RESEARCH ARTICLE

ON M-VARIETIES GENERATED BY POWER MONOIDS

bv

Stuart W. Margolis
Communicated by G. Lallement

I. INTRODUCTION

In this paper all semigroups considered will be finite. Let M be a monoid. Then P(M), the power set of M, forms a monoid under the usual multiplication of subsets. Power monoids have recently been studied from the algebraic point of view [7], [8] and for their connection with the theory of languages [4], [6], [10], [12].

Here we study M-varieties which are generated by power monoids. Recall that an M-variety is a collection of monoids closed under division and finite direct product. If \underline{V} is an M-variety let \underline{PV} be the M-variety generated by $\{P(M) \mid M \in \underline{V}\}$. The operation $\underline{V} \rightarrow \underline{PV}$ has been studied in [6],[10],[12].

An M-variety \underline{V} is proper if \underline{V} is not equal to \underline{M} the M-variety of all finite monoids. The main theorem of this paper shows that \underline{PV} is proper if and only if \underline{V} is contained in \underline{DS} the M-variety of monoids whose regular \mathcal{D} -classes are subsemigroups. Equivalently we will see that $\underline{PV} = \underline{M}$ if and only if BA_2 , the 2x2 aperiodic Brandt monoid, is in \underline{V} . This answers a question raised by Pin in [6].

Let M and N be monoids. Our main technique is to study various properties of morphisms $\theta:M\to N$ which are inherited by the natural extension $\overline{\theta}:P(M)\to P(N)$. We will especially be interested in the case when N is a semilattice.

As an application of these methods we will show that if M is a union of groups, then the complexity of M is equal to the complexity of P(M). On the other hand we will give an example of an aperiodic monoid M_n such that $P(M_n)$ has complexity n, for each $n \geq 0$. We will

also show that if M is in \overline{DS} , then the maximal subgroups of P(M) are in the M-variety generated by the maximal subgroups of M. See [15] for an expostion of complexity theory.

II. PRELIMINARIES

Our terminology and notation will follow [1],[3], and [15]. We refer the reader to these texts for any details not included in this paper.

If M and N are monoids and $\phi:M\to N$ is a (functional) morphism then $\bar{\phi}:P(M)\to P(N)$ will denote the natural extension. The proof of the following useful lemma is elementary and is left to the reader.

<u>LEMMA 1.</u> Let M and N be monoids and let $\phi:M\to N$ be a functional morphism. If X and Y are contained in M, then $X\overline{\phi}=Y\overline{\phi}$ if and only if X and Y intersect the same classes of (mod ϕ) nontrivially.

For $n \ge 1$ let $\underline{n} = \{0, \ldots, n-1\}$ and let BA_n be the monoid consisting of the identity transformation together will all partial functions $f:\underline{n}\to\underline{n}$ with the property that $\operatorname{card}(\underline{n}f^{-1})\le 1$. BA_n is called the aperiodic Brandt monoid of size n. The following was proved in [6] using language theoretic methods. We present a direct algebraic proof. See [2, Ch. 7].

<u>LEMMA 2.</u> Let V be an M-variety. If $BA_2 \in V$ then PV = M, the M-variety of all finite monoids.

Proof. The following two facts are easy to establish:

- 1) If m,n \geq 1 then BA_{mn} \prec BA_m x BA_n.
- 2) If $m \le n$ then $BA_m \le BA_n$.

In particular, if follows by 1) that $BA_2 \in \underline{V}$ implies $BA_2 k \in \underline{V}$ for all $k \ge 1$. Therefore, by 2) $BA_n \in \underline{V}$ for all $n \ge 1$.

Let R_n denote the monoid of relations on n. The function $\phi\colon P(BA_n)\to R_n$ given by

$$\chi_{\phi} = \bigcup_{f \in X} f$$

for X $_{\epsilon}$ P(BA $_{n}$) is a surjective functional morphism. Therefore R $_{n}$ $_{\epsilon}$ $_{e}$ PV for all $_{n}$ $_{e}$ 1, and thus $_{e}$ PV = $_{e}$ $_{e}$.

This proves one part of the main theorem. In order to prove the converse we will need to study M-varieties defined by certain classes of relational morphisms. We introduce the necessary terminology.

Let S and T be semigroups. Recall that a relation $\phi\colon\thinspace S\to T$ is a relational morphism if

- 1) $s\phi \neq \emptyset$ for all $s \in S$.
- 2) $(s_1\phi)(s_2\phi) \subseteq (s_1s_2)\phi$ for all s_1 , $s_2 \in S$. If S and T are monoids we also require
- 3) 1 ε 1φ.

