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is a monoid such that every element has at most one semigroup inverse. As a consequence of the
cover conjecture—also verified by Ash—it follows that block groups are precisely the divisors
of power monoids of finite groups. The proof of this last fact uses earlier results of the authors
and the deepest tools and results from global semigroup theory. We next give connections with
the profinite group topologies on finitely generated free monoids and free groups. In particular,
we show that the type II conjecture is equivalent with two other conjectures on the structure of
closed sets (one conjecture for the free monoid and another one for the free group). Now Ash’s
theorem implies that the two topological conjectures are true and independently, a direct proof
of the topological conjecture for the free group has been recently obtained by Ribes and Zalesskii.
An important consequence is that a rational subset of a finitely generated free group G is closed
in the profinite topology if and only if it is a finite union of sets of the form gH, H, ... H,, where
g € G and each H, is a finitely generated subgroup of G. This significantly extends classical results
of M. Hall. Finally, we return to the roots of this problem and give connections with the
complexity theory of finite semigroups. We show that the largest local complexity function in the
sense of Rhodes and Tilson is computable.

1. Introduction

The excitement caused by Chris Ash’s proof of the type II conjecture, published in
this journal [6], is well justified. The beauty and depth of the proof can be amply seen
by reading Ash’s article [5] and the full version [6]. The conjecture itself had obtained
wide circulation as one of the outstanding open problems in finite semigroup theory
of the past few years. This was spurred by many talks by the fourth author (Rhodes)
over the years and by its presentation of a set of problems at the Chico conference in
1986 [42], successive survey articles of the other authors [36, 14, 24], and by a sequence
of articles of the third author (Pin) [31,33,34,37], who emphasized the topological
and language theoretic aspects of the problem. The purpose of this paper is to explain
the many deep consequences of Ash’s theorem. It is divided into two parts. Part II
should appear in a future issue of this journal.

We will assume in this paper that the reader has only a basic background in finite
semigroup theory. See [10, 11, 19,23, 32] for additional background material. For the
most part, we follow the notations and terminology of Eilenberg [11]. In particular,
if  : § —» Tis a function from § into T, we denote by s¢ (instead of the usual ¢(s)) the
image of an element s of S by ¢. All monoids except free monoids and free groups are
assumed finite. A monoid M divides a monoid N if M is a quotient of a submonoid of
N. The set of idempotents of a monoid M is denoted E(M). Given a subset P of a
monoid M, {P) denotes the submonoid of M generated by P. The word “variety” will
be used for pseudo-variety—that is, a collection of finite monoids closed under division
and finite direct product.

We begin with a statement of the problem. Recall that a relational morphism
between monoids M and N is a relation t: M — N such that:

(1) (mr)(nt) = mn)t for alim,ne M,

(2) (m7) is non-empty for allme M,

B)lelr
Equivalently, 7 is a relation whose graph

graph(t) = {(m, n)|n € mt}
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is a submonoid of M x N that projects onto M. See [54] for an introduction to this
notion and the related notion of derived category.

We will only be interested in relational morphisms into groups in this paper. Note
that if t: M — G is a relational morphism into a group G, then 177! is a submonoid
of M. We define the kernel or type 11 submonoid of M, K(M), to be the intersection of
the submonoids 177! over all relational morphisms 7 : M — G into a group. Note that
even though all relational morphisms are between finite objects, it is not a priori clear
that membership in K(M) is decidable since there are an infinity of possible relational
morphisms.

As one would like to decide membership in K(M), this leads to a search for elements
of M that are sure to be in K(M). It is fairly easy to prove using standard facts about
finite semigroups that the following is true [36, 53,46].

(1) E(M) is contained in K(M).

(2) Let m, n € M be such that mnm = m. Then mK(m)n v nK(M)m = K(M).

That is, every idempotent is in K(M) and K(M) is closed under weak conjugation: if m
is a weak inverse of n, that is, if mnm = m, then, for every k € K(M), mkn € K(M) and
nkm € K(M). Define D(M) to be the smallest submonoid of M closed under weak
conjugation. Then D(M) contains the idempotents of M: indeed, if e is idempotent,
then e is an inverse of itself, and thus 1 € D(M) implies e = ele € D(M). Note that
membership in D(M) is decidable given the multiplication table of M. It follows from
(1) and (2) above that D(M) is a submonoid of K(M), and the fourth author (Rhodes)
conjectured that K(M) = D(M)—the “type II” conjecture. Ash’s result proves that this
conjecture is true.

Theorem 1.1. (Ash [5,6]1) For every finite monoid M, K(M) = D(M).

Actually, Ash’s results imply another related result conjectured in [17]. We define
a subset X of a monoid M to be pointlike (with respect to groups) if, for all relational
morphisms t : M — G into a finite group G, thereisagsuchthat X — gt™!. Forme M
let m" ={m} and m™ = {x € M|xmx = x}, the set of weak inverses of m. The
Pointlike (or Cover) Conjecture [18] states that a subset X of a monoid M is pointlike
(with respect to groups) if and only if there are elements m,, m,, ..., m, of M such that

X = D(M)m§'D(M)mS?D(M). .. D(M)mED(M)

where ¢; € {1, —1} for [ <i < n. It follows from Ash’s work [5,6] that the Pointlike
Conjecture is true.

Theorem 1.2. (Ash [5,6]) A subset X of a monoid M is pointlike (with respect to
groups) if and only if there are elements m,, m,, ..., m, of M such that

X = DIM)mS’D(MYm$?D(M). .. D(MYym'”D(M)

wheree, e {1, —1} for1 <i<n.

By analogy, we can define the pointlike sets with respect to any variety V. The first
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author (Henckell [13]) has proved that the pointlike sets with respect to the variety
of aperiodic monoids (that is, group-free monoids) are decidable. See the second part
of this paper for questions related to this problem.

By Theorem 1.2, it is now clear that it is decidable if a set of elements of M is pointlike
(with respect to groups). Before going on to give the history and consequences of these
results, perhaps an explanation of terminology is due to the reader. We are sure that
it has occurred to a number of people who have heard of this conjecture to wonder
what type I semigroups are and perhaps are there type 111, type IV semigroups, etc.

Here is a simplified definition. See [47] for a fuller treatment. Let V be a variety and
let M be a monoid. A submonoid N of M is called a type V submonoid of M if for all
relational morphisms t: M — T with T € V, there is a ¢ € T such that N < Stab(t)z™.
Here Stab(t) = {s € T|ts = t} is the right stabilizer of z. The importance of stabilizers
stems from the local structure of Tilson’s derived category [54]. This definition was
especially of interest for the two varieties singled out by the Krohn-Rhodes decomposi-
tion theorem as being of central importance in finite semigroup theory—A, the variety
of aperiodic monoids, and the variety G of finite groups. Submonoids of type A were
called type I and submonoids of type G were called type I1. It is clear that K(M) (and
now D(M))) is the unique maximal type G submonoid of M. There is not a unique
maximal type I submonoid of M, but we shall see that it is decidable if a monoid M
is a type I submonoid of itself (termed absolute type I) and explore the consequences
of this later in this paper.

