the intersection
semilattice of A, let M�L be the set of supports of the faces in G,
and let M0�M be the set of supports of the faces in G0 . Equivalently,
M0 consists of the X # L that intersect U. In our braid arrangement example,
where we identify F with the set of cells in the spherical representation of
the arrangement, G0 consists of the cells in the interior of the lune: one vertex,
six edges, and six chambers. The bigger semigroup G contains, in addition,
the six vertices and six edges on the boundary of the lune, as well as the
empty cell (which is the identity of G). The poset M0 is shown in Fig. 2.

Note that if X # M0 and X�Y # L, then Y # M0 ; this implies that we
get the same value for the Mo� bius number +(X, V ) for X # M0 no matter
which of the posets M0 , M, L we work in. We can now state:

Fig. 2. The poset M0 .
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Theorem 2. Let A be a hyperplane arrangement and let G, D,
and M0 be as above. For any probability distribution [wG]G # G on G, the
transition matrix of the random walk on D is diagonalizable. It has an
eigenvalue

*X= :
G # G
G�X

wG

for each X # M0 , with multiplicity |+(X, V )|.

Proof. We argue as in our discussion of the walk on C in Example 1
of Section 3. Assume first that A is central, so that G has an identity. The
lattice associated with G is M, so Theorem 1 gives us an eigenvalue *X as
above for each X # M, with multiplicities mX characterized by

:
Y # M
Y$X

mY=cX (10)

for each X # M, where cX is the number of chambers in GX . We wish to
show that mX=|+(X, V )| for X # M0 and that mX=0 for X � M0 . This will
follow from (10) if we show

:
Y # M0
Y$X

|+(Y, V )|=cX (11)

for each X # M.
Now Zaslavsky(40) counted the number of regions obtained when an

open convex set is cut by hyperplanes (see his Theorem 3.2 and the com-
ments at the bottom of p. 275). His result, in our notation, is

|D|= :
Y # M0

|+(Y, V )| (12)

This is the case X=0� of (11). Equation (11) for arbitrary X can be
obtained by applying (12) with A replaced by the set of hyperplanes
H # A that contain X. Theorem 2 is now proved if A is central.

The noncentral case is treated by adjoining an identity to G, as in
Example 1 of Section 3. The essential point is that (12) still holds, and this
implies that the ``extra'' eigenvalue *0� =0 has multiplicity 0. g

To illustrate the theorem, we return to the convex set in Fig. 1, with
M0 as in Fig. 2. We have +(X, V )=\1 for each X # M0 , so each con-
tributes an eigenvalue of multiplicity 1. Suppose, for example, that we take
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uniform weights wG=1�7 on the seven vertices in Fig. 1. Then Theorem 2
gives the following eigenvalues:

X *X

V 1
H13 , H24 3�7
H14 , H23 2�7

H13 & H24 1�7

The transition matrix P in this case is 1�7 of the following matrix:

1234 1324 1342 3124 3142 3412

1234 3 1 1 1 0 1
1324 1 3 1 1 0 1
1342 1 1 3 0 1 1
3124 1 1 0 3 1 1
3142 1 0 1 1 3 1
3412 1 0 1 1 1 3

4.3. Distributive Lattices

If L is a finite distributive lattice, there is a LRB S whose elements are
chains 0� =x0<x1< } } } <xl=1� . To construct the product of two such
chains, we use the second factor to refine the first, exactly as in the discus-
sion at the end of Section 2.3, where we treated the Boolean lattice of sub-
sets of [n]. A simple way to verify that S is indeed a LRB is to appeal to
the well-known fact that L can be embedded as a sublattice of a Boolean
lattice. Moreover, Abels [1, Proposition 2.5] has described a way of
constructing an embedding which makes the set of chambers in S (i.e., the
maximal chains in L) correspond to a convex set of chambers in the braid
arrangement. His embedding depends on a choice of a ``fundamental'' max-
imal chain, which then corresponds to the identity permutation. We can
therefore use the results of Section 4.2 to analyze a random walk on the
maximal chains of L, driven by weights on arbitrary chains.

As an example of a distributive lattice, consider the product
[0, 1,..., p]_[0, 1,..., q] of a chain of length p by a chain of length q. The
case p=q=2 is shown in Fig. 3(a). The maximal chains are the lattice
paths from (0, 0) to ( p, q), as in Fig. 3(b). Each maximal chain has length
p+q, and there are ( p+q

p ) of them; indeed, a lattice path can be identified
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Fig. 3. (a) A distributive lattice; (b) A maximal chain.

with a binary vector of length p+q containing exactly p ones. (Think of 1
as ``right'' and 0 as ``up.'')

One interesting random walk on these lattice paths is obtained by
assigning uniform weights to the ( p+1)(q+1)&2 chains of the form
0� <x<1� . A step in the walk consists of choosing x # L&[0� , 1� ] at random
and then modifying the given path minimally to make it pass through x.
See Fig. 4 for an illustration; here x=(2, 1).

Fig. 4. A step in the walk on lattice paths.

In case p=q=2, the method of Abels cited above leads to an embed-
ding of L=[0, 1, 2]_[0, 1, 2] into the Boolean lattice of rank 4. One such
embedding is shown in Fig. 5; it is obtained by taking the fundamental
maximal chain in L to be the lattice path that goes up the left side and then
across the top. (Note: An expression like 134 in Fig. 5 denotes the set
[1, 3, 4].) The six maximal chains correspond to the six permutations
shown in Fig. 1, and the walk on lattice paths is the same as the walk dis-
cussed at the end of Section 4.2.

One can treat general p, q in a similar way, but it would take us too
far afield to give further details. One can also obtain results on the stationary
distribution and convergence rate via Theorem 0 (Section 1.6).

4.4. The Kids Walk

This is a walk on the p-subsets of a ( p+q)-set, represented as binary
vectors of length p+q containing p ones. Think of the zeroes as empty
spaces and the ones as spaces occupied by kids. At each step a kid and an
empty space are independently chosen at random. The kid then moves
toward the empty space, pushing any other kids he encounters until the
space is occupied. Here is an example with p=3 and q=4. The initial
configuration is

a a
0 1 1 0 0 1 0
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Fig. 5. Embedding in the Boolean lattice.

with the two chosen positions indicated by arrows. The final configuration
is

0 0 0 1 1 1 0

The kids walk is the same as the walk on lattice paths described in
Section 4.3, except that the latter has holding; namely, the chosen lattice
point x is on the current path with probability :=( p+q&1)�( pq+ p+q&1),
in which case the walk stays at the current path. Thus if P is the transition
matrix for the walk on lattice paths and P1 is the transition matrix for the
kids walk, we have P=:I+(1&:) P1 , so that P1=(P&:I )�(1&:). It
follows that P1 is diagonalizable with eigenvalues (*&:)�(1&:), where *
ranges over the eigenvalues of P. If p=q=2, for example, we have :=3�7,
and the result at the end of Section 4.2 gives eigenvalues 1, 0, 0, &1�4,
&1�4, &1�2 for the kids walk.

5. EXAMPLE: A q-ANALOGUE OF THE TSETLIN LIBRARY

The random walk in this section is based on a quotient F� n, q of the
semigroup Fn, q (Section 1.4). For motivation, we begin by defining a
quotient F� n of Fn , and we explain how it is related to the Tsetlin library.
The q-analogue is then given in Section 5.2.

5.1. A Quotient of Fn

The references cited in Section 2.3 show how the random walk asso-
ciated with the semigroup B of ordered partitions captures many shuffling
schemes. In particular, to obtain the Tsetlin library one puts weight wi>0
on the 2-block ordered partition (i, [n]&i ) and weight 0 on all other
ordered partitions, where �n

i=1 wi=1. From the point of view of the present
paper, however, the semigroup B is much too big for the study of the Tsetlin
library; one should replace B by the subsemigroup (with identity) generated
by the n two-block ordered partitions to which we have assigned weights.
This subsemigroup, which we denote by F� n , is easily described: It consists
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of the ordered partitions (B1 ,..., Bl ) such that each block Bi is a singleton
except possibly Bl . Alternatively, it consists of the chains <=E0<E1<
} } } <El=[n] with |Ei |=i for 0�i<l.

The freeness of Fn implies that F� n is a quotient of Fn . Explicitly we
have a surjection Fn �� F� n sending the sequence (x1 ,..., xl ) to the following
ordered partition B: If l<n, then B has l+1 blocks, with Bi=[xi ] if i�l
and Bl+1=[n]&[x1 ,..., xl ]; if l=n, then B is the partition into singletons
Bi=[xi ], 1�i�n. In terms of chains of subsets, B corresponds to the
chain E with Ei=[x1 ,..., xi ] for 1�i�l and, if l<n, E l+1=[n].

The lattice of supports of F� n can be identified with the set of subsets
X�[n] such that |X |{n&1, the support of B being the union of the
singleton blocks. Note that the quotient map Fn �� F� n is almost 1�1;
the only identifications are that each (n&1)-tuple (x1 ,..., xn&1) in Fn gets
identified with its (unique) extension to an n-tuple in Fn .

Remark. The semigroups Fn and F� n have the same set of chambers,
and we have seen that either one can be used to generate the Tsetlin
library. But F� n is more efficient for this purpose, in the following two
senses: (a) When we use Fn , Theorem 1 gives extraneous eigenvalues *X

with |X |=n&1, which then turn out not to occur because mX=0. (b) The
estimate of convergence rate given in Theorem 0 is sharper if we use F� n

than if we use Fn , because the maximal elements of the support lattice have
size n&2 instead of n&1.

5.2. q-Analogue

Let V be the vector space Fn
q , where Fq is the field with q elements. As

a q-analogue of F� n we propose the following semigroup F� n, q : An element of
F� n, q is a chain of subspaces 0=X0<X1< } } } <Xl=V with dim Xi=i
for i<l. Thus the chain cannot be refined except possibly at the last step,
between Xl&1 and V. Given two such chains X=(X0 ,..., X l ) and Y=
(Y0 ,..., Ym), we construct the product XY by using Y to refine X. More
precisely, the product is obtained by forming the chain

0=X0< } } } <X l&1�X l&1+Y1�Xl&1+Y2� } } } �Xl&1+Ym=V

and deleting repetitions.
The simplest way to verify that this product is associative is to exhibit

F� n, q as a quotient of the semigroup Fn, q of ordered independent sets.
Namely, we can map Fn, q onto F� n, q by sending (x1 ,..., xl ) to the chain with
Xi equal to the span of [x1 ,..., x i ] for 0�i�l and, if l<n, Xl+1=V. This
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gives a product-preserving surjection Fn, q �� F� n, q , so our product on F� n, q

is indeed associative.
It is easy to check that F� n, q is a LRB whose associated lattice is the

set of subspaces of V of dimension different from n&1. The support map
is given by

supp(X0 ,..., Xl )={X l&1

V
if l<n
if l=n

Note that the join of two such subspaces X, Y in this lattice is their vector
space sum X+Y unless the latter has dimension n&1, in which case the
join is V.

The chambers in F� n, q are the maximal chains 0=X0<X1< } } } <Xn

=V. To construct a random walk analogous to the Tsetlin library, put
weight wl>0 on the chain 0<l<V for each subspace l of dimension 1,
and put weight 0 on all other elements of F� n, q , where �l wl=1. This
yields a walk on maximal chains that goes as follows: Given a maximal
chain

0<X1< } } } <Xn&1<V

pick a line l with probability wl , and form a new maximal chain

0<l�l+X1� } } } �l+Xn&1�V;

exactly one of the inequalities is an equality, and we delete the repetition.
One can also view this walk as taking place on the maximal flags in the
projective space Pn&1(Fq), driven by weights on the points. If n=3, for
example, this is a walk on the incident point-line pairs in the projective
plane.

According to Theorem 1 the transition matrix of this walk is diagonal-
izable, with an eigenvalue

*X= :
l�X

wl

for each subspace X with dim X{n&1; the multiplicities mX are charac-
terized by

:
Y$X

mY=cX
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where cX is the number of maximal chains in the interval [X, V ] in L.
It follows that mX is the q-derangement number dn&dim X (q) of Wachs;(36)

see Example 2 in Section C.2. This is why we view the present walk as
the ``right'' q-analogue of the Tsetlin library, rather than the walk based
on Fn, q .

