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We prove that the word problem for the free product with amalgamation S *yy T of
monoids can be undecidable, even when S and T are finitely presented monoids with
word problems that are decidable in linear time, the factorization problems for U in
each of 8 and T, as well as other problems, are decidable in polynomial time, and
U is a free finitely generated unitary submonoid of both S and T'. This is proved by
showing that the equality problem for the tensor product S®¢ T is undecidable and using
known connections between tensor products and amalgams. We obtain similar results
for semigroups, and by passing to semigroup rings, we obtain similar results for rings as
well. The proof shows how to simulate an arbitrary Turing machine as a communicating
pair of two deterministic pushdown automata and is of independent interest. A similar
idea is used in a paper by E. Bach to show undecidability of the tensor equality problem
for modules over commutative rings.

1. Introduction

Amalgamation theory goes back to the work of Schreier [23]. He showed that
the variety of groups has what is now known as the strong amalgamation property:
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given groups G and H with common subgroup U, we can find a group A containing
both G and H and such that the intersection of G and H within A is precisely U.
An example of Kimura [14] showed that semigroups do not even satisfy the weak
amalgamation property: there are semigroups S and T with common subsemigroup
U = SNT, such that there is no embedding of S UT into any semigroup. On the
other hand, T. E. Hall [8] proved that the variety of inverse semigroups does have
the strong amalgamation property. We recall some basic definitions. An amalgam
A of semigroups is given by a semigroup U together with embeddings ¢ : U — S and
1 : U — T into disjoint semigroups S and T. We write this as A = [S,T;U; ¢, ).
It is customary and convenient to think of the underlying set of U as included
in the underlying sets of both S and T', and that SNT = U. In this situation
we write A = [9,T;U]. The amalgam A embeds into a semigroup A if there are
embeddings A : S — A and p: T — A such that oA = ¢ : U — A. We say that
A strongly embeds into A if we further have that SANTyu = UPA. There are two
general methods for studying the embeddability problem. In the first, one studies
the free product with amalgamation Sy T of the amalgam .A. This is the quotient
of the free product S * T by the smallest congruence p4 that identifies u¢ with
wy for all u € U. A standard universal argument shows that A (strongly) embeds
into some semigroup if and only if A (strongly) embeds into its free product with
amalgamation. We define the word problem for A to be the word problem for the
congruence p4 (i.e. the word problem of the semigroup determined by .A).

There are similar definitions in the category of monoids, where of course the
embeddings must preserve identity elements. If S is a semigroup, let S be the
monoid defined by adjoining a new identity element to S, even if S already has an
identity. If ¢ : § — T is a semigroup morphism, let ¢ : S — T! be the monoid
morphism that extends ¢ by sending the identity element of ST to the identity
element of T. In this way, every amalgam A = [S, T’; U] of semigroups gives rise to
an amalgam A! = [S, T?; U] of monoids. The following lemma is easy to verify
either directly or by noticing that the assignment of S to S and ¢ to ¢ is the
left adjoint to the forgetful functor from monoids to semigroups. The lemma will
allow us to work throughout the paper in the category of monoids, and this will
help simplify some statements.

Lemma 1.1. Let A =[S, T; U] be an amalgam of semigroups. Then A embeds
into a semigroup A if and only if Al embeds into Al. Furthermore, (S xy T)! =
SI *prr TI.

The following corollary of lemma 1.1 is immediate.

Corollary 1.1. Let A be an amalgam of semigroups. Then the word problem
for A is decidable if and only if the word problem for Al is decidable.

Schreier showed that in the case of a free product with amalgamation of groups,
every element has a normal form from which one can readily deduce the strong
amalgamation property and many other properties of the free product with amal-
gamation. Howie [12] began the study of semigroup amalgams by proving that if
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U is a unitary subsemigroup of both S and T, then A strongly embeds into its free
product with amalgamation; here we use the following definition.

Definition. A subsemigroup U of a semigroup S is unitary if u, us € U implies
s€ U and u,su € U implies s € U for all s € S.

See [13, 10] for generalizations of this last result. Howie’s Theorem is proved
by using combinatorial arguments to show that the congruence p4 restricted to
(SUT) x (SUT) is the identity relation.

It can be seen that if A = [G, H;U] is an amalgam of groups, then if the word
problems for G and H are decidable and the generalized word problems for U in
both G and H are decidable, then the word problem for A is decidable. See [17] for
details. The main result of this paper, Theorem 1.2 (see also Theorem 2.5), states
that for an amalgam A of semigroups, the word problem for .4 may be undecidable,
even if S, T, and U satisfy very restrictive decidability conditions and U is a unitary
subsemigroup of both S and T

The second main method in studying an amalgam A is to try to embed A into a
concrete semigroup such as a semigroup of functions. This method was pioneered by
T. E. Hal! [9] in the 1970’s. He showed that various extension properties concerned
with the representation theory of semigroups by functions ensure that an amalgam
embeds into some semigroup.

In the 1980’s, it was discovered that there was a deep connection between the
homological algebra of monoid acts and amalgamation theory. We refer the reader
to the survey [13] for more details and references. We summarize here the definitions
and results that we will need in this paper. Let S and T be monoids and let U be
a common submonoid of S and T'. The tensor product S ®y T is the set defined to
be the quotient of S x T by the equivalence relation 7 generated by the relation:

{(su,t),(s,ut)|se S,t e T,uecU}.

We write s ® t for the equivalence class (s,t)7.

The tensor equality problem is the equivalence problem for 7. That is, given
(s,t),(s',¥') € S x T, we want to know if s ® t = s’ ® t/. One of our results shows
that the tensor equality problem can be undecidable even when the factors have
easily decidable word problems. A similar result for tensor products of modules
over commutative rings has been proved by E. Bach.

The following lemma gives an explicit, though complicated condition for testing
equality of tensors in terms of a chain of equations. It is a special case of the general
result of [5] that gives a similar result for arbitrary semigroup acts.

Lemma 1.2. Let § and T be monoids with U a common submonoid. Then
s®t =38 ®t if and only if there exists n > 0, 81,...,8, € S, tg,...,tn € T,
ULyenr Uy €U, v1,...,v, € U such that:

8 = 81U1, : S1V1 = 82U3, : 82V2 = S3U3, ... ,8xUp = SI and

uit = vitg, : ugly = vota, ... ,Upty = vnt’.

Lemma 1.2 points out why there may be difficulty in deciding equality in tensor
products since there is no a priori bound on the number n in the lemma. Our main
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theorem shows that this is indeed a sufficient cause for undecidability. However for
tensor products of groups, we can always take n = 1.

Corollary 1.2. Let G and H be groups with a common subgroup U. Then
g®h=g¢g"®h" in Gy H if and only if there is u € U, such that gu = g',h = uh’.

Proof. The condition is clearly sufficient. Conversely, assume that ¢ ® h =
g ® h. By Lemma 1.2, there is an n > 0 and elements that satisfy the equations
listed there. Using the notation of Lemma 1.2, let u = u]'vius vy.. . u v,. A
simple group-theoretic manipulation of the equations in Lemma 1.2 shows that
gu = g',h = uh' as desired. O

Corollary 1.3. Let G and H be groups with a common subgroup U. If the word
problems for G and H are decidable and the generalized word problem of U in each
of G and H is decidable, then the equality problem for the tensor product G Qu H
is decidable.