2. Some History

Like many problems that resist immediate solution, a number of partial results and
equivalent conditions to the conjecture have appeared or will appear in the literature.
In this section we briefly survey these previous results. We will concentrate on the
special cases of the conjecture that have been proved and leave the important connec-
tions with topology for a later section.

The type II subsemigroup first appeared in [46]. The motivations came from the
complexity theory of finite semigroups and monoids. We recall some basic facts. Let
Vo = A and, forn > 0,let V, .y = A* G * V. Here V + W denotes the variety generated
by all monoid semidirect products M * N where M € V and N € W. It follows from
the Krohn-Rhodes decomposition theorem that every monoid M is in V, for some n.
The least such n is called the complexity of M [52].

The idea of type I (resp. type II) submonoids is that if M is in a variety of the form
V # A (resp. V * G), then any type I (type IT) submonoid of M should be a member of
V. In particular, one obtains a lower bound to complexity by taking the maximal length
of a chain of submonoids alternating type I and type II and containing a non-aperiodic
type I submonoid. It was hoped at the time of the publication of [46] that this latter
number would in fact give the complexity of an arbitrary monoid. This was in fact true
for inverse monoids and completely regular monoids but a counterexample was
constructed in [44].

Nonetheless, we will return in the last section of this paper to examine these chains
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of submonoids which give the largest local complexity function as proved in [47].
Furthermore, the paper [46] went on to prove important facts about type I and type
II submonoids. In particular, the following result was proved there.

Theorem 2.1. [46] Let M be a monoid and let m be a reqular element of M. Then
me K(m) if and only if me D(M). In particular, if M is a regular monoid, then
K(M) = D(M).

The proof in [46] was long and based on certain renormalizations of the structure
matrix of a regular P-class. Tilson gave a much more accessible proof in [53] by
directly associating an injective automaton with every regular Z-class. This work had
major influence on subsequent work on this problem. It was used to show [17] that
the type II conjecture could be reduced to the case of block groups—monoids in which
every element has at most one semigroup inverse. It also played an important role in
Ash’s formulation of and proof of the conjecture. We shall see why block groups play
such an important role in the theory later in this paper. We will provide more details
of these facts in Sec. 5.

Another particular case of interest was the case of monoids with commuting idempo-
tents. Indeed it was shown [27] that the type II conjecture implied that the variety
generated by inverse monoids was in fact equal to the variety of monoids with
commuting idempotents. This weak form of the type II conjecture was also solved by
Ash as a warm up to his future proof of the full conjecture.

Theorem 2.2. (Ash [3,4]) Every monoid with commuting idempotents divides an
inverse monoid. Equivalently, the variety generated by inverse monoids is equal to the
variety of monoids with commuting idempotents.

The proof of this result handled non-regular elements by appealing to Ramsey’s
theorem in a nontrivial way. In 1986, T. E. Hall gave an illuminating lecture on this
proof at the Chico Conference on Semigroups. This stimulated Birget and two of the
authors to seec how to extend this result to the case of monoids whose idempotents
form a submonoid.

Theorem 2.3. [8,9] Every monoid whose idempotents form a submonoid divides an
orthodox monoid.

Recall that an orthodox monoid is a regular monoid whose idempotents form a
submonoid. Actually more was proved. By combining the results of [4] and the
methods introduced in [53], the following result was obtained:

Theorem 2.4. [8,9] Let M be a monoid such that D(M) is a regular submonoid. Then
D(M) = K(M). That is the type 1I conjecture is true in this case.

It is fairly easy to prove that if the idempotents of a monoid form a band (resp.
generate a completely regular monoid), then D(M) is a band (resp. completely regular
monoid). We will clarify the connection between these results in the next section of this

paper.
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Another interesting special case was proved in [16]:
Theorem 2.5. [16] Let M be a ¢-trivial monoid. Then D(M) = K(M).

The interesting part of this proof is that it directly constructs a relational morphism
from a _#-trivial monoid onto a finite group that proves D(M) = K(M). The proof is
very different from Ash’s and it is unknown at the present time if this proof technique
can be extended to the general case.

3. Malcev Products and Semidirect Products with Groups

As indicated in the previous section, the motivation for the definition of K(M) came
from a desire to decompose M into a semidirect product N * G where N is “simpler”
than M and G is a finite group. The paper [46] was written before the influential notion
of variety of finite monoids and languages had been formulated by Eilenberg and
Schiitzenberger [11,32]. It is within this context that we can make these statements
precise.

Let V and W be varieties. We have defined V * W to be the variety generated by
monoid semidirect products of members of V and W. There is a related variety that
we now define. Let

V ® W = {M|There is a relational morphism t: M — N with N € W and such that
et™! e V for all idempotents e € N}.

The variety V @ W is called the Malcev product of V and W. We will be interested in
when a variety decomposes in the form V « G or V @ G. We first list some preliminary
observations.

Theorem 3.1. Let V be any variety. ThenV«G c V@ G.

Proof. Let M € V*G. Then M divides a monoid of the form N+ K where NeV
and K € G. Let n: N+ K — K be the projection. Then 1z~ is isomorphic to Ne V.
Therefore N+ K is in V& G and so is M since M divides N = K. O

We now give the connection between Malcev product with the variety of groups
and K (M). We first have the following result that is proved by a compactness argument
[36,46].

Theorem 3.2. Let M be a monoid. Then there is a group G and a relational morphism
1: M — G such that 177! = K(M).

Proof. Since M is finite, there are only a finite number of sets of the form 174,

where 7 is a relational morphism from M onto a finite group G. Therefore one can
select a finite set of relational morphisms 7;: M — G, (1 < i < n) such that every 1t~
is equal to one of the 17;*. Set G =G, x G, x *** X G, and define a relational
morphism 7: M — G by setting mt = mt, X mt, X *** x mt,. Then

1t = () 15t = K(M). O

1<izn
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A slight improvement of the previous proof leads to the following stronger result:

Theorem 3.3. Let M be a monoid. Then there is a group G and a relational morphism
7: M — G such that

(1) 177 = K(M),

(2) a subset P of M is a pointlike subset of M if and only if there exists g € G such

that P is a subset of gt~ .

A relational morphism 7: M — G satisfying the conditions (1) and (2) of Theorem
3.3 is called universal for M (with respect to groups).

Theorem 3.4. Let M be a monoid and let V be a variety. The following conditions
are equivalent

(1) MeV®G,

(2) there exists a relational morphism v : M — G, universal for M, such that 11 ' € V,

(3) K(M)e V.

Proof. (1)implies (3). Let M € V@ G. Then there is a relational morphismz: M —» G
onto a group G such that 177! € V. Now K(M) is a submonoid of 1t~ by definition
and thus K(M)e V.

(3) implies (2). Assume that K(M) € V. By theorem 3.3 there exists a relation morphism
7: M - G, universal for M, such that 117! = K(M). Thus 171 e V.

