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Abstract: An inverse monoid M is an idempotent-pure image of the free
inverse monoid on a set X if and only if M has a presentation of the form
M = Inv(X : e = fi,i € I), where e;, f; are idempotents of the free inverse
monoid: every inverse monoid is an idempotent-separating image of one of this
type. If R is an R-class of such an inverse monoid, then R may be regarded
as a Schreier subset of the free group on X . This paper is concerned with an
examination of which Schreier subsets arise in this way. In particular, if I is
finite, then R is a rational Schreier subset of the free group. Not every rational
Schreier set arises in this way, but every positively labeled rational Schreier set
does.

1. Introduction

We shall assume familiarity with the notion of an inverse monoid and we
refer the reader to the book of Petrich [9] for basic notation and results concerning
inverse monoids. In particular, we shall denote the free inverse monoid on a set X
by FIM(X). Thus FIM(X) = (XUX~1)*/p where p is the Vagner congruence
on the free monoid (X UX~1)*: here X! is a set disjoint from X and in one-
one correspondence with X by the map = — 27!, z € X. Let I'(X) denote
the Cayley graph of the free group FG(X) on X: of course I'(X) is a tree.
Recall that if u = 2329...2, € (X UX™1)*, then the Munn tree of u is the
finite subtree of I'(X) traversed when the path labeled by the word u is read
in I'(X), starting at the vertex 1 and ending at the vertex r(u) (the reduced
form of u). We denote the Munn tree of u by MT(u): clearly MT(u) is a
finite birooted labeled subtree of I'(X), the roots being 1 (initial root) and r(u)
(terminal root). From Munn [8] we have the following result, which solves the
word problem for FIM(X).

Theorem 1.1. (Munn [8], see also Petrich [9], section VIII 3). For all
words u,v € (X UX™1)* we have u p v if and only if MT(u) = MT(v) and
r(u) = r(v).

If T = {(ui,vi):1 €I} is a relation on (X UX™1)* (ie. if ui,vi €
(X U X~1)* for each i € I) then we denote by Inv(X : T) or Inv(X :
u; = v;,1 € I) the inverse monoid presented by the set X of generators and
the set T of relations: that is, Inv(X : T) = (XU X™!)*/r, where 7 is the
congruence on (X UX~1)* generated by pUT. Presentations of inverse monoids
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have been studied by Margolis, Meakin and Stephen in a series of papers [5],
[6], [7], [14], [15]. In particular, in this paper, we shall use the results of
Margolis and Meakin [6] concerning inverse monoid presentations of the form
M = Inv(X : e; = fi,i € I) where €;, fi are Dyck words (i.e. idempotents
of FIM(X)). In [6] it was shown that an inverse monoid has a presentation of
this form if and only if it is an idempotent-pure image of FIM(X) and that the
word problem for such a presentation is decidable if I is finite.

Recall (Petrich [9], Chapter III) that if 7 is any congruence on an inverse
monoid S then the trace of 7 is the equivalence relation tr(7) = TN(E(S)x E(S))
on the set E(S) of idempotents of S and the kernel of 7 1s the subset kerr =
{a € S: a1 a?} of elements of S that are 7-related to idempotents of S. Every
congruence 7 on S is determined by its trace and its kernel. Following Petrich
[9] we denote by Tmi, the smallest congruence on S with the same trace as 7. It
is well-known that 7,,i, is the congruence on S generated by tr(r), that S/7 is
an idempotent-separating image of S/7min and that 7,,i, is an idempotent-pure
congruence on S if S is E-unitary: in fact if S is F-unitary, then 7, = TNos,
where og is a minimum group congruence on S. In particular, FIM(X) is E-
unitary so if 7 is any congruence on FIM(X), Tpi, is idempotent-pure. From
these remarks we have the following,.

Lemma 1.2. Every inverse monoid 13 an tdempotent-separating homomorphic
image of some inverse monoid with a presentation of the form M = Inv(X :
ei = fi,t € I}, where e;, fi are idempotents of FIM(X).

The lemma indicates that inverse monoids are detemined up to idem-
potent-separating morphisms by inverse monoids of the form M = Inv(X :e; =
fi,i € I) where e;, f; are idempotents of FIM(X). Thus it is of interest to
examine this class of monoids in more detail. We shall restrict attention primarily
to the case where M is finitely presented (i.e. I is finite). Our concern in the
present paper is with describing the R-classes of such a monoid.

