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Abstract. The left regular band structure on a hyperplane arrange-
ment and its representation theory provide an important connection
between semigroup theory and algebraic combinatorics. A finite semi-
group embeds in a real hyperplane face monoid if and only if it is in the
quasivariety generated by the monoid obtained by adjoining an identity
to the two-element left zero semigroup. We prove that this quasivariety
is on the one hand polynomial time decidable, and on the other mini-
mally non-finitely based. A similar result is obtained for the semigroups
embeddable in complex hyperplane semigroups.

1. Introduction

A left regular band is a semigroup satisfying the identities x2 = x and
xyx = xy. In recent years, there has been a great deal of interest in left regu-
lar bands because a number of combinatorial structures have been observed
to naturally carry the structure of a left regular band including: real hyper-
plane arrangements and oriented matroids [4, 7–9, 29], complex hyperplane
arrangments [6], matroids [7], interval greedoids [6] and oriented interval
greedoids [30]; see also [11]. Further applications of left regular bands and
their representation theory to algebraic combinatorics and probability the-
ory can be found in [1, 2, 7, 8, 23, 28, 29]. Left regular bands also appear in
the work of Lawvere on topos theory [18–20]. Thus left regular bands have
proven to be one of the most important classes of semigroups from the point
of view of applications to other areas of mathematics.

It turns out that many of the left regular bands associated to combi-
natorial structures are subsemigroups of direct powers of the monoid L =
{0,+,−} consisting of an identity 0 and two left zeroes {+,−}. We will
explain the use of the symbols {+,−} for the left zeroes in the next sec-
tion. For example, {0,+,−}n is the face monoid [7, 29] of the hyperplane
arrangement consisting of the coordinate hyperplanes in R

n. In this paper
we characterize those semigroups embeddable in direct powers of L.
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It is well known, cf. [27, Proposition 7.3.2], that the variety of left regular
bands is generated by L. The only proper subvarieties of left regular bands
are the trivial variety, the variety of left zero semigroups, the variety of
semilattices and the variety of left normal bands [5, 12]. It was thus a
huge surprise when Mark Sapir exhibited uncountably many quasivarieties
of left regular bands [33]. Moreover, he produced a countable anti-chain
in the lattice of left regular band quasivarieties, each of whose members is
generated by a finite left regular band [33].

It is then entirely natural from the point of view of semigroup theory to
ask what is the quasivariety generated by L and whether it is finitely based.
Recall that a quasi-identity is a universally quantified formal implication of
the form

(u1 = v1) ∧ · · · ∧ (un = vn) =⇒ u = v

where ui, vi, u, v are words over some alphabet, for 1 ≤ i ≤ n. For example,
the left cancellation law is the quasi-identity xy = xz =⇒ y = z. There
is an obvious notion of what it means for a semigroup to satisfy a quasi-
identity. For instance, a semigroup is left cancellative if and only if it satisfies
the left cancellation law.

A class of semigroups defined by quasi-identities is called a quasivari-
ety [10]. Quasivarieties alternatively can be described as classes of semi-
groups closed under isomorphism, subsemigroups, direct products and ul-
traproducts [10]. If S is a finite semigroup, then the quasivariety qv(S)
generated by S consists of all semigroups embeddable in a direct power of
S, or equivalently of all semigroups whose homomorphisms to S separate
points. In particular, if T is a finite semigroup we have the following ex-
ponential time algorithm to determine if T belongs to qv(S): compute all

|S||T | maps from T to S; check which are homomorphisms and check if they
suffice to separate points. It is well known that this can be turned into a
non-deterministic polynomial time (NP) algorithm to decide membership in
qv(S) [3]. If qv(S) has a finite basis of quasi-identities, then clearly mem-
bership in qv(S) for finite semigroups can be decided in polynomial time.

It is known that qv(L) contains finitely many proper subquasivarieties,
all of which are finitely based [13]. Let ZL be the result of adjoining a
multiplicative zero element to L. Our main result is the following.

