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The relationship between covering spaces of graphs and subgroups of the free group leads to
a rapid proof of the Nielsen-Schreier subgroup theorem. We show here that a similar relationship
holds between immersions of graphs and closed inverse submonoids of free inverse monoids. We
prove using these methods, that a closed inverse submonoid of a free inverse monoid is finitely
generated if and only if it has finite index if and only if it is a rational subset of the free inverse
monoid in the sense of formal language theory. We solve the word problem for the free inverse
category over a graph I'. We show that immersions over I" may be classified via conjugacy classes
of loop monoids of the free inverse category over I'. In the case that I is a bouquet of X circles,
we prove that the category of (connected) immersions over T is equivalent to the category of
(transitive) representations of the free inverse monoid FIM(X). Such representations are coded
by closed inverse submonoids of FIM(X). These monoids will be constructed in a natural way
from groups acting freely on trees and they admit an idempotent pure retract onto a free inverse
monoid. Applications to the classification of finitely generated subgroups of free groups via finite
inverse monoids are developed.

1. Introduction

The notion of an immersion, that is a locally injective graph morphism, has recently
been used to prove a number of results about free groups [22], [5]. In this paper we
show that inverse monoids play the same role in the theory of immersions that groups
play in the theory of coverings. We use this connection to describe the closed inverse
submonoids of free inverse monoids. We prove that each such object is uniquely
determined by a (free) group acting freely on a tree. Furthermore, we show that a closed
inverse submonoid has finite index if and only if it is finitely generated as a closed
submonoid. This allows us to lift questions about finitely generated subgroups of a
free group to the closed inverse submonoid of the corresponding free inverse monoid
that it generates and allows us to canonically associate a finite inverse monoid with
any finitely generated subgroup of a free group (in fact with any finitely generated
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closed inverse submonoid of a free inverse monoid). This inverse monoid plays the
same role that the syntactic monoid plays in classifying recognizable subsets of a free
monoid ([4], [10], [16}).

By a graph I = (V(I), E(I')) we will mean a graph in the sense of [21]. Thus every
edge e: v — w, for v, w e V(I') comes equipped with an inverse edge e*
that (e7!)™! = eand e™! # e. The initial vertex of an edge e will be denoted by a(e) and
the terminal vertex by w(e). There is an evident notion of morphism between graphs.

If v e V(I') let star(I',v) = {e € E(I'): a(e) = v}: a morphism f from a graph I" to a
graph I'""induces a map f, : star(I', v) - star(I", vf} for each vertex v € V(I'). Following
Stallings [22], we say that f is a cover if each f, is a bijection and that [ is an immersion
if each f, is an injection.

It is well-known ([6], [11], [22], [23]) that covers of a connected graph I" may be
classified via the fundamental groupoid = (') of T. We briefly review the relevant
definitions and terminology.

If p and q are paths in the graph I" we write p | q if g is obtained from p by removing
a pair of consecutive edges of the form ee™': we denote by ~ the equivalence relation
on the set P(I') of paths of I induced by |. If we view ~ as a congruence on the free
category C(I') over I', then the quotient category =, (I') = C(I')/ ~ is a groupoid, called
the fundamental groupoid of I'. Denote the ~ equivalence class of the path p by [p]
and for each vertex ve V(I') let =, (I',v) = {[p] € n,(I"): a(p) = w(p) = v}. Then
7, (I',v) is a group, the fundamental group of T based at v. The fundamental groups
of I enjoy the following well-known properties.

:w— v such

Proposition 1.1. Let I be a connected graph. Each group n,(T',v) is a free group. If
T is a spanning tree of I then the rank of n,(I',v) is the number of positively oriented
edgesinI' — T. If v, and v, are two vertices of T then n,(I',v,) = n,(T, v,).

For example, if By denotes the bouquet of | X| circles (i.e., the graph with one vertex
and | X| positively oriented edges), then #,(By) = FG(X), the free group on X.

Now tet A and I" be connected graphs, let f: A — I be a cover of the graph I and
choose v; € V(A) with v, f = v € V(I'). Then f induces an embedding of 7, (A, v,) into
7, (I',v). Conversely, if H is a subgroup of =, (I", v) then there exists a connected graph
A,acover f:A— T and a vertex v, € V(A) such that (n,(A,v,))f = H: the graph A is
unique (up to graph isomorphism) and the cover f is unique (up to equivalence).
Furthermore, if H and K are subgroups of #,(I', v) = FG(X) then H and K determine
equivalent covers of I' if and only if H is conjugate to K in FG(X). Thus (connected)
covers of a connected graph I' may be classified by conjugacy classes of subgroups of
71 (I', v), for any vertex v of I'. In view of Proposition 1.1 we sometimes abuse notation
slightly and denote 7, (I', v} by =, (') if the vertex v is of no particular concern.

The universal cover of a connected graph I is the cover f: I’ — I" determined by the
trivial subgroup of 7,(I",v): this is clearly equivalent to the condition that each
fundamental group =, (T, v,) is trivial, and hence to the fact that I" is a tree that covers
I. For example, if " is a finite tree then I" = I} if I is the bouquet of | X| circles, then
T is the Cayley graph of FG(X) relative to the usual presentation, etc. All of these ideas
are classical, and may be found in several standard sources, for example Higgins [6],
Lyndon and Schupp [11] or Stillwell [23].
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Let I be an arbitrary graph and let E_(T") denote its set of positively oriented edges
(see [21]). Let X be a set and X ! a set disjoint from X and in one-one correspondence
with X by the map x - x~! such that:

(1) each edge of E_(I') is labelled by an element of X: denote the iabel on the edge

e€ E(I') by l{e);
(2) ifee E.(INandl(e) = x € X, thene 'islabelled by x * (i.e.l(e™') = [l(e)]*: thus
each edge of I is labelled by an element of X U X 7*;

(3) if e, f e Star(I', v) with e # f, then I(e) # I(f).

Note that such a labelling is always possible: for example we may choose X = E,(I'),
but usually we would want to make a smaller choice of label set X if possible.

It is easy to see that if I is labelled over X u X! in accordance with (1)—(3) above
and if # is the map n: T — By of T to the bouquet of | X| circles that maps an edge
e € E(T'} onto the loop of By labelled by l(e), then # is an immersion of I" over By.
Conversely, every immersion 5 : I’ — By induces a labelling of the edges of I' in an
obvious way. Thus we may view immersions over By as graphs whose edges are labelled
over X u X! according to (1)-(3). In addition, if f: A — T is an immersion over '
then it is possibie to label the edges of A and I over X U X! consistent with
immersions of A and I over By such that f is a labelled graph morphism from A to I’
(i.e., a morphism that preserves labelling). Conversely, if A and T" are labelled over
X U X1, such that both labellings are consistent with immersions over By, then any
labelled graph morphism f: A — I' is an immersion. We shall consistently assume, in
the remainder of the paper, that all graphs are labelled this way and that immersions
correspond to labelled graph morphisms, as described above.

