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Let G be a locally compact group. Then for every G-space X the maximal G-
proximity βG can be characterized by the maximal topological proximity β as 
follows:

A βG B ⇔ ∃V ∈ Ne V A β V B.

Here, βG : X → βGX is the maximal G-compactification of X (which is an 
embedding for locally compact G by a classical result of J. de Vries), V is a 
neighbourhood of e and A βG B means that the closures of A and B do not meet 
in βGX.
Note that the local compactness of G is essential. This theorem comes as a corollary 
of a general result about maximal U-uniform G-compactifications for a useful wide 
class of uniform structures U on G-spaces for not necessarily locally compact groups 
G. It helps, in particular, to derive the following result. Let (U1, d) be the Urysohn 
sphere and G = Iso (U1, d) is its isometry group with the pointwise topology. Then 
for every pair of subsets A, B in U1, we have

A βG B ⇔ ∃V ∈ Ne d(V A, V B) > 0.

More generally, the same is true for any ℵ0-categorical metric G-structure (M, d), 
where G := Aut (M) is its automorphism group.

© 2022 Elsevier B.V. All rights reserved.
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1. Introduction

A topological transformation group (G-space) is a continuous action of a topological group G on a topologi-
cal space X. Compactifiability of Tychonoff topological spaces means the existence of topological embeddings 
into compact Hausdorff spaces. For the compactifiability of G-spaces we require, in addition, the continuous 
extendability of the original action. Compactifiable G-spaces are known also as G-Tychonoff spaces.

Compactifications of G-spaces is a quite an active research field. We do not intend here to give 
a comprehensive bibliography but try to refer the interested readers to some publications, where G-
compactifications play a major role. See, for example, R. Brook [8], J. de Vries [52–57], Yu.M. Smirnov 
[43–46], Antonyan–Smirnov [4], Smirnov–Stoyanov [47], L. Stoyanov [49,50], M. Megrelishvili [26–30,32–34], 
Dikranjan-Prodanov-Stoyanov [10], Megrelishvili–Scarr [36], V. Uspenskij [51], S. Antonyan [2], Gonzalez–
Sanchis [15], V. Pestov [39,40], J. van Mill [37], A. Sokolovskaya [48], Google–Megrelishvili [16], Kozlov–
Chatyrko [24], N. Antonyan, S. Antonyan and M. Sanchis [3], K. Kozlov [19–22], N. Antonyan [1], Karasev–
Kozlov [18], Ibarlucia–Megrelishvili [17] (and many additional references in these publications).

Compactifications of a Tychonoff space X can be described in several ways:

• Banach subalgebras of Cb(X) (Gelfand-Kolmogoroff 1-1 correspondence));
• Completion of totally bounded uniformities on X (Samuel compactifications);
• Proximities on X (Smirnov compactifications).

It is well known (see for example [8,4,54,55,27]) that the first two correspondences admit dynamical 
generalizations in the category of G-spaces. Instead of continuous bounded functions, we should use special 
subalgebras of generalized right uniformly continuous functions (in other terminology, π-uniform functions) 
and instead of precompact uniformities, we need now precompact equiuniformities (Definition 3.2).

For every Tychonoff G-space X, the algebra RUCG(X) of all right uniformly continuous bounded func-
tions on X induces the corresponding Gelfand (maximal ideal) space βGX ⊂ RUCG(X)∗ and the maximal 
G-compactification

βG : X → βGX.

By a compactification of X we mean a continuous dense map c : X → Y into a Hausdorff compact space 
Y . If c is a topological embedding then we say proper compactification. For locally compact groups G, all 
Tychonoff G-spaces admit proper compactifications, as was established by de Vries [55]. So, in this case, 
the map βG is a topological embedding. However, in general it is not true. Resolving a question of de Vries 
[52], we proved in [29] that there exist noncompactifiable G-spaces (even for Polish group actions on Polish 
spaces).

Moreover, answering an old problem due to Smirnov, an extreme example was found by V. Pestov [40] by 
constructing a countable metrizable group G and a countable metrizable non-trivial G-space X for which 
every equivariant compactification is a singleton.

One of the most general (and widely open) attractive problems is

Problem 1.1. Clarify the structure of maximal G-compactifications βGX of remarkable naturally defined 
G-spaces X.
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First of all, note that βGX (for nondiscrete G) usually is essentially “smaller” than βX. For instance, let 
G be a metrizable topological group which is not precompact. Then the canonical action G × βG → βG is 
continuous iff G is discrete (Proposition 5.1).

Problem 1.2. [17, Question 1.3(b)] Study the greatest G-compactification βG : X → βGX of (natural) Polish 
G-spaces X. In particular: when is βGX metrizable?

Recall that the Ĉech–Stone compactification βX of any metrizable non-compact space X cannot be 
metrizable. In contrast, for several naturally defined “massive actions”, βGX might be metrizable; sometimes 
even having a nice transparent geometric presentation. Perhaps the first example of this kind was a beautiful 
result of L. Stoyanov [49,50]. He established that the greatest U(H)-compactification of the unit sphere SH

in every infinite dimensional Hilbert space H is the weakly compact unit ball, where G = U(H) is the 
unitary group of H in its standard strong operator topology.

One of the important sufficient conditions when a G-space X is G-compactifiable is the existence of a 
G-invariant metric on X. This was proved first by Ludescher–de Vries [25]. Another possibility to establish 
that such (X, d) is G-Tychonoff is to observe that in this case Gromov compactification γ : (X, d) → γ(X)
is a G-compactification which is a d-uniform topological embedding; see the explanation in [33] using the 
RUC property of the distance functions x �→ d(x, ·) (one may assume that d is bounded).

Pestov raised several questions in [40] about a possible coincidence between the maximal G-compactifi-
cation and the Gromov compactification for some natural geometrically defined isometric actions (Urysohn 
sphere and Gurarij sphere, among others). These problems were studied recently in [17] (with a positive 
answer in the case of the Urysohn sphere and a negative answer for the Gurarij sphere).

Remark 1.3. We collect here some old and new nontrivial concrete examples when βGX is metrizable, 
usually admitting also a geometric realization.

(1) (L. Stoyanov [49,50,10]) Let X := SH be the unit sphere of the infinite-dimensional separable Hilbert 
space H with the unitary group G := U(H). Then βGX is the weak compact unit ball (BH , w) of H.

(2) [17] Urysohn sphere (U1, d) with its isometry group G = Iso (U1). Then βGU1 can be identified with 
its Gromov compactification. Moreover, βGU1 can be identified with the compact space K(U1) of all 
Katetov functions on X.1

(3) [17, Theorem 4.11] The maximal G-compactification of the unit sphere SG in the Gurarij Banach 
space G (where G is the linear isometry group) is metrizable and does not coincide with its Gromov 
compactification. βG(SG) can be identified with the compact space K1

C(G) of all normalized Katetov 
convex functions on G. These results are strongly related to some properties of the Gurarij space studied 
by I. Ben Yaacov [5] and Ben Yaacov–Henson [7].

