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RESEARCH ARTICLE

POWER MONOIDS AND FINITE J-TRIVIAL MONOIDS
*
Stuart W. MARGOLIS and Jean-Eric PIN )

1. INTRODUCTION

Throughout this paper, except for free semigroups, all semigroups
considered will be finite. Let M be a monoid. Then P(M), the power
set of M forms a monoid under the usual multiplication of subsets.
Power monoids have been studied in various contexts, either for their
own interest ([7], [8]) or in connection with language theory ([3],
[5], [6], [9], [11]). In this paper we investigate the properties of a
submonoid of P(M), denoted by PI(M)’ which consists of all subsets
of M containing the identity of M. Although the difference between
P(M) and PI(M) may appear insignificant, there is a rather big gap
between the two monoids. For example PI(M) is J-trivial for all
monoids M. The operation M *‘PI(M) can be extended to varieties as
follows. Let V be a variety of finite semigroups or monoids (i.e.
a class of finite semigroups, or monoids, closed wunder division and
finite direct products) and let P
ted by {p (s')|sev}.

1V be the variety of monoids genera-

Our first result shows that the operation !.*'glz on varieties is
equivalent to a simple operation on the corresponding varieties of
languages (theorem 2.1). We also give a classification of the varieties
EJX when V 1is a variety of monoids (theorems 3.2, 3.4, 3.9). As a
corollary, we deduce a new characterization of J-trivial monoids
(Corollary 3.8).

It is no longer a surprise to see that arguments of language theory
are necessary to prove some statements of pure semigroup theory. In
particular, just as in [4] [5] or [12], Simon's theorem [10] on

Piecewise testable languages is used as an important tool.

(*)
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NOTATIONS :

We refer the reader to the books by Eilenberg [ 1] or Lallement
[2] for undefined terms in this paper and in particular for the defi-
nitions of a variety of monoids, semigroups or languages.

Eilenberg's variety theorem establishes a one-to-one correspon-
dence between varieties of monoids (or semigroups) and *-varieties
(+varieties) of languages. In the sequel, the term "corresponding
variety" always refersto this correspondence. An example is provided
by the theorem of Simon (see [1], [2] or [10]). Recall that a lan~
guage over A 1is piecewise testable if it is in the boolean algebra
generated by the languages of the form A*alA*az...anA*, n >0,
aj,..05a €A. A monoid is J-trivial if for all a,b€ M, ad b

implies a = b. Then we have

THEOREM 1.1 [10] A language is piecewise testable iff its syntactic

monoid is J-trivial and finite.

Let us denote by J the variety of all finite J-trivial monoids.
Then the corresponding *variety < assigns to each alphabet A, the
set A% of piecewise testable languages over A. We demote by Com
the variety of all commutative monoids and by A the variety of aperio-
dic monoids. Note that A M Com = J N Com. A non-commitative variety
is a variety that is not contained in Com that is, contains at least ome
non-commutative monoid. If S 1is semigroup, Sl denotes the monoid
equal to S if S 1is a monoid and to S VU {1} if S 1is not a monoid.
S(n) denotes the direct product of n copies of S. The cyclic monoid

r r+l}

{l,x,xz,...,x =x is denoted by Z Let M be a monoid. Then

l,r°
PI(M) = {A|ACM and 1 € A} is a monoid under the multiplication

of subsets. Although M is always a submonoid of P(M), M is not
generally embedded in PI(M)' Finally, if V is a variety of semi-
groups or monoids, Y is the variety of monoids generated by
{Pl(Sl)|S€!}.

Let LCA" bea language. A monoid M recognizes L if there exist

a morphism 1 : A* > M and a subset P of M such that L = Rfl
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2. INVERSE |-SUBSTITUTION

In this section, we show that the operation V “*glz on varie-
ties is equivalent to a simple operation on the corresponding families
of recognizable sets. Recall that a substitution o from A* to B is
a monoid morphism o : N P(B*). One extends 0 to a mapping from

PQA™) by setting Lo = \UJ uo. The inverse substitution c_] is the
u€
mapping from P(B*) to P(A') defined by

Kq-l = {u€ A*l uoc NK # @}.

Thus, the term "inverse'" is taken in the sense of relations since a
substitution from A* to B" can also be viewed as a relation from
A* to B*([S, p35] for more details). The connection between the
operation V = PV on varieties and inverse substitution has been
established in [5] (see also [9]). Thus it is not surprising to
find the same connection between the more restricted operation

v "’glz and inverses of a restricted class of substitutions, called
l-substitutions. Formally a l-substitution o from A* to BY is
a substitution such that for all a € A, | €ao.

Given a +-variety (or *-variety)y, define for any alphabet A, the
class Akl7 as follows : A7 is the boolean algebra generated by
languages of the form Lo—l for some l-substitution ¢ : A > B*
and some language LE By ®7).

Then we can state :

THEOREM 2.1 Let V be a variety of semigroups (monoids) and let y

be the corresponding +-variety (*-variety) of languages. Then the

*-variety of languages corresponding to Py is precisely V, the va-

riety obtained from ¥ by boolean closure of inverses of languages

under l-substitutions.

