Left regular bands 00 000000 Representation theory 00 000

Poset cohomology, Leray numbers and the global dimension of left regular bands

Stuart Margolis, Bar-Ilan University Franco Saliola, Université du Québec à Montréal **Benjamin Steinberg**, City College of New York

Special Session on Algorithmic and Geometric Properties of Groups and Semigroups October 16, 2011

Left regular bands 00 000000 Representation theory 00 000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Outline

Leray numbers

Representability by convex sets Stanley-Reisner rings

Left regular bands

Definition of LRBs Examples of LRBs

Representation theory

Global dimension The main result

Left regular bands 00 000000 Representation theory 00 000

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

The nerve construction

• Fix a field \Bbbk for the duration of the talk.

Left regular bands 00 000000 Representation theory 00 000

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

- Fix a field \Bbbk for the duration of the talk.
- All simplicial complexes are assumed to be finite.

Left regular bands 00 000000 Representation theory 00 000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Fix a field k for the duration of the talk.
- All simplicial complexes are assumed to be finite.
- Let ${\mathscr F}$ be a finite family of subsets of some set.

Left regular bands 00 000000 Representation theory 00 000

- Fix a field k for the duration of the talk.
- All simplicial complexes are assumed to be finite.
- Let \mathscr{F} be a finite family of subsets of some set.
- The nerve $\mathcal{N}(\mathscr{F})$ of \mathscr{F} is a simplicial complex with vertex set $\mathscr{F}.$

Left regular bands 00 000000 Representation theory 00 000

- Fix a field k for the duration of the talk.
- All simplicial complexes are assumed to be finite.
- Let \mathscr{F} be a finite family of subsets of some set.
- The nerve $\mathcal{N}(\mathscr{F})$ of \mathscr{F} is a simplicial complex with vertex set $\mathscr{F}.$
- A subset $\mathscr{F}' \subseteq \mathscr{F}$ is a simplex iff $\bigcap \mathscr{F}' \neq \emptyset$.

Left regular bands 00 000000 Representation theory 00 000

- Fix a field k for the duration of the talk.
- All simplicial complexes are assumed to be finite.
- Let \mathscr{F} be a finite family of subsets of some set.
- The nerve $\mathcal{N}(\mathscr{F})$ of \mathscr{F} is a simplicial complex with vertex set $\mathscr{F}.$
- A subset $\mathscr{F}' \subseteq \mathscr{F}$ is a simplex iff $\bigcap \mathscr{F}' \neq \emptyset$.
- The nerve of an open cover is fundamental to Čech cohomology.

Left regular bands 00 000000 Representation theory 00 000

d-representability

 A simplicial complex X is d-representable if X = N(𝔅) where 𝔅 is a family of compact convex subsets of ℝ^d.

Left regular bands 00 000000 Representation theory 00 000

- A simplicial complex X is d-representable if X = N(𝔅) where 𝔅 is a family of compact convex subsets of ℝ^d.
- For example, X is 1-representable if it is the nerve of a collection of closed intervals.

Left regular bands 00 000000 Representation theory 00 000

- A simplicial complex X is *d*-representable if X = N(𝔅) where 𝔅 is a family of compact convex subsets of ℝ^d.
- For example, X is 1-representable if it is the nerve of a collection of closed intervals.
- The q-simplex is 1-representable: take q + 1 closed intervals centered at 0.

Left regular bands 00 000000 Representation theory 00 000

- A simplicial complex X is *d*-representable if X = N(𝔅) where 𝔅 is a family of compact convex subsets of ℝ^d.
- For example, X is 1-representable if it is the nerve of a collection of closed intervals.
- The q-simplex is 1-representable: take q + 1 closed intervals centered at 0.
- The four-cycle graph C4 is not 1-representable.

Left regular bands 00 000000 Representation theory 00 000

- A simplicial complex X is d-representable if X = N(𝔅) where 𝔅 is a family of compact convex subsets of ℝ^d.
- For example, X is 1-representable if it is the nerve of a collection of closed intervals.
- The q-simplex is 1-representable: take q + 1 closed intervals centered at 0.
- The four-cycle graph C4 is not 1-representable.
- *d*-representability is a combinatorial, not topological, property.

Left regular bands 00 000000 Representation theory 00 000

- A simplicial complex X is *d*-representable if X = N(𝔅) where 𝔅 is a family of compact convex subsets of ℝ^d.
- For example, X is 1-representable if it is the nerve of a collection of closed intervals.
- The q-simplex is 1-representable: take q + 1 closed intervals centered at 0.
- The four-cycle graph C4 is not 1-representable.
- *d*-representability is a combinatorial, not topological, property.
- An obstruction to $d\mbox{-representability}$ was found in the 1920s by Helly.

Left regular bands 00 000000 Representation theory 00 000

- A simplicial complex X is *d*-representable if X = N(𝔅) where 𝔅 is a family of compact convex subsets of ℝ^d.
- For example, X is 1-representable if it is the nerve of a collection of closed intervals.
- The q-simplex is 1-representable: take q + 1 closed intervals centered at 0.
- The four-cycle graph C4 is not 1-representable.
- *d*-representability is a combinatorial, not topological, property.
- An obstruction to d-representability was found in the 1920s by Helly.
- The modern way to formulate his result is via Leray numbers.