Let M = Inv(X : T) = (X UX~1)*/r be any inverse monoid with set
X of generators and set T of relations and let R be an R-class of M. We define
the Schitzenberger graph ST'(R) = ST(X, T, R) of R relative to this presentation
as follows: the set of vertices of ST(R) is the set R; ST(R) contains the edge
(ur,z,v7) from ur to vr if u,v € (XUX!)*, 2€ XUX™!, ur, v € R and
vr = (uz)7. It is easy to see that if (ur,z,v7) is an edge of ST(R), then so is
(vr,z71,ur): the pair of edges (ur,z,vr) and (vr,z~!, ur) is usually denoted

X
by 29, when sketching a graph of ST(R). The notion of “graph”

that we are using here is that of Serre [13]. We refer the reader to our papers
[5] and [6] for more details and notation concerning Schiitzenberger graphs and
Cayley graphs of group presentations. The natural map o : M = Inv(X : T) —
G = gp(X : T) from M onto its maximal group homomorphic image G induces
a graph morphism (again deunoted by o) from ST(X,T,R) into I'(X,T), the
Cayley graph of G = gp(X : T): the map ¢ induces an embedding of each
graph ST(X,T,R) into ['(X,T) if and only if M is E-unitary (see Margolis
and meakin [6]).

f M = Inv(X : e = fi,i € I) where e;, f; are idempotents of
FIM(X), then M is E-unitary with maximum group homomorphic image
FG(X) (the free group on X ), so ¢ induces an embedding of each corresponding
Schiitzenberger graph ST(R) into I'(X), the Cayley graph of FG(X) = gp(X :
#). Clearly this embedding o maps the idempotent in R to the identity 1 of
FG(X). Thus we may view the R -classes of such a monoid as subsets of FG(X).
In [6], Margolis and Meakin established the following result, the proof of which
involves combining the results of Stephen [14] on presentations of inverse monoids
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and Rabin [11], [12] on the decidability of the second-order monadic logic of the
infinite binary tree.

Theorem 1.3.  (Margolis and Meakin [6]). Let M = Inv(X : e; = fi,i =
1,...,n) where e;, f; are idempotents of FIM(X). Then
(a) The map o : M — FG(X) embeds each R-class of M as an effectively
constructible rational Schreier subset of FG(X);
(b) the word problem for M is decidable.

The primary question of interest in the present paper is the converse:
which rational Schreier subsets of FG(X) arise as the set of elements of an R -
class of some inverse monoid of the form M = Inv(X :e; = fi,i =1,...,n)?
We first briefly review the notion of a rational Schreier subset of the free group.

A subset L of the free group FG(X) is called a Schreier subset of FG(X)
if 1 € L and if L contains every prefix of every reduced word in L. Clearly L is
a Schreier subset of F'G(X) if and only if there is a subtree T' of I'(X) such that
I’ contains 1 as a vertex and such that L is the set of elements of FG(X) that
label the vertices of I'. Since the correspondence between Schreier subsets of
FG(X) and subtrees of I'(X') that contain the vertex 1 is obviously one-one, we
often abuse notation slightly and consider Schreier subsets of FFG(X') as subtrees
of I'(X) containing the vertex 1.

The set Rat(M) of rational subsets of a monoid M is the smallest
collection of subsets of M such that

(a) {m} € Rat M for each m € M
(b) if A,B € Rat M then AUB € Rat M, A-B € Rat M and A* € Rat M.

(Here A-B ={a-b:a € Abe€ B} and A* is the submonoid of M

generated by A).

The rational subsets of the monoid F'G(X) have been classified by Benois
[1]. If L is a subset of FG(X) then we let Lt = {ut: u € L} where u: is the
unique reduced word of the monoid (X U X~!)* that is equal to u in FG(X):
thus Le C (X U X ~1H)*.

If Ais asubset of (X UX™!)* then we denote by r(A) the set {r(a):
a € A} where r(a) is the reduced form of a. The theorem of Benois can be
stated in the following form:

Theorem 1.4. (Benois [1], see also Berstel [2]).

(a) If A is a rational subset of (X UX™1)*, the so is r(4);

(b) A subset L C FG(X) is a rational subset of FG(X) if and only if L.
i3 @ rational subset of (X U X~1)*.

Since rational subsets and recognizable subsets of the free monoid

(X UX~1)* coincide by Kleene’s theorem, it follows that if L is a rational
subset of FG(X) then Lt is recognized by a finite automaton (over the alphabet
XUX~1). We refer the reader to Lallement [4] or Pin [10] or any standard book
on language theory or automata theory (e.g. Hopcroft and Ullman [3]) for a
discussion of Kleene’s theorem and for basic terminology and results concerning
automata and languages. We denote by B(L) (the Benois automaton of L) the
minimal automaton of L¢, for each rational subset L of FG(X). Clearly B(L)
accepts only reduced words in (X UX~1)*: it is also clear that L is a (rational)
Schreier subset of F'G(X) if and only if all states of B(L) are terminal. Thus L
is a rational Schreier subset of FG(X) if and only if L is the language accepted
by a finite automaton B(L) such that

(a) B(L) is a minimal automaton over the alphabet (X U X ~1)*;

(b) B(L) accepts only reduced words in (X U X ~1)*;

(¢) B(L) has one initial state and all states are terminal.

