FREE NON-ARCHIMEDEAN TOPOLOGICAL GROUPS
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ABSTRACT. We study free topological groups defined over uniform spaces in some
subclasses of the class NA of non-archimedean groups. Our descriptions of the cor-
responding topologies show that for metrizable uniformities the corresponding free
balanced, free abelian and free Boolean NA groups are also metrizable. Graev type
ultra-metrics determine the corresponding free topologies. Such results are in a strik-
ing contrast with free balanced and free abelian topological groups cases (in standard
varieties).

Another contrasting advantage is that the induced topological group actions on free
abelian N A groups frequently remain continuous. One of the main applications is: any
epimorphism in the category NA must be dense. Moreover, the same methods improve
the following result of T.H. Fay [13]: the inclusion of a proper open subgroup H <—
G € TGR is not an epimorphism in the category TGR of all Hausdorff topological
groups. A key tool in the proofs is Pestov’s test of epimorphisms [42].

Our results provide a convenient way to produce surjectively universal N A abelian
and balanced groups. In particular, we unify and strengthen some recent results of
Gao [15] and Gao-Xuan [I6] as well as classical results about profinite groups which
go back to Iwasawa and Gildenhuys-Lim [17].
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1. INTRODUCTION AND PRELIMINARIES

1.1. Non-archimedean groups and uniformities. A topological group G is said to
be non-archimedean if it has a local base B at the identity consisting of open subgroups.
Notation: G € NA. If in this definition every H € B is a normal subgroup of G then
we obtain the subclass of all balanced (or, SIN) non-archimedean groups. Notation:
G € NAy,. All prodiscrete (in particular, profinite) groups are in NAy,.

A uniform space is called non-archimedean if it possesses a base of equivalence re-
lations. Observe that a topological group is non-archimedean if and only if its left
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(right) uniform structure is non-archimedean. The study of non-archimedean groups
and non-archimedean uniformities has great influence on various fields of Mathematics:
Functional Analysis, Descriptive Set Theory and Computer Science are only some of
them. The reader can get a general impression from [48] 3, 28, 27, 35] and references
therein.

1.2. Free groups in different contexts. Recall that according to [29] any continuous
map from a Tychonoff space X to a topological group G can be uniquely extended to
a continuous homomorphism from the (Markov) free topological group F'(X) into G.
Moreover, X is a (closed) topological subspace of F'(X). There are several descriptions
of free topological groups. See for example, [56] 40, 58, [51]. Considering the category of
uniform spaces and uniformly continuous maps one obtains the definition of a uniform
free topological group F(X,U) (see [39]). A description of the topology of this group was
given by Pestov [40, 41]. Free topological G-groups, the G-space version of the above
notions, were introduced in [31].

Let © be a class of some Hausdorff topological groups. We study in Section [3| a useful
unifying concept of the Q-free topological groups.

Remark 1.1. (‘“Zoo’ of free NA groups) Here we give a list of some natural subclasses Q2
of NA and establish the notation for the corresponding free groups. These groups are
well defined by virtue of Theorem

) Q= AbNA. The free non-archimedean abelian group A 4.

) Q= NAy. The free non-archimedean balanced group F}\’m.

) © = BoolNA. The free non-archimedean Boolean group By 4.

) @ =NA NPrec. The free non-archimedean precompact group F{7cc.
) Q = Pro. The free profinite group Fp,,.

The following diagram demonstrates the interrelation (by the induced homomor-
phisms) between these free groups defined over the same uniform space (X,U).

Firee < Fp,, is the completion of the group FY{'¢¢ and By, --» Bp,, is a dense
injection. Other arrows are onto.

We give descriptions of the topologies of these groups in Sections [] and These
descriptions show that for metrizable uniformities the corresponding free balanced, free
abelian and free Boolean non-archimedean groups are also metrizable. The same is true
(and is known) for the free profinite group which can be treated as the free compact
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non-archimedean group over a uniform space. Such results for the subclasses of NA
are in a striking contrast with the standard classes outside of NA. Indeed, it is well
known that the usual free topological and free abelian topological groups F(X) and
A(X) respectively, are metrizable only for discrete topological spaces X . Similar results
are valid for uniform spaces.

In Section we discuss the free Boolean profinite group Bp,,(X) of a Stone space
X which is the Pontryagin dual of the discrete Boolean group of all clopen subsets in X.

In Section [6] we unify and strengthen some recent results of Gao [I5] and Gao-Xuan
[16] about the existence and the structure of surjectively universal non-archimedean
Polish groups for abelian and balanced cases; as well as, results on surjectively universal
profinite groups which go back to Iwasawa and Gildenhuys-Lim [17].

1.3. The actions which come from automorphisms. Every continuous group action
of G on a Stone space X (=compact zero-dimensional space) is automorphizable in the
sense of [31] (see Fact[7.3), that is, X is a G-subspace of a G-group Y. This contrasts the
case of general compact G-spaces (see [31]). More generally, we study (Theorem also
metric and uniform versions of automorphizable actions. As a corollary we obtain that
every ultra-metric G-space is isometric to a closed G-subset of an ultra-normed Boolean
G-group. This result can be treated as a non-archimedean (equivariant) version of the
classical Arens-Eells isometric linearization theorem [I].

1.4. Epimorphisms in topological groups. A morphism f : M — G in a category
C is an epimorphism if there exists no pair of distinct g,h : G — P in C such that
gf = hf. In the category of Hausdorff topological groups a morphism with a dense
range is obviously an epimorphism. K.H. Hofmann asked in the late 1960’s whether
the converse is true. This epimorphism problem was answered by Uspenskij [59] in
the negative. Nevertheless, in many natural cases, indeed, the epimorphism M — G
must be dense. For example, in case that the co-domain G is either locally compact or
balanced, that is, having the coinciding left and right uniformities (see [38]). Using a
criterion of Pestov [42] and the uniform automorphizability of certain actions by non-
archimedean groups (see Theorem |7.6)) we prove in Theorem that any epimorphism
in the category NA must be dense. Moreover, we show that if a proper closed subgroup
H in a Hausdorff topological group G induces a non-archimedean uniformity & on G/H
such that (G/H,U) € Unif®, then the inclusion is not an epimorphism in the category
TGR. We also improve the following result of T.H. Fay [13]: for a topological group G
the inclusion of a proper open subgroup H is not an epimorphism.