Recall that a semigroup S is an inverse semigroup if for every s € S there is a unique
57! e S such that ss™'s = s and s7*ss™! = s71. It is well known (see, for exampile, [3])
that this is equivalent to the condition that there exists such an inverse for each s € S
and that E(S), the set of idempotents of S, is a semilattice. That is, idempotents in S
commute. Recall that every inverse semigroup S has a multiplicative partial order
defined by s < tiff s € E(S)z. If T is a subset of S, then T® = {s|s > t for some t € T}.
We refer the reader to the book of Petrich [15] for the basic definitions and notions
concerning inverse semigroups.

We briefly review here the transitive representation theory of inverse monoids by
injective maps. If Q is a set, then I(Q) is the set of injective functions on Q, that is partial
one to one functions on Q. I(Q) becomes an inverse monoid under the usual composi-
tion of partial functions and inverse of injective functions. The Preston-Wagner Theo-
rem states that every inverse semigroup S has a faithful representation by injective
functions on S. We note that for f, g € I(Q), f < g if and only if f is the restriction of
g to the Domain of f.

An inverse monoid M acts (on the right by injective functions) on a set Q if there is
a morphism from M to I(Q). If g € @ and m € M then we denote by gm the image of g
under the action of m if ¢ € Domain(m). An action is transitive if for all p, g € Q there
is an m € M such that gm = p. Notice that this implies that pm™! = q.

We say that an inverse submonoid N of an inverse monoid M is closed if N = N°.
For example, any subgroup of a group is closed and if an inverse monoid M acts on
Q, then for every g € Q, Stab(q)= {m|gm = q} is a closed inverse submonoid of M.
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Conversely given a closed inverse submonoid N of an inverse monoid M we can
construct a transitive representation of M asfollows. Let m € M be such thatmm™ € N,
A subset of M of the form (Nm)® = {s|s > nm for some n € N} is called a right w-coset
of N. Notice that N = (N 1) is a right w-coset of itself. Let Xy be the set of right
w-cosets of N. If m e M, define an action on Xy by Y -m = (Ym)® if (Ym)® € X and
undefined otherwise. It can be checked that this does define a transitive action of M
on Xy. Conversely, if M acts transitively on @, then this action is equivalent, in the
obvious sense, to the action of M on the right w-cosets of Stab(g) in M for any q € Q.
For details see [19] or [15]. Note that if M is a group, then the above construction is
just the usual coset representation of M on some subgroup N. Thus closed inverse
submonoids of an inverse monoid play the same role in the transitive representation
theory of inverse monoids by injective functions as subgroups do in the representation
theory of groups by permutations.

Let N be a closed inverse submonoid of M. Define the index [M : N] of N in M to
be the cardinality of the set Xy of w-cosets of N. Given a subset Y of M, let (Y
be the closed inverse submonoid of M generated by Y. Thus <Y) = {m|m >
Y&yt yrforsomen > 0,y,€ Y, ¢, = £1,1 < i < n}. A closed inverse submonoid
is finitely generated if N = {Y) for some finite set Y. One of our main results will show
that if M is a free inverse monoid, then a closed inverse submonoid of M is finitely
generated if and only if it has finite index.

We shall classify (connected) immersions over a bouquet of cricles. We show that
the category of connected immersions over a bouquet of X circles is naturally equiva-
lent to the category of transitive representations of the free inverse monoid on X. First
recall that inverse monoids can be considered as algebras of type (2, 1,0> consisting
of multiplication, inversion and the identity. Inverse monoids are then defined by the
associative law, the identity law and the following: ((x)™*)™! = x, (xy)™! = y~x7},
xx'x = x and (xx 1) (yy7!) = (yy H(xx7!). The last law states that idempotents
commute. Therefore there is a free inverse monoid FIM(X) over any set X.

There are many beautiful results concerning free inverse monoids. Here we briefly
review Munn’s solution [14] to the word problem for FIM(X). We clearly have that
FIM(X) = (X u X 1)*/p where p is the Wagner congruence on (X u X ')* (i.e. the
congruence generated by requiring that the laws defining inverse monoids hold). Let
I'(X) be the Cayley graph of the free group on X relative to the standard presentation.
Then I'(X) is a tree. For each word w € (X u X !)* we let MT(w) be the finite subtree
of I'(X) traversed by reading the path in I'(X) labelled by w, starting at the vertex 1
and ending at r(w) (the reduced form of w). Munn’s theorem [ 14] then states that, for
all words u, ve (X U X 1)*, upo (ie. u = v in FIM(X)) if and only if (MT(u),r(u)) =
(MT (v), r(v)). The tree MT(w) is referred to as the Munn tree of w. Let M(X) = {(I", g):
I is a finite connected subtree of I'(X) such that 1 and g are vertices of I }. Under the
product (I';,g,)(I';,9,) =T, vg.15,9:92), M(X) is isomporhic to the free inverse
monoid on X (see [15] or [12] for details and extensions of this result). Here g, I, is
the left transiation of I', by g,.

Let X be a set. We define Im(X) to be the category whose objects are connected
immersions f : I — By over the bouquet of X circles. A morphism between f:I" — By
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and f':T" — By is given by an immersion ¢ : I’ — I such that the diagram:

r—+* .

commutes.

Let Inj(X) be the category whose objects are transitive representations 7 : FIM(X) —
I(Q) of the free inverse monoid by injective functions on some set 0. A morphism
between #n: FIM(X) - I(Q) and ¢ : FIM(X) — I(P) is a function f: @ — P such that
qiwn)f = qf(w&) for all g € Q and w e FIM(X).

Theorem 1.2. The categories Im(X) and Inj(X) are naturally equivalent.

Proof. Let f:T — By be a connected immersion where I' = (V, E). For each x e
X U X1, define an action on V by:

vx = w if there is an edge e : v — w such that /(e) = x

and vx is undefined otherwise. Since f is an immersion it follows that this action is an
injective function on V with inverse given by the action of x™* on V. Thus f induces a
(unique) representation ®(f): FIM(X) — I(V). @ is transitive because I is connected.
Let

r—=— - r

N

be a morphism in Im(X). Let ®(x) be the vertex map of a. It is clear that the pair
(®(f), O(x)) defines a functor ® : Im(X) — Inj(X).
Conversely, if 7 : FIM(X) — I(Q) is an object of Inj(X), let ¥(n) be the graph ¥() =
(0, E)where E = {(p,x,q)|px = ¢, xe X X '}.1fe = (p,x,9),let ex = p, ew = g and
= (g,x" !, p). The transitivity of n ensures that () is connected. Furthermore, the
assignment (p, x, g) — x yields an immersion W¥(y) > By. If : FIM(X) — P is an object
of Inj(X) and f: Q — P is a morphism define ¥(f}: ¥(n) —» ¥(1) by

q¥(f)=qf forallgeQ.

(P, %, Q¥ (f) = (of, x.4.).