The stationary distribution ? of this walk is a probability measure on
the set of maximal chains. One can deduce from Theorem 0 the following
description of ?: Sample from the set of lines l according to the weights wl

to get a line l1 . Remove l1 and sample again to get l2 . Remove all the lines
contained in l1+l2 and choose l3 . Continuing in this way, we obtain a
maximal chain

0<l1<l1+l2< } } } <l1+l2+ } } } +ln&1<V

after n&1 steps. This chain is distributed according to ?.

Remark. This q-analogue of the Tsetlin library was first studied in
joint work with Persi Diaconis [unpublished], in which we extended the
hyperplane chamber walks to walks on the chambers of a building. And the
first proof that the multiplicities were given by the q-derangement numbers
was arrived at with the help of Richard Stanley. In fact, the original
calculation of the multiplicities, which was quite different from the one
given in this paper, led to formulas similar to those of Proposition 10
(Section C.1), and it was not immediately obvious that these formulas gave
the q-derangement numbers.

6. EXAMPLES: RANDOM WALKS ASSOCIATED WITH MATROIDS

Matroids were introduced by Whitney, (38) as an abstraction of the
linear independence properties of the columns of a matrix. We describe in
this section two natural LRBs S, S� that can be associated with a matroid,
hence two random walks. These generalize the pairs Fn , F� n and Fn, q , F� n, q

discussed in Section 5.
We begin by reviewing matroid concepts in Section 6.1. We then con-

struct the semigroups and the associated walks in Section 6.2. Our discus-
sion is brief because the theory follows quite closely the two special cases
already treated. In Section 6.3 we consider a third case, graphical matroids.
This leads to two random walks associated with a graph. In an effort to
understand one of these examples intuitively, we give an interpretation of
it in terms of phylogenetic trees.
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6.1. Review of Matroids

The book by Welsh(37) is a good reference for this subsection. A matroid
M consists of a finite set E and a collection of subsets of E, called indepen-
dent sets, subject to axioms modeled on the notion of linear independence
in vector spaces. A maximal independent set is called a basis, and all such
have the same cardinality n, called the rank of M. More generally one can
define rank(A) for any subset A�E as the rank of any maximal independent
set in A. Any such maximal independent set is called a basis for A. We say
that x depends on A if rank(A _ x)=rank(A); otherwise, rank(A _ x)=
rank(A)+1. Any set A has a closure _(A), obtained by adjoining every x
that depends on A, and A is said to be closed, or a flat, if _(A)=A. The
set L of flats is a lattice under inclusion. One can think of L as an analogue
of the lattice of subspaces of a vector space, and _(A) plays the role of the
span of a set of vectors.

In addition to the motivating example, in which E is a set of vectors,
there are two other canonical examples: The first is the free matroid of
rank n; the set E is [1, 2,..., n], and all subsets are independent. The second
is the graphical matroid associated with a finite graph G; here E is the set
of edges of G, and a subset is independent if it contains no cycles.

6.2. Semigroups Associated with a Matroid

Let M be a matroid of rank n with underlying set E. We construct two
LRBs S, S� . The elements of S are ordered independent sets, i.e., l-tuples
x=(x1 ,..., xl ) of distinct elements of E whose underlying set [x1 ,..., xl ] is
independent. We set supp x=_([x1 ,..., xl ]). The product is defined by

(x1 ,..., xl )( y1 ,..., ym)=(x1 ,..., xl , y1 ,..., ym)@

where the hat means ``delete any element that depends on the earlier
elements.'' It is easy to check that we obtain in this way a LRB S whose
associated lattice is the lattice of flats L.

The chambers of S are the ordered bases of M. To construct a random
walk analogous to the Tsetlin library, put weight wx>0 on the 1-tuple (x)
and weight 0 on the l-tuples with l{1, where �x wx=1. (Note: Not all
x # E occur here, since M might contain loops, i.e., elements x such that the
singleton [x] is not independent.) This yields a walk on ordered bases that
goes as follows: Given an ordered basis (x1 ,..., xn), pick a nonloop x # E
with probability wx , and make it the new first basis element; delete the
(unique) xi that depends on [x, x1 ,..., x i&1].
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According to Theorem 1, the transition matrix of this walk is
diagonalizable, with an eigenvalue

*X= :
x # X

wx

for each flat X ; the multiplicities mX are characterized by

:
Y�X

mY=cX (13)

for each X # L. Here cX is the number of ways of completing any fixed basis
of X to a basis of M. The stationary distribution ? of this chain is a prob-
ability measure on the set of ordered bases. One can deduce from
Theorem 0 the following description of ?: Sample from E (according to the
weights wx) to get a nonloop x1 . Remove x1 and everything dependent on
it and sample again to get x2 . Remove the closure of [x1 , x2], choose x3 ,
and so on. After n steps we have an ordered basis (x1 ,..., xn) whose dis-
tribution is ?.

The second semigroup, S� , consists of chains of flats 0� =X0<X1< } } }
<Xl=1� with rank(Xi )=i for i<l. Given two such chains X=(X0 ,..., X l )
and Y=(Y0 ,..., Ym), their product XY is obtained by forming the chain

0� =X0< } } } <X l&1�X l&1 6 Y1� } } } �Xl&1 6Ym=1�

and deleting repetitions. Here 6 denotes the join operation in the lattice
of flats, i.e., X 6 Y=_(X _ Y ). One can verify, exactly as in Section 5.2,
that S� is a LRB whose associated lattice L� is the set of flats of rank
different from n&1.

The chambers in S� are the maximal chains 0� =X0<X1< } } } <Xn=1� .
To construct a random walk analogous to the Tsetlin library, put weight
wl>0 on the chain 0� <l<1� for each flat l of rank 1, where �l wl=1.
This yields a walk on maximal chains that goes as follows: Given a maximal
chain

0� <X1< } } } <Xn&1<1�

pick a flat l of rank 1 with probability wl , and form a new maximal chain

0� <l�l 6 X1� } } } �l 6 Xn&1�1�

exactly one of the inequalities is an equality, and we delete the repetition.
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According to Theorem 1, the transition matrix of this walk is
diagonalizable, with an eigenvalue

*X= :
l�X

wl

for each flat X with rank(X ){n&1; the multiplicities mX are characterized
by

:
Y�X

mY=cX (14)

where now cX is the number of maximal chains in the interval [X, 1� ] in L.
Recall that the multiplicities of the eigenvalues for the Tsetlin library

and its q-analogue are the derangement numbers and their q-analogues.
Motivated by this, we show in Appendix C how to associate a ``generalized
derangement number'' d(L) to every finite lattice L. It will follow quickly
from the definition that the multiplicities in (14) are given by

mX=d([X, 1� ]) (15)

see Eq. (41) and the discussion following it.
The stationary distribution ? of this chain is a probability measure on

the set of maximal chains. One can deduce from Theorem 0 the following
description of ?: Sample from the set of ``lines'' (rank 1 flats) according to
the weights wl to get a line l1 . Remove l1 and sample again to get l2 .
Remove all the lines contained in l1 6 l2 and choose l3 , and so on. After
n&1 steps we have a maximal chain

0� <l1<l1 6 l2< } } } <l1 6l2 6 } } } 6ln&1<1�

which is distributed according to ?.

6.3. Random Walks Associated with Graphs

One of Whitney's main motivations in developing the theory of matroids
was the connection with graph theory. As we mentioned in Section 6.1,
every finite graph G gives rise to a matroid whose underlying set E is the
set of edges of G, with a set of edges being independent if it contains no
cycles. Equivalently, the independent sets correspond to forests F�G,
where we make the convention that a forest contains every vertex of G. We
briefly describe here our two random walks, as specialized to the matroid
of G. Much remains to be understood about these examples.
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For simplicity, all of our graphs are assumed simple (no loops or
multiple edges). The lattice of flats L=L(G ) of the graphical matroid can
then be described as follows. An element of L is specified by a partition 6
of the vertex set V of G such that each block induces a connected subgraph.
The ordering on L is given by refinement, but with the opposite convention
from the one used in Section 2.3: In L(G ), 6�6$ if 6 is a refinement
of 6$. Thus going up in the lattice corresponds to merging blocks.
Associated with each 6 # L is the contraction G� =G�6, obtained by collap-
sing each block to a point and making the resulting graph simple. (Delete
loops and replace multiple edges by a single edge.) Equivalently, G�6 is the
simple graph with one vertex for each block, two blocks B, B$ being adja-
cent if, in G, some vertex in B is adjacent to some vertex in B$. Because of
this interpretation of partitions, L(G ) is often called the lattice of contrac-
tions of G. The smallest element 0� is the partition into singletons (so
G� =G), and the largest element 1� is the partition into connected com-
ponents (so G� is the discrete graph with one vertex for each connected
component of G ). From the collapsing point of view, going up in the lattice
L(G ) corresponds to doing further collapsing.

Consider now the two semigroups S, S� associated with the graphical
matroid. An element of S can be identified with an edge-ordered forest
F�G, i.e., a forest together with a linear ordering of its edges. The support
of F is the partition of V given by the connected components of F. In
particular, the chambers of S are the edge-ordered spanning forests of G
(spanning trees if G is connected). The random walk on these chambers
goes as follows: Given a spanning forest with ordered edges e1 ,..., en , pick
an edge e with probability we and make it the new first edge; delete the first
ei such that [e, e1 ,..., ei ] contains a cycle.

We leave it to the interested reader to spell out what the general
results in Section 6.2 say about this example. One interesting question
arises: Running this random walk, say with uniform weights, gives a way
of choosing an edge-ordered spanning forest with distribution ?; what is
the distribution of the spanning forest obtained by forgetting the ordering?

We turn next to the random walk on maximal flags, based on the
semigroup S� . A maximal flag in L(G ) is gotten by collapsing an edge of G
to get a (simple) graph G1 , then collapsing an edge of G1 to get G2 , and so
on, until we reach a discrete graph Gn . The number n of collapses is the
number of edges in a spanning forest of G, i.e., the number of vertices of G
minus the number of connected components. Note that an edge-ordered
spanning forest determines a collapsing sequence (maximal flag), but this
correspondence is not 1�1. Different edge-ordered spanning forests can give
the same maximal flag, just as different ordered bases of a vector space can
determine the same maximal flag of subspaces.
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We close this section by giving an interpretation of these maximal
flags and the corresponding random walk in terms of phylogenetic trees.
Think of the vertices of G as species that exist today. We join two species
by an edge if we think they might have had a direct common ancestor.
Thus humans and chimpanzees are probably adjacent, but not humans and
frogs. Assume, for simplicity, that G is connected, so that all species
ultimately evolved from one common ancestor. To run the random walk,
we are given weights on the edges. These can be thought of as indicating
the strength of our belief that two species have a direct common ancestor;
alternatively, they might indicate how recently we think they diverged from
that ancestor.

Recall that a maximal flag in L(G) consists of a sequence of edge
collapses

G=G0 �� G1 �� } } } �� Gn=point

We can think of this as representing a feasible reconstruction of the
phylogenetic tree describing the evolution from the original common
ancestor to the present-day situation, in reverse chronological order. Thus
the first edge collapsed corresponds to the two species that most recently
split off from a direct common ancestor. The collapsed graph G1 then
represents the situation before that split. The edge of G1 that is collapsed
to form G2 corresponds to the next-most-recent split, and so on.

The random walk proceeds as follows: Given a collapsing sequence as
above, pick a random edge e of G according to the weights. Make a new
collapsing sequence in which e is collapsed first, but after that the collapses
mimic those of the original sequence. In other words, we revise our view of
the evolutionary history by declaring that two particular species were the
most recent to split from a common direct ancestor.

A pick from the stationary distribution of this walk can, as usual, be
obtained by sampling without replacement. In the present situation this
amounts to the following: Pick an edge of G according to the weights and
collapse it to get G1 . Use the collapsing map G �� G1 to put weights on
the edges of G1 ; thus the weight on an edge of G1 is the sum of weights of
the edges of G that map to that edge. Note that the weights on G1 do not
sum to 1, because at least one edge of G with positive weight gets collapsed
to a point in G1 ; so we must rescale them. Now repeat the process: Choose
an edge of G1 according to the weights and collapse it to get G2 . Continue
in this way until a maximal collapsing sequence is obtained.