1.5. Graev type ultra-metrics. In his classical work [I8], Graev proved that every
metric on X U {e} admits an extension to a maximal invariant metric on F(X). In
the present work we explore (especially see Theorem Graev type ultra-metrics and
ultra-norms on free Boolean groups which appeared in our previous work [36]).

Graev type ultra-metrics play a major role in several recent papers. In Section [9] we
briefly compare two seemingly different constructions: one of Savchenko-Zarichnyi [49]
and the other of Gao [15].

1.6. Preliminaries and notations. All topological groups and spaces in this paper
are assumed to be Hausdorff unless otherwise is stated (for example, in Section [4]). The
cardinality of a set X is denoted by |X|. All cardinal invariants are assumed to be
infinite. As usual for a topological space X by w(X),d(X), x(X),{(X), c(X) we denote
the weight, density, character, Lindel6f degree and the cellularity, respectively. By N, (X)
or N, we mean the set of all neighborhoods at .



For every group G we denote the identity element by e (or by 0 for additive groups).
A Boolean group is a group in which every nonidentity element is of order two. A
topological space X with a continuous group action 7 : Gx X — X of a topological group
G is called a G-space. If, in addition, X is a topological group and all g-translations,
m: X — X, v — gr:=7(g,x), are automorphisms of X then X becomes a G-group.

We say that a topological group G is complete if it is complete in its two-sided unifor-
mity. For every set X denote by F(X), A(X) and B(X) the free group, the free abelian
group and the free Boolean group over X respectively. We reserve the notation F'(X)
also for the free topological group in the sense of Markov.

Acknowledgment: We thank D. Dikranjan, M. Jibladze, D. Pataraya and L. Polev for
several suggestions.

2. SOME FACTS ABOUT NON-ARCHIMEDEAN GROUPS AND UNIFORMITIES

We mostly use the standard definition of a uniform space (X,U) by entourages (see for
example, [12]). An equivalent approach via coverings can be found in [23]. We denote
the induced topology by top(U) and require it to be Hausdorff, namely, N{e € U} = A.
By Unif we denote the category of all uniform spaces.

The subset {e(a) : € € U} is a neighborhood base at a € X in the topological space
(X, top(U)), where e(a) = {z € X : (a,x) € €}. For a nonempty subset A C X denote
e(A) = U{e(a) : a € A}. We say that a subset A C X is e-dense if ¢(A) = X.

A subfamily o C U such that each € € U has a refinement é C ¢ with § € « is said
to be a (uniform) base of U. The minimal cardinality of a base of U is called the weight
of U. Notation: w(U). Recall that U is metrizable (that is, ¢/ is induced by a metric on
X) if and only if the weight is countable, w(U) = V.

As usual, (X,U) is precompact (or, totally bounded) if for every € € U there exists a
finite e-dense subset. By the uniform Lindeldf degree of (X,U) we mean the minimal
(infinite) cardinal s such that for each entourage € € U there exists an e-dense subset
A. C X of cardinality |Ac] < k. Notation: [(U) = k. We write (X,U) € Unif(-, k)
whenever [(U) < k.

In terms of coverings, [() < k means that every uniform covering ¢ € U has a
subcovering § (equivalently, a subcovering § € U) of cardinality |§] < k. So, we may
always choose a base a of U such that |a| = w(lUd) and |§] < I(U) for every § € a.
Note that (i) < min{l(X),d(X),c(X)} and {(U) < w(X) < wld) - 1(U), where X =
(X, top(U)) is a topological space induced by U.

Remark 2.1. The class Unif(-, k) is closed under arbitrary products, subspaces and
uniformly continuous images. (X,U) € Unif(-, k) if and only if (X,U) can be embedded
into a product [[, X; of metrizable uniform spaces (X;,U;) with w(X;) = I(U;) < & such
that |I] < w(U).

Note that w(U) = A, I(U) = k exactly means that the (uniform) double weight, in the
sense of [25] is dw(U) = (A, k). Denote by Unif (), k) the class of all uniform spaces with
double weight dw(X,U) < (A, k).

Definition 2.2. Let K C Unif be a class of uniform spaces. Let us say that a uniform
space X 1s:
(a) universal in IC if X € K andV Y € K there exists a uniform embedding Y — X.
(b) co-universal in KC if X € K and for every Y € K there exists a uniformly continuous
onto map f: X — 'Y which is a quotient map of topological spaces.

In [25] Kulpa proves that there exists a universal uniform space with dimension < n
and dw(U) < (A, k). Every isometrically universal separable metric space (say, C10, 1],
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or the Urysohn space U) provides an example of a universal uniform space in the class
Unif(Rg, Rp). For some results about isometrically universal spaces see [24, 57, 22].
However, seemingly it is an open question if there exists a universal uniform space in
Unif(\, k). In fact, it is enough to solve this question for Unif (Rg, x). Indeed, if (X,U)
is universal in Unif(Xg, ) then the uniform space X?* is universal in Unif(\, ). In
order to see this recall that Unif(-, ) is closed under products, subspaces and uniformly
continuous images (Remark [2.1)).

For a topological group G we have four natural uniformities: left, right, two-sided
and lower. Notation: U;,U,,Up., Uin Tespectively. Note that the weight of all these
uniformities is equal to x(G), the topological character of G. Also, I(U;) = I(U,) =
l(Upyy). This invariant, the uniform Lindeldf degree of G, is denoted by [“(G). Always,
l(Uipry) < 1*(G). Note that {*(G) < & if and only if G is k-bounded in the sense of Guran
(k-narrow in other terminology). That is, for every U € N(G) there exists a subset
S C G such that US = G and |5] < k.

Lemma 2.3. Let G be a topological group.
(1) w(G) = X(G) - 1(G) and duw(G.Uny) = (W(G).IG)) < (w(C), w(G)).
(2) (Guran, see for example [2, Theorem 5.1.10]) I“(G) < k if and only if G can
be embedded into a product [, G; of topological groups G; of topological weight
w(G;) < k.
(3) [8] (see also [2, p. 292]) Let X C G topologically generate G. Consider the
induced uniform subspace (X,Ux) where Ux = Up,r|X. Then I*(G) = l(Ux).

Every uniform space (X, ) is uniformly embedded into an (abelian) topological group
G such that w(Uf) = x(G) and [(U) = I"(G) (i-e., dw(U) = dw(G,Upyy)). In order to see
this one may use Arens-Eells embedding theorem [I] taking into account Lemma 3.