Proof. It follows from the previous corollary that g® h = ¢’ ® b’ if and only if

g g’ = hh'~! and this common element is in U. O

It is also known that for groups, every element of the free product with amal-
gamation has a unique representation as an iterated tensor. See [24], Theorem 2 of
Chap. 1 or [26] which uses the language of pregroups. Dekov [6, 7] proves a similar
result for an amalgam of semigroups [S,T; U], where U is a unitary subsemigroup
of both S and T'.

More generally, Renshaw [19, 20] shows how to construct the free product with
amalgamation of a monoid amalgam as a direct limit of certain quotients of iterated
tensor products. The following theorem follows from the work of Renshaw [19]; it
enables us to apply results about tensor products to amalgams.

Theorem 1.1. Let [S,T;U] be an amalgam of monoids where U is a unitary
submonoid of S and T. Then the map s ® t — st is an embedding of S @y T into
S Xy T.

To prove our main result, we will reduce the membership problem for the lan-
guage of a Turing machine to the tensor equality problem for an associated tensor
product of semigroups. This will prove that the equality problem for tensor prod-
ucts of semigroups with decidable word problems can be undecidable. Theorem 1.1
then extends our result to the word problem for amalgams of semigroups.

Besides the word problem, there are other decision problems that will appear in
this paper, which we now define.

Definitions. For a submonoid U of a finitely generated monoid S = (X), the
generalized word problem is the following: on input s € X*, decide whether the
element of S represented by s belongs to U.

For a finitely generated submonoid U = (V) of a finitely generated monoid
S = (X), the right factorization problem is the following: on input words z € X*
and u € V*, decide whether xg = s - ug, for some s € S; here xg and ug are the
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elements of S represented by the words = and u respectively. In this case, we say
that u is a U-suffix of x.

The left factorization problem for U in S, and the notion of U-prefiz, are defined
similarly.

For two finitely generated monoids § = (X) and T = (Y'), with a common
submonoid U, the one-step tensor equality problem is as follows: on input (z,y),
(z',y') € X* xY*, decide whether there exists 4 € U such that x5 = z5-u, u-yr =
Y or ¥’y = zg - u, u-yYp = yr. Again, xg is the element of S represented by the
word z, yr is the element of T' represented by the word y, etc.

Finally, our main result is the following:

Theorem 1.2 (Main Theorem). There exist finitely presented monoids S and
T with a common finitely generated submonoid U, with the following properties:

o U is a free monoid, and is a unitary submonoid of S and T: thus S and T
embed into S xy T, and their intersection in S xy T is U.

o The following problems are decidable:
— The word problems of S and of T.

The generalized word problems of U relative to S or to T.

The right (left) factorization problem of U in S (respectively T').

The one-step tensor equality problem in S @u T'.

|

Moreover, these problems can be decided by linear-time deterministic algo-
rithms, except for the one-step tensor equality problem, for which the time is
quadratic.

e The tensor equality problem for S @y T and the word problem for the free
product with amalgamation S xy T are undecidable.

o All these undecidability, decidability and complexity properties are invariant
under change of finite generating sets in S,T and U.

2. Simulating Turing Machines by Tensor Products of Monoids

In this section, we will show how any deterministic one-tape Turing machine
M can be simulated by a tensor product R ®u Laq, where Ryq and L are
finitely presented monoids whose word problems are decidable, and where U is a
finitely generated free monoid that is embedded into Raq and L as a unitary
submonoid. The monoid R (respectively Lay) simulates the right (respectively
left) moving transitions of M; essentially, it represents a deterministic pushdown
automaton. The common submonoid U can be thought of as a “communication
wire” that allows for configurations to be shipped back and forth between R4 and
L 4. The unitary property will ensure that information in the communication wire
cannot be corrupted by the actions of Raq and Lag. The reader may be able to use
this intuition when studying the technical descriptions below.

The construction presented here is in the spirit of the construction of E. Bach
[1] in his work on the tensor equality problem for tensor products of modules over
commutative rings. It is easy to modify Bach’s construction to show undecidability
of the tensor equality problem for monoid acts. However, in the setting described
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above, significant additional technicalities are needed to ensure that the common
submonoid U is unitary in both Rxq and L and hence to show undecidability of
the word problem for the corresponding amalgamated free product.

2.1. Turing machines

We assume that the reader is familiar with the basics of Turing machines (see
[11, 18] for example). For our purposes here, it will be convenient to use a slight
variation on the usual definition of a Turing machine [2]. It is routine to check that
a “standard” Turing machine (as in [11]) can be simulated by the model described
here, and vice versa, without increase in computational complexity (see the remark
below for an outline of the proof).

A one-tape deterministic Turing machine M is given by the following data:

e A finite set Q = C—Q)UCB of states. (3 (6) is the set of right (left) moving states.
We assume that 63 N (C_) = {.

A finite input alphabet .

A finite total alphabet I', with X C T

The left endmarker > and the right endmarker <.

The start state (f()) € Z)

The final state g5 € Q.

The transition function 8, to be described in detail below.

We assume that > , 4 ¢ QUT and that @ and T" are disjoint. We will denote
an arbitrary member of 5 (respectively 5) by q (respectively E)

We now describe the transition function; ¢ is a finite set of transitions of the
following six types.

(1) A right shift transition is of the form da— bp, where a,b &€ I" and p € Q.

(2) A left shift transition is of the form aq = pb, where a,be " and p € Q. At
the right endmarker, the machine has the ability to turn around or extend
or shrink the tape.

(3) An insertion transition (always at the right endmarker) is of the form <
a<5<1, where a € I.

(4) A deletion transition (always at the right endmarker) is of the form ad<—
5<l. Finally, the turn transitions at the endmarkers are of the forms:

(5) 7 +15<1, or

(6) > 7> p.

It is important to notice that M goes to a left moving state after extending the
tape on the right, so there will be no infinite sequences of successive right moving
transitions in the machine. We do not allow moves over the endmarkers.

Transitions of the form (1), (3), (4), (5) have a right-moving state on their left
side, and are called right-moving transitions; transitions of the form (2) and (6)
have a left-moving state on their left side, and are called left-moving transitions.
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We assume that the start state does not appear on the right side of any transition
and that the final state does not appear on the left side of any transition. We assume
also that the Turing machine is deterministic, i.e. no two transitions have the same
left side, and we do not allow transitions with left sides 34 and a3<l for the same
state 3 and any a € I.

We now describe how our Turing machine works. A configuration of M is a
word of the form > uquv <, where u,v € I'* and q € Q. A start configuration is a
configuration of the form > gow <, where w € ¥*. The unique accept configuration
is I> gy <. We are thus making the assumption that the machine cleans up its tape
before accepting.

We think of the configuration > uqv < as standing for: uv is on the tape, M is
in state g and the head of M is between the last letter of u and the first letter of v.

Ifqe a, then M is reading the first letter of v, and if ¢ € 6, then M is reading
the last letter of u. This is a difference from the standard picture (as in [11]), where
one thinks of the read head as always reading the first letter of v.