Theorem 1. The quasivarieties qv(L) and qv(ZL) are not finitely based,
but have polynomial time membership algorithms.

More precise descriptions of these quasivarieties will be given in the body
of the article.

Remark 2. As noted above, the membership problem for the quasivariety
generated by a finite semigroup S (or more generally a finite universal al-
gebra) is in the complexity class NP. See [3] for example. Jackson and
McKenzie [15] showed, among other related results, that there is a finite
semigroup S such that the membership problem for qv(S) is NP-complete.
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Thus Theorem 1 shows that having a finite basis of quasi-identities is not
the only way that a finite semigroup can have a polynomial time algorithm
for membership in the quasivariety it generates. This is not the first ex-
ample of such a phenomenon, but we emphasize that it does show that the
language of quasi-identities is not powerful enough to capture finitely gener-
ated quasivarieties with polynomial time membership. The search for such
a formalism is a worthy problem.

2. Historical background

The finite basis problems for the identity theory and quasi-identity theory
of varieties and quasivarieties of semigroups, and more generally for univer-
sal algebras, have a long and extensive history. In this section we provide
background on this work, mainly for semigroups, to put the results of the
current paper in context.

Lyndon [21] proved that every universal algebra on a two-element set
has a finite basis for its identities. Shafaat [34] proved that the lattice of
quasivarieties of any universal algebra on a two-element set is a two-element
chain. It follows that the quasivariety generated by a two-element universal
algebra is a variety and thus has a finite basis for its quasi-identities.

For three-element universal algebras and three-element semigroups the
situation is radically different. Gorbunov [14] constructed a universal al-
gebra with two unary operations possessing no independent basis of quasi-
identities. Sapir [31] proved that the three-element monogenic aperiodic
semigroup C3,1 = {x, x2, x3 = x4} has no independent basis of quasi-
identities. Thus the main result of this paper gives another example of
a three-element semigroup with no finite basis of identities. The question of
whether L has an independent basis of identities is still open. See the last
section of the paper on open problems.

Important classes of semigroups have also been studied with respect to
the question of finite bases of identities and quasi-identities. Oates and
Powell [25] proved that every finite group has a finite basis for its identities.
Olshanskii [26] proved that a finite group G has a finite basis of quasi-
identities if and only if every nilpotent subgroup of G is abelian. Sapir [31]
extended this latter result to the class of completely simple semigroups. A
completely simple semigroup S has a finite basis of quasi-identities if and
only if S is a rectangular group, which by definition is the direct product of
a group and a rectangular band (equivalently S has a Rees matrix represen-
tation in which the structure matrix has all entries the identity element of
its maximal subgroup), such that every nilpotent subgroup of S is abelian.

The most general results about finite semigroups with respect to finite
bases of quasi-identities appeared in [16]. We recall some definitions. The
monogenic semigroup with index i and period p is Ci,p, the semigroup with
presentation 〈x | xi = xi+p〉. The index of a finite semigroup is the maximum



4 STUART MARGOLIS, FRANCO SALIOLA, AND BENJAMIN STEINBERG

index of any of its monogenic semigroups. A semigroup S is proper 3-
nilpotent if it has a zero 0, is not a semigroup with all products equal to 0 and
S3 = 0. Jackson and Volkov [16] prove that if S is any finite semigroup that
generates a quasivariety that contains either a proper 3-nilpotent semigroup
or has index at least 3, then S has no finite basis for its quasi-identities.
This includes Sapir’s results [31] about the aperiodic monogenic semigroup
of order (and index) 3. The main proof techniques of [16] reduce the general
case to this one.

It is still a major open problem as to whether it is decidable if a finite
semigroup has a finite basis of either its identities or quasi-identities. For
the identity theory of finite semigroups, the notion of inherently non-finitely
based (INFB) semigroups, has proved extremely useful. A finite semigroup S
is INFB if every locally finite variety V containing S is not finitely based. A
well known example of an INFB is the six element semigroup consisting of all
the 2×2 matrix units, the identity matrix and the zero matrix. While there
has been much progress on the finite basis problem for finite semigroups, the
general problem remains open. See [35] for an extensive survey of this area.
We remark that for universal algebras, the problem is undecidable [24].