(2) implies (1). If there exists a relational morphism 7: M — G such that 177! €V,
then M € V @ G by definition. O

We have the following very important corollary to Ash’s theorem: Recall that a
variety V is called decidable if there is an algorithm that decides whether a given monoid
is a member of V or not.

Theorem 3.5. Let V be a decidable variety. Then V @ G is a decidable variety.

Proof. By Theorem 3.4 and Theorem 1.1, M € V@ G if and only if D(M) € V. Since
V is decidable by hypothesis and membership in D(M)is decidable given the multiplica-
tion table of M, the result follows. O

The importance of Theorem 3.5 becomes apparent when contrasted with the fact
that the collection of decidable varieties is not closed under join, semidirect product
or Malcev product [1].

In general, V* G is a proper subvariety of V@ G. For example, an unpublished
example of the fourth author proves that the variety (A * G) ® G contains monoids of
complexity n for any n > 0. These examples will appear in the second part of this paper.
On the other hand, (A * G)* G = A * G is contained in V,, the variety of monoids of
complexity less than or equal to one.

The question of when equality holds is a special case of a question that has attracted
great attention over the past few years. It has to do with the notion and application
of the derived category of a morphism to the decomposition theory of monoids. See
[54] and [43] or the survey article [24]. As the details would take us too far afield, we
list the following theorems for the readers familiar with the notion of division of
categories and of a local variety in the sense of [54].
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Theorem 3.6. A monoid M belongs to V+G if and only if there is a relational
morphism ©: M — G onto a finite group G such that the derived category D(z) divides a
member of V.

Thus membership in V % G is a “global” question in that it depends not just on the
inverse image of the identity, but on the global structure of the derived category of
certain relational morphisms. When being able to determine if a category divides a
member of a variety only depends on the local structure of the category—that is on
the loop monoids being members of the variety—then we can replace Malcev product
by semidirect product. Intuitively a variety is “local” if this latter condition holds.
Again the reader is urged to read [54, 44, 24] for more details.

Theorem 3.7. Let V be a local variety. Then V+G =V ® G.

Many important varieties are known to be local. The following result combines the
work of Simon, Thérien and Jones-Szendrei [11, 50, 20].

Theorem 3.8. Any variety of bands is local. The variety CR of completely regular
monoids is local.

Corollary 3.9. Let V be any variety of bands or the variety of completely regular
monoids. Then VG = V @& G is decidable.

Proof. The equality V+ G = V @ G follows from Theorems 3.7 and 3.8. Now the
variety CR is clearly decidable and since any variety of bands is defined by a finite
number of identities, varieties of bands are also decidable. Therefore the result follows
from theorem 3.5. |

In fact, it was long known that many varieties decompose as a semidirect product
of a variety of bands and the variety of groups. One of the impetuses for the introduction
of the derived category into decomposition theory and the notion of local and global
membership of finite categories in a variety was a desire to show that the semidirect
product could be replaced by the Malcev product in these cases. Recall that a regular
monoid M is orthodox if E(M) is a submonoid of M.

Theorem 3.10. Let V be a variety of bands and let M be a monoid. The following
conditions are equivalent:

(1) Me V=G,

2 MeV®G,

() EM)eY,

(4) M divides an orthodox monoid N such that E(N)e V.

Proof. If is easy to prove that if M is a monoid such that E(M) is a submonoid,
then E(M) = D(M). The equivalence of (1) and (2) follows from Corollary 3.9. The
equivalence of (2) and (3) follows from Theorem 3.4. Furthermore, let W be the variety
generated by orthodox monoids such that E(M) € V. It is easy to show thatif M € V,
then M » G € W for any group G. Also, well known results about orthodox monoids
[8,9] show that if M is an orthodox monoid with E(M) e V, then M € V@ G. We then
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have that V* G <« W =« V@ G and equality follows from the equivalence of (1) and
(2). Thus V * G = W and (1) is equivalent with (4). g

Notice that Theorems 2.2 and 2.3 are special cases of this result. Recall also that a
regular monoid M is solid if the monoid {E(M)) generated by the idempotents of M
is completely regular. The following theorem is proved analogously to Theorem 3.10.

Theorem 3.11. [8,9] Let M be a monoid. The following conditions are equivalent:
(1) Me CRxG,

2) MeCR® G,

(3) <E(M)> € CR,

(4) M divides a solid monoid.

Theorem 3.7 is only a sufficient condition for V * G to be equal to V @ G. The case
of the variety J of #-trivial monoids is fascinating. Recall that a block group is a
monoid M such that every element has at most one semigroup inverse. By classical
results it follows that M is a block-group if and only if every #-class and every .#-class
has at most one idempotent. Thus in the eggbox picture of M, the maximal blocks
containing idempotents are groups [10].

*G

*G

*G

Fig. 3.1. A regular @-class of a block group.

Note that a regular monoid is a block group if and only if it is inverse. It is easy to see
that the collection BG of all block groups is a variety.

An interesting class of block groups comes from the well-known fact that if G is a
group, then the monoid #(G) of all subsets of G under the usual multiplication (also
called the power group of G) is a block group [30]. If PG denotes the variety generated
by all power groups, then we have PG < BG. Denote by EJ the variety of monoids
such that (E(M)) e J. The following summarizes some of the work that appeared in
[281].

Theorem 3.12. The following formulae hold: PG =J+*G c BG =J @ G = EJ.

The proof uses a number of techniques, some purely algebraic, and some using
results from the theory of languages. For example, it is easy to show that if G is a group,

then 2(G) divides 2,(G) * G, where #,(G) is the submonoid of 2(G) consisting of all
subsets of G containing the identity and where G acts on #,(G) by conjugation.
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Furthermore, 2,(G) is easily seen to be #-trivial and this shows that PG = J # G. The .
other inclusion involves a detailed study of the languages accepted by power groups.
By using the wreath product principle of Straubing [32, 35], which gives a description
of the languages accepted by wreath products of monoids in terms of those accepted
by the factors, one shows that every language accepted by a wreath product of a group
by a #-trivial monoid is also accepted by a power group. By Eilenberg’s theorem [11],
the opposite inclusion also holds. This method of proof also pioneered by Straubing
and Thérien, is a very powerful method for proving results like these.

A very deep result of Knast [22] shows that J is not a local variety. In the framework
of global semigroup theory, we state the theorem of Knast using the notions of Tilson
[547. Recall that the exponent of a monoid M is the smallest integer w such that m®
is idempotent for every m € M. Similarly, the exponent of a finite category C is the
smallest integer w such that m® is idempotent for every loop m € C. It is also equal to
the l.c.m. of the exponents of all loop monoids of C.

Theorem 3.13. (Knast) A finite category C divides a #-trivial monoid if and only if
it satisfies the following path identity, where © denotes the exponent of C:

(ab)®ad(cd)® = (ab)”(cd)”

for every subgraph of C of the form

There are categories such that every loop monoid of the category is #-trivial, but the
category itself does not divide any member of J. This is what lead two of the authors
to conjecture in [28] that PG was a proper subvariety of BG. However the conjecture
turned out to be false, as shown by the two other authors in [ 18] (when combined with
Ash’s theorem).