Remark. See Aldous(2) for a detailed analysis of this walk in the case
of uniform weights.
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7. IRREDUCIBLE REPRESENTATIONS AND COMPUTATION
OF EIGENVALUES

We now begin the proof of Theorem 1, starting with the description
of the eigenvalues. Throughout this section S denotes a LRB (finite, with
identity), and supp: S �� L is the associated support map. Assume that we
are given a probability distribution [wx] on S and that P is the transition
matrix of the random walk on chambers. We begin by recalling in Sec-
tion 7.1 the algebraic interpretation of P in terms of the semigroup algebra
of S. In Section 7.2 we compute the radical and semisimple quotient of the
semigroup algebra. This was done by Bidigare(5) for hyperplane face semi-
groups, and the proof in general is identical. We include the proof for the
convenience of the reader, since the thesis(5) is not readily available. From
this result we can read off the irreducible representations of S, and the
eigenvalue formula stated in Theorem 1 follows at once; we explain this in
Section 7.3.

7.1. Algebraic Formulation

It is well-known to probabilists that the transition matrix of a random
walk on a semigroup can be interpreted as the matrix of a convolution
operator. (This is perhaps best known for groups, but the result remains
valid for semigroups.) We wish to recast this result in ring-theoretic
language. Consider the vector space RS of formal linear combinations
�x # S axx of elements of S, with ax # R. The product on S extends to a
bilinear product on RS, making the latter a ring (the semigroup ring of S
over R). Thus

\ :
x # S

axx+\ :
x # S

bxx+= :
x # S

cxx

where

cx= :
yz=x

aybz

On the level of coefficients, this is the familiar convolution product.
A probability distribution [wx]x # S can be encoded in the element

w= :
x # S

wxx
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of RS, and I claim that the transition matrix P of the random walk deter-
mined by [wx] is simply the matrix of the operator ``left multiplication
by w.'' More precisely, we have for any a=�s ass in RS

wa=:
x

wxx :
s

as s=:
t \ :

x, s
xs=t

wxas+ t

=:
t \:

s

asP(s, t)+ t

where the last equality follows from (1). Thus left multiplication by w
acting on RS corresponds to right multiplication by P acting on row
vectors (as)s # S . Similarly, if we run the walk on an ideal C�S, then the
transition matrix is the matrix of left multiplication by w on RC, which is
an ideal in the ring RS.

In principle, then, the analysis of the random walk has been reduced
to ring theory. Here is a familiar example in which this point of view can
be exploited (using C instead of R). Suppose that S is a finite abelian
group G, and let G� be its group of characters /: G � C*. Then the Fourier
transform gives a ring isomorphism

CG w�
$

CG�

Here CG� is the ring of functions G� � C (with functions multiplied point-
wise), and the Fourier transform of a=�x axx is the function â given by
â(/)=�x ax/(x); see [30, Section 6.2]. In particular, left multiplication by
our element w acting on CG is transformed to multiplication by ŵ acting
on CG� . This operator is diagonal with respect to the standard basis of CG� ,
and one concludes that the eigenvalues of the transition matrix P are
simply the numbers ŵ(/). Moreover, the Fourier inversion formula gives an
explicit diagonalization of multiplication by w and hence of P.

7.2. Structure and Representations of the Semigroup Algebra

We now return to the case of a LRB S. Our study of the semigroup
algebra makes no use of the fact that the scalars are real numbers or that
[wx] is a probability distribution. We therefore work in the semigroup
algebra kS of S over an arbitrary field k.

The axiom (2) for LRBs says that the support map S �� L is a semi-
group homomorphism, where L is viewed as a semigroup under the join
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operation, X, Y [ X 6Y. Extending to linear combinations, we obtain a
k-algebra surjection

supp: kS �� kL

Now Solomon(31) showed that the semigroup algebra kL is isomorphic to
a product of copies of k; see also Greene(19) and [Stanley, (34) Section 3.9].
Explicitly, if kL denotes the ring of functions from L to k, then there is an
algebra isomorphism

,: kL w�
$ kL

such that ,(X ) for X # L is the function 1Y�X , whose value at Y is 1
if Y�X and 0 otherwise. (Note that , preserves products because
1Y�X 1Y�X $=1Y�X 6 X $ .) Composing , with the support map, we obtain a
map �: kS �� kL, which plays the role of the Fourier transform. It is not
an isomorphism but, as we will see shortly, its kernel is nilpotent; this turns
out to be enough to let us compute eigenvalues.

Before proceeding to the analysis of the kernel, we record for future
reference an explicit formula for ,&1. Let [$X ]X # L be the standard basis
of kL; thus $X (Y )=1Y=X . Then , is given by ,(X )=�Y�X $Y ; hence
X=�Y�X ,&1($Y ), and Mo� bius inversion gives ,&1($X )=eX , where

eX = :
Y�X

+(X, Y ) Y (16)

The elements eX therefore give a basis of kL consisting of pairwise
orthogonal idempotents, i.e., e2

X=eX and eX eY=0 for X{Y. In the
standard terminology of ring theory, they are the primitive idempotents
of kL.

Consider now the kernel J of supp: kS �� kL. It consists of linear
combinations of elements of S such that if we lump the terms according to
supports, the coefficient sum of each lump is zero. Thus J=�X # L JX ,
where JX consists of linear combinations �supp x=X axx with �x ax=0.
Suppose we compute a product ab with a=� ax x # JX and b=� by y # JY .
If Y�X, we get 0, because our axiom (3) (Section 2.1) implies that xb=0
for each x with supp x=X. If Y �3 X, on the other hand, then ab # JX 6 Y ,
and X 6 Y>X.

Next, suppose we compute a product abc } } } of several factors, coming
from JX , JY , JZ ,... . By what we have just shown, we either get 0 or we get
an increasing chain X<X 6Y<X 6 Y6 Z< } } } . Since L is finite, we
must in fact get 0 if there are enough factors. Thus the ideal J is nilpotent.
Summarizing, we have:
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Theorem 3 (Bidigare). There is an algebra surjection �: kS �� kL

whose kernel J is nilpotent. The X-component of � is the homomorphism
/X : kS � k given by

/X ( y)=1supp y�X

for y # S.

One can express the first sentence of Theorem 3 by saying that J is the
radical of the ring kS and that kL is the semisimple quotient. Standard ring
theory now implies:

Corollary. Every irreducible representation of kS is 1-dimensional.
There is one such for each X # L, given by the character /X .

We give the proof, for the convenience of readers not familiar with the
concepts of radical and semisimple quotient.

Proof. Let V be an irreducible kS-module. Then JV is a submodule
of V, so it is either V or 0. (Here JV is the set of finite sums �i ai vi with
ai # J and vi # V.) It cannot be V, because then we would have JmV=V for
all m, contradicting the fact that J is nilpotent and V{0. So JV=0, and
the action of kS on V factors through the quotient kL. Now consider the
action on V of the standard basis vectors $X of kL. Each $X V is a sub-
module (because kL is commutative), so it is either V or 0. There cannot
be more than one X with $X V=V because $X $Y=0 for X{Y. Since
�X $X=1, it follows that exactly one $X is nonzero on V, and it acts as the
identity. Hence every a # kS acts on V as multiplication by the scalar /X (a),
and irreducibility now implies that V is 1-dimensional. g

For any finite-dimensional kS-module V, we can take a composition
series

0=V0<V1< } } } <Vn=V

and apply the corollary to each factor Vi �Vi&1 . It follows that there are
Xi # L, i=1,..., n, such that the elements a # kS are simultaneously triangu-
larizable on V, with diagonal entries /X1

(a),..., /Xn
(a). In particular, we can

read off the eigenvalues of a acting on V as soon as we know, for each
X # L, how many times /X occurs as a composition factor.

7.3. The Eigenvalues of P

We can now prove the formula for the eigenvalues of our transition
matrix P stated in Theorem 1, in somewhat greater generality:
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Theorem 4. Let S be a finite LRB with identity, let k be a field, and
let w=�x # S wxx be an arbitrary element of kS. Let P be defined by
Eq. (6). Then P has an eigenvalue

*X= :
supp y�X

wy

for each X # L, with multiplicity mX , where

:
Y�X

mY=cX (17)

for each X # L.

Proof. Recall from Section 7.1 that the eigenvalues of P are the same
as the eigenvalues of w acting by left multiplication on the ideal kC�kS.
For each X # L, let m$X be the number of composition factors of kC given
by the character /X . Then the discussion at the end of Section 7.2 shows
that P has eigenvalues /X (w) with multiplicity m$X . Now

/X (w)= :
y # S

wy1supp y�X= :
supp y�X

wy=*X

so the proof will be complete if we show that �Y�X m$Y=cX for all X # L.
Consider an arbitrary x # S. It acts on kC as an idempotent operator,

projecting kC onto the linear span of the chambers in S�x . The rank r of
this projection is therefore the number cX defined in Section 3, where
X=supp x. On the other hand, the rank of a projection is the multiplicity
of 1 as an eigenvalue, so

r= :
Y # L

/Y (x)=1

m$Y= :
Y�X

m$Y

Equating the two expressions for r gives �Y�X m$Y=cX , as required. g

We turn now to the proof that P is diagonalizable when k=R and w
is a probability distribution.

8. SEMISIMPLICITY

Let R[w]�RS be the subalgebra (with identity) generated by w=
�x # S wxx, where wx�0 and �x wx=1. We will show that R[w] is semi-
simple; more precisely, it is isomorphic to a direct product of copies of R.
This implies that the action of w is diagonalizable in every RS-module; in
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particular, it implies that the transition matrix P of our walk on chambers
is diagonalizable, as asserted in Theorem 1.

In order to show the idea of the proof in its simplest form, we begin
by giving in Section 8.1 a criterion (probably known) for the diagonal-
izability of a matrix A, involving the poles of the generating function for
the powers of A. In Section 8.2 we essentially repeat the proof, but in a more
abstract setting; the result is a criterion for semisimplicity of an algebra
generated by a single element a, involving the generating function for the
powers of a. Then in Section 8.3 we compute the powers of our element
w # R[w]�RS, and we deduce a formula for the generating function. The
criterion of Section 8.2 is visibly satisfied, and we get the desired semi-
simplicity result in Section 8.4. As a byproduct of the proof we obtain for-
mulas for the primitive idempotents of R[w], which we state in Section 8.5.
As a simple example, we write out the formulas for the Tsetlin library with
uniform weights in Section 8.6. In a very technical Section 8.7 we attempt
to organize the formulas in a sensible way. Finally, we return to the Tsetlin
library in Section 8.8, this time with arbitrary weights, to illustrate the
results of Section 8.7.

8.1. Diagonalizability

Let Mn(C) be the ring of n_n matrices over C, and let A # Mn(C).
[With minor changes we could work over an arbitrary field instead of C.]
Consider the generating function

f (t)= :
m�0

Amtm=
1

I&tA

where I is the identity matrix and the fraction is to be interpreted as
(I&tA)&1. The series converges for small t # C and represents a
holomorphic function with values in Mn(C). It is initially defined in a
neighborhood of 0, but we will see in Proposition 1 that f is a rational
function, i.e., that each of the n2 matrix entries is a rational function in the
usual sense. Let

g(z)=(1�z) f (1�z)=
1

zI&A

initially defined for z in a neighborhood of �.

Proposition 1. The function g is rational, with poles precisely at the
eigenvalues of A. The matrix A is diagonalizable if and only if the poles of g
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are all simple. In this case g has a partial fractions decomposition of the
form

g(z)=:
i

Ei

z&*i

where the *i are the distinct eigenvalues of A and Ei is the projection onto
the *i -eigenspace.

``Projection'' here refers to the decomposition of Cn into eigenspaces.