For quasivarieties, there is the analogous notion of inherently non-finitely
quasi-identity based (INFQB). There are examples of INFQB universal alge-
bras [17], but no finite semigroup is INFQB [22]. A related property is that
of being strongly non-finitely quasi-identity based (SNFQB). A universal al-
gebra A is SNFQB if whenever A is contained in a quasivariety Q generated
by a finite number of finite algebras, then Q is not finitely based. Thus the
results of [31] and [16] say that the monogenic semigroup Ci,p is SNFQB as
long as i > 2 as well as any proper 3-nilpotent semigroup. The results of [26]
and [31] imply that a completely simple semigroup S is SNFQB if and only
if S either contains a non-abelian nilpotent subgroup or the idempotents of
S are not a subsemigroup. The paper [16] discusses a general framework in
which the properties INFQB and SNFQB are special cases.

Thus the question of whether it is decidable if a finite semigroup has a
finite basis of quasi-identities has been reduced to the case that the semi-
group has index at most 2. Finite semigroups of index 1 are exactly the
class of completely regular semigroups, that is, semigroups that are unions
of their subgroups. Aperiodic completely regular semigroups are exactly
bands. Gerhard and Shafaat [13] proved that any normal band has a finite
basis of quasi-identities. Recall that a band is normal if it satisfies the iden-
tity xyzw = xzyw. It is well known that a band S is normal if and only if it
is locally a semilattice, that is, eSe is a semilattice for every e ∈ S. This in
turn is equivalent to the condition that neither the left regular band L nor
its dual R, consisting of two right zeroes and an identity, is a subsemigroup
of S.

Thus the main result Theorem 1 of this paper shows that L and the dual
semigroup R are the smallest bands generating a non-finitely based quasiva-
riety. Therefore, the varieties of left regular bands and right regular bands
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are the smallest varieties of bands that contain a non-finitely based quasiva-
riety. It is an open question whether L and R are SNFQB within the class
of bands or all finite semigroups. On the other hand, in an unpublished part
of his thesis [32], Mark Sapir proved that the variety [[x2 = x, xyz = xyzxz]]
contains finite semigroups S that are SNFQB. This latter variety of bands
contains, but is strictly bigger than, the variety of left regular bands. As far
as we know, prior to this work there were no examples of a left regular band
without a finite basis. It is reasonable to ask if L is SNFQB with respect to
left regular bands, bands, or all finite semigroups. Neither the techniques of
Sapir’s thesis [32] nor the techniques of this paper shed light on this problem
as far as we see. See the last section of this paper for a further discussion
of this problem.

3. Hyperplane arrangements and their face monoids

We gather here the basic definitions, properties and examples of hyper-
plane arrangements and hyperplane face monoids. See [4,7–9,29] for further
details and examples.

A hyperplane arrangement A in R
d is a finite set of hyperplanes in R

d. We
restrict our attention to central hyperplane arrangements, that is arrange-
ments where all the hyperplanes contain 0 ∈ R

d. Each hyperplane H ∈ A
determines two open half-spaces of Rd denoted H+ and H−. The choice of
which half-space to label + or − is arbitrary, but fixed.

A face of A is a nonempty intersection of the form

F =
⋂
H∈A

HσH ,

where σH ∈ {+,−, 0} and H0 = H. The sequence σ(F ) = (σH)H∈A is the
sign sequence of F . A chamber C is a face such that σH(C) �= 0 for all
H ∈ A.

The next figure contains an example of a hyperplane arrangement with
its sign sequence. The hyperplanes are given by the x-axis and the lines at
angles 2π/3 and 4π/3 with respect to the x-axis.