139



MARGOLIS & MEAKIN

Example 1.5. The language L = b*Ub*-a-(aUb™1)* is the set of reduced words
in {a,b,a”?,571}* corresponding to a rational Schreier subset (again denoted by
L) of FG({a,b}). The Benois automaton B(L) is the two state automaton

Diagram 1

with initial state (1) and terminal states (1) and (2) . A portion of the
subtree of I'({a,b}) representing this rational Schreier subset L of FG({a,b})
is shown in Diagram 2.

Diagram 2

We may regard the tree depicted in Diagram 2 as a rooted labeled subtree
of {a,b,a™!,b71}* (with initial root at the top). When viewed as a labeled
subtree of {a,b,a™1,b71}*, the tree is directed with labeled edges directed away
from the root as indicated on the diagram. When viewed as a labeled subtree
of I'({a,b}) it is undirected: the edge o o—0 B of I'({a,b}) is the same as

-1
the edge a o—%—0 B. Given any node (vertex) « of the tree L, the directed
subtree of L rooted at a has as vertices all those vertices § of L for which « is on
the geodesic from the initial root to 3 (the vertices “below” « in the diagram).
On the other hand, the undirected subtree of L rooted at a contains every vertex
of L and has root a. Thus the directed subtree of L rooted at a may be
viewed as a labeled subtree of L when L is considered as a subtree of the tree
{a,b,a=1,b71}*, while the undirected subtree of L rooted at a may be viewed
as a labeled subtree of L when L is considered a subtree of I'({a,b}). Note that
there are precisely two isomorphism classes of directed rooted subtrees (those
whose roots are labeled by (1) and those whose roots are labeled by (2)) but there
are infinitely many isomorphism classes of undirected rooted subtrees. In general,
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if L is any rational Schreier subset of F'G(X), then the tree L: has finitely many
isomorphism classes of directed rooted subtrees, one corresponding to each state
of B(L), but possibly infinitely many isomorphism classes of undirected rooted
subtrees. This distinction will be crucial in subsequent parts of this paper. We
shall return to Example 1.5 and shall use this notion of directed and undirected
rooted subtrees in the sequel. n

Let M = Inv(X : T) = (XUX1)*/r and let v € (X U X~1)*.
In his paper [14], Stephen provides an iterative procedure for constructing the
Schiitzenberger graph ST'(X, T, R,.) of the R-class R,, of the corresponding
element ur € M. We briefly summarize his construction below, in the special
case in which T' = {(e;, fi) : ¢ € I} where e;, f; are idempotents of FIM(X).
As in [6], it is easy to see that we may assume without loss of generality that
ei < fiforall i € I;ie. MT(fi) C MT(e;) for all ¢ € I. In this special case,
the iterative construction of ST(X,T, Ryr) (for u € (X U X~1)*) proceeds as
follows.

STEP 1. Starting with the word u € (X U X~')* we build the Munn tree
MT(u): clearly MT(u) is a (birooted) subtree of I'(X), the Cayley graph of
the free group FG(X). Let By(u) = MT(u).

STEP 2. Suppose that v is a vertex of MT(u) such that v- MT(f;) C MT(u)
for some ¢ € I: form the tree MT(u)Uv - MT(e;). Here the union of the trees
MT(u) and v- MT(e;) is simply the subtree of I'(X) spanned by the union
of the vertices of MT(u) and v - MT(e;). Form such a union of trees for all
vertices v in MT(u) and all indices ¢ € I. Let Bz(u) = By(u) U {v- MT(e;) :
v+ MT(fi) C Bi(u),s € I}. Clearly Ba(u) is a birooted subtree of I'(X) with
initial root 1 and terminal root r(u).

INDUCTIVE STEP: Assume that we have constructed the birooted subtree
Bp(u) € T(X) for some n > 1. As in Step 2, we construct By,y1(u) from B,(u)
by glueing on to B,(u) the tree v- MT(e;) at each vertex v of Byn(u) for which
v MT(fi) C Bn(u), some ¢ € I; that is, we let

Brpya(u) = Ba(u)U | |J v- MT(es)
ugé\;;
where X; = {v € FG(X): v MT(fi) C Bn(u)}. It is clear that
MT(u) = B1(u) C Ba(u) C -+ C Bu(u) C Bnt1(u) € -+ CT(X)

and that each B,(u) is a birooted subtree of I'(X) with initial root (1) and
terminal root »(u). From Stephen [14] we deduce the following fact.