Proof. Consider the Jordan decomposition A=�i (*iEi+Bi ); here
the Ei are pairwise orthogonal idempotents summing to I, the Bi are
nilpotent, and Bi=BiEi=EiBi . If A is diagonalizable, then each Bi=0 and
we have

g(z)=
1

zI&A
=:

i

1
z&*i

Ei

as required. If A is not diagonalizable, then for some eigenvalue *i we have
Bi{0. Since g(z) can be computed in each Jordan block separately, we
may assume that A=*I+B, where Br=0 but Br&1{0 for some r>1.
Then

g(z)=
1

zI&A

=
1

(z&*) I&B

=
1

z&*
}

1
I&(z&*)&1 B

= :
r&1

j=0

B j

(z&*) j+1

Thus g(z) is rational and has a pole of order r>1 at z=*. g

8.2. A Semisimplicity Criterion

The ring-theoretic version of what we have just done goes as follows.
Let k be a field and R a finite-dimensional commutative k-algebra (with
identity). For simplicity, we will pretend that k is a subfield of C, so that
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we can speak of convergent power series; to deal with a general field k, one
needs to work with formal power series. In our application we will have
k=R.

Assume that R is generated by a single element a. Thus R$k[x]�( p)
for some polynomial p, with a corresponding to x mod p. We give here a
criterion for R to be split semisimple, i.e., isomorphic to kI, a product of
copies of k indexed by a (finite) set I. Giving such an isomorphism is equiv-
alent to giving a basis (ei ) i # I for R consisting of pairwise orthogonal idem-
potents. The ei are then characterized as the primitive idempotents of R, i.e.,
the nonzero idempotents that cannot be decomposed as sums of pairwise
orthogonal nonzero idempotents.

Consider the generating function

f (t)= :
�

m=0

amtm=
1

1&at

where the fraction is to be interpreted as (1R&at)&1. It will follow from the
proof of Proposition 2 that the series has a positive radius of convergence
and that f is a rational function with values in A; this means that if we
express f (t) in terms of a basis for A, then each component is a rational
function in the usual sense. Let

g(z)=(1�z) f (1�z)=
1

z&a

here we identify k with the ring of scalar multiples of the identity 1R , so
that z&a means z1R&a.

Proposition 2. The k-algebra R is split semisimple if and only if g(z)
has the form

g(z)= :
i # I

e i

z&* i
(18)

where the *i are distinct elements of k and the ei are nonzero elements of R.
In this case the ei are the primitive idempotents of R, and the generator a
of R is equal to �i # I *ie i .

Proof. Suppose A is split semisimple with primitive idempotents
(ei ) i # I , and write a=�i *ie i . Then am=�i *m

i ei , f (t)=�i (1&*i t)&1 ei ,
and the expression (18) for g(z)=(1�z) f (1�z) follows at once.
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Conversely, suppose A is not split semisimple. Assume first that the
minimal polynomial p of a splits into linear factors in k[x], say p(x)=
>i # I (x&*i )

ri, where the *i are distinct. By the Chinese remainder
theorem,

A$`
i # I

k[x]�(x&* i )
ri (19)

and the assumption that A is not split semisimple implies that some ri>1.
Since g(z) can be computed componentwise with respect to the decom-

position (19) of A, we may assume that there is only one factor, i.e., that
A=k[x]�(x&*)r for some *, where r>1. Then a=*+b, where br=0 but
br&1{0; hence

g(z)=
1

z&a

=
1

(z&*)&b

=
1

z&*
}

1
1&(z&*)&1 b

= :
r&1

j=0

b j

(z&*) j+1

Thus g(z) has a pole of order r>1 at z=* and hence does not have the
form (18).

If p does not split into linear factors, extend scalars to a splitting field
k$ of p and apply the results above to A$=k$�k A$k$[x]�( p). Then g(z),
viewed now as a function k$ � A$, has poles at the roots of p, at least one
of which is not in k. Once again, g(z) does not have the form (18). g

8.3. A Formula for wm

Let S be a LRB and let w=�x # S wxx, where [wx] is a probability
distribution on S. From now on we identify w with [wx] and simply say
that w is a probability distribution. We wish to apply Proposition 2 to
R=R[w]�RS. To this end we need a formula for wm. As an aid to the
intuition, we use probabilistic language in deriving this formula. The inter-
ested reader can recast the discussion in purely algebraic language, where
it is valid with R replaced by an arbitrary field k and w by an arbitrary ele-
ment of the semigroup algebra kS. Our methods in this section are inspired
by the paper of Fill.(18)
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By a reduced word we mean an l-tuple x=(x1 ,..., xl ), x i # S, such that
for each i=1,..., l we have supp xi �3 supp(x1 } } } xi&1). Equivalently, if we
set Xi=supp(x1 } } } x i ), then we get a strictly increasing chain

0� =X0<X1< } } } <Xl

in L. We say that x is a reduced decomposition of the element x� =x1x2 } } } xl # S.
The intuitive meaning of this is that there is no obvious way to shorten the
expression x1x2 } } } x l by using the axiom (3) to delete factors. If an m-tuple
(x1 ,..., xm) is not necessarily reduced, there is a reduced word (x1 ,..., xm)@,
obtained by deleting any xi such that supp xi�supp(x1 } } } x i&1).

Remark. It might seem more natural to require the ``letters'' xi in a
reduced word to be in some given generating set S1�S. In practice, one
is typically interested in S1=[x # S : wx{0]. Our convention of allowing
arbitrary xi is harmless, however, since only those words whose letters are
in S1 make a nonzero contribution to the formula (20) that we are going
to derive.

We need some notation in order to state the formula. Let x=(x1 ,..., xl )
be a reduced word of length l=l(x), with associated chain

0� =X0<X1< } } } <Xl

Let *0 , *1 ,..., *l be the corresponding eigenvalues *Xi
as in Theorem 1, and,

for n�0, let Hn(x)=hn(*0 ,..., *l ), where hn is the complete homogeneous
symmetric function of degree n (sum of all monomials of degree n). Let
wx=wx1

wx2
} } } wxl

.

Proposition 3. Let S be a finite LRB with identity and let w # RS be
a probability distribution. For any m�0,

wm=:
x

Hm&l(x)(x) wxx� (20)

where x ranges over the reduced words of length l(x)�m.

Proof. Let y1 , y2 ,..., ym be independent picks from the probability
measure w. We will get a formula for wm by computing the distribution of
the reduced word ( y1 ,..., ym)@; for we have

wm= :
l(x)�m

Pr[( y1 ,..., ym)@=x] x� (21)
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Given a reduced word x=(x1 ,..., xl ) with associated chain (X0 ,..., Xl ), we
compute the probability in (21) as follows. Let S i=S�Xi

=[x # S :
supp x�Xi ], and let *i=*Xi

. In order to have ( y1 ,..., ym)@=x, the
m-tuple ( y1 ,..., ym) must consist of i0 elements of S0 , then x1 , then i1

elements of S1 , then x2 , and so on, ending with il elements of Sl , where
i0 ,..., il�0 and i0+ } } } +il=m&l. The probability of this, for fixed i0 ,..., i l ,
is * i0

0 wx1
* i1

1 wx2
* i2

2 } } } wxl
* il

l . Summing over all possible (i0 ,..., il ), we see that
the probability in question is Hm&l (x) wx , whence (20). g

Formula (20) can be rewritten in terms of the function g(z) of
Section 8.2. Given a reduced word x as above, set

gx(z)= `
l

i=0

1
(z&* i )

Corollary. Let g(z)=(1�z) f (1�z), where f (t)=�m�0 wmtm. Then

g(z)=:
x

gx(z) wxx� (22)

where x ranges over all reduced words.

Proof. Fix a reduced word x of length l, and let *0 ,..., *l be as above.
Then

:
m�l

Hm&l(x) tm=t l :
m�0

hm(*0 ,..., *l ) tm

=t l `
l

i=0

1
1&*i t

Setting t=1�z and multiplying by 1�z, we obtain gx(z); (22) now follows
from (20). g

8.4. Proof of Semisimplicity

Call an element X # L feasible for w if X=supp(x1 } } } xm) with wxi
{0

for i=1,..., m or, equivalently, if X is the join of elements supp x with
wx{0. Let Lw be the set of feasible elements of L. In applying formulas
(20) and (22), we need only consider reduced words x whose associated
chain is in Lw , since otherwise wx=0. The eigenvalues *0 ,..., *l are then all
distinct; in fact, we have *0<*1< } } } <* l . So we obtain an expression of
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the form (18) for g(z) by splitting each gx(z) into partial fractions. We have
therefore proved the first part of the following theorem:

Theorem 5. Let S be a finite LRB with identity and let w # RS be a
probability distribution. Then the subalgebra R[w] is split semisimple.
Consequently, the action of w on any RS-module is diagonalizable.

The second assertion is an easy consequence of the first. Indeed, if we
write w=�i *iei , where the ei are the primitive idempotents of R[w], then
any RS-module V decomposes as V=�i eiV, with w acting as multiplica-
tion by *i on ei V.

Theorem 1 is now completely proved.

Remark. Everything we have done remains valid with R replaced by
an arbitrary field k and w by an arbitrary element of kS, with one proviso.
Namely, it is no longer automatic that the eigenvalues *0 ,..., *l are distinct.
In order to guarantee this, we need to assume that w satisfies the following
condition: Whenever X<Y in Lw , one has *X{*Y . Under this assumption,
then, k[w] is split semisimple.

8.5. Primitive Idempotents, First Version

It is easy to determine the primitive idempotents of R[w] (or k[w],
under the hypotheses of the remark above) by using Proposition 2 and
formula (22). We assume, without loss of generality, that S is generated by
[x # S : wx{0]; this implies that Lw=L.

Suppose first that w is generic, by which we mean that *X{*Y for
X{Y in L. (Thus we are excluding those probability measures that lie
on the union of a certain finite collection of hyperplanes in RS.) Then
the homomorphism �: RS �� RL of Theorem 3 (Section 7.2) maps R[w]
onto RL; in fact, �(w)=�X # L *X$X , and it is easy to check that RL is
generated as an algebra by any element whose components are all distinct.
Since R[w] is known to be semisimple and ker � is nilpotent, it follows
that � maps R[w] isomorphically onto RL. Hence R[w] has one primitive
idempotent eX for each X # L, and

w= :
X # L

*XeX (23)

To compute eX , we have to multiply the right side of (22) by z&*X and
then set z=*X .
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Let x be a reduced word as in Section 8.3, and suppose its associated
chain passes through X, say X=Xi . Then the residue of gx(z) at z=*X is

RX, x=
(&1) l&i

(*X&*0) } } } (*X&*i&1)(* i+1&*X ) } } } (*l&*X )

Hence

eX=:
x

RX, xwxx� (24)

where x ranges over all reduced words whose chain passes through X.
If w is not generic, then this formula still makes sense, but one has to

sum the eX having a common value of *X in order to get the primitive
idempotents of R[w]; the eX themselves may not lie in R[w]. Notice,
however, that the eX still form an orthogonal family of idempotents in RS
summing to 1, and the decomposition of w given in (23) is still valid. To
see this, note that these assertions can be formulated as polynomial equa-
tions in the variables wx ; since the equations are valid generically, they
must hold as algebraic identities.

Summarizing, we have:

Theorem 6. Let S be a finite LRB with identity and let w be a prob-
ability distribution on S. Assume that S is generated, as a semigroup with
identity, by [x # S : wx{0]. Then (24) defines an orthogonal family of
idempotents eX , X # L, such that (23) holds. If w is generic, then the eX are
the primitive idempotents of R[w]. In general, the decomposition of w as
a linear combination of primitive idempotents of R[w] is obtained by
grouping the terms in (23) according to the value of *X .

8.6. Example: The Tsetlin Library with Uniform Weights

Let S=Fn , with uniform weights wi=1�n on the elements (i ) of
length 1. For each x=(x1 ,..., x l ) # S, the only reduced decomposition x
of x with wx{0 is the obvious one, x=((x1),..., (xl )). The associated chain
is given by Xi=[x1 ,..., x i ] for 0�i�l. If X=Xi , then the contribution of
x to eX is

RX, xwxx=(&1) l&i x
i ! (l&i )!

