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I. INTRODUCTION

A number of papers have established a connection between
combinatorics and completely O-simple semigroups ([5], [71, [12]).
It has also long been known that the automorphisms of a block design
provide an important connection between the theory of groups and
combinatorics. Here we show more generally that the translational
hull @(D) of the Rees matrix semigroup associated with a block
design D (see [8]) has a natural interpretation as a semigroup of
transformations on both the points and the blocks of D.

We show that placing arithmetic restrictions on the parameters
of D results in algebraic restrictions in @(D). For example, the
longest chain of ideals in @(D) is bounded by the longest chain of
divisors of the block size of D. Conversely, the point image of
f e (D) is an arc in D ([2], [10]) and thus (D) reflects some
combinatorial properties of D.

In the next section we give some preliminary results including
a review of the basic theory of block designs.

Let D be a balanced incomplete block design with parameters
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(vs by ry ky, A). Recall that a semigroup S is a small monoid if S
consists of a group of units and a completely O-simple ideal. In
Section 3 we show that any of the following conditions implies that
(D) is a small monoid:

1) r> AZ.

2) k is prime.

3) ged(k,r - ) = 1.

Our main tool here is a lemma which asserts that each f e Q(D)
is homogeneous in the following sense:

There exists an integer d such that if q e range(f), then
card(qf']) = d. The integer d, called the degree of f, is very useful
in studying the structure of (D).

On the other hand, we show in Section 4 that if S is a semigroup
with card(S) = n, then S can be embedded into 2(D) where D is a
design associated with a finite n dimensional projective space. We
do this by generalizing the Fundamental Theorem of Projective
Geometry [1].

This paper is a continuation of our work in [3] and [4]. These
papers gave applications of these ideas to the theory and construction
of block designs. Here our main emphasis is on the structure of the
semigroups involved. Our methods here provide a framework for which
to study translational hulls and more generally transitive
transformation semigroups using combinatorial ideas and results. We
believe that a general study of the relationship between combinatorial
properties of {0,1} matrices and algebraic properties of their
translational hulls will lead to important connections between the

theory of semigroups and combinatorial structures.
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IT. PRELIMINARIES

An incidence system is a pair D = (V,B) where V is a finite set

of points and B is a collection of subsets of V called blocks. If
D and D' = (V',B') are incidence systems, then a partial function
f: V> V' is continuous if £ '(b') e B U (g} for all b’ & B'.
Clearly @(D) = {f: V> V| f is continuous} is a submonoid of the
monoid PFL(V) of all partial functions acting on the left of V. We

call (D) the monoid of continuous maps on D.

For example, if D = (V,P(V)), where P(V) is the set of all
subsets of V, then o(D) = PFL(V). If D = (V,B) where
B = {{v}|v eV}, then o(D) is the symmetric inverse semigroup on V.
If B is a topology on V, then it is easy to show that f: V > V is
continuous in our sense if and only if dom(f) is an open set and f
is continuous in the topological sense on dom(f).

Every f ¢ o(D) induces a partial function f: B » B acting on the

right of B, defined by bF = § £ ' (b) if £ 1(b) # 0
undefined otherwise.

We say that f and  are linked maps. Clearly fg = fg, so the
assignment f - f is a homomorphism. We will say that an incidence
structure D = (V,B) is reduced if for all v, w e V:

{b ¢ B|]v eb} = {b eB|web} implies v = w.

It is easy to show that D is reduced if and only if the
assignment f -~ ¥ is an isomorphism. See Lemma 2.1 of [3] for
example. This allows us to view (D) as both a transformation monoid
acting on the left of V and on the right of B. This duality will be
used throughout this paper.

We now show that 9(D) is isomorphic to the translational hull of
a completely O-simple semigroup associated with D. We will assume

that p £ B.
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Let D = (V,B) be an incidence structure. The incidence matrix

of D is the v by b matrix A such that A(v;.b,) = {1 i vie by
0 otherwise.

It is well known that if Q is a set, then PFL(Q) is isomorphic
to the monoid of |Q x |Q| column monomial matrices over {0,1} under

the assignment f +—Cf where Cf(v,w) = iﬁ if f(w) = v
0 otherwise.

There is a dual result for PFR(Q) and the monoid of Q| x |ql

row monomial matrices of {0,1}.

LEMMA 2.1. Let D = (V,B) be an incidence system having incidence

matrix A. Then f ¢ PEi(V) is continuous on D if and only if there

exists a row monomial matrix R such that RAt = Ath. Furthermore,

if D is reduced then R = Rs.

PROOF. Letf ¢ PFL(V). Direct matrix multiplication gives:
¢ (1 if f(v) e b
A Cf(b,v) = )
0 otherwise.