Let \underline{V} and \underline{W} be S-varieties. That is \underline{V} and \underline{W} are collections of <u>semigroups</u> closed under division and finite direct product. A relational morphism $\phi:S \to T$ is a $\underline{V-W}$ morphism if for every subsemigroup T' of T

T'
$$\varepsilon$$
 W implies T' ϕ^{-1} ε V.

We shall be particularly interested in the cases $\underline{W} = \underline{V}$ and $\underline{W} = \{1\}$, the variety consisting of the trivial semigroup 1. In the first case we call $\phi: S \to T$ a \underline{V} -morphism [15]. Notice that $\phi: S \to T$ is a $V-\{\underline{1}\}$ morphism if and only if $\{e\phi^{-1} \mid e = e^2 \in T\} \subseteq \underline{V}$.

Clearly every \underline{V} -morphism is a \underline{V} -{ $\underline{1}$ } morphism but the converse is not true. Furthermore the collection of \underline{V} -morphisms is easily seen to be closed under composition whereas this need not be true of the collection of \underline{V} -{ $\underline{1}$ } morphisms.

EXAMPLE 1. Let U_n denote the monoid consisting of n right zeroes and an identity. It is well known that the exclusion $<U_2>$ of U_2 defined by $<U_2> = \{S | U_2 \neq S\}$ is an S-variety.

The unique surjective functional morphism $\phi\colon U_2\to U_1$ is a $<U_2>-\{\underline{1}\}$ morphism which is not a $<U_2>$ -morphism. Furthermore the morphism $\gamma\colon U_1\to \{\underline{1}\}$ is a $U_2^-\{\underline{1}\}$ morphism but $\phi\gamma\colon U_2\to \{\underline{1}\}$ is not.

If φ is the collection of all $\underline{V}\!-\!\underline{W}$ morphisms and $\underline{V}^{\,\prime}$ is an M-variety let

 $\Phi^{-1}\underline{V}' = \{M \mid \text{ there exists } N \in \underline{V}' \text{ and } \phi:M \to N \in \Phi\}.$

It is easy to check that $\phi^{-1}\underline{V}'$ is an M-variety. Varieties of the form $\phi^{-1}\underline{V}'$ arise naturally in language theory. For example, let Φ be the collection of all aperiodic morphisms. In [13] Straubing shows that a *-variety of languages (see [13]) is closed under concatenation for each alphabet A if and only if the corresponding M-variety \underline{V} is closed under the operation $\underline{V} \to \Phi^{-1}\underline{V}$.

III. THE MAIN RESULT

In this section we state the main theorem and prove it modulo a technical lemma. Recall that \underline{DS} is the M-variety of monoids whose regular $\mathcal D$ classes are subsemigroups.

THEOREM 3. Let V be an M-variety. The following are equivalent:

- 1) \underline{V} is <u>not</u> contained in \underline{DS} .
- 2) BA₂ ε <u>V</u>,
- 3) $\underline{PV} = \underline{M}$ the variety of all finite monoids.

The hardest part of theorem 3 is 3) implies 1). That is we must show that if \underline{V} is contained in \underline{DS} then there exists a monoid $\underline{M} \not\in \underline{PV}$. The following lemma, whose proof is postponed until the next section, will allow us to construct such an \underline{M} . Recall that $<\underline{U_2}>$ is the S-variety of $\underline{U_2}$ -free semigroups. See example 1 above.

LEMMA 4. Let φ be the collection of <U₂ -{1} relational morphisms and let W be the M-variety of commutative aperiodic monoids. Then

$$P(DS) \subseteq \Phi^{-1}\underline{W}.$$

In other words if M $_{\epsilon}$ $\underline{p(DS)}$, then there exists a commutative aperiodic monoid N and a relational morphism $\phi: M \to N$ such that $\{e_{\phi}^{-1} | e = e^2 \in N\} \subseteq \langle \mathbf{U}_2 \rangle$.

We now construct a monoid which is not in $\underline{P(DS)}$.

 $\underline{\text{EXAMPLE 2}}.$ Let $\mathrm{U_2}$ be the monoid consisting of an identity and two right zeroes a and b. Form the Rees matrix semigroup

$$S = M(U_2, \{a_1, a_2\}, \{b_1, b_2\}, \begin{bmatrix} 1 & a \\ b & 1 \end{bmatrix})$$

over U_2 and let $M = S^1$.

