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The nerve construction

• Fix a field k for the duration of the talk.

• All simplicial complexes are assumed to be finite.

• Let F be a finite family of subsets of some set.

• The nerve N (F ) of F is a simplicial complex with vertex set
F .

• A subset F ′ ⊆ F is a simplex iff
⋂

F ′ 6= ∅.

• The nerve of an open cover is fundamental to Čech
cohomology.
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• A simplicial complex X is d-representable if X = N (F )
where F is a family of compact convex subsets of Rd.

• For example, X is 1-representable if it is the nerve of a
collection of closed intervals.

• The q-simplex is 1-representable: take q + 1 closed intervals
centered at 0.

• The four-cycle graph C4 is not 1-representable.

• d-representability is a combinatorial, not topological, property.

• An obstruction to d-representability was found in the 1920s by
Helly.

• The modern way to formulate his result is via Leray numbers.
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• If W ⊆ X0, then the induced subcomplex X[W ] consists of
all simplices whose vertices belong to W .

• The Leray number of X is

L(X) = min{d | ∀n ≥ d,∀W ⊆ X0, H̃n(X[W ],k) = 0}.

• In other words, the reduced cohomology of all induced
subcomplexes of X vanishes from dimension L(X) on.

• L(X) is a combinatorial invariant, not a topological invariant.

• L(X) = 0 iff X is a simplex.
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Flag complexes

• X is a flag complex if whenever the 1-skeleton of a simplex
belongs to X, then so does the simplex, itself.

• Flag complexes are determined by their 1-skeletons.

• The barycentric subdivision of a regular cell complex is a flag
complex.

• The order complex of a poset is a flag complex.

• Let Γ = (V,E) be a graph.

• Then Flag(Γ) is the flag complex with vertex set V and
simplices the cliques of Γ (vertices which induce a complete
subgraph).
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Helly-type theorems

Theorem (‘Helly’)

If X is d-representable, then L(X) ≤ d.

• In general, the converse is false.

• Recall that a graph is chordal if it contains no induced cycle
of length greater than 3.

Theorem (Lekkerkerker, Boland)

The following are equivalent:

1. X is 1-representable;

2. L(X) ≤ 1;

3. X is the flag complex of a chordal graph.
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Stanley-Reisner rings

• Leray numbers also have meaning in combinatorial
commutative algebra.

• The Stanley-Reisner ring of a simplicial complex X is
R(X) = k[X0]/I(X) where I(X) is the ideal generated by
the square-free monomials corresponding to non-faces of X.

• If X is a flag complex, then I(X) is generated by products
xixj with {xi, xj} a non-edge of X1.

• Such ideals are often called edge ideals since they correspond
to edges of the complementary graph of X1.

• R(X) is not a topological invariant: it is a complete
combinatorial invariant.

• R(X) being Cohen-Macaulay is a topological invariant.
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Castelnuovo-Mumford regularity

• The Leray number L(X) turns out to be the
Castelnuovo-Mumford regularity of R(X).

• Without giving a precise definition, it is roughly speaking a
measure of the complexity of the minimal graded projective
resolution of I(X).

• This connection first appeared in the work of Hochster.

• Consequently, L(X) is of importance to people in
combinatorial commutative algebra.

• To the best of my knowledge people in this area
independently discovered the connection of chordal graphs
and Leray number 1.
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Left regular bands (LRBs)

• We have a non-commutative interpretation of the Leray
number of a flag complex via the representation theory of
right-angled Artin LRBs.

Definition (LRB)

A left regular band is a semigroup B satisfying the identities:

• x2 = x (B is a “band”)
• xyx = xy (“left regularity”)

• Informally: identities say ignore ‘repetitions’.

• Or as Lawvere says: “once x has checked in, he doesn’t have
to check in again.”

• We consider only finite monoids in this talk.
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Combinatorial objects as LRBS

• A large number of combinatorial structures admit an LRB
multiplication.

• For example:
1. real hyperplane arrangements

(Tits/Bidigare-Hanlon-Rockmore)
2. oriented matroids (Bland)
3. matroids (K. Brown)
4. complex hyperplane arrangements (Björner)
5. interval greedoids (Björner)

• Markov chains on these objects can be analyzed via LRB
representation theory.