Letu=a1...a; and v = @341 ...ap. If 3a1+1 — bp is a transition of M, then
we write > u?v <4 = Dubpgits...an <. If a;f; — p'b' is a transition of M, then
we write D> u;]—v <4 - Dap...a;_1p'b'v <. We make similar definitions in the case
of endmarker transitions. This defines the one-step derivation relation of M. The
derivation relation is the reflexive transitive closure = of —. The language of M
is LM) = {we T gw < = b g5 <}

Remark. The Turing machines that we use here were chosen for their conve-
nience for producing word problem. They differ from the more standard Turing
machine (as in [11]) in two ways:

(1) They use a finite tape of varying length (as opposed to a tape containing an

infinite sequence of blank symbols on one side).

(2) In a configuration, the head is between two adjacent cells (instead of being

on a cell).

Finite tapes that can expand and shrink is not a new idea. Usually, the proof
of the Markov-Post Theorem (that there exists finitely presented semigroups with
undecidable word problem) uses such Turing machine (see e.g. {18, 20]). It is easy
to see that such Turing machines accept the same languages as the standard ones:
when a standard machine prints on blank cells, the new machine simulates this by
insertion transitions, and vice versa.

Placing the head between cells rather than on a cell is also a convenience for
manufacturing word problems from Turing machines. The two types of machines
can simulate each other, by doing a zig-zag movement (so as to read the letters
in the two neighboring cells, and remember them in the state); this increases the
number of states and the time complexity at most linearly.

2.2. Monoids associated with a Turing machine

In this section, we will associate a number of finitely presented monoids with a
given Turing machine M. The most straightforward of such monoids is the Markov—
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Post monoid, whose relations are just the rules of M. It is well known that, for a
deterministic Turing machine M, the membership problem for L(M) is reducible
to the word problem for the Markov—Post monoid of M.

We define the Markov-Post monoid of M to be the (finitely presented) monoid
Sa with generators QUT U {> , <} and relations {a = 8| a -> (3 is a transition
of M}. The following well known result states that the membership problem for
L(M) is reducible to the word problem for Sxq. The proof of this theorem can be
found in [18]. It should be noted that the proof carries through for our model of
Turing machine.

The special word problem of Spq is to decide, on input z € A*, whether
Dugvd = Dgr<in Sp.

Theorem 2.1. (A. Markov, E. Post, 1947). Let M be a one tape deter-
ministic Turing machine. Assume that the start state of M does not appear on the
right hand side of any transition, the accept state does not appear on the left side of
any transition, and the only accepting configuration is > qy <. Then for all ¢ € Q
and for all u,v € T* : D ugu 4 5 > g5 < in M if and only if >uqu< = > gy < in
Sa. Thus, the membership problem of L(M) reduces to the special word problem
of Spq, and the reduction is computable in linear time and is one-to-one.

We next introduce a monoid L a4 that models the left moves of M, and a monoid
R4 that models the right moves of M, and a common submonoid U that models
a communication channel between them. We will think of a Turing machine as
performing alternating sequences of right moves and sequences of left moves. Of
course, in general, the number of alternations may be infinite (this leads to the
undecidability of the Halting Problem) although by the way we have defined Turing
machines, there are no infinite sequences of successive right moves nor of successive
left moves. We will decompose an arbitrary Turing machine M into a machine that
performs only the right moves of M and one that only performs the left moves of
M. We will design a communication channel to pass information between these
two machines when M is about to switch from right moves to left moves or vice
versa. Fortunately (if you like undecidable problems!), we can implement this idea
by the tensor product of two finitely presented monoids with decidable word prob-
lems over a common finitely generated free unitary submonoid U that acts as the
communication channel.

We prove that the word problems for Rpq and Laq are both decidable with
low complexity and that the factorization problems for U in R4 and L are also
decidable. We will then reduce the membership problem for L(M) to the word
problem of the tensor product Ry Qu Lag-

As is usual in this type of reduction argument, we design the monoids to mimic
certain moves of M. The hard part in the reduction occurs for two reasons. First of
all, we must deal with the fact that moves in a Turing machine are directed, while
monoid congruences are symmetric. Secondly, we must deal with all possible words
in the generators of the monoid, not just those that represent configurations of the
machine.
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Let M be a deterministic one-tape Turing machine. We define the monoids R
and L by the following finite presentations. Two new symbols, 8 and ¢ are needed
to implement our “communication wire”. For convenience, we group the relations
into three classes.

Presentation of Rxq
R4 has generators QUT U {> , <} U {6,(}, and relations:
(1) Right moving relations: {a = 8|a — J is a right move or right endmarker
transition}.
(2) 6-insertion and @-deletion: {¢6 = ¢, (= 6¢}.
(3) Commutation relations: {(a =a(la € QU U{> , <}}.

Presentation of Laq
L 4 has generators QUT U {> , <} U {6,(}, and relations:
(1) Left moving relations: {& = f|a — [ is a left move or a left endmarker
transition}.
(2) 6-insertion and 6-deletion: {(6 =¢, ¢ =6¢}.
(3) Commutation relations: {(a =a{la € QUT U{> , <}}.

The submonoid U
Let Uy, (respectively Ug) be the submonoid of Ly (respectively Raq) generated by
the finite set
{8a0|ac QUTU{>, «}}.

We will see soon that U, and Ug are free monoids over these generators, hence
they are isomorphic; usually, both monoids will be called U.

2.3. Properties of the monoids associated with a Turing machine

Lemma 2.1. The monoids Ur and Ug are both free monoids on the given
set of generators; so Up, and Ug are isomorphic {and usually, we will call both of
them U). Moreover, UL, (and URg) is a unitary submonoid of L (respectively Rpq).

Ifwe {faf|ac QUTU{>, <}}*, then the congruence class of w in both Rp
and L, is the singleton set {w}.

Proof. We will work in L4, the proof for R4 being similar. First note that no
relation in the presentation defining L4 applies to any word in {faflla € Q UT'U
{>, <}}*. This gives the last claim of the lemma and implies that the natural map
maps this submonoid injectively into L a. It is clear that {#afla € QUI'U{> , <}}*
is a free submonoid of the free monoid on the generating set of L4, since {#af|a €
QUT U {> , <}} is a biprefix code [15]. This proves that Uy, is a free submonoid
L p, freely generated by {fafla € QUT U {>, <}} as desired.

Finally, note that any word that is a prefix (suffix) of a word in {fafla €
QUT U {p>, <}} is equal to its own congruence class. It follows easily that
Uy, is a unitary submonoid of L.

Therefore, the monoids Uy, and Uy are isomorphic and are both free monoids of
the same rank. O
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Corollary 2.1. The generalized word problem for U in Rapq (and in Lpy) is
decidable by a finite automaton, hence with linear time complexity.

We will write U for the isomorphic monoids Uy, and Ug, and we form the tensor
product Raq ®u L amq and the amalgam [Raq, Lag; U]. The next theorem will allow us
to reduce the membership problem for L(M) to the word problem for R ®u Lag.

Theorem 2.2. The assignment  +— ({z, () induces an injective function ¢ :
Sm —> Ram®u Laq. This yields a reduction of the membership problem for L(M)
to the tensor equality problem for R4 Q@u Lam, and this reduction is one-to-one and
computable in linear time.