Thus row b of Atcf is the characteristic vector of f'1(b).
Similarly if Rg is the row monomial matrix corresponding to g: B ~ B,
then row b of RgAt is the characteristic vector of bg. The assertion
of the lemma follows immediately. Furthermore, if D is reduced then
f uniquely determines ¥, so that Cf uniquely determines R.

Let D = (V,B) be an incidence structure. The semigroup of D is

S(D) = (V x B) U {0} where (v,b)(v',b') = ((v,b') if v' €b
0 otherwise

and
0 (vsb) = (vob) 0 =0"0=0.
Clearly S(D) = M°({1}, V, B, AY).

COROLLARY 2.2. 9(D) is isomorphic to the translational hull of S(D).
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PROOF. It is well known that the translational hull of a completely
0-simple semigroup M°(G, I, A, P) is isomorphic to the semigroup of
pairs of row monomial |A] x |A| matrices R and |I| x |I| column
monomial matrices C over G° such that RP = PC. See [11], for
example. The corollary now follows from Lemma 2.1.

In the remainder of this paper we will work exclusively with
the class of incidence structures called (balanced incomplete) block
designs. We include some Easic definitions and results. For further
details see [6].

An incidence system D = (V,B) is a balanced incomplete block

design (BIBD) with parameters (v,b,r,k,\) if:

1) |V] = v, |B| =b.

2) Every point in V is on exactly r blocks in B.

3) Every block contains exactly k points of V.

4) Every pair of distinct points in V is on exactly A blocks

in B.
In terms of the incidence matrix A of D, 2) - 4) above translate

into:

2') Mg = Mgl
SR M MY

4y At = (r - WLyt My v
where men is the m by n matrix all of whose entries equal 1 and Im
is the m by m identity matrix.

It is easy to show that det(AAt) = (r - A)V']((v - 1) +r) so
that (except for degenerate cases not considered here) AAt is
invertible. In particular, rank(A) = v and thus v < b. This fact

is known as Fischer's Inequality. We give a generalization of this

inequality for continuous maps.
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LEMMA 2.3. Let D = (V,B) be a block design, if f ¢ 2(D), then

rank(f) < rank(f).

PROOF. By Lemma 2.1, Ath = R¥At. Since AAt is invertible we have
Ce = (AAt)']AR?At and the result follows.

Letting f be the identity map gives Fischer's inequality.

By elementary counting techniques it can also be shown that
bk = vr and r(k - 1) = A(v - 1) are relations which hold among the
parameters of D. Thus any three paramenters determine the other
two. We usually give the parameters (v,k,A) in describing a block
design.

We close this section with a Temma which describes the injective

maps in (D). Recall that an injective function is a partial

1 -1 map.

LEMMA 2.4. Let D = (V,B) be a (v,k,2) design. If f: V>V ¢ o(D)

is a nonempty injective map, then Domain(f) = V.

PROOF. Assume that Domain(f) = W, a proper subset of V. Then
card(f(V)) = card(W) < v. Since f is nonempty, there exist x,y e V
with xef(V), y ¢ f(V). But D is a block design so there is a b ¢ B
with {x,y} € b. Therefore, 1 g_card(f'](b)) = card(f'](b - {y})) <k
since f in injective. Therefore f'](b) ¢ BV {p} and f is not

continuous, a contradiction.

COROLLARY 2.5. Let D be a design. Then f # 0 € (D) is injective if

and only if f € Aut(D), the automorphism group of D.

I11. IDEAL STRUCTURE OF (D)
In this section D = (V,B) will be a BIBD with parameters
(v,b,r,d,a). We show that various relationships between the

parameters of D restrict the ideal structure of Q(D). Following [8],
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we call a monoid M small if M consists of a group of units and a

unique completely O-simple ideal.

LEMMA 3.1. Let f e (D). If r > Xz, then rank(f) = v or rank(f) <1.

PROOF. See Theorem 3.3 of [3].

COROLLARY 3.2. If D is a block design with r > xz, then (D) is a

small monoid.

PROOF. Let f e @(D). If rank f = v, then f is in the group of units
of (D). Otherwise rank(f) < 1 and it follows that f ¢ S(D), the
unique completely O-simple ideal of (D).

The following example shows that the bound r > XZ in Lemma 3.1

is the best possible.