2.1. Non-archimedean uniformities. Monna (see [48, p.38] for more details) intro-
duced the notion of non-archimedean uniform spaces. A uniform space X is non-
archimedean if it has a base B consisting of equivalence relations (or, partitions, in
the language of coverings) on X. It is also equivalent to say that for such a space the
large uniform dimension (in the sense of [23, p. 78]) is zero. For a uniform space (X,U)
denote by Fq(U) the set of all equivalence relations on X which belong to U.

Recall that every compact space has a unique compatible uniformity. A Stone space
is a compact zero-dimensional space. It is easy to see that such a space is always non-
archimedean. There exist 28-many nonhomeomorphic metrizable Stone spaces.

A metric space (X, d) is an ultra-metric space (or, isosceles [27)) if d is an ultra-metric,
i.e., it satisfies the strong triangle inequality

d(z,z) < max{d(x,y),d(y,z)}.

Allowing the distance between distinct elements to be zero we obtain the definition
of an ultra-pseudometric. For every ultra-pseudometric d on X the open balls of radius
€ > 0 form a clopen partition of X. So, the uniformity induced by any ultra-pseudometric
d on X is non-archimedean. A uniformity is non-archimedean if and only if it is generated
by a system {d;}ics of ultra-pseudometrics.

Let us say that a uniformity U on X is discrete if U = P(X x X) (or, equivalently,
A={(z,z):z e X} €lU).

Denote by x* the power space of the discrete uniform space with cardinality &.

Lemma 2.4. (1) The Baire space B(k) = k™0 is a universal uniform space in the
class Unif 4 (Ro, k) of all metrizable non-archimedean uniform spaces (X,U)

such that I(U) < k.
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(2) The generalized Baire space K~ is a universal uniform space in Unif \ 4 (\, k).

Let (X,U) be a non-archimedean uniformity. By a result of R. Ellis [I1] for every
uniform ultra-pseudometric on a subset Y C X there exists an extension to a uniform
ultra-pseudometric on X. Another result from [11] shows that, in fact, B(k) is also
co-universal in the class Unif 4 (N, &) (see Section [6] below).

2.2. Non-archimedean groups. Recall that a topological group is said to be non-
archimedean if it has a local base at the identity consisting of open subgroups. All NA
groups are totally disconnected. The converse is not true in general (e.g., the group Q
of all rationals). However, in case that a totally disconnected group G is also locally
compact then both G and Aut(G), the group of all automorphisms of G endowed with
the Birkhoff topology, are NA (see Theorems 7.7 and 26.8 in [20]).

The prodiscrete groups (= inverse limits of discrete groups) are in NA. Every complete
balanced NA group (in particular, every profinite group) is prodiscrete.

Ezample 2.5. We list here some non-archimedean groups:

(1) (Z, 1) where 7, is the p-adic topology on the set of all integers Z.

(2) The symmetric topological group Sx with the topology of pointwise convergence.
Note that Sx is not balanced for any infinite set X.

(3) Homeo ({0,1}0), the homeomorphism group of the Cantor cube, equipped with
the compact-open topology.

The NA topological groups from Example are all minimal, that is, each of them
does not admit a strictly coarser Hausdorff group topology. By a result of Becker-
Kechris [3] every second countable (Polish) NA group is topologically isomorphic to a
(resp., closed) subgroup of the symmetric group Sy. So, Sy is a universal group in the
class of all second countable NA groups. In fact, a more general result remains true:
Sx is a universal group in the class of all NA groups G with the topological weight
w(@) < |X|, where | X| is the cardinality of the infinite set X. See for example, [19] B35]
and also Fact 2.6 below.

By results of [35] there are many minimal NA groups: every NA group is a group
retract of a minimal NA group. See Section[5.I]below and also survey papers on minimal
groups [0, [7].

Teleman [55] proved that every topological group is a subgroup of Homeo (X) for some
compact X and, it is also a subgroup of Is(M,d), the topological group of isometries of
some metric space (M, d) equipped with the pointwise topology (see also [44]). Replacing
”compact” with ”compact zero-dimensional” and ”metric” with ”ultra-metric” we obtain
characterizations for the class NA (see [28] and Fact [2.6| below).

The class NA is a variety in the sense of [37], i.e., it is closed under taking subgroups,
quotients and arbitrary products. Furthermore, NA is closed under group extensions
(see [19, Theorem 2.7]). In particular, NA is stable under semidirect products. We
collect here some characterizations of non-archimedean groups, majority of which are
known. For details and more results see [28], 43}, 35].

Fact 2.6. [35] The following assertions are equivalent:

(1) G is a non-archimedean topological group.

(2) The right (left, two-sided, lower) uniformity on G is non-archimedean.

(8) dim BgG = 0, where BgG is the maximal G-compactification [34] of G.

(4) G is a topological subgroup of Homeo (X)) for some Stone space X (where w(X) =
w(G)).

(5) G is a topological subgroup of the automorphism group (with the pointwise topol-
ogy) Aut(V') for some discrete Boolean ring V' (where |V| = w(G)).
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(6) G is a topological subgroup of the group Isau (M) of all norm preserving auto-
morphisms of some ultra-normed Boolean group (M, ||-||) (where w(M) = w(G) ).

(7) G is embedded into the symmetric topological group Sy (where k = w(QG)).

(8) G is a topological subgroup of the group Is(X,d) of all isometries of an wultra-
metric space (X,d), with the topology of pointwise convergence (where w(X) =
w(G)).

(9) The right (left) uniformity on G can be generated by a system {d;})icr of right
(left) invariant ultra-pseudometrics of cardinality |I| < x(G).

(10) G is a topological subgroup of the automorphism group Aut(K) for some compact
abelian group K (with w(K) = w(G)).

(11) G is a topological subgroup of the automorphism group Aut(K) for some profinite
group K (with w(K) = w(Q)).

An wltra-seminorm on a topological group G is a function p : G — R such that

(1) p(e) = 0;
(2) pa™") = p(a);
(3) p(ry) < maz{p(x),p(y)}-

Always, p(z) > 0. We call p an ultra-norm if in addition p(z) = 0 implies = e. For
ultra-seminorms on an abelian additive group (G, +) we prefer the notation || - || rather
than p. For every ultra-seminorm on G and every a € G the function ¢(z) := p(aza™!)
is also an ultra-seminorm on G. We say that p is invariant if p(axa™!) = p(z) for every
a,xr € G. We say that a pseudometric d on G is invariant if it is left and right invariant.