(4) (Proved in [17, Theorem 4.14] thanks to an observation of Ben Yaacov) Let Bp be the unit ball of 
the classical Banach space Vp := Lp[0, 1] for 1 ≤ p < ∞, p /∈ 2N. Then for the linear isometry group 
Iso l(Vp), the maximal G-compactification βGBp is the Gromov compactification of the metric space Bp.

(5) [17, Theorem 4.4] For every ℵ0-categorical metric structure (M, d), the maximal G-compactification of 
(M, d), with G := Aut (M), can be identified with the space S1(M) of all 1-types over M (and, in 
particular, is metrizable).

(6) (see Examples 5.4 below) Let X = (Q, ≤) be the rationals with the usual order but equipped with 
the discrete topology. Consider any dense subgroup G of the automorphism group Aut (Q, ≤) with 
the pointwise topology (for instance, Thompson’s group F ). In this case βGX is a metrizable linearly 
ordered compact G-space, the actions and βG : X → βG are order preserving, where βGX is an inverse 

1 K. Kozlov proved in [22] that βGU1 is homeomorphic to the Hilbert cube.
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limit of finite linearly ordered spaces Q/StF , where F ⊂ Q is finite, StF is the stabilizer subgroup and 
Q/StF is the orbit space.

Whenever α : X → Y is a compactification, one of the natural questions is which subsets A, B of X
are “far” with respect to α. This means that the closures of their images do not meet in Y . This is the 
most basic idea of classical proximity spaces. See Section 2 for a description of the role of proximities and 
Smirnov’s Theorem. This theorem shows that for every G-compactification α : X → Y and α-far subsets 
A, B of X, there exists a sufficiently small neighbourhood V ∈ Ne of the identity in G such that V A, V B

are also α-far.
A natural question arises about the converse direction: when does this condition guarantee that we have 

a G-compactification? We show that this holds for proximities induced by a certain rich class of uniform 
structures on G-spaces (see Theorem 4.1). This leads to one of the main results of this paper which is to 
describe maximal equivariant compactification of locally compact group actions (Theorem 4.8). The local 
compactness of G is necessary. Indeed, there exist a Polish G-compactifiable G-space X with a Polish acting 
group G and G-invariant closed G-subsets A, B in X such that AβGB (see Example 4.10 and Remark 4.9).

A more special general problem is

Problem 1.4. For which metric G-spaces (X, d) is the following condition satisfied for every subsets A, B in 
X

A βG B ⇔ ∃V ∈ Ne d(V A, V B) > 0.

Using a result from [17], we positively answer Problem 1.4 for an important class of metric G-spaces. 
Namely, for ℵ0-categorical metric structures (M, d), where G := Aut (M, d) is its automorphism group. In 
particular, this is true for the Urysohn sphere U1 (Theorem 4.6).

Acknowledgment: It is a great honor for me to say that Yu.M. Smirnov led me to the world of equivariant 
topology. I am grateful to T. Ibarlucia and V. Pestov for their influence and inspiration. I thank the 
organizers of the Conference Smirnov-100 for their work to provide such an important conference. Many 
thanks to the referee for useful suggestions and corrections.

2. Proximities and equivariant Smirnov’s theorem

2.1. Proximities and proximity spaces

In 1908, F. Riesz first formulated a set of axioms to describe the notion of closeness of pair of sets. The 
most useful version of proximity was introduced and studied by V.A. Efremovich [11]. We follow the setting 
of [38].

Definition 2.1. Let X be a nonempty set and δ be a relation in the set of all its subsets. We write AδB if 
A and B are δ-related and AδB if not. The relation δ will be called a proximity on X provided that the 
following conditions are satisfied:

(P1) A ∩B �= ∅ implies AδB.
(P2) AδB implies BδA;
(P3) AδB implies A �= ∅;
(P4) Aδ(B ∪ C) iff AδB or AδC;
(P5) If AδB then there exist C ⊂ X such that AδC and (X\C)δB.
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A pair (X, δ) is called a proximity space. Two sets A, B ⊂ X are near (or proximal) in (X, δ) if AδB and 
far (or, remote) if AδB. We say a subset A ⊂ X is strongly contained in B ⊂ X with respect to δ (or, B
is a δ-neighbourhood of A) if Aδ(X \ B) and write: A � B. In Definition 2.1 one can replace (P5) by the 
following axiom:

(P5′) If AδB then there exist subsets A1 and B1 of X such that A � A1, B � B1 and A1 ∩B1 = ∅.

Every proximity space (X, δ) induces a topology τ := top(δ) on X by the closure operator:

clδ(A) := {x ∈ X : xδA}.

The topology top(δ) is Hausdorff iff the following condition satisfied:

(P6) If x, y ∈ X and xδy then x = y.

Every (separated) proximity space (X, δ) is completely regular (resp., Tychonoff) with respect to the 
topology top(δ). A proximity δ of X is called continuous (or, more precisely, a τ -continuous proximity) if 
top(δ) ⊂ τ . In the case of top(δ) = τ , we say that δ is a compatible proximity on the topological space (X, τ).

Like compactifications, the family of all proximities on X admits a natural partial order. A proximity δ1
dominates δ2 (and write δ2 � δ1) iff for every Aδ1B we have Aδ2B.

Example 2.2.

(1) Let Y be a compact Hausdorff space. Then there exists a unique compatible proximity on the space Y
defined by

AδB ⇔ cl(A) ∩ cl(B) �= ∅.

(2) Let X be a Tychonoff space. The relation β defined by

AβB ⇔ �f ∈ C(X) such that f(A) = 0 and f(B) = 1

is a proximity which corresponds to the greatest compatible uniformity on X. The proximity β comes 
from the Ĉech-Stone compactification β : X → βX.

(3) A Hausdorff topological space X is normal iff the relation

AδnB iff cl(A) ∩ cl(B) �= ∅

defines a proximity relation on the set X. Then AδnB ⇔ AβB.

2.2. Smirnov’s theorems

Let c : X → Y be a compactification. Denote by δc the corresponding initial proximity on X defined via 
the canonical proximity δY of Y . More precisely, for subsets A, B of X we define Aδ̄cB if c(A) δY c(B), i.e., 
if cl(c(A)) ∩ cl(c(B)) = ∅.

Conversely every continuous proximity δ on a topological space induces a totally bounded uniformity 
Uδ. Now the completion gives Smirnov’s compactification sδ : (X, δ) → sδX. It is equivalent to the Samuel 
compactification with respect to the uniformity Uδ. This leads to a description of compactifications in terms 
of proximities (see, for example, [42,38,12]).
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Fact 2.3 (Smirnov’s classical theorem). Let X be a topological space. Assigning to any compactification 
c : X → Y the proximity δc on X gives rise to a natural one-to-one order preserving correspondence between 
all compactifications of X and all continuous proximities on the space X.

In the case of G-spaces, it was initiated by Smirnov himself, extending in [4] his old classical purely 
topological results from Tychonoff spaces to the case of group actions.

For proximities of G-compactifications we simply say G-proximity.