Theorem 3.14. If the Pointlike Conjecture is true, then PG = BG.

Proof. This theorem is proved by combining the results of Theorem 3.12 with
Knast’s Theorem 3.13. By Theorem 3.12, BG = PG if and only if J @ G = J * G. Let
M € J @ G. Then, by Theorem 3.4, there exists a relational morphism z: M — G onto
a group G, universal for M, such that 177! € J. Let C, be the derived category of t: the
objects of C, are the elements of G and the arrows are the triples (h, (m, g), hg) such that
(m, g) € graph(r)—or equivalently g € mt. Composition is given by the formula

(h,(m, g), hg)(hg,(m’,g'), hgg") = (h,(mm’, gg"), hgg’)
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pictured below

{mm’,gg’)
- .

Note that for all g € G, C(g,g) = 177!, because (g,(m, 1)g) is an arrow if and only if
me 1771 In other words, the category C, is locally in J, and we have to show, by
Theorem 3.6, that it is globally in J. To verify Knast’s identity, consider a subgraph of
C, of the form shown in Fig. 3.2

(c,9)

AT
&

(d, g™

Fig. 3.2

Then we have {a,c} = gt™* and {b,d} < g"'t%. Set a = (ab)®a, b = b(ab)**~!, T =
(cd)°c,d = d(cd)**™!, e = ab = (ab)® and f = ¢d = (cd)®. The following lemma can be
verified by a straightforward calculation.

Lemma 3.15. The following properties hold:
(1) e and f are idempotent,

(2) ea=ea=aand fc = fc=r,

(3) b=a ' and d = ¢! in the block group M.

Here a~! and ¢ ™! denote the unique semigroup inverses of @ and ¢ respectively. Now
e, f Ac, and we have the picture of two (perhaps not distinct) #-classes.

*¢

)

i

21}

By Lemma 3.15, we have (ab)®(cd)” = ef and (ab)®ad(cd)® = ad = ac ' and thus
proving Knast’s identity reduces to showing the equality

ef =det.
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Since 7 is universal for M, the inclusion {a,c} = gt~ shows that {a,c} is a pointlike
subset of M. By the Pointlike Conjecture, there exist elements d,, ..., d,, d;, ..., d; of
D(M), elements m,, ..., m, of M and integers ¢,, ..., & € {—1,1} such that

aedom{’d,m§? .. . d,_ md, 3.1
d’ (sl)df (£2) d (Ek)d' 32
CEdomy“adymy™ ... dy_ My " a; (3.2)

where, as before, m¥ = {m} and m"Y = {x e M|xmx = x}. We need the following
lemma, which follows from the work of Tilson [53].

Lemma 3.16. Let M be a block group and let R be a regular &-class of M.

(1) For everyr e R, for every m € M such that rm € R, there exists in € mV such that
rmm = r.

(2) For every r € R, for every me M and for every i € m" such that rm € R, one
has rmm =r.

(3) For every m e M, the action of m on R defined, for everyr € R, by

{rm ifrmeR

undefined otherwise
is partially one-to-one and is a partial identity if m e K(M).

Of course a dual lemma holds by considering .#-classes instead of #-classes.

Proof. (1) Let r, rm € R. Then since rZrm, there exists m’ € M such that rmm’ = r.
Set m = (m’'m)**~'m’. Then /i € m™* since

mmin = (m'm)*° " 'm’'m(m'm)*>* 'm’ = (m'm)** 'm’ = (m'm)>°"'m’ = m.
Furthermore, rmm = rm(m'm)*>® 'm’ = r(mm')*® =r.

(3) Suppose now that r,m = rym = r for some r, r,, ¥, € R. Since R is regular, it is
contained in a regular #-class J and the #-class of r contains an idempotent e.
Therefore re = r, that is

ri(me) =ry(me) =r.
By the first part of the lemma, there exist weak inverses i, /m, of me such that
ri(meyin, =r, and ry(me)yim, =r,.
It is clear that if n e m", then n < ; m. It follows that em,, em, € J and since em, and

em, are also weak inverses of me € J, they are in fact inverses of me. But since M is a
block group, every element has a unique inverse, and thus em; = effi,. It follows that
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ry = r(me)m, = r,(meym, = ry(me)m, =r,

and thus the action of m on R is partially one-to-one.

Let Sy be the symmetric group on R and let 7 : M — S, be the relation that associates
to any m € M the set mt of all permutations on R that extends the partial permutation
on R defined by m. It is easy to see that 7 is a relational morphism. In particular, if
m e K(M), then m € 177! by definition and thus m is a partial identity.

(2) Ifrim € Rand if m € m'™", then mmm = m, and thus rimm € R. Now mm is idempo-
tent, and thus belongs to K(M), and by (3), induces a partial identity on R. In particular
rmm =r. O

Let R be the #-class of f. By (3.2), there exists a sequence mi) e m¥(1 <i < k)
such that

¢ = fo = fdymd; ... d,_,md; e R.

In particular, all the elements f, fdy, fdymkV, fdymlid;, ... are elements
of R.Butsince dy, . .., d; € D(M) = K(M), part (3) of Lemma 3.16 shows that the actions
of these elements on R are partial identities. Therefore

c=fmf). m e . m (3.3)

and similarly,

aeemf)..m. (3.4)

We next compute the inverse of ¢in M. Set, for 0 <i < k, r; = fmf*!... m*! and

{—ei m; ife; = —1
mi~ = 1] (=s0 (-1] . . (3.5)
an element mt ™1 of m;™* such that r,_ymm, ™ =r,_;, ife; =1

Of course, we are using the first part of Lemma 3.16 to define m{™!). Now we have

riogmEml™ =r, | (1 <i<k).

i i

This follows from the definition of mi~1 if ¢; = 1 and from the second part of Lemma
3.16 if g; = — 1. It follows by induction

[£4] [excL, [—ex] [—ellg
ﬁnl "'mk mk "'ml f f

cl=mld om0y (3.6)
Furthermore, by (3.4), we have

. med 3.7)
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for some elements m;* such that m/*) = m, if ¢; = 1 and m*? e m{™V if ¢; = — 1. Set,
forl <i<k,

s; = emF, mEdml 7o TR
We claim that s; = s;_, for all i > 1. Indeed, if ¢; = — 1, we have

fle1) Mei- g = Llpy! — op'le1) f[&i-1]
em""..m 2 Vmi T  mp = em YL om T

by part (2) of Lemma 3.16 and, if ¢; = 1, then

miml™ Ul | oplmelf = plecsd | plmeale

by the dual version of the same lemma. Therefore, starting from (3.4) and (3.6), we
obtain by induction

ac ' =emP . mPmimH om0 = = em Pl = of.
Therefore M satisfies Knast’s identity and thus M € J * G. Od

Of course, since we know by Theorem 1.2 that the pointlike conjecture is true, we
have the following theorem.