(25)

To get eX , then, we have to sum over all x having some ordering of X
as an initial segment. The eigenvalue corresponding to X is *X=i�n. We
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conclude that R[w] has n+1 primitive idempotents e0 , e1 ,..., en , where
ei=� |X |=i eX ; hence ei is obtained by summing the right-hand side of (25)
over all x of length l�i. If _l # RS is the sum of all x # S of length l, the
result is

ei= :
n

l=i

(&1) l&i _l

i ! (l&i )!
= :

n

l=i

(&1) l&i \l
i+

_l

l !

The decomposition of w is

w=
1
n

:
n

i=0

iei

Recall that the Tsetlin library can also be obtained by using a quotient
S� =F� n of Fn (Section 2.3). For any a # RS, let a� be its image in RS� . Then
the probability distribution on S� that gives the Tsetlin library with uniform
weights is w� . One can check that the quotient map S �� S� induces a surjec-
tion R[w] �� R[w� ] with 1-dimensional kernel, spanned by en&1 . Thus
R[w� ] has n primitive idempotents e� 0 ,..., e� n&2 , e� n , with

e� i= :
n

l=i

(&1) l&i \l
i +

_� l

l !
(26)

This equation is also valid for i=n&1, in which case its content is that
e� n&1=0, as stated above; this follows from the fact that _� n&1=_� n .
Formula (26) is essentially the same as a formula of Diaconis�Fill�Pitman(16)

(4.5), except that these authors work with operators on RC and interpret
the answer in terms of Solomon's descent algebra. We will explain this in
more detail in Section 9.7.

Remark. We could equally well have treated general weights, but
instead we will do that in Section 8.8, as an illustration of a different
version of the formula for eX .

8.7. Primitive Idempotents, Second Version

In this quite technical subsection we attempt to make sense out of
formula (24) for the primitive idempotents. Our goal, motivated by Eq. (16)
for the primitive idempotents in RL, is to write (24) in the form

eX= :
Y�X

&X, Y (27)
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where &X, Y is a certain signed measure on CY=[ y # S : supp y=Y ].
Comparing this with (16), we see that &X, Y necessarily has total mass
+(X, Y ). As usual, &X, Y is identified with a linear combination of the
elements of CY , hence it is an element of RS and (27) makes sense. The
definition of &X, Y is complicated. We begin with the case X=0� , which is
slightly simpler.

Fix Y # L and consider an arbitrary chain X from 0� to Y,

0� =X0<X1< } } } <Xl=Y

of length l=l(X)�0. We associate to X a defective probability measure
\X on CY , as follows. Given y # CY , consider all reduced decompositions
( y1 ,..., yl ) of y whose associated chain is X. For each such decomposition,
set wi=wyi

and *i=*Xi
and form the product

w1

*1&*0

w2

*2&*0

} } }
wl

*l&*0

Then \X( y) is the sum of all these products. This has a probabilistic inter-
pretation: Pick elements yi # S�Xi

&[id] independently, according to the
weights wy , where i=1,..., l. If supp( y1 } } } yi )=Xi for each i, form the
product y1 } } } yl . This defines a defective random variable with values
in CY , and \X is its distribution. (A defective random variable is one that
is defined with probability �1; its distribution is a positive measure having
total mass �1.) The signed measure &0� , Y is now obtained by taking an
alternating sum:

&0� , Y=:
X

(&1) l(X) \X

where X ranges over all chains from 0� to Y.
For general X, consider chains X from X to Y :

X=X0<X1< } } } <Xl=Y

We first define a defective probability measure \x, X on CY , depending on
a choice of x # CX . Pick y1 ,..., y l independently, with yi # S�Xi

&S�X . If
supp(xy1 } } } yi )=X i for each i, form the product xy1 } } } yl . This gives a
defective random variable with values in CY , and \x, X is its distribution.
We now set

&x, Y=:
X

(&1)l(X) \x, X (28)
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where X ranges over all chains from X to Y. We can also describe &x, Y as
the measure obtained by applying the procedure of the previous paragraph
to S�x , using the probability measure obtained from w via the projection
S �� S�x .

We now define the desired &X, Y by averaging over x # CX :

&X, Y= :
x # CX

?X (x) &x, Y (29)

where ?X is the stationary distribution of the random walk on CX driven
by the weights wy , y # S�X (scaled to give a probability distribution). This
completes the formula for eX . We leave it to the interested reader to verify
that (27) is indeed a reformulation of (24); the starting point is to group
the terms in (24) according to the chain X associated with x.

Remark. The idempotent e1� is the stationary distribution ? of our
random walk. The decomposition of w can therefore be written as

w=?+ :
X<1�

*X eX

so that

wm=?+ :
X<1�

*m
X eX

In theory, this should make it possible to give precise estimates for

&Pm
c &?&= 1

2 " :
X<1�

*m
X eX c"1

In practice, however, the presence of signs makes this very tricky.

8.8. Example: The Tsetlin Library

We return to S=Fn and the Tsetlin library, but now with generic
weights w1 ,..., wn . Since the associated lattice L is the Boolean lattice
of subsets of [n], we get 2n primitive idempotents eX in R[w], and
w=�X�[n] *XeX , with *X=�x # X wx . Working through the definition of
the signed measure &X, Y for X�Y, one finds that it is (&1) |Y&X | times
the distribution of the following random ordering of Y: Sample without
replacement from X, getting an ordering (x1 ,..., x i ) of X, where i=|X |;
sample without replacement from Y&X, getting an ordering ( y1 ,..., yj ) of
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Y&X, where j=|Y&X |; now form (x1 , x2 ,..., xi , yj ,..., y2 , y1). Note the
reversal of the ordering of the y's; thus we are building a random ordering
of Y by accumulating elements of X from left to right and elements of
Y&X from right to left.

This gives a very explicit formula for the primitive idempotent

eX= :
Y$X

&X, Y

This and the related formula

wm= :
X�[n]

*m
X eX

are essentially the formulas of Fill, (18) except that he works with operators
on RC instead of with elements of RS. To get his formulas, right multiply
the formulas above by a permutation _ (chamber of S ) and pick out the
{-component. This gives (_, {)-entries of matrices. One can check that eX

annihilates RC if |X |=n&1, so the spectral decomposition of left multi-
plication by w on RC only involves 2n&n idempotents, as in Fill's paper.
This would have arisen more naturally if we had used F� n instead of Fn .

The reader who has come this far might find it a useful exercise to
rederive the formulas for the uniform case (Section 8.6) from those above.

9. REFLECTION ARRANGEMENTS AND SOLOMON'S DESCENT
ALGEBRA

The work of Bayer�Diaconis(3) and Diaconis�Fill�Pitman(16) relates
certain card-shuffling random walks on the symmetric group Sn to sub-
algebras of Solomon's descent algebra.(32) We show here how this surprising
connection arises naturally from semigroup considerations. We work with
an arbitrary finite Coxeter group W and its associated hyperplane face semi-
group 7 (the Coxeter complex of W ). But we will try to explain everything
in concrete terms for the case W=Sn , in an effort to make the discussion
accessible to readers unfamiliar with Coxeter groups.

Our treatment can be viewed as an elaboration of Tits's appendix to
Solomon's paper, with further ideas borrowed from Bidigare's thesis.(5)

In particular, we use (and include a proof of ) Bidigare's theorem that
Solomon's descent algebra is anti-isomorphic to the W-invariant part of the
semigroup algebra of 7.

In this section the probability measure driving our random walk on
the chambers of 7 is denoted by p instead of w, so that we can reserve the
letter w for a typical element of W.

912 Brown



9.1. Finite Reflection Groups

We begin with a very quick review of the basic facts that we need
about finite Coxeter groups and their associated simplicial complexes 7.
Details can be found in many places, such as Brown;(10) Grove and Benson;(21)

Humphreys;(23) and Tits.(35) A finite reflection group on a real inner-product
space V is a finite group of orthogonal transformations of V generated by
reflections sH with respect to hyperplanes H through the origin. The set
of hyperplanes H such that sH # W is the reflection arrangement associated
with W. Its hyperplane face semigroup 7 can be identified with the set
of simplices of a simplicial complex, called the Coxeter complex of W.
Geometrically, this complex is gotten by cutting the unit sphere in V by the
hyperplanes H, as in Section A.6. (As explained there, one might have to
first pass to a quotient of V.) The action of W on V induces an action of
W on 7, and this action is simply-transitive on the chambers. Thus the set
C of chambers can be identified with W, once a ``fundamental chamber'' C
is chosen.

The canonical example is W=Sn , acting on Rn by permuting the
coordinates. The arrangement in this case is the braid arrangement
(Section A.5). The Coxeter complex 7 can be identified with the following
abstract simplicial complex: The vertices are the proper nonempty subsets
X/[n]=[1,..., n], and the simplices are the chains of such subsets. The
Sn -action is induced by the action of Sn on [n]. The product on 7 was
discussed in Section 2.3, where 7 was identified with the semigroup B of
ordered partitions. The chambers of 7 correspond to permutations w of
[n], with w corresponding to the chamber

[w(1)]<[w(1), w(2)]< } } } <[w(1), w(2),..., w(n&1)]

This is the same as the identification of C with Sn that results from choosing

[1]<[1, 2]< } } } <[1, 2,..., n&1]

as fundamental chamber.

9.2. Types of Simplices

The number r of vertices of a chamber of 7 is called the rank of 7
(and of W ); thus the dimension of 7 as a simplicial complex is r&1. It is
known that one can color the vertices of 7 with r colors in such a way that
vertices connected by an edge have distinct colors. The color of a vertex is
also called its label, or its type, and we denote by I the set of all types. We
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can also define type(F ) for any F # 7; it is the subset of I consisting of the
types of the vertices of F. For example, every chamber has type I, while the
empty simplex has type <. The action of W is type-preserving; moreover,
two simplices are in the same W-orbit if and only if they have the same
type. In our canonical example with W=Sn , the rank is n&1, the set of
types is I=[1,..., n&1], and type(X )=|X | for any vertex X (proper non-
empty subset of [n]).

The labeling allows us to refine the adjacency relation on chambers
defined in Section A.7: If C, C$ are distinct adjacent chambers and F is
their common face of codimension 1, then type(F )=I&i for some i # I,
and we say that C and C$ are i-adjacent. In the canonical example, two
distinct chambers X1<X2< } } } <Xn&1 and X $1<X $2< } } } <X $n&1 are
i-adjacent if and only if Xj=X $j for j{i. If we identify chambers with per-
mutations as above, then w and w$ are i-adjacent if and only if the n-tuple
(w$(1), w$(2),..., w$(n)) is obtained from (w(1), w(2),..., w(n)) by interchang-
ing w(i ) and w(i+1). For example, the chambers labeled 2134 and 2314 in
Fig. 7 (Section A.6) are 2-adjacent.

9.3. Descent Sets

Given two chambers C, C$, we define the descent set of C$ with respect
to C, denoted des(C, C$), to be the set of i # I such that there is a minimal
gallery

C=C0 , C1 ,..., Cl=C$

ending with an i-adjacency between Cl&1 and Cl . (See Section A.7 for the
definition and basic facts concerning minimal galleries.) Equivalently, we
have i # des(C, C$) if and only if C and C$ are on opposite sides of the
hyperplane supp F, where F is the face of C$ of type I&i. Or, if C" is the
chamber i-adjacent to C$, then i # des(C, C$) if and only if d(C, C$)=
d(C, C")+1.

If we have chosen a fundamental chamber C, then we write des(C$)
instead of des(C, C$), and we call it the descent set of C$. And if C$
corresponds to w # W, i.e., if C$=wC, then we also speak of des(w), the
descent set of w. The terminology is motivated by the canonical example,
where the descent set of a permutation w is [i: w(i )>w(i+1)]; it is a sub-
set of [1, 2,..., n&1]. For example, the descent set of 2431 is [2, 3]; this is
consistent with the fact that there are two minimal galleries from 1234
to 2431 in Fig. 7, one ending with a 2-adjacency and the other with a
3-adjacency.
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Figure 6

Descent sets can be characterized in terms of the semigroup structure
on 7:

Proposition 4. Given chambers C, C$ and a face F�C$, we have
FC=C$ if and only if des(C, C$)�type(F ). Thus des(C, C$) is the type of
the smallest face F�C$ such that FC=C$.