Proof. To prove that ¢ is well defined, suppose ¢ = y in Spq. We will prove by
induction on the number of applications of relations of Sy that (x ® ( = {y ® (.
Clearly, it suffices to prove this for one such application.

Suppose then that £ = vaw, that y = vBw and that a = (3 is a relation of Sa4.
Then either @ — § or 8 — « is a transition of M. If this transition is a right
moving or a right endmarker transition, then o = 3 is a relation of R4 , so clearly,
{x ®( = Cy ® (. If this transition is a left moving transition, then we proceed as
follows.

If z=aj...a, where each a; € QUT U {> , <}, let O(z) = 0a;60a20...0a.0.
By using the commutation and #-insertion and #-deletion relations of Raq and of
L am, we see that (z = (O(z) = O(2)¢ = 2¢ for any z € (QUT U{>, <})* in both
Rpq and L. Furthermore, ©(z) € U for any z € (QUT U {>, <})T.

It follows that, (vaw ® {( = (O(vaw) ® { = ( ® Owaw)( = ( @ vaw( =
¢ ®vpw( = ¢ Q@ O(vpw){ = (O(vfw) ® ¢ = (vPw Q ( as desired.

Let us next prove the injectiveness of ¢. If u € (QUT U{D> , <} U{(,0})*, let
% be the word in (QUT U {>, <})* obtained by erasing all occurrences of {¢,6}
from u. Note that the map (QUT U{> , <} U{(,6})* = (QUT U{> , <})* that
sends u to ¥ is a morphism; moreover, it induces morphisms from Raq and Lag to
S since the relations of Saq are preserved.

We claim that if (z®y( = (t®v( in Ry ®u L, then T = tv in Spq. Letting
y and v be the empty word and assuming that z and ¢ are in (QUT U {> , <})*
gives injectiveness. We prove this claim by induction of the number of steps needed
to derive the relation (z ®@ y¢ = (t®v{. Again, it suffices to prove this for one step,
by induction. There are four cases.

(1) Apply a relation of Raq: If the relation is a #-insertion or #-deletion, or a
commutation relation, changing z to z then Ty = Zy.
Consider next the case where we are applying a right moving relation -Ja =
bp to x. In this case, x = w?az for some w and z and we must prove that
Ty = whpzy in Spy. But F = whpz in Sp, since ?I)a = bp is a relation of S
and T = wzai. The result follows in this case. The case of right endmarker
transitions is similar.

(2) Apply a relation of Lq: This case is dual to the previous case.
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(3) Shift an element of U from left to right (over the ® symbol): Then z = z'u
in Ryq for some u € U and we must prove that Tg = 2'(uy) in Sp. But,
& = z'u in Ry implies that T = x’u in Syq and the result follows.

(4) Shift an element of U from right to left: Dual to the previous case.

Finally, let us prove the claim about the reduction. By Theorem 2.1, we see that
z € L(M) if and only if > goz < = D g5 < in Spaq. By the proof of well-definedness
and injectiveness of ¢, this is true if and only if (> gox < ®( = (> g5 < XC.
Thus the membership problem for L(M ) reduces to the tensor equality problem
for Rapq ®u Lm.

From a computationa! point of view it is easy to produce ({z,¢) on input z in
linear time (one just has to print ¢, then copy z, then print (). 0

We see from Theorem 2.2 that the word problem for tensor products is in general
undecidable. By contrast, we show next that the word problems for the factors, L a4
and R4 are decidable for every Turing machine M; furthermore, the generalized
word problem, the right and left factorization problems for U in Rp, (respectively
L aq), and the one-step tensor equality problem are decidable.

The idea for solving the word problem for Raq and L is that these monoids
admit a decidable (albeit infinite) complete rewrite system. A rewrite system is
complete if and only if it is confluent and terminating. Thus, every word can be
reduced to a unique normal form relative to an effectively given set of rewrite rules
(see for example [25, 4] for the basic facts about rewrite systems).

We work with Raq. The proof for L, is dual. The idea is to use the rules of Raq
itself as part of a rewrite system, with slight modifications. The normal forms are
basically those words in which no right moving or right endmarker transition applies.
In our model of Turing machine, it is clear that every word can be rewritten into
one in which no such right transition occurs (recall that there is no infinite sequence
of successive right move or right endmarker transitions).

The right moving rewrite system ug, for the monoid R4, has alphabet
QuUTU{r, «,6,(}, and rules:

Right moving rules: o — (3, where @ — 3 is a transition of M such that the
state in « is right moving.

Commutation rules: a¢ — (a foralla € QUT U {> , «}.

Left f-erasing rule: 8¢ — (.

Right f-erasing rules: (26 — ¢z for all z € (QUT U {> , <})*.

The rules in ug can be generated by first suitably orienting the relations of R4
and then applying the Knuth-Bendix procedure for strings to generate a complete
system (see [25, 4]). This leads to the infinite set of rules indicated above. We could
appeal to the Knuth-Bendix Theorem here for a completeness proof, but the direct
proof is more straightforward.

First note that the congruence generated by this rewrite system is exactly the
congruence that defines Ra4. Clearly, every relation defining Ra¢ is derivable from
the symmetric closure of the rewrite system. Conversely, every rule of the rewrite
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system is a consequence of the defining relations of Ra¢. The only non-obvious case
is the derivation of (26 — (z which follows from |z| applications of relations of the
form a = a( followed by (8 = ¢, followed by |z| applications of a{ = (a.

Second, note that although the rewrite system has an infinite number of rules,
it is easily decidable given a word w over the input alphabet, to list all the (finitely
many) rules that apply to w. Algorithmically, this can be done in time O(|w|).

Next, let us determine the reduced words or normal forms for ug. These are the
words that contain no left sides of rules as contiguous subsegments. It is routine to
show that the normal forms fall into the following classes.

(1) 6, with § > 0.
(2) Gioy 6% ...0-1y,0' where

o n>0,ip,i, >0andiy,...,in1 >0,
ey, € TUQU{>, <})* and no right moving rules apply to any y;, 1 <
1 < n.

(3) ¢i, with i > 0.
(4) ¢y, with i > 0, y € TUQU {>, <})T and no right moving rules apply
to y.

Now note that every word z over the input alphabet can be rewritten to a word
in normal form in a finite number of steps and that there are no words that lead
to an infinite number of reductions. This is an immediate consequence of the fact
that our Turing machines can only make a finite number of successive right moves
on any configuration. Thus the rewrite system pg is terminating.

To prove that pgr is complete, that is, that every word reduces to a unique
normal form, we must show that all ambiguities can be resolved. Since we have
proved that the system ppg terminates, we need only show that it is locally confluent
(see e.g. [25, 4] for details).

We need then only verify that rules that have overlapping occurrences of left
hand sides can be resolved. We will list all overlaps and show how ambiguities can
be resolved. First note that by the determinism of M, no two rules from § can
overlap.

(1) Suppose that z = zay, where a —  is a right moving or right endmarker
transition of M, and thus a rule of ug. Then there is an ambiguity arising
from the rule {z6 — (z. The word (zf can derive both {xGy# and (z.
However, both these words derive {(z3y and thus this ambiguity is resolved.