Fact 2.4 (Smirnov’s theorem for group actions). In Smirnov’s bijection (Fact 2.3), G-proximities are 
exactly proximities δ which satisfy the following two conditions:

(1) (G-invariant) gA δ gB for every A δ B and g ∈ G;
(2) (compatible with the action) if AδB then there exists U ∈ Ne such that UA ∩ UB = ∅.

Remark 2.5. The compatibility condition (2) can be replaced by the following (formally stronger) assump-
tion:

(2str) if AδB then there exists V ∈ Ne such that V AδV B.

In order to see that (2) implies (2str), apply the axiom (P5′) (from Definition 2.1). Then for AδB there 
exist subsets A1 and B1 of X such that A � A1, B � B1 and A1δB1. By (2) there exists V ∈ Ne such that 
V A ⊂ A1, V B ⊂ B2. Therefore, V AδV B.

The same can be derived also by results of [16, Section 5.2], where a natural generalization of Smirnov’s 
theorem (Fact 2.4) for semigroup actions was obtained.

Note that the G-invariantness of δc guarantees that the G-action on X can be extended to a G-action 
on the compactification Y such that all g-translations are continuous. That is, we have a continuous action 
Gdiscr × Y → Y , where Gdiscr is the group G with the discrete topology (however, see Fact 3.15.6 and 
Theorem 3.18 below).

Example 2.6. Let X be a locally compact Hausdorff space. Then the following relation

Aδ1B ⇔ cl(A) ∩ cl(B) = ∅ where either cl(A) or cl(B) is compact

defines a compatible proximity on X which suits the (1-point) Alexandrov compactification. If X is a 
G-space then this is a G-proximity. This explains Fact 3.15.2 below.

Example 2.7. Let G/H be a coset G-space with respect to the left action π : G ×G/H → G/H and a closed 
subgroup H. The relation δR defined by

AδRB ⇔ ∃U ∈ Ne(G) : UA ∩B �= ∅

is a compatible proximity on G/H. In fact, it is a G-proximity corresponding to the maximal G-
compactification (see Fact 3.15.1 below).

Note that a natural generalization of Example 2.7 is a proximity corresponding to the maximal G-
compactification in case of d-open actions; see Kozlov and Chatyrko [23].



M. Megrelishvili / Topology and its Applications 329 (2023) 108372 7
2.3. Uniform spaces and the corresponding proximity

Recall the following standard lemma about the basis of a uniform structure (defined by the entourages – 
reflexive binary relations) in the sense of A. Weil.

Lemma 2.8. (see, for example, [41, Prop. 0.8]) An abstract set B of entourages on X is a basis of some 
uniformity U iff the following conditions are satisfied:

(1) ∀ε ∈ B ΔX ⊂ ε;
(2) ∀ε ∈ B ∃δ ∈ B δ ⊂ ε−1;
(3) ∀ε, δ ∈ B ∃γ ∈ B γ ⊂ ε ∩ δ (B is a filterbase);
(4) ∀ε ∈ B ∃δ ∈ B δ ◦ δ ⊂ ε.

The corresponding induced uniformity is just the filter generated by B. Each uniformity U on X defines 
a topology top(U) on X as follows: a subset A ⊂ X is open iff for each a ∈ A there exists ε ∈ U such that 
ε(a) ⊂ A, where ε(x) := {y ∈ X : (x, y) ∈ ε}.

top(U) is Hausdorff iff ∩{ε : ε ∈ B} = Δ. If otherwise not stated, in the sequel we consider only Hausdorff 
completely regular (i.e., Tychonoff) topological spaces, Hausdorff uniformities and proper compactifications 
c : X → Y (i.e., c is an embedding).

Definition 2.9. Let U be a uniformity on X. Then the relation δU defined by

AδUB ⇐⇒ ε ∩ (A×B) �= ∅ ∀ε ∈ U

is a proximity on X which is called the proximity induced by the uniformity U.

Always, top(U) = top(δU). Conversely, every proximity δ on a topological space defines canonically a 
totally bounded compatible uniformity Uδ.

We say that a proximity ν on X is U-uniform if ν � δU.

3. Uniform G-spaces

Definition 3.1. Let π : G ×X → X be a group action. A uniformity U on X is:

(1) equicontinuous if (the set of all translations is equicontinuous)

∀x0 ∈ X ∀ε ∈ U ∃O ∈ Nx0 (gx0, gx) ∈ ε ∀x ∈ O ∀g ∈ G;

(2) uniformly equicontinuous if (the set of all translations is uniformly equicontinuous)

∀ε ∈ U ∃δ ∈ U (gx, gy) ∈ ε ∀(x, y) ∈ δ ∀g ∈ G;

(3) if the conditions (1) or (2) are true for a subset P ⊆ G then we say that P acts equicontinuously or 
uniformly equicontinuously, respectively.

If d is a G-invariant metric on X, then the corresponding uniform structure U(d) is a very natural case 
of a uniformly equicontinuous uniformity.

Definition 3.2. Let π : G × X → X be an action of a topological group G on a set X and U is a uniform 
structure on X.
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(1) We say that U is saturated if every translation πg : X → X is uniformly continuous (equivalently, if 
gε ∈ U for every ε ∈ U and g ∈ G).

(2) [8] U is bounded (or, motion equicontinuous) if

∀ε ∈ U ∃V ∈ Ne (vx, x) ∈ ε ∀v ∈ V.

(3) U is equiuniform if it is bounded and saturated. Notation: (X, U) ∈ EUnifG.
(4) (introduced in [28,27] U is quasibounded (or, π-uniform at e) if

∀ε ∈ U ∃V ∈ Ne ∃δ ∈ U (vx, vy) ∈ ε ∀(x, y) ∈ δ ∀v ∈ V.

π-uniform will mean quasibounded and saturated (or, π-uniform at every g0 ∈ G); meaning that

∀ε ∈ U ∃V ∈ Ng0 ∃δ ∈ U (vx, vy) ∈ ε ∀(x, y) ∈ δ ∀v ∈ V.

Notation: (X, U) ∈ UnifG.

Every compact G-space (with its unique uniform structure) is equiuniform. EUnifG ⊂ UnifG (by the 
“3ε-argument”) and both are closed under G-subspaces, the supremum of uniform structures, uniform 
products and completions (Fact 3.5). Quasibounded uniformities give simultaneous generalization of uni-
formly equicontinuous and bounded uniformities on a G-space. The class UnifG is characterized by Kozlov 
[19] in terms of semi-uniform maps (in the sense of J. Isbell) on products. Bounded uniformities and G-
compactifications play a major role in the book of V. Pestov [39].

Remarks 3.3.

(1) [27] There exists a natural 1–1 correspondence between proper G-compactifications of X and totally 
bounded equiuniformities on X.