M is regular and has 3 $\mathcal D$ classes:

$$D_1 = \{1\}$$

$$D_2 = \{(a_i, 1, b_i) | i, j \in \{1, 2\}\}$$

$$D_3 = \{(a_i, x, b_j) | x \in \{a, b\}, i, j \in \{1, 2\}\},$$

$$D_3 < D_2 < D_1 \quad \text{in the usual } \mathcal{D} \text{ class ordering.}$$

LEMMA 5. M is not in P(DS).

<u>Proof.</u> Let N be a commutative aperiodic monoid and let $\phi:M\to N$ be a relational morphism. It suffices by lemma 4 to show that ϕ is not a $<U_2>-\{\underline{1}\}$ morphism.

The set $R = \{(m,n) | n \in m\phi\}$ is a submonoid of MxN. Let

$$\pi_1: R \to M$$
 $\pi_2: R \to N$

be the restriction of the projections MxN \rightarrow M and MxN \rightarrow N, respectively. Note that ϕ = $\pi_1^{-1}\pi_2$.

Let D \subseteq R be a regular $\mathcal D$ class such that $D\pi_1=D_2\subseteq M$. Then $D\pi_2$ is contained in a regular $\mathcal D$ class of N and thus $D\pi_2=e$ for some idempotent $e\in N$ (since N is commutative and aperiodic).

Therefore $e_{\phi}^{-1} = e_{2}^{-1}\pi_{1}$ contains the subsemigroup S of M generated by D_{2} .

But

$$(a_2,1,b_1)^2 = (a_2,a,b_1) \in S$$

and $(a_1,1,b_2)^2 = (a_1,b,b_2) \in S$

Therefore

$$(a_2,a,b_2) = (a_2,a,b_1)(a_1,1,b_2) \in S$$

and $(a_2,b,b_2) = (a_2,a,b_1)(a_1,b,b_2) \in S$

Thus $U_2 = \{(a_2,1,b_2), (a_2,a,b_2), (a_2,b,b_2)\} \subseteq S \subseteq e_{\phi}^{-1} \text{ and } \phi \text{ is not a } <U_2>-\{\underline{1}\} \text{ morphism.} \blacksquare$

We can now prove theorem 3. By lemma 2 and lemma 5 it suffices to prove 1) implies 2).

Let \underline{V} be a variety which is not contained in \underline{DS} . Then there is a monoid M $\underline{\epsilon}\ \underline{V}$ and a regular $\mathcal D$ class D of M which is not a subsemigroup. It is easy to see that a monoid of the form

$$N = M^{0}(\{1\}, 2, 2, \begin{bmatrix} 1 & x \\ 0 & 1 \end{bmatrix})^{1} x \in \{0, 1\}$$

divides M. If x = 0, then N \simeq BA $_2$ and we are done since N \in \underline{V} . If x = 1, then a simple calculation shows that

and therefore BA₂ ε \underline{V} as desired.

We remark that theorem 3 remains true for semigroups and S-varieties.

The following result of Putcha [7] will allow us to state a theorem for M-varieties of aperiodic monoids analogous to theorem 3.

THEOREM 6. Let M be a aperiodic monoid. Then P(M) is aperiodic if and only if BA_2 does not divide M.

Let \underline{DA} be the M-variety of monoids whose regular $\mathcal{D}\text{-classes}$ are aperiodic semigroups.

<u>COROLLARY</u>. <u>Let V be an M-variety of aperiodic monoids</u>. The following are equivalent:

- 1) V is contained in DA.
- 2) BA₂ ∉ <u>V</u>.
- 3) PV is an aperiodic M-variety.

<u>Proof.</u> The equivalence of 1) and 2) is proved as in theorem 3. The equivalence of 2) and 3) follows from theorem $6.\blacksquare$

More generally, we have:

THEOREM 7. Let S be a semigroup in DS and let G be a subgroup in P(S). Then G is in the M-variety generated by the maximal subgroups of S.

<u>Proof.</u> Let D be a regular p-class of S. Define a map $f_D:G \to P(D)$ by $Xf_D = X \cap D$. Then f_D is a morphism. For clearly,

$$(X \cap D)(Y \cap D) \subseteq (XY \cap D)$$

for all X,Y ϵ G. On the other hand, let $z = xy \epsilon$ (XY \cap D). Let $e = e^2 Hz$. Then $e \epsilon$ T where $T = T^2 \epsilon$ G. But $e \epsilon$ TX = X and $e \epsilon$ YT = Y. Therefore, $e \epsilon$ T = $e \epsilon$ (xy) $e \epsilon$ (X $e \epsilon$ D)(Y $e \epsilon$ D).