Left regular bands 00 000000 Representation theory 00 000

Leray number

 If W ⊆ X⁰, then the induced subcomplex X[W] consists of all simplices whose vertices belong to W.

Left regular bands 00 000000 Representation theory 00 000

Leray number

- If W ⊆ X⁰, then the induced subcomplex X[W] consists of all simplices whose vertices belong to W.
- The Leray number of X is

$$L(X) = \min\{d \mid \forall n \ge d, \forall W \subseteq X^0, \ \widetilde{H}^n(X[W], \Bbbk) = 0\}.$$

Left regular bands 00 000000 Representation theory 00 000

Leray number

- If W ⊆ X⁰, then the induced subcomplex X[W] consists of all simplices whose vertices belong to W.
- The Leray number of X is

 $L(X) = \min\{d \mid \forall n \ge d, \forall W \subseteq X^0, \ \widetilde{H}^n(X[W], \Bbbk) = 0\}.$

• In other words, the reduced cohomology of all induced subcomplexes of X vanishes from dimension L(X) on.

Left regular bands 00 000000 Representation theory 00 000

Leray number

- If W ⊆ X⁰, then the induced subcomplex X[W] consists of all simplices whose vertices belong to W.
- The Leray number of X is

 $L(X) = \min\{d \mid \forall n \ge d, \forall W \subseteq X^0, \ \widetilde{H}^n(X[W], \Bbbk) = 0\}.$

- In other words, the reduced cohomology of all induced subcomplexes of X vanishes from dimension L(X) on.
- L(X) is a combinatorial invariant, not a topological invariant.

Left regular bands 00 000000 Representation theory 00 000

Leray number

- If W ⊆ X⁰, then the induced subcomplex X[W] consists of all simplices whose vertices belong to W.
- The Leray number of X is

 $L(X) = \min\{d \mid \forall n \ge d, \forall W \subseteq X^0, \ \widetilde{H}^n(X[W], \Bbbk) = 0\}.$

- In other words, the reduced cohomology of all induced subcomplexes of X vanishes from dimension L(X) on.
- L(X) is a combinatorial invariant, not a topological invariant.
- L(X) = 0 iff X is a simplex.

Left regular bands 00 000000 Representation theory 00 000

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

Flag complexes

• X is a flag complex if whenever the 1-skeleton of a simplex belongs to X, then so does the simplex, itself.

Left regular bands 00 000000 Representation theory 00 000

- X is a flag complex if whenever the 1-skeleton of a simplex belongs to X, then so does the simplex, itself.
- Flag complexes are determined by their 1-skeletons.

Left regular bands 00 000000 Representation theory 00 000

- X is a flag complex if whenever the 1-skeleton of a simplex belongs to X, then so does the simplex, itself.
- Flag complexes are determined by their 1-skeletons.
- The barycentric subdivision of a regular cell complex is a flag complex.

Left regular bands 00 000000 Representation theory 00 000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- X is a flag complex if whenever the 1-skeleton of a simplex belongs to X, then so does the simplex, itself.
- Flag complexes are determined by their 1-skeletons.
- The barycentric subdivision of a regular cell complex is a flag complex.
- The order complex of a poset is a flag complex.

Left regular bands 00 000000 Representation theory 00 000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- X is a flag complex if whenever the 1-skeleton of a simplex belongs to X, then so does the simplex, itself.
- Flag complexes are determined by their 1-skeletons.
- The barycentric subdivision of a regular cell complex is a flag complex.
- The order complex of a poset is a flag complex.
- Let $\Gamma = (V, E)$ be a graph.

Left regular bands 00 000000 Representation theory 00 000

- X is a flag complex if whenever the 1-skeleton of a simplex belongs to X, then so does the simplex, itself.
- Flag complexes are determined by their 1-skeletons.
- The barycentric subdivision of a regular cell complex is a flag complex.
- The order complex of a poset is a flag complex.
- Let $\Gamma = (V, E)$ be a graph.
- Then $\operatorname{Flag}(\Gamma)$ is the flag complex with vertex set V and simplices the cliques of Γ (vertices which induce a complete subgraph).

Left regular bands 00 000000

Representation theory 00 000

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

Helly-type theorems

Theorem ('Helly')

If X is d-representable, then $L(X) \leq d$.

Left regular bands 00 000000 Representation theory 00 000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Helly-type theorems

Theorem ('Helly')

If X is d-representable, then $L(X) \leq d$.

• In general, the converse is false.

Left regular bands 00 000000 Representation theory 00 000

Helly-type theorems

Theorem ('Helly')

If X is d-representable, then $L(X) \leq d$.

- In general, the converse is false.
- Recall that a graph is chordal if it contains no induced cycle of length greater than 3.

Representation theory 00 000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Helly-type theorems

Theorem ('Helly')

If X is d-representable, then $L(X) \leq d$.

- In general, the converse is false.
- Recall that a graph is chordal if it contains no induced cycle of length greater than 3.