Let V' be the x-variety corresponding to P,V. We have to prove

V' = 7. We just discuss the case where V is a variety of semigroup,
the monoid case being similar.

@ 7vcy

Let o : A*-> B* be a l-substitution and let L € B+V. Then there

existsa semigroup S in V, a morphism n : B* > S and a subset P of S
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such that L = Pn_l. By setting In = 1, one extends n to a monoid
morphism n : B* nd Sl Define a morphism ¢ : A e P (S ) by setting,
for all a€ A, a¢ = am, and let R be the subset of P (S ) defined
by R = {Q€ P, (s )|QﬂP # ¢}. Then we have

Rl = (w€ A | uon NP # @)
= {u€e A" | ug N Pn‘—1 # ¢}
= {u€ A" | wnL #0) =L

Therefore, Lo_l is recognized by a monoid of El! and thus

Lol € AP as required.

M) V' C v

Let A be an alphabet. Since g_]! is generated by the monoids Pl(Sl)
with § €V, INASET equal to the Boolean algebra generated by
languages of the form Rn_1 where R C P, (S ) with S€ V and where
n: A —s P (S ) is a monoid morphism. Therefore it is sufficient to

prove that Rn IE A7. Since R = QLéR{Q} one has only to show that

{Q}n'l € A7 for all Q€ Pl(Sl). Set, for P Cs U {1},

B = (R€P (sH|RNE ¢ 0.

. - A .
Then an elementary computation shows that {Q} (qEQ\{l} R{q?\RS\ Q

Therefore, since n commutes with Boolean operations, we just have
to show —according to (1)- that RPn_IGA*V for all P C S~\{1}. Let

a : B>S be a bijection. Extend a to a semigroup morphism o: B>s .
and to a monoid morphism @ : " - Sl. Next define a I-substitution
o: A" > B* by setting ac = (an)c_x_l for all a e A.

We claim that
R n_l = Pc:.ulo_1 (2)
Taking (2) for granted, we can easily prove the theorem. Indeed, since

s € V, we have Pa-lE B+V and thus Pa-’o—le A*[7 by the definition

of V. Thus by (2), RPn"l €AYV as required.

_l=¢,

We now prove (2). First, since lo = {1}, we have loMNpa

102
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1

and since l¢ P, Pa = Pu _l. Therefore Pct_1

o1 = (u€ A*|uon a0}
Similarly, since 1n = {1}, we have In NP = @ and thus

Rpn~! = fu € a*|unne # 9).

Consequently it is sufficient to show that for all u € A" the condi-
tion (i) wo N Po—t_] # @ and (ii) un NP # @ are equivalent. The fact
that (i) implies (ii) follows from the following sequences of inclu-
sions :

P —1 o =1, —l= o _—-]-

(uoNPa )a € ((un)o " NPa Ja C (un)a o NPo o= unNP
Conversely, assume un NP # @, If u = aj...a with al,...,ane A,
there exist P; € aln,...,pneann : such that p,...p =7p € P. Let

-1 -1
€ = €
v P& seees Vne P o and v VeV Then va €P and thus
vusNPa! = uo Npa !, Therefore uo N Pa | # @ and (ii) implies (i)

as required. This concludes the proof of the theorem.

3. MAIN RESULTS.
The aim of this section is to describe varieties of the form PV
where V is a variety of monoids. We start with a useful observation.

PROPOSITION 3.1 If V is a variety of monoids then P .V is con-

1

tained in J, the variety of all J-trivial monoids.

Proof Let M be a monoid and let A and B be two J-related elements

in Pl(M). Then CAC'

B, DBD' = A for some C,C',D,D'E PI(M) and
therefore A =1.A.1 €CB and 1.B.1 CA. Thus A =B and P‘(M) is
J-trivial.

The next theorem provides a complete description of Bl! when V is

a variety of commutative monoids.

THEOREM 3.2 Let V be a variety of commutative monoids

(1) If V is the trivial variety, so is B,V.

(2) If V is a commutative non trivial variety, then PV =J N Com,
the variety of all commutative J-trivial monoids.
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Proof (1) is clear

(2) If M 1is a commutative monoid, so is Pl(M). Thus the in-
clusion 242.5.1 N Com follows at once from proposition 3.1. We now
prove the opposite inclusion. Let M # 1 be a monoid in V and let
n be a positive integer.

(n)

Define a € Pl(M(n)) to be the subset of M consisting of all n-tu-
ples (ml,...,mn) having at least (n-1) components equal to 1. Then,
for 1 <r <n, a¥ is the set of all n-tuples having at least (n-r)
components equal to l. It follows that the submonoid of PI(M(n)) gene-
rated by a is isomorphic with the cyclic monoid Zl,n’ and thus

Zlg1e P,V. Since J N Com is generated by the monoids Zl,n(n >0)
.see [ 1] = we have J N Com C EI! and this completes the proof of (2).