Let D_1 , ..., D_n be the regular v classes of S which intersect the maximal v classes of T nontrivially. Then the morphism $f:G \to P(D_1)x$... $xP(D_n)$ is injective where

$$gf = (gf_{D_1}, \ldots, gf_{D_n})$$

Indeed, suppose Xf = Tf for some X ε G. Let t ε T. Then t = us_iv for some u,v ε T and s_i ε D_i \cap T and some 1 \leq i \leq n. But D_i \cap T = D_i \cap X and thus t ε TXT = X. Therefore T \subseteq X. It follows that X = TX \subseteq X² and by induction X \subseteq X^k for all k \geq 1. But Xⁿ = T for some n \geq 1 and thus X \subseteq T also.

To prove theorem 7, it suffices then to prove the following lemma.

LEMMA 8. Let S be a completely simple semigroup and let G be a subgroup of P(S). Then G divides a maximal subgroup of S.

<u>Proof.</u> Let $G \subseteq P(S)$ and let $T = T^2 \in G$. Let H be a maximal subgroup of S such that $T \cap H \neq \emptyset$. A proof that the map $f: G \to P(H)$ sending $X \to X \cap H$ is an injective morphism is similar to the proof above and is omitted. Therefore G is isomorphic to a subgroup of P(H). It is

well known that every subgroup of P(H) divides H. See [6] for example.

We close by using theorem 7 to prove a theorem which generalizes theorem 6. Let G be any M-variety of groups not containing all finite groups. Define \overline{G} to be the M-variety consisting of monoids all of whose subgroups are in G. Let $DG = DS \cap \overline{G}$.

THEOREM 9. Let \underline{V} be an M-variety contained in \overline{G} . The following conditions are equivalent.

- 1) V is contained in DG.
- 2) PV is contained in \overline{G} .
- 3) PV is proper.
- 4) BA₂ ∉ <u>V</u>.

Proof. 1) =>2) Follows from theorem 7.

- 2) =>3) Trivial since G is not the M-variety of all finite groups.
- 3) =>4) Follows from theorem 3.
- 4) =>1) Since \underline{V} is contained in \overline{G} , this follows as in theorem 3.

Compare theorem 7 with the following result of Putcha [7]. Recall that an M-variety \underline{V} is closed if the wreath product of two members of \underline{V} is also in V.

THEOREM. Let S be a finite semigroup and let G be a subgroup in P(S). Then G is in the closed M-variety generated by the maximal subgroups of $P(S_i)$ where S_i i = 1, ..., n are the principal factors of S.

If BA_n is the aperiodic Brandt monoid of size n, then we have seen in lemma 2 that the monoid of relations on n divides $\mathsf{P}(\mathsf{BA}_n)$. Thus the subgroups in $\mathsf{P}(\mathsf{S})$ are in general much more complicated than the subgroups in S .

We close this section with an application to language theory. It is well known that every theorem on M-varieties leads, via the Eilenberg variety theorem ([1],[3]), to a theorem on *-varieties of recognizable languages. We assume the reader is familiar with the basic definitions and ideas in the theory of varieties of languages.

The operation $V \rightarrow PV$ on M-varieties corresponds to the

following operation on *-varieties.

Let $\underline{\textit{V}}$ be a *-variety and let A be a finite alphabet. Define A*($\pi\textit{V}$) to be the Boolean algebra generated by sets of the form L $_{\varphi}$, where L $_{\epsilon}$ B* $\underline{\textit{V}}$ for some finite alphabet B and $_{\varphi}$:B* \to A* is a morphism such that B $_{\varphi}$ \subseteq A.

THEOREM 10. If V corresponds to the M-variety V, then πV corresponds to PV.

Proof. See [6],[10], or [12].

THEOREM 11. Let V be a *-variety and let A = {a,b}. The following are equivalent:

- 1) (ab)* ε A*V.
- 2) $\pi V = RAT$ the variety of all rational languages.

<u>Proof.</u> Follows from theorem 3, theorem 10, the Eilenberg variety theorem and the fact that the syntactic monoid of (ab)* is BA₂.

IV. THE M-VARIETIES \overline{DS} AND $\overline{P}(\overline{DS})$

In this section we complete the proof of theorem 3 by proving lemma 4. Recall that U_1 is the 2 element semilattice and that $<U_1>$ is the S-variety of U_1 -free semigroups. Thus S \in $<U_1>$ if and only if S is a nilpotent ideal extension of its minimal ideal.

