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We relate the problem of computing the closure of a finitely generated subgroup of the
free group in the pro-V topology, where V is a pseudovariety of finite groups, with an
extension problem for inverse automata which can be stated as follows: given partial
one-to-one maps on a finite set, can they be extended into permutations generating a
group in V? The two problems are equivalent when V is extension-closed. Turning to
practical computations, we modify Ribes and Zalesskii’s algorithm to compute the pro-p
closure of a finitely generated subgroup of the free group in polynomial time, and to
effectively compute its pro-nilpotent closure. Finally, we apply our results to a problem
in finite monoid theory, the membership problem in pseudovarieties of inverse monoids
which are Mal’cev products of semilattices and a pseudovariety of groups.

Résumé

Nous établissons un lien entre le probléme du calcul de I’adhérence d’un sous-groupe fin-
iment engendré du groupe libre dans la topologie pro-V, ou V est une pseudovariété
de groupes finis, et un probléme d’extension pour les automates inversifs qui peut
étre énoncé de la fagon suivante: étant données des transformations partielles injec-
tives d’un ensemble fini, peuvent-elles étre étendues en des permutations qui engendrent
un groupe dans V7 Les deux problémes sont équivalents si V est fermée par extensions.
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Nous intéressant ensuite aux calculs pratiques, nous modifions ’algorithme de Ribes et
Zalesskil pour calculer I’adhérence pro-p d’un sous-groupe finiment engendré du groupe
libre en temps polynomial et pour calculer effectivement sa cléture pro-nilpotente. Enfin
nous appliquons nos résultats & un probléeme de théorie des monoides finis, celui de de
I’appartenance dans les pseudovariétés de monoides inversifs qui sont des produits de
Mal’cev de demi-treillis et d’une pseudovariété de groupes.

This paper is at the confluence of several streams of research, namely the theory of
profinite groups, the theory of finite monoids and the theory of rational languages.

In [8, 9], Hall defined the pro-V topology on a group, where V is a pseudovariety
of finite groups (i.e. a class of finite groups closed under taking subgroups, quotients
and finite direct products). In the pro-V topology on a group G, a basis of clopen
neighborhoods of 1 is given by the normal subgroups N of G such that N has finite
index and G/N € V. In this paper, we will consider topologies on the free group,
and we will refer especially to the cases where V is the class of all finite groups,
the class of all finite p-groups for some prime p, and the class of all finite nilpotent
groups. We will talk respectively of the profinite topology, the pro-p topology and
the pro-nil topology.

Hall showed that every finitely generated subgroup of the free group is closed
in the profinite topology and is a free factor of a clopen subgroup [9]. It is easily
seen that this result does not extend to all pro-V topologies on the free group.
However it is a difficult question to decide, for a fixed pseudovariety of groups V,
whether a given finitely generated subgroup H is closed, or to compute the closure
of H. It is not true in general that the closure of a finitely generated subgroup is
finitely generated.

In [18], Ribes and Zalesskil showed that the pro-p closure of a finitely gener-
ated subgroup of the free group is finitely generated (a fact which holds when-
ever the class V is extension-closed) and effectively computable. They also showed
that, in the pro-p topology, closed finitely generated subgroups are free factors of
clopen subgroups.

In this paper, we return to Ribes and Zalesskii’s paper, both for its theoretical
results and for the algorithm to compute the pro-p closure of a finitely generated
subgroup. First we attempt to clarify which properties depend on the closure of V
under extension and which do not. We are able to distinguish three properties of
a finitely generated subgroup H of the free group, which are equivalent when V
is extension-closed: the first property is for H to be closed in the pro-V topology;
the second property is for H to be a free factor of a clopen subgroup (the clopen
subgroups are the finite-index subgroups K such that the quotient of the free group
by the core of K — the intersection of all the conjugates of K — is an element
of V [9]); the last property is an extension property which is expressed in terms
of the finite state automaton canonically associated with H. This automaton is a
finite, graphical representation of the immersion of the bouquet of circles associated
with H, see Stallings [21] and the details below. At this point, it is only useful to
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know that this automaton, or labeled graph, is effectively computable from a set of
generators of H, that it uniquely characterizes H, and that it is such that each letter
of the alphabet (the set of generators of the free group) labels a partial one-to-one
map from the set of states into itself. We say that H is V-extendible if this set
of partial one-to-one maps can be extended to a set of permutations of a possibly
bigger set of states generating a group in V.

In the first part of the paper, we show that every finitely generated V-closed
subgroup is V-extendible, every V-extendible subgroup is a free factor of a V-
clopen subgroup, and for any finitely generated subgroup H, there exists a least
V-extendible subgroup H containing H. The subgroup H always sits between H
and its closure. We also show that H is V-closed if and only if all its conjugates are
V-extendible. When V is extension-closed, we verify that H is V-closed if and only
if H is V-extendible, if and only if H is a free factor of a V-clopen subgroup. In
particular, in that case, H is the closure of H. Ribes and Zalesskif showed that in
the extension-closed case, the rank of the closure of H is always less than or equal
to the rank of H [18].

In the second part of the paper, we modify Ribes and Zalesskii’s algorithm to
compute the pro-p closure of a finitely generated subgroup [18]. The basic idea of
the algorithm is not deeply transformed, but we are able to show that our algorithm
terminates in polynomial time, whereas the termination of theirs was proved by a
compactness argument which did not allow immediate evaluation. The main steps
of our algorithm are expressed in terms of computing congruences on the finite au-
tomaton associated with H, and solving elementary problems in finite-dimensional
linear algebra over the p-element field. Since for the pro-p topology, being closed is
equivalent to being extendible, the algorithm also decides whether H is p-extendible.
In fact, the algorithm can be modified to compute an extension of the automaton of
H consisting of permutations that generate a p-group, or equivalently, computing
a p-clopen subgroup K of which H is a free factor.

Next we turn to the pro-nil topology. The previous results do not apply directly
here as the class of nilpotent groups is not extension-closed. However, every finite
nilpotent group is a direct product of p-groups. We use this well-known fact to
prove that the nil-closure of a finitely generated subgroup H is finitely generated
and we give an algorithm to effectively compute this closure.

There are important connections between this work and results in the theories
of finite monoids and rational languages. One connection was made explicit in
Ribes and Zalesskif [18]: ideas originating in [13] are put to work to show how the
computation of the pro-p closure of a finitely generated subgroup of the free group
can be used to compute the closure of a rational language in the pro-p topology
of the free monoid. We refer the reader to [18] for the details, pointing out here
that our improved algorithm also speeds the computation of such a closure. We also
want to point out that the algorithm to compute the closure of a rational language
also uses a very deep result on products of closed subgroups of the free group, which
was established by Ribes and Zalesskil as well [17].
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This latter result was Ribes and Zalesskii’s solution to Rhodes’ so-called
type II conjecture, which was settled independently by Ash as well [3], see [10].
Rhodes’ conjecture had been proposed in the seventies in the context of finite
monoid theory. Here too we refer the reader to the survey paper [10] for details.
It suffices to mention here that the object of this conjecture was an algorithm to
compute the V-kernel of a finite monoid, where V is a pseudovariety of groups
as above. The V-kernel of the monoid M is the set of elements x € M such that
x is always related to the identity in a relational morphism from M into a group
in V. Determining whether an element x of M lies in its V-kernel reduces to de-
ciding whether the empty word belongs to the pro-V closure of a certain rational
language.

This computation in turn is linked with the membership problem for pseu-
dovarieties constructed using the Mal’cev product. The last section of the paper
solves this problem in the case of Mal’cev products of pseudovarieties of inverse
monoids of the form SL @ V where SL is the class of finite semilattices (idem-
potent and commutative monoids) and V is a pseudovariety of groups. We prove
that the membership problem in such a pseudovariety reduces to deciding whether
certain finitely generated subgroups of the free group are V-extendible. A very re-
cent result of Steinberg, which uses the results of this paper that were obtained in
preprint form, solves — among other important results — the membership problem
for pseudovarieties of monoids of the form J @) V, where J is the class of J-trivial
monoids [22].

1. The Pro-V Topology on a Group

Here we present general results on profinite topologies on groups. For a general
reference on the theory of groups, the reader is referred to [19]. For basic results
on profinite groups, see [20, 16, 5, 6]. A more general approach, involving profinite
monoids, can be found in [1, 2]. Profinite topologies on groups were introduced by
M. Hall [9)].

1.1. Definitions

A pseudovariety of groups is a class of finite groups closed under taking subgroups,
homomorphic images and finite direct products. Important examples are G, the
pseudovariety of all finite groups; G, the pseudovariety of all finite p-groups (where
p is a prime number); G and Gy, the pseudovarieties respectively of all finite
nilpotent groups and of all finite solvable groups. If V is a finite group, we let (V)
be the pseudovariety generated by V: it is the class of all homomorphic images of
subgroups of direct powers V* of V. The trivial pseudovariety is that which consists
only of 1-element groups. In the sequel, we assume that all the pseudovarieties we
consider are non-trivial.

Let V be a pseudovariety of groups and let G be an arbitrary group. The pro-V
topology on G is defined as the initial topology which makes all morphisms from
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G into elements of V continuous (all finite semigroups and groups considered here
are equipped with the discrete topology). Thus a basis of open sets is given by the
@~ 1(x), for all morphisms ¢: G — V, with V € V. Equivalently, G is a topological
group and the normal subgroups K of G such that G/K € V, form a basis of
neighborhoods of 1.

We say that two elements x,y € G can be separated by a group V if there exists
a morphism ¢: G — V such that px # py. The group G is residually V if each pair
of distinct elements of GG, can be separated by some group in V. By definition, the
pro-V topology on G is Hausdorff if and only if G is residually V. Observe that if
G is residually V, then all subgroups of G are residually V.

The pro-V topology on G can also be defined by an ultrametric écart, or quasi-
metric, as follows. If z,y € G can be separated by an element of V, then we let

r(z,y) = min{|V||V € V, V separates z and y},

d(a,y) = 277

If z and y cannot be separated by an element of V, then we let d(z,y) = 0. One
can verify that the mapping d satisfies

d(x,y) = d(yvx) and d(m,y) < max(d(x, Z)vd(ya Z))

for all z,y,z € G. For this écart, multiplication in G is contracting, and hence
uniformly continuous. Moreover, the topology defined by d on G is exactly the
pro-V topology introduced above.

Let G be the Hausdorff completion of (G,d) [4, TG.IL. 3.7-9]. We say that G
is the pro-V completion of G. The construction of G is as follows. For all u,v € G,
we let u ~ v if d(u,v) = 0. Then ~ is a congruence on G, and d naturally induces
a distance function on the quotient G/ ~. That is, (G/ ~,d) is a metric space,
and G/ ~ is a group whose multiplication is uniformly continuous. By definition,
G is the completion of that metric space. Of course, if G is residually V, that is,
if the écart d on G is in fact a distance function, then ~ is trivial and G is the
completion of (G, d) in the usual sense. It is important to stress that d, ~ and G
strongly depend on V, and ought to be written dv, ~v and Gv respectively.

Let 1c:G — G (» if G is understood) map each element x € G to its ~-class.
Then ¢ is a morphism, onto a dense subset of G. It is one-to-one if and only if G is
residually V, in which case it is usually omitted, that is, we consider G as a dense
subset of G.