(000)

(−+−)(− + 0)

(−++)

(0 + +)

(+ + +)

(+0+) (+−+) (+ − 0)

(+−−)

(0 − −)

(−−−)

(−0−)

Figure 1. The sign sequences of the faces of the hyperplane
arrangement in R

2 consisting of three distinct lines.
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For F,G ∈ F the product FG is the face of A with sign sequence

σH(FG) =

{
σH(F ), if σH(F ) �= 0,

σH(G), if σH(F ) = 0.

Remark 3. There is a nice geometric interpretation of this product. The face
FG is the face that one enters by moving a small positive distance along
any straight line from F to G.

The following proposition is obvious from the definition of the product in
a hyperplane monoid. It justifies our use of the term geometric left regular
band and the notation {0,+,−} for L.

Proposition 4. Let A be a hyperplane arrangement with n hyperplanes.
Then the hyperplane face monoid of A is a submonoid of {0,+,−}n.

Therefore every hyperplane face monoid is in qv(L). Since the hyperplane
arrangement consisting of the origin in R

1 has face monoid L, it follows
that the quasivariety generated by all hyperplane monoids is the same as
the quasivariety generated by L and that a finite semigroup embeds in a
hyperplane face monoid if and only if it belongs to qv(L).

To explain the complex hyperplane analogue, it is convenient to give an
alternative description of the hyperplane face monoid. Let s : R −→ L be
the mapping defined by

s(x) =

⎧⎪⎨
⎪⎩
+, if x > 0

0, if x = 0,

−, if x < 0.

Suppose that the hyperplane arrangement A in R
d is defined by the linear

forms f1 = 0, . . . , fn = 0. Define a mapping σ : Rd −→ Ln by

σ(�x) = (s(f1(�x)), . . . , s(fn(�x))).

It is not hard to see that σ(�x) is the sign sequence of the face of the hyper-
plane arrangement containing �x and hence F = σ(Rd).

Let us define an analogue of s for the complex numbers. Let Z be the left
regular band {0,+,−, i, j} in which {i, j} is a left zero semigroup, {0,+,−}
is a copy of L and L fixes i, j on both sides. Note that ZL ∼= {0,+,−, i}.
Conversely, we can separate points of Z into ZL by on the one hand factoring
out the ideal {i, j} and on the other mapping {0,+,−} to 0 and i, j to +,−
(respectively). Thus qv(ZL) = qv(Z).

Now define ψ : C −→ Z as follows. Here �(z) is the imaginary part of the
complex number z.

ψ(z) =

⎧⎪⎨
⎪⎩
i, if �(z) > 0

j, if �(z) < 0

s(z), if z ∈ R
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If A is a complex hyperplane arrangement in C
d given by complex linear

forms f1 = 0, . . . , fn = 0, then we can define a mapping Ψ: Cd −→ Zn by

Ψ(�z) = (ψ(f1(�z), . . . , ψ(fn(�z))).

One can show that F = Ψ(C) is a submonoid of Zn called the hyperplane
face monoid of A. See [6] for details. The hyperplane face monoid of the
arrangement in C

n given by zi = 0, for i = 1, . . . , n, has face monoid Zn

and hence a finite left regular band embeds in a complex hyperplane face
monoid if and only if it belongs to qv(ZL).

4. A polynomial time description of embeddability in
hyperplane face monoids

Every left regular band is a poset via its R-order. In other words, if S is
a left regular band and we define x ≤ y by yx = x, then (S,≤) is a poset.
The connected components of a poset (P,≤) are the equivalence classes of
the equivalence relation ∼ generated by ≤. Note that a ∼ b if and only if
we can find a zig-zag sequence a = a0 ≤ a1 ≥ a2 ≤ · · · ≥ an = b. The
connected components of P are precisely the connected components of the
Hasse diagram of P , or equivalently of the order complex of P . Recall that
the order complex of a poset P is the simplicial complex whose simplices
are the chains in P . For convenience, we write a ∼n b if there is a zig-zag
path from a to b, as above, of length n (note that we allow equalities and so
∼n⊆∼n+1).

Proposition 5. Let S be a left regular band. Then the connected component
relation on S is the least congruence on S whose corresponding quotient is
a left zero semigroup.