The proof of lemma 4 will proceed in 2 steps:

- 1) If M $_{\epsilon}$ DS, then there exists a functional <U $_{1}$ >-morphism $_{\varphi}$:M \to N onto a semilattice N.
- 2) The extension $\overline{\phi}$:P(M) \rightarrow P(N) is a $\langle U_2 \rangle \{\underline{1}\}$ morphism. Since P(N) is commutative and aperiodic the result follows.

The morphism $\phi: M \to N$ in 1) will be nothing more than the Clifford map in case M is union of groups. The existence of N and the morphism $\phi: M \to N$ follows from the theory of semilattice decompositions developed by Tamura, Putcha, Petrich, etc. ([5],[9], [14]). However, we prefer, for the sake of completeness, to give a direct proof suited to our present purposes.

<u>LEMMA 12.</u> Let M be any monoid and let D be a regular \mathcal{D} class of M which is a subsemigroup of M. Then $T_D = \{x \in M | MxM \cap D \neq \emptyset\}$ is a subsemigroup of M and D is the minimal ideal of T_D .

<u>Proof.</u> Let $x, y \in T_n$. Then

 $uxv \in D$ and

syt
$$\epsilon$$
 D

for some u,v,s,t ϵ M.

Since D is a subsemigroup of M, D is regular. Choose idempotents e,f ϵ D such that

eRuxv and

fLsyt.

Then uxv = euxv and syt = sytf and it follows that eux ϵ D and ytf ϵ D. Therefore,

$$(eux)(ytf) = eu(xy)tf \in D$$

since D is a subsemigroup of M. Thus xy ϵ T and T is a subsemigroup. Clearly D is the minimal ideal of T .

COROLLARY. $M-T_D$ is an ideal of M.

Therefore the characteristic function $X_D: M \to U_1$ of T_D is a functional morphism. Here

$$mX_{D} = \begin{cases} 1 & \text{if } m \in T_{D} \\ 0 & \text{if } m \in M-T_{D} \end{cases}$$

Let $\mathbf{D_1},\ \dots,\ \mathbf{D_n}$ be the regular $\mathcal{D}\text{-classes}$ of M which are subsemigroups. Then the morphism

(*)
$$X:M \rightarrow \prod_{i=1}^{n} U_{i}$$

where

$$mx = (mx_{D_1}, mx_{D_2}, ..., mx_{D_n})$$

separates D_1 , ..., D_n . That is,if s ϵ D_i and t ϵ D_j , then sX = tX implies that i = j. In particular if every regular $\mathcal D$ -class of M is a subsemigroup, then eX⁻¹ contains exactly one regular $\mathcal D$ class for each e ϵ MX. Thus eX⁻¹ is U_1 free and X is a $<U_1>$ morphism.

<u>LEMMA 13.</u> <u>Let M ε DS.</u> <u>Then there exists a semilattice N and a $\leq U_1 >$ -free morphism $X: M \to N$. Furthermore, if D is a regular \mathcal{D} -class of M, then DX = e for some e ε N and eX⁻¹ = {m|mⁿ ε D for some n ε |N}.</u>

<u>Proof.</u> Let N = MX where X is as in (*). The discussion preceding the lemma shows that $X:M \to N$ satisfies the requirements.

Let D be a regular \mathcal{D} -class of M. Then DX is contained in a regular p-class of N and thus DX = e for some e ϵ N. Since mX = m n X for all n > 1 it follows that $ex^{-1} = \{m | m^n \in D\}$. Conversely, suppose mX = e. Choose n > 1 such that m^n is regular. Since X separates regular \mathcal{D} -classes and $(m^n)X = e$ it follows that $m^n \in D$.

See also [9] theorem 2.13.

We now study the induced morphism $\overline{X}:P(M) \to P(N)$. Recall that <U₂> is the S-variety of U₂-free semigroups.

LEMMA 14. Let M ε DS. Let N and X:M \rightarrow N be as in lemma 13. Then \overline{X} :P(M) \rightarrow P(N) is a <U₂>-{1} morphism.