Theorem (Lekkerkerker, Boland)

The following are equivalent:

Representation theory 00 000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Helly-type theorems

Theorem ('Helly')

If X is d-representable, then $L(X) \leq d$.

- In general, the converse is false.
- Recall that a graph is chordal if it contains no induced cycle of length greater than 3.

Theorem (Lekkerkerker, Boland)

The following are equivalent:

1. X is 1-representable;

Representation theory 00 000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Helly-type theorems

Theorem ('Helly')

If X is d-representable, then $L(X) \leq d$.

- In general, the converse is false.
- Recall that a graph is chordal if it contains no induced cycle of length greater than 3.

Theorem (Lekkerkerker, Boland)

The following are equivalent:

- 1. X is 1-representable;
- **2**. $L(X) \leq 1$;

Representation theory 00 000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Helly-type theorems

Theorem ('Helly')

If X is d-representable, then $L(X) \leq d$.

- In general, the converse is false.
- Recall that a graph is chordal if it contains no induced cycle of length greater than 3.

Theorem (Lekkerkerker, Boland)

The following are equivalent:

- 1. X is 1-representable;
- 2. $L(X) \leq 1;$
- 3. X is the flag complex of a chordal graph.

Left regular bands 00 000000 Representation theory 00 000

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

Stanley-Reisner rings

• Leray numbers also have meaning in combinatorial commutative algebra.

Left regular bands 00 000000 Representation theory 00 000

Stanley-Reisner rings

- Leray numbers also have meaning in combinatorial commutative algebra.
- The Stanley-Reisner ring of a simplicial complex X is $R(X) = \Bbbk[X^0]/I(X)$ where I(X) is the ideal generated by the square-free monomials corresponding to non-faces of X.

Left regular bands 00 000000 Representation theory 00 000

Stanley-Reisner rings

- Leray numbers also have meaning in combinatorial commutative algebra.
- The Stanley-Reisner ring of a simplicial complex X is $R(X) = k[X^0]/I(X)$ where I(X) is the ideal generated by the square-free monomials corresponding to non-faces of X.
- If X is a flag complex, then I(X) is generated by products $x_i x_j$ with $\{x_i, x_j\}$ a non-edge of X^1 .
Left regular bands 00 000000 Representation theory 00 000

Stanley-Reisner rings

- Leray numbers also have meaning in combinatorial commutative algebra.
- The Stanley-Reisner ring of a simplicial complex X is $R(X) = k[X^0]/I(X)$ where I(X) is the ideal generated by the square-free monomials corresponding to non-faces of X.
- If X is a flag complex, then I(X) is generated by products $x_i x_j$ with $\{x_i, x_j\}$ a non-edge of X^1 .
- Such ideals are often called edge ideals since they correspond to edges of the complementary graph of X^1 .

Left regular bands 00 000000 Representation theory 00 000

Stanley-Reisner rings

- Leray numbers also have meaning in combinatorial commutative algebra.
- The Stanley-Reisner ring of a simplicial complex X is $R(X) = \Bbbk[X^0]/I(X)$ where I(X) is the ideal generated by the square-free monomials corresponding to non-faces of X.
- If X is a flag complex, then I(X) is generated by products $x_i x_j$ with $\{x_i, x_j\}$ a non-edge of X^1 .
- Such ideals are often called edge ideals since they correspond to edges of the complementary graph of X^1 .
- R(X) is not a topological invariant: it is a complete combinatorial invariant.

Left regular bands 00 000000 Representation theory 00 000

Stanley-Reisner rings

- Leray numbers also have meaning in combinatorial commutative algebra.
- The Stanley-Reisner ring of a simplicial complex X is $R(X) = \Bbbk[X^0]/I(X)$ where I(X) is the ideal generated by the square-free monomials corresponding to non-faces of X.
- If X is a flag complex, then I(X) is generated by products $x_i x_j$ with $\{x_i, x_j\}$ a non-edge of X^1 .
- Such ideals are often called edge ideals since they correspond to edges of the complementary graph of X^1 .
- R(X) is not a topological invariant: it is a complete combinatorial invariant.
- R(X) being Cohen-Macaulay is a topological invariant.

Left regular bands 00 000000 Representation theory 00 000

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Castelnuovo-Mumford regularity

• The Leray number L(X) turns out to be the Castelnuovo-Mumford regularity of R(X).

Left regular bands 00 000000 Representation theory 00 000

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- The Leray number L(X) turns out to be the Castelnuovo-Mumford regularity of R(X).
- Without giving a precise definition, it is roughly speaking a measure of the complexity of the minimal graded projective resolution of I(X).

Left regular bands 00 000000 Representation theory 00 000

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- The Leray number L(X) turns out to be the Castelnuovo-Mumford regularity of R(X).
- Without giving a precise definition, it is roughly speaking a measure of the complexity of the minimal graded projective resolution of I(X).
- This connection first appeared in the work of Hochster.