Lemma 2.7. (1) For every ultra-seminorm p on G we have:
(a) He :={g € G: p(g) < e} is an open subgroup of G for every e > 0.
(b) The function d : G x G — R defined by d(z,y) := p(z~'y) is a left invariant
ultra-pseudometric on G and p(x) = d(e, ).
If p is invariant then H. is a normal subgroup in G and d is invariant.
(2) Let G x X — X be an action of a group G on a set X. If d is a G-invariant
ultra-pseudometric on X and xog € X is a point in X then p(g) := d(zg, gzo) is
an ultra-seminorm on G.
(3) As a particular case of (2), for every left invariant ultra-pseudometric d on G
we have the ultra-seminorm p(x) := d(e,x). Here p is invariant if and only if d
18 1nvariant.
(4) For every topological group G and an open subgroup H of G there exists a contin-
uous ultra-seminorm p on G such that {x € G : p(x) <1} = H. If, in addition,
H is normal in G then we can assume that p is invariant.
(5) A homomorphism f : G — H from a topological group G into a non-archimedean
group H is continuous if and only if for every continuous ultra-seminorm p on
H the ultra-seminorm q : G — R defined by q(g) := p(f(g)) is continuous.

Proof. (1) (a) Indeed, if p(z) < € and p(y) < ¢ then
p(ry™") < max{p(x),p(y~")} = max{p(z).p(y)} <e.

If p is invariant then H. is normal in G since p(aza™!) = p(z) < ¢ for every a € G.
(b) of (1) is trivial and (2), (3) and (5) are straightforward.
(4) Define the ultra-seminorm on G as p(g) =0 for g € H and p(g) :=1ifg¢ H. O

A topological group G is balanced (or, SIN) if its left and right uniform structures
coincide (see for example [47]). It is equivalent to say that G has small neighborhoods
which are invariant under conjugations. That is, for every U € N.(G) there exists
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V € N.(G) such that V. C U and gVg~! = V for every g € G. Furthermore, G is
balanced if and only if the uniformity on G can be generated by a system of invariant
pseudometrics (or invariant seminorms).

Lemma 2.8. For a balanced group G the following conditions are equivalent:
(1) G € NA;
(2) G has a local base at the identity consisting of open normal subgroups;
(3) G is embedded into a product [[;c; G; of discrete groups, where |I| < x(G);
(4) the uniformity on G can be generated by a system {d;}icr of invariant ultra-
pseudometrics (ultra-seminorms), where |I| < x(G).

Proof. (1) = (2): Let V be a neighborhood of e in G. We have to show that there exists
an open normal subgroup M of G such that M C V. Since G € NA, there exists an
open subgroup H of G such that H C V. Since G is balanced N := NgeggHg ! is
again a neighborhood of e. Then N is a normal subgroup of G and N C V. Clearly the
subgroup N is open because its interior is nonempty.

(2) = (3): For every open, and hence closed, normal subgroup N of G the correspond-
ing factor-group G/N is discrete.

(3) = (4): For every discrete group P the usual {0, 1}-ultra-metric is invariant.

(4) = (1): Let p be an invariant ultra-seminorm on G. Then the set

He:={geG: pg) <e}
is an open (normal) subgroup of G by Lemma [2.7]1. O

Every complete balanced NA group G is a prodiscrete group as it follows from asser-
tion (3) and standard properties of projective limits (see e.g., [12, Prop. 2.5.6]).

Lemma 2.9. Let G € NA.

(1) G is metrizable iff its right (left) uniformity can be generated by a single right
(left) invariant ultra-metric d on G.

(2) G is metrizable and balanced iff its right (left) uniformity can be generated by a
single invariant ultra-metric d on G.

Proof. (1): If G is metrizable then the right (left) uniformity of G € NA can be generated
by a countable system {d,,},en of right (left) invariant ultra-pseudometrics (cf. Fact
2.6]9). One may assume in addition that d,, < 1. Then the desired right (left) invariant
ultra-metric on G can be defined by d(z,y) 1= sup,en{smdn(z, y)}-

(2): If G is metrizable and balanced then one may assume in the proof of (1) that
each d,, is invariant (see Lemma . Therefore, d is also invariant.

Conversely, if the right (left) uniformity of G' can be generated by an invariant ultra-
metric d then clearly, G is metrizable and balanced. ([

3. UNIFORM FREE NA TOPOLOGICAL GROUPS

By TGr we denote the category of all topological groups. By AbGr, Prec, Pro we
denote its full subcategories of all abelian, precompact, and profinite (= inverse limits
of finite groups) groups respectively. Usually we denote a category and its class of all
objects by the same symbol.

In this section, unless otherwise is stated, all topological groups are considered with
respect to the two sided uniformity U,-. Assigning to every topological group G the
uniform space (G,Upy,) defines a forgetful functor from the category of all topological
groups TGr to the category of all uniform spaces Unif.



9

Definition 3.1. Let Q be a subclass of TGr and (X,U) € Unif be a uniform space.
By an Q-free topological group of (X,U) we mean a pair (Fo(X,U),i) (or, simply,
Fo(X,U), when i is understood), where Fqo(X,U) is a topological group from Q and
i1 X — Fo(X,U) is a uniform map satisfying the following universal property. For
every uniformly continuous map ¢ : (X,U) — G into a topological group G € ) there
exists a unique continuous homomorphism ® : Fo(X,U) — G for which the following
diagram commutes:

(X,U) —= Fo(X,U)

S

G

If Q is a full subcategory of TGr then a categorical reformulation of this definition
is that i : X — Fo(X,U) is a universal arrow from (X,U) to the forgetful functor
Q — Unif.

Remark 3.2. Also we use a shorter notation dropping U (and X) when the uniformity
(and the space) is understood. For example, we may write F(X) (or, Fg) instead of
Fo(X,U).

Every Tychonoff space X admits the greatest compatible uniformity, the so-called
fine uniformity, which we denote by Unasz. The corresponding free group Fo (X, Unmaz)
is denoted by Fq(X) and is called the Q-free topological group of X. For Q = TGr and
) = AbTGr we get the classical free topological group and free abelian topological group
(in the sense of Markov) of X keeping the standard notation: F(X) and A(X).