(2) Suppose that a — 3 is a right moving rule of ug where o = ga. Then this
rule overlaps with the rule a{ — {a. The word ga¢ can derive both G¢ and
g¢a, in one step. But 3¢ derives ({3 in |0 steps, and gCa derives first {ga
and then (3. This resolves this type of ambiguity.

(3) The rule 8¢ — ¢ overlaps with the rule (260 — (z in two ways. For the
first kind of overlap, 8260 can derive both 8{z and (z6. Clearly, both these
words derive (z. In the second kind of overlap, the word (z8¢ derives (z¢,
by each of the above two rules.
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(4) Finally, the rules a¢ — Ca and (26 — ¢z overlap. The word a(z0 derives
both (az0 and a(z. Both these words derive (az in one step and this resolves
this ambiguity.

1t is straightforward to see that these are all the ambiguities and thus the system
pr is complete. Dually, we define a rewrite system gy, by replacing the word “right”
by “left” in the rules defining p;. The monoid defined by g, is then L and the
proof of completeness of yiy, is analogous to that for yr. We summarize these results
in the following theorem.

Theorem 2.3. Let M be a Turing machine. Then ugr and pr are complete
and decidable rewrite systems for Raq and Laq vespectively; the set of left side of
all the rules in pp (respectively p1) is o regular language. Thus, the word problems
for both Raq and Layg are decidable.

We will prove in the next section that the word problems for both Raq and L aq
can be decided in deterministic linear time.

Before turning to the factorization problems, we need to look at congruence
classes in L and Rpq relative to the given presentations.

Lemma 2.2. Let w be a reduced word in the rewriting system pg.

(1) If w does not contain the letter ¢, then the congruence class of w is finite.

(2) If w contains ¢, then the congruence class of w contains only a finite number
of words that do not contain 8; all other words in the congruence class of w
are obtained by inserting arbitrary occurrences of 6 anywhere into the 0-free
words equivalent to w.

Proof. We work with Ra4, the proof for Ly being similar. If w does not
contain ¢, then no word containing ¢ can be equivalent to w, since no rule of ug
removes occurrences of (. Let v be a word that is in the congruence class of w. Since
pr is complete and w is reduced, v reduces to w. The only rules that apply to v
are the right moving rules of ;g. Only the right endmarker shrinking or extending
transitions can change the length of v. In the latter case, since the new state after
such a transition is a left moving state, no rule of ur can apply again at that
location. Thus, the number of length changing rules that apply to v in reducing it
to w is at most equal to the number of occurrences of < in v. It follows that the
length of v is at most twice the length of w. Therefore, the congruence class of w
is finite.

If w contains an occurrence of ¢, then w = (*y where i > 0 and y has no
occurrences of either ¢ or @ and no right moving rules apply to y. Every word
in the congruence class of w must have exactly ¢ occurrences of ¢ since no rule of
g changes this number. Let v be any word that reduces to w and contains no
#. We can first apply the commutation rules to reduce v to a word of the form
¢tz of the same length as v and such that z contains no occurrences of either 6
or (. Furthermore, z reduces to ¥ and this bounds the number of such z by the
same argument as in the preceding paragraph. Therefore the number of words in
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the congruence class of w with no occurrences of 8 is finite. Finally, it is clear
that every word that contains ¢ reduces to a word with no 6, and that inserting 8
anywhere in a word containing ¢ does not change the congruence class. The result
follows. O

We now come to the factorization problems of U in Raq and Lag.

Lemma 2.3. Every word z in the generators of Ra(respectively Laq) has a
finite number of U-suffizes (respectively U -prefizes). Furthermore, there is an algo-
rithm that on input z outputs the set of U-suffizes (and U-prefizes) of z.

Proof. Again we work on the case of Raq as the case for L is dual. Let z
be a reduced word for pg. If z does not contain (, then every U-suffix of z must
be a suffix of z regarded as a word in the free monoid. This is because only right
moving rules apply to any word that reduces to z and no word of the form 8af
can be produced by such a rule, where a is a single letter. Thus, the number of
U-suffixes is bounded by |z| in this case. Clearly all such U-suffixes can be found
effectively.

If 2 contains occurrences of ¢, then z = (*y where i > 0 and y contains no
occurrences of 8 or ¢ and no right moving rule applies to y. By Lemma 2.2, we
know that z is congruent to at most a finite number of words of the form ('y’
where y’ contains no occurrences of 9 or (. Every suffix of such a %' can be turned
into a U-suffix of z by using the commutation rules to surround each letter with
8. Conversely, if z = su in Raq where u € U, then the word su is reducible to z
by using the rules of ug. Since the word su must contain i occurrences of {, we
can first use the commutation rules and the #-erasing rules to transform su into
the form (*y’ as above. In the process, the word u is stripped of all occurrences
of @ and the resulting word is a suffix of y’. Thus all U-suffixes of z are obtained
from suffixes of such ' by insertions of 8. Therefore, there are only finitely many
U-suffixes of z and they can all be found effectively. O

Corollary 2.2. The right (respectively left) factorization problem for U in R
(respectively Laq) is decidable.

We now come to the one-step tensor equality problem.

We say that a monoid S has the finite factorization property if and only if
for all s € S, the set {(z,y)|x,y € S,s = xy} is finite. The following lemma is
straightforward to prove.

Lemma 2.4. Let S and T be monoids with the finite factorization property.
Then the free product S * T and the direct product 8 x T also have the finite fac-
torization property.

Lemma 2.5. The submonoid of Rap (or of La) consisting of all elements
with no occurrences of ¢ has the finite factorization property.

Proof. Again the arguments for R4 and L a4 are similar, so we work with Rq.
Let S = {w € Rpm |¢ does not occur in w}, and let T be the submonoid of R
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generated by QUT U {>, «<}. That is, T consists of those elements in Raq that
have no occurrences of either 6 or .

By the properties of the rewrite system ppg, we see that S is isomorphic to the
free product of T' and the submonoid generated by #. Note that the submonoid
generated by € is isomorphic to the positive natural numbers under addition. It
suffices then by Lemma 2.4 to show that T has the finite factorization property.

First note that the set of elements of Raq whose normal form contains either
an occurrence of # or an occurrence of ¢ is an ideal of Raq. That is, T is the
complement of an ideal in Raq and thus any factorization of an element of T" must
have both factors in 7.

Suppose then that ¢ = zy, where t,z,y € T and t is a normal form for pr. Then
zy reduces to ¢ using only the right moving rules of g. The only right moves that
change length are those that have an occurrence of <1 on the left side of the rule.
Notice that the right side of such a rule has a left moving state and thus no rule
of g can be applied again using that occurrence of <. It follows that the number
of length changing rules in this reduction is bounded by the number of occurrences
of < in ¢t and thus the length of zy is bounded by 2|t|. Thus, T has the finite
factorization property. O

Lemma 2.6. Let s be a word over the generators of Raq, and let u be a word
over the generators of U. Then the set of words {s'|s'u = s in Rpm} is finite.
Furthermore, there is an algorithm that on input (s,u) outputs this set. A similar
result holds for L.