(2) If the action on (X, U) is uniformly equicontinuous (e.g., every isometric action) then (X, U) ∈ UnifG.
(3) More generally: assume that there exists a neighbourhood V ∈ Ne such that V acts uniformly equicon-

tinuously on (X, U) and the action of G on X is U-saturated. Then (X, U) ∈ UnifG.
(4) Let G and X both are topological groups and α : G × X → X be a continuous action by group 

automorphisms. Then (X, U) ∈ UnifG, where U is right, left, two-sided or Roelcke uniformity on X.
(5) Not every quasibounded action is bounded. For example, the natural linear action of the circle group 

T on the euclidean space R2 is quasibounded (even, uniformly equicontinuous) because it preserves the 
metric but not bounded.

Proposition 3.4. Let U be an equiuniformity on a G-space X. Then δU is a G-proximity (hence, the corre-
sponding Smirnov compactification and equivalently the Samuel compactification s : (X, U) → sX are proper 
G-compactifications).

Proof. Let AδUB. By Definition 2.9 there exists an entourage ε ∈ U, such that (A ×B) ∩ ε = ∅. Fix g0 ∈ G. 
Then we claim that there exist ε′ ∈ U and a neighbourhood V of g0 in G such that V −1A and V −1B are 
ε′-far (this means that V −1A δU V −1B).

Since U is an equiuniformity, it follows that for ε ∈ U we can choose ε′ ∈ U and V ∈ Ng0 such that

(x, y) ∈ ε′ =⇒ (g1x, g2y) ∈ ε, ∀ g1, g2 ∈ V. (3.1)

Now we claim that (V −1A × V −1B) ∩ ε′ = ∅. Assuming the contrary, we get
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ε′ ∩ (V −1A× V −1B) �= ∅ =⇒ ∃ (x, y) ∈ (V −1A× V −1B) : (x, y) ∈ ε′.

Therefore by definition of V −1A and V −1B, we conclude

∃ g′, g′′ ∈ V : (g′x, g′′y) ∈ A×B.

On the other hand by Formula (3.1) for g′, g′′ ∈ V , we have

(x, y) ∈ ε′ =⇒ (g′x, g′′y) ∈ ε.

This means

∀ ε ∈ U : (g′x, g′′y) ∈ (A×B) ∩ ε.

Hence (A ×B) ∩ ε �= ∅, a contradiction. �
Fact 3.5. (Completion theorem [32]) Let (X, U) ∈ UnifG. Then the action G ×X → X continuously can be 

extended to the action on the completion Ĝ×X̂ → X̂, where (X̂, Û) ∈ UnifĜ and Ĝ is the Raikov completion 
of G.

Corollary 3.6. Let G1 ⊂ G be a dense subgroup of G. Then for every Tychonoff G-space X the maximal 
equivariant compactifications βGX and βG1X are the same.

Every compact G-space (with its unique uniform structure) is equiuniform.

Corollary 3.7. For totally bounded uniformities we have the coincidence EUnifG = UnifG.

The following lemma with full proofs can be found only in my dissertation [28].

Lemma 3.8. [27,28,30] Let X be a G-space with a topologically compatible uniformity U. Assume that U
is quasibounded. Then there exists a topologically compatible uniformity UG ⊆ U on X such that UG is 
bounded. Furthermore,

(1) if (X, U) ∈ UnifG then (X, UG) ∈ EUnifG;
(2) if (X, μ) ∈ EUnifG and μ ⊂ U then μ ⊂ UG.
(3) if U is totally bounded and (X, U) ∈ UnifG, then U = UG (is an equiuniformity);
(4) if U and G are metrizable, then UG is also metrizable;

Proof. For every U ∈ Ne and ε ∈ U, consider

[U, ε] := {(x, y) ∈ X ×X : ∃u1, u2 ∈ U (u1x, u2y) ∈ ε}. (3.2)

Then ΔX ⊂ ε ⊂ [U, ε] and [U1, ε1] ⊂ [U2, ε2] for every U1 ⊂ U2, ε1 ⊂ ε2.
It follows that [U1 ∩ U2, ε1 ∩ ε2] ⊂ [U1, ε1] ∩ [U2, ε2]. It is also easy to see that if U = U−1 and ε−1 = ε

are symmetric, then also [U, ε]−1 = [U, ε] is symmetric.
The system α := {[U, ε]}U∈Ne,ε∈U is a filter base on the set X ×X.
Define by UG the corresponding filter generated by α. We show that UG is a uniformity on the set X. 

The conditions (1), (2), (3) of Lemma 2.8 are satisfied. We have to show only condition (4) for the members 
of the base α.
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Let [U, ε] ∈ α. We have to show that there exists [V, δ] ∈ α such that

[V, δ] ◦ [V, δ] ⊆ [U, ε].

Choose ε1 ∈ U such that ε2
1 ⊆ ε. By the quasiboundedness condition for ε1 there exist δ ∈ U and V ∈ Ne

such that

(x, y) ∈ δ, v ∈ V ⇒ (vx, vy) ∈ ε1. (3.3)

Without loss of generality (by properties of topological groups), we can assume in addition that

V = V −1, V 2 ⊂ U.

We check now that [V, δ]2 ⊆ [U, ε]. Let (x, y), (y, z) ∈ [V, δ]. Then there exist v1, v2, v3, v4 ∈ V such that

(v1x, v2y), (v3x, v4y) ∈ δ.

Then by (3.3) (taking into account that V = V −1), we get

(v−1
2 v1x, y) ∈ ε1, (y, v−1

3 v4z) ∈ ε1.

Therefore,

(v−1
2 v1x, v

−1
3 v4z) ∈ ε1 ◦ ε1 ⊆ ε.

Since v−1
2 v1 and v−1

3 v4 both are in V −1V ⊂ U , we conclude that (x, z) ∈ [U, ε].
It is easy to see other axioms. So UG is a uniformity.

The uniformity UG is topologically compatible with X. That is, top(UG) = top(U). Clearly, ε ⊆ [U, ε] for 
all U ∈ Ne, ε ∈ U. Hence, UG ⊆ U. As to the inverse direction UG ⊇ U, one may show that for every ε ∈ U

and x0 ∈ X there exist [V, δ] ∈ α such that [V, δ](x0) ⊆ ε(x0). Indeed, using the continuity of the action, 
one may choose δ, γ ∈ U and V ∈ Ne such that:

a) g γ(x0) ⊂ ε(x0) ∀g ∈ V

b) (gx0, x0) ∈ δ ∀g ∈ V

c) δ2 ⊂ γ, V = V −1, γ = γ−1.
Now, if y ∈ [V, δ](x0) then (v1y, v2x0) ∈ δ for some v1, v2 ∈ V . We obtain that (v1y, x0) ∈ δ ◦ δ ⊂ γ. 

Hence, v1y ∈ γ(x0). So, y ∈ v−1
1 γ(x0) ⊆ ε(x0).

UG is bounded. Indeed, (x, ux) ∈ [U, ε] for every x ∈ X and every u ∈ U (because if we choose u1 :=
u, u2 := e ∈ U then (u1x, u2ux) = (ux, ux) ∈ ΔX ⊆ ε).