It is clear that ¥ : Inj(X) — Im(X) is a functor. Furthermore, ®¥ is the identity functor
on Inj(X) and W® is the functor that takes an immersion f: I' - By and labels each
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edge e by the letter l(e) = ef € X U X . Thus (®, ¥) is an equivalence between Inj(X)
and Im(X).

Remark, If : FIM(X)— I(Q) is an object of Inj(X), then the graph ¥(i) con-
structed in the proof of Theorem 1.2 may be identified with the graph I'y of right
w-cosets of N = stab(g) in FIM(X), for any g € Q. The set of vertices of I'y is X, (the
set of right w-cosets of N in FIM(X)): there is an edge labelled by xe X U X ! in Ty
from (Nm,)® to (Nm,)® if (Nm,)® = (Nm, x)*.

2. Structure of Closed Inverse Submonoids of FIM(X)

The well-known Nielsen-Schreier theorem asserts that a subgroup of a free group
is free. Standard proofs using graph covers or free actions of groups on trees may be
found, for example in the books of Lyndon and Schupp [11] or Serre [21] respectively.
In view of the fact that closed inverse submonoids play the same role in the theory of
representations of inverse monoids by partial one-one transformations as subgroups
play in the theory of representations of groups by permutations, one is led to expect
that some sort of analogue of the Nielsen-Schreier theorem should hold for closed
inverse submonoids of the free inverse monoid. It is immediately obvious that a closed
inverse submonoid of FIM(X) is not necessarily free—for example the semilattice of
idempotents is a closed inverse submonoid of FIM(X) but is not a free inverse monoid.
On the other hand, closed inverse submonoids of FIM(X) share many of the properties
of free inverse monoids and are structurally “close” to free, as we indicate in this section.

It is well-known [21] that a group G is free if and only if G acts freely on a tree.
Recall that a group G is said to act freely on a tree T (on the left) if, for all vertices
ve V(T),stab(v) = {g € G: g v = v}isthetrivial subgroup {1} of G. We indicate below
how all closed inverse submonoids of a free inverse monoid may be obtained from free
actions of groups on trees.

Let G be a group that acts freely on a tree T (so that G is a free group). Fix a root
vo € V(T). Let M(T, G,v,) = {(t,9): t is a finite subtree of T, g € G and v, g* v, € V(1)}
and define a multiplication on M(T, G, v,) by

(t1,91)(2,92) = (t, U gy t5,9:9,).

Here g, - £, denotes the translate of the tree ¢, by the action of g, and t, U g, ‘¢, is the
graph whose set of vertices (edges) is the union of those of the graphs ¢, and g, - ¢,.

Example. Let G = FG(X) and T = I'(X) (the Cayley graph of FG(X) relative to
the usual presentation); then T is a tree, G acts freely on T by left multiplication and
M(T, G, 1) = FIM(X) by Munn’s Theorem [14] or [12].

An inverse monoid M is called E-unitary if the natural morphism 6: M - G of M
onto its maximal group image G is “idempotent-pure™ i.e. 16~! = E(M).

Lemma 21. M(T,G,v,) is an E-unitary inverse monoid with maximal group
image G.
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Proof. Let M = M(T, G,v,). It is clear that M is a monoid with identity ({v,}, 1).
Furthermore, (t,g) € E(M) if and only if g = 1. From this it follows that E(M) is
isomorphic to the semilattice of finite subtrees of T under union. A direct calculation
shows that (g7't,¢g™!) is a semigroup inverse of (t,g) so that M is a regular monoid
with commuting idempotents, that is, an inverse monoid. It foliows easily that the map
6 : M — G sending (¢, g) to g gives the maximal group image and that M is E-unitary.

We will show that monoids of the form M(T, G, v,) are exactly the closed inverse
submonoids of free inverse monoids. Let N be a closed inverse submonoid of FIM(X)
and let I'y be the immersion over By corresponding to N, i.€. I'y is the graph of right
w-cosets of N (see remark after Theorem 1.2).

Lemma 2.2. Themaximal group image of N is isomorphic to n,(Iy), the fundamental
group of I'y.

Proof. Let v be the vertex (right w-coset) N of I'y. It is well known that =, (I'y) can
be identified with the group of reduced paths at v under the usual product of reduced
words. If n e N, then n labels a path from v to v in I'y. It is clear that the geodesic in
['(X) from 1 to the reduced form of n also labels a path from v to v in I'y, since every
subpath of the form ee™! is a loop in T'y. It follows that the map ¢ : N — =, (I'y) that
sends n to the ~-class of its geodesic induces the minimal group congruence on N.

Now let Ty be the universal cover of T'y. It is easy to see that [y is isomorphic to
the subtree of I'(X) whose vertices consist of all (reduced) words labelling paths in I'y.
We can assume that 1 covers v. It is a topological fact that = (I"y) acts (by “deck
transformations”) on f”N without fixed points and that the quotient graph nl(I"N)\f"N
is isomorphic to I'y. That is, if v e V(Ty) and g € n,(Ty), then gve V(T'y) and the
assignment v+ gv is a well defined action of = (I'y) on I’y without fixed point.
Furthermore the quotient graph, that is the graph of orbits of v(I'y) and E(Ty), is
isomorphic to T'y.

Lemma 2.3. N is isomorphic to M (1~"N, i (Cp), 1).

Proof. LetM =M (1~"N, 7,(Ty), 1). Then M consists of pairs (t, g) where g € m,(I'y)
and ¢ is a finite birooted subtree of Ty with roots 1 and g- 1. But g € n,(I'y) means
precisely that 1 and g- 1 cover the vertex v of I'y such that N is the stabilizer of v. Thus
considering (t, g) as a Munn tree and therefore a member of FIM(X), we have v-(t,g) =
v, that is (¢, g) € N. Conversely any element of N stabilizes the vertex v and so can be
considered to be an element of M. Therefore, N is isomorphic to M.

Thus we see that every closed inverse submonoid N of a free inverse monoid can be
naturally constructed from the topological invariants [yandTy ~ (T v\ y. We now
show conversely that every monoid constructed this way is isomorphic to a closed
inverse submonoid of an appropriate free inverse monoid.

Lemma 2.4. Let G be a group acting freely on a tree T with root v. Let I’ = G\T
and let X = E_ (') be an orientation of T'. Then M(T,G,v) is isomorphic to a closed
inverse submonoid of FIM(X).



86 S. W. MARGOLIS and J. C. MEAKIN

Proof. Since G acts freely on T, G = =,(I') and T is the universal covering space
of T. Let f: T - By be any immersion where X = E,(I'). Thus f induces a labelling
of E(I') as described in Sec. 1. Let v’ be the image of v in I'. Then the closed inverse
monoid N = Stabp(v’') € FIM(X) consists of all Munn trees that traverse a path in I
from v’ to v’. Every such path lifts uniquely to a finite subtree of T beginning at v and
ending at g-v for a unique g € n,(I') = G. It is clear that this assignment induces an
isomorphism N ~ M(T, G, v).