Proof. Assume first that s has no occurrences of (. Then by Lemma 2.5, s
has a finite number of factorizations, s = zy for any words z,y over the generators
of Rpq. The proof of Lemma 2.5 shows that all these factorizations can be found
algorithmically, and since the generalized word problem for U is decidable, we can
recognize the desired set in this case.

Assume then that s = (*y where i > 0 and y has no occurrences of either 8 or
¢ and no right moving rule applies to y. Assume that s = s'u for some u over the
generators of U, and some s’. Since u contains no occurrences of ¢, it follows that
s’ must contain exactly i occurrences of ¢. Thus, s’ reduces to 'y’ where 3’ has no
occurrences of either § or ¢ and no right moving rule applies to y'. Let @ be the
word obtained by deleting all occurrences of € in u. It follows from the properties
of pug that y'% = y. By Lemma 2.5, y has only a finite number of factorizations.
Thus there are only a finite number of such s’. Since the factorizations of y can be
algorithmically found, so can the desired set in this case as well. |

Theorem 2.4. The one-step tensor equality problem for Ry ®u L is de-
cidable. The tensor equality problem for Rypq ®u L is recursively enumerable.

Proof. Given (s,t), we can use Lemma 2.3 to algorithmically find the finite
set X of U-suffixes of s. Since multiplication is decidable, we can decide for each
u € X whether s = s'u,ut = t'. If we ever get an equality, we say “yes”, otherwise
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we exhaust the elements of X and say “no”. The same argument works if we shift
u in the other direction.

Now s ®t = ¢ ®t' if and only if we can obtain 8’ @ t’ from s ® t by some finite
number of one-step tensor equalities. Now we can use lemma 2.6 and the solution
to the basic tensor equality problem to find all possible ways to find all the finitely
many pairs (s1,%1), such that s®¢ = s; ® t; in one step. Finally, we use a breadth
first search to list all pairs (s/,#') such that s ® t = s’ ® t. Therefore, the tensor
equality problem is recursively enumerable. a

We can now state the more detailed technical form of our main theorem. We
will say that a triple (S, T;U) consisting of two finitely presented monoids S, T and
a common submonoid U has o decidable description if and only if:

(1) The word problems for both S and T are decidable.

(2) The generalized word problems for U in both S and T are decidable.

(3) The right (respectively left) factorization problem for U in S (respectively

T) is decidable.
(4) The one-step tensor equality problem for S ®y T is decidable.

This is the least amount of information one needs to reasonably ask algorithmic
questions about the tensor equality problem for S ®y T or the word problem for
the free product with amalgamation S*y T. Putting together what we have proved
in this section, we have the following theorem, which is the more technical form of
main result of this paper.

Theorem 2.5. Let M be a Turing machine and let Raq, Lag and U be the
monoids associated with M, as defined earlier. Then the following holds.

(1) (Rm,La;U) has a decidable description.

(2) U is a finitely generated free monoid and is a unitary submonoid of both R,
and L.

(3) The membership problem for M is reducible (via a one-to-one linear-time
reduction) to the word problem for Raq ®u L s, and to the word problem for
RM X7 LM.

Proof. The first two items and the undecidability for the tensor product follow
from the results of this section. For the word problem of an amalgam, we use
Theorem 1.1. O

2.4. The case of rings and algebras over a field

Amalgams and the corresponding embedding problems for free product with
amalgamation have been studied extensively in the category of rings as well. See
[22] and the references therein. However, as far as we know, there has been no
extensive study of the word problem for amalgams in the category of rings. We can
obtain a result similar to the one above by passing to monoid rings. Recall that
the monoid ring R{M] of a monoid M is the ring whose additive group is the free
Abelian group with basis M and with multiplication induced by that of M. The
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assignment of M to R[M] is part of a functor from monoids to rings that is left
adjoint to the forgetful functor from rings to monoids that assigns the underlying
multiplicative monoid U(R) to a ring R.

Lemma 2.7. Let[S,T; U] be an amalgam of monoids. Then [R[S], R[T]; R{U]|
is an amalgam of rings. Furthermore, R[S xy T| = R[S] * gy RIT).

Proof. Clearly the embeddings from U into S and T extend to embeddings
from R[U] into R[S] and R[T|. Furthermore, the functor R is a left adjoint and
thus preserves the limit S %y T'. O

Corollary 2.3. Let M be a Turing machine and let Ry, Lpg and U be the
associated monoids of M. Then the rings R[Ram|, R[La) and R[U] are finitely
presented and have decidable word problems. Furthermore, R[U] is a free subring
of both R[Rpm] and R[Laq]. If the language accepted by M is undecidable, then
the word problem for the amalgam [R[Rm], R[Lm); R[U)] and the tensor equality
problem for R[S] @ gy R[T] is undecidable.

As we mentioned, the result about tensor products of rings (with a somewhat
different construction and different properties in the details) was first proved by
E. Bach (1].

Let K be a field. By using the monoid algebra K[M], we can obtain similar un-
decidability results for amalgams in the category of K-algebras. Of course, suitable
computability assumption should be made on the structure of K to make sure that
the input data have “a decidable description”; for our results, we can, for example
use any finite field or the rational numbers for K.

3. The Complexity of the Word Problem of Rxq and Lag,
and of Other Decidable Problems

In this section, we study the computational complexity of the problems that were
shown to be decidable in the previous section. We show that the word problem for
Rp and L as well as the generalized word problem the factorization problems
for the submonoid U are all decidable in linear time, and that the one-step tensor
equality problem is decidable in quadratic time.

First, note that we already have a quadratic time algorithm for the word problem
for Rpq by using the complete rewrite system pp to compute normal forms. Of
course two words are equal in Ry, if and only if they have the same normal form,
and the literal equality of words in normal form can be decided in linear time.

To compute a normal form, we must deal with words of the form w = zoq121 ...
qrrr where {g;]1 < i < k} is the set of state symbols that appear in w. When
k > 1, such words are not Turing machine configurations, of course, but rules of
pr can possibly be applied at some or all of these states. These applications can
interact in cotnplicated ways. In the above word w, it could happen that the k state
symbols are near the left end of w, and they they are able to move all the way right;
if k > cn (where n = |w| and ¢ is a constant with 0 < ¢ < 0.1, for example), then
this process takes time > ¢’ - n?, for some constant ¢’ > 0).
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In order to improve the performance of this algorithm from quadratic to linear
time, we modify the Turing machines (without sacrificing any of their power) by
using the oriented letters trick discussed by Birget in [2]. The oriented letters
trick appears in various guises in many papers dealing with the word problem for
groups and semigroups. We proceed as follows. Let M be a one-tape Turing
machine with tape alphabet I'. We first replace I by two disjoint bijective copies
F and F Moreover, we modify the transitions of M so that at any time during
a computation, there are only left pointing letters (i.e. members of F) to the left
of the head on the tape, and only right pointing letters (i.e. members of F) to the
right of the head. This is done by replacing every right movmg transition (Ia — bp
of M by the correspondlng orlented version, q @ - b p. Left moving transitions
aq — pb are replaced by a q —=p b. We identify the input alphabet ¥ with its right
pointing copy E With this identification, the modified machine accepts the same
language as the original machine and has exactly the same time complexity. Thus,
every deterministic one-tape Turing machine can be simulated by an oriented-letters
Turing machine, with the same time complexity.