A group is said to be profinite if it is a projective limit of finite groups. It is
known that a group is profinite if and only if it is compact and totally disconnected
(see [16]). More generally, we say that a group is pro-V if it is a projective limit
of groups in V. Equivalently, a group is pro-V if it is profinite and all its finite
continuous homomorphic images are in 'V (see [16]). Note that a finite group is
pro-V if and only if it belongs to V.

One can show that G is (topologically isomorphic to) the projective limit of the
homomorphic images of G belonging to V. In other words, the topology of G (as
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the pro-V completion of ) coincides with the topology it receives as a projective
limit. In particular, G is pro-V, and hence compact.

If X is a subset of G, we denote by X the topological closure of X in G If X
is a subset of G, we denote by CI(X) its topological closure in the pro-V topology
of G. In particular, we have, CI(X) = 2~ *(1(X)), and CI(X) = X NG if G is
residually V.

1.2. Properties of morphisms

The following simple observation will be useful in the sequel.

Proposition 1.1. Let G and G’ be groups equipped with their pro-V topologies.
Let ¢: G — G’ be a group morphism. Then ¢ is contracting, uniformly continuous,
and it induces a unique continuous morphism ¢: G — G’ such that $org =16 0 .

Proof. Let u,v € G. Every group V € V that separates ¢(u) and ¢(v), also sepa-
rates v and v. Thus, by definition of the écarts which define the uniform structures
on G and G’, the morphism ¢ satisfies d(p(u), p(v)) < d(u,v), and hence ¢ is uni-
formly continuous. The rest of the statement follows from the general properties of
complete spaces. O

1.3. Open and closed subgroups

We summarize here well-known results on pro-V topologies (see [9, 6, 18]). If G is
a group and if H is a subgroup of G, the core of H is defined to be the greatest
normal subgroup He of G contained in H. That is, Hg = Ngegg 'Hg. We let g
be the canonical morphism from G onto G/Hg.

Proposition 1.2 (9, Theorem 3.1). Let G be a group equipped with its pro-V
topology, and let H be a subgroup of G. The following are equivalent.

(1) H is open;
(2) H is clopen;
(3) H has finite index and G/Hg € V.

Proof. Hg is a normal subgroup of G contained in H, so H is trivially a union of
Hg-cosets. In particular, H = ,ul_{l/,LH(H). So, if G/Hg € V, then H is clopen.

Observe that Hg has finite index if and only if H has finite index: in one
direction it follows from the containment Hz C H and in the other direction, from
the fact that Hg is an intersection of conjugates of H.

If H is open, then H contains an open neighborhood of 1, i.e. a normal subgroup
N such that G/N € V. In particular, N C Hg, so H and Hg have finite index.
Moreover, G/Hg is a quotient of G/N, and hence G/Hg € V. O
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Proposition 1.3 (9, Theorem 3.3). Let G be a group equipped with its pro-V
topology, and let H be a subgroup of G. Then CI(H) coincides with the following
intersection of open subgroups

CiiH)= [ K= [) ¢ 'eH).

K open subgroup w:G—>V
HCK vVev

Proof. CI(H) is contained in each open subgroup containing H because open
subgroups are closed (Proposition 1.0). The first intersection is contained in the
second one because each ¢~ 'p(H) is open, by definition of the topology.

There remains to see that the second intersection is contained in CI(H). Let
g & CI(H). Then g admits an open neighborhood which avoids H. That is, there
exists a morphism ¢:G — V such that V € V and ¢ 1p(9) € G\H. Then
©o(g) & p(H), so g & o~ 1¢(H), and this concludes the proof. O

This yields immediately the following corollary.

Corollary 1.1. Let G be a group equipped with its pro-V topology, and let H be a
subgroup of G. The following are equivalent.

(1) H is closed;

(2) H is an intersection of open subgroups;

(3) H is the intersection of the open subgroups containing it;

(4) H is the intersection of the ¢~ 1(p(H)), for all morphisms p: G — V such that
VeV.

1.4. Pro-V topology of subgroups

If H is a subgroup of the group G, we can consider two topologies on H: its own
pro-V topology as a group, and the restriction to H of the pro-V topology of G.

Proposition 1.4. Let G be a group equipped with its pro-V topology. Let H be a
subgroup of G. The restriction to H of the pro-V topology on G is contained in the
pro-V topology on H.

Proof. Let U be an elementary open subset of G: there exists a morphism
©:G —V such that V € V and U = ¢ 1(v) for some v € V. If ¢ is the re-
striction of ¢ to H, ¥ = ¢, then UNH = ¥~1(v), so UN H is open in the pro-V
topology of H. |

Let H be a subgroup of G and let 3: H — G be the inclusion morphism. We
say that H is a retract if there exists a morphism ¢: G — H such that p o j=idp,
i.e. the restriction of ¢ to H is the identity of H. Equivalently, there exists an onto
morphism ¢: G — H such that ¢? = . The following situation will arise frequently
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in the sequel: a free factor of G is a retract of G. Recall that H is a free factor
of G if there exists a subgroup H' of G such that G is (isomorphic to) the free
product H x H'.

The three following statements generalize [18, Lemma 3.1(ii)].

Proposition 1.5. Let G be a group equipped with its pro-V topology. Let H be a
retract of G. Then the pro-V topology of H coincides with the restriction to H of
the pro-V topology of G.

Proof. Let 3: H — G be the inclusion morphism and let ¢: G — H be a morphism
such that ¢ o 7 = idyg. By Proposition 1.4, if U is open in the pro-V topology on
G, then U N H is open in the pro-V topology on H.

Conversely, let U be an elementary open set of the pro-V topology of H. Then
there exists a morphism v¢: H — V such that V € V and U = ¢~!(v) for some
v € V. Now consider the composite morphism 1 o ¢: G — V. Then (¢ o p)~1(v) is
open in G, and (o) L (v)NH = ¢~} (U)NH = U. So U is open in the restriction
to H of the pro-V topology of G. |

Corollary 1.2. Let G be a group, equipped with its pro-V topology, and let H be
a retract of G. Let 1 be the natural morphism from G into its pro-V completion
G. Then 15" 1c(H) is closed in G.

Proof. Let € Cl(15'1q(H)). Then for each ¢ > 0, there exists an element
h € 15" 1c(H) such that d(z,h) < e. In particular, 1g(h) € 1g(H), so there exists
k' € H such that 1g(h) = 1g(h’), that is, d(h,h’) = 0. It follows that d(z,h’) < e.
Let ¢: G — H be an onto morphism such that ¢? = ¢. By Proposition 1.1, we have
d(e(z),o(h")) <e. Now h' € H, so p(h') = b/, and thus d(¢(z),h’) < e. Since d is
ultrametric, we have d(¢(z),z) < € for each € > 0, and hence d(¢(x),z) = 0, that
is, 16(z) = 16(p()). But (z) € H, so z € 15" 1¢(H). O

In the case of a residually V group, Corollary 1.2 yields the following.

Corollary 1.3. Let G be a residually V group, equipped with its pro-V topology,
and let H be a retract of G. Then H is closed in G.

Proof. Under the assumption that G is residually V, the morphism ¢ is one-to-
one. By convention we can omit it, that is, we may consider G as a subgroup of G.
The result then follows immediately from Corollary 1.2. |

We say that the finite quotients of G are closed under V-extension if, whenever
K is a finite quotient of G, N is a normal subgroup of K, N € V and K/N € V,
then K € V. Naturally, this is the case if the class V is closed under extension.
The following statement is a restatement of [7, Lemma 3.1].
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Proposition 1.6. Let G be a group equipped with the pro-V topology. If the finite
quotients of G are closed under V-extension, and if H is a clopen subgroup of
G, then the pro-V topology of H coincides with the restriction to H of the pro-V
topology of G.

Proof. By Proposition 1.4, we know that any open subset of G which is contained
in H, is also open in the pro-V topology on H.

Conversely, let us assume that U C H is an elementary open set of the pro-
V topology of H. There exists a morphism ¢: H — V such that V € V and
U = ¢ 1(v) for some v € V. Up to a translation, we may assume that U = ¢~ 1(1),
that is, U is a normal subgroup of H and V = H/U. In particular, U has finite
index in H. By Proposition 1.0, H has finite index in G, so U has finite index in
G. By Proposition 1.0, we need to prove that G/Ug € V.

Since H has finite index in G, we have G = Uj_; HEk; for some finite family
ki,..., k. of elements of G. In particular, Hg = ﬁleki_lHki. We also have Ug =
ﬁ{zlki_lUki since U is normal in H. Now Ug is normal in G and Ug C Hg, so

G/Hg = (G/Ug)/(Hg/Ug) .

We know that G/Hg € V, so it suffices to prove that Hg/Ug € V. Let o be the
morphism

o (ki "Hki — [ [ (ki "Hk; /k; " Uks)
i=1 =1

T (Ji(ki_lUki))lgigr-

Then kero = Ug. Moreover, [[|_, (k; 'Hk;/k; 'Uk;) is isomorphic to the direct

product of r copies of H/U. Therefore Hg/Ug is isomorphic to a subgroup of
(H/U)", and hence Hg/Ug lies in V. This concludes the proof. m|

Example 1.1. In the above proposition, the hypothesis that the finite quotients
of G are closed under V-extension is needed. Indeed, suppose that V is the class of
nilpotent groups and G is the free group over the 2-letter alphabet {a, b}: the finite
quotients of G are not closed under V-extension.

Let S3 be the symmetric group on 3 elements and let ¢p: G — S5 be the morphism
given by ¢(a) = (12) and ¢(b) = (13). Let K = kery. Let £:S3 — Zy be the
signature morphism and let H = ker(e o ¢). Then H and K are normal in G and
K C H. Moreover, G/H = Zs, so H is clopen in the pro-nilpotent topology of G,
and H/K = Z3, so K is clopen in the pro-nilpotent topology of H. But G/K = S3
is not nilpotent, so K is not clopen in the pro-nilpotent topology of G. Thus the
conclusion of Proposition 1.6 does not hold for the pro-nilpotent topology on G.

We will see (Example 3.1) that the closure of K in G is H.
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2. The Case of Free Groups

Let F(A) be the free group over a fixed finite alphabet A. We will denote by 4 (V)
the pro-V completion of F(A).

The group F4(V) enjoys certain freeness properties. Firstly, the image i(F(A))
of F(A) in F4(V) is the free object over A of the variety of groups generated by
the (finite) groups in V. For instance, if V is the pseudovariety of finite abelian
groups, then i(F(A)) is the free abelian group over A. Of course, if the free group
is residually V (e.g. V. = Gy, Guil, Gsol), then i is injective, and i(F'(A)) is the
free group over A.

Moreover, F4 (V) is the free pro-V group over A (see for instance [2,
Proposition 1.3]):

Proposition 2.1. Let 0: A — H be a mapping into a pro-V group H. Then there
exists a unique continuous morphism &: Fx(V) — H such that 6 o1 = o. If o(A)
generates a dense subgroup of H, then & is onto.

A simple situation arises when V has a finite free object F'4 (V) over the alphabet
A (for instance if V is generated by a single group).

Proposition 2.2. Let 'V have a finite free object Fa(V). Let o be the nat-
ural projection o:F(A) — Fa(V). For each subset X C F(A), we have
Cl(X) =o0"1(o(X)).