3.1. The existence.

Definition 3.3. A nonempty subclass Q) of TGr is said to be:

(1) SC-variety (see [2]) if Q is closed under: a) cartesian products; b) closed sub-
groups.

(2) SC-variety if Q is closed under: a) cartesian products; b) subgroups.

(3) variety (see [37]) if Q2 is closed under: a) cartesian products; b) subgroups; c)
quotients.

Note that while Pro is an SC-variety, all other subclasses Q of TGr from Remark
[L1] are varieties.

Theorem 3.4. Let Q be a subclass of TGr which is an SC-variety and (X,U) be a
uniform space.

(1) The uniform free topological group Fo = Fo(X,U) exists.

(2) Fq is unique up to a topological group isomorphism.

(3) (a) Fq is topologically generated by i(X) C Fgq.

(b) For every uniform map ¢ : (X,U) — G into a topological group G € Q) there
exists a continuous homomorphism ® : Fg — G such that ® oi = .
Moreover, these two properties characterize Fo(X,U).
(4) If Q is an SC-variety then Fq is algebraically generated by i(X).

Proof. (1) : Existence. We give here a standard categorical construction (with some
minor adaptations) which goes back to Samuel and Kakutani. Denote m := max (| X|, Xp).
Let § be a subclass of  such that |G| < 22" for G € §, distinct members of § are
not topologically isomorphic, and every topological group H for which |H| < 22" is
topologically isomorphic with some G € §. Let {(G}, ¢;)};jes consist of all pairs (G}, ;)
where G; € § and ¢; is a uniformly continuous mapping of X into G;. It is easy to see
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that § is a set. Then J is a set as well. If H € Q is a topological group, |H| < 22", and
 is a uniformly continuous mapping of X into H, then there is jg € J and a topological
isomorphism 7 : G, — H such that Tog;, = ¢. In such a case we identify the pair (H, ¢)
with the pair (Gj, ¢j,). Let M =[], ; G;. For x € X, define i(z) € M by i(z); = ¢;(z).
Finally, let F := Fq(X,U) be the closed subgroup of M topologically generated by i(X).
Since the class Q is an SC-variety, both M and Fp, are in Q by conditions (a) and (b)
of Definition 1. Clearly, i : (X,U) — Fq is uniformly continuous. Now, if ¢ is a
uniformly continuous mapping of X into any topological group G € €2, the image ¢(X)
in G is contained in the subgroup P := cl(< ¢(X) >) of G, where < ¢(X) > is the
subgroup of G algebraically generated by ¢(X). Since | < p(X) > | <m = max{|X|,Ro}
and P is Hausdorff we have |P| < 22", Thus, by our assumption on g, the pair (P, ) is
isomorphic to a pair (G}, ¢j,) for some jo € J. Let 7, : Fo — G}, be the restriction on
Fq C Hjej G of the projection onto the jo-th axis. Then ¢ = ® o4, where ® := 7o 7j,.
Finally, note that ® is unique since < i(X) > is a dense subgroup of Fn and G is
Hausdorft.

(2) : Uniqueness. Assume that there exist Hausdorff topological groups Fi, F» and
uniformly continuous maps i : X — Fj, j: X — Fj such that the pairs (i, F}) and (7, F2)
satisfy the universal property. Then by Definition there exist unique continuous
homomorphisms ®; : Fo — Fy, P2 : F; — F5 such that $3 04 = j, &1 05 = 4. For
® € {®) 0Py, Idp, } we have Poi =i, and thus ®; 0Py = Idp, . Similarly, Po0®; = Idp,.
Therefore, &5 : I} — F5 is a topological group isomorphism.

(3) Assertion (a) follows from the constructive description of Fq given in the proof of
(1), and from (2). Property (b) is a part of the definition of F. These two properties
characterize Fg since the latter group is Hausdorft.

(4) As an SC-variety 2 is closed under (not necessarily closed) subgroups. So in the
constructive description appearing in the proof of (1) we may define F, as the subgroup
algebraically generated by i(X). Apply (2) to conclude the proof. O

The completion of G with respect to the two-sided uniformity is denoted by G. The
proof of the following observation is straightforward.

Lemma 3.5. Let Q be an SC-variety. Denote by Q¢ its subclass of all complete groups
from Q. Then Fo, = Fq.

3.2. Classical constructions. For {2 = TGr the universal object Fqo(X,U) is the uni-
form free topological group of (X,U). Notation: F'(X,U). This was invented by Nakayama
and studied by Numella [39] and Pestov [40, [41].

In particular, Pestov described the topology of F(X,U) ([40], see also Remark
below). If Q@ = AbGr then Fo(X,U) is the uniform free abelian topological group of
(X,U). Notation: A(X,U). In [51] Sipacheva used Pestov’s description of the free topo-
logical group F(X) to generate a description of the free abelian topological group A(X).
Similarly, one can prove the following:

Theorem 3.6. (compare with [51, page 5779]) Let (X,U) be a uniform space. For
each n € N, we fix an arbitrary entourage W, € U of the diagonal in X x X and set
W = {Wn}nGNa

UW,) ={ex —ey: (z,y) € Wy, e =+1},
and

UW) = JOW) + UWa) + - + U(Wy)).
neN
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The sets ﬁ(W), where W are all sequences of uniform entourages of the diagonal, form
a neighborhood base at zero for the topology of the uniform free abelian topological group
A(X,U).

Recall a classical result concerning the (non)metrizability of free topological groups.

Theorem 3.7. [2, Theorem 7.1.20] If a Tychonoff space X is non-discrete, then neither
F(X) nor A(X) are metrizable.

Theorem |3.7| has a uniform modification. In fact, we can mimic the proof of Theorem
to obtain the following;:

Theorem 3.8. Let U be a non-discrete uniformity on X and
Q2 € {TGr, Prec,SIN, AbGr}.
Then Fo(X,U) is not metrizable.

Contrast this result with Theorem [4.16] where we show that for some natural sub-
classes of Q2 = NA the free group Fqo(X,U) is metrizable whenever (X, i) is metrizable.

3.3. Free groups in some subclasses of NA. In Remark we gave a list of some
classes 2 and the corresponding free groups. We keep the corresponding notations.

Theorem 3.9. Let (X,U) be a non-archimedean uniform space and
G € {F/\/A7 F/I\)/A7 A./\/A? BNA}
Then:

(1) The universal morphism i : (X,U) — G is a uniform embedding.