Left regular bands 00 000000 Representation theory 00 000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- The Leray number L(X) turns out to be the Castelnuovo-Mumford regularity of R(X).
- Without giving a precise definition, it is roughly speaking a measure of the complexity of the minimal graded projective resolution of I(X).
- This connection first appeared in the work of Hochster.
- Consequently, L(X) is of importance to people in combinatorial commutative algebra.

Left regular bands 00 000000 Representation theory 00 000

- The Leray number L(X) turns out to be the Castelnuovo-Mumford regularity of R(X).
- Without giving a precise definition, it is roughly speaking a measure of the complexity of the minimal graded projective resolution of I(X).
- This connection first appeared in the work of Hochster.
- Consequently, L(X) is of importance to people in combinatorial commutative algebra.
- To the best of my knowledge people in this area independently discovered the connection of chordal graphs and Leray number 1.

Left regular bands ●O ○○○○○○ Representation theory 00 000

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Left regular bands (LRBs)

• We have a non-commutative interpretation of the Leray number of a flag complex via the representation theory of right-angled Artin LRBs.

Left regular bands ●0 ○○○○○○ Representation theory 00 000

Left regular bands (LRBs)

• We have a non-commutative interpretation of the Leray number of a flag complex via the representation theory of right-angled Artin LRBs.

Definition (LRB)

A left regular band is a semigroup B satisfying the identities:

•
$$x^2 = x$$

•
$$xyx = xy$$

(B is a "band") ("left regularity")

Left regular bands ●0 ○○○○○○ Representation theory 00 000

Left regular bands (LRBs)

• We have a non-commutative interpretation of the Leray number of a flag complex via the representation theory of right-angled Artin LRBs.

Definition (LRB)

A left regular band is a semigroup B satisfying the identities:

- $x^2 = x$ (B is a "band") • xyx = xy ("left regularity")
- Informally: identities say ignore 'repetitions'.

Left regular bands ●0 ○○○○○○ Representation theory 00 000

Left regular bands (LRBs)

• We have a non-commutative interpretation of the Leray number of a flag complex via the representation theory of right-angled Artin LRBs.

Definition (LRB)

A left regular band is a semigroup B satisfying the identities:

- x² = x (B is a "band")
 xyx = xy ("left regularity")
- Informally: identities say ignore 'repetitions'.
- Or as Lawvere says: "once x has checked in, he doesn't have to check in again."

Left regular bands ●0 ○○○○○○ Representation theory 00 000

Left regular bands (LRBs)

• We have a non-commutative interpretation of the Leray number of a flag complex via the representation theory of right-angled Artin LRBs.

Definition (LRB)

A left regular band is a semigroup B satisfying the identities:

- x² = x (B is a "band")
 xyx = xy ("left regularity")
- Informally: identities say ignore 'repetitions'.
- Or as Lawvere says: "once x has checked in, he doesn't have to check in again."
- We consider only finite monoids in this talk.

Representation theory 00 000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Combinatorial objects as LRBS

• A large number of combinatorial structures admit an LRB multiplication.

- A large number of combinatorial structures admit an LRB multiplication.
- For example:
 - 1. real hyperplane arrangements (Tits/Bidigare-Hanlon-Rockmore)

- A large number of combinatorial structures admit an LRB multiplication.
- For example:
 - 1. real hyperplane arrangements (Tits/Bidigare-Hanlon-Rockmore)
 - 2. oriented matroids (Bland)

- A large number of combinatorial structures admit an LRB multiplication.
- For example:
 - 1. real hyperplane arrangements (Tits/Bidigare-Hanlon-Rockmore)
 - 2. oriented matroids (Bland)
 - 3. matroids (K. Brown)

- A large number of combinatorial structures admit an LRB multiplication.
- For example:
 - 1. real hyperplane arrangements (Tits/Bidigare-Hanlon-Rockmore)
 - 2. oriented matroids (Bland)
 - 3. matroids (K. Brown)
 - 4. complex hyperplane arrangements (Björner)

- A large number of combinatorial structures admit an LRB multiplication.
- For example:
 - 1. real hyperplane arrangements (Tits/Bidigare-Hanlon-Rockmore)
 - 2. oriented matroids (Bland)
 - 3. matroids (K. Brown)
 - 4. complex hyperplane arrangements (Björner)
 - 5. interval greedoids (Björner)

- A large number of combinatorial structures admit an LRB multiplication.
- For example:
 - 1. real hyperplane arrangements (Tits/Bidigare-Hanlon-Rockmore)
 - 2. oriented matroids (Bland)
 - 3. matroids (K. Brown)
 - 4. complex hyperplane arrangements (Björner)
 - 5. interval greedoids (Björner)
- Markov chains on these objects can be analyzed via LRB representation theory.

- A large number of combinatorial structures admit an LRB multiplication.
- For example:
 - 1. real hyperplane arrangements (Tits/Bidigare-Hanlon-Rockmore)
 - 2. oriented matroids (Bland)
 - 3. matroids (K. Brown)
 - 4. complex hyperplane arrangements (Björner)
 - 5. interval greedoids (Björner)
- Markov chains on these objects can be analyzed via LRB representation theory.
- This has been done by: Bidigare, Hanlon and Rockmore; Diaconis and Brown; Brown; Björner; Diaconis and Athanasiadis; and Chung and Graham.