UG is saturated if U is saturated. Let g0 ∈ G. Then g−1
0 Ug0 ∈ Ne for every U ∈ Ne and g−1

0 ε ∈ U for 
every ε ∈ U because U is saturated. Now observe that g0[U, ε] = [g−1

0 Ug0, g
−1
0 ε].

The assertions (1), (2) and (4) easily follow now from the construction. In order to check (3) consider the 
completion (X, U) ↪→ (X̂, Û), which, in fact is a compactification because U is totally bounded. According 
to the completion theorem [32] we have (X̂, Û) ∈ UnifG and the action G × X̂ → X̂ is continuous. Now, by 
Remark 3.3.1, we obtain that U is an equiuniformity. Hence, by (2) we conclude that U = UG. �

Recall that X is G-Tychonoff iff X admits a compatible bounded uniformity (according to an old result 
which goes back at least to R. Brook [8] and J. de Vries [52]).
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Theorem 3.9. [28] Let X be a Tychonoff G-space. The following are equivalent:

(1) X is G-Tychonoff.
(2) (X, U) ∈ UnifG for some compatible uniform structure U on X.
(3) There exists a compatible uniform structure U on X which is quasibounded.

Proof. (1) ⇒ (2) Let X be G-Tychonoff. Consider a proper G-compactification c : X ↪→ Y . Since the 
natural uniformity on Y is an equiuniformity, then it induces on X a (precompact) equiuniformity U. So, 
(X, U) ∈ EUnifS with respect to some compatible uniformity U. Now recall that EUnifG ⊆ UnifG.

(2) ⇒ (3) is trivial.
(3) ⇒ (1) Let ξ be a quasibounded uniformity on X. Then one may easily find a finer quasibounded 

uniformity U which, in addition, is G-saturated. Indeed, the system Σ := {gε : g ∈ G, ε ∈ U}, where 
gε := {(gx, gy) ∈ X × X : (x, y) ∈ ε} is a subbase of a filter of subsets in X × X. Denote by U the 
corresponding filter generated by Σ. Then U is a saturated uniformity on X, ξ ⊆ U and top(ξ) = top(U). If 
Σ is quasibounded or bounded, it is straightforward to show (use that the conjugations are continuous in 
any topological group), then U respectively is quasibounded or bounded.

Hence, we obtain (X, U) ∈ UnifG. Then (X, UG) ∈ EUnifG according to Lemma 3.8. By Proposition 3.4, 
δUG is a G-proximity (hence, the corresponding Smirnov’s compactification is a G-compactification). �
Corollary 3.10. (Ludescher–de Vries [25]) Every continuous uniformly equicontinuous action of a topological 
group G on (X, U) is G-Tychonoff. In particular, it is true if X admits a G-invariant metric.

Lemma 3.11. Let π : G ×X → X be a continuous action and Σ := {di}i∈I be a bounded system of pseudo-
metrics on X such that the induced uniform structure U on X is topologically compatible. Assume that M
is a family of nonempty subsets in G such that:

∀A ∈ M ∀di ∈ Σ ∀x, y ∈ X dA,i(x, y) := supg∈Adi(gx, gy) < ∞.

Define by ΣM the system of pseudometrics {dA,i : A ∈ M, i ∈ I} on X. Let ξ = ξ(Σ, M) be the corresponding 
uniform structure on X generated by the system ΣM .

(1) If every A ∈ M acts equicontinuously on (X, U), then top(ξ) = top(U).
(2) If for every A ∈ M there exist V ∈ Ne and B ∈ M such that AV ⊆ B, then the action is ξ-quasibounded.
(3) If there exists A ∈ M such that e ∈ A, then U ⊆ ξ.

Proof. (1) and (3) are straightforward.
(2) Observe that if A ⊂ B then dA,i(x, y) ≤ dB,i(x, y). Therefore, if V A ⊆ B then

dA,i(vx, vy) = supg∈Ad(gvx, gvy) ≤ supt∈AV d(tx, ty) ≤ supt∈Bd(tx, ty) = dB,i(x, y).

For every triple A ∈ M, i ∈ I, ε > 0 (such triples control the natural uniform subbase of ξ), we have

dB,i(x, y) < ε ⇒ dA,i(vx, vy) < ε ∀v ∈ V. �
Theorem 3.12. (de Vries [56,57] and also [28]) Let G × X → X be a continuous action. Suppose that a 
neighbourhood U of e acts equicontinuously on X with respect to some compatible uniformity U. Then X is 
G-Tychonoff.



12 M. Megrelishvili / Topology and its Applications 329 (2023) 108372
Proof. By Theorem 3.9, it is enough to show that there exists a compatible finer uniformity ξ ⊇ U on the 
topological space X which is quasibounded.

By our assumption there exists a neighbourhood U of e in G and a compatible uniformity ξ on the 
topological space X such that U acts equicontinuously on (X, U). Choose a sequence Un ∈ Ne such that 
U−1
n = Un, U2

n+1 ⊂ Un ⊂ U for every n ∈ N. Now define inductively the sequence M := {Vn}n∈N of subsets 
in G where

Vn := U1U2 · · ·Un.

Choose also a family of pseudometrics Σ := {di}i∈I on X such that Σ generates the uniformity U. One 
may assume that di ≤ 1 for every i. Now we define the uniformity ξ as in Lemma 3.11 generated by the 
system of pseudometrics ΣM . �

For every Tychonoff space X there exists the greatest compatible uniformity on X. We denote it by 
Umax.

Theorem 3.13. [28] Let G be a locally compact group. Then for every G-space X we have (X, Umax) ∈ UnifG.

Proof. Any compact neighbourhood of a locally compact group acts equicontinuously. According to the proof 
of Theorem 3.12 there exists a compatible finer uniformity ξ ⊇ Umax on the topological space X which is 
quasibounded. Then by the maximality of Umax we have ξ = Umax. Therefore Umax is quasibounded. In fact, 
again by the maximality property we obtain that Umax is also saturated. Hence, (X, Umax) ∈ UnifG. �

Combining Theorems 3.9 and 3.13, one directly gets the following well-known important result of de 
Vries:

Fact 3.14. (J. de Vries [55]) Let G be a locally compact group. Then every Tychonoff G-space is G-
compactifiable.

Fact 3.15. Here we list several sufficient conditions of G-compactifiability. Some of these results were already 
mentioned above.

(1) [52] Every coset G-space G/H (with natural action).
(2) [52] Every locally compact G-space X.
(3) [55] Every G-space X, where G is locally compact.
(4) [30,31] Let G and X both be topological groups and α : G × X → X is a continuous action by group 

automorphisms. Then X is G-Tychonoff (see Remark 3.3.4 and Corollary 4.2).
(5) [30] For every metric G-space (X, d), where G is a Baire space and every g-translation is d-uniform 

we have (X, U(d)) ∈ UnifG (and X is G-compactifiable).
(6) [30] If G is Baire then every metrizable Gdiscr-compactification of a G-space X is a G-compactification.
(7) [51] Every G-space X, where the action is algebraically transitive, X is Baire and G is ℵ0-bounded. 