(2) If G € {Fya, F%,} then G is algebraically free over i(X).
If G = Ay 4 or G = By a then G is algebraically isomorphic to A(X), or B(X),
respectively.

(3) i(X) is a closed subspace of G.

Proof. (1) : It suffices to prove that the universal morphism i : X — B, 4 is a uniform
embedding. We show the existence of a Hausdorff NA group topology 7 on the free
Boolean group B(X), and a uniform embedding ¢ : (X,U) — (B(X), 7), that clearly will
imply that i : (X,U) — By is a uniform embedding.

Consider the natural set embedding

t: X = B(X), «(z) = {z}.
We identify x € X with «(z) = {z} € B(X). Let B := {< € >}.cpqu), Where Eq(U) is
the set of equivalence relations from U and < € > is the subgroup of B(X) algebraically
generated by the set
{r+y e B(X): (z,y) €c}.
Now, B is a filter base on B(X) and Vb € B(X) Ve € Eq(U) we have
<e>+<e>=—<e>=b+<e>+b.

It follows that there exists a N A group topology 7 for which B is a local base at the
identity. To prove that this topology is indeed Hausdorff, we have to show that if u £ 0
is of the form u = 22221 a; where n € N and a; € X V1 < i < 2n, then there exists
e € Eq(U) such that u ¢< e > . Since (X,U) is a Hausdorff uniform space there exists
e € U such that (a;,a;) ¢ € for every ¢ # j. Assuming the contrary, let u €< e > . Then
there exists a minimal m € N such that u = Y ;" | (z; +y;) where (z;,y;) € e V1 < i < m.
Without loss of generality we may assume that there exists 1 < iy < m such that a1 = z;,.

Note that y;, # a; for every 1 < j < 2n, since otherwise we obtain a contradiction to the
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minimality of m or to the definition of €. Since B(X) is the free Boolean group over X
and € is symmetric we can assume without loss of generality that there exists r # i such
that y;, = z,. It follows that (z;, + vi,) + (zr + yr) = i, + yr. Since ¢ is transitive we
also have (z;,,yr) € € and we obtain a contradiction to the minimality of m. Therefore,
7 is Hausdorff.

We show that ¢ : (X,U) — (B(X),7) is uniformly continuous. To see this observe
that if (z,y) € € then  +y €< ¢ > . Finally, assume that (z,y) € X x X such that
x +y €< ¢ > where ¢ is an equivalence relation. We show that (x,y) € € and conclude
that ¢ : (X,U) — (B(X), ) is a uniform embedding. Since x + y €< £ > there exists
a natural number n such that  +y = > ;(a; + b;), where (a;,b;) € € V1 < i < n.
Moreover, n may be chosen to be minimal. By the definition of B(X) and the fact that e
is symmetric we may assume without loss of generality that there exists 1 < iy < n such
that a;, = x. The case b;, = y is trivial. So we can assume that b;, # y. Since B(X) is
the free Boolean group over X there exists ¢; # io such that either b;, = a;, or b;, = b;,.
In the former case we have (a;, + bi,) + (ai, + biy) = ai, + bi, and (a;y, b;,) € €, since
€ is transitive, which contradicts the minimality of n. The latter case yields a similar
contradiction.

(2) : We can now identify X with i(X). Denote by X /e the quotient set equipped with
the discrete uniformity. The function f. : X — X/e is the uniformly continuous map
which maps every x € X to the equivalence class [r].. We first deal with the case
G = Fy 4. We reserve the notation f. also for the homomorphic extension from Fj 4 to
the (discrete) group F'(X/e). This allows us to define [w]; := f.(w) for every w € Fj 4.
Let w = ! - a:z,’“ € Fy . where t; € Z\ {0} for every 1 < i < k and z; # x4 for every
1<i<k—1. If wis of the form x!, one can consider the extension f : Fy4x — Z of the
constant function f : (X,U) — Z, f = 1. We have

flw)=t#0.

Otherwise, assume that w is not of the form z!. Since (X,U) is a non-archimedean
Hausdorff space there exists an equivalence relation € € U such that

(l’i,l‘i_H) ¢€Vi S {1,2,...,k—1}.

Since F'(X/e) is algebraically free it follows that f.(w) # ep(x/e). The groups F(X/¢)
and Z (being discrete groups) are both non-archimedean Hausdorff. So we can conclude
that Fl 4 is algebraically free over X.

For the case G = F{}, use the fact that Z and F(X/e) are also balanced.

For the case G = Ay 4 one may use the fact that Z is also abelian and replace F(X/¢)
with A(X/e). Up to minor changes the proof is similar to the proof of the case G = F?, ,.
For the Boolean case replace Z with Zs and F(X/e) with B(X/¢).

(3) : In case G = Fy 4, let w € Fy 4 \ X. Assume first that w is either the identity
element of F\ 4 or has the form z~! where € X. Then

flw)# fly)=1vyeX

where f : Fyyu — 7Z is the extension of the constant function f : (X,U) — Z, f = 1.
Since Z is discrete the set O := {2z € Fy4| f(2) # 1} is clearly an open subset of Fy 4
and we have w € O C X©. Let k > 1 and w = 2! xfj where t; € Z \ {0} for every
1 <i < kand z; # ;41 for every 1 < 4 < k — 1. Then there exists an equivalence
relation € € U such that

(l‘i,xiJrl) ¢5V2 S {1,2,‘..,]{—1}.
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Since F'(X/e) is algebraically free it follows that [w]. # [z]c Vo € X. Since F(X/¢) is
discrete the set U := {z € F4| f-(2) = [w]:} is an open subset of F\, and we also have
w € U C X%. This implies that (X,U) is a closed subspace of Fj 4.

For G # Fy 4 we may use the same modifications appearing in the proof of (2). O

Remark 3.10. It is clear that if the universal morphism i : (X,U) — G is a uniform
embedding, where G is non-archimedean, then (X,U) is non-archimedean.

Lemma 3.11. LetU be the discrete uniformity on a finite set X. Then F{'¢¢ algebraically
is the free group F(X) over X.

Proof. 1t suffices to find a Hausdorff non-archimedean precompact group topology 7 on
the abstract free group F'(X). Consider the group topology 7 generated by the filter base
{N <« F(X): [F(X): N] < oc0}. Clearly, 7 is a non-archimedean precompact group
topology on F(X). To see that 7 is Hausdorff recall that every free group is residually
finite, that is, the intersection of all normal subgroups of finite index is trivial. O

Theorem 3.12. Let (X,U) be a non-archimedean precompact uniform space and
G e {F{, Fpo}
Then:

(1) The universal morphism i : (X,U) — G is a uniform embedding.
(2) Firee is algebraically free over i(X).
(3) i(X) is a closed subspace of Fyec.