EXAMPLE 3.3. Let Vv = {0,1,2,3,4,5,6} and let B = {biIO <i <6} be
the collection of subsets where

b, = {0,3,5,6}

b1 = {1,4,6,0}

b, = {2,5,0,1}

2

b3 = {3,6,1,2}
b4 = {4,0,2,3}
b5 = {5,1,3,4}
b6 = {6,2,4,5}

Then D = (V,B) is a (7,4,2) design.
Define f: V -~ V by

f(1) = f(3) = 0
f(2) = f(6) = 5
f(4) = f(5) = 4
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Then,
£1(by) = £7'(b,) = b,
(b)) = £7(b,) = by
£ (bs) = £ (bg) = b
£ (by) = B

Therefore, f ¢ (D) and 1 < rank(f) < v.

We remark that the blocks of D in the above example are the
complements of the lines in the 7 point projective plane. In the
next section we will analyze designs arising in such a way from
finite projective spaces. The results there can be used to show

that for D as in Example 3.3, @(D) has 3 nonzero ideals.

LEMMA 3.4 (HOMOGENEOUS LEMMA). Let D = (V,B) be a (v,b,r,k,») design.

If f € o(D) is nonempty, then there is an integer d dividing k such

that card(f'](v)) = d for all v ¢ f(V). Moreover, r(k - d) = A(m - d)

where m = card(Domain(f)).

PROOF. Let A(V) be the abelian group freely generated by V. If
veV,letd, = card(f'l(v)). Let F:A(V) > Z be the morphism such
that F(v) = d, for each v eV. Ifbe B, let b = vibv and let

V= 1v. Note that F(V) = m, where m = card(Domain(f)). Further-

veV
more

~ Kif £U(b) £ p
(1) F(b) =
0 otherwise
since f is continuous.
Now let v ¢ f(V). It follows from the fact that D is a design,

that

b =rv+a(V-v) = (r-2)v + AV

veb

Therefore,

F( zbE) = (r-a)F(v) + AF(V) = (r-A)d, + Am.
Ve
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On the otherhand, it follows from (1), that

F(z b)= g F(b) = = k = rk.
veb veb veb

Therefore,

(r-x)dv +am = rk
and thus,

_rk - am

(2) dv T r -
Since the right hand side of (2) is independent of v ¢ f(V) we have
d = !%_{}Agl = card(f-1(v)) for all v ¢ (V).

We call d the degree of the continuous map f and write

d = deg(f). For example, the map f in Example 3.3 has deg(f) = 2.

COROLLARY 3.5. Let D = (V,B) be a block design. Then f € 2(D) has

Domainf = V if and only if f ¢ Aut(D).

PROOF. Assume Domain(f) = V. It suffices to prove that deg(f)

rk - av
r- -

"
—

by Corollary 2.5. By the Homogeneous Lemma, deg(f) =
Since D is a design, r(k - 1) = a(v - 1) and thus rk - Av = r - .

Therefore, deg(f) = 1.

COROLLARY 3.6. Let f e (D) - Aut(D). Then rank(f) < %;;

PROOF. By Corollary 3.5 and Corollary 2.5, deg(f) > 2. But clearly
m= card (Domain(f)) = deg(f) * rank(f). Therefore, rank(f) 5_%-< %.
Notice that the map f in Example 3.3 has rank = !—%—l, the

extremal case.
An n-arc in block design D = (V,B) is a subset W of V such that
every b ¢ B intersects W in 0 or n points. See [10]. The following

corollary is immediate.

COROLLARY 3.7. Let (V,B) be a (v,k,A) design. Let f be a nonempty

continuous map. Then f(V) is a % arc.
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From these results it is possible to obtain many constraints
on the parameters of D and the ranks of continuous maps on D.

THEOREM 3.8. Let D = (V,B) be a (v,b,r,k,2) design. Let f ¢ (D)

k
a'a

have deg(f) = d. If k' = nd = card(f(V)), then

Vl
v' 1_v-1_r
Do e

2) If k'< k, then k' divides r - A,
In this case, if tk' = r - A, then

a) Xk divides rt (k - k').

b) A divides r(k' - 1).

c) X divides r(k - k').

d) A divides r(r - t).
PROOF. See [3], Theorem 4.6.

COROLLARY 3.9. Let D be a block design. If either k is prime or

g.c.d.(k,r = 2) =1, then 2(D) is a small monoid.

PROOF. It suffices to prove that if f e (D), then rank(f) = v or

rank(f) < 1. Assume then that 1 < rank(f) <v. It follows from
k

d

Corollary 2.5 that d = deg(f) > 2. Thus d divides k and k'
divides r - A. In either case, it follows that d = k. Since
r(k - d) = A(m - d) we have m = card(Domain(f)) = k. Hence f must
map a block onto a point and thus rank(f) = 1.

We now relate the notion of degree of a map to the Green

relations on (D).