Remark. We can easily give a P-representation (in the sense of [ 15]) of the monoid
M(T, G,v). Indeed, let & be the poset of rooted finite subtrees ¢ of T withrootr(t) = g-v
for some g € G. % is partially ordered by defining ¢, < ¢, iff V(¢t,) = V(t,)and r(t,) =
r(t;). The action of G on T extends to an action of G on & by order automorphisms.
Let % be the subsemilattice of 2 consisting of all ¢ with r(t) = v. It is straightforward
to verify that (G, &, %) is a McAlister triple [15] and that M(T, G,v) ~ P(G, %, %).

Here is another interesting description of M(T, G, v} generalizing a result of Schein
[20]. Let P be a poset. A semilattice is free on P if there is an order preserving map
¢ : P — S such that for any order preserving map ¢y : P — Y where Y is a semilattice,
there exists a unique semilattice morphism 7 : § — Y such that the diagram

p ot

N

commutes. Obviously § is an initial object in an appropriate category, so S is unique
up to isomorphism.

Let T be a tree with root v. If w,, w, € V(T) define w; < w, iff w, is on the geodesic
from v to w,. Then < is a partial order on T. The following is a generalization of a

result of Schein who looked at the case T = I'(X). We omit the proof.

Lemma 2.5. The free semilattice on T is isomorphic to the semilattice of finite
subtrees of T ordered by reverse inclusion.

Putting this all together we have the following Theorem.

Theorem 2.5. Let M be an inverse monoid. Then M is isomorphic to a closed inverse
submonoid of a free inverse monoid iff M = M(T, G,v) for some free action of a (free)
group G on a tree T. In this case E(M) is the free semilattice on T and G is the maximal
group image of M.

It is known that if a group G acts freely on a tree T, then G is free on X = {g #
1 € G| there is an oriented edge y with ya e T' and yw € gT'} where T’ is a lift of a
spanning tree in G\T ([21]). That is, T’ is a subtree of T that contains one vertex of
each orbit of V(T) under the action of G. We use this idea to show that every monoid
of the form M(T, G, v) has a retraction onto a free inverse submonoid.

We first recall some standard facts. Let T be a graph and let F = { ), T; be a disjoint
union of subtrees {T;|i € I} of T. Define an equivalence relation ~z on V(T)by v ~pw
iff v = wor thereis an i € I such that {v, w} < V(T;). Define a graph T/F with V(T/F) =
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T/~ and E(T/F) = E(T) — E(F). The maps «, w: E(T/F)— V(T/F) and involution
e-» e~ ! are induced by those in T by passing to quotients. We also have a natural
morphism of graphs T — T/F.

Intuitively T/F is obtained from T by contracting the forest F to a point. This can
be made precise via the notion of geometric realization (see [21]).

Let T be a graph with a root ve V(T). The map T — T/F induces a morphism
{n (T),v) = (n,(T/F),[v] ~r) that is well known to be an isomorphism by [21]. Now
let T be a tree acted on freely by a group G. Let T’ be a lift of a spanning tree in the
quotient graph G\T.

Let F =G T = {g- T'|g € G} be the set of translates of T". It follows from the fact
that T is a tree and that G acts freely on T that F is a disjoint union of subtrees
of T'such that V(T) = V(F). It follows that V(T/F) can be identified with G and that
the induced action of G on T/F is free. Furthermore, E(T/F) = E(T) — E(F) =
{elea e gT',ew € hT',g # h}. It follows easily that if X = {g # 1| there is y € E(T),
yue V(T')and yw € V(gT")}, then the map sending (gT’) — g and e — (g,g~ ' - h, h) if
e € E(T/F) with ex € gT' and ew € hT', g # h, is a graph isomorphism T/F — I'(X).
Since T/F is a tree, G is free on X.

Moreover, the free action of G on T commutes with the map T — T/F so that there
is an induced morphism M(T, G,v) - M(T/F, G, [v] ~f). In particular, if T is a tree and
Fisasabove, then thereis an induced map M(T, G, v) - M(I'(X), FG(X), 1) ~ FIM(X).
It is clear that X is in bijection with E,((G\T)/T").

Theorem 2.6. Let G act freely on a tree T with root v. Let T’ be a spanning tree of
I'=G\Tandlet F = G- T'. Then there is an idempotent pure retraction f : M(T, G,v) -
FIM(X) where X = E,((G\T)/T").

Proof. We need only prove that the induced map f: M(T, G,v) » M(T/F,G,vf) =
FIM(X) is idempotent pure. Let g,,: M(T,G,v) = G and o, : M(T/F,G,vf) - G be
the maximal group morphisms.

It is clear that the following diagram commutes:

M(T,G,v) —I— M(T/F,G,of) ~ FIM(X)

aMl arp

Grn(Tlv) =~ 7 (T/F,uf)xG

Since M(T, G,v) and FIM(X) are E-unitary, both o), and o), are idempotent pure
and it follows that f is idempotent pure.

Remark. The above gives a sufficient condition for a set Y = FIM(X) to generate
a free inverse monoid. Namely, let I'y be the immersion corresponding to the closed
inverse monoid (Y ). Suppose there is a spanning tree 7" of I'y such that Y is the set
of words constructed in the usual way as a basis for the group generated by Y
considered as a subset of FG(X). Then Y generates a free inverse monoid. That is, for
each edge e in E,(I'y) — E,(T"), let y, = a,ea;' where a,(,) is the geodesic from the
root of I'y to the initial (terminal) vertex v(w) of e.
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If Y = {y.lee E.(T'y) — E,(T")}, then the inverse monoid generated by Y’ is free
on Y'. For in this case, the retraction from {Y) constructed in Theorem 2.6 maps Y
bijectively onto Y’. It follows that the inverse monoid N generated by Y maps onto
the inverse monoid generated by Y’ which is isomorphic to FIM(Y’) by Theorem 2.6,
Since N is generated by Y, it follows that N =~ FIM(Y) as well.

One may easily construct examples to show that this condition is not necessary,
however. For example, if Y = {ab, ac,bc} < FIM(a, b, ¢), then Y generates a free inverse
monoid. (This can be proved by checking the criterion given by Reilly [17] for deciding
when a subset of an inverse monoid generates a free inverse submonoid, but we shall
omit these details). However the graph Iy is the graph shown below, and no choice of
spanning tree of this graph yields Y as the associated free basis.

3. Finiteness Conditions

We will need some basic notions from the theory of automata. We refer the reader
to [7], [4], or [16] for details. We define an automaton 4 over X U X ! to be inverse
if every x € X U X! induces an injective function on the state set of A such that x™*
induces the inverse function. It follows that the transition monoid M(4) of an inverse
automaton is an inverse monoid. Thus, the natural morphism from (X U X ™")* to
M(A) factors through the morphism from (X u X !)* to FIM(X). It is clear from
Theorem 1.2 that every immersion is essentially an inverse automaton over X u X .

The following is a special case of a result in [18].