Proof. Suppose FC=C$. Given i # des(C, C$), let G be the face of C$
of type I&i and let H=supp G; see Fig. 6. We know that C and C$ are on
opposite sides of H, so F must be strictly on the C$-side of H, hence F �3 G
and i # type(F ). This proves des(C, C$)�type(F ).

Conversely, suppose des(C, C$)�type(F ). To show FC=C$, it suffices
to show that FC and C$ are on the same side of every hyperplane H=
supp G, where G is a codimension 1 face of C$; see Brown(10) Section I.4B.
This is automatic if C and C$ are on the same side of H, so assume
they are not. Writing type(G)=I&i, we then have i # des(C, C$), hence
i # type(F ). Then F �3 G, so F is strictly on the C$-side of H and therefore
FC is on the C$-side of H. g

9.4. Descent Counts and the h-vector

In this subsection we fix a fundamental chamber C, so that every
chamber C$ has a well-defined descent set des(C$). For J�I, let ;(J ) be
the number of chambers with descent set J. This number is independent of
the choice of C, since the group of type-preserving automorphisms of 7 is
transitive on the chambers. It can also be described as the number of w # W
with descent set J. We will show that the vector (;(J ))J�I coincides with
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the ``h-vector'' defined below; the definition is modeled on that of the flag
h-vector for graded posets (see Section C.3).

First we define the f -vector of 7 by setting fJ (7) equal to the number
of simplices of type J. The h-vector is then obtained by writing

fJ (7)= :
K�J

hK (7) (30)

or, equivalently,

hJ (7)= :
K�J

(&1) |J&K | fK (7) (31)

Proposition 5. Let 7 be the Coxeter complex of a finite reflection
group, and let I be the set of types of vertices. Then for any J�I,

;(J )=hJ (7)

Proof. Let 7J be the set of simplices of type J. There is a 1�1 map
7J � C, given by F [ FC, where C is the fundamental chamber. It is 1�1
because we can recover F from FC as the face of type J. Its image, accord-
ing to Proposition 4, is the set of chambers with descent set contained in J.
Hence

fJ (7)= :
K�J

;(K )

The proposition now follows from (30). g

Remark. Everything in this and the previous subsection generalizes
from finite Coxeter complexes to finite buildings.

9.5. The Ring of Invariants in the Semigroup Algebra

Fix a commutative ring k and consider the semigroup algebra k7. This
has a natural W-action, and the W-invariants form a k-algebra A=(k7)W.
As a k-module, A is free with one basis element for each W-orbit in 7, that
basis element being the sum of the simplices in the orbit. Since orbits
correspond to types of simplices, we get a basis vector

_J= :
F # 7J

F
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for each J�I, where, as in the proof of Proposition 5, 7J is the set of
simplices of type J. The product of two basis vectors is given by

_J _K=:
L

:JKL_L

where :JKL is the number of ways of writing a given simplex of type L as
a product FG, where type(F )=J and type(G)=K. This number is 0 unless
J�L.

There is a second natural basis ({J)J�I for A, obtained by writing

_J= :
K�J

{K

or, equivalently,

{J= :
K�J

(&1) |J&K | _K

This change of basis is motivated by the study of the h-vector above, and
also by considerations in Solomon's paper.(32)

9.6. Solomon's Descent Algebra

Bidigare(5) proved that A is anti-isomorphic to Solomon's descent
algebra, which is a certain subalgebra of the group algebra kW. We give
here a geometric version of his proof.

Recall that the k-module kC spanned by the chambers is an ideal in k7.
In particular, it is a module over the subring A�k7, and the action of A
on kC commutes with the action of W; we therefore obtain a homomorphism

A � EndW (kC)

the latter being the ring of kW-endomorphisms of kC.
We now choose a fundamental chamber C # C and use it to identify

C with W, the correspondence being wC W w. This is compatible with left
W-actions, so EndW (kC) gets identified with the ring of operators on kW
that commute with the left action of kW. But any such operator T is given
by right multiplication by an element of kW, that element being T (id). So
we obtain, finally, a product-reversing map (i.e., an anti-homomorphism)

,: A � kW
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Chasing through the definitions, one sees that , is characterized by

,(a) C=aC (32)

for a # A. Here C is the fundamental chamber, the product on the left is
given by the action of W on C, and the product on the right takes place
in the semigroup algebra k7.

Recall now that the choice of fundamental chamber determines a special
set of generators S for W (the ``simple reflections,'' or ``Coxeter generators''),
consisting of the reflections with respect to the supports of the codimension 1
faces of C. Using this set of generators, Solomon(32) defined a subalgebra
of kW, which has come to be known as the descent algebra.

Theorem 7 (Bidigare). Let W be a finite reflection group with
Coxeter complex 7, and let A be the invariant subalgebra (k7)W of the
semigroup algebra k7, where k is an arbitrary commutative ring. Then A
is anti-isomorphic to Solomon's descent algebra.

Proof. Let (_J ) and ({J ) be the k-bases of A introduced in Section 9.5.
We have

_J C= :
F # 7J

FC

As we noted in the proof of Proposition 5, the chambers FC that occur in
the sum are those with descent set contained in J. Under our bijection
between C and W, a given chamber FC corresponds to the element w # W
such that FC=wC. So we can write

_J C= :
w # UJ

wC

where UJ=[w # W : des(w)�J ]. Our characterization (32) of , therefore
yields

,(_J )=uJ := :
w # UJ

w

Let ZJ=[w # W : des(w)=J ] and let zJ=�w # ZJ
w. Then uJ=�K�J zK ,

so

:
K�J

,({K )= :
K�J

zK
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for all J, hence ,({J )=zJ . Since the zJ are clearly linearly independent, it
follows that , is injective and hence gives an anti-isomorphism of A onto
a subalgebra of kW.

It remains to show that ,(A) is the descent algebra. For each i # I, let
si be the reflection with respect to the face of C of type I&i. Then our set
of generators of W is S=[si : i # I ]. Moreover, for any J�I the stabilizer
of the face of C of type J is the subgroup WI&J generated by [si : i # I&J ];
for example, the face of type I&i has stabilizer of order 2, generated by si .
Finally, our definition of descent sets has the following translation:
i # des(w) if and only if l(wsi )<l(w), where l is the length function on W
with respect to the generating set S. Using these remarks, the reader can
easily check that our basis vector uJ for ,(A) coincides with Solomon's xT ,
where T=[si : i # I&J ]�S. Hence ,(A) is equal to the descent algebra.

g

Remark. There has been interest recently in giving explicit formulas
for orthogonal families of idempotents in the descent algebra that lift the
primitive idempotents of the algebra mod its radical. See, for example,
Bergeron et al.(4) and earlier references cited there. The results of the pre-
sent paper provide further formulas of this type; it suffices to take a generic
element p=�F # 7 pFF # (k7)W, find the primitive idempotents in k[w] by
the results of Section 8, and apply ,.

9.7. The Descent Algebra and Random Walks

Assume, for the moment, that we have not chosen a fundamental
chamber. Given a W-invariant probability distribution p=�F # 7 pFF, we
get a W-invariant random walk on C with transition matrix

P(C, D)= :
FC=D

pF

for C, D # C. (``W-invariant'' means P(wC, wD)=P(C, D) for C, D # C,
w # W.) If we now choose a fundamental chamber C and identify C with W,
we get a left-invariant Markov chain on W whose transition matrix satisfies

P(id, w)=+w := :
FC=wC

pF

Left invariance implies that this is a right random walk on the group W:
At each step, we choose w with probability +w and right-multiply by w.
Note that the definition of the probability distribution [ +w] on W can be
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written as +C= pC, where +=�w # W +ww # RW; as in (32), the product on
the left is given by the action of W and the product on the right is in R7.
Hence (32) implies that +=,( p). We have therefore proved:

Theorem 8. Let W be a finite reflection group with Coxeter complex 7,
and let p be a W-invariant probability distribution on 7. Choose a
fundamental chamber and use it to identify C with W. Then the hyperplane
chamber walk on C driven by p corresponds to the right random walk on
W driven by +, where + # RW is the image of p under the isomorphism of
Theorem 7 between (R7)W and the descent subalgebra of RW. Conse-
quently, the algebra R[+]�RW generated by + is a split semisimple com-
mutative subalgebra of the descent algebra.

Suppose, for example, that p is uniform on simplices of type J for some
fixed J. Then the proof of Theorem 7 shows that +=,( p) is uniform on the
w # W with des(w)�J. This explains some of the observations in Bayer and
Diaconis(3) and Diaconis et al.(16) Returning to our canonical example with
W=Sn , let J=[1]; thus p is uniform on the vertices of type 1, i.e., the
singleton subsets of [n]. The corresponding hyperplane chamber walk is
the Tsetlin library with uniform weights. Viewing this as a walk on the per-
mutation group Sn , it is the right random walk driven by the uniform
distribution + on the permutations w with des(w)�[1]. There are n such,
with (w(1),..., w(n))=(i, 1, 2,..., i&1, i+1,..., n), i=1,..., n.

Continuing with this example, we can use formula (26) (Section 8.6)
to get formulas for the primitive idempotents in R[+]. In fact, the prob-
ability distribution w� # RS� of Section 8.6 is the same as what we are now
calling p. (Recall from Section 5.1 that S� /7, so this assertion makes
sense.) And the element _� l of Section 8.6 is the same as the element
_[1,..., l ] # (R7)W if l<n, while _� n=_� n&1 . Combining the isomorphism
R[w� ]=R[ p] w�

$
R[+] with Eq. (26), we now obtain the following result:

Define vl # RW for 0�l�n by

vl= :
des(w)�[1,..., l ]

w if l<n

and

vn=vn&1

Let

Ei= :
n

l=i

(&1) l&i \l
i+

vl

l !
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Then E0 ,..., En&2 , En , are the primitive idempotents in R[+]. These
formulas are the same as those of Diaconis et al.(16) Theorem 4.2.

APPENDIX A. THE HYPERPLANE FACE SEMIGROUP

More details concerning the material reviewed here can be found in
Bidigare et al.;(6) Billera et al.;(7) Bjo� rner et al.; (9) Brown;(10) Brown and
Diaconis;(11) Orlik and Terao; (25) and Ziegler.(41) Throughout this section
A=[H i ] i # I denotes a finite set of affine hyperplanes in V=Rn. Let H +

i

and H &
i be the two open halfspaces determined by Hi ; the choice of which

one to call H +
i is arbitrary but fixed.

A.1. Faces and Chambers

The hyperplanes Hi induce a partition of V into convex sets called
faces (or relatively open faces). These are the nonempty sets F�V of the
form

F= ,
i # I

H _i
i

where _i # [+, &, 0] and H 0
i =Hi . Equivalently, if we choose for each i an

affine function fi : V � R such that Hi is defined by fi=0, then a face is a
nonempty set defined by equalities and inequalities of the form fi>0, fi<0,
or fi=0, one for each i # I. The sequence _=(_i ) i # I that encodes the defini-
tion of F is called the sign sequence of F and is denoted _(F ).

The faces such that _i{0 for all i are called chambers. They are convex
open sets that partition the complement V&�i # I Hi . In general, a face F
is open relative to its support, which is defined to be the affine subspace

supp F= ,
_i (F )=0

Hi

Since F is open in supp F, we can also describe supp F as the affine span
of F.

A.2. The Face Relation

The face poset of A is the set F of faces, ordered as follows: F�G if
for each i # I either _i (F )=0 or _i (F )=_i (G). In other words, the descrip-
tion of F by linear equalities and inequalities is obtained from that of G by
changing zero or more inequalities to equalities.