LEMMA 3.10. Let D be a design. If s =

=1

t with s,t €2(D) - {0}, then

deg(t) divides deg(s).

PROOF. Let y e @(D) be such that s = yt. Since s # 0, there is a
p € range(s). Then deg(s) = card(s'](p)). Let

e = card(range(t)N y'](p)). It follows easily from the fact that
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sV (p) = 7 (y ' (p)) that deg(s) = deg(t) - e.

LEMMA 3.11. If sJt in @(D) - {0}, then deg(s) = deg(t).

PROOF. By Lemma 3.10 we can assume sRt. However if srt, then

range(s) = range(t) (since s, t ¢ PFL(V)) and it follows from

k _ _k -
Corollary 3.7 that deg(s) ~ deg(t) and thus deg(s) = deg(t).

If J is a J class of @(D) let deg(J) = deg(f) for some f e J.
Let S be a finite semigroup. The depth S6 of S is defined to be
the length of the longest chain of & classes containing non-trivial

groups. See ([13]).

THEOREM 3.12. q(D)s is less than or equal to the longest chain of

proper divisors of k.

PROOF. Let J, < J2 < ... < Jn be a chain of J classes of 2(D)

1
containing non-trivial groups. It is an easy exercise to show that
there exist idempotents e; ¢ Ji i=1,....,n such that

& <&, < ... <e in the usual idempotent ordering. It follows

from Lemma 3.10, that deg(ei+1) divides deg(ei) for i =1,...,n - 1.
Furthermore, deg(ei+]) < deg(ei) i=1,...,n-1. For if

deg(ei) = deg(ei+]), the Homogeneous Lemma implies that
card(Domain(ei)) = card(Domain(ei+])) and thus rank(ei) = rank(ei+1),
a contradiction. Finally deg(e1) < k, for the only J class J with
deg(J) = k is the J class of elements of rank 1, which of course does

not contain a nontrivial group. Thus n is bounded by the length of

the Tongest chain of proper divisors of k and the result follows.

COROLLARY 3.13. The complexity of o(D) is bounded by the length of

the longest chain of proper divisors of k.

PROOF. The Depth Decomposition Theorem [13] insures that the

complexity of S is bounded by Ss.
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See [14] for an exposition of complexity theory. Our examples
in the next section show that these bounds can be obtained, for each

n > 0.

IV. FINITE PROJECTIVE SPACES

The results of the last section may indicate that the class of
semigroups of the form @(D) for D a design is rather restricted.
However, in this section we show that any finite semigroup S can be
faithfully represented by continuous maps on a design D associated
with a finite projective space of dimension card(S). We characterize
Q(D) by obtaining a generalization of the Fundamental Theorem of
Projective Geometry [1]. We begin with some terminology.

Let F = GF(q) be the finite field of order q and let V be an
n + 1 dimensional vector space over F. Define an equivalence

relation =on V - {0} by v =w <> o ¢ F - {0} such that v =aw.

Let PG (V) be the set of equivalence classes of V modulo =. Then
PG(V) is the Desarguesian projective geometry of dimension n over F.
If K is a subspace of V, let [K] be the set of equivalence classes
of elements of K - {0}. Subsets of the form [K] are called subspace
of PG(V). The dimension of a subspace [K] of PG(V) is one less than
the dimension of K over GF(q).

There are many block designs that can be derived from PG(V).
Here P will denote the design with point set PG(V) and blocks
{[H]|H is a hyperplane in V}. It is easy to show that P is a

n+l

n-1
( q

n
T 1] s qq — } , 4 3 - }) design. PS, the complement of P,

is the design with points PG(V) and blocks {PG(V) - [H]|H is a
n+l 1

hyperplane of V}. P€ is a ( 3 — T q", q"'](q - 1)) design.
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For example, the design in Example 3.3 is the complement of PG(V)

where V is a 3 dimensional vector space over GF(2).

LEMMA 4.1. S(P) is a small monoid.

PROOF. Since q is a power of a prime, it follows that k and r - A
are relatively prime. Corollary 3.9 implies that Q(P) is small.

We now show that Q(PC) has a much richer structure. Recall that
a semilinear map is a total function f: V - V such that

1) f(v +w) = f(v) + f(w) for all v, w € V.

2) f(av) = ola) f(v) for alla e F, v € V and some automorphism

g: F~>F.

Classically, a collineation on PG(V) is a total function

g: PG(V) - PG(V) such that g(&) is a line for every line % of PG(V).

The proof of the following is straightforward and is omitted.

LEMMA 4.2. The group of collineations on PG(V) is isomorphic to the

group of units of both g(P) and o(P°).