Lemma 3.1. Let A be a connected inverse automaton with one initial state and one
terminal state. Then A is a minimal automaton.

Let N be a closed inverse submonoid of FIM(X), the free inverse monoid on X. Let
X be the set of right w-cosets of N. By the remarks in the introductory section, this
determines a transitive representation of FIM(X) on X y. Let I'y — By be the connected
immersion corresponding to this representation as given in Theorem 1.2. Let N be
chosen as the unique initial and terminal state. We obtain a minimal inverse automaton
Ay by Lemma 3.1. It is clear that Ay accepts the language {w € (X U X ')*|wp € N).
Here p: (X U X ~'y* > FIM(X) is the natural map. 4y is the minimal automaton of
the language of words that represent elements in N. We record this in the following
lemma.

Lemma 3.2. Let N be a closed inverse submonoid of FIM(X). Then the automaton
Ax = (X x, N,{N}) is an inverse automaton and is the minimal automaton of Np™L.
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Since Ay is an inverse automaton, we can also consider Ay to be the minimal
automaton of N considered as a subset of FIM(X). We define the syntactic monoid of
N, Synt(N) to be the transition monoid of 4. Of course Synt(N) is an inverse monoid.
The main theorem of this secton shows that A is a finite state automaton if and only if
N is a finitely generated closed inverse submonoid of FIM(X). We will also show that
these conditions are equivalent to the condition that N be a rational subset of FIM (X).

Recall that the set of rational subsets of a monoid M is the smallest collection of
subsets of M containing the singletons and closed under finite union, product of subsets
and submonoid generation. This last operation is usually called “star”. A subset S of
M is recognizable, if there is a finite monoid N and a morphism f: M — N and a subset
P of N such that S = Pf™!. See [2] for details. Let Rat(M) be the set of rational subsets
of M and let Rec(M) be the set of recognizable subsets of M. We have the following
important theorems.

Theorem 3.3. (Kleene) If M is a finitely generated free monoid, then Rec(M) =
Rat(M).

Theorem 3.4. (Anissimov and Seifert) [1] Let G be a finitely generated group and
let H be a subgroup. Then H € Rec(G) if and only if [G : H] is finite. H € Rat(G) if and
only if H is finitely generated.

It follows from Theorem 3.4 that if G is any infinite group, then the trivial group is
rational, but not recognizable. We also list the following consequence of Kleene’s
Theorem due to McKnight.

Theorem 3.5. Let M be a finitely generated monoid. Then Rec(M) is contained in
Rat(M).

The following lemma is an adaptation of the result of Anissimov and Seifert [1] to
the case of inverse monoids. Recall, that if Y is a subset of an inverse monoid, then
{Y) denotes the closed inverse submonoid of M generated by Y and that a closed
inverse submonoid of M is finitely generated if N = <Y for some finite set Y.

Lemma 3.6. Let M be an inverse monoid and let N be a closed inverse submonoid of
M. Then N = (Y ) for some rational subset Y of M if and only if N is finitely generated.

Proof. If N = (Y for some finite set Y, then certainly N is generated by a rational
set, since every finite set is rational. To prove the converse, we first recall the notion
of star-height of a rational set.

Let M be a monoid. Define a sequence of subsets Rat,(M), h > 0, recursively as
follows:

Raty(M) = {X = M| X is finite}

Rat, ., (M) = finite unions of sets of the form B, ... B, where each B; is either a singleton
or B; = C¥ for some C, € Rat,(M).

It is well known that Rat(M) = { J,., Rat,(M). We now prove that if N = (Y for
some set Y € Rat, (M) for 4 > 0, then N = {Y’') for some Y’ e Rat,_,(M). It follows
that N is finitely generated.
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First consider a subset of the form:
(#*) L = x; T;*x,... T,*x,.; wherex;e M, 1 <i<n+land ;=S M, 1 <j<n.

Lety,=x,...x;fori=1,...,n+1and §; = y;T,y;, " fori = 1,..., n. We claim that
(LY ={L'ywhere L' = y,,, US, u--uUS,. First note that y,,, y,+; ' € (L. Also,
if meS;, then m = y;ty,” for some te T. But y;}; = x4, ... x;41 'y}, so that
Vit 2 Xy Xy Yuer

Therefore m = y;ty,™ > (yitxisy .. Xp1)Vps1 » € (LY. ThusS; = (L) fori=1,...,
n and it follows that (L')> < (L).

Conversely, note that x, = y, and that x; > y,_; !y, for i =2, ..., n + 1. Thus,
if meL m=xt;X,...t,%,1, ;€T* 1 <i<n, then m>y t,y; 'yatry, 'ys...
VulnVn ‘Vu+1. Furthermore, if t; = ;1 ... ty, t;€ T, 1 <j < k, then y;t;y,7" = yityy y, 7
. yitay”t and it follows that me (S¥...8*y,.,> and thus me (L'). Therefore
(L) = (L") as claimed.

Now assume that N = {Y) with Y e Rat,(M) for h > 0. Then Y=L, u---UL,
where each L; has the form (xx)and L, € Rat,(M)for1 <i<k.LetY =L u---UL}
where each L; is derived from L; as above. It follows that (Y'> = {(Y) = N and that
Y’ € Rat,_; (M). Therefore the minimal star height of a set of generators for N is 0 and
thus N is finitely generated.

We are now ready to prove the main theorem of this section.

Theorem 3.7. Let M = FIM(X) and N be a closed inverse submonoid of M. Then
the following conditions are equivalent:

a) N isrecognized by a finite inverse automaton.

b) N has finite index in M.

c) N corresponds to a finite immersion over the bouquet of | X| circles.

d) N is a recognizable subset of M.

e) N is a rational subset of M.

f) N is finitely generated.

Proof. We have seen in Lemma 3.2 that the automaton of right w-cosets is the
minimal automaton of N considered as a subset of M. This remark along with Theorem
1.2 and Theorem 3.5 give us the implications a) implies b) implies ¢) implies d) implies
e). If N is a rational subset of M, then N has a rational set of generators (i.e. N) and it
follows from Lemma 3.6 that N is finitely generated. Thus we need only prove that f)
implies a).

Let N =<Y) where Y = {w;|i = 1,...,n} = (X U X™")*. We first build the “flower
automaton”, F(Y). F(Y) has a distinguished vertex v and one “petal” for each w; € Y.
If w; = x;; ... X, , then there is one edge for each x;; so that we spell out w; in a loop
from v to v. F(Y)is connected and there is an obvious graph map from F(Y) to By that
may fail to be an immersion. To rectify this situation we successively fold [22] or
collapse [24] edges of the form

\/
xeXuX?
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In this way we obtain a sequence of graph maps:
ay a ¢
FY)y=Iy-TI,-T,...T,=T(Y)> By

where each «; is a fold and ¢ is an immersion. It is proved in [22] that I'(Y) is
independent of the order of edges chosen to fold. By choosing the image of v as initial
and terminal vertex we obtain an inverse automaton A(Y). By Lemma 3.1 and Lemma
3.2 A(Y) (considered as a representation of FIM(X)) is the minimal automaton of a
closed inverse submonoid N’ of FIM(X). We will show that N = N’.