• This has been done by: Bidigare, Hanlon and Rockmore;
Diaconis and Brown; Brown; Björner; Diaconis and
Athanasiadis; and Chung and Graham.

• Diaconis says the LRB techniques are off only by a factor of
two for riffle shuffling cards.
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Free LRBs and the Tsetlin library

• The free LRB F (A) on a set A consists of all repetition-free
words over the alphabet A.

• Product: concatenate and remove repetitions.

• Example: In F ({1, 2, 3, 4, 5}):

3 · 14532 = 3145�32 = 31452

• Tsetlin Library: shelf of books
“use a book, then put it at the front”

• orderings of the books ↔ words containing every letter
• move book to the front ↔ left multiplication by generator
• long-term behavior: favorite books move to the front
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xy :=

{
the face first encountered after a small
movement along a line from x toward y

xy

x

y

b

b
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Right-angled Artin LRBs

• The right-angled Artin LRB B(Γ) on a graph Γ = (V,E) is
the LRB with presentation:

B(Γ) =
〈
V

∣∣∣ xy = yx for all edges {x, y} ∈ E
〉

• If E = ∅, then B(Γ) is the free LRB on V .

• F (Kn) is the free commutative LRB on n generators.

• Note: commutative LRB equals lattice with meet operation.

• LRB-version of right-angled Artin groups or trace monoids.
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Acyclic orientations

• Word problem: same as in the right-angled Artin group.

• Elements of B(Γ) correspond to acyclic orientations of
induced subgraphs of the complement Γ.

Example

Γ =
a b

d c
Γ =

a b

d c

Acyclic orientation on induced subgraph on vertices {a, d, c}:

a

d c

In B(Γ): cad = cda = dca (c comes before a since c → a)
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Random walk on B(Γ)

States: acyclic orientations of the complement Γ

a b

d c

Step: left-multiplication by a generator (vertex) reorients all the
edges incident to the vertex away from it

Athanasiadis-Diaconis (2010): studied this chain using a different
LRB (graphical arrangement of Γ)
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Global dimension

• The projective dimension of an R-module M is the minimum
length of a projective resolution

· · · −→ Pn −→ Pn−1 −→ · · · −→ P0 −→ M −→ 0

• E.g., the cohomological dimension of a group G is the
projective dimension of Z as a ZG-module.

• The global dimension gl.dimR is the sup of the projective
dimensions of R-modules.

• If A is a finite-dimensional algebra gl.dimA = 0 iff A is
semisimple.

• For finite-dimensional algebras, the sup can be taken over
simple modules.
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Hereditary algebras

• A ring R is hereditary if each left ideal is a projective module.

• Equivalently, R is hereditary iff gl.dimR ≤ 1.

• ZG is hereditary iff G is free.

Theorem (Ken Brown)

The algebra kF (A) of a free LRB F (A) is hereditary.

• Brown’s proof uses Gabriel’s theory of quivers.

• In the end it reduces to a non-bijective counting argument.

• The proof offers no real insight.
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Global dimension of a right-angled Artin LRB

• Our main result:

Theorem (Margolis, Saliola, BS)

Let Γ be a graph and B(Γ) the corresponding right-angled Artin
LRB. Then gl.dim kB(Γ) = L(Flag(Γ)).

Corollary

kB(Γ) is hereditary iff Γ is a chordal.

Corollary

The algebra of a free LRB is hereditary.
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What goes into the proof

• The theorem is a special case of a more general result.

• We compute the global dimension of an arbitrary LRB B in
terms of the cohomology of certain induced subcomplexes of
the order complex of B.

• B is ordered by a ≤ b iff aB ⊆ bB.

• The main techniques are a Shapiro lemma, classifying spaces
of small categories and Quillen’s theorem A.

• For right-angled Artin LRBs we also use Rota’s cross-cut
theorem.
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Speculation

• We hope our new characterzation of L(X) can be used to
obtain new results.

• Our glimmer of hope is based on the following observations.

• We can give a direct proof using monoid cohomology that
kB(Γ) is hereditary iff Γ is chordal.

• L(X ∗ Y ) = L(X) + L(Y ) can be proved using additivity of
global dimension over tensor product since
B(Γ ∗ Γ′) = B(Γ)×B(Γ′).

• Usual proof uses the Kunneth theorem.
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