Theorem 1.6. ST(X,T,Ryr)o = U B, (u) .

n=1

2. Schreier Sets Associated with FIM(X)

We are now ready to provide a characterization of the R-classes of an
idempotent-pure image of FIM(X). We say that a Schreier set L C FG(X) is
naturally associated with FIM(X) if there is some inverse monoid of the form
M = Inv(X : e; = fi,i € I) (for ei, fi idempotents of FIM(X)) and some
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R-class R of M such that L = Ro (equivalently, L = ST(R)o). If V is a
rooted subtree of I'(X) with root a, then we say that V embeds in L at w
if there is a labeled graph embedding of V into L that maps a to w (clearly
there is precisely one such embedding if there is any). We emphasize that this

embedding is in the undirected sense. For example, if V' is the tree a o—r o B
-1

with root a and L is the tree 'y—iv— 6—12— €, then V embeds in L at §.
The tree L of Example 1.5 (Diagram 2) embeds in L at each vertex labeled by
(1) but not at any vertex labeled by (2). In general, if L is a Schreier subset of
FG(X), we call a finite (rooted) subtree V of L a finite test tree for L if V has
the property that, for all w € L, V embeds in L at w if and only if L embeds
in L at w.

Theorem 2.1.  Let L be a Schreier subset of FG(X). Then L is naturally
associated with FIM(X) if and only if there i3 a finite test tree for L.

Proof.  Suppose first that L is naturally associated with FIM(X). Then
there is an inverse monoid M = Inv(X :e; = fi,i € I) = (X UX~"1)*/r and
an R-class R of M such that L = Ro. Let u be an element of (X UX~1)

such that R = R,,. From Theorem 1.6 it follows that L = U B,(u), where

the trees B,(u) are iteratively constructed by the procedure descrlbed prior to
the statement of Theorem 1.6. Notice that L is thus the smallest subtree of
I'(X) such that MT(u) C L and such that, for all vertices v€ L and all t € I,
v-MT(e;) C L iff v- MT(f;) € L. Now let V = MT(u) : V is a finite rooted
subtree of L. If V embeds in L at w, then w-V C L and it follows from the
iterative construction of L that w-L C L, so L embeds in L at w. Hence
V = MT(u) is a finite test tree for L.

Conversely, suppose that L is a Schreier subset of FG(X) with a finite
test tree V. Since V is a rooted tree we may regard it as a birooted tree in which
the initial and termlnal roots coincide, so there is some word e € (XUX ~1)* such
that MT(e) = V': in fact e is an idempotent of FIM(X) since the initial and
terminal roots of V' coincide. Now let F' be any finite rooted subtree of L (with
1 as its root) such that V embeds in F at 1. If w is any vertex of L such that
V embeds in L at w, then L embedsin L at w and so certainly F embedsin L
at w. Conversely, if F embeds in L at w then certainly V' embeds in L at w:
thus F is also a finite test tree for L, and V and F embed at the same vertices
of L. Corresponding to each such tree F' as described above, there exists a word
f € (XUX~1)* such that f is an idempotent of FIM(X) and MT(f) = F. Let
I denote the set of all such finite trees F' described above (so that V' embeds
in F at 1 and F embeds in L at 1) and for each 7 € I, let f; denote an
idempotent of FIM(X) whose Munn tree is ¢. Consider the inverse monoid
M=Inv(X :e= f;,;i € I) and let R = R, in M. We claim that Ro = L.
To see this, note first that if v is a vertex in L, then v is contained in some
finite rooted subtree F' of L such that V' embeds in F' at 1, so by the iterative
construction of Ro given in Theorem 1.6 it follows immediately that v € Ro.
Hence L C Ro. For the converse, note that any element of Ro must be obtained
from V = MT(e) in a finite number of steps by the iterative procedure outlined
prior to the statement of Theorem 1.6. Since MT(e) = V and all trees MT(f;)
(2 € I') embed in L precisely at those vertices at which V' embeds, it follows that
if Ba(u) € L for some n, then B,y1(u) C L. Since Bi(u) =V C L, it follows

that B,(u) C L for all n and hence Ro = U Bp(u) C L. Hence L = Ro and

so L is naturally associated with FIM(X ) u
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We next produce an example to show that not every rational Schreier
set is naturally associated with FIA(X).

Example 2.2. There are rational Schreier sets that are not naturally associated

with FIM(X).