Proof. Every morphism v¢: F(A) — V into a group V € V can be factorized
through . The result then follows immediately from Proposition 1.0. |

But there is much more to be gained from the freeness of F(A): we now
turn to the representation of finitely generated subgroups of F(A) by means of
finite automata.

2.1. Inverse automata and subgroups of the free group

For the results not proved in this section, the reader is referred to [21]. The central
idea is a graphical representation of ideas that go back to the early part of the
twentieth century (see [11] and [19, Chap. 11]).

Let Y be a finite set of elements of F/(A) and let H be the subgroup of F(A)
generated by Y. From Y we construct an A-labeled graph A(H) in three steps.

First, we construct a set of |Y| loops around a common distinguished vertex 1,
each labeled by an element of Y, with the following convention: an inverse letter
a~! (a € A) in a word of Y gives rise to an a-labeled edge in the reverse direction
on the corresponding loop.

Then, we iteratively identify identically-labeled pairs of edges starting or ending
at the same vertex. (One can show that the order in which these identifications are
performed is irrelevant.)



Closed Subgroups in Pro-V Topologies 415

The last operation consists in “reducing” the graph: we iteratively remove ver-
tices of degree one other than 1.

Example 2.1. Y = {bab~!,b%aa2}. Some steps of the computation.

Observe that this construction is performed in time O(n?), where n is the length
of the input, that is, n is the sum of the lengths of the elements of Y.

The labeled graph A(H) thus constructed is determined by H, and does not
depend on the choice of the particular generating set Y [11]; this justifies the no-
tation A(H).

An inverse automaton over an alphabet A is a tuple A = (Q, A, J,1, f) where Q
is a finite set, called the set of states, i € @ is the initial state and f € @ is the final
state. §:@Q x (AU A~1) — @Q is a partial function such that §(p,a) = ¢ if and only
if 6(q,a=1) = p for each a € A and p,q € Q. The mapping ¢ is called the transition
function of A, and it is usually written §(q,a) = ¢-a (¢ € Q,a € AU A™!). We
say that the automaton A is complete if for each ¢ € Q and for each a € AU A™1,
q - a exists.

Let (AUA™1)* be the free monoid over AUA™!, that is, the set of finite sequences
of letters of AUA~!. The transition function is extended to Q x (AUA™!)* by letting
¢-1=gand g-(ua) = (¢-u)-a (if this is defined) for all ¢ € Q, u € (AUA~1)* and
a € AUA™L. The transition morphism of A is the morphism defined on (AU A~1)*
which maps each word u to the partial tranformation of @ given by g — ¢ - u. The
transition monoid of A is the range of the transition morphism, that is, the monoid
of partial transformations of @ induced by the words of (AU A~1)*.

We say that a state ¢ € Q has degree 1 if

Card{pe QFac AUA™! qg-a=p}=1.

We say that A is reduced if its initial state ¢ coincides with its final state f, if every
state lies on a path from ¢ to 4, and if no state has degree 1, except maybe the
initial-final state 1.
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If H is a finitely generated subgroup of F(A), we can view A(H) as a re-
duced inverse automaton over A as follows: the vertices of A(H) are considered
as states, with the distinguished vertex 1 as initial-final state. If a € A labels an
edge from vertex p to ¢, we let p-a = q and ¢-a~! = p. By construction, A(H)
is a reduced inverse automaton. It is easily verified that if u is a reduced word in
(AUA=Y)* then 1-u = 1 if and only if u € H and A(H) is the minimal automaton
with this property [11].

There is also a reverse construction, from a reduced inverse automaton to a
finitely generated subgroup of F'(A4). More precisely, if A = (Q, 4, 6,1, 1) is a reduced
inverse automaton, one can effectively construct a basis of a finitely generated
subgroup H of F(A) such that A = A(H).

First we compute a spanning tree T' of the graph A. For each state ¢ of A, there
is a unique shortest path from i to ¢ within 7': we let u, be the label (in (AUA™)*)
of this path. Let p; il g; (1 < j < k) be the A-labeled edges of A which are not
in T. For each j, let y; = upjaju;1 € (AuA~Y)* and let H = (y1,...,yx). Then

)

{y1,...,yx} is a basis for H and A = A(H) [21].

Example 2.2. Let H = (a?b!,ab=2 ba,a *baba~!). Then a>, ba=2 and a?ba~!
form a basis of H.

a spanning tree 7'

2 2

Observe that the construction of a spanning tree can be performed in time O(e),
where e is the number of edges of the automaton A. If we want to effectively write
down a basis of H, we need to find the geodesics in T from 1 to each vertex, and
then to write down one generator for each edge not in the spanning tree. This takes
time O(en), where n is the number of vertices of A. In particular, we can combine
the two constructions given above to compute, in quadratic time, a basis of the
subgroup generated by a given finite set of elements of F/(A).

Note 2.1. There are analogues of the constructions above, which are valid for any
subgroup H of the free group. If we start from an infinite set Y of generators of
H, the resulting labeled graph A(H) again depends only on H, but it may be
an infinite graph (it is infinite if and only if H does not have finite rank). That
graph can again be considered as an inverse automata, with a possibly infinite set
of states.

An inverse monoid is a monoid M such that for each element x € M, there
exists a unique element 2’ € M such that o’z = x and 2’z2’ = 2’. The element z’
is called the inverse of =, and it is written &’ = 2~ !. Inverse monoids form a variety
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of algebras, and we denote by FIM(A) the free inverse monoid on A. See [12] for
basic facts about inverse monoids.

If A=(Q,A,1Jd, f) is an inverse automaton, then each letter a € A induces a
partial one-to-one transformation on the set @, and letter a~! induces the recipro-
cal transformation. It easily follows that the transition monoid of A is an inverse
monoid. If H is a finitely generated subgroup of F(A), we denote by uy and M(H)
respectively the transition morphism and the transition monoid of A(H).

It is well-known that H has finite index if and only if A(H) is a complete
automaton (and hence each letter labels a permutation of the states), if and only if
M(H) is a group [21]. In that case, the set of vertices of A(H) is in bijection with
the set of right cosets of H, and A(H) describes the action of F'(A) on these cosets
by right translation. In particular, M (H) = F(A)/Hp(a). By Proposition 1.0, this
implies the following.

Proposition 2.3. Let H be a finitely generated subgroup of the free group F(A).
Then H s clopen if and only if A(H) is complete and M(H) € V.

An automaton morphism between inverse automata with one initial-terminal
state (from now on always denoted 1) is a mapping between the sets of states,
which takes 1 to 1, and which preserves the labeled transitions. An automaton
congruence on the automaton A is an equivalence relation ~ on @, the set of states
of A, such that if p ~ g and p-a and g-a exist in A (a € AUA™!), thenp-a ~ q-a.
The quotient automaton A/ ~ has set of states Q/ ~, it has initial-terminal state
the ~-class of 1, and it has an a-labeled transition from [p] to [g] if there exists an
a-labeled transition of A from p’ to ¢’ for some states p’ ~ pand ¢’ ~ ¢. If p: A — B
is an automaton morphism, and if ~ is the induced congruence on A (two states p
and g are ~-related if and only if p(p) = ©(q)), then there is a natural embedding
of A/~ into B, which is onto if ¢ is.

Proposition 2.4. Let H and H' be finitely generated subgroups of F(A). Then H
is contained in H' if and only if there exists an automaton morphism from A(H)
into A(H').

That morphism, if it exists, is unique. Moreover, if it is one-to-one, then H is
a free factor of H'.

Proof. Suppose that H C H': if B is a generating set of H, we can add to B
a finite number of elements of H' to get a generating set B’ of H'. Now consider
the construction process of A(H') from B’: clearly A(H') can be obtained from
A(H) by adding vertices and transitions, and then identifying states. So there is
an automaton morphism from A(H) into A(H').

Conversely, let ¢: A(H) — A(H') be an automaton morphism. If a reduced word
ulies in H, then 1-u =1in A(H), so, via ¢, 1-u =1 in A(H'), and hence v € H'.

The uniqueness is immediately derived from the fact that the automata are
inverse and that we impose ¢(1) = 1.
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Let us now assume that ¢: A(H) — A(H') is one-to-one. Any spanning tree
of A(H) (identified with its image under ¢) can be extended to a spanning tree
of A(H'). It follows from the basis construction procedure given above that there
exists a basis of H' which contains a basis for H, and hence H is a free factor
of H'. O

Observe that there are many more free factors of H' than can be represented
by sub-automata of A(H'). For instance, the free group on two generators is freely
generated by ab and b, so (ab) is a free factor of the free group, although its automa-
ton does not embed in the bouquet of two circles. Only finitely many free factors of
H' arise as sub-automata of A(H'). Of course, the automaton A(H') is essentially
dependent on the choice of A, the set of generators of the free group.

Similarly, there are only finitely many subgroups H' of the free group such that
the morphism from A(H) to A(H’) is onto, or equivalently, such that A(H') =
A(H)/ ~ for some congruence ~ on A(H). Such subgroups are called overgroups
of H.

If H is a finitely generated subgroup of F'(A) and if H C K, we let ~ g x be the
automaton congruence on A(H) induced by the morphism from A(H) into A(K).
Suppose that, for each state p of A(H), u, is a reduced word such that 1-u, =p
in A(H). Then two states p and ¢ of A(H) are ~p g-equivalent if and only if
Uply leK.

2.2. Extendible subgroups

We say that a subgroup H of the free group F(A) is V-extendible (extendible, if the
pseudovariety V is understood) if its automaton can be embedded into a complete
automaton with transition group in V, that is, into the automaton of a clopen
subgroup (Proposition 2.3). In other words, H is extendible if and only if there
exists a clopen subgroup K such that ~g i is the trivial congruence.

Proposition 2.5. Let H be a finitely generated subgroup of F(A). If H is ex-
tendible, then H is a free factor of a clopen subgroup.

Proof. This is a trivial consequence of Proposition 2.4. O

We will see (Example 2.4) that the converse is not true, that is, there are free
factors of clopen subgroups which are not extendible. However the two notions
coincide if the pseudovariety of groups V is extension-closed (Proposition 2.9).

We will examine in more detail the relationship between the property of
extendibility and the topological properties of a subgroup in Sec. 2.3. Let us first
remark that each finitely generated subgroup of F'(A) is contained in a “best”
extendible subgroup. If H is a finitely generated subgroup of the free group, let
~ be the intersection of the ~p x, where the intersection runs over all clopen
subgroups K containing H.
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Lemma 2.1. Let H be a finitely generated subgroup of F(A). Then the automaton
congruence ~ coincides with ~p cymy - Moreover, there exists a clopen subgroup
K containing H such that ~ coincides with ~p i .

Proof. For each state p of A(H), let u, be a reduced word such that 1-u, =pin
A(H). Let p, q be states of A(H). Then p ~p cim) ¢ if and only if upuq’l € Cl(H).
But CI(H) is the intersection of the clopen subgroups containing H, so ~ g ci(#)
and ~ coincide.

Since A(H) is finite, there are only finitely many congruences on A(H), so there
exists a finite collection of clopen subgroups containing H, say Ki,..., K,, such
that ~= NI_; ~m Kk,. It follows from the definition of the ~py g, that ~=~p g,
where K = NI_; K;. Since K is a finite intersection of clopen subgroups of F(A),
K is clopen. O

Let H be the subgroup of F(A) such that A(H) = A(H)/ ~. Equivalently,
A(H) is the image of A(H) in A(CI(H)). By definition, H is finitely generated.