<u>Proof.</u> Let $E = E^2 \varepsilon_P(N)$. We must show that $E\tilde{\chi}^{-1}$ is in $<U_2>$. Assume that $U_2 < E\bar{X}^{-1}$. By a well known result $U_2 \subseteq E\bar{X}^{-1}$. Let $\{S_1, S_2, T\} \simeq U_2 \subseteq E\bar{X}^{-1}$ with

Let
$$\{S_1, \overline{S}_2, T\} \simeq U_2 \subseteq E\overline{X}^{-1}$$
 with $S_i S_j = S_j$ $i, j = 1, 2$

and

$$S_{i}T = TS_{i} = S_{i}, T^{2} = T i = 1,2$$

 $s_i T = T s_i = s_i, \ T^2 = T \quad i = 1,2.$ It suffices to prove that $T \subseteq s_1 \cap s_2$ for then

$$S_1 = S_1 T \subseteq S_1 S_2 = S_2$$

and dually $S_2 \subseteq S_1$.

Since T,S_p,S_p are idempotents of P(M) they are subsemigroups of M. Furthermore the maximal \mathcal{D} classes of T_1S_1,S_2 are all regular. Let $\mathbf{D_1},\;\ldots,\;\mathbf{D_k}$ be the \mathbf{D} classes of M containing the maximal \mathbf{D} classes of T.

If t ϵ T there exists u,v ϵ T and an idempotent e, ϵ D, for some i, $1 \le i \le k$ such that

(1) t = ue; v.

Since $T\bar{\chi} = S_{J}\bar{\chi}, j = 1,2,$ it follows by lemma 1 and lemma 13 that there exists $y_{ij} \in D_i \cap S_i$. But D_i is a completely simple semigroup so there exists an n \geq 1 such that

(2) $e_i = (e_i y_{ij} e_i)^n \in (TS_i T)^n = S_i$.

By (1) we then have

$$t \in TS_jT = S_j$$

and thus $T \subseteq S_1 \cap S_2$.

We can now prove lemma 4. We wish to prove that $P(\underline{DS}) \subseteq \Phi^{-1} \underline{W}$ where W is the M-variety of commutative aperiodic semigroups and Φ is the collection of $\langle U_2 \rangle - \underline{1}$ morphisms.

Recall that a relational morphism $\phi:S \to T$ is injective (or elementary [15]) if

$$s_1 \phi \land s_2 \phi \neq \emptyset => s_1 = s_2$$

for all $s_1, s_2 \in S$. It is easy to see that S < T iff there is an injective relational morphism $\phi: S \to T$. Furthermore $\phi: S \to T$ is injective iff $\phi^{-1}: T \to S$ is a surjective partial function.

Now let M ϵ P(DS). Then

(3)
$$M \prec P(M_1)x \dots P(M_k)$$

for some $M_i \in \underline{DS}_j$, $1 \le i \le k$. Let $X_i : M_i \to N_i$ be as in lemma 9 and consider $\bar{X}_i : P(M_i) \to P(N_i)$. Let

$$\theta = \phi(\bar{X}_1 \times \bar{X}_2 \times \dots \times \bar{X}_n) : M \to P(N_1) \times \dots \times P(N_k)$$

where $\phi: M \to P(M_1) \times \dots \times P(M_k)$ is an injective relational morphism. It follows from lemma 14 that θ is a $<U_2>-\{\underline{1}\}$ morphism. Furthermore $P(N_1)$ is certainly commutative and is also aperiodic by theorem 6. Therefore $M \in \Phi^{-1}W.\blacksquare$

COROLLARY 1. Let $<U_1>$ be the S-variety of U_1 free semigroups. Then $P(<U_1>) \subseteq <U_2>$.

<u>Proof.</u> If S ϵ <U₁> then the morphism

$$\gamma_s: S \rightarrow \{1\}$$

is a $\langle U_{\vec{l}} \rangle$ morphism. Therefore by lemma 14 applied to semigroups $\bar{\gamma}_c: P(S) \rightarrow P(\{1\})$

is a $<U_2>-\{\underline{1}\}$ morphism. Since $(\emptyset)\overline{\gamma}_s^{-1}=\emptyset$ it follows that in fact $\overline{\gamma}_s$ is a $<U_2>$ morphism. Therefore P(S) is U_2 -free and $\underline{P}(<U_1>)\subseteq <U_2>$. We recall that a basic fact about $<U_2>$ is that every member has complexity ≤ 1 . (See [15]). We therefore have:

COROLLARY 2. If S is U₁ free then $P(S)c \le 1$. Moreover, P(S)c = Sc = 0 if S is aperiodic 1 if S is not aperiodic

<u>Proof.</u> If S is aperiodic, then so is P(S) by theorem 4. If S is not aperiodic, then Sc = 1 since S ϵ <U₁>. But Sc \leq P(S)c \leq 1.

COROLLARY 3. If S is a simple semigroup, then $Sc = P(S)c \le 1$.