More generally, every d-open action.
(8) [25] Every metric space X with a G-invariant metric. More generally, every continuous uniformly 

equicontinuous action of a topological group G on (X, U).
(9) ([56,57] and also [28]) Let G ×X → X be a continuous action. Suppose that a neighbourhood U of e

acts equicontinuously on X with respect to some compatible uniformity U. Then X is G-Tychonoff.
(10) (Theorem 3.18 below) Every ordered Gdiscr-compactification of a G-space X is a G-compactification.
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A good example illustrating connection between quasibounded uniformity U and UG is a natural action 
of G on a coset G/H with respect to a neutral subgroup H and quasibounded uniformity L ∨ U (where L
and U are quotient uniformities of left and right uniformities on G respectively). Then (L ∨U)G = U which 
is the maximal equiuniformity on G/H, [22, Theorem 3.18].

3.1. Linearly ordered G-compactifications

A linearly ordered topological space (LOTS) X will mean that X is a topological space which topology 
is the usual interval topology for some linear order on X. In this subsection, compactifications are proper. 
We show that every linearly ordered Gdiscr-compactification of a G-space X with the interval topology 
is necessarily a G-compactification. Recall the following result of V. Fedorchuk which gives an analog of 
Smirnov’s theorem for linearly ordered compactifications.

Definition 3.16. [13] Let ≤ be a linear order on X. A proximity δ on X is said to be an ordered proximity
(with respect to ≤) if δ induces the interval topology τ≤ on X and the following two properties are satisfied:

(a) for every x < y we have (−∞, x] δ [y, +∞);
(b) for every A δ B there exists a finite number Oi, i ∈ {1, 2, · · · , n} of open ≤X -convex subsets2 such that

A ⊂ ∪n
i=1Oi ⊂ X \B.

Fact 3.17. (V. Fedorchuk [13]) Let c : X → Y be a compactification of a LOTS X and δc be the corresponding 
proximity on X. The following conditions are equivalent:

(1) There exists a linear order ≤Y on Y such that Y is LOTS.
(2) The proximity δc is an ordered proximity with respect to the linear order ≤X on X inherited from ≤Y .

Note that if c : X → Y is a compactification, where (Y, τ) is compact with respect to some linear order 
≤Y on Y (i.e., τ = τ≤Y

), then the subspace topology on X, in general, is stronger than the interval topology 
of the inherited order ≤X on X. The coincidence τ≤X

= τ |X we have iff the proximity δc is an ordered 
proximity.

Theorem 3.18. Let X be a linearly ordered space with the interval topology of a linear order ≤. Let G ×
X → X be a continuous action which preserves the order ≤. Assume that δc is an ordered proximity of a 
linearly ordered compactification c : (X, ≤) → (Y, ≤Y ) such that c is a Gdiscr-compactification (i.e., δc is 
G-invariant). Then c is a G-compactification.

Proof. Since δc is already G-invariant, it is enough to show (by Smirnov’s theorem, Fact 2.4) that the 
proximity is compatible with the action. That is, if AδB then there exists U ∈ Ne such that UA ∩ B = ∅. 
One may assume that A is closed. Also, in condition (b) of Fact 3.17.2, we may assume that the open convex 
subsets Oi are disjoint. Let Ai := A ∩Oi for every i ∈ {1, 2, · · · , n}. Then

Ai0 = A \ ∪i�=i0Oi

is closed in X. Since we have finitely many i, it is enough to prove the following (this will cover also condition 
(a) in the definition of ordered proximity).

2 as usual, C is said to be convex if a, b ∈ C implies that the interval (a, b) is a subset of C.
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Claim. Let A be a closed subset of X and O is an open ≤-convex subset of X which contains A. Then there 
exists U ∈ Ne such that UA ⊂ O.

Proof. We may assume that O �= ∅, O �= X. Consider other cases for convex open subsets.

(a) O = (−∞, b).
There exists a convex neighbourhood P of b such that A ∩ P = ∅. One may assume that P = (c, ∞). 

Then a ≤ c for every a ∈ A. By the continuity of the action, there exists U ∈ Ne such that U−1 = U and 
Ub ⊂ (c, ∞). For every b ≤ x and every u ∈ U we have a ≤ c < ub ≤ ux (action preserves the order). Hence, 
A ∩ U [b, ∞) = ∅. This implies that U−1A = UA ⊂ O = (−∞, b).

(b) O = (b, ∞). This case is completely similar to (a).

(c) O = (−b1, b2). Combine (a), (b) (taking the intersection of two neighbourhoods of e).

(d) O = (−∞, b].

Then, since O is open, b is an internal point of (−∞, b]. There exists U ∈ Ne such that Ub ⊂ (−∞, b]. 
Then UA ⊂ U(−∞, b] ⊂ (−∞, b].

(e) O = [b, ∞). Similar to (d).

(f) O = [b1, b2]. Combine (d) and (e).

(g) O = (b1, b2] or O = [b1, b2). Combine (a), (b), (d) and (e). �
4. G-compactifications and proximities

Theorem 4.1. Let (X, U) ∈ UnifG, where G is an arbitrary topological group. Then the following rule

A ν B ⇔ ∀V ∈ Ne V A δU V B (4.1)

defines a G-proximity on X such that δUG = ν and it corresponds to the greatest U-uniform G-
compactification of X (that is, ρ � ν for any G-proximity ρ � δU).

Proof. We have to show that δUG = ν. That is, ν coincides with the canonical proximity δUG of the 
uniformity UG (where UG is defined in Lemma 3.8).

Let A and B be UG-far subsets in X. That is, A δUG B. Lemma 3.8 guarantees that (X, UG) ∈ EUnifG. 
Since UG is an equiuniformity, its proximity δUG is a G-proximity by Proposition 3.4. Hence,

∃ V ∈ Ne V A δUG V B.

Since UG ⊆ U, we have δUG � δU. Therefore, V A δU V B. By definition of ν this means that A ν B.
In the converse direction, we assume now that A ν B. That is, V A δU V B for some V ∈ Ne. There exists 

ε ∈ U such that

ε ∩ (V A× V B) = ∅.

This implies that

[V, ε] ∩ (A×B) = ∅,

where, as in Lemma 3.8, [V, ε] = {(x, y) ∈ X × X : ∃v1, v2 ∈ U (v1x, v2y) ∈ ε}. By definition of the 
uniformity UG, this means that A δUG B. So, we can conclude that ν = δUG and ν is a G-proximity 
(because, δUG is).
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Since, UG ⊆ U, we have ν = δUG � δU. This shows that the G-compactification ν of X is U-uniform.

Finally we show the maximality property of ν. Let ρ be any U-uniform G-compactification and AρB. 
Then by Smirnov’s Theorem 2.4 (and Remark 2.5), there exists V ∈ Ne such that V A ρ V B. Since ρ is 
U-uniform, we have ρ � δU. Therefore, V A δU V B holds. So, by Equation (4.1) we can conclude that 
V A ν V B. This means that ρ � δUG = ν. �
Corollary 4.2. Let G and X both be topological groups and α : G ×X → X is a continuous action by group 
automorphisms. Then the following condition

A δ B ⇔ ∃V ∈ Ne(X) ∃U ∈ Ne(G) V {g(A)}g∈U ∩ V {g(B)}g∈U = ∅

defines a G-proximity which corresponds to the greatest R(X)-uniform G-compactification, where R(X) is 
the right uniformity of X.