Proposition 2.6. Let H be a finitely generated subgroup of F(A). The subgroup
H is the least extendible subgroup containing H.

Proof. By Lemma 2.1, ~=~p g for some clopen subgroup K containing H. There-
fore A(H) embeds in A(K), and hence H is extendible.

Conversely, let H' be an extendible subgroup containing H and let K be a
clopen subgroup such that A(H') embeds in A(K). Then K contains H, so ~ is
contained in ~g g. We want to show that ~ is contained in ~g g.

For each state p of A(H), let u,, be a reduced word such that 1-u, = p in A(H).
Since H is contained in H’, there exists an automaton morphism from A(H) into
A(H'), so u, also labels a path in A(H’) starting at state 1. Now A(H') embeds into
A(K), so if p and q are states of A(H), then p ~g x qif and only if 1-up =1-u,
in A(K), if and only if the same equality holds in A(H'), that is, if and only if
p ~m ' q. Therefore p ~ ¢q implies p ~p, x ¢ implies p ~g g q. Thus there exists
a morphism from A(H) into A(H'’), and hence H C H'. O

This leads to the following properties of extendible subgroups.

Corollary 2.1. Let H be a finitely generated subgroup of F(A). H is extendible if
and only if ~ is trivial on A(H), if and only if H = H.

Proof. By definition of H, ~ is trivial on A(H) if and only if H = H. By
Proposition 2.6, H is extendible if and only if H = H. O

Corollary 2.2. Let H be a finitely generated subgroup of F(A). Then ﬁ =H.
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2.3. Closed subgroups

We first verify that if H is a finitely generated subgroup of F(A), then H sits
between H and its closure.

Proposition 2.7. Let H be a finitely generated subgroup of F(A). Then H C H C
Cl(H) and H 1is a free factor of CI(H).

Proof. It suffices to observe that, by Lemma 2.1, the congruences ~ and ~ g, ci(m)

on A(H) coincide, so A(H) = A(H)/ ~ embeds in A(CI(H)). O

The second part of the following statement is [18, Corollary 3.1(i)].

Corollary 2.3. Fwvery finitely generated closed subgroup is extendible, and is a free
factor of a clopen subgroup.

Note 2.2. It is clear that if H is a finitely generated subgroup of F(A), then the
subgroup H has finite rank, since its automaton A(H) is a quotient of the finite au-
tomaton A(H). It is not true however that Cl(H) has finite rank in general. H = {1}
has rank 0 and if V = Ab, the pseudovariety of finite abelian groups, then CI(H)
is the derived subgroup of F(A), which has infinite rank. See Propositions 2.9, 2.10
and 4.1 below.

Example 2.3. Let V be the pseudovariety of nilpotent groups. We exhibit an
extendible subgroup which is not closed. Let K be the subgroup of F(A) whose

automaton is:
K = (ab 1, a?b a1, a3b a2,
a*b=ta=3,a%b"ta=* ab a’b) .
\ /b

,a,a
(l,

a.b

K is clopen since M (K) is the cyclic 6-element group, which is trivially nilpotent.
Now let H be the group whose automaton is obtained from that of K by removing
one arrow as follows:
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SN

H = {ab ', a’b"ta" 1, a%b a2,
a*b~ta=3,a%b"ta%,af).
\ /b

a.b

H is trivially extendible since its automaton embeds in that of K. But one
can show that the closure of H is K (see Example 4.2). Note that H has rank 6
and K has rank 7, that is, the closure of H has rank greater than that of H (see
Proposition 2.10).

Example 2.4. A slight modification of the previous example shows that a finitely
generated subgroup may be a free factor of a clopen subgroup, yet not be extendible.
We use the notation of Example 2.3. Let H' = bHb~'.

N
A

Observe that K is normal, so bKb~! = K. Since conjugation by b is a homeomor-
phism, H' is a free factor of K and CI(H') = K, but A(H’) clearly does not embed
in A(K), that is, H' is not extendible.

Note 2.3. This shows that the property of extendibility for a subgroup of the free
group is a combinatorial property, but it is neither purely topological nor purely
algebraic, since it is not preserved by conjugation.

The next result establishes a weak converse of the second statement of
Corollary 2.3. It gives a necessary and sufficient condition for a finitely generated
subgroup to be closed, which is inspired by M. Hall’s theorem which states that
finitely generated subgroups of the free group are closed [8], or at least by its proof
in [21].

Proposition 2.8. Let H be a finitely generated subgroup of F(A). Then H is
closed if and only if all the conjugates of H are extendible.
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Proof. In this proof, we let Q be the set of states of A(H), we let - be the transition
function of A(H), and we let 1 € @ be the designated vertex of A(H). For short,
we write A(H) = (@, 1,-).

Conjugation by an element z € F(A) is a homeomorphism, so if H is closed,
then each conjugate x~!Hz is closed, and hence extendible by Corollary 2.3.

To prove the converse, we assume that all conjugates of H are extendible. We
first consider the situation where A(H) does not have any vertex of degree 1 (that
is, the vertex 1 of A(H) does not have degree 1). We will show that for each
element z € F(A)\H, there exists a clopen subgroup K containing H, and such
that « ¢ K. This suffices to show that each such z lies outside CI(H), and hence
that H = CI(H).

Let x be a reduced word in F(A)\H. If x labels a path in A(H) starting at 1,
let g =1-2. Then 1 # ¢ since x ¢ H. Since H is extendible, the automaton A(H)
embeds in the automaton A(K) of a clopen subgroup K. In A(K), 1.2 =gq, as in
A(H),soz ¢ K.

Let us now assume that x does not label a path starting at 1 in A(H). Let
x1 be the longest prefix of z which can be read in A(H) starting at 1, and let zo
be the reduced word such that z = z122. We extend A(H) with |z2| new edges
and vertices to form a path reading x- starting at 1-x;. Notice that this extended
automaton is again an inverse automaton. We let Q@ be the extended set of vertices,
and we still write - for the transition function of the extended automaton. We let
g=1-2=(1-x1)-z2. By construction, ¢ is not a state of A(H), and it is the only
element of Q* which is of degree 1.

We claim that, if H' is the subgroup such that A(H') = (Q™",q,-), then H' =
r~1Hzx. Indeed, if u is a reduced word which labels a path from ¢ to ¢ in A(H'),
then u must be of the form z 'vzs, where v is a reduced word which labels a
path from 1-x; to 1-x; within A(H). We have (1- ;1) -v = 1- 2, and hence
1-(zyvzyt) = 1in A(H). So zyvz; ! € H, that is, v € 27 'Hay and u = x5 'vzg €
x5 xy ' Hryzg = 271 Hz. Conversely, let u be a reduced word in H. Then 1-u = 1,
so ¢ - tur = (1-z) -2 'uz = 1-x = q. This establishes the claim.

Since z 'Hz is extendible, A(H') embeds in the automaton A(K) of some
clopen subgroup K. Since A(H) is contained in A(H’), the automaton A(H) also
embeds into A(K). Recall that A(K) is a permutation automaton: up to conjugat-
ing K, we may assume that the distinguished vertex of A(K)is 1. Then1-x = ¢ # 1
in A(K), since that is the case in A(H'). Therefore z ¢ K, as we wanted to show.

So we have shown that if the automaton A(H) does not have any vertices of
degree 1, then H is closed. If A(H) has a vertex of degree 1, it has only one,
namely the vertex 1. If we iteratively remove from A(H) the vertices of degree 1,
we delete from A(H) a path starting at 1. Let = be the label of that path, and
let @~ be the resulting set of states. Let H' be the subgroup of F(A) such that
A(H') = (Q=,1-x,-). Then as above, we can show that H = xH'z~!. Since we
are assuming that all the conjugates of H are extendible, then all the conjugates
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of H' are extendible, and by the first part of the proof, it follows that H’ is closed.
But we already observed that being closed is preserved by the automorphisms of
the free group, so H too is closed. O

2.4. The case where V is extension-closed

When the pseudovariety of groups V is closed under extension, the different notions
we have considered so far (being closed, being extendible, and being a free factor of
a clopen subgroup) all coincide. This was first proved by Ribes and Zalesskil [18,
Corollaries 3.3 and 3.8].

Proposition 2.9. Let H be a finitely generated subgroup of F(A). If V s
extension-closed, the following are equivalent.

(1) H is closed.
(2) H is a free factor of a clopen subgroup.
(3) H is extendible.

Moreover the pro-V topology on H coincides with the restriction to H of the topology
of F(A).

Proof. We already know that (1) implies (3), and (3) implies (2). To prove the
last implication, let us assume that H is a free factor of a clopen subgroup K of
F(A). Then H is closed in the pro-V topology of K by Corollary 1.3. (To apply
this corollary, we need to know that F'(A) is residually V, but that is always the
case when V is extension closed.) Now the pro-V topology of K coincides with the
restriction to K of the pro-V topology of F(A) by Proposition 1.6. So H is closed
in F(A) as well.

The last statement is a consequence of Proposition 1.5 and Proposition 1.6. O

Corollary 2.4. Let H be a finitely generated subgroup of F(A). If V is extension-
closed, then H = Cl(H).

Proof. By Proposition 2.6, H is the least extendible subgroup containing H. By
Proposition 2.9, it is also the least closed subgroup containing H, and hence it is
equal to Cl(H). m|

This implies that if V is extension-closed, then the closure of a finitely generated
subgroup also has finite rank. In fact, the following stronger result holds. (This is
[18, Proposition 3.4], with a slightly more direct proof.)

Proposition 2.10. Let H be a finitely generated subgroup of F(A). If V is
extension-closed, then rk(Cl(H)) < rk(H).
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Proof. By Proposition 2.9, the pro-V topology on CI(H) coincides with the re-
striction to CI(H) of the pro-V topology on F(A). In particular, H is dense in the
pro-V topology of Cl(H).

So it suffices to show that for a subgroup H of the free group F(A) to be dense,
the rank of H must be at least equal to |A|. Let 3 H — F(A) be the natural
morphism from H into F(A), and let j be the continuous morphism from the pro-
V completion H of H into F4(V), the completion of F(A). Since the free group is
residually V (a consequence of the fact that V is extension-closed), the following
diagram is commutative, and the natural morphisms from H and F(A) into their
respective completions are one-to-one.

J

. J
H — F4(V)

We have 19(H) = jug(H). By compactness, it follows that ¢9(H) = jeeg(H)) =
§(H). By assumption, the closure of 5(H) is F/(A), so the closure of 17(H) is 19(H) =
o(F(A)) = F4(V). Thus j is a continuous morphism from H onto F4 (V). But the
notion of rank of a free pro-V group is well defined, and the rank of H is that of

H [6, Lemma 15.19], so the announced inequality follows immediately. O

Note 2.4. As we will see, if V is the pseudovariety of nilpotent groups (a pseudova-
riety which is not extension closed), the V-closure of a finitely generated subgroup
always has finite rank (Proposition 4.1 below). However, in view of Example 2.3
above, the inequality in Proposition 2.10 does not always hold.

Finally, Proposition 2.8 implies the following.