Proof. S is U₁ free. ■

On the other hand if $S = M^O(\{1\}, n, n, I_n)$, a completely 0-simple semigroup, then we have seen that R_n , the monoid of relations on nodivides P(S). This can be used to show that P(S)c = n - 1. Thus if S is completely 0-simple, the complexity of P(S) depends on the scarcity of idempotents in the egg box picture of $S-\{0\}$.

V. UNION OF GROUPS, POWER MONOIDS, AND COMPLEXITY In this section we generalize corollary 3 above, by showing that if M is a union of groups, then the complexity of M is equal to the complexity of P(M).

We assume the reader has some familiarity with the basic definitions and theorems of complexity theory. See [15]. In particular let S be a semigroup and let $\gamma_S:S \to \{1\}$ be the collapsing morphism. Then the complexity of S is equal to the least number n such that:

(*)
$$\gamma_s = \alpha_0 \beta_1 \alpha_1 \dots \beta_n \alpha_n$$

where each $\alpha_{\bm{j}}$ is an aperiodic relational morphism and each $\beta_{\bm{j}}$ is a U_2-free relational morphism.

An important fact about unions of groups is that the α_j and β_j in (*) above can all be chosen to be functional morphisms. In fact even more is true.

Let K be any of Green's relation. A functional morphism $f:S \to T$ is a K-morphism if $s_1f = s_2f$ implies s_1Ks_2 . Notice that an L morphism is a U_2 -free morphism (but not conversely).

The following theorem appears in [2] chapter 9:

THEOREM 15. Let S be a union of groups. Then the complexity of S is equal to the least n such that

$$\gamma_s = f_0 g_1 f_1 \dots g_n f_n$$

where each f_i is an aperiodic and $\mathcal D$ functional morphism and each g_i is a functional L morphism.

COROLLARY. Let S be a union of groups with Sc = n > 0. Then there exist unions of group T_1, T such that:

- 1) there is an aperiodic and $\mathcal D$ functional morphism f:S \leftrightarrow T₁,
- 2) there is an L-morphism $g:T_1 \rightarrow T$,
- 3) Tc = n 1.

<u>LEMMA 16.</u> Let S be a union of groups. If $f:S \to T$ is a functional aperiodic and $\mathcal D$ morphism, then $\overline{f}:P(S) \to P(T)$ is an aperiodic functional morphism.

<u>Proof.</u> Let S be a union of groups and let $f:S \to T$ be an aperiodic and $\mathcal D$ functional morphism. We show that \overline{f} is one to one on subgroups of P(S).

Let G be a subgroup of P(S) and let $T = T^2 \in G$. Let $X \in G$. Then TXT = X and there is an n > 0 such that $X^n = T$. Assume $X\overline{f} = T\overline{f}$. Since S is a union of groups, it easily follows that $\operatorname{card}(X) \leq \operatorname{card}(X^k)$ for all k > 0. In particular $\operatorname{card}(X) \leq \operatorname{card}(X^n) = \operatorname{card}(T)$. Therefore it suffices to show that $T \subseteq X$.

Let t ϵ T. Then there exists x ϵ X such that xf = tf. Since f is a $\mathcal D$ morphism it follows that x $\mathcal D$ t $_2$. Let e be an idempotent $\mathcal H$ related to t. Since T = T 2 , T is a subsemigroup of S and thus e ϵ T. Furthermore (exe) $\mathcal H$ t and

$$(exe)f = (ete)f = tf.$$

Since f is aperiodic it follows that $t = exe \in TXT = X.$

<u>LEMMA 17.</u> Let S be a union of groups. If $f:S \to T$ is a functional <u>L</u> morphism then $\overline{f}:P(S) \to P(T)$ is a U₂-free morphism.

<u>Proof.</u> We must show that \overline{f} is 1-1 on every copy of $U_2 \subseteq P(S)$. Let $U_2 \cong \{T,S_1,S_2\} \subseteq P(S)$. Then

$$TS_{i} = S_{i}T$$
(**) $S_{i}S_{j} = S_{j}$ $i,j = 1,2$
 $T = T^{2}$

If $T\overline{f} = S_1\overline{f}$ i = 1 or 2, then (**) clearly implies $S_1\overline{f} = S_2\overline{f}$. Therefore it suffices to show that $S_1\overline{f} = S_2\overline{f}$ implies $S_1 = S_2$.