We turn now to non-commutative varieties of monoids. As shown in [ 4]

one can distinguish two main families of such varieties.

PROPOSITION 3.3 Let V be a non commutative variety of monoids. Then

V contains either a non-commutative aperiodic monoid or a non-commu-

tative group.

We first consider the case where V contains a non-commutative ape-

riodic monoid.

l

THEOREM 3.4 If V is a variety containing a non-commutative aperio-

dic monoid, then le =J.

Proof : The inclusion P,V CJ follows from proposition 3.1. The
opposite inclusion requires a sequence of lemmata the first two of

which were proved in [4].

LEMMA 3.5 If V is a variety containing a non-commutative aperiodic

monoid then one of the following conditions holds :
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(1) V contains the variety R, of all R-trivial and idempotent

monoids,

(2) V contains the variety gf of all [ -trivial and idempotent mo-

noids,

(3) V contains the syntactic monoid M of {ab} over the alphabet

{a’b}
LEMMA 3.6
If n is a positive integer, let us set An = {al,...,an,zl...,;n}.

(1) If V contains 51, then for all n> g, A;V , contains the

language .
- - % - - * - - *
K = {al,...,an} al{al,...,an,al}az...an{al,...,an,al,...,an] .

(2) If V contains BI, then for all n >0, A:V contains the lan-

guage

N - [o - * - - %
kn {al,...,an,al,...,an} al...an{al,...,an} .

(3) If V contains M6’ then for all n >0, A;V contains the lan-

guage Ln = {al...an}.

The next lemma is an immediate consequence of lemmata 3.5 and 3.6.

LEMMA 3.7
Set, for n >'O,An = {al,...,an, 51,...,5n}. If V contains a non

. . . . * .
commutative aperiodic monoid then for all n >o, Anzf contains a

language L such that {a,...a } C L C A*a A*...a A,
— n — 1 nn — n— nln nn

We now conclude the proof of theorem 3.4 :
Let B be an alphabet and let bl""’bn be a sequence of n (not
necessarily distinct) letters of B. Define a l-substitution

* * N
¢ : B A, by setting, for all b €B, bo = {1}V {aklbk = b}.
By Lemma 3.7, there exists a language L such that

{a,...a} € LC ATa A*...a A"
1 n n 1"n nn
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Therefore we have

-1 -1 * * *, =1

C C .. i.e.
(al...an)c ClLo  C (Ana1An' anAn)c i.e
B*b,B*...b B*C Lo~} C B*b,B¥..b B*.
1 n — — 1 n

It follows that Lo_l = B*b B’.‘..an*. Thus, with the notations of

1
theorem 2.1, we have Lo-1 € B"V and thus B'V contains all piecewise

testable languages. By Simon's theorem 1.1 and t heorem 2.1 we deduce

that J is contained in P—l!

COROLLARY 3.8

For any non commutative aperiodic monoid M and for any J-trivial

monoid N, there exists an integer n > 0 such that N divides

P, M@y

PROOF : let M and M' be two monoids. It is easy to see that if M
is a submonoid (quotient) of M', then PI(M) is a submonoid (quo-
tient) of Pl (M'). Moreover PI(M)XPI(M') is a submonoid of PI(M x M").
Therefore if V is the variety generated by M, then every element of
V divides PI(M(n)) for some n > 0. Now theorem 3.4 shows that

L)

if M is a noncommutative aperiodic monoid then P

(n))

1! = J. Thus every

J-trivial monoid N divides PI(M for some n > 0.

THEOREM 3.9 (1) If V is a variety of monoids containing a non-com-

mutative group, then P P.V = J.

(2) I1f V contains all p-groups for some prime p,

then PV =J

1
PROOF : (1) By theorem 3.4 it is sufficient to show that ?—l! con—-
tains a noncommutative aperiodic monoid. Let G be a non-commutative

group of V and let a,b € G such that ab # ba. Assume that {l,a}

{1,b} = {1,b} {l,a} holds in PI(G)’ that is
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{l,a,b,ab} = {l,a,b,ba}. Then ab = 1,b or a and thus a=b, a=l or b=I.
In any case ab = ba, a contradiction. Thus PI(G) is a non-commuta-
tive monoid and by proposition 3.1 this monoid is J-trivial, hence
aperiodic.

(2) Let V be a variety containing all p-groups for some
prime p. Let An be as in Lemma 3.7. It follows from theorem 10.1

of 1] that

_ * w * W
Ln = {w € Anl(al...an) 1 (modp) } € An V. Here (al...an) denotes

]

the number of factorizations of w of the formw=u,a,u,a,..u au
1717272 n n n+l

where a, €A u, €A, 1 <i <n+l. Clearly {a,...a_} CL C
i i n 1 n° — n-—

* * .
A a A a ..,anA The rest of the proof is as in Lemma 3.7.

*
mln 2 n’
We do not know if theorem 3.9 is in its best form as stated. More
precisely it might happen that 242 = J holds for all non commutative

varieties of monoids V.
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