- A large number of combinatorial structures admit an LRB multiplication.
- For example:
 - 1. real hyperplane arrangements (Tits/Bidigare-Hanlon-Rockmore)
 - 2. oriented matroids (Bland)
 - 3. matroids (K. Brown)
 - 4. complex hyperplane arrangements (Björner)
 - 5. interval greedoids (Björner)
- Markov chains on these objects can be analyzed via LRB representation theory.
- This has been done by: Bidigare, Hanlon and Rockmore; Diaconis and Brown; Brown; Björner; Diaconis and Athanasiadis; and Chung and Graham.
- Diaconis says the LRB techniques are off only by a factor of two for riffle shuffling cards.

Representation theory 00 000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Free LRBs and the Tsetlin library

• The free LRB F(A) on a set A consists of all repetition-free words over the alphabet A.

Representation theory 00 000

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Free LRBs and the Tsetlin library

- The free LRB F(A) on a set A consists of all repetition-free words over the alphabet A.
- Product: concatenate and remove repetitions.

Representation theory 00 000

Free LRBs and the Tsetlin library

- The free LRB F(A) on a set A consists of all repetition-free words over the alphabet A.
- Product: concatenate and remove repetitions.
- Example: In $F(\{1, 2, 3, 4, 5\})$:

 $3 \cdot 14532 = 314532 = 31452$

Representation theory 00 000

Free LRBs and the Tsetlin library

- The free LRB F(A) on a set A consists of all repetition-free words over the alphabet A.
- Product: concatenate and remove repetitions.
- Example: In $F(\{1, 2, 3, 4, 5\})$:

 $3 \cdot 14532 = 314532 = 31452$

 Tsetlin Library: shelf of books "use a book, then put it at the front"

Representation theory 00 000

Free LRBs and the Tsetlin library

- The free LRB F(A) on a set A consists of all repetition-free words over the alphabet A.
- Product: concatenate and remove repetitions.
- Example: In $F(\{1, 2, 3, 4, 5\})$:

 $3 \cdot 14532 = 314532 = 31452$

- Tsetlin Library: shelf of books
 - "use a book, then put it at the front"
 - orderings of the books \leftrightarrow words containing every letter

Representation theory 00 000

Free LRBs and the Tsetlin library

- The free LRB F(A) on a set A consists of all repetition-free words over the alphabet A.
- Product: concatenate and remove repetitions.
- Example: In $F(\{1, 2, 3, 4, 5\})$:

 $3 \cdot 14532 = 314532 = 31452$

• Tsetlin Library: shelf of books

"use a book, then put it at the front"

- orderings of the books \leftrightarrow words containing every letter
- move book to the front \leftrightarrow left multiplication by generator

Representation theory 00 000

Free LRBs and the Tsetlin library

- The free LRB F(A) on a set A consists of all repetition-free words over the alphabet A.
- Product: concatenate and remove repetitions.
- Example: In $F(\{1, 2, 3, 4, 5\})$:

 $3 \cdot 14532 = 314532 = 31452$

• Tsetlin Library: shelf of books

"use a book, then put it at the front"

- orderings of the books \leftrightarrow words containing every letter
- move book to the front \leftrightarrow left multiplication by generator
- long-term behavior: favorite books move to the front

Left regular bands ○○ ○●○○○○

Representation theory 00 000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�@

Faces of a hyperplane arrangement

A set of hyperplanes partitions \mathbb{R}^n into *faces*:

Left regular bands

Representation theory 00 000

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Faces of a hyperplane arrangement

A set of hyperplanes partitions \mathbb{R}^n into *faces*:

the origin

Left regular bands

Representation theory 00 000

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Faces of a hyperplane arrangement

A set of hyperplanes partitions \mathbb{R}^n into *faces*:

Left regular bands

Representation theory 00 000

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Faces of a hyperplane arrangement

A set of hyperplanes partitions \mathbb{R}^n into *faces*:

Left regular bands

Representation theory 00 000

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Faces of a hyperplane arrangement

A set of hyperplanes partitions \mathbb{R}^n into *faces*:

Left regular bands

Representation theory 00 000

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Faces of a hyperplane arrangement

A set of hyperplanes partitions \mathbb{R}^n into *faces*:

Left regular bands

Representation theory 00 000

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Faces of a hyperplane arrangement

A set of hyperplanes partitions \mathbb{R}^n into *faces*:

Left regular bands

Representation theory 00 000

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Faces of a hyperplane arrangement

A set of hyperplanes partitions \mathbb{R}^n into *faces*:

rays emanating from the origin

Left regular bands

Representation theory 00 000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Faces of a hyperplane arrangement

A set of hyperplanes partitions \mathbb{R}^n into *faces*:

Left regular bands

Representation theory 00 000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Faces of a hyperplane arrangement

A set of hyperplanes partitions \mathbb{R}^n into *faces*:

Left regular bands

Representation theory 00 000

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Faces of a hyperplane arrangement

A set of hyperplanes partitions \mathbb{R}^n into *faces*:

Left regular bands

Representation theory 00 000

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Faces of a hyperplane arrangement

A set of hyperplanes partitions \mathbb{R}^n into *faces*:

Left regular bands

Representation theory 00 000

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Faces of a hyperplane arrangement

A set of hyperplanes partitions \mathbb{R}^n into *faces*:

Left regular bands

Representation theory 00 000

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨー のなべ

Faces of a hyperplane arrangement

A set of hyperplanes partitions \mathbb{R}^n into *faces*:

Representation theory 00 000

・ロト・日本・モート モー うへぐ

Product of faces (LRB structure)

Left regular bands $\stackrel{\circ\circ}{_{\circ\circ}}_{_{\circ\circ\circ\circ\circ\circ\circ}}$

Representation theory 00 000

・ロト・日本・モート モー うへぐ

Product of faces (LRB structure)

Representation theory 00 000

・ロト・日本・モート モー うへぐ

Product of faces (LRB structure)

Left regular bands $\stackrel{\circ\circ}{_{\circ\circ}}_{_{\circ\circ\circ\circ\circ\circ\circ}}$

Representation theory 00 000

・ロト・日本・モート モー うへぐ

Product of faces (LRB structure)

Representation theory 00 000

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Right-angled Artin LRBs

$$B(\Gamma) = \left\langle V \mid xy = yx \text{ for all edges } \{x, y\} \in E \right\rangle$$

Left regular bands

Representation theory 00 000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Right-angled Artin LRBs

• The right-angled Artin LRB $B(\Gamma)$ on a graph $\Gamma = (V, E)$ is the LRB with presentation:

$$B(\Gamma) = \left\langle V \mid xy = yx \text{ for all edges } \{x, y\} \in E \right\rangle$$

• If $E = \emptyset$, then $B(\Gamma)$ is the free LRB on V.

Representation theory 00 000

Right-angled Artin LRBs

$$B(\Gamma) = \left\langle V \mid xy = yx \text{ for all edges } \{x, y\} \in E \right\rangle$$

- If $E = \emptyset$, then $B(\Gamma)$ is the free LRB on V.
- $F(K_n)$ is the free commutative LRB on n generators.

Representation theory 00 000

Right-angled Artin LRBs

$$B(\Gamma) = \left\langle V \mid xy = yx \text{ for all edges } \{x, y\} \in E \right\rangle$$

- If $E = \emptyset$, then $B(\Gamma)$ is the free LRB on V.
- $F(K_n)$ is the free commutative LRB on n generators.
- Note: commutative LRB equals lattice with meet operation.

Left regular bands

Representation theory 00 000

Right-angled Artin LRBs

$$B(\Gamma) = \left\langle V \mid xy = yx \text{ for all edges } \{x, y\} \in E \right\rangle$$

- If $E = \emptyset$, then $B(\Gamma)$ is the free LRB on V.
- $F(K_n)$ is the free commutative LRB on n generators.
- Note: commutative LRB equals lattice with meet operation.
- LRB-version of right-angled Artin groups or trace monoids.

Left regular bands $\circ\circ$ $\circ\circ\circ\circ\circ\circ\circ\circ\circ$

Representation theory 00 000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Acyclic orientations

• Word problem: same as in the right-angled Artin group.

Representation theory 00 000

Acyclic orientations

- Word problem: same as in the right-angled Artin group.
- Elements of $B(\Gamma)$ correspond to acyclic orientations of induced subgraphs of the complement $\overline{\Gamma}$.

Left regular bands ○○ ○○○○●○ Representation theory 00 000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Acyclic orientations

- Word problem: same as in the right-angled Artin group.
- Elements of B(Γ) correspond to acyclic orientations of induced subgraphs of the complement Γ.

Example

Left regular bands ○○ ○○○○●○ Representation theory 00 000

Acyclic orientations

- Word problem: same as in the right-angled Artin group.
- Elements of B(Γ) correspond to acyclic orientations of induced subgraphs of the complement Γ.

Example

Acyclic orientation on induced subgraph on vertices $\{a, d, c\}$:

Left regular bands $\circ\circ$ $\circ\circ\circ\circ\circ\circ\circ\circ\circ$ Representation theory 00 000

Acyclic orientations

- Word problem: same as in the right-angled Artin group.
- Elements of B(Γ) correspond to acyclic orientations of induced subgraphs of the complement Γ.