Let A, be the automaton whose underlying graph is I'; and whose initial and terminal
vertex is the image of v. It is clear that as subsets of (X U X !)* YS L(F(Y)) <
L(A,) € < L(4,) € L(A(Y))where L(A)is the language accepted by the automaton
A. It follows that N = {(Y) < N', since N’ is a closed inverse submonoid of FIM(X).

Conversely, let w e N'. Then there is a z € (X U X 1)* such that z € L(4,) for some
0 <i<nandzp = w. We prove by induction on i that w e N. If i = 0, then there is a
path p from v to v reading z in F(Y). We can factor p = 8,...8,, m > 1, uniquely so
that each f; goes from v to v and never passes through v except at its first and last
vertex. Thus each f§; reads a word z; that travels along a petal of F(Y) corresponding
to some y; € Y. It is easy to see that z; labels a path in the Munn tree of y; from the
initial to the terminal vertex and thus z;p > y;p in the natural partial order of FIM(X).
Therefore, w =zp=zp...2,p > y,p...ype{Y) =N.

Now assume that L(4;) = N for some i, 0 < i < n. Then I';,, is obtained from I'; by

p. =
folding some pair of edges Z>or inT; to the edge e: {p,q} e—>—orin I}, ,. If
q X
z€ L(A;4;), then a straightforward induction on the number of times an accepting
path passes through {p, g} shows that zp > tp for some t € L(A;). By induction, tp e N
and thus zp € N as desired.

Recall that Howson’s Theorem states that if H, and H, are finitely generated sub-
groups of FG(X), then so is H, n H, [8]. Stallings [22] gave a proof of this theorem
using immersions. By interpreting this result in FIM(X) we get the following version
of Howson’s Theorem for closed inverse submonoids of FIM(X).

Corollary 3.8. Let N, and N, be finitely generated closed inverse submonoids of
FIM(X). Then N, n N, is finitely generated.

Proof. Let I'; be the immersion corresponding to N, i = 1, 2. Since N; is finitely
generated, V(I) is finite for i =1, 2. Let I';, x I', be the immersion with vertex
set V(I'y) x V(I',) and edge (v,w) > (v',w’) iff v 5> 0', w5 w' are edges in T, T,
respectively.

Leti; and i, be the roots of I'y and T, respectively and let I'; A I, be the connected
component of I'y x I', containing (i,,i,). It is clear that with root (i;,i,), I'; A T,
recognizes N, N N,. Therefore N; n N, has finite index and thus is finitely generated
by Theorem 3.7.

We remark that Corollary 3.8 does not remain true if we assume only that N, and
N, are finitely generated inverse submonoids of FIM(X). See [9] for an example.
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4. Free Inverse Categories: Classification of Immersions

In order to classify immersions over a graph I' we shall make use of the free inverse
category over I'. Recall ([12]) that a category C is inverse if for each morphism p of
C, there is a unique morphism p~' of C such that p = pp~'p and p~* =p~'pp~..
Denote the loop monoid at a vertex (object) v of C by Mor (v, v); that is, Mor (v, v) is
the set of morphisms p from v to v, together with the multiplication induced by C. It
is clear that if a category C is inverse, then each loop monoid Mor (v,v) is an inverse
monoid.

We define the free inverse category FIC{T') of a graph T to be quotient of the free
category on I' by the congruence ~; induced by all relations of the form p = pp~'p,
p Y =plpp!, and pp~lqq ' = qq 'pp! if a(p) = a(g), for paths p, q in I'. (Here, as
usual, p~!is the path e; e !, ... e;te;! if p is the path e, e, ... e, where the e; are edges
of I': note that (p™')~! = p.) Denote the ~; class of p € P(T') by [[p]]. It is easy to see
that FIC(T') is an inverse category. If I = By, the bouquet of |X| circles, then
FIC(I") = FIM(X), the free inverse monoid on X.

The first problem of interest to us at present is the word problem for the free inverse
category of a connected graph I': namely, find an algorithm that will decide, given any
two paths p, g in T, whether p and q represent the same morphism in FIC(I'). This
may be solved in a manner very similar to the way in which Munn [14] solved the
corresponding problem for FIM(X).

Let f: I" - I be the universal cover of the graph I'. For each vertex v of I' choose
(and fix) a vertex & of I such that #f = v. Since T" covers T, each path p of I starting
at v lifts to a unique path p of I" starting at 5. Let M(p) be the (finite) subtree of r
obtained by traversing the path p in I (starting at #). The following result provides a
solution to the word problem for FIC(I').

Theorem 4.1. Let I be a graph and p, q paths in T. Then p and q represent the
same morphism in FIC(I') if and only if o(p) = alg), o(p) = wlq) and M(p) =
M(q).

Proof. Let E = E(I') and identify FIM(E) with the one-object category FIC(Bg) in
the usual way. There is a natural functor F : FIC(I') - FIM(E). It is obvious how to
define F on objects of FIC(I') (since FIM(E) has just one object): if p=-e,...¢,1s 2
pathin T then define F([[p]]) = MT(e,e,...e,), the Munn tree of the word e, e, ... . e,
The fact that F is well-defined follows easily by looking at elementary transitions
relative to the congruence ~; on the free category on I'. If p = e e, ... e, is a path in
I' thenitis clear that MT(p) = MT(pp~*p);if p and q are two pathsin I" with a(p) = a(q)
then clearly MT(pp'qq™!) = MT(qq 'pp~'): hence F is well-defined. It is not difficult
to see that F is a functor from FIC(I') to FIM(E).

We claim that F is in fact a faithful functor (i.e. F is one-one on each Hom set.)
Suppose that p = e, ...¢e, and g = f; ... f,, are paths in I" with a(p) = a(q) and w(p) =
w(q). T MT(p) = MT(q) then there is a finite sequence of elementary transitions (of the
form u — uu"tu or uu'u = u or uu 'vv~! - vo 'uu!) leading from the word p to the
word g. Each such elementary transition corresponds in the obvious way to an
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elementary transition relative to the congruence ~; on the free category on I': it follows
that p ~;4,1.e. [[p]] = [[g1] in FIC(I'). Hence F is a faithful functor.

Thus [[p]] = [[g]] in FIC(I'} if and only if a(p) = a(q), w(p) = w(q) and MT(p) =
MT(q). It is clear that I" is a subtree of the Cayley graph of FG(E) and that for each
path pin I', M(p) is a birooted tree isomorphic to MT(p). This completes the proof of
the theorem.

Example 4.2. Let I be the graph (labelled over {x,y,x™,y™} consistent with an
immersion over B, ..} as indicated in the diagram 1 below. (Here only the positively

1
(ER )

oriented edges are shown.)

Diagram !