Theorem 3.17. The following equalities hold: PG = BG = J*x G = J@ G. In par-
ticular, it is decidable whether a monoid divides a power group.

At the present time, this seems to be one of the most difficult results in finite
semigroup theory in that it requires both Ash’s theorem and Knast’s theorem. That
is, given a block group M, how does one find a finite group H such that M divides
Z(H)? First one must trace through the (purely algebraic) proof that BG = J ® G to
construct a group G, and a relational morphism z: M — G, such that 17! is ¢-trivial.
Then one must use Theorem 3.14 and Ash’s proof of Theorem 1.2 to find a group G,
and a _#-trivial monoid N such that M divides N x G, for some action of G, on N.
Then we use the language theoretic approach of [26, 28] to construct a group G5 such
that N « G, divides #(G,) and we can take H = G;.

4. Local Complexity of Finite Semigroups

In this section we return to the origins of the type II problem and give the connections
with the complexity of finite semigroups. We have given the definition of the complexity
function c¢:Sgp — N in Sec. 1. Here Sgp is the variety of all finite semigroups. The
following theorem characterizing the complexity function appeared in [47].

Theorem 4.1. The complexity function c¢:Sgp — N is the largest function, in the
pointwise sense, satisfying the following axioms:

(1) Sc = 0 for every aperiodic semigroup.

(2) Sc <1 for every finite group.
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(3) If S divides T, then Sc < Tc.
(@) (§ x T)c < max{Sc, Tc}.
(5) So T)c < Sc + Te.

Here “o” denotes wreath product. A function I: Sgp — N is called a local complexity
function if it satisfies Axioms 1-5 and in addition:

(6) Sl = max{(eSe)lle = e € S}.

For a time it was thought that the complexity function ¢ was local. An example in
[44] constructed a semigroup S such that Sc = 2, but max{(eSe)cle = e € S} = 1. In
the second part of this paper, a sequence of semigroups S, (n > 0) is constructed such
that:

(1) S,c =n.

(2) K(S,) € A *G. In particular, K(S,)c < 1.

3) S, €(A*G)® G. (See Theorem 3.4.)

Thus the complexity of a semigroup S can differ arbitrarily from the complexity of
its type II subsemigroup K(S). Also, note that (A * G)* G = A * G is contained in V,,
but (3) shows that (A * G) @ G contains semigroups of arbitrary complexity. Letting
V = A xG, we sce that in general V * G can be a “small” proper subvariety of V® G.

Furthermore, consider a relation 7,: S, — G, onto some finite group G,, such that
the inverse image of the identity is K(S,). Let D, be the derived semigroup of 1, as
defined in [52]. It follows easily from the basic properties of the derived semigroup
that eD,e is contained in K(S,)° for all idempotents e € D,. On the other hand the
Derived Semigroup Theorem [52] shows that S, divides the wreath product D, ¢ G,.
It follows that D,c > n — 1 and thus, the complexity of a semigroup can differ arbi-
trarily from that of any of its local submonoids. This shows that the complexity
function is very global.

On the other hand, the main Theorem of [47] implies that the lower bound to
complexity considered in [46] is the largest local complexity function. We review the
definition here. Let S be a semigroup and let

S—_-U()ZTIZUIZZ’I:,ZU,‘

be a descending sequence of subsemigroups such that each T, (1 <i < n) is a non-
aperiodic absolute type I semigroup and each U, is the type II subsemigroup of T, for
1 <i < n. We say that the above chain is an alternating series for S of length n.

Recall that an absolute type I semigroup is a semigroup T such that, for every
relational morphism 7: T — A where A is an aperiodic semigroup, thereisat € 4 such
that T < Stab(t)z™!. That is, T is a type I subsemigroup of itself.

Let S be a semigroup. Define Si to be the length of the longest alternating series of
S. Sl is called the local complexity of S. The following is the main Theorem of [47].

Theorem 4.2. The local complexity functionl: Sgp — N is the largest function in the
pointwise sense satisfying Axioms 1—6.

At-the time that [47] was published it was not known whether being either an
absolute type I semigroup or a type II semigroup was decidable. Ash’s Theorem takes
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care of type II. The main result of this section shows that there is an easy criterion to
decide if a semigroup is absolute type I as well. We first need the following hitherto
unpublished result of the fourth author. Let U, be the semigroup consisting of two
right zeroes {a, b} and an identity.

Theorem 4.3, A4 semigroup T is absolute type I if and only if for every relational
morphismt: T —>U,, T < {La}t or T = {1,b}r™".

Note that the maximal right stabilizers in U, are {1,4} and {1, b}, so that Theorem
4.3 says that we need only check that T behaves like a type I semigroup with respect
to relational morphisms into U,. Since there are only a finite number of relational
morphisms between any two finite semigroups, we have the following important
corollary.

Corollary 44. There is an algorithm to decide if a finite semigroup is a absolute type
I semigroup.

Before commencing with the proof of Theorem 4.3, we recall that A, the variety of
aperiodic semigroups is the smallest collection A of semigroups containing the trivial
semigroup, closed under division, direct product and such that if T € A, then so is
T o U,. This is an immediate corollary of the Krohn-Rhodes Theorem and is a useful
tool for inductive proofs involving A.

It will be useful in the proof of Theorem 4.3 to have the following concept as well.
A semigroup S is R, if every %#-class of S has at most one idempotent. The collection
R, of all R, semigroups forms a variety of finite semigroups. The next lemma ties up
our definition with that of [45] and gives a proof of Theorem 4.3.

Lemma 4.5. The following conditions are equivalent for a semigroup S:

(1) For every relational morphism ©:S — T where T is aperiodic, there is an R,
subsemigroup R = T such that S = Rt

(2) S is an absolute type I semigroup.

(3) For every relational morphismt:8S — U,, S < {l,a}t™  or S = {1,b}t7".

Proof. Let R be an aperiodic R, semigroup. Let e be an idempotent in the minimal
ideal of R. It is clear that eR is just the #-class of e. Since R € R, the only idempotent
in eR is e and since eR is an aperiodic simple semigroup, it follows that eR = {e} and
thus R < Stab(e). This gives immediately that (1) implies (2). (2) implies (3) is obvious.

(3) implies (1). We will use the inductive scheme for aperiodic semigroups outlined
above. Let S be a finite semigroup and let Ag = {T € A|for all relational morphisms
17:S — T, there is an R, subsemigroup R of T such that S = Rt™'}. Then the trivial
semigroup is in Ag. Now assume that T € Ag and that T" divides 7. Then there is an
injective relational morphism (i.e., the inverse of a surjective partial function)2: T > T.
Let 7: S — T be a relational morphism. Then 72: S — T is a relational morphism and
thus there is an R, subsemigroup R of T such that S = R(z2)~*. Therefore, S Rt!
where R’ = Ri~!. Since 1 is an injective relational morphism it follows that R’ divides
R and is also an R, semigroup. This proves that T’ € A;. A similar type of proof shows
that Ay is closed under direct product as well.
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Now assume that T e A5 and let 7:S — T o U, be a relational morphism. Let
n:To U, — U, be the projection morphism. By the assumption (3) it follows without
loss of generality, that S < {1,a}(tn)™!. Notice that {l,a} is isomorphic to the
semigroup U, consisting of an identity and a zero, and thus we can consider 7: S —
T o ({1,a,b}, U ). Thus every element of this wreath product is of the form ( f, x) where
xe{l,a}and f:{l,a,b} > T.