Example

Acyclic orientation on induced subgraph on vertices $\{a, d, c\}$:

Left regular bands $\circ\circ\circ\circ\circ\circ\circ\circ\bullet$

Representation theory 00 000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Random walk on $B(\Gamma)$

States: acyclic orientations of the complement $\overline{\Gamma}$

Step: left-multiplication by a generator (vertex) reorients all the edges incident to the vertex away from it

Left regular bands $\circ\circ\circ\circ\circ\circ\circ\circ\bullet$

Representation theory 00 000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Random walk on $B(\Gamma)$

States: acyclic orientations of the complement $\overline{\Gamma}$

Step: left-multiplication by a generator (vertex) reorients all the edges incident to the vertex away from it

Left regular bands $\circ\circ\circ\circ\circ\circ\circ\circ\bullet$

Representation theory 00 000

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Random walk on $B(\Gamma)$

States: acyclic orientations of the complement $\overline{\Gamma}$

Step: left-multiplication by a generator (vertex) reorients all the edges incident to the vertex away from it

Left regular bands $\circ\circ\circ\circ\circ\circ\circ\circ\bullet$

Representation theory 00 000

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Random walk on $B(\Gamma)$

States: acyclic orientations of the complement $\overline{\Gamma}$

Step: left-multiplication by a generator (vertex) reorients all the edges incident to the vertex away from it

Athanasiadis-Diaconis (2010): studied this chain using a different LRB (graphical arrangement of Γ)

Left regular bands 00 000000 Representation theory $\overset{\bullet O}{_{\circ \circ \circ}}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Global dimension

$$\cdots \longrightarrow P_n \longrightarrow P_{n-1} \longrightarrow \cdots \longrightarrow P_0 \longrightarrow M \longrightarrow 0$$

Left regular bands 00 000000 Representation theory •0 •0 •0

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Global dimension

• The projective dimension of an R-module M is the minimum length of a projective resolution

$$\cdots \longrightarrow P_n \longrightarrow P_{n-1} \longrightarrow \cdots \longrightarrow P_0 \longrightarrow M \longrightarrow 0$$

• E.g., the cohomological dimension of a group G is the projective dimension of Z as a ZG-module.

Left regular bands 00 000000 Representation theory •0 •0 •0

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Global dimension

$$\cdots \longrightarrow P_n \longrightarrow P_{n-1} \longrightarrow \cdots \longrightarrow P_0 \longrightarrow M \longrightarrow 0$$

- E.g., the cohomological dimension of a group G is the projective dimension of Z as a ZG-module.
- The global dimension $\operatorname{gl.dim} R$ is the sup of the projective dimensions of R-modules.

Left regular bands 00 000000 Representation theory •0 •0 •0

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Global dimension

$$\cdots \longrightarrow P_n \longrightarrow P_{n-1} \longrightarrow \cdots \longrightarrow P_0 \longrightarrow M \longrightarrow 0$$

- E.g., the cohomological dimension of a group G is the projective dimension of Z as a ZG-module.
- The global dimension $gl. \dim R$ is the sup of the projective dimensions of R-modules.
- If A is a finite-dimensional algebra gl. $\dim A = 0$ iff A is semisimple.

Left regular bands 00 000000 Representation theory •0 •0 •0

Global dimension

$$\cdots \longrightarrow P_n \longrightarrow P_{n-1} \longrightarrow \cdots \longrightarrow P_0 \longrightarrow M \longrightarrow 0$$

- E.g., the cohomological dimension of a group G is the projective dimension of Z as a ZG-module.
- The global dimension $\operatorname{gl.dim} R$ is the sup of the projective dimensions of R-modules.
- If A is a finite-dimensional algebra gl. $\dim A = 0$ iff A is semisimple.
- For finite-dimensional algebras, the sup can be taken over simple modules.

Left regular bands 00 000000 ◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Hereditary algebras

• A ring R is hereditary if each left ideal is a projective module.

Left regular bands 00 000000

Hereditary algebras

- A ring R is hereditary if each left ideal is a projective module.
- Equivalently, R is hereditary iff $gl. \dim R \leq 1$.

Left regular bands 00 000000 Representation theory

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Hereditary algebras

- A ring R is hereditary if each left ideal is a projective module.
- Equivalently, R is hereditary iff $gl. \dim R \leq 1$.
- $\mathbb{Z}G$ is hereditary iff G is free.

Left regular bands 00 000000 Representation theory

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Hereditary algebras

- A ring R is hereditary if each left ideal is a projective module.
- Equivalently, R is hereditary iff $gl. \dim R \leq 1$.
- $\mathbb{Z}G$ is hereditary iff G is free.

Theorem (Ken Brown)

The algebra $\Bbbk F(A)$ of a free LRB F(A) is hereditary.

Left regular bands 00 000000

Hereditary algebras

- A ring R is hereditary if each left ideal is a projective module.
- Equivalently, R is hereditary iff $gl. \dim R \leq 1$.
- $\mathbb{Z}G$ is hereditary iff G is free.

Theorem (Ken Brown)

The algebra $\Bbbk F(A)$ of a free LRB F(A) is hereditary.

• Brown's proof uses Gabriel's theory of quivers.

Left regular bands 00 000000 $\begin{array}{c} \text{Representation theory} \\ \circ \bullet \\ \circ \circ \circ \end{array}$

Hereditary algebras

- A ring R is hereditary if each left ideal is a projective module.
- Equivalently, R is hereditary iff $gl. \dim R \leq 1$.
- $\mathbb{Z}G$ is hereditary iff G is free.

Theorem (Ken Brown)

The algebra $\Bbbk F(A)$ of a free LRB F(A) is hereditary.