Proof. A homomorphism of left regular bands is order-preserving and hence
maps connected components into connected components. As the connected
components of a left zero semigroup are singletons, it follows that the con-
nected component relation ∼ is contained in the kernel of any homomor-
phism to a left zero semigroup. Since ≤ is compatible with left multipli-
cation, it is immediate that ∼ is compatible with left multiplication. On
the other hand, since x ≥ xy, it is immediate that x ∼ xy and so ∼ is a
congruence and S/∼ is a left zero semigroup. �

If S is a left regular band and a L b (i.e., Sa = Sab), then we define

Sa,b = {s ∈ S | sa = sb}.
Notice that Sa,b is a left ideal of S containing a, b. Let us say that a left
regular band S satisfies condition (CC) if whenever a L b and a, b are in
the same connected component of Sa,b, then we have a = b. Let Qn be the
quasi-identity that states that a L b and a ∼n b in Sa,b implies a = b. For
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example, Q3 is the quasi-identity:

(ab = a) ∧ (ba = b) ∧ (a1a = a1b) ∧ (a2a = a2b) ∧ (a3a = a3b)

∧ (a1a = a) ∧ (a1a2 = a2) ∧ (a3a2 = a2) ∧ (a3b = b) =⇒ a = b.

Observe that S satisfies (CC) if and only if it satisfies Qn for all n. Hence
the class of bands satisfying (CC) is a quasivariety. Actually we can bound
n by, say, |S| + 2 because we can remove repetitions in the middle of our
zig-zag (we may need a repetition at the beginning and at the end to make
the zig-zag start by going up and end by going down). Thus (CC) can be
checked in polynomial time in |S|. Alternatively, for each a L b, we can
compute the comparability graph of the poset Sa,b in polynomial time and
then do a depth-first search to check if b can be reached from a by a zig-zag
path.

Theorem 6. A left regular band S belongs to qv(L) if and only if it satisfies
condition (CC).

Proof. Let Q be the quasivariety of left regular bands satisfying (CC).
Clearly L ∈ Q so it remains to show Q ⊆ qv(L). Since a quasi-identity
involves only finitely many variables, a semigroup S belongs to a quasivari-
ety if and only if all its finitely generated subsemigroups belongs do. Thus
we may assume without loss of generality that S is finitely generated and
hence finite (as the variety of left regular bands is locally finite). We proceed
by induction on |S| with the cases |S| = 0, 1 being clear. Every semilattice
embeds in a direct power of the two-element semilattice and so qv(L) con-
tains all semilattices. Recall that the relation L is a congruence on any left
regular band and the quotient S/L is a semilattice by a well known result
of Clifford. Thus S/L ∈ qv(L) and so we can separate any two elements of
S that are not L -related by homomorphism into L.

Suppose now that a L b. Note that in a left regular band, every left
identity is also an identity. Suppose that c ∈ S is not an identity and that
ca �= cb. Then we have a homomorphism ϕ : S −→ cS given by ϕ(s) = cs
(using that csct = cst) and ϕ separates a, b. As cS is a proper subsemigroup
of S, it follows by induction that there is a homomorphism ψ : cS −→ L sep-
arating ca, cb. Thus ψϕ separates a, b. Thus we may assume that S \ Sa,b is
either empty or consists of only the identity. The canonical homomorphism
S −→ (Sa,b/∼)∪{1} separates a, b by definition of (CC). As it is well known
and easy to see that any left zero semigroup with adjoined identity belongs
to qv(L), this completes the proof in light of Proposition 5. �
Corollary 7. A finite left regular band embeds in a hyperplane monoid if
and only if it satisfies condition (CC).

Suppose now that S is a left regular band and a, b ∈ S with a L b.
Define S′

a,b = {s ∈ Sa,b | a ∈ Ss}. Note that S′
a,b is a subsemigroup of

Sa,b containing a, b. Let us say that S satisfies (CC’) if whenever a L b
and a, b are in the same connected component of S′

a,b one has a = b. The
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left regular bands satisfying (CC’) form a quasivariety. It is defined by the
quasi-identities Q′

n stating that a L b and a ∼n b in S′
a,b implies a = b.