Since a is the zero of U, it is easy to see that the function n: T o ({1,a,b},U,) > T
such that (f,x)n = af is a morphism. Since we are assuming that T e A4;, there is an
R, subsemigroup R of T such that S = Rn~!t71. Let R” = Ry~!. Then R’is the disjoint
union of a subsemigroup N = R'n {(f,1)|f:{l,a,b} > T} and an ideal I = R' N
{(f;a)l f:{1,a,b} - T}. It is easy to see that the Rees quotient R'/I = N U {0} divides
N x U, and that N divides T':*%, 50 by the above and the easy fact that U, € A,
R'/l € As. Let p: R' - R'/I be the Rees morphism. Then 6 = (1~ (S x R))p:S - R//I
is a relational morphism. Thus there is an R, subsemigroup T of R’/I such that
S < TO7'. All this allows us to assume without loss of generality, that N is an R,
subsemigroup of R'.

It suffices then to prove that I is an R, semigroup. Suppose that (f,a) and (g, a) are
#-equivalent idempotents of R. Then (f, a)n = (g, a)y, since n is a morphism and R is
an R, semigroup. That is, af = ag. Thus,

(f,0)=(9,0)(f,0) = (g + af,a) = (g + ag,a) = (g,0)

using the fact that we are dealing with %#-equivalent idempotents. This proves that [
is an R, semigroup and we are done.

Theorem 4.6.  The local complexity function : Sgp — N is computable.

The rest of this section is devoted to providing a more satisfying description of
absolute type I semigroups. It confirms a conjecture first published in [45]. We first
gather some simple facts about absolute type I semigroups.

Lemma 4.7.

(1) Let ¢ : S — T be a surjective functional morphism. If S is absolute type I, then so
is T.

(2) If' S is absolute type I, then so are S* and S°.

Proof. Let ¢ :8 — T be a surjective functional morphism and let 7: T — A4 be a
relational morphism onto an aperiodic semigroup A. Then ¢1:S — A is a relational
morphism. Since S is absolute type I there is a t € 4, such that § c 4,77 2¢p " where
A, = Stab(t). Therefore, T = S¢ = A,t ¢ ¢ = A,17,since ¢ is a function. Therefore
T is absolute type I and this proves (1). The proof of (2) is easy and is left to the reader.

O

Theorem 4.8. A semigroup S is an absolute type I semigroup if and only if S is
generated by the union of a chain of ¥-classes, L, >4 L, >4 "> 4L,.
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Proof. First assume that S is generated by the union of a chain of #-classes,
L >yL,>4-->4L, Lett:S - U, be arelational morphism. It is easy to see that
L, is contained in the inverse image of an Z-class of U,. But ¥-classes of U, are
singletons. If L, is contained in the inverse image of 1, so are all the other L;fori < n,
since they are all #-above L,. Thus S is contained in the inverse image of {1}. If L, is
contained in the inverse image of {a}, then again it is easy to see that the chain condition
implies that all the L; are contained in {1,a}t ™. Thus in this case, S is contained in
the inverse image of {1,a}. Similarly, if L, is contained in the inverse image of {b}, then
S is contained in the inverse image of {1,b}. Theorem 4.3 implies that S is absolute
type L

Conversely, assume that S is absolute type 1. Without loss of generality we may
assume that S is a monoid with 0 by 4.7 (2). We induct on the number k of non-zero
F-classes of S. If k = 1, then S is either a group or a group with 0 and the result is clear.

Assume that every monoid with O with less than k non-zero #-classes that is absolute
type I is generated by a chain of #-classes. Let S have k non-zero #-classes, where
k > 2. Let J # 0 be a (0)-minimal #-class. Let I = SJS be the ideal generated by J and
let T = S/I be the Rees quotient. By Lemma 4.7 (1), T is absolute type 1. Since T has
k — 1 non-zero #-classes, the inductive hypothesis implies that T is generated by the
union of a chain of #-classes, L, >4 >4 L, in the £-order of T. Without loss of
generality, we can assume that L, # 0.

Let K be the submonoid of S generated by the union of the L; (i = 1,...,r). Let Y
be the set of #-classes of J that are not contained in K. If Y is empty, then K = S and
we are done, so we assume that Y # 0. Define a relation > on Y by L > L'ifand only
ifthereis a k € K such that Lk = L’. Clearly > is reflexive and transitive. Let ~ denote
the associated equivalence relation and let > also denote the associated partial order
on Y/~. Let [L] denote the equivalence class of L.

We claim that the poset (Y/~, =) has a unique maximal element. Otherwise there
are two > maximal classes [L] and [L'] that are incomparable. Define 7: § — U, to
be the relational morphism generated by st = {1} if se S\(LTLJU[L']), st = {a} if
se U[L]and st = {b} is se U[L']. It is easy to see that 1 € st if and only ifsisin K
or s belongs to an #-class that is not equivalent to L or L. Since L and L’ are not
contained in K, it follows that there is an s € L and s’ € L’ such that neither s nor s’ is
7 related to 1. Now a e st. Clearly b € st if and only if s = xty where ¢ is an Z-class
equivalent to L’ and 1 € yt. Since J is (0)-minimal, it follows that xt £’ t. Since 1 e yr,
either y is in K or in an #-class not equivalent to L. If y € K, then s = xty £ ty and
thus L < L’ contradicting the assumption that L and L’ are incomparable. On the
other hand, if y is in an #-class not equivalent to L, then s = xty £ y (by (0)-minimality
of J again) and this too is a contradiction. Therefore, st = {a}. Similarly, s't = {b}.
Therefore, S is not absolute type I and this is a contradiction.

Let L be a representative of the unique maximal ~ class. Clearly § is generated by
K U L and thus by |}, <i<, L; U L. It suffices then to prove that we can find an #-class
L’ equivalent to L and such that L <4 L.