Suppose $S_1\overline{f}=S_2\overline{f}$. If $s_1 \in S_1$ there is $s_2 \in S_2$ such that $s_1f=s_2f$. Let e be an idempotent H related to s_2 . Since S_2 is a subsemigroup of S, e \in S₂. Furthermore, s_1Ls_2 and thus:

$$s_1 = s_1 e \in S_1 S_2 = S_2$$

Therefore $S_1 \subseteq S_2$ and by symmetry $S_2 \subseteq S_1$.

THEOREM 18. Let S be a union of groups. Then Sc = P(S)c.

<u>Proof.</u> Since S divides P(S) if suffices to show that $P(S)c \le Sc$. We prove this by induction on Sc.

If Sc = 0, then S is a band. Therefore P(S) is aperiodic by theorem 6.

Assume Sc = n > 0. Let T_1 , T and $f:S \rightarrow T_1$, $g:T_1 \rightarrow T$ be as in the corollary to theorem 15. By lemma 16 and lemma 17

$$\overline{f}:P(S) \rightarrow P(T_1)$$
 is aperiodic
and $\overline{g}:P(T_1) \rightarrow P(T)$ is U_2 -free.

Therefore.

$$P(S)c \leq P(T_1)c \leq 1 + P(T)c \leq 1 + (n-1) = n$$
 by induction and the fact that if $\phi:S \to T$ is an aperiodic (U2-free) morphism, then $Sc \leq Tc$ ($Sc \leq 1 + Tc$). See [15].

VI. SOME OPEN PROBLEMS

- 1) Let \overline{DG} be as in theorem 9. Give necessary and sufficient conditions for a monoid to be a member of $P(\overline{DG})$.
- 2) If M ε DS, does Mc = (PM)c?

ACKNOWLEDGEMENTS

I would like to thank Howard Straubing for bringing this problem to my attention and Jean-Eric Pin for sending me his work before it was published. Conversations with Garance Pin were amusing.

REFERENCES

- Eilenberg, S., <u>Automata, Languages and Machines</u>, Volume B, Academic Press, New York, (1976).
- Krohn, K., J. Rhodes and B. Tilson, "Lectures on the Algebraic Theory of Finite Semigroups and Finite State Machines," Chapters 1, 5-9 (chapter 6 with M.A. Arbib) of the <u>Algebraic Theory of</u> <u>Machines, Languages and Semigroups</u>, Academic Press (1968).
- 3. Lallement, G., <u>Semigroups and Combinatorial Applications</u>, Wiley-Interscience, (1979).
- 4. Margolis, S. and J.E. Pin, <u>Power Semigroups and J-Trivial</u> Monoids, (To appear).
- 5. Petrich, M., The Maximal Semilattice Image of a Semigroup, Math Z. 85(1964), 68-82.
- 6. Pin, J.E., <u>Varieties De Langages Et Monoide Des Parties</u>, Semigroup Forum, (1980).

- 7. Putcha, M., <u>Subgroups of the Power Semigroup of a Finite Semigroup</u>, Canadian Journal of Mathematics, (1979), 1077-1083.
- 8. Putcha, M., On the Maximal Semilattice Decomposition of the Power Semigroup of a Semigroup, Semigroup Forum 15(1978), 263-267.
- 9. Putcha, M., <u>Semilattice Decomposition of Semigroups</u>, Semigroup Forum 6(1973), 12-34.
- Reuteneur, C., <u>Sur les Varieties de Langages et de Monoides</u>, 4th G.I. conference, <u>Lecture Notes in Computer Science 67</u>, Springer, (1979), 260-265.
- 11. Schützenberger, M.P., <u>Sur le Produit Concatenation non-ambigu</u>, Semigroup Forum 13(1976), 45-75.
- 12. Straubing, H., <u>Recognizable Sets and Power Sets of Finite Semigroups</u>, Semigroup Forum 18, (1979), 331-340.
- 13. Straubing, H., <u>Aperiodic Homomorphisms and the Concatenation Product of Recognizable Sets</u>, Journal of Pure and Applied Algebra 15(1979), 319-327.
- 14. Tamura, T., Another Proof of a Theorem Concerning the Maximal Semilattice Decomposition of a Semigroup, Proc. Japan Acad. 40(1964), 777-780.
- 15. Tilson, B., <u>Complexity of Semigroups and Morphisms</u>, Ch. 12 in S. Eilenberg, <u>Automata</u>, <u>Languages and Machines</u>, Vol. B, Academic Press, (1976).

Department of Mathematics University of Vermont Burlington, Vermont 05405

Received February 27, 1981 and April 30, 1981 in final form.