Corollary 2.5. Let H be a finitely generated subgroup of F(A). If V is extension-
closed, then H is extendible if and only if any one of its conjugates is extendible.

3. Practical Computation: The Pro-p Topology

In this section, we give a new version of Ribes and Zalesskii’s algorithm to compute
the closure of a finitely generated subgroup in the pro-p topology (where p is a
prime number) [18]. This new version of the algorithm seems to us to be a bit
clearer, and it allows us to give a polynomial upper bound to the complexity of the
problem of computing such a closure.

Before we embark in the description and analysis of the algorithm, let us make
some simple remarks.

Lemma 3.1. Let V and W be pseudovarieties of groups with V.C W. Let H be
a finitely generated subgroup of the free group F(A). If H is V-clopen, then it is
also W -clopen.
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Proof. This is immediate by Proposition 2.3. Indeed, if H is V-clopen, then
M(H) e V,so M(H) € W and H is W-clopen. m|

Corollary 3.1. Let V and W be pseudovarieties of groups with V.C W. Let H
be a finitely generated subgroup of the free group F(A).

(1) If H is W-dense, then H is V-dense.
(2) The W -closure of H is contained in the V-closure of H.
(3) If H is V-closed, then H is W -closed.

Proof. If H is not V-dense, then H is contained in a proper V-clopen subgroup,
so by Lemma 3.1, H is contained in a proper W-clopen subgroup, and hence H is
not W-dense. This proves the first statement.

The second statement follows directly from Lemma 3.1 since the closure of H
is the intersection of the clopen subgroups containing H. The last statement is an
immediate consequence of the second one. O

Proposition 3.1. Let V be a pseudovariety of groups. If, given a finitely generated
subgroup H of F(A), one can decide membership in C1(H), then one can effectively
compute H.

Proof. For each state g of A(H), fix an element u, € F(A) such that 1-uy = ¢
in A(H). We want to compute the congruence ~ on A(H), that is, the congruence
~m,ciH)- So we must decide, for each pair of distinct states r and s whether the
word u,u; ! lies in CI(H). This simple observation completes the proof. |

We now turn to the specifics of the situation when V is the pseudovariety of
p-groups. In the rest of this section, V is set equal to G, for some prime number p.
We will talk of p-closure, p-denseness, etc. instead of G-closure, Gp-denseness, etc.

3.1. Deciding p-denseness

We use the following key property: in a finite p-group, every maximal proper sub-
group is normal of index p [19, Theorem 4.6]

Lemma 3.2. If H is a proper p-clopen subgroup of F(A), then there exists an onto
morphism ¢: F(A) — Z/pZ such that H C ker .

Proof. Recall that if pg: F(A) — M(H) is the transition morphism of A(H),
then H = py' pg (H). In particular, pg(H) # M(H) since H is proper. Let N be
a maximal proper subgroup of M (H) containing ug(H). Then N is normal and
has index p. Let m be the projection from M (H) onto M(H)/N = Z/pZ, and let
Y = 1o ¢: F(A) — Z/pZ. Then kert) = ¢~ 1(N) contains H. m|
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The pseudovariety (Z/pZ) generated by Z/pZ admits a finite free object
over the alphabet A, namely (Z/pZ)“. Let o: F(A) — (Z/pZ)* be the natural
onto morphism.

Lemma 3.2, together with Proposition 2.2, immediately implies the following.

Corollary 3.2. Let H be a finitely generated subgroup of F(A). The following
are equivalent.

(1) H is p-dense.

(2) H zs (Z/pZ)-dense.
(3) o7lo(H) = F(A).
(4) o(H) = (Z/pL)".

The problem of determining whether the subgroup H is p-dense can now be
turned into a question of linear algebra over the p-element field: we need to deter-
mine the dimension of the subspace o(H) in (Z/pZ)4.

Let hi,...,h, be a given set of generators for H. Let M,(H) be the r x |A4]
matrix consisting of the row vectors o(hy),...,o(h.), a generating set for o(H).

Corollary 3.3. H is p-dense if and only if M, (H) has rank |A|.

Note. It is clear that if » < |A|, then H is not p-dense. Naturally, this is exactly
the proof that the rank of free pro-V groups (V non-trivial) is uniquely defined.
We can compute the rank of the matrix 90t,(H) by Gaussian elimination: by
taking linear combinations of the rows, we obtain an upper triangular matrix T
such that the number of non-zero rows of T' is the rank of 9,(H), and the non-zero
rows of T form a basis of o(H). This computation can be done in time O(r?|A|).

Corollary 3.4. It is decidable whether H is p-dense. In addition, we can compute
a basis of o(H) if H is not p-dense.

3.2. Computing the p-closure

Let H be a finitely generated subgroup of F(A). We assume that we are given a
basis (of reduced words) for H, the automaton A(H), and for each state ¢ of A(H),
a reduced word ug which labels a path from 1 to ¢ in A(H). We can assume that
the length of each w4 is less than or equal to the number of states of A(H). See
Sec. 2.1 on how to compute A(H) from a basis of H and vice versa.

To compute the closure of H, we compute a finite sequence of quotients of A(H),
A(Hy) = A(H)/ ~o,..., A(Hy,) = A(H)/ ~n, such that each H; is p-closed, the
automaton congruence ~;i1 is contained in ~; (that is H;11 C H;), and H, is
the p-closure of H. Since each H; is p-closed, each contains the p-closure of H.
Moreover, it follows from Proposition 2.9 that the p-closure of H in F(A) is equal
to the p-closure of H in the pro-p topology of H;.

To begin with, we let ~g be the universal, one-class congruence, so that Hy is a
free factor of F'(A). Let 4 > 0. After ¢ iterations of the algorithm, we have computed
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the quotient A(H;) = A(H)/ ~;. Roughly speaking, for the (i + 1)st iteration of
the algorithm, we translate H into a basis of H; and we ask whether H is p-dense
in H;. If it is, H; is the closure of H; if not, we compute the (Z/pZ)-closure of H
in H;, or rather a free factor H;,1 of that closure which contains H. Formally, we
proceed as follows.

Step 1. Computing a basis of H;. First we compute a basis for H;. Let A; be a
set in bijection with that basis. We let x;: F(4;) — H; C F(A) be the natural
one-to-one morphism onto H;. More precisely, we choose a spanning tree of A(H;):
then A; is (in bijection with) the set of edges of A(H;) not in that spanning tree
(see Sec. 2.1). We do not, in fact, need to write down explicitly the elements of the
basis of H;, that is, the k;(x) (x € A;). Note that ; is a homeomorphism between
F(A;) and H;. We denote by o; the natural morphism o;: F(A;) — (Z/pZ)4:.

a;

(Z[pz) ™

Step 2. Translating H into the basis of H;. Now we compute a basis of the subgroup
i L(H) of F(A;) (this is equivalent to rewriting the basis of H in the chosen basis
of H;). This is done by running the elements of the basis of H in A(H;) and noting
down the edges traversed that are not in the chosen spanning tree. This set of
words over the alphabet 4; U A ! is indeed a basis since &; is a homeomorphism
onto its image.

Step 3. Deciding the p-denseness of H in H;. Then we use the algorithm in Sec. 3.1
to decide whether ;! (H) is p-dense in F/(4;), and to compute a basis of o;(+; * (H))
if it is not p-dense. Observe that H is p-dense in H; if and only if n;l(H) is p-dense
in F(A;) since k; is a homeomorphism.

Step 4. Stop if H is p-dense in H;. If H is p-dense in H;, the algorithm stops: we
now know that the p-closure of H (in H;, and hence in F'(4)) is H;.

Step 5. Otherwise compute H;,1. We now assume that ﬁfl(H ) is not p-dense in
F(A;). By Proposition 2.2, o; 'o;x; ' (H) is the (Z/pZ)-closure of x; ' (H) in F(A;),
and by Corollary 3.2, it is properly contained in F'(A4;). Since &; is a homeomorphism
from F(A;) onto H;, the subgroup K = k;0; ‘o;k; ' (H) is the (Z/pZ)-closure of H
in H; and K # H;. Finally, by Corollary 3.1, K is p-closed in the pro-p topology of
H;, and hence also in F(A) (Proposition 2.9). We define the automaton congruence
~it1 on A(H) to be ~g g, the congruence induced by the containment of H into
K. In particular, the subgroup H;;1 such that A(H;11) = A(H)/ ~;41 is a free
factor of K, and hence H;;; is p-closed. Moreover, we have H C H;,41 C K C
H;, and hence H;y; is properly contained in H; and ~;;; is properly contained
m ~;.
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The automaton congruence ~;1 is computed as follows. If r and s are states of
A(H), we have r ~;11 s if and only if u,u; ' € K = k;0; ‘oyx; ' (H), that is, if and
only if u,u;! € H; and Umfl(urus_l) € amfl(H). To verify whether u,u;! € H;,
and to compute in that case #; *(u,u; '), we run the reduced word obtained from
uruzt in the automaton A(H;) starting at 1, we note down the edges traversed
that are not in the chosen spanning tree of that automaton (as in Step 2), and
we require that this path ends in 1. Then o;x; ' (u,u;') is the image of that word
in (Z/pZ)*. Now it suffices to verify whether the vector o;x; ' (u,u;!) lies in the
vector subspace o;r; ' (H). This can be done effectively, using the basis of o;x; * (H)
computed in Step 3.

Finally we observe that the algorithm stops after ¢ + 1 iterations exactly if H;
is the p-closure of H (see Step 2).

Example 3.1. In Example 1.1, we considered the subgroups

H = (a®, ab,ab™ ") K = (a®,ab*a™ ", aba®b"*a™ !, ababa 1071,
baba"*b" a7t ba®b 1, b?) .
A spanning tree of A(K) is indicated by the dotted arrows. In order to compute

the p-closure of K, we first consider the image of oo(K) of K in (Z/pZ){®%}: it is
generated by 2a, 2b, a + b and b — a. We need to compute the rank of the matrix

2 0
0 2
1 1
-1 1

For p # 2, this rank is easily seen to be 2, so K is p-dense in F(A). For p = 2, the
rank of the matrix is 1, and o¢(K) is the subspace generated by a+b. For the given
choice of a spanning tree, we have the following values of the words ug:

g ||1]2|3]| 4 | 5|6
Ug || 1 |a | ab | aba | ba | b
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Now Uo(ulugl) = Uo(ulugl) =a+b,s01~1 3~15, and similarly, 2 ~1 4 ~1 6. It
follows that A(H;) = A(K)/ ~1= A(H), so H; = H.

Let us denote by z, y and z respectively the elements a2, ab and ba~"' of the
basis of H. Then

k1K) = (z,yz,yey Lyt e zazy T ze T 2y)

The resulting matrix (over Z/2Z) is

O R R = = O
_ o = O O = O
_ o O = O = O

which has rank 3. Thus s '(K) is dense in F({z,y, 2}), that is, K is 2-dense in H,
and hence H is the 2-closure of K.

Example 3.2. Let H be the group of Example 2.3:

H = (ab t,a?b"ta"1,a3b 1a2,

a*bta73 a%b a4, a").

A spanning tree is indicated by dotted arrows. The matrix whose rank we must

1 -1
6 0/
For p > 5, this matrix has rank 2, so H is p-dense in F'(4).