Proof. Observe that 〈(X, R(X)), α〉 ∈ UnifG. Now apply Theorem 4.1 to (X, R(X)). �
Definition 4.3. Let (X, d) be a metric space and π : G ×X → X is any action with uniform translations. We 
say that this action is d-majored if the greatest G-compactification of X is d-uniform.

Proposition 4.4. Let (X, d) be a metric space and a G-space such that (X, U(d)) ∈ UnifG (e.g., d is G-
invariant). Then the following condition

A δ B ⇔ ∃V ∈ Ne d(V A, V B) > 0 (4.2)

defines a G-proximity which corresponds to the greatest d-uniform G-compactification of X (and coincides 
with the proximity of U(d)G).

If, in addition, the action is d-majored then (4.2) describes the proximity of βGX.

Proof. Let U(d) be the uniformity of the metric d. Its proximity δd is defined as follows:

AδdB ⇔ d(A,B) = 0.

Now apply Theorem 4.1 to (X, U(d)). �
Remark 4.5. Let X := (U1, d) be the Urysohn sphere and G := Iso (U1) be the Polish isometry group 
(pointwise topology). In the joint work [17] with T. Ibarlucia, we prove that for the G-space X the maximal 
G-compactification of X is just the Gromov compactification γ(U1, d) (in particular, βG(U1) is metrizable) 
and RUCG(U1) is the unital algebra generated by the distance functions. Since γ : (X, d) → γX is a d-
uniformly continuous topological G-embedding, we obtain that the greatest G-compactification of X is 
d-uniform. So, the action is d-majored.

Theorem 4.6. Let X := (U1, d) be the Urysohn sphere and G := Iso (U1). Then for subsets A, B in U1 we 
have:

A βG B ⇔ ∃V ∈ Ne(G) d(V A, V B) > 0.

Proof. Combine Remark 4.5 and Proposition 4.4. �
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Remark 4.7. Theorem 4.6 remains true for a large class of all ℵ0-categorical metric G-structures M = (X, d)
(including Urysohn sphere), where G := Aut (M, d) is its automorphism group (for definitions, motivation 
and related tools, we refer to [6] or, [17]). In this case the action is d-majored as it follows from [17, Theorem 
4.4].

Another condition which guarantees that the action is d-majored, is the uniform micro-transitivity of the 
action in the sense of [17].

Theorem 4.8. (Maximal G-compactification for locally compact group G) Let G be a locally compact group. 
Then for every G-space X the maximal G-proximity βG can be characterized by the maximal topological 
proximity β as follows:

A βG B ⇔ ∀V ∈ Ne V A β V B.

So, if X, as a topological space is normal, then we obtain

A βG B ⇔ ∀V ∈ Ne V cl(A) ∩ V cl(B) �= ∅.

Proof. By Theorem 3.13 for the maximal compatible uniformity, we have (X, Umax) ∈ UnifG. In fact, 
Umax is the greatest compatible uniformity on X. Therefore, its proximality defines just the usual maximal 
compactification βX. We use the notation β for this proximity. Note that V A β V B means that V A and 
V B cannot be functionally separated. Now, we use Theorem 4.1 in order to complete the proof.

If X is normal then the condition V A β V B means that cl(V A) ∩ cl(V B) �= ∅ (see Example 2.2.3). 
Since G is locally compact, we can suppose that V is compact. Hence VM is closed for every closed subset 
M ⊂ X. In particular, we get V cl(A) = cl(V A) and V cl(B) = cl(V B). �
Remark 4.9. Local compactness of G is essential. Indeed, for every Polish group G which is not locally 
compact, there exists a second countable G-Tychonoff space X and closed disjoint (hence, far in βX) 
G-invariant subsets A, B such that A βG B (cannot be separated by RUCG functions). This follows from 
the proof of [36, Theorem 4.3].

Since the proof of [36, Theorem 4.3] is quite complicated, we give here a concrete simpler example for 
the sake of completeness. The idea is similar to [29] (see also [34]).

Example 4.10. Let I = [0, 1] be the unit interval and

G1 = H+[0, 1] = {g ∈ Homeo (I) : g(0) = 0, g(1) = 1}.

Denote by π1 : G1 × I → I the natural action of G1 on I. Then cl(G1O) = [0, 1] for every neighbourhood of 
0.

Let {(Gn, In, πn) : n ∈ N} be a countable system of ttg’s, where each (Gn, In, πn) is a copy of (G1, I, π1). 
Consider the special equivariant sum (G, X, π) of the actions πn. So, G =

∏
k∈N Gk and X = �k∈N Ik. 

Clearly, G is a Polish group and X is a separable metrizable G-space. Define two naturally defined subsets 
A, B of X, where A := {in(0) : n ∈ N} is the set of all left end-points and B := {in(1) : n ∈ N} is the set 
of all right end-points. Then X, being locally compact, clearly is G-Tychonoff. The subsets A, B are closed 
disjoint and G-invariant subsets in X. So, GA ∩ GB = ∅. However, they cannot separate by any RUCG

function. Hence we have A βG B.

4.1. Equivariant normality

Two subsets A, B of a G-space X are said to be π-disjoint if UA ∩ UB = ∅ for some U ∈ Ne. It is 
equivalent to require that V A ∩B = ∅ for some V ∈ Ne.
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We introduced the following definition in order to answer some questions of Yu.M. Smirnov. Among 
others, to have a generalized Urysohn Lemma and a Tietze extension theorem for G-spaces.

Definition 4.11. [26,28] Let G be a topological group G. A G-space X is G-normal (or, equinormal) if for 
every pair of π-disjoint closed subsets A1, A2 in X there exists a pair of disjoint neighbourhoods O1, O2
such that O1 and O2 are π-disjoint.

This concept is closely related to G-proximities as the following result shows.

Fact 4.12. The following are equivalent:

(1) X is G-normal;
(2) every pair of π-disjoint closed subsets A1, A2 in X can be separated by a function f ∈ RUCG(X);
(3) the relation

AδπB ⇔ ∀ V ∈ Ne V cl(A) ∩ V cl(B) �= ∅

is a proximity on X;
(4) the relation from (3) is a G-proximity on X;
(5) the relation from (3) is the maximal G-proximity βG on X.

Every G-normal space is G-Tychonoff. The natural action of G := Q on X := R is not G-normal. By 
[36], G is locally compact if and only if every normal G-space is G-normal. For some additional properties 
of G-normality, we refer to [1] and [34].