Let L be the rational Schreier set of Example 1.5. The tree L is shown
in Diagram 2. Let V be any finite rooted subtree of L. In order for V to be a
finite test tree for L we require that V' embeds at a vertex w € L if and only if
L embeds at w. Now L embeds precisely at those vertices labeled (1) since if ¥
is any vertex labeled (2) there is some n > 0 such that one cannot read a path
labeled by b" starting at . This forces that V embeds only at those vertices
labeled by (1) —i.e. at the vertices on the “top left-hand side” of Diagram 2. Let

b b b b

n be the largest integer such that the tree T, : > > >

with n edges and root a embeds in V at the root of V. We can ﬁnd a vertex
w of L with label (2) such that T,, embeds in L at w and it is then easy to see
that in fact V' embeds in L at w. Thus every finite rooted subtree of L embeds
at some vertex with label (2) and it follows that L has no finite test tree. Hence
L is not naturally associated with FIM(X), by Theorem 2.1. [

We remark that Theorem 2.1 does not characterize those rational Schreier
sets associated with finitely presented monoids of the form Inv(X = fi,1 =
1,...,n). We provide below an example of a rational Schreier subset of FG(X )
that is naturally associated with FIM(X) but which is not associated with any
finitely presented inverse monoid of the desired form.

Example 2.3. Consider the language L = b* U b*a(b~1)* C {a,b,a™?,b71}*.
The minimal automaton of this language L is pictured in Diagram 3 below ((1)
is the initial state and both states are terminal).

Diagram 3

L is a rational Schreier set represented by the tree sketched in Diagram 4 below.

Diagram 4

It is clear that L embeds in L precisely at those vertices labeled by (1) and that
the finite tree in Diagram 5 is a finite test tree for L.
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o

Diagram 5

Hence, by Theorem 2.1, L is naturally associated with FIM({a,b}). We claim,
however, that there is no finite set T = {(ei, fi) : 1 = 1,...,n} of relations on
FIM(X) (with e, fi € E(FIM(X))) such that L = Ro for some R-class R
of M = Inv(X : e; = fi,i =1,...,n). To see this, suppose that such a set T
exists and again suppose without loss of generality that e; < f; for each ¢ (i.e.
MT(fi) € MT(e;) for each i). There must exist a word u € (X U X~1)*
such that L is obtained from V = MT(u) C L iteratively in the manner
indicated prior to the statement of Theorem 1.6. We claim first of all that
M satisfies no relation of the form "b™" = d™b™™ for n > m > 0: this is
because we can always find a vertex v labeled by (2) (e.g. in the “descending
chain” of vertices on the right hand side of Diagram 4) such that the chain
labeled by d™b~™ embeds in L at v but the chain labeled by 6"b~" does not.
Similarly (by examining the “descending chain” of vertices on the left hand side
of Diagram 6 labeled by (1)) one sees that M satisfies no relation of the form
b="b" = b—™b™ for n > m > 0. A slight extension of this argument shows in
fact that if w;(b,b7!) and wz(b,b7!) are two words over the alphabet {b,57'}
then w;(b,b7!) = wa(b,b7?) is a relation in M if and only if w1(b,b™') and
w2(b,b71) have the same Munn tree. Hence in every relation e; = f; in the
generating set T for M there must be at least one edge in MT(f;) labeled by
a or a~!. This implies that there is a largest integer N > 0 with the following
property: if MT(f;) (for ¢ =1,...,n) embedsin L at a vertex v labeled (2) on
the right-hand descending chain in Diagram 4, then the distance in L between ~
and the top most vertex (1) must be less than or equal to V. But this forces that
there is some number N; > N such that no vertex labeled by (2) on the right-
hand descending chain of Diagram 4, whose distance from the top most vertex
(1) is greater than Nj, can ever be reached from V iteratively by applying the
relations e¢; = fi, : =1,...,n. Hence L does not arise naturally from a finitely
presented monoid of the desired form. ]

It would be interesting to provide an effective procedure for deciding if a
rational Schreier subset L C FG(X) arises naturally as a Schiitzenberger graph
of some finitely presented inverse monoid M = Inv(X :e; = fi,i = 1,...,n).
In Section 3 we provide an explicit solution to this in the case where the Munn
trees MT(e;) and MT(f;) are all positively labeled. In the meantime we mention
some related results in special cases.

Proposition 2.4. Let L be a Schreier subset of FG(X). Then there ezists
an inverse monoid M = Inv(X : e; = fi,i € I) (for e;, fi € E(FIM(X))) such
that L = Ryo (where 1 is the identity of M ) if and only if L is a submonoid
of FG(X).