Again, one can check in polynomial time whether S satisfies (CC’).

Theorem 8. A left regular band belongs to qv(ZL) if and only if it satisfies
condition (CC’).

Proof. The left regular band ZL clearly satisfies (CC’). By the argument in
the proof of Theorem 6, it suffices to show that if S is a finite left regular band
satisfying (CC’), then S ∈ qv(ZL), which we proceed to do by induction
on |S|. The base cases |S| = 0, 1 are trivial. As before, since semilattices
belong to qv(ZL), it follows that if a, b ∈ S are not L -equivalent, then we
can separate them by homomorphisms into ZL. Suppose next that a L b. If
there exists c ∈ S a non-identity element with ca �= cb, then as before we can
use the homomorphism S −→ cS to separate a and b and then proceed by
induction using that |cS| < |S|. Thus we may assume that Sa,b contains all
non-identity elements of S. Let I be the ideal of elements x ∈ S with a /∈ Sx
and let T be a left zero semigroup with elements the connected components
of S′

a,b. Then we can define a homomorphism S −→ {1}∪T ∪{0} by sending

I to 0, the identity of S (if there is one) to 1 and sending each element of
S′
a,b to its connected component. This gives a map from S into an element

of qv(ZL) separating a, b. This completes the proof. �
Corollary 9. A finite left regular band embeds in a complex hyperplane
semigroup if and only if it satisfies condition (CC’).

5. On the non-existence of a finite basis of quasi-identities

Observe that if a quasivariety is finitely based (that is, has a finite basis
of quasi-identities), then it can be defined by a set of quasi-identities over
a finite alphabet. Clearly, if a quasivariety Q can be defined by quasi-
identities in k variables, then a semigroup S belongs to Q if and only if
each k-generated subsemigroup of S belongs to Q. Thus to show that Q
cannot be defined by quasi-identities over a finite alphabet (and hence is
not finitely based), it suffices to construct for each k ≥ 0 a semigroup Sk
such that Sk /∈ Q but all k-generated subsemigroups of Sk belong to Q.

In this section we construct a sequence Bn, for n ≥ 3, of left regular
bands such that |Bn| −→ ∞, Bn /∈ qv(ZL) and every proper subsemigroup
of Bn belongs to qv(L). As the variety of left regular bands is locally finite,
it follows that the minimal number of generators of Bn goes to infinity
as n −→ ∞. The argument of the previous paragraph then applies to yield
that qv(L) and qv(ZL) cannot be defined by quasi-identities in finitely many
variables and hence cannot be finitely based. Our construction is based on
hyperplane face monoids.

Let Fn be the hyperplane face monoid associated to the n lines through
the origin of R2 at angles 2kπ/n to the x-axis with k = 0, 1, . . . , n − 1, for
n ≥ 2. Figure 1 shows F3. Let C1, C2, . . . , C2n be the chambers visited in
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C5
r5

C4

r4

C3

r3 C2 r2

C1

r1

C6

r6

Figure 2. Three lines in the plane.

C5
r5

C

r3 C2 r2

C1

r1

C6

r6

Figure 3. The semigroup B3.

counter-clockwise order starting from the x-axis and let r1, r2, . . . , r2n be
the rays in counter-clockwise order starting from the positive x-axis. See
Figure 2 for the case n = 3. Assume now that n ≥ 3. Denote by F ′

n the
subsemigroup obtained from Fn by removing the origin and the L -class
corresponding to the x-axis, i.e., r1 and rn+1. Then Cn, Cn+1 are separated
only by the x-axis and hence are on the same side of each line remaining
in F ′

n. It follows that xCn = xCn+1 for all x ∈ F ′
n. Also Cn, Cn+1 are left

zeroes. Therefore the equivalence relation on F ′
n whose only non-singleton

block is {Cn, Cn+1} is a congruence. Let Bn be the corresponding quotient
and denote by C the equivalence class {Cn, Cn+1}. See Figure 3 for the case
n = 3.