921Semigroups, Rings, and Markov Chains



A.3. Product

The set F of faces is also a semigroup. Given F, G # F, their product
FG is the face with sign sequence

_i (FG)={_ i (F )
_ i (G)

if _i (F ){0
if _i (F )=0

This has a geometric interpretation: If we move on a straight line from a
point of F toward a point of G, then FG is the face we are in after moving
a small positive distance. Notice that the face relation can be described in
terms of the product: One has

F�G � FG=G (33)

A.4. The Semilattice of Flats

A second poset associated with the arrangement A is the semilattice
of flats, also called the intersection semilattice, which we denote by L. It
consists of all nonempty affine subspaces X�V of the form X=�H # A$ H,
where A$�A is an arbitrary subset (possibly empty). We order L by
inclusion. [Warning: Many authors order L by reverse inclusion.] Notice
that any two elements X, Y have a least upper bound X 6Y in L, which
is the intersection of all hyperplanes H # A containing both X and Y; hence
L is an upper semilattice (poset with least upper bounds). It is a lattice if
the arrangement A is central, i.e., if �H # A H{<. Indeed, this intersection
is then the smallest element of L, and a finite upper semilattice with a
smallest element is a lattice [Stanley, (34) Section 3.3]. The support map
gives a surjection

supp: F �� L

which preserves order and also behaves nicely with respect to the semi-
group structure. Namely, we have

supp(FG)=supp F 6 supp G (34)

and

FG=F � supp G�supp F (35)

A.5. Example: The Braid Arrangement

The braid arrangement in Rn consists of the ( n
2) hyperplanes Hij defined

by xi=xj , where 1�i< j�n. Each chamber is determined by an ordering
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of the coordinates, so it corresponds to a permutation. When n=4, for
example, one of the 24 chambers is the region defined by x2>x3>x1>x4 ,
corresponding to the permutation 2314. The faces of a chamber C are
obtained by changing to equalities some of the inequalities defining C. For
example, the chamber x2>x3>x1>x4 has a face given by x2>x3>x1=x4 ,
which is also a face of the chamber x2>x3>x4>x1 .

It is useful to encode the system of equalities and inequalities defining
a face F by an ordered partition (B1 ,..., Bk) of [n]=[1,..., n]. Here
B1 ,..., Bk are disjoint nonempty sets whose union is [n], and their order
counts. For example, the face x2>x3>x1=x4 corresponds to the 3-block
ordered partition ([2], [3], [1, 4]), and the face x2>x1=x3=x4 corre-
sponds to the 2-block ordered partition ([2], [1, 3, 4]).

Thus the face semigroup of the braid arrangement can be viewed as
the set B of ordered partitions, with a product that one can easily work
out. We have recorded this product in Section 2.3, where one can also find
a description of the face relation, the intersection lattice, and the support
map. See also Section 9.1, where the braid arrangement appears as the
canonical example of a reflection arrangement.

A.6. Spherical Representation

Suppose now that A is a central arrangement, i.e., that the hyper-
planes have a nonempty intersection. We may assume that this intersection
contains the origin. Suppose further that �i # I H i=[0], in which case A

is said to be essential. (There is no loss of generality in making this assump-
tion; for if it fails, then we can replace V by the quotient space V��i H i .)
The hyperplanes then induce a cell-decomposition of the unit sphere, the
cells being the intersections with the sphere of the faces F # F. Thus F, as
a poset, can be identified with the poset of cells of a regular cell-complex 7,
homeomorphic to a sphere. Note that the face F=[0], which is the identity
of the semigroup F, is not visible in the spherical picture; it corresponds
to the empty cell. The cell-complex 7 plays a crucial role in Brown and
Diaconis, (11) to which we refer for more details.

The braid arrangement provides a simple example. It is not essential,
because the hyperplanes Hij intersect in the line L defined by x1= } } } =xn .
We can therefore view the braid arrangement as an arrangement in the
(n&1)-dimensional quotient space Rn�L. When n=4, we obtain an
arrangement of six planes in R3, whose spherical picture is shown in Fig. 7.
The plane corresponding to Hij cuts the sphere in the great circle labeled i-j.
Each chamber of the arrangement is a simplicial cone, which intersects the
sphere in a triangle labeled with the associated permutation. Figure 7 has
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Fig. 7. The braid arrangement when n=4.

been reproduced from Billera et al., (7) where one can find further discussion
and more examples.

A.7. Galleries and Convex Sets

We return to an arbitrary arrangement A. Two chambers C, C$ # C

are said to be adjacent if they have a common codimension 1 face. A gallery
is a sequence of chambers C0 , C1 ,..., Cl such that Cj&1 and Cj are adjacent
for each j=1, 2,..., l. Given C, C$ # C, the minimal length l of a gallery from
C to C$ is the distance between C and C$, denoted d(C, C$); and any
gallery from C to C$ of minimal length d(C, C$) is called a minimal gallery.
The distance d(C, C$) can also be characterized as the number of hyper-
planes in A separating C from C$; in fact, every minimal gallery from C
to C$ crosses each of these hyperplanes exactly once (see [Brown,(10)

Section I.4E]).
Let D�C be a nonempty set of chambers. We say that D is convex

if it satisfies the equivalent conditions of the following result:

Proposition 6. The following conditions on a nonempty set D�C

are equivalent:

(i) For any C, C$ # D, every minimal gallery from C to C$ is
contained in D.
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(ii) D is the set of chambers in an intersection of some of the
halfspaces determined by A.

In terms of sign sequences, condition (ii) says that there is a subset
J�I and a set of signs _i # [+, &], i # J, such that

D=[C # C : _i (C )=_i for all i # J ]

Proposition 6, which is stated as in exercise in Brown, (10) Section I.4E,
is essentially due to Tits, (35) Theorem 2.19. See also Bjo� rner et al., (9)

Proposition 4.2.6 for a proof in the context of oriented matroids. For the
convenience of the reader, here is the latter proof specialized to hyperplane
arrangements:

Proof. A minimal gallery from C to C$ crosses only the hyperplanes
that separate C from C$. This shows that (ii) implies (i). For the converse,
it suffices to show that if (i) holds and C is a chamber not in D, then there
is a hyperplane H # A separating C from D. Choose a gallery D, C1 , C2 ,...,
Cl=C of minimal length, starting in D and ending at C. By minimality, we
have C1 � D. Let H be the (unique) hyperplane in A separating D from C1 .
Then H also separates D from C. For any D$ # D, we have d(D, D$)=
d(C1 , D$)\1, where the sign depends on which H-halfspace contains D$.
The sign cannot be +, because then we could construct a minimal gallery
from D to D$ passing through C1 , contradicting (i). So d(D, D$)=
d(C1 , D$)&1, which means that D and D$ are on the same side of H. Thus
H separates D from C, as required. g

APPENDIX B. LEFT-REGULAR BANDS: FOUNDATIONS

In this appendix S is an arbitrary semigroup, not necessarily finite, not
necessarily having an identity. Motivated by the theory of hyperplane face
semigroups, we wish to isolate the conditions on S under which we can
define analogues of the face relation, chambers, the semilattice of flats, etc.

B.1. Partial Order

Given x, y # S, we set x� y if xy= y. This relation is transitive for any
semigroup (see the first paragraph of Section 2.2). It is reflexive if and only
if every element of S is idempotent, in which case S is called an idempotent
semigroup or a band. Antisymmetry, however, imposes a much stronger
condition on S:
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Proposition 7. The relation defined above is a partial order if and
only if S is an idempotent semigroup satisfying

xyx=xy (36)

for all x, y # S.

In other words, the relation makes S a poset if and only if S is a LRB
as defined in Section 1.1.

Proof. For the ``if '' part see the beginning of Section 2.2. To prove
the converse, we may assume that S is an idempotent semigroup for which
the relation is antisymmetric, and we must prove (36). Note that (xy)(xyx)
=(xy)2x=xyx, so xy�xyx. On the other hand, (xyx)(xy)=xyxy=(xy)2

=xy, so xyx�xy. Thus antisymmetry implies that xyx=xy, as required.
g

B.2. The Associated Semilattice

We now show how to construct, for any idempotent semigroup satis-
fying (36), an analogue of the intersection semilattice of a hyperplane
arrangement. In particular, this shows that the definition of LRB given in
Section 1 is equivalent to the one given in Section 2 and used throughout
this paper.

Proposition 8. Let S be an idempotent semigroup satisfying (36).
Then there is a semilattice L that admits an order-preserving surjection
supp: S �� L such that

supp xy=supp x6 supp y (37)

for all x, y # S and

xy=x � supp y�supp x (38)

Proof. The construction of L is forced on us by (38): Define a rela-
tion P on S by yPx � xy=x. This is transitive and reflexive, but not
necessarily antisymmetric. We therefore obtain a poset L by identifying x
and y if xPy and yPx. If we denote by supp: S �� L the quotient map,
then (38) holds by definition. To see that supp is order-preserving, suppose
that x� y, i.e., xy= y. Multiplying on the right by x and using (36), we
conclude that xy= yx; hence yx= y and xPy, i.e., supp x�supp y. It
remains to show that supp xy is the least upper bound of supp x and
supp y in L. It is an upper bound because the equations xyx=xy and
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xyy=xy show that xypx and xypy. And it is the least upper bound,
because if zpx and zpy, then zx=z and zy=z, whence z(xy)=(zx) y=
zy=z, so that zpxy. g

If S has an identity e, then L has a smallest element 0� =supp e. If, in
addition, L is finite, then it is is a lattice [Stanley, (34) Section 3.3].

B.3. Chambers

We close this appendix by giving several characterizations of the
chambers. Let S be a LRB whose semilattice L has a largest element 1� .
This is automatic if S is finite. As in Section 1.1, we call an element c # S
a chamber if supp c=1� .

Proposition 9. The following conditions on an element c # S are
equivalent:

(i) c is a chamber.

(ii) cx=c for all x # S.

(iii) c is maximal in the poset S.

Proof. We have supp c=1 � supp c�supp x for all x # S. In view of
(38), this holds if and only if cx=x, so (i) and (ii) are equivalent. If (ii)
holds then c is maximal, because c�x O cx=x O c=x. For the converse,
note that c�cx for all x, c # S; so if c is maximal then (ii) holds. g

The set C of chambers is a 2-sided ideal in S. Indeed, (ii) shows that
it is a right ideal, and it is a left ideal because if supp c=1� then supp xc=1�
by (37). One can check that C is the kernel of the semigroup S, i.e., the
(unique) minimal 2-sided ideal.

APPENDIX C. GENERALIZED DERANGEMENT NUMBERS

In this appendix we associate to any finite poset L with 0� , 1� a derange-
ment number d(L)�0. If L is the Boolean lattice of rank n, then d(L) is the
ordinary derangement number dn (number of fixed-point-free permuta-
tions of an n-set). If L is the lattice of subspaces of an n-dimensional vector
space over Fq , then d(L) is the q-analogue of dn studied by Wachs.(36) If L
is the lattice of contractions of a graph, then d(L) is some (new) graph
invariant.

We are mainly interested in the case where L is a geometric lattice, i.e.,
the lattice of flats of a matroid. In this case, the derangement numbers of
the intervals [X, 1� ] give the multiplicities of the eigenvalues for the random
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walk on the maximal chains of L constructed in Section 6.2. But since the
derangement numbers may be of independent interest, we will keep this
appendix logically independent of the theory of random walks; the latter
will be mentioned only for motivation.

C.1. Definition

Let L be a finite poset with smallest element 0� and largest element 1� .
We associate to L an integer d(L), called the derangement number of L. It
is defined inductively by the equation

:
X # L

d([X, 1� ])= f (L) (39)

where f (L) is the number of maximal chains in L. If L=0 (the one-element
poset, with 0� =1� ), this gives d(L)=1. Otherwise, it gives a recurrence that
can be solved for d(L)=d([0� , 1� ]); thus

d(L)= f (L)& :
X>0�

d([X, 1� ]) (40)

Note that d(L)=0 if L is the two-element poset [0� , 1� ]. More generally,
d(L)=0 if L has exactly one atom, where an atom is a minimal element of
L&0� . Indeed, let X0 be the atom and let L0=[X0 , 1� ]. Then f (L)= f (L0),
so (40) becomes

d(L)= f (L0)& :
X # L0

d([X, 1� ])

and the right side is 0 by (39) applied to L0 .
If we apply the definition (39) to each interval [Y, 1� ], we get

f ([Y, 1� ])= :
X�Y

d([X, 1� ]) (41)

In case L is a geometric lattice, this system of equations for the numbers
d([X, 1� ]) is the same as the system of equations (14) in Section 6.2 for the
multiplicities mX ; this proves our assertion that d([X, 1� ])=mX . And this
interpretation of d([X, 1� ]) also provides an easy way to remember the
definition (39), which says that the sum of the multiplicities equals the size
of the state space for the random walk.