Let f: V> V be a semilinear map. The induced map
f: PG(V) > PG(V) is the partial function with
Domain(f)= PG(V) - [ker(f)] and such that‘?([v])z) = [f(v)]: . It is
clear that f is well defined. Also, if f is 1 - 1, then f is a
collineation of PG(V). The Fundamental Theorem of Projective Geometry

says conversely that every collineation of PG(V) is of the form f

for some 1 - 1 semilinear map f: V > V. More generally we have

THEOREM 4.3.  If f: V ~V is a semilinear map, then f € Q(PC).

Conversely, if g € a(P®), then g = T for some semilinear map f: V ~ V.

PROOF. Let f: V >~V be a semilinear map. Let H< V be a hyperplane
and let R = Range(f) and K = Kernel(f). Then,
dim(F71(H)) = dim(H N R) + dim(K).
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Since, dim(R) - 1

| A

dim(Hn R) < dim(R), it follows that
dim(V) - 1< £1(H) < dim(V). Thus, £ (V- H) is
either the complement of a hyperplane or empty. Therefore, f ¢ Q(PC).
For the converse, see [4].
Let S(V) be the monoid of semilinear maps on V. Let PS(V) be
the quotient of S(V) by the congruence & = {(f,g)|f = ag for some
o € F - {0} PS(V) is called the monoid of projective transformations

on PG(V). It is easy to verify that (f,g) e & iff f = g.

COROLLARY 4.4. o(P®) is isomorphic to PS(V).

COROLLARY 4.5. If S is a semigroup of order n, then S is isomorphic

to a subsemigroup of Q(PG(V)C) where V is an n + 1 dimension vector

space over F.

PROOF. Clearly PS(V) contains a copy of the monoid Cn+] of n + 1 by
n + 1 column monomial matrices over {0,1} and thus a copy of S.

We now determine local and global parameters of Q(PC).

COROLLARY 4.6. Let f € Q(PC) have Domain(f) = D and Range(f) = R.

Then:

1) D¢ and R are subspaces of PG(V).

2) dim(PG(V)) = dim(D%) + dim(R) + 1.

PROOF. Let f = g where g € S(V). Then D¢ = [ker(g)] and

R = [Range(g)]. The results follow.

COROLLARY 4.7. Let f, g € @(P%). Then
1) f£ g = (Doman'n(g))cgLDomain(f))C
2) £f< g
3) f< g

Range(f) < Range(g).

dim(Range(f)) < dim(Range(q)).

PROOF. Follows from Corollary 4.4 familiar facts about S(V) and the

fact that the congruence o is contained in A.
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COROLLARY 4.8. Let f = f2 € QLPC). The maximal subgroup containing

f is _isomorphic to the group of collineations of Range(f).

COROLLARY 4.9. The complexity of o(P®) is equal to dim(PG(V)).

PROOF. It follows from Corollaries 4.7 and 4.8 that the depth of
Q(PC) equals dim(PG(V)). Therefore the complexity of
(P®) < dim(PG(V)). On the other hand, it is known that the
complexity of Cn+1 the monoid of (n + 1) x (n + 1) column monomial
matrices over {0,1} is n. Since Cn+] is isomorphic to a submonoid
of PS(V) = (P®), it follows that also the complexity of
a(P®) > dim(PG(V)).

Although all the examples of the form o(D) treated in this paper
are regular semigroups, this is not true in the general case. We
have constructed an example of a design D with parameters

(16,24,9,6,3) such that 2(D) is not regular.

V. CONCLUSIONS AND FURTHER QUESTIONS

It is shown here that there are interesting connections between
combinatorial properties of the structure matrix C of a completely
0-simple semigroup S and algebraic properties of &(S), in the case
that Ct is the incidence matrix of a balanced incomplete block
design. Conversely, it is shown in [3] that certain combinatorial
properties of C are reflected by the structure of 2(S).

More generally, if C is alA| x |I| regular matrix over {0,1}
let @(C) be the translational hull of the corresponding Rees matrix
semigroup. It would be interesting to find relationships between
properties of C and 2(C). For example, in [9] it is shown that if
every column of C has sum < k for some k € IN, then the complexity

of €(C) is also bounded by k. Lemma 3.1 indicates that the
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complexity of @(C) may be bounded by the maximum value of the inner
products ¢ ° d, where c and d are distinct columns of C. We ask
whether this is true.

Let D = (V,B) be a block design. We ask whether f satisfies
the conclusion of the Homogeneous Lemma if f ¢ (D). This is easily
seen to be true for symmetric designs (that is, v = b). This would
imply that f(D) = (f(V), F(B)) is a design where
F(B) = {b'|p # b' = bFN f(V)}].
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