Furthermore, the results from the previous section apply to oriented-letters ma-
chines (since they are just a special case of deterministic one-tape Turing machines).

In the oriented-letters machine, the problem of a quadratic time to reduce words
with more than one state symbol does not occur. As a state moves over a letter
from left to right, it reverses the orientation of the letter from right-pointing to
left-pointing. Therefore, once a state symbol can no longer move to the right, no
right moving rule of ug can ever apply to that state again. Another way to put
it: in a word with oriented letters, every occurrence of a state symbol has a range
in which it can move; different occurrences of state symbols have disjoint ranges
(this is made more precise by the “oriented factorization”, defined below). We can
now show that the monoids of the modified machine have linear time algorithms for
their word problems.

Theorem 3.1. Let M be a Turing machine with oriented letters, and let R
(respectively L) be the right (respectively left) moving monoid of M. Then the
word problem for Raq (and for L) is decidable in linear time.

Proof. Let p be the complete rewrite system for Raq. We prove that the
unique reduced word corresponding to input word w can be computed in time
O(Jwl|). Moreover, the literal equality of (reduced) words can be decided in linear
time.

Let w = zoq1x1 ... gy where {g; : 1 < i < k} is the set of those state symbols
that appear in w. Our algorithm is implemented by a multitape Turing machine,
which first scans w from left to right and copies all occurrences of ¢ to a second
tape; at the same time, all letters other than ¢ or 8 are copied on a third tape (this
produces a word w', obtained from w by erasing ¢ and # everywhere).

If the number of (’s is 0, then right moving rules (of the rewrite system pug)
are applied to w until no more right moving rules are applicable. By the use of
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oriented letters, this application of right moving rules only takes linear time (since
all the state symbols occurring in w have disjoint ranges). At this point, the word
obtained from w is reduced.

On the other hand, if the number of {’s is ¢ > 0, then we scan w’ (on the
third tape) and apply right moving rules to w’ until no more right moving rules are
applicable. Again, this takes linear time, because of the oriented letters. The word
obtained from w’ in this way, with (¢ concatenated in front, is the normal form
of w.

The proof for L4 is similar. O

Theorem 3.2. The generalized word problem of U in Raq (respectively L)
is decidable in linear time.

Proof. We saw this already in the proof of Lemma 2.1. ]

Before dealing with the complexity of the remaining problems, we need a more
detailed analysis of Turing machines with oriented letters (this is adapted from [2]).

Definition. Let (Q, F U F, %, 0,90,9¢) be a deterministic one-tape Turing ma-
chine with oriented letters I' = i:u—f, and let w be a word over QUT'U{>, <1}. The
oriented factorization of w is obtained by cutting w wherever one of the following
two-letter segments occurs in w (cut between the two letters):

dc,withdaeTU{<}and ceTU{>}

qc, withquand?EFU{D};

aq, wichE?U{Q} and g € @Q;

pgq, with p,q € Q.

Lemma 3.1. Ifw e (QUT U {> , «})* has an oriented factorization w =
wy-wsy ... W then:
ek 3k kK

(1) w; belongstoT QT UL T , foralli (1 <i<k);

(2) Ifv e (QUT U{> , Q})* is congruent to w in Raq (or in Lpg), then the
oriented factorization of v = vy - ve - ... - Uy 18 such that h = k and v; is
congruent to w; in Ry (respectively L), for all i (1 <1i < k);

(3) The oriented factorization of w can be computed in linear time (by a finite-
state machine).

Proof. Property (1) is obvious from the definition of the oriented factorization.
Proof of property (2): The relations in the presentations of R, when applied to
aword in (QUTU{>, <})*, do not change the number of factors in the oriented
factorization of the word. Hence h = k. Moreover, no relation uses letters of
different factors (as is clear from form of the segments where a word is cut, in the
definition of the oriented factorization). Therefore, relations can only be applied
within the factors. Thus v; is congruent to w;, for all 4.

Regarding property (3), it is clear from the definition of the oriented factorization
(via special subsegments) that a finite-state machine can find the places where w is
cut. O
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For the next theorems, we want to put an additional constraint on the Turing
machine M, namely that it is injective. By definition, a deterministic Turing
machine is injective if and only if for any configuration uqu, there is at most one
transition @« — 3 such that the “reverse transition”, 3 — «, is applicable to the
configuration ugv. In other word, the “reverse machine” of M is deterministic.

It is a remarkable fact (due to Lecerf [16] and later, independently to Bennett
[3]) that every decidable language is also accepted by some deterministic injective
Turing machine which always eventually halts (and which can be assumed to have
just one tape, see {2]).

Theorem 3.3. The right (respectively left) factorization problem of U in Rpm
(respectively L), is decidable deterministically in linear time.

Proof. We will consider Raq (the case of L, is similar). Let us denote the set
of generators of Ry by X (so X = QUL U{>, <} U{8,(}). Let V = {fab|a €
QUI'U{> , <1}} be the free generating set of U. Recall that the right factorization
problem of U in R4 takes as input a word s € X* and a word u € V*, and asks
whether u is a U-suffix of s (i.e. whether there exists s’ € X* such that s = s'u
in RM)

Case 1. s does not contain {. Then u is a U-suffix of s if and only if u is a
literal suffix of s (as words). Indeed, in the absence of {, no relation is applicable
to the occurrences of 8 in s, so s has u as a U-suffix in R, if and only if s has u
as a literal suffix. Moreover, one can clearly decide in linear time (on a two-tape
Turing machine, for example) whether one word is a literal suffix of another word.

Case 2. s contains (. Then the normal form of s is of the form ¢z, where
z € X* contains no ¢ and no §. We saw already (in Theorem 3.1 about the word
problem of Ra4) that normal forms are computable in linear time. Also, let @ be
the word obtained from u by first removing all occurrences of ¢, and then putting
the remaining word into normal form; then % contains no ¢ and no 8. Since s and

@ contain no ¢ and no 6, let us consider their oriented factorizations = xp-... 1
and @ = ug - ... u; (which are computable in linear time, see Lemma 3.1). We
have:

Claim. v is a U-suffix of s if and only if the following two conditions hold:
(1) k < p and u; = z;; (literal equality) fori=1,...,k—1;
(2) ug is a U-suffiz of .

Proof of the Claim. Since ¢!z = s in Ry, we have: u is a U-suffix of s
if and only if u is a U-suffix of ¢‘z, if and only if for some word s/, (*z = s'u.
Since (‘z contains ¢, we can apply rewrite rules that remove every # and then
move every ¢ to the left end. Then s'u = (*z'% in Ra(for some reduced word
z'). Continuing the reduction process, (‘z'a = ('z'@ in Rpq, where z = z'@ in
Rpq. Then by Lemma 3.1 and the uniqueness of normal forms we have, u; = z; for
i=1,...,k—1, and 2 = x}ux in Rp, for some zj.

This prove the claim.



ON THE WORD PROBLEM FOR TENSOR PRODUCTS ... 201

Let us now see how one can check deterministically in linear time whether u is
a U-suffix of s. We saw in the Claim that u; = z; for i = 1,...,k — 1, and that
Tk, = Thuk in Raq(for some reduced word z}). Since the word x}uy is one factor in
the oriented factorization of z, it contains at most one state letter.