We can solve (41) by Mo� bius inversion to get

d([Y, 1� ])= :
X�Y

+(Y, X ) f ([X, 1� ])
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Setting Y=0� , we get an explicit formula for d(L):

d(L)= :
X # L

+(0� , X ) f ([X, 1� ]) (42)

It is useful to have a slight variant of this:

d(L)=+(0� , 1� )+ :
X # M

d([0� , X]) (43)

where M is the set of maximal elements of L&1� . This is proved by writing

f ([X, 1� ])= :
Y # M
Y�X

f ([X, Y])

for X<1� , and then rearranging the sum in (42).
It is not clear from what we have done so far that d(L)�0, though we

know this is true if L is geometric, since it is the multiplicity m0� . An inde-
pendent proof of this, valid for any L, is obtained by giving yet another
recursive formula for d(L), which involves no signs.

Proposition 10. If L=0 then d(L)=1. Otherwise,

d(L)= :
X<1�

(c(X )&1) d([0� , X ]) (44)

where c(X ) is the number of covers of X.

(Recall that Y covers X, written X<} Y, if X<Y and there is no Z with
X<Z<Y.)

Corollary. d(L)�0, with equality if and only if L has exactly one
atom.

Proof of the Corollary. The inequality is immediate by induction on
the size of L. We have already observed that equality holds if L has exactly
one atom. If L has no atoms, then L=0 and d(L)=1>0. If L has more
than one atom, then consideration of the term X=0� in (44) shows that
d(L)>0. g

Proof of Proposition 10. Let us temporarily take the statement of the
proposition as a new definition of d(L). It then suffices to show that, with
this definition, Eq. (39) holds. We may assume that L{0 and that (39)
holds for smaller posets. Then
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:
X # L

d([X, 1� ])=1+ :
X<1�

d([X, 1� ])

=1+ :
X<1�

:
X�Y<1�

(c(Y )&1) d([X, Y ]) by (44)

=1+ :
Y<1�

(c(Y )&1) :
X�Y

d([X, Y ])

=1+ :
Y<1�

(c(Y )&1) f ([0� , Y ]) by induction

=1+ :
Y # L

(c(Y )&1) f ([0� , Y ])+ f (L)

So we are done if we can show 1+�Y # L (c(Y )&1) f ([0� , Y ])=0, i.e.,

1+ :
Y # L

c(Y ) f ([0� , Y ])= :
Y # L

f ([0� , Y ])

The sum on the right counts all chains 0� =X0<} X1<} } } } <} Xm in L, where
m�0. The sum on the left counts all such chains of length m>0. Adding
1 counts the chain of length 0, so the equation holds. g

C.2. Examples

Example 1 (Ordinary Derangement Numbers). Let L be the Boolean
lattice of subsets of an n-set. Writing d(L)=dn , the recurrence (39) becomes

:
n

i=0
\n

i + di=n!

which is a standard recurrence for the ordinary derangement numbers. (It
is obtained by counting permutations according to the number of elements
they move.) Formulas (42) and (43) are the well-known results

dn= :
n

i=0

(&1) i \n
i + (n&i )!=n! :

n

i=0

(&1) i

i !

and

dn=ndn&1+(&1)n (45)
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see [Stanley, (34) Section 2.2]. Finally, Proposition 10 reads

d0=1

dn= :
n&1

i=0
\n

i + (n&i&1) d i (n>0)

which may be new.

Example 2 (q-analogue). Let L be the lattice of subspaces of an
n-dimensional vector space over Fq . Writing d(L)=dn [=dn(q)], the
recurrence (39) becomes

:
n

i=0
_n

i &=[n]!

which characterizes the q-derangement numbers of Wachs, (36) p. 277. Here
[ n

i ] and [n]! are the q-analogues of ( n
i ) and n!, respectively. The inverted

form of this as in (42) is

dn= :
n

i=0

(&1) i _n
i & [n&i ]! q( i

2)=[n]! :
n

i=0

(&1) i

[i ]!
q( i

2);

see Wachs, (36) Theorem 4. Finally, Proposition 10 reads

d0=1

dn= :
n&1

i=0
_n

i & ([n&i ]&1) di (n>0)

where [n&i ] is the q-analogue of n&i.

Example 3 (A graph invariant). Let L=L(G) be the lattice of
contractions of a simple finite graph G, as discussed in Section 6.3. Set
f (G)= f (L(G)) and d(G)=d(L(G)). Thus f (G) is the number of collapsing
sequences of G and d(G) is some new invariant of G, defined by

:
G�

d(G� )= f (G)

where the sum is taken over all collapsings G� =G�6. The inverted form is

d(G)= :
6 # L(G)

+(0� , 6) f (G�6)
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The numbers +(0� , 6) that occur here are familiar from Rota's formula for
the chromatic polynomial of G [Stanley, (34) Chapter 3, Exercise 44]: One
has

/G(x)= :
6 # L(G)

+(0� , 6) x |6 |

Finally, Proposition 10 gives

d(G)=1 if G is discrete

d(G)= :
6<1�

(e(G�6)&1) d(G6) otherwise

where e( ) denotes the number of edges of a graph and G6/G is the union
of the subgraphs induced by the blocks of 6.

C.3. Connection with the Flag h-Vector

The result of this subsection (Proposition 11) is due to Richard
Stanley and is included with his permission.

The ordinary derangement number dn has the following interpretation,
due to De� sarme� nien(12) (see also De� sarme� nien and Wachs(13) and further
references cited there): Call a permutation ? # Sn a desarrangement if
the maximal initial descending sequence ?(1)>?(2)> } } } >?(l ) has even
length l; then dn is the number of desarrangements. De� sarme� nien gave
a bijective proof of this assertion and used it to give a combinatorial
proof of the recurrence (45). One can also reverse the process and deduce
De� sarme� nien's result from (45), by induction on n.

The result can be phrased in terms of descent sets. Recall that ? is said
to have a descent at i if ?(i )>?(i+1), where 1�i�n&1. For J�[n&1]
=[1,..., n&1], let ;(J ) be the number of permutations in Sn with descent
set J. Let J be the family of sets J such that the first integer l�1 not in J
is even. Then De� sarme� nien's interpretation of dn is

dn= :
J�[n&1]

J # J

;(J ) (46)

We wish to generalize this. The role of the descent numbers ;(J ) is played
by the components of the flag h-vector. We briefly recall the definition of
the latter; for more information, see Stanley, (33) Section III.4, Stanley, (34)

Sections 3.12, and 3.8, or Billera and Liu.(8)

932 Brown



Let L be a graded poset with 0� , 1� ; thus all maximal chains have the
same length n, called the rank of L. For J�[n&1], let fJ (L) be the num-
ber of flags in L of type J, where the type of a flag X1<X2< } } } <Xl is the
set [rankXi ]1�i�l . These numbers are the components of the flag f -vector
of L. The flag h-vector is defined by

hJ (L)= :
K�J

(&1) |J&K | fK (L) (47)

or, equivalently,

fJ (L)= :
K�J

hK (L) (48)

Up to sign, hJ (L) is the reduced Euler characteristic of the rank-selected
subposet LJ of L. More precisely,

hJ (L)=(&1) |J |&1 /~ (LJ ) (49)

If the order complex of LJ is homotopy equivalent to a wedge of ( |J |&1)-
spheres, then hJ (L) is the number of spheres.

For the Boolean lattice, one can see from (48) that hJ (L) is equal
to the descent number ;(J ). This is also a special case of Proposition 5
(Section 9.4). The main result of this subsection, generalizing (46), is the
following proposition.

Proposition 11 (Stanley, private communication). Let L be a graded
poset with 0� , 1� , and let n be its rank. Then

d(L)= :
J�[n&1]

J # J

hJ (L) (50)

Proof. Let d $(L) denote the right-hand side of (50) if L{0, and let
d $(0)=1. It suffices to show that d $ satisfies the recurrence (43), i.e.,

d $(L)=+L(0� , 1� )+ :
X # M

d $([0� , X ]) (51)

where M is the set of elements of L of rank n&1. We may assume n�2.
Group the terms on the right-hand side of (50) in pairs, where J�[n&2]
is paired with J+=J _ [n&1]. This leaves one term unpaired: If n is even,

933Semigroups, Rings, and Markov Chains



we have [n&1]=[n&2]+ # J but [n&2] � J, while the reverse is true
if n is odd. In both cases we obtain

d $(L)=(&1)n h[n&1](L)+ :
J�[n&2]

J # J

(hJ (L)+hJ+
(L)) (52)

Two simple observations now complete the proof of (51). The first is that

(&1)n h[n&1](L)=+L(0� , 1� )

by (49) with J=[n&1]. The second observation is that

hJ (L)+hJ+
(L)= :

X # M

hJ ([0� , X ])

for J�[n&2]. This is proved by expanding both terms on the left-hand
side by (47), noting that many terms cancel, and applying the following
fact to the remaining terms:

fK+
(L)= :

X # M

fK ([0� , X ])

for K�[n&2]. g

Michelle Wachs [private communication] has pointed out that
Proposition 11 implies the following result about q-derangement numbers,
due to De� sarme� nien and Wachs, (13) Section 7:

Corollary. The q-derangement number dn(q) satisfies

dn(q)= :
? # En

qinv(?)

where En is the set of desarrangements in Sn and inv(?) is the number of
inversions of ?.

Proof. Take L to be the subspace lattice of Fn
q , so that d(L)=dn(q).

It is known [Stanley, (34) Theorem 3.12.3] that

hJ (L)= :
? # Sn

des(?)=J

qinv(?)

The corollary now follows at once from the proposition. g
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C.4. More on the Flag h-Vector

Going back to the random walk on maximal chains for motivation,
recall that there is an eigenvalue *X for each X # L (where L is the lattice
of flats of a matroid), with multiplicity mX=d([X, 1� ]). We have just seen
that this multiplicity is a sum of certain components of the flag h-vector
when X=0� . Is the same true of the other multiplicities? This is a reason-
able question since

:
X # L

mX= f (L)= :
J�[n&1]

hJ (L)

One might naively hope to lump the terms on the right-hand-side in such
a way that each lump accounts for one mX . This does not seem to be the
case; but what is true is that if we lump together all the mX with X of a
given rank, then their sum is equal to the sum of the hJ for certain sets J.
This was observed by Swapneel Mahajan [private communication]. It is of
interest for the random walk in case L has the property that all flats of a
given rank contain the same number of rank 1 flats. If, further, we take
uniform weights on the rank 1 flats, then we get one eigenvalue for each
possible rank r, 0�r�n=rank(L), the multiplicity being

Dn&r(L) := :
rank(X )=r

d([X, 1� ])

(The subscript n&r is a reminder that each interval [X, 1� ] on the right has
rank n&r.) Mahajan's result, then, is that Dn&r(L) is a sum of certain
values of the flag h-vector. This is valid for every graded poset with 0� , 1� .
When r=0 it reduces to Stanley's result from the previous section.

To state the result precisely, we associate to every set J�[n&1] a
number #=#(J ), 0�#�n, as follows. Arrange the elements of J in order,
and consider the initial run of consecutive integers; this has the form
i, i+1,..., i+l&1, where l is the length of the run. We allow the case
J=<, in which case we set l=0 and i=n. Then # is defined by

#(J )={i
i&1

if l is even
if l is odd

The result, then, is:

Proposition 12 (Mahajan, private communication). If L is a graded
poset with 0� , 1� and n=rank(L), then

Dn&r(L)= :
#(J )=r

hJ (L)
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We omit the proof. The starting point is to apply Proposition 11 to
each of the posets [X, 1� ].

For our random walk, the proposition says that the total multiplicity
of the eigenvalues contributed by the X # L of rank r is given by the com-
ponents of the flag h-vector with #(J )=r.

Here are some special cases.

v r=0. We have #(J )=0 if and only if the initial run in J is 1,..., l
with l odd, so the first omitted integer is even, as in Proposition 11.

v r=n&1. There is no J with #(J )=n&1, so D1(L)=0. This is
consistent with the fact that d=0 for posets of rank 1.

v r=n. The only J with #(J )=n is J=<, so D0(L)=h<(L)=1.
This is consistent with the fact that d=1 for the trivial poset.
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