A quick sketch of the part of the universal cover of I" will convince the reader that if
p, q and r are the paths in I starting at 1 and labelled as follows:

p = yx~2yy~2yx2p?y~ixx 1y lx " 2x

g =3y xx"ly 2px2y T2yl
r=y2x%y 2x"2x,

then p = q # r in FIC(I).

We turn now to a study of the loop monoids of the free inverse category of a graph
I'. Denote the loop monoid of FIC(I') at v by L(T",v). We first make the following
observation.

Proposition 4.3. Let [ be a connected graph labelled over X w X! consistent with
an immersion over the bouquet of | X| circles. Then each loop monoid of FIC(I') is a
closed inverse submonoid of FIM(X).

Proof. This follows immediately from the proof of Theorem 1.2 since for each
v e V(I') the loop monoid L(I,v) is the stabilizer of v with respect to the action of
FIM(X) on V(I') defined in the proof of that theorem.

Let H, K be two closed inverse submonoids of a free inverse monoid FIM(X). Define
H ~ K (“H is conjugate to K”) if there exists m € FIM(X) such that m *Hm < K and
mKm™ < H. It is easy to see that ~ is an equivalence relation (called “conjugation™)
on the set of closed inverse submonoids of FIM(X). We refer to the equivalence classes
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of =~ as conjugacy classes. We remark that conjugate closed inverse submonoids of
FIM(X) are not necessarily isomorphic. For example, if I' denotes the graph of
Diagram 1 and if v, (respectively v,) denotes the vertex labelled 1 (respectively 3), then
L(T',v,) has three maximal (non-identity) idempotents (in the natural partial order)
and L(T', v;) has two maximal idempotents, so L(I', v,) is not isomorphic to L(I", v3).

Immersions over By are classified by conjugacy classes of closed inverse submonoids
of FIM(X), as indicated in the following theorem.

Theorem 4.4. Let T be a connected graph, labelled over a set X u X! consistent
with an immersion over By. Then each loop monoid is a closed inverse submonoid of
FIM(X) and the set of all loop monoids L(T,v) for v e V(I') is a conjugacy class of the
set of closed inverse submenoids of FIM(X). Conversely, if H is any closed inverse
submonoid of a free inverse monoid FIM(X) then there is some graph I and an immersion
n:T — By such that H is a loop monoid of FIC(I'). furthermore, I is unique (up to graph
isomorphism) and v is unique (up to equivalence).

Proof. We already know from Proposition 4.3 that each L(T', v) is a closed inverse
submonoid of FIM(X). Suppose that v, w € V(I'). Since I is connected there is a path
pin I” with a(p) = v and w(p) = w: let m e (X U X ')* be the label of the path p and
regard m as an element of FIM(X). If n € L(T, v) then n labels some path in T" from v
to v. It follows that m™'nm labels a path in T from w to w, so m™'nm € L(I", w). Hence
m™'L(T,v)m < L(I',w) and similarly mL(T,w)ym™' < L(I",v), so L(I’,v) ~ L([",w) in
FIM(X). Now suppose that v e V(I') and H is a closed inverse submonoid of FIM(X)
that is conjugate to L(T", v). There is some m € FIM(X) such that m ! L(I", v)ym < H and
mHm™! < L(',v). In particular mm™" € L(I, v) so there is some path p in T labelled by
m with «(p) = v: let w = w(p). If h € H then mhm™! € L(T,v), so mhm™* labels a path
in I’ from » to v, whence h labels a path in I' from w to w, i.e. he L(I',w). Thus
H< L(T,w). On the other hand if n, e L(I,w) then mn,m™'eL(l,v) so
m 'mnm'mem ' L(I",v)m < H. Since H is a closed inverse submonoid of FIM(X)
and m~'mis an idempotent of FIM(X) it follows that n, € H: thus L(I', w) < H, whence
L(T",w) = H. Hence the set of all loop monoids L(I",v) for v € V(I') is a conjugacy class
of the set of all closed inverse submonoids of FIM(X).

Suppose now that H is any closed inverse submonoid of a free inverse monoid
FIM(X). We construct a graph I' and an immersion n:I" - By as in Sec. 1: H
determines a transitive representation of FIM(X) by partial one-one transformations
on the set of right w-cosets of H, there is a natural immersion # from the graph I of
this representation to By and H is the stabilizer (loop monoid) corresponding to the
vertex H of I'. The uniqueness of I' and # follows by a routine argument.

The results of Theorem 4.4 can be extended somewhat so as to yield a classification
of connected immersions over an arbitrary connected graph I'.

Theorem 4.5. Let f: A — T be an immersion over I', where A and T" are connected
graphs labelled over a set X U X ™! consistent with immersions over By (so f is a labelled
graph morphism from Ato ). If ve V(I')and v, € V(A) such that v, f = v, then f induces
an embedding of L(A,v,)into L(T',v). Conversely, let T be a graph labelled over X U X!



FREE INVERSE MONOIDS AND GRAPH IMMERSIONS 95

as usual and let H be a closed inverse submonoid of FIM(X) such that H = L(I",v) for
some vertex v € V(I'). Then there exist a graph A, an immersion f: A - T and a vertex
v, € V(A) such that v, f = v and L(A,v,)f = H. Furthermore A is unique (up to graph
isomorphism) and f is unique (up to equivalence). If H, K are two closed inverse
submonoids of FIM(X)with H, K < L(I', v) then the corresponding immersions f : A - T
and g: A" > I are equivalent if and only if H ~ K in FIM(X).

Proof. The proof is just an adaptation of the standard proof of the corresponding
theorem classifying covers of a graph I' via subgroups of =, (I'), but couched in a
somewhat simpler form as a consequence of our convention about labelling graphs
consistent with immersions over By.

To prove the first part of the theorem (the embedding of L(A,v,) into L(T',v)) note
that if m € L(A, v,) then m labels a path p from v, to v, in A, so on application of the
labelled graph morphism f we see that m also labels a path p’ from v to vin I, so we
may regard m as an element of L(I',v). Since f is an immersion, p is the only path in
A that maps under f to p’, so the map that sends m € L(A, v,)to mf € L(T', v})is injective,
whence L(A,v,) embeds into L(I, v).

For the converse, suppose that H is a closed inverse submonoid of FIM(X) such
that H = L(I',v). Construct the graph A of right w-cosets of H and the immersion
1 : A — Byasin the proof of Theorem 4.4 (i.e. Theorem 1.2). Since H < L(I', v) it follows
that if Hm is a right w-coset of H then mm™ € H < L(I',v), so m labels a pathin T
starting at v. From this it is easy to see that » factors as f o n, where 5, is the natural
immersion from I' to By and f is an immersion from A to I'. Clearly there is a vertex
vy € V(A) (in fact v, is the right w-coset H) such that v, f = v and L(A,v,) = H. The
uniqueness of A and f and the last statement of the theorem follow in a routine fashion.