For p = 2, 09(H) is generated by a + b. We easily find that 1 ~; 3 ~; 5 and
2 ~1 4 ~1 6. So the automaton of H; is

compute is

a,b
{1,3,5} T > {2,4,6} Hi=(ab ',a’ab).
a,b

Then one verifies that H is 2-dense in Hy, that is, H; is the 2-closure of H.
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For p = 3, 0o(H) is generated by a —b. Then one can verify that 1 ~q 4,2 ~1 5
and 3 ~7 6, so the first iteration of the algorithm of computation of the 3-closure

of H yields the following automaton and subgroup:

a,b
{1,4} ————{2,5}
\ / Hj = (ba™1, aba2,a%b,a’).
a,b a,b
{3,6}
One then verifies that H is 3-dense in H{, so Hj is the 3-closure of H.

The last example shows a less simple case, where the algorithm needs to undergo

several iterations before it stops.

Example 3.3. Let us compute the 2-closure of the following group:

10~ 9 3 4 5 6
4 '._\_
a a b b C><l .:'-.
S » Y
b 12‘a— 11 7 - :

H = (a* a®b72, ab%a, ba*b™1,ba®b =3, bab™2ab™"
aba*b"ta"t aba®b 3a"t, abab®ab a1,
bababa~'ba, baba~*baba, bab~tababa, bab~ta " tba"'ba ).

The dotted arrows indicate a spanning tree. For each state ¢, we compute the

label u, of a geodesic from 1 to ¢ in the spanning tree:

q 1 2 3 4 5 6

Ugq 1 bab=? b? b%a b2ab~! | b*ab~la
q 7 8 9 10 11 12

ug || b%ab | b2ab"lab® | b ba b bab=?
q 13 14 15 16

ug || bab=t | b%ab~lab | bab | b*ab~lab~!
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We have A = Ay = {a,b}, Hy is the free group F'(A), ko is the identity of F(A),
and op is the natural morphism from F(A) onto (Z/2Z)“. Then oo(H) = 0.

We compute for which pairs of states (g,r) we have oo(uqu, ') = 0, and we find
that ~; has 4 classes:

1~13~114~116 2~14~113~115
5~ 7~ 10~ 12 6~18~1 9~ 11.

So A(H;) is the following automaton:

{173747 16} 1 e o~ 2 {61819111}
e—

;b
{2,4,13,15) 4r_ 5 {5,7,10,12}
~—
b

where state 1 corresponds to the class {1,3,14,16}, state 2 corresponds to
{6,8,9,11}, etc. A spanning tree is indicated with dotted lines. The element of
the induced basis of H; corresponding to the edge labeled a (respectively b) out
of vertex i is denoted a; (respectively b;). Thus, H; has basis as,as,aq,bs,bs
(e.g. az = bab~ta~1), and

w1 N(H) = (a2, asby ', bsay, (azaz)?, asasby ', asbs tas

2 —1
(asaz)?, azasbs ~, asboas

1 1
asbsasag ~bsayg, azbzazbzas, azasasbsay, azas " bsay).

Then one verifies that olﬂfl(H ) is the vector subspace generated by {as +
a3, aq,be, b3}, that is, the set of vectors in which the as- and as-components are
equal. Now we compute Ulﬂfl(uqu;l) for each pair of states (g,7) such that
q~1T.

For instance, we find that wjus’ = b2 so w;'(uiuz') = by', and
alﬂfl(ulugl) = by € omfl(H). Thus 1 ~5 3. In contrast, uluf41 =
b= la a2, kTN (uur)) = by lagtbsbyt, and oykyt(uiug)) = az + by &

o1k Y(H). Thus 1 £, 14.
The complete computation yields 8 classes:

1~93 14 ~5 16 2~9o4 13 ~5 15

5~ 7 10 ~g 12 6 ~o8 9~y 11.
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So A(Hz) is the following automaton:

where states 1 through 8 correspond respectively to the classes {1, 3}, {2, 4}, {5,7},
{6,8}, {14,16}, {13,15}, {10,12} and {9,11}. A spanning tree is indicated with
dotted lines. With the same convention as before, the elements of the induced basis
of Hy are as,ay,as,ag,ar, bz, bs, be, bg (e.g. az = a? and ay = aba?b~ta~1), and

-1 2 -1 2 -1 ;-1
Ky (H) = (a3,a2bg ", bsas, a7, arbg *, bg "ar
2 -1
a47a4b3 7b5a4

-1 -1 -1 _-1
a6b5b3a2,a5 b5a4b3a2,b6 a6b5a4b3a2,b6 Gg b5b3a2>.

Then one verifies that no pair of distinct ~s-equivalent states are ~g3-equivalent.
That is, ~3 is the identity relation, and hence Hs3 = H. H is trivially dense in Hj,
so the algorithm stops, and we have shown that H is 2-closed.

3.3. Complexity issues

We consider the time complexity of each iteration of the algorithm of the previous
section. We let n be the total length of the initial input, namely the sum of the
lengths of the elements of the basis of H. We let also ¢ be the number of states of
A(H) and a = |A|. Then ¢ < n.

After i iterations of the algorithm, we have computed A(H;). Let ¢; (respectively
;) be the number of states (respectively edges) of A(H;). We let ag = eg = a.

In Step 1 of the (i+ 1)st iteration of the algorithm, we compute a spanning tree
of A(H;). This is done in time O(e;). Let a; be the cardinality of a basis of H;, that
is, the number of edges of A(H;) not in the spanning tree. Then a; = e; — ¢; + 1.

Step 2, where we compute a basis of & Y(H), is performed by running the
elements of the basis of H in A(H;). When each word is run (from 1 to 1), we store
the list of edges of A(H;) not in T traversed. The tree T' contains ¢; — 1 edges. Thus
Step 2 can be performed in time O(ng;). The sum of the lengths of the words thus
obtained, say n;, is therefore less than or equal to n.
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Step 3 is performed in time O(r%a;), where r is the rank of H, by the results of
Sec. 3.1. Observe that r < n.

Step 4 takes constant time.

Step 5. To perform Step 5, it suffices to compute, for each pair of distinct states
(r,s) of A(H), whether u,u;' lies in H;, and if so, whether o;x; ! (u,uz?') lies in
oik; '(H). The word u,u; ! is of length at most 2q, reducing it takes time O(q),
then verifying whether it lies in H; and if so, computing o;x; ! (u,uz') is done in
time O(gq;) as in Step 2. Next, computing whether o;x; ! (u,u;?t) lies in o;x; ' (H)
can be done in time O(na;) (we have already computed a basis of o;x; '(H) in
Step 3). Thus Step 5 can be performed in time O(q?(qq; + na;)).

Thus the (i + 1)st iteration of the algorithm takes time O(q3g; + ¢°na;).

To evaluate the time complexity of the complete algorithm, we remark that
a; < e; <nand g < e; for each i. So each iteration of the algorithm takes time
O(n*). Finally, for each i, ~; 1 is strictly contained in ~;, so ¢; < gi+1 < q. So the
algorithm will stop after at most ¢ iterations. But we remarked that ¢ < n, so we
have the following statement.

Theorem 3.1. Let p be a prime number. If H is a finitely generated subgroup of
the free group F(A), given by a finite set of generators, and if n is the sum of the
lengths of these given generators, then we can construct the automata A(CI(H))
and A(H) in time O(n®) (with respect to the pro-p topology).

Note 3.1. The algorithm discussed in this and the previous section can be used
to solve the following problem: given m permutations on an n-element set, decide
whether the group generated by these permutations is a p-group. It suffices to
consider the inverse automaton representing the action of the m permutations (now
seen as m letters) on the n-element set, and to decide whether the corresponding
subgroup of the rank m free group (a finite index subgroup) is p-closed. However
this decision procedure has a time complexity bounded above by O(m®n®), whereas
the problem is known to be solvable in time O(mnlognlog* n) [15].

Let us conclude this section with a simple remark. If an overgroup K of H
(i.e. A(K) is a quotient of A(H)) properly contained in F(A) has rank greater than
rk(H), then it cannot be the p-closure of H for any prime p (by Proposition 2.10).
In view of Corollary 3.3, this yields the following proposition.

Proposition 3.2. Let H be a finitely generated subgroup of the free group F(A)
such that every overgroup of H properly contained in F(A) has rank greater than
rk(H). Let p be a prime number. Then H is p-dense if and only if the matriz M, (H)
has rank |A|, and H is p-closed otherwise.

This result applies to what we could call primitive subgroups of the free group,
that is, subgroups H such that A(H) admits no non-trivial congruence. It would
be interesting to have more information on the structure of such subgroups.
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3.4. Computation of extensions

We have seen that a finitely generated subgroup H of the free group F(A) is p-closed
if and only if the automaton A(H) can be embedded into the automaton A(K) of
a p-clopen subgroup K, that is, into a permutation automaton whose transition
group is a p-group. We now explain how to effectively construct A(K) when H is
given. The procedure is an extension of that of Sec. 3.2.

Given a subgroup H of F(A), we have constructed in Sec. 3.2 a finite sequence
of subgroups Hy = F(A), Hi, ..., H, such that H, = Cl,(H). We now construct
in addition p-clopen subgroups Ky, K, ..., K, such that A(H;) is embedded in
A(K;) for each 0 < i < r. Since Hy = F(A), we let Ko = F(A) as well.

Now suppose that we have computed H; (as in Sec. 3.2) and K; (i > 0) such
that K; is p-clopen and A(H;) embeds into A(K;). We use the notation of Sec. 3.2.

In Step 1 of the (i + 1)st iteration we compute not only a basis of H;, but also a
basis of K; which contains a basis of H;. We let B; be a set containing A;, equipped
with a bijective correspondence with the basis of K; which extends the bijection
between A; and the basis of H;. More precisely, we choose a spanning tree of A(H;),
and then extend it to a spanning tree of A(Kj;): then B; is the set of edges of A(K;)
not in the tree, and A; is the set of edges of A(H;) not in the tree.

Let A\;: F(B;) — K; be the natural isomorphism. The restriction of \; to
F(A;) is w;. Let also 7;: F(B;) — (Z/pZ)P: be the natural morphism, and let
72 (Z)pZ)B: — (Z/pZ)*+ be the projection onto the A;-coordinates. The following
diagram is commutative (where u; and v; are the natural injections):

A T
K; F(BZ) (Z/pZ)Bi
1 ‘ v; l T
Hie F(A) — 2 (2/p7) A

Step 2 of the (i 4 1)st iteration consists in computing (a basis of) A; ' (H). But
HCH; CKj; s0 )\jl(H) = n;l(H), and this step is identical to the corresponding
step in Sec. 3.2. Steps 3 and 4 also are unchanged from Sec. 3.2.

In Step 5, we compute H;;1;1 as in Sec. 3.2, and we also compute K;.1: we
let K;i1 = )\iTi_lTi)\i_l(H). Then K1 is the (Z/pZ)-closure of H in K;, whereas
H,, 1 is a free factor of w;0; 'o;k; ' (H), the (Z/pZ)-closure of H in H;. In particular,
H1'+1 - K1'+1 and Ki+1 is p—clopen.