Proof. (1) : (X,U) is a uniform subspace of its compact zero dimensional completion
()A( ,Z;{\) Consider the compact group Z;U(X) where w()/i\' ) is the topological weight of

X. Then it is clear that ()? ,LA{) is uniformly embedded in ZSJ(X) . Now, since Z;U(X)
profinite group then each of the universal morphisms is a uniform embedding.

(2) : We use similar ideas to those appearing in the proof of Theorem 2. This time
due to the precompactness assumption the set X /e is finite. By Lemma Firee(X/e)
is algebraically free over the set X/e. Thus we may replace Fy (X /e) with F77¢(X/e),
and also the discrete topology on Z with its Hausdorff topology generated by all of its
finite-index subgroups, to conclude that F7¢° is algebraically free over i(X).

(3) : Very similar to the proof of Theorem [3.9]3. Just observe that

O:={z€ Fly| f(z) #£1}
is an open subset of F/¢°, since the group topology on Z which we consider this time
remains Hausdorff. Moreover, the set

U:={z e Fg{| f(2) ¢ {lz]e s w € X}}

is also an open subset of FY¢¢, since F¢°(X/e) is Hausdorff and {[z]; : * € X} is
finite. g

is a

4. FINAL NON-ARCHIMEDEAN GROUP TOPOLOGIES

In this section the topological groups are not necessarily Hausdorff. Recall that the
description of F'(X,U), given by Pestov in [40] (see also Remark [1.17}1 below), was based
on final group topologies, which were studied by Dierolf and Roelcke [4, Chapter 4]. Here
we study final non-archimedean group topologies.

In the sequel we present a non-archimedean modification of final group topologies.
The general structure of final non-archimedean group topologies is then used to find
descriptions of the topologies for the free NA groups from Remark



14

We also provide a new description of the topology of F?(X,U), the uniform free
balanced group of a uniform space (X,U).

Definition 4.1. Let P be a group, a a filter base on P and 2 C TGr an SC-variety.
Assume that there exists a group topology 7 on P such that:

(1) (P,T) € Q, and

(2) the filter a converges to e (notation: o — e) in (P, 7).

Then among all group topologies on P satisfying properties (1) and (2) there is a finest
one. We call it the Q-group topology generated by a and denote it by (a)q.

Definition 4.2. [4, Chapter 4]If P is a group and (By)nen @ sequence of subsets of P,

let
[(Bn)] == U U Br(1yBr2)** Br(n)-
neNreS,

Remark 4.3. Note that if (By,)nen is a constant sequence such that
Bi=By=---=B,=---=B

then [(B,)] = U,,eny B". In this case we write [B] instead of [(B,)]. It is easy to see that
if B = B~! then [B] is simply the subgroup generated by B.

Lemma 4.4. Let P be a non-archimedean topological group and L a base of N.(P).
Then the set {[B]: B € L} is also a base of Ne(P).

Proof. For every B € L we have [B] € N(P) since B C [B]. Let V € N.(P). We have
to show that there exists B € L such that [B] C V. Since G is non-archimedean, there
exists an open subgroup H such that H C V and H € N.(P). On the other hand, L is
a base of N (P) and therefore there exists B € £ such that B C H. From the fact that
H is a subgroup we conclude that

[Bl=|JB"CHCV.
neN
0

Lemma 4.5. (Compare with 4 Remark 4.27]) Let P be a group, « a filter base on P
and 0 an SC-variety. Then:

(1)
L= { U (pApp~* UpA[jlp_l) t A, cea(pe P)}
peP
is also a filter base on P and if (a)q exists then ()q = (L)q.
(2) If, in addition, all topological groups belonging to Q0 are balanced then

M = { U (pVp tupV=lp™h): Ve a}
peP

is a filter base on P and if (a)q exists then (a)g = (M)q.

Proof. (1) This follows from the fact that for every group topology 7 on P such that
(P,7) € Q the filter base o converges to e in (P, 7) if and only if £ converges to e in
P, 7). Note that L satisfies the following properties:
a) VAe L A=A
b) VA€ LVpe P3IBe€ L pBp ! CA.

(2) This follows from the fact that for every group topology 7 on P such that (P, 1) €
the filter base a converges to e in (P, 7) if and only if M converges to e in (P, 7). Note
that M satisfies the following stronger properties:

(
(
(
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(%) VAeE M A= A1,
(b*) YAe M 3B e MVpe P pBp~! C A

Lemma 4.6. Let P be a group, « a filter base on P and 2 an SC-variety.
(1) If @ = NA and « satisfies the following property:
(a) VA€ a¥pe PIBcapBp ! CA,
then a base of N¢(P,{(a)q) is formed by the sets [A], where A € a.
(2) If
Qe {NA ,NA,, AbNA BoolNA}

and « satisfies the stronger property

(a*) VAcadBcaVpe P pBp~! C A,

then the sets [A], where A € a, constitute a base of Ne(P,(c)q).
(3) If @ = NA N Prec and « satisfies property (a*) of (2) then

{N<P|[P:N<ooNJAca [A]C N}

is a local base at the identity element of (P, {a)q).
(4) If Q@ = SIN and « satisfies the following properties:
(a*) VAe M A= A1,
(b*)VAe M 3Be MVpe P pBp~! C A,
then a base of Ne(P,{(a)q) is formed by the sets [(Ay)], where Vn € N A,, € a.

Proof. (1) : Clearly [A]? C [A] and [A]~! = [A] VA € a. Moreover, for every A € a and
for every p € P there exists B € a such that p[B]p~! C [A]. Indeed, we can use property
(a) to find B € a such that pBp~! C A. It follows that p[B]p~! C [A]. This proves that
there exists a non-archimedean group topology 7 such that

([A]: Aca)

is a base of N (P, T). Clearly, a converges to e with respect to 7, and therefore 7 C (a)q.
Conversely, let o be any non-archimedean group topology on P such that

YU € No(P,0) 3A€a ACU.

To prove that o C T, let U € N.(P,0) be given. By Lemma there exists V' in
Nc(P, o) such that [V] C U, and, by the assumption, there exists a set A € o such that
A C V. Consequently, [A] C [V] C U, which proves o C T.