Consider then the relational morphism #: S — U, generated by Lyy = {1} fori = 1,
...,r — 1,L,n = {a} and Ly = {b}. Since S is absolute type I, and L, is strictly ,#-above
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L, it follows that S is contained in {1,a}n~'. As above, we can find an s € L such that
sis not in K. Therefore, a € sy. This means that we can factor s = xty where t € L, and
ye 1y~ L. But 157! = K by construction. Now if xt is not in J, it follows that xt is in
K and thus s = xty € K, a contradiction. Therefore xt is in J. Clearly the .#-class L'
of xt is #-below L, and satisfies L’ > L. Therefore, L' ~ L by maximality and we are
done. (]

5. Topology

In a sequence of papers [ 31,37, 34], the third author gives an interpretation of the
type II conjecture in terms of a conjecture on the structure of closed rational sets in
the profinite group topology on a free monoid. In [29], it is shown that the type II
conjecture is in fact equivalent to this topological conjecture. Related work appeared
in[17]. It is proved in [38] that a conjecture on the structure of rational closed subsets
in the profinite topology on the free group, generalizing a classical result of M. Hall
[12], implies the topological conjecture on the free monoid and thus the type II
conjecture. We show here that all these conjectures are equivalent. In particular, Ash’s
theorem implies that the two topological conjectures are true and leads to a complete
and decidable description of the rational closed sets in both the free monoid and the
free group. As the authors were preparing this article, a direct proof of the topological
conjecture on the free group has been obtained by Ribes and Zalesskii [48], giving in
turn a new proof of Ash’s theorem! The proof of Ribes and Zaleski uses profinite groups
acting on profinite graphs, and thus seems at first sight very far from the proof of Ash.
However, a more careful study reveals some interesting connections between the two
proofs and it would be interesting to combine the two techniques.

In this section, we only concentrate on the connections between profinite group
topologies on free monoids and free groups and the type I1 conjecture. For more details
on these topologies, see [37].

Let A be a finite set and let 4* and FG(A) denote the free monoid and the free group
on A respectively. The rational subsets of a monoid M form the smallest class # of
subsets of M such that

(a) every finite subset of M belongs to £,

(b) if S and T are in &, then so are ST and SuU T,

(c) if S € A, then so is the submonoid S* of M generated by S.

If M = A*, the free monoid on a finite set 4, a well-known theorem of Kleene states
that the rational subsets are exactly the recognizable subsets. In particular, the rational
sets form a boolean algebra under union and complement. If M = F(A), the rational
subsets also form a boolean algebra (a non-trivial result), which strictly contains the
boolean algebra of recognizable subsets. The rational subsets of the free monoid and
of the free group are related as follows. Let A = AU A™!, where AN A~! = @ and let
K < A* be the set of group reduced words. We have the canonical injectioni: FG(A) —»
A* and the canonical map &: A* - K, where wd is the unique reduced word v with
vr = wr. Then a theorem of Benois [7] states a subset S of FG(A) is rational if and
only if the subset SO of A* is rational.
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The profinite group topology on A* (FG(A)) is the smallest topology such that every
monoid (group) morphism from A* (FG(A)) onto a finite group G is continuous. This
topology was first considered for the free group by M. Hall [12] and by Reutenauer
for the free monoid [40,41]. It is also connected to the study of implicit operations
[2,39].

It is clear that a basis for the topology on A* is the set of recognizable languages
whose syntactic monoid is a finite group and that a basis for the topology on FG(A4)
is the set of cosets of subgroups of FG(A) of finite index. If X is a subset of the free
monoid or the free group, let X denote the closure of X in the respective topology.
The next theorem gives the first connection between the profinite group topology and
the type II conjecture.

Theorem 5.1. [37] Let M be a finite monoid, represented as a morphic image
@ : A* > M of a finitely generated free monoid. Let m € M, then m € K(M) if and only
iflemo™".

Thus the question of whether an element m of M is in K(M)is decidable, the so-called
weak form of the type Il conjecture, is equivalent to seeing if the empty word is in the
closure, in the profinite group topology on A*, of the set of words that represent m.
The third author refined this to find a conjecture on closed rational sets in the free
monoid that is equivalent to the type II conjecture itself. We start with the following
observation.

The topologies on the free monoid and on the free group can also be defined by the
following metric. Define d(u,u) = 0 and if u # v, then d(u, v) = 27" where n is the order
of the smallest group that separates u and v. Since it is well-known that the free group
and the free monoid are residually finite groups—that is, for every pair of distinct
elements there is a morphism onto a finite group that separates them—it is easy to
prove that the function d is an ultra-metric, is compatible with multiplication and turns
A* (FG(A)) into a topological monoid (group). Here is an interesting limit for this
topology. It holds for both cases.

Theorem 5.2. [40] For all x, u, y € A* (FG(A)), lim,_, ., xu"y = xy.

In essence one need just observe that u™ = 1 in every finite group of order at most
n and then use the metric properties listed above. As a closed set contains the limit of
any converging sequence, we have the following corollary.

Corollary 5.3. Let X be a closed set. If xu™y € X foralln > 0, then xy € X.

The third author conjectured that the converse of this corollary holds if X is a
recognizable set. More precisely:

Conjecture 5.1. [37] Let L be a recognizable subset of A*. Then L is closed if and
only if for all x, u, y € A*, if {xu"y|n > 0} = L, then xy e L.

In [34], it is proved that this conjecture implies that K(M) = D(M) for every finite
monoid M, that is the topological conjecture 5.1 implies the type II conjecture. In [29]
it is proved that the converse is true. The proofs of these equivalences are non-trivial.
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In [38] an easier to state conjecture on rational closed sets in the free group is made.
First recall the following result of M. Hall. See [12,49] for proofs.

Theorem 5.4. (Hall) Let H be a finitely generated subgroup of FG(A). Then H is
closed in the profinite topology.

The conjecture of Pin and Reutenauer just states that the product of finitely generated
subgroups of FG(A) is closed:

Conjecture 5.2. (Pin and Reutenauver [38]) Let H,, ..., H, be finitely generated
subgroups of FG(A4). Then H,H, ... H, is closed in the profinite topology.

The main theorem of this section shows that the two topological conjectures are
equivalent to the type II conjecture and therefore are true.

Theorem 5.5. The following statements are equivalent:
(a) K(M) = D(M) for every finite monoid M.

(b) The topological conjecture for free monoids is true.
(c) The topological conjecture for free groups is true.

Proof. By the remarks above and by the results of [29, 34, 38], we need only prove
that (b) implies (c). We use freely the notations A4, K and é introduced above. Consider
the profinite topologies on 4* and FG(A) and the relative topology on K < A*. We
have the canonical maps n: A* - FG(A) and & : A* — K. It is well known that § =
6 1n: K —» FG(A) is a bijection. The following is an immediate corollary of [37],
Theorem 4.11(c).

Lemma 5.6. f: K — FG(A) is a homeomorphism.

Let H,, ..., H, be finitely generated subgroups of FG(A). Let .«/; = (Q;,q;,q;) for
i = 1,..., nbe the finite state inverse automaton with initial-terminal state g, such that
|| K = H;B7. That is, .«/; recognizes H; when considered as an automaton over
FG(A). The only difference with an automaton over A* is that to any edge (¢,4,4’) is
associated an edge (q', @, q). In other words, one can read edges backwards by inverting
their labels. In terms of the topology of graphs, <7, is the immersion over the bouquet
of circles associated with H; [49]. Assume Q; N Q; = @ for i # j. Consider the automaton
A, = (Q,49.,q,) pictured below:

1 A2 o3  n

Fig. 5.1. The automaton By
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More formally, the state set of &, is Q = ( ), <;<n @:» the edges of %, are the union
of the edges of the </, together with {(g;,1,¢;,,)|1 < i < n}. Note that even though
every edge in </, has an inverse edge, none of the edges reading the identity can be
read backwards.