We now verify that x;0; 1a¢m;1(H ) is a free factor of )\1'7'1._171-)\; 1(H ). First we
observe that

kio; Yoy HH) = ki(ry b tmmsy H(H))

= IiiTi_lTilii_l(H).
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Next we note that 7, *7;(F(A;)) is the free product
7 i (F(A)) = F(A) 77 H(ker ;) .
It follows that
ik (H) = o) Yok HH) 7 H(ker )
Since ); is an isomorphism, we have
N ks HH) = Moy togkg HH) * Nyt (ker )

But o; 'oik; {(H) C F(Ai), so Mo, toik; Y(H) = kio; 'oik; (H). Moreover
MY (H) =k (H), so Hiyy is a free factor of Ky .

K3
So we have proved the following theorem.

Theorem 3.2. Let H be a finitely generated closed subgroup of the free group and
let p be a prime number. Then we can effectively construct a p-clopen subgroup K
such that the automaton A(H) embeds in A(K).

Note that 7;#; ' (H) is normal in (Z/pZ)5: (since the latter group is abelian), so
T[lTi/-ei_l(H) is normal in F(B;) and K1 is normal in K;. Moreover the quotient
group K; /K, is isomorphic to F\(B;)/7; *r;k; 1 (H), so it is a quotient of (Z/pZ)P:
and hence an elementary abelian p-group. It follows that if the algorithm to compute
the p-closure of H terminates after i iterations, then the length of a decomposition
tower involving only cyclic quotients, of the p-group M (K') constructed as above is

at most 1.

4. Practical Computation: The Pro-Nil Topology

If V is the pseudovariety Gyj of nilpotent groups, we talk of nil-closure, nil-
denseness, etc. instead of Gyj-closure, Gpj-denseness, etc.

4.1. General statements

Recall that Gyj is the join of the G,, and that, in addition, every finite nilpotent
group is (isomorphic to) the direct product of its Sylow subgroups (each of which
is a p-group for some prime p) [19, Theorem 5.39].

Lemma 4.1. Let H be a nil-clopen subgroup. There exists a finite collection of
prime numbers pi,...,pn and subgroups Hy,..., H, such that for each i, H; is
pi-clopen, and H = Hy N ---N H,.

Proof. Let ¢: F(A) — M(H) be the transition morphism of A(H). Then we know
that H = ¢~ 1@(H). Moreover, M (H) is nilpotent, so M (H) is the direct product
of its Sylow subgroups, M (H) = My x --- X M,. For each 1 < ¢ <7, let p; be the
prime number such that M; is the p;-Sylow subgroup of M (H): then M; is the set
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of all elements of M (H) whose order is a power of p;. Let also m;: M (H) — M; be
the ith coordinate projection.

For each 1 < i <, let N; = ¢(H)N M;. Then N; is the set of elements of p(H)
whose order is a power of p;, that is, N; is the p;-Sylow subgroup of ¢(H) if p;
divides the order of p(H), and N; is the trivial subgroup otherwise. Since p(H) is
nilpotent, we have ¢(H) = Ny x - - - N,.. Therefore Nj_,7; *(N;) = ¢(H), and hence

H={)¢ 'n (V).
i=1

But each go’lW[l(Ni) is a p;-clopen subgroup, so the lemma is proved. O

Corollary 4.1. Let H be a finitely generated subgroup of the free group F(A).

(1) H is nil-dense if and only if H is p-dense for each prime p.
(2) The nil-closure of H is the intersection over all primes p of the p-closures of H.
(3) If H is p-closed for some p, then H is nil-closed.

Proof. By Corollary 3.1, we already know that every nil-dense subgroup is p-dense,
and that the nil-closure of H is contained in the intersection of the p-closures of H.
We now show the converse statements.

Suppose that H is not nil-dense. Then H is contained in some nil-clopen proper
subgroup K. By Lemma 4.1, there exist primes p1, ..., p, and subgroups K1, ..., K,
such that K; is p;-clopen and K = K3 N...N K,.. Since K is proper, there exists
1 < ¢ < rsuch that K; is a proper subgroup. But H is contained in K;, so H is not
pi-dense. This concludes the proof of the first statement.

We know that the nil-closure of H is the intersection of all the nil-clopen sub-
groups containing H. Let K be such a subgroup. Then as above, K = K1N...NK,,
where each K; is p;-clopen for some prime p;. It follows that the p;-closure of H is
contained in K; for each 1 < i < r. Therefore the intersection of all the p-closures
of H (for all primes p) is contained in K, and hence in the nil-closure of H, thus
proving the second statement. The last statement follows immediately. O

Of course, there exist nil-closed subgroups which are not p-closed for any p. It
suffices to consider, on one generator a, the subgroup generated by a®. It is p-dense
for p # 2,3, its 2-closure is generated by a?, its 3-closure is generated by a3, and it
is easily seen to be nil-clopen.

Corollary 4.1 yields the following result (see Proposition 2.10).

Proposition 4.1. If H is a finitely generated subgroup of the free group F(A),
then the nil-closure of H 1is finitely generated. In particular, the nil-closure of H
is extendible.

Proof. For each prime p, A(Cl,(H)) is a quotient of A, so there are finitely many
values of Cl,(H), each of which has finite rank. So the nil-closure of H is the
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intersection of a finite family of finitely generated subgroups, and hence it is also
finitely generated. It follows from Corollary 2.3 that the nil-closure of H is Gyj-
extendible. |

Example 4.1. Let H and K be the groups of Examples 1.1 and 3.1:
H = (a? ab,ab™)

K = (a®,ab’*a™", aba*b~ a~t, ababa b7,
baba"*b"ta"t ba?b ™1, b?).
We have seen in Example 3.1 that the p-closure of K is F(A) for all values of p
except for 2, and that the 2-closure of K is H. Therefore the nil-closure of K is H.

Example 4.2. Let us compute the nil-closure of the subgroup H of Examples 2.3
and 3.2:

H={(ab,a*v a1, a® a2, a*v a3, a°b 1a4,a") .
In Example 3.2, we showed that the p-closure of H is F(A) itself if p # 2,3,
(a?,ab,ab™ 1) if p =2 and (ba~!, aba=2,a?b,a®) if p = 3. Thus the nil-closure of H
is the intersection of the above two subgroups. A simple computation shows that

it is the subgroup K:
/ Xb
K = (ab=1,a?b"ta"t,a%b 1a "2,
a*b~ta=3 a%b"ta4, a® adb) .
\ /b

a:

4.2. Practical computation

Let H be a finitely generated subgroup of the free group. By Corollary 4.1, CI(H)
is the intersection of all the p-closures of H, and each of these is an overgroup of H
(see the end of Sec. 2.1) by Corollary 2.4. So Cly;i(H) is the intersection of all the
overgroups of H which are p-closed for some prime number p. Naturally, it suffices
to take the intersection of the C-minimal overgroups of H which are p-closed for
some p.

A procedure to compute the nil-closure of H is as follows:

(1) for each overgroup K of H, decide whether K is p-closed for some p; reject the
overgroups K which are not p-closed for any p;
(2) compute the intersection of the overgroups K thus selected.
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Since H has finitely many overgroups, we need only explain how to decide
whether a given finitely generated subgroup of F(A) is p-closed for some p.
As a first step, we prove the following.

Proposition 4.2. Let H and K be finitely generated subgroups of the free group
such that H C K. The set Q(H, K) of all prime numbers p such that H is p-dense
in K is empty or cofinite, and it is effectively computable.

Proof. Since K is free, we first rewrite the generators of H as products of elements
of a fixed basis of K. We are then reduced to the case where K = F(A).
We slightly modify the procedure of Sec. 3.1. Let o: F(A) — Z“ be the natural

morphism from the free group onto the free abelian group. Let hq,...,h, be the
given set of generators of H, and let M (H) be the r x |A| matrix consisting of the
row vectors o(hy),...,0(h,).

Next we compute the rank of 9M(H) (in Q). If that rank is not |A|, then every
matrix 9, (H) over Z/pZ has rank less than |A|, so H is not p-dense for any p. In
that case, Q(H, F(4)) = 0.

If the rank of MM(H) is | A, let d be the greatest common divisor of the non-zero
order |A| minor determinants of 9(H). For every prime p dividing d, 9t,(H) has
rank less than |Al, so H is not p-dense. For every prime p not dividing d, one of the
non-zero order |A| minor determinants of M(H) is not divisible by p, so M, (H)
has rank |A|, and hence H is p-dense. Thus Q(H, K) is the complement of the set
of prime divisors of d, a cofinite set. O

Our second step is to compute P(H), the set of prime numbers p such that H
is p-closed. Let PP be the set of all prime numbers.

Proposition 4.3. Let H be a finitely generated subgroup of F(A). The set P(H)
is finite or cofinite, and it is effectively computable.

Proof. We proceed by induction on the number of states of A(H). If A(H) has
one state, then H is generated by a subset of the alphabet A, so H is p-closed for
all p. That is, P(H) = P.

Let us now assume that A(H) has at least two states. By induction, we can
compute P(K) for each non-trivial overgroup K of H, and each of these sets is
finite or cofinite.

We define an equivalence relation on P by letting p = ¢ whenever p and g
belong to exactly the same sets P(K) (K overgroup properly containing H). Then
= has finite index, and its classes are the atoms of the (finite) Boolean algebra
generated by the P(K). In particular, if a non-trivial overgroup K is p-closed, then
it is g-closed for each ¢ in the =-class of p, [p]=.

If H admits n > 2, minimal (with respect to inclusion) p-closed non-trivial over-
groups, say K1, ..., K, then Cl,(H) is an overgroup of H contained in K7, ..., K,,
so Cl,(H) = H. If ¢ = p, the non-trivial overgroups of H are p-closed if and only if
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they are g-closed. So if H admits at least 2 minimal p-closed non-trivial overgroups,
then H is g-closed for every ¢ such that ¢ = p.

If H admits exactly one minimal p-closed non-trivial overgroup K, then for each
q € [p]=, the g-closure of H is either H or K, depending whether H is ¢-dense in
K. In that case, we have

[pl=NP(H) = [p]=\Q(H, K).

Thus P(H) is a finite Boolean combination of finite and cofinite sets, namely the
P(K) and the Q(H, K), which is effectively computable. O

Returning to the computation of the nil-closure of H, we need to consider the
(minimal) overgroups K of H such that P(K) # (. The nil-closure of H is the
intersection of these overgroups:

Theorem 4.1. Let H be a finitely generated subgroup of F(A). The nil-closure of
H is effectively computable.

Note. The proof of Proposition 4.3 above gives an alternative method of computing
the p-closure of H: consider the overgroups of H, starting from the greatest one,
and for each decide whether it is p-closed. If H has several minimal non-trivial p-
closed overgroups, then H is p-closed. If H has only one minimal non-trivial p-closed
overgroup K, then Cl,(H) is K if H is p-dense in K, and H otherwise. This method
may be interesting in practice, especially when A(H) has few, easily identifiable,
quotients. We already noted a special case of this idea in Proposition 3.1 above.

In Examples 4.1 and 4.2, we were able to compute all the p-closures of H in a
few operations, or more precisely to ascertain immediately that H was p-dense for
almost all primes. This comes from the fact that the matrix 9t(H) had rank |A| (in
Q). This means that H was p-dense for all but a finite number of primes, namely
the prime divisors of the ged d of the non-zero order |A| minor determinants of
M (H), and we needed only to calculate the p-closures of H for the prime divisors
p of d. In the next example, the matrix 9(H) does not have rank |A|, and we use
the procedure described above.