- Brown's proof uses Gabriel's theory of quivers.
- In the end it reduces to a non-bijective counting argument.
Left regular bands 00 000000 $\begin{array}{c} \text{Representation theory} \\ \circ \bullet \\ \circ \circ \circ \end{array}$

Hereditary algebras

- A ring R is hereditary if each left ideal is a projective module.
- Equivalently, R is hereditary iff $gl. \dim R \leq 1$.
- $\mathbb{Z}G$ is hereditary iff G is free.

Theorem (Ken Brown)

The algebra $\Bbbk F(A)$ of a free LRB F(A) is hereditary.

- Brown's proof uses Gabriel's theory of quivers.
- In the end it reduces to a non-bijective counting argument.
- The proof offers no real insight.

Representation theory

Global dimension of a right-angled Artin LRB

• Our main result:

Representation theory

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Global dimension of a right-angled Artin LRB

• Our main result:

Theorem (Margolis, Saliola, BS)

Let Γ be a graph and $B(\Gamma)$ the corresponding right-angled Artin LRB. Then gl. dim $\Bbbk B(\Gamma) = L(\mathsf{Flag}(\Gamma))$.

Representation theory 00 00

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Global dimension of a right-angled Artin LRB

• Our main result:

Theorem (Margolis, Saliola, BS)

Let Γ be a graph and $B(\Gamma)$ the corresponding right-angled Artin LRB. Then gl. dim $\Bbbk B(\Gamma) = L(\mathsf{Flag}(\Gamma))$.

Corollary $\Bbbk B(\Gamma)$ is hereditary iff Γ is a chordal.

Representation theory

Global dimension of a right-angled Artin LRB

• Our main result:

Theorem (Margolis, Saliola, BS)

Let Γ be a graph and $B(\Gamma)$ the corresponding right-angled Artin LRB. Then gl. dim $\Bbbk B(\Gamma) = L(\mathsf{Flag}(\Gamma))$.

Corollary $\Bbbk B(\Gamma)$ is hereditary iff Γ is a chordal.

Corollary

The algebra of a free LRB is hereditary.

Left regular bands 00 000000 Representation theory

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● のへで

What goes into the proof

• The theorem is a special case of a more general result.

Left regular bands 00 000000 Representation theory 00 000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- The theorem is a special case of a more general result.
- We compute the global dimension of an arbitrary LRB *B* in terms of the cohomology of certain induced subcomplexes of the order complex of *B*.

Left regular bands 00 000000 Representation theory

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- The theorem is a special case of a more general result.
- We compute the global dimension of an arbitrary LRB *B* in terms of the cohomology of certain induced subcomplexes of the order complex of *B*.
- B is ordered by $a \leq b$ iff $aB \subseteq bB$.

Left regular bands 00 000000 Representation theory

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- The theorem is a special case of a more general result.
- We compute the global dimension of an arbitrary LRB *B* in terms of the cohomology of certain induced subcomplexes of the order complex of *B*.
- B is ordered by $a \leq b$ iff $aB \subseteq bB$.
- The main techniques are a Shapiro lemma, classifying spaces of small categories and Quillen's theorem A.

Left regular bands 00 000000 Representation theory

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- The theorem is a special case of a more general result.
- We compute the global dimension of an arbitrary LRB B in terms of the cohomology of certain induced subcomplexes of the order complex of B.
- B is ordered by $a \leq b$ iff $aB \subseteq bB$.
- The main techniques are a Shapiro lemma, classifying spaces of small categories and Quillen's theorem A.
- For right-angled Artin LRBs we also use Rota's cross-cut theorem.

Left regular bands 00 000000 Representation theory ○○ ○○●

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● のへで

Speculation

• We hope our new characterization of L(X) can be used to obtain new results.

Left regular bands 00 000000 Representation theory ○○ ○○●

- We hope our new characterization of L(X) can be used to obtain new results.
- Our glimmer of hope is based on the following observations.

Left regular bands 00 000000 Representation theory ^{OO} ^{OO}

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- We hope our new characterzation of L(X) can be used to obtain new results.
- Our glimmer of hope is based on the following observations.
- We can give a direct proof using monoid cohomology that $\Bbbk B(\Gamma)$ is hereditary iff Γ is chordal.

Left regular bands 00 000000 Representation theory 00 00

- We hope our new characterization of L(X) can be used to obtain new results.
- Our glimmer of hope is based on the following observations.
- We can give a direct proof using monoid cohomology that $\Bbbk B(\Gamma)$ is hereditary iff Γ is chordal.
- L(X * Y) = L(X) + L(Y) can be proved using additivity of global dimension over tensor product since $B(\Gamma * \Gamma') = B(\Gamma) \times B(\Gamma').$

Left regular bands 00 000000 Representation theory 00 00

- We hope our new characterization of L(X) can be used to obtain new results.
- Our glimmer of hope is based on the following observations.
- We can give a direct proof using monoid cohomology that $\Bbbk B(\Gamma)$ is hereditary iff Γ is chordal.
- L(X * Y) = L(X) + L(Y) can be proved using additivity of global dimension over tensor product since $B(\Gamma * \Gamma') = B(\Gamma) \times B(\Gamma').$
- Usual proof uses the Kunneth theorem.