Proof.  Suppose first that L is a Schreier submonoid of FG(X). Then for
each vertex w of L, wL C L, so L embeds at w. It follows by Theorem 2.1 that
the trivial tree 1 is a finite test tree for L, so L = Ro for some R-class R of
a monoid of the form M = Inv(X : e; = fi,is € I). But if 1 is a finite test tree
for L, then L may be built from MT(1) iteratively by applying the relations
e; = f; as in Theorem 1.6. Hence R = R;. The converse is obvious since the
R-class R; of any inverse monoid M is a submonoid of M. L
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It is possible to completely characterize the Schiitzenberger graphs of
inverse monoids of the form M = Inv(X : e = 1) (where e = €? in FIM(X)).
We refer the reader to our paper [6] for details in this case: the Schiitzenberger

graph of R; for such a monoid is characterized as a finitely generated Schreier
submonoid of FG(X).

3. Positively Labeled Trees

A Schreier set (tree) L C FG(X) is said to be positively labeled if
L C X* (i.e. each vertex w # 1 of L is labeled by a product of elements
of X). In this section we study finitely presented inverse monoids of the form
M =Inv(X :e; = fi,i = 1,...,n) where e;, f; are positively labeled idempotents
of FIM(X) (i.e. MT(ei), MT(fi) are positively labeled trees). We are able to

classify the Schiitzenberger graphs of such monoids explicitly. If o S B is
an edge of L for which a is on the geodesic from 1 to 3 (i.e. « is “closer to 1
than 8 ") then we say that this edge is positively labeled [resp. negatively labeled
]if 2 € X [resp. 2 € X~!]. Thus all edges of a positively labeled Schreier set
(tree) are positively labeled.

Theorem 3.1.  Let L be a rational Schreier subset of FG(X) (for X a finite
set). Then there is some finitely presented inverse monoid of the form M =
Inv(X :e; = fi,i = 1,...,n) where e;, fi are positively labeled idempotents of
FIM(X) and some R-class R of M such that L = Ro if and only if L has
only finitely many negatively labeled edges.

Proof.  Suppose first that L = Ro for R an R-class of the monoid M =
Inv(X : ¢; = fi,i = 1,...,n) = (X UX71)*/7 where e;, f; are positively
labeled idempotents of FIM(X). We already know by Theorem 1.3 that L
is a rational Schreier subset of F'G(X). Furthermore, if u is an element of
(X U X71)* such that ur € R, then L is built iteratively from MT(u) by
applying the relations e; = f; (1 = 1,...,n) as described in Theorem 1.6. Now
all edges of MT(e;) and MT(fi) (for ¢ = 1,...,n) are positively labeled. As
usual we may assume without loss of generality that MT(f;) C MT(e;) for each
t. Let w be a reduced word in L such that MT(f;) embeds at w (in which

case MT(e;) must also embed at w). If v o—:rc—o vy is an edge of MT(e;)

then wv, —F o wvy is an edge of L. Since x € X, this edge is positively
labeled if wv; is closer to 1 than wws. Since v; € X* and vy = v1z, the only
possible way for wv, to be closer to 1 than wv; is if w = wg.r‘lvl"l, in which

case wyy; = woz ! and wvy = wy. This forces the edge wv, o— o wvy to
be on the geodesic from 1 to w. Thus if K is a finite Schreier subset of L and
if w is a vertex in I at which MT(fi;) embeds in L, then the only negatively
labeled edges of K Uw-MT(e;) are those edges of I that are negatively labeled.
The inductive construction of L from MT(u) obtained by applying the relations
ei = f; (¢ = 1,...,n) thus produces no negatively labeled edges in L that are
not in MT(u). Hence L has only finitely many negatively labeled edges.
Suppose conversely that L has only finitely many negatively labeled
edges. We may assume without loss of generality that L is infinite, since
every finite Schreier subset of FG(X) arises as a Munn tree of some word in
(X UX~1)*, and hence as the Schiitzenberger graph of an R-class of FIM(X)
itself. Let B(L) = (Q,q,Q) be the Benois automaton of L: the notation
(Q,90,Q) means that Q is the (finite) set of states of B(L), ¢o is the initial
state and every state is terminal. The set Q of states of B(L) is in one-one
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correspondence with the set of isomorphism classes of directed rooted subtrees of
L. Label the vertices of L by the states in @ in such a way that two vertices
v1, V2 in L have the same label if and only if the directed rooted subtrees of L
rooted at v; and vy are isomorphic. Denote the directed subtree of L rooted
at a state labeled by ¢ € Q by [g]. Clearly [q] is a Schreier subset of FG(X).
Since L is infinite with only finitely many negatively labeled edges, there exists
at least one state ¢ € @ such that [q] is positively labeled. Let @' denote the set
of all states ¢ € @ such that [¢] is positively labeled. For each integer m > 0,
let L™ denote the subtree of L spanned by all vertices of L of distance less
than or equal to m from 1. Then L(™) is a finite Schreier subset of L. Clearly
there exists some integer n > 0 such that all negatively labeled edges of L are
edges of L(™ . Every vertex of L\L(") is labeled by an element of Q'. For each
state ¢ € @ and each integer m > 0, let Lsm) denote the subtree of [¢] spanned
by the vertices of [g] of distance less than or equal to m from the root of [g].
Thus Lg:,") = L™, If p and ¢ are distinct elements of @', then [p] and [q
are non-isomorphic positively labeled trees, so either [p] does not embed in |g
at the root of [g] or else [¢] does not embed in [p] at the root of [p]. In the
former case there is some word u,, € X* such that up4u, lq labels a path in
[p] from the root of [p] to the root of [p] but up,u,; does not label any such
path in [g]. Dually, there exists such a word uy, in the latter case. There is
at most one state pg € Q' such that [po] embeds in [p] at the root of [p] for
every p € Q'. If such a state po exists, define up,, = 1 € X*. For any state
p € Q' — {po}, there exists at least one state ¢ € Q' such that [p] does not
embed in [g] at the root of [g]: in this case, define u, = [Jup 4u,; where the
product is over all ¢ € @' such that [p] does not embed in [g] (at the root of [¢])
and the product is taken in any order. For each ¢ € @', there is some integer
mg > 0 such that the path [¢] labeled by u, (from the root of [g] to itself)