Case 2.1. If z},uj contains no state letter, then it is in normal form (no rewrite
rule is applicable), hence zx = zju. Similarly, if z)us contains a state but the
state is left-moving, no rule is applicable. Also, if the state letter is in u, or in the
inside (not at the left side) of z}, no rule is applicable (since z}, and uy are already
reduced). Thus in all these cases, z} = &},ux is in normal form (hence equal to x),
and therefore we have:

4 is a literal suffix of z.

Case 2.2. The only other case is when z;, = z},u;, contains a state letter at the
left end of z}, i.e. z}, is of the form }, = txqr, where t;, is reduced. In that case, ug
contains no state letter.

Then, to reduce tiyqrur, we can apply right-moving transitions of the Turing
machine to gxur and eventually obtain a reduced word of the form zjq;uj,, where
uj, is a literal suffix of uy.

Finally, in Case 2.2, we process as follows to check whether uy is a U-suffix of
Zx; we assume that we have already checked whether U is a literal suffix of z (which
can be done deterministically in linear time) and found out that it is not.

(1) Check whether x, has the form z}q;u), where uj, is a literal suffix of ux and
g}, is a state letter. (If not, then u is not a U-suffix of s.)

(2) Then, by injectiveness of the Turing machine, we run the Turing machine
deterministically in reverse (using only inverse of right-moving transitions), starting
from the configuration 2} q,. When we reach a configuration of the form vquy (for
some v and q), then u is a U-suffix of s (otherwise it is not). This takes time
<241 < Jawl < lal.

By the definition of U-suffix, u is a U-suffix of s if and only if @ is a U-suffix of
i,

By the uniqueness of normal forms, and by invariance of the oriented factor-
ization (Lemma 3.1(2)), we have: @ is a U-suffix of (*z if and only if the oriented
factorization of z is such that x = xp-... @1 = zp-. .. Tp1 - (CeT/k) - Tho—1. . .- T1,
where z; = u; in Ry for 1 < i < k—1, and z}, = ug in Rpq. Moreover, since x
and % (and hence their factors too) are in normal form, these last conditions are
equivalent to o; = u; for 1 < i < k— 1, and ), = uy (literal equalities). This
means that u is a U-suffix of s if and only if @ is a literal suffix of z, and this can
be checked in linear time.

Theorem 3.4. The one-step tensor equality problems is decidable determinis-
tically in quadratic time.

Proof. Again, we denote the set of generators of Raq (and of Laq) by X
(respectively Y);s0 X = QUI'U{>, <} U{6,(} and Y is a bijective copy of X.
Let V = {6af|a € QUT'U{> , <}} be the free generating set of U. Recall that the
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one-step tensor problem takes as input two pairs of words (s1, s2), (s}, 85) € X*xY™*,
and asks whether there exists u € V* such that s; = sju in Raq and usy = s in
L (or 8§ = syu in Rpq and ush = s in Lo, but we need not consider this since it
is similar to the other problem). Note that u here is a U-suffix of s; and a U-prefix
of s2. Observe also that for a given word u, we can check in linear time whether
81 = shu in Rpand usy = sh in L, because the word problems of Rayqand Laqare
decidable in linear time.

If (s1,82) and (s, s5) are equivalent in one step, then $; and s} must have the
same number of occurrences of ¢, and also sz and s must have the same number
of occurrences of (. The numbers of {’s are easy to compare in linear time. From
now on we assume that s, and s} have the same number of {’s, and s, and s, have
the same number of (’s.

Case 1. s; and 8] contain no ¢ (the case where s; and s} contain no ¢ is
similar).

Then every U-suffix of s; is a literal suffix of the normal form (*z of s; (as we
saw in Case 1 of the proof of the previous theorem). Each literal suffix of z can
be computed in linear time and compared in linear time with all the prefixes of the
normal form of sg, to check whether it is a U-prefix of s3 in Laq (which can also
be done in linear time, by the previous Theorem); there are linearly many literal
suffixes of x, so the whole test will take quadratic time.

Case 2. Each of 31, s}, s2 and s}, contains occurrences of ¢.

The normal forms of these words (which can be computed in linear time, by the
proof of Theorem 3.1): (s1, s2) becomes ((*z,y¢?) , and (s}, s5) becomes (¢tz’,y'¢?).
Here z, ', y and 3’ contain no ¢ and no 8. Let us consider the oriented factorizations
r=zp-....zmandy =y'1-... -y, and G=ug-... uj.

As we saw in the Claim in the proof of Theorem 3.3, u is a U-suffix of s; and a
U-prefix of s/; if and only if @ satisfies:

E=Tp ... TL =1=Cp+... Tkt (Thuk) - Ug—1--.. u1, and
Y =upooouz (WYR)  Yhgr e Yie
Therefore, if u exists and if k£ > 2, then @ = ug - ... - u; must satisfy:
Uy = Iy,
Ui =Ty =Yy foralli=2,...,k—1, and
U =Y .

Therefore, x and 3’ determine at most one possible % once k (the number of
factors in the oriented factorization of @) is known. Moreover, k < p < |z|. Also, u
is uniquely determined by @. Thus, the number of possible words v to consider is
linearly bounded, and as we saw, it takes a linear time to check whether u is such
that s; = sju in Rypand use = 84 in Lag. Thus the overall time is quadratic.



ON THE WORD PROBLEM FOR TENSOR PRODUCTS ... 293

On the other hand, if ¥ = 1 (i.e. & consists of one factor in the oriented
factorization), then % contains at most one state symbol. Also, @ is U-suffix of
x1 and a U-prefix of 3. If @ contains no state or a left-moving state, then (by
Case 2.1 of Theorem 3.3) i is a literal suffix of z;. Similarly, if  contains a right-
moving state, then # is a literal prefix of ;. Just as in Case 1 above, such word %
can be formed in quadratic time (if they exist). O

Theorem 3.5. All the undecidability, decidability, and complexity results in
this paper are invariant under change of the finite generating sets of Ry, Lam, and
U (provided the new generating sets are also finite).

Proof. The given set of generators QUI'U{> , <}U{6,(} of Ry (and of L)
is minimal: any set of generators must include the given ones. For generators in
QUTU{>, «}uU{8}, this is obvious; since the congrence class of such a generator
is a singleton, none of these generators can be written as the product of other
elements of Raq (or Lag). For ¢, the congruence class is 8*(0*, so every element
that is congrent to ¢ also contains {. So ¢ cannot be written as the product of other
elements of Ry (or Lag).

The submonoid U is free over {#af|a € Q UT U {> , <1}}, so these generators
are necessary.

The invariance of the theorem now follows trivially. The only possible changes
in the generating sets are additions of redundant generators. This does not change
the decidability results and can only decrease the complexity. For word problems
of finitely generated monoids, it is well known that undecidability does not de-
pend on the choice of a finite set of generators (and this applies in particular to
the monoid Raq *y Laq). For the word problem of the tensor product, a similar
proof shows that its undecidability does not depend on the choice of a finite set of
generators. [
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