Example 4.3. Let us consider the pro-nilpotent closure of the subgroup

5 2 H = (a*V?, aba) .
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Note that M(H) = (;1 ?) this matrix has rank 1, so H is not p-dense for any p.

In order to determine all the p-closures of H, and hence the nil-closure of H, one
needs to study the lattice of overgroups of H (dual of the lattice of congruences of
A(H)). One verifies that all 11 overgroups of H properly contained in F'(A) have
rank bigger than H. By Proposition 3.1 and in view of the value of 9(H), it follows
that H is p-closed for every p, and in particular H is nil-closed.

This example illustrates a more general situation where the computation is
simpler.

Proposition 4.4. Let H be a finitely generated subgroup of the free group F(A).
If an order |A| minor of M(H) has determinant £1, then H is p-dense for every p,
and hence H is nil-dense. If no order |A| minor of M(H) has determinant £1 and
every overgroup of H properly contained in F(A) has rank greater than H, then H
1s p-closed for some p and H is nil-closed.

5. Decidability Results for Pseudovarieties of Inverse Monoids

We now apply the results of the previous sections to the theory of inverse monoids.
A pseudovariety of inverse monoids is a class V of finite inverse monoids which
is closed under taking inverse submonoids, homomorphic images and finite direct
products. For instance, the class SL of commutative idempotent monoids is such
a pseudovariety. Every pseudovariety of groups can also be considered to be a
pseudovariety of inverse monoids. If V is a pseudovariety of inverse monoids, we
let SL @ V be the class of finite inverse monoids M such that there exist inverse
monoids R and V' and morphisms a: R — M and 5: R — V with a onto, V € V
and a3~1(1) € SL. The class SL @ V, called the Mal’cev product of SL and V, is
easily seen to be a pseudovariety of inverse monoids. In this section, we will prove
the decidability of the membership problem for certain pseudovarieties of the form
SL@® V.

Before we can prove this result, we need to introduce some more machinery,
and connect the notion of V-extendible subgroups of the free group with the pro-
identities satisfied by V.

5.1. Extendible subgroups and pro-identities of V

We have seen in Sec. 2.1 that there exists a free inverse monoid over each alphabet
A, denoted FIM(A). Let p: (AUA™Y)* — FIM(A) be the natural onto morphism.
As in Sec. 1.1, we can consider the projective limit of all A-generated finite inverse
monoids. It is the profinite completion m(A) of FIM(A), and it is the free
profinite inverse monoid over A. Then FIM(A) is dense in that compact monoid
and we let 3: FIM(A) — m(A) be the (one-to-one) inclusion morphism (see [2]).

By construction of m(A), every morphism from FIM (A) into a finite inverse
monoid extends uniquely to a continuous morphism defined on m(A) If Ais an
inverse automaton with transition morphism u: (AU A=1)* — M(A), then M(A)
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is a finite inverse monoid, so p induces a morphism FIM(A) — M(A), and a con-
tinuous morphism m(A) — M (A), which are also denoted by u. In particular,
it makes sense to talk of transitions of A induced by elements of m(A) and to
write g - u if ¢ is a state of A and u € W(A)

Since each (A-generated) group is an (A-generated) inverse monoid, there is
a natural onto morphism v: FIM(A) — F(A), and if V is a pseudovariety of
groups, there is a natural continuous onto morphism o, from @(A) onto F4 (V).
Then every continuous morphism from m(A) into a group of V can be factored
through o.

Letu € m(A) We say that a finite group G satisfies the pseudoidentity u = 1
if for each continuous morphism : ]*{IH(A) — G, we have p(u) = 1. We say that
the pseudovariety V satisfies u = 1 if all the elements of V satisfy u = 1. This is
equivalent to the equality o(u) = 1.

Let H be a finitely generated subgroup of F'(A). We define the relation/w\v on
the set of states of A(H) by letting p ~v ¢ if and only if there exists u € FIM (A)
such that p-u = ¢ and V satisfies u = 1.

Proposition 5.1. Let H be a finitely generated subgroup of F(A). The congru-

ences ~vy and ~ on A(H) coincide.

Proof. Let us fix, for each state p of A(H), a reduced word u, such that 1-u, =p
in A(H).
Let us first assume that p ~v ¢q. Let K be a clopen subgroup of F'(A) containing

H such that ~=~pg k. In particular, A( 1) = A(H)/ ~ embeds in A(K). By
hypothesis, there exists an element u € FIM (A such that p-u = ¢ and V satisfies
u = 1. In particular, we have 1- (upuu, ') =1 in A(H), so the same equality holds

in A(H), and hence also in A(K).

Moreover, since K is clopen, we have M(K) € V,so M (K ) satisfies u = 1, that
is, 7 - u = r for each state r of A(K). Therefore 1 - uyu;* = 1 in A(K), that is,
P~k ¢, and hence p ~ q.

To prove the converse, let us now assume that p ~ g. We have the following
commutative diagram, where ¢ is an arbitrary morphism from F(A) into a group
V €V and ¢ is the continuous morphism from E4(V) into V induced by .

FIM(A)

1

(AUAT) —— FIM(A)

~
_—
>

F(A) — V
() —

Since p ~ g, we have upu, ! € CI(H), or more precisely, yp(upu, ') € CI(H). But
CU(H) ="' (:(H)) (see Sec. 1.1), so vyp(upu ') € 1(H). A basis of neighborhoods
of vryp(upuy,*) in F4(V) is given by the sets of the form @' pryp(upuy '), where
¢ runs over the morphisms from F(A) into groups V € V. Thus, for each such
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morphism ¢, there exists a word h, € (AU A™)* such that vp(h,) € H and
@ryplhy) = @wp(upuq_l). Then c,bzyp(u;lh¢uq) =1, that is, ¢ajp(u;1h¢uq) =1.

Let h be a limit point of the jp(hy) in m(A) (the existence of such a limit
point is ensured by compactness). Then ojp(u,*)o(h)ojp(ug) = 1, and hence V
satisfies gp(u, *)hip(ug) = 1.

In addition, for each morphism ¢: F(A) — V (V € V), yp(hy,) € H, so
1-9p(hsp) = 1in A(H), and hence 1-h = 1. Therefore, p- 3p(u,, *)hyp(uq) = g, that
1S, p ~v (. O

5.2. The membership problem for SL @ V when V is a
pseudovariety of groups

We recall the following result, a special case of [14].

Proposition 5.2. Let u:m(A) — M be a continuous morphism onto a finite
inverse monoid M. Let V be a pseudovariety of groups and let o: FIM(A) —
FA(V) be the natural onto continuous morphism. Then M € SL @ V if and only
if po~1(1) € SL.

Then we have the following result.

Proposition 5.3. Let H be a finitely generated subgroup of the free group F(A)
and let V be a pseudovariety of groups. Then M (H) € SL@ V if and only if H is
V -extendible.

Proof. Let p be the continuous extension of the transition morphism of A(H),
p: FIM(A) — M(H), and let o be the natural morphism o: FIM 4(V) — Fa(V).
By Proposition 5.2, M(H) € SL @) V if and only if uo~1(1) € SL. Recall that in
an inverse monoid, the idempotents always commute. So M(H) € SL @ V if and
only if, for each u € FIM(A), o(u) = 1 implies pu(u) = pu(u?).

But o(u) = 1 means that V satisfies the pro-identity v = 1 (see Sec. 5.1), so
M(H) € SL @ V if and only if whenever V satisfies u = 1 (u € m(A)), then
p(u) is idempotent. Now to say that u(u) is idempotent means that for each state
q of A(H) such that ¢ - u exists, we have ¢ - u? = ¢ - u, and hence, since A(H) is an
inverse automaton, ¢ - u = ¢ each time that ¢ - v is defined.

Thus M(H) € SL @ V if and only if whenever V satisfies u = 1, then for each
state ¢ of A(H) such that g-u is defined, we have ¢-u = g. This states exactly that
the automaton congruence ~v (defined in Sec. 5.1) is trivial. By Proposition 5.1,
it follows that M (H) € SL @ V if and only if the congruence ~ is trivial on A(H),
that is, if and only if H is V-extendible. |

Corollary 5.1. If V is extension closed, then M(H) € SL @ V if and only if H
is closed.

Proof. Immediate by Propositions 5.3 and 2.9. O
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We now turn to the membership problem in SL @) V.

Proposition 5.4. Let 'V be a pseudovariety of groups. If one can decide whether
a finitely generated subgroup of the free group is V -extendible, then the membership
problem in SL @ V is decidable.

If, given a finitely generated subgroup H of the free group F(A), the membership
problem of the V-closure of H is decidable, then the membership problem of SL@V
is decidable.

Proof. It is known that every finite inverse monoid is a subdirect product of tran-
sition monoids of finite inverse automata. Observe that not every finite inverse
automaton is reduced in the sense of this paper, since it may have states of degree
one besides the distinguished state. However, we now show that if A is any finite
inverse automaton, then we can find a reduced finite inverse automaton B such that
the transition monoid of A is isomorphic to that of B.

Let A be a finite inverse automaton over the alphabet A. Now consider the set
B = AU A™! as an alphabet. Let B be the inverse automaton over the alphabet
B with the same state set and the same initial-terminal state as A, and such that
q - y has the same value as in A, for each letter y € B = AU A~ Now in B, all
states have degree at least 2, so B is reduced. Moreover it is immediate that 4 and
B have the same transition monoids so we are done.

It follows now that every finite inverse monoid is a subdirect product of transi-
tion monoids of the form M (H), where H is a finitely generated subgroup of the
free group. So the first statement follows immediately from Proposition 5.3. The
second statement is a consequence of Proposition 3.1. O

Corollary 5.2. The membership problems for SL @ G, (p a prime number) and
SL @ Gy are decidable.

Conclusion

We have separated the concepts of V-extendibility and of V-closure for finitely
generated subgroups of the free groups. These notions are equivalent when V is
an extension-closed pseudovariety, an hypothesis made in all previous works on the
computation of V-closures.

In addition, we have simplified and sped up Ribes and Zalesskii’s algorithm for
the computation of the pro-p closure of a finitely generated subgroup of the free
group, showing that this computation can be performed in polynomial time.

Next we have extended this result to prove the computability of the pro-nil clo-
sure of a finitely generated subgroup of the free group. Finally, we have considered
an application of our results to a problem in finite monoid theory, the membership
problem in pseudovarieties of inverse monoids which are Mal’cev products of semi-
lattices and a pseudovariety of groups V. Other applications and connections with
monoid and language theory are discussed in the introduction.
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We conclude this paper by pointing out to our readers the case of solvable
groups. The class of finite solvable groups is an extension-closed pseudovariety, and
hence general results apply to it: the pro-solvable closure of a finitely generated
subgroup H of the free group is an overgroup of H, which has rank at most equal
to the rank of H. Thus it is one of a finite computable list of subgroups, but we do
not know how to determine which overgroup of H is its pro-solvable closure. In fact,
it would suffice to have an algorithm to decide whether a given finitely generated
subgroup of the free group is dense in the pro-solvable topology: if we were able
to decide this, then we would be able to compute the pro-solvable closure of H as
we did for the p-closure in the remark following Theorem 4.1. At the moment, this
problem is wide open.
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