Clearly, considered as an automaton over FG(A), o/ accepts L=H,H,...H,.
However, there may be some reduced words representing elements of L, that are not
accepted by <.

Example 5.3. Let H, = {aba™') and H, = <{a). Then abe H,H,, but ab con-
sidered as an element of A* is not accepted by 7. The equivalent word aba™'a is
accepted.

To rectify this situation we add an edge labelled 1 between any states p # q in %,
such that there is a path labelled aa™' : p — q for some a € A. Note that since p # g, if
p € Q;, then g € Q, for some j > i since each &, is an inverse automaton. We obtain an
automaton Z%,. One can continue this process of mimicking aa™ pairs with identity
arrows to obtain %,, ..., %,. It is clear that this process halts after a finite number of
steps and we obtain an automaton # = (@, q,, g,) with the following properties:

(1) considered as an automaton over FG(A), # accepts L=H,H,...H,,

(2) considered as an automaton over 4*, |#|NK = LB, That is, every reduced

word representing an element of L is accepted by .
The topological conjecture for FG(A) states that L is a closed set. By lemma 5.6, it
suffices to prove that LB™" = |#| n K is closed in K and thus that |4| is closed in
A* by definition of the relative topology. Thus it suffices to show that if xu*y — |4|,
then xy € |4/, by the topological conjecture for A*. Let k = |Q|. If xu*y < | 4], then
in particular, xu*y € |#|. Thus there is a path p: q, — g, such that p reads xu*'y. By
the pigeon-hole principle, there is some state s, and a factorization of p = abc such that
a:q, —s,b:s—>sandc:s— q,,such that b reads u" for some r < k. By the construction
of #, no edge in b reads 1 and if s is a state of o/, then b is actually a path in &/;. Since
o/; is inverse, there is also a path b™!:s— s reading u™". It follows that the path
ab(b™")*"c: q, —» q, reads a word of the form xu’(u~!)Yu'y with i + [ = j. This word
reduces to xy and by the construction of 4, xy € | %] as desired. O

As a consequence of Ash’s proof of the type II conjecture, or as a consequence of
the result of Ribes and Zalesskii, the topological conjectures now become theorems
which we record below.

Theorem 5.7. Let L be a rational subset of A*. Then L is closed if and only if L
satisfies the implication xu*y ¢ L =>xy e L.

Theorem 5.8. Let H,, ..., H, be finitely generated subgroups of FG(A). Then the
set H H, ... H, is closed in the profinite topology.

It is shown in [38] that the truth of the topological conjecture for the free group
implies a number of results on the structure of rational closed sets in the free monoid
and the free group. As these results now become theorems, we repeat them here and
leave the details to [38]. Let # be the smallest class of subsets of the free group such
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that

(a) The empty set and every singleton {g}, g € FG(A), is in Z.

(b) If X, Ye %, thensoare XY and XU Y.

(c) If X € &#, then (X), the group generated by X, is in &.
Z 1is a proper subset of the set of rational subsets of FG(A4). Here is an alternative
characterization of members of %.

Proposition 5.9. (Proposition 2.2 of [38]) & is the class of all subsets of FG(A) that
are finite unions of sets of the formgH H,... H, where ge FG(A)and H,, ..., H, are
finitely generated subgroups of FG(A). Furthermore F is precisely the collection of
closed rational subsets of FG(A) in the profinite topology.

The following theorem gives an algorithm to compute the closure of a rational set
L = FG(A).

Theorem 5.10. (Theorem 2.4 of [38]) Let L = FG(A) be rational. Then the closure
L of L in the profinite topology is rational. Furthermore L can be computed by the
following rules where X and Y are rational subsets of the free group:

(1) X = X if X is finite.

QXuY=XuUY.

(3) XY = XY.

@) X*=(X>=(XuX)*

Given a rational expression for L, one can clearly construct a rational expression
for L. The next theorem follows from well-known results about rational sets in free
groups.

Lemma 5.11. Let L, L' € Rat(FG(A)) be given by rational expressions. Then it is
decidable whether or not L = L.

Proof. Let L € Rat(FG(A)) be given by a rational expression. Then by using the
theorem of Benois [7], one can effectively construct a finite state automaton %(L) over
A* such that |#(L)| = LB ", the set of reduced words representing L. But L = L' if
and onlyif L™ = L’B~! and the result follows since equality is decidable for languages
specified by finite state automata. d

Corollary 5.12. Let L € Rat(FG(A)) be given by a rational expression. Then it is
decidable whether or not L is closed in the profinite topology.

Proof. L is closed if and only if L = L. d

Similarly, we can use the truth of the conjecture for the free monoid to show that
closed sets have nice properties.

Let L c A*. Let F*(L) be the smallest set K containing L and closed under the
implication xu*y < K = xy € K. It is clear that F*(L) is well defined. Furthermore, it
is shown in [37] that if L € Rat(A*) is given by a rational expression (or by a finite
automaton), then F*(L) € Rat(A*) and a rational expression (resp. a finite automaton)
for F*(L) can be effectively computed.
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Theorem 5.13. Let L be a rational subset of A*. Then L = F*(L). Furthermore, L
is rational, effectively constructible from L and its syntactic monoid is a block group.

Proof. It follows immediately from theorem 7.6 of [37]. O

Corollary 5.14. It is decidable whether a rational subset of A* is closed or not in the
profinite topology.

A simple characterization can also be given in terms of syntactic monoids. Let L be

a subset of A*. Then the syntactic congruence of L is the equivalence ~; on A* defined
by

u ~, v if and only if, for every x, y € A* (xuy € L<>xvy € L).

The quotient A*/~, is the syntactic monoid of L and the natural morphism 7:
A* —» M(L)is called the syntactic morphism. Finally, the subset P = Ly of M(L)is called
the syntactic image of L. It is a well-known fact that L is rational if and only if M(L)
is a finite monoid.

Theorem 5.15. Let L « A* be rational and let M be its syntactic monoid. Then L is
closed if and only if its syntactic image P satisfies the following property:

for every s, t € M and for every e € E(M), set € P implies st € P.

Here is another way to compute the closure of a rational subset of A*. It too follows
from the truth of the conjecture on the free group. A subset L — A* is simple if
L = L*¥w,L¥w,...w, L} where the L;s are rational subsets of A* fori =0, ..., k and
w; € A*fori=1,..., k. It is an easy consequence of Kleene’s theorem that a subset L
of A* is rational if and only if it is a finite union of simple sets. Furthermore, given a
rational expression or finite state automaton representing L, we can effectively write
L as a finite union of simple sets [37].

Theorem 5.16. (Theorem 7.8 of [37]) Let L = L¥w, L¥w,...w, L} be simple. Then
L= {Lyw,{L,>...w{L>nn A*

Since closure commutes with union, this allows us to effectively compute the closure
of a rational set.
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