is contained in L(qm"). Let N = max{my : ¢ € Q'}. The integer N has the

following property: if w € L\L™ and LSIN) embeds in L at w, then [¢] embeds

in L at w. (Notice that for w € L\L(™, a positively labeled tree embeds in L
at w in the undirected sense if and only if it embeds in L at w in the directed

sense). We refer to LSN) as a directed finite test tree for [g]. Clearly Lgt) is also
a directed finite test tree for [¢] whenever t > N.

Now suppose that w is a vertex of L™ and suppose Lf,N) embeds in
L at w (in the undirected sense) for some ¢ € Q'. Note that this embedding is
not necessarily in the positive direction: that is, it is possible that some vertices

of w- LSN) may lie on the geodesic from 1 to w in L. Suppose further that [q]
does not embed in L at w (in the undirected sense). Then there is some integer

Ng(w) > N such that L(qN"(w)) does not embed in L at w. If [q] does embed
at w, define N,(w) = N. Since N,(w) > N for any w € L{", the tree L(qN“(w))
is also a directed finite test tree for [g]. Let a, = max {N,(w):w € L(™} and
let a = max{ay:q€ Q'}. Clearly, Lga) is a directed finite test tree for [¢]: in

addition, if L§"’ embeds in L at any vertex w € L™ (in the undirected sense),
then [q] also embeds in L at w (in the undirected sense). The same property

holds for any vertex w € L\L(™ since directed and undirected embeddings of
positively labeled trees coincide at all such vertices and L,(,a) is positively labeled.
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Hence L(q“) is an (undirected) finite test tree for [g]: that is, Lf,"’ embeds in L
at a vertex w of L (in the undirected sense) if and only if [¢] embeds in L at
w.

It follows that if F, is any Schreier set with L\ C F, C [q] (for ¢ € Q')
then L(f), F, and [q] all embed in L at the same vertices of L. We construct
trees F, (for ¢ € Q") as follows. It is clear that if w is any vertex of L labeled
by ¢ € Q' and if L(qa) is embedded in L at w, then the leaves of w - L.(,u) are
all labeled by elements of @' (and this labeling is independent of the choice of
which vertex w € L we choose, so long as w is labeled by ¢). Thus there is a
well-defined labeling of the leaves of Lf,a) by elements of @' (labeled a leaf of
Lf,"’ in the same way as the corresponding leaf of w - LS,") ). For each leaf t of
L(qa), let ¢(t) denote the label on t. Then define (for ¢ € Q'),

_ 1(a) (c)
Fy=L®u (l})t : Lq(,))

where the union is taken over all leaves ¢ of LS,G) : in other words, F, is formed by
glueing the tree L(q‘(’z)) onto LE,") at each leaf t of Lga). Clearly LSIO') C F, C[q],