4.2. Description of βGX by filters

Remark 4.13. For every proximity space (X, δ) there exists the Smirnov’s compactification

sδ : X → sδX,

where sδX is the set of all δ-ends (maximal centered δ-systems) ξ. See [42] for details. Recall that δ-system
means that every member A ∈ ξ is a δ-neighbourhood of some B ∈ ξ. That is, B � A holds (meaning that 
B and Ac := X \A are δ-far).

Let us apply this to the case of βG for a G-space X.
• If G is locally compact then by Corollary 4.8, B βG Ac if and only if V B and V Ac are functionally 

separated for some V ∈ Ne.
• Similar results for an arbitrary topological group G are not true in general. However, it is true if, in 

addition, the action is G-normal in the sense of Definition 4.11.
• If (M, d) is an ℵ0-categorical metric structure, then by Remark 4.7 B βG Ac if and only if d(V Ac, V B) >

0 for some V ∈ Ne(Aut (M)).

5. Additional notes about maximal G-compactifications

5.1. Coset spaces and the greatest ambit

For every coset G-space X := G/H, the standard right uniformity Ur (see, for example, [41]) is the 
largest possible topologically compatible equiuniformity on the G-space G/H. So, G/H is a G-Tychonoff 
space (de Vries [52]). Moreover, the Samuel compactification of the right uniform space (G/H, Ur) is the 
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greatest (proper) G-compactification. In particular, every topological group G is G-compactifiable with 
respect to the standard left action (Brook [8]). This G-space βGG is just the greatest ambit of G which is 
widely used in topological dynamics.

Let us compare this G-compactification with the usual topological greatest compactification G → βG. 
The translations in this case are continuous. So, it is a Gdiscr-compactification.

Proposition 5.1. Let G be a metrizable topological group which is not precompact. Then the canonical action 
G × βG → βG is continuous if and only if G is discrete.

Proof. Let G be not discrete. We have to show that there exists a pair of closed disjoint subsets A, B which 
are near with respect to right uniformity UR. Since G is not precompact, there exists an infinite uniformly 
UR-discrete sequence {an}∞n=1. This means that

∃U0 ∈ Ne U0xn ∩ U0xm = ∅ ∀m �= n.

Choose a symmetric neighbourhood V ∈ Ne such that V 2 ⊂ U0. Since G is metrizable and not discrete, one 
may choose a sequence vn ∈ V such that lim vn = e and all members of this sequence are distinct. Define 
A := {an}∞n=1, B := {vnan}∞n=1. Then UA ∩ B �= ∅ for all U ∈ Ne. Therefore, AβGB. On the other hand, 
A and B are closed disjoint subsets in the normal space G. Hence, AβB. �

Note that if G is a pseudocompact group then βG is a topological group naturally containing G (see [9]). 
So, in this case, G × βG → βG is continuous and βGG = βG.

5.2. Massive actions

Definition 5.2. Let π : G ×X → X be an action of a topological group G on a uniform space (X, U). We say 
that the action is U-massive if the uniform structure UG (from Lemma 3.8) is totally bounded.

Proposition 5.3. Let (X, U) ∈ UnifG. Consider the following conditions:

(1) the greatest U-uniform G-compactification (induced by the proximity δUG) of X is metrizable;
(2) the action is U-massive.

Then always (1) ⇒ (2). If, in addition, the uniformity U is metrizable and G is a metrizable topological 
group, then (2) ⇒ (1).

Proof. (1) ⇒ (2): By Theorem 4.1, the greatest U-uniform G-compactification of X is the Smirnov com-
pactification of the proximity δUG (which is the same as the Samuel compactification of UG).

Assume the contrary that U is not G-massive. Then by Definition 5.2, UG is not totally bounded. Equiv-
alently, X contains an infinite sequence which is UG-uniformly discrete. This implies that the corresponding 
Samuel compactification of UG is not metrizable.

(2) ⇒ (1): Since U and G are metrizable, then UG is also metrizable. By (2), UG is totally precom-
pact. Then its completion is metrizable. On the other hand, this completion is the greatest U-uniform 
G-compactification by Theorem 4.1. �

Many naturally defined uniform structures are G-massive as it follows from the examples of Remark 1.3
making use of Proposition 5.3.

An extreme (but useful) sufficient condition is the case of the discrete uniform space (X, Udiscr). Let us 
say that the action is strongly G-massive if for every finite subset F ⊂ X the stabilizer subgroup action 
StF ×X → X has finitely many orbits.
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Examples 5.4. Here we give some examples of strongly G-massive actions.

(a) S∞ ×N → N. In this case βGX (of the discrete space X := N with the action of the Polish symmetric 
group G := S∞) is the Alexandroff compactification N ∪ {∞}.

(b) X = (Q, ≤) the rationals with the usual order but equipped with the discrete topology. Consider the 
automorphism group G = Aut (Q, ≤) with the pointwise topology. In this case the action of G on the 
discrete uniform space (X, Udiscr) is G-massive. Hence, βGX is metrizable by Proposition 5.3. In fact, 
one may show that X → βGX is a proper G-compactification such that βGX is a linearly ordered 
G-space. By Corollary 3.6, the same is true for every dense subgroup G of Aut (Q, ≤) (for instance, 
Thompson’s group F ).

Sketch: We use an idea and results of [14] and [35]. Let F := {t1 < t2 < · · · < tm} be a finite chain in 
Q. Using the ultrahomogeneity of the action of Aut (Q, ≤) on (Q, ≤), the corresponding (finite) orbit 
of the stabilizer subgroup StF is

XF := {(−∞, t1), t1, (t1, t2), t2, (t2, t3), · · · , (tm−1, tm), tm, (tm,∞)}.

Therefore, the present action is strongly G-massive and in particular Udiscr-massive (UG
discr is totally 

bounded). The proximity of the uniformity UG
discr corresponds to βGX. On the other hand, the comple-

tion of UG
discr can be realized as a certain inverse limit X∞ = lim←−(XF , I) of finite linearly ordered sets 

XF , where F ∈ I and the finite orbit space XF := X/StF carries the natural linear order. The G-space 
X∞ is the maximal G-compactification of X. This can be done using linear modification of [14, Lemma 
4.5] (which originally was related to the more complex case of circularly ordered set X).

(c) A similar result is valid for the circular version of (b). Namely, for the rationals on the circle with its 
circular order X = (Q/Z, ◦), the automorphism group G = Aut (Q/Z, ◦) and its dense subgroups G
(for instance, Thompson’s circular group T ). In this case βGX \ X is the universal minimal G-space 
M(G).

6. Some open questions

The following questions are still open.

Question 6.1. (S. Antonyan–M. Megrelishvili) Is it true that dimβGG = dimG for every locally compact 
group G? What if G is a Lie group?

Question 6.2. (Yu.M. Smirnov (see [33] and [3])) Let G = Q be the topological group of all rationals. Is it 
true that there exists a Tychonoff G-space which is not G-Tychonoff?

Question 6.3. (H. Furstenberg and T. Scarr (see [33,40])) Let G ×X → X be a continuous action with one 
orbit (that is, transitive) of a (metrizable) topological group G on a (metrizable) space X. Is it true that X
is G-Tychonoff?
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