5. Finitely Generated Subgroups of Free Groups and Finite Inverse Monoids

In Sec. 3 we canonically associated a connected finite immersion with every finitely
generated closed inverse submonoid of FIM(X). We also have seen that (connected)
immersions are essentially (transitive) inverse automata. In this section we associate a
canonical finite connected immersion with every finitely generated subgroup H of the
free group, FG(X). We then show that the transition inverse monoid of the
corresponding inverse automaton can be used to algorithmically check properties of
H. We give an introduction to these ideas here. Further examples and resuits will
appear in future papers.

Let H be a subgroup of FG(X). Let Ty be the subtree of I' = I'(X) spanned by H.
That is, Ty is the smallest subtree of I containing the vertices of H. Then H acts by
left multiplication on Ty. We then have the closed inverse submonoid H = M(Ty, H, 1)
and the immersion n: I — By where I; = H\ Ty. Clearly = (I,,[{1}]) = H. Thus a
reduced word is in H if and only if it labels a loop from [ {1} Jto [ {1}]in I,. Considered
as an inverse automaton, I, is the minimal automaton of H. It follows easily that H
is the maximal group image of H and that H is finitely generated if and only if H is
finitely generated if and only if I is finite. We define the syntactic monoid Synt(H) of
H to be the transition monoid of I. Thus Synt(H) is an inverse monoid and Synt(H)
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is finite if and only if H is finitely generated. In the terminology of [22], I is the core
immersion associated with H.
The following algorithm computes I, from a finite set Y of generators of H. This is
essentially the construction outlined in Theorem 3.7 of Sec. 3.
Algorithm Input: Finite set Y < FG(X).
Output: I, the canonical immersion of H = (Y (the subgroup
generated by Y).

Step 1. Compute F(Y), the flower automaton of Y. F(Y) has a distinguished vertex v
and a loop reading y foreach ye Y.
Step 2. Fold edges of F(Y) to obtain an immersion. That is iteratively identify edges of

X
the form :>‘>c for some x € X until an immersion Iy is obtained.
X

Step 3. Iteratively remove vertices of degree 1 (and the edges connecting such vertices
to the rest of the graph) from I, to obtain I.

Example. 1) Let Y = {x% xyx~'y~!, xyx}.

Then F(Y) is

Thus Synt(H) ~ Z,. It follows that H = (Y ) is a subgroup of index 2 in FG(X) and
Iy is a cover of By. More generally, we have the following result, which shows how

Synt(H) can be used to detect algorithmically whether or not H has finite index in
FG(X).

Theorem 5.1. Let H be a finitely generated subgroup of the free group FG(X). The
following are equivalent:
a) Synt(H) is a group.
b) The immersion n: 14 — By is a cover.
¢) H has finite index in FG(X).
d) Hisa full (closed) inverse submonoid of FIM(X) [i.e. H contains all the idempotents
of FIM(X)].

Proof. a) — b). Suppose that Synt(H)is a group. Then every letter of X must induce
a permutation of V(Iy), since the identity transformation is in Synt(H). Thus, for every
ve V(ly), and every x € X U X1, there is exactly one edge labelled by x starting at v
so#: Iy — Byis acover.
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b) = ¢). Ifn:I,; — By is a cover, then it is clear that I is the coset graph of FG(X)
on the cosets of H. Thus H has finite index in FG(X). (The equivalence of b) and c)
was-noted by Stallings [22].)

¢) = d). If H has finite index in FG(X), then clearly I is the coset graph of H in
FG(X). Thus every word in (X u X~ !)* labels a path in I, from any vertex. In
particular, every Dyck word (i.e. every word whose reduced form is 1) labels a path
from H to H. Since every idempotent in FIM(X) is the image of a Dyck word, it follows
that H is full.

d) > a). Suppose H is full. Let p be a vertex of I. Then there is a word we
(X U X" 1)* labelling a path from v to p where v is the vertex of I, corresponding to
H.Let x € X U X~'. Then wxx~'w™! labels a path from v to v, since H is full. It follows
that there must be an edge of I, with initial vertex p and labelled by x. Thus every x
induces a permutation of V(I) and Synt(H) is a group.

Corollary 5.2. ([22]) Let Y be a finite subset of FG(X). Then it is decidable whether
the subgroup generated by Y has finite index.

Proof. Let H = (Y ). Given Y, by the algorithm above we can effectively compute
I, and then check whether every letter of X induces a permutation.

More generally, properties of H can be translated into algebraic properties of
Synt(H). Since Synt(H) can be effectively computed from a set of generators for H, this
leads to an algorithm to test the desired property. As a second example we have the
following simple resuits.

Theorem 5.3. Let Y = FG(X) and let H = (Y). Then H = FG(X) if and only if
Synt(H) = {1}.

Proof. If H = FG(X), then cleary I; = By, the bouquet of X-circles and thus
Synt(H) = {1}. Conversely, if Synt(H) = {1}, then every x € X induces the identity
function on I . Since I, is connected, it follows that I, has exactly 1 vertex,so Iy = By
and H = FG(X).

Theorem 54. Let Y < FG(X) be a finite set and let H = (Y ). The following are
equivalent:

a) H = FG(Z) for some Z < X.

b) Synt(H) is a semilattice, that is an idempotent and commutative semigroup.

Proof. a)— b)If H = FG(Z) for some Z < X, then every z € Z labels a loop at the
distinguished vertex of I,. Since I is a connected immersion without edges of degree
1, no letter in X/Z can label an edge of Iy. It follows that I, = B, the bouquet of
Z-circles. Thus every letter in Z acts as the identity transformation and every letter of
X/Z acts as the empty transformation. Thus Synt(H) is either {0, 1} under the usual
multiplication if Z # X, or Synt(H) = {1}, if Z = X. In either case, Synt(H) is a
semilattice.

Conversely, if Synt(H) is a semilattice, then every x € X induces a partial identity
function on I. Since I is connected it follows that I has exactly one vertex. Thus
H = FG(Z), where Z is the set of letters labelling an edge in I,.
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We close the paper by indicating without proof some additional results of this type
which will be developed in a future paper.

There is an obvious analogy between the results listed above and the well developed
theory of varieties of rational languages and varieties of finite monoids ([4], [10], [16]).
Eilenberg’s variety theorem sets up a bijection between the set of varieties of finite
monoids and the set of varieties of rational languages. This allows combinatorial
properties about rational languages to be translated into algebraic properties of their
syntactic monoids.

In some recent (as yet unpublished) work, R. Ruyle develops an analogue of the
Eilenberg Theorem for varieties of finite inverse monoids and relates these to suitable
collections of rational (that is, finitely generated) subgroups of free groups and closed
inverse submonoids of free inverse monoids. Along these lines, the authors, in collabo-
ration with J.-C. Birget and P. Weil, have recently proved that a finitely generated
subgroup H of FG(X) is a pure subgroup (i.e. x" € H for some n > 1 implies x € H) if
and only if Synt(H) has only trivial subgroups. This provides an algorithm for deciding
whether the subgroup of FG(X) generated by a finite subset Y is pure or not.
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