(2) : The proof of the ”"balanced case” is quite similar. The only difference is the new
condition
VAca3dBeaVpeP pBp ! CA,
which implies that the topology generated by the sets [A] is also balanced.
(3) : Precompact case: clearly there exists a non-archimedean precompact group topology
T on P such that
{N<aP|[P:N]<ocoANJAca[A] C N}
is a base of N.(P,T). It is also trivial to see that a converges to e with respect to 7.
Then, T is coarser than (a)q. Let o be any precompact non-archimedean group topology
on P such that
YU € N.(P,o) JA € a ACU.

To prove that ¢ C T, let N € N.(P,0) be given. We can assume that N is a finite-
index normal subgroup of P. By Lemma[4.4 there exists V in N,(P, o) such that [V] C U,
and, by the assumption, there exists a set A € a such that A C V. Consequently,
[A] C [V] € N which proves o C 7.

(4) : The proof is completely the same as the proof of [4, Proposition 4.28]. Observe that
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from condition (b*) it follows that the group topology, determined by the sets [(A4,)], is
also balanced. g

4.1. The structure of the free NA topological groups. Let (X,U) be a non-
archimedean uniform space, Eq(U) be the set of equivalence relations from U. Denote
by jo the mapping (z,y) — o~ 'y from X? to either F(X), A(X) or B(X) and by jj the
mapping (z,y) — zy~ .
Lemma 4.7. Let (X,U) be non-archimedean and let B C Eq(U) be a base of U.
(1) The topology of Fy 4 is the strongest among all non-archimedean Hausdorff group
topologies on F(X) in which the filter base
F={p(V)uj (V) Ve B}
converges to e.
(2) For
2 € {NAp,NA NPrec, AbNA,BoolNA}
the topology of Fq is (F)q where
F={j(V)| Ve B}
Proof. (1) : First recall that F\-4 is algebraically the abstract free group F(X) (see
Theorem 2). Let 7 be a non-archimedean group topology on F(X). We show that
Id : (X,U) — (F(X),7) is uniformly continuous if and only if F converges to e with
respect to 7.
The map Id : (X,U) — (F(X),7) is uniformly continuous if and only if for every
U € N.(F(X), ) there exists V' € B such that
VCU={(z,y):z lyeUnzy U}
The latter is equivalent to the following condition: there exists V' € B such that
2(V)Uji(V)cU.

Thus, Id : (X,U) — (F(X),7) is uniformly continuous if and only if F converges to e
with respect to 7. Clearly, the topology of F)j 4 is a non-archimedean Hausdorff group
topology on F(X) in which the filter base F converges to e. Moreover, for every non-
archimedean Hausdorff group topology 7 on F(X) in which F converges to e, the map
Id : (X,U) — (F(X),7) is uniformly continuous. Therefore Id : Fy, — (F(X),7) is
uniformly continuous. This completes the proof of (1).

(2) : The proof is very similar to the previous case. This time we can consider the filter
base {j2(V)| V € B} instead of {j2(V) U j5(V)| V € B} since all the groups Fp are
balanced. O

Lemma 4.8. Let (X,U) be a uniform space. For Q = SIN the topology of Fq is (F)q
where

F={5p(V)|VeB}.
Proof. Use the same arguments as those appearing in the proof of Lemma [4.7].2. ([

Definition 4.9. (1) Following [40], for every ¢ € UFX) let
Vei= |J wa@(w) us@w)w .
weF(X)
(2) As a particular case in which every v is a constant function we obtain the set

e=|J w(l)ugsE)w .

weF(X)
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Remark 4.10. Note that if ¢ € Eq(U) then (j2(e)) ™! = j2(e), (§5(¢))™! = (j3(¢)) and
é= J wha@uiEw™ = |J wile)w™
weF(X) weF(X)
Indeed, this follows from the equality wtstw™! = (ws)s™1t(ws)~ .
Note also that the subgroup [€] (see Remark generated by ¢ is normal in F(X).

The proof of the following lemma is straightforward.

Lemma 4.11. Let € be an equivalent relation on a set X. Consider the function
fe : X — X/e. Then ker(f:) = [€], where f. : F(X) — F(X/e) is the induced onto
homomorphism.

Theorem 4.12. Let (X,U) be a uniform space. Then {[(¢,)] : en € U Yn € N} is a
base of N,(FP?).

Proof. By Lemma the topology of F? is (F)q where
F ={j2(e)l € € B}
and (2 is the class of all balanced topological groups. According to Lemma [4.5/2 we have
(F)a = (M)q, where
M = { U (wAw P UwA lw) s A€ }"}.
weF(X)
In particular,
N(F") = N(F(X), (M)q).

By the description of the sets € in Definition [4.9/2 and Remark we have M = {¢:
¢ € B}. Finally, use Lemma 2 and Lemma 4 to complete the proof. O
Theorem 4.13. Let (X,U) be non-archimedean and let B C Eq(Ud) be a base of U.
Then:

(1) The family (of subgroups) {[Vy]: o € B} is a base of Ne(Fy4)-

(2) (a) The family (of normal subgroups) {[&] : € € B} is a base of Ne(FU,).

(b) The topology of Ff\’,A s the weak topology generated by the system of homo-
morphisms {f- : F(X) — F(X/¢e)}eep on discrete groups F(X/e).

Proof. (1) : By Lemma [4.7]1 the topology of Fy. is (F)q where
F ={j2(e)Ujz(e)| € € B}
and ( is the class of all non-archimedean topological groups. According to Lemma [4.5]1
(F)a = (L)q where
L= { U (@A UwAy'w™): Ay e F, we F(X)}.
weF(X)
In particular,
Ne(FNA) = Ne(F(X)a <£>Q)
By the description of the sets Vy in Definition .91 and Remark we have
L={Vy: ¢eBX]

Finally, use Lemma [4.5]1 and Lemma [£.6]1 to conclude the proof.
(2.a) : By Lemma [4.7}2 the topology of F{, , is (F)q where

F ={ja2(e)| € € B}
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and €) is the class of all non-archimedean balanced topological groups. According to
Lemma [1.5]2 (F)q = (M)q where
M = { U (wAw P UwA w1 s A€ .7-“}.

weF(X)
In particular,

Ne(Fja) = Ne(F(X), (M)q).
By the description of the sets & in Definition [4.9