so LS,") and Fy embed in L at the same vertices. Let eg [resp. fg] be any

idempotent of FIM(X) whose Munn tree is L(qa) [resp. F,]. Now let M be
the inverse monoid M = inv(X : e, = f;,q € Q'). Clearly M is presented by
a finite number of relations of the form ey = f; where e, and f; are positively
labeled. Now let = n+ a + 1 and let e be any element of (X UX~!)* such
that MT(e) = L®: then e is an idempotent of FIM(X). Let R = R., the
R-class of e in the monoid M. We claim that L = Ro. To see this, note that
MT(e) = L® C L and also that the Schreier set L is closed under application
of the relations e; = f; (¢ € Q') since if MT(e;) embeds at a vertex in L,
then so does the larger tree MT(f,). Hence by the iterative construction of Ro
given in Theorem 1.6, Ro C L. On the other hand, we claim that every vertex
w € L is obtained from MT(e) = L®) by iteration involving a finite number of
applications of the relations e; = f; (¢ € Q'). In order to see this, note first
that all vertices of L of distance less than or equal to 3 are contained in Ro
since MT(u) = L®. Thus, in particular, all the negatively labeled edges of L
are contained in Ro. Let w be a reduced word in L with |w| > 8. Then w
factors in (X UX ~!)* as a product w = wyu; where |wi|=n+1 and u; € X*.
Suppose that w; is labeled by ¢;: then q1 € Q' since |w;i| > n. It follows that
wy - LE,") C L®) C Ro by definition of . Now apply the relation e, = fq,
at w;: in other words, w; - F;, C Ro by definition of the iterative construction
of Ro. If w € wy - Fy,, we are finished. If not, there are vertices w2, w; of
L such that w; is on the geodesic from w; to w, ws is on the geodesic from

wy to w, |wz| = |wy] +a (l.e. wy is a leaf of w, -L(q‘:)) and |ws| = |wa| + @
(i.e. w3 is a leaf of wy - Lgc;) where w, is labeled by ¢2 € Q'). Let w3 be
labeled by g3 € Q'. Since w2, w3 € wy - F;, C Ro and since w; - Lg‘;) C Ro,

we may apply the relation e;, = f;, and obtain w2 - Fg, C Ro. If w € wa - Fy,,
we are done. Otherwise, there exists w4 on the geodesic from w3 to w with
lwg| = |w3| + o (i.e. wy is a leaf of w;y - Lf,':) ). Again, since w; -Lg‘:) C Ro, we
see that w3 - Fy;, C Ro. Continue this process: we obtain a sequence of vertices
w1, wy, ws,...,wr on the geodesic from 1 to w such that |wiy1| = |w;|+a for
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each i and such that if w; is labeled by ¢; € @', then w; - L.(,f') C Ro. Since |w|

is finite, we eventually find an integer k such that w € wy - L(qf) C Ro. Hence
w € Ro and so L C Ro. Hence L = Ro and the result is proved. [

The results of this paper were announced by the authors at an Interna-
tional Conference on Universal Algebra, Lattices and Semigroups held in Lisbon,
Portugal in June, 1988.

References

(1] Benois, M., Parties rationnelles du groupe libre, C. R. Acad Sci. Paris,
Sér. A. 269 (1969), 1188-1190.

[2] Berstel, J., Transductions and context-free languages, Teubner
Stiidienbucher, 1979.

[3] Hopcroft, J. E. and J. D. Ulliman, Formal languages and their relation
to automata, Addison-Wesley, 1969.

[4] Lallement, G., Semigroups and Combinatorial Applications, Wiley, 1979.

[5] Margolis, S. and J. Meakin, E-unitary Inverse Monoids and the Cayley
Graph of a Group Presentation, J. Pure Appl. Algebra 58 (1989).

(6] Margolis, S. and J. Meakin, Inverse monoids, trees and context-free

languages, Trans. Amer. Math. Soc. (to appear).

(7 Margolis, S. and J. Meakin, Some decision problems for inverse monoid
presentations, in “Semigroups and their applications”, Goberstein,

Higgins (Ed.), D. Riedel, 1987, 99-110.

(8] Munn, W. D., Free inverse semigroups, Proc. Lond. Math. Soc. 30
(1974), 385-404.
[9] Petrich, M., Inverse Semigroups, Wiley, 1984.

[10] Pin, J. E., Variétés de languages formels, Masson, 1984.

[11) Rabin, M. O., Decidability of second order theories and automata on
infinite trees, Trans. Amer. Math. Soc. 141 (1969), 1-35.

[12] Rabin, M. O., Automata on infinite objects and Church’s problem,

C.B.M.S. Regional Conf. Series in Math., No. 14 (1971), Amer. Math.
Soc..

[13] Serre, J. P., Trees, Springer, Berlin, 1980.
[14] Stephen, J. B., Presentations of inverse monoids, J. Pure. Appl. Algebra
63 (1990), no. 1, 81-112.

[15] Stephen, J. B., Applications of automata theory to presentations of
monoids and inverse monoids, Ph.D. Thesis, University of Nebraska,

1987.
Department of Computer Science Department of Mathematics
University of Nebraska-Lincoln & Statistics
Lincoln, NE 68588 University of Nebraska-Lincoln
USA Lincoln, NE 68588, USA

Received April 10, 1989
and in final form October 11, 1991

148



	Margolis, S.; Meakin, C.J.: Inverse monoids and rational Schreier subsets of the free group.