Let us begin by proving that Bn does not belong to qv (ZL). First observe
that since C1, C2n are only separated by the x-axis, whose faces are removed
to form F ′

n, it follows that xC1 = xC2n for all x ∈ F ′
n and hence the same is

true in Bn. Thus Bn = (Bn)C1,C2n . It suffices now to compute the connected
components of Bn. The Hasse diagram of Bn is the zig-zag path

C1 < r2 > C2 < r3 · · · < rn > C < rn+2 > Cn+2 < rn+3 · · · < r2n > C2n

from C1 to C2n; see Figure 4 for the case n = 3. It follows that Bn does not
satisfy (CC’).
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C

r3 r5

C2 C5

r2 r6

C1 C6

Figure 4. Hasse diagram of B3.

Identifying C1 and C2n is a congruence on Bn (because C1, C2n lie on
the same side of every hyperplane except the x-axis, which is removed in
forming F ′

n, and they are left zeroes). The quotient is isomorphic to Fn−1

with the origin removed. Thus we can separate all pairs of elements of Bn

except {C1, C2n} by a homomorphism into a hyperplane face monoid. In
particular, any subsemigroup of Bn that does not contain both C1 and C2n

belongs to qv(L). On the other hand, because the Hasse diagram of Bn

is a line from C1 to C2n if S is any proper subsemigroup of Bn containing
{C1, C2n}, then C1 and C2n are in different connected components of S and
hence S −→ S/∼ is a homomorphism from S to a left zero semigroup (and
hence a member of qv(L)) separating C1 and C2n. This completes the proof
that any proper subsemigroup of Bn belongs to qv(L). We have thus proven
the following.

Theorem 10. If Q is a quasivariety generated by a finite semigroup and
qv(L) ⊆ Q ⊆ qv(ZL) then Q has no finite basis of quasi-identities. In fact,
Q cannot be defined by quasi-identities over a finite alphabet.

As a corollary, we obtain qv(L) is a minimal non-finitely based quasiva-
riety.

Corollary 11. qv(L) is a minimal non-finitely based quasivariety.

6. Open problems

In Section 2 we mentioned two open problems. We describe them in detail
here.

Problem 12. Is it true that the quasivarieties qv(L) or qv(ZL) have no
independent basis for their quasi-identities?

We remarked in Section 2 that Sapir proved [31] that the semigroup C3,1

has no independent basis of quasi-identities. It is therefore reasonable to
ask if the same is true for qv(L) and qv(ZL).

Problem 13. Is it true that any left or right regular band (band, completely
regular semigroup, finite semigroup) that contains either L or its dual R as
a subsemigroup has no finite basis for its quasi-identities? That is, is L
SNFQB for left regular bands (bands, completely regular semigroups, finite
semigroups)?

Of course a positive solution to this problem would be a major contri-
bution to the decidability of the finite basis problem for quasi-identities of
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finite semigroups. As mentioned in section 2, no semigroup with index more
than 2 has a finite basis of quasi-identities [16]. Sapir’s thesis [32] has ex-
amples of bands in the variety [[x2 = x, xyz = xyzxz]] that are SNQFB for
the class of all finite semigroups, but none of these are LRBs.

Thus a positive solution to this problem for completely regular semi-
groups, for example, would complete the decidability question for semi-
groups of index 1. As far as we know, no semigroup of size greater than
2 and not covered by the results of [16] or [13] has been proven to have
a finite basis for its quasi-identities. In particular, there is no non-normal
band that is known to have a finite basis for its quasi-identities (to the best
of our knowledge).
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Canada

E-mail address: saliola.franco@uqam.ca

(B. Steinberg) Department of Mathematics, City College of New York, Con-
vent Avenue at 138th Street, New York, New York 10031, USA

E-mail address: bsteinberg@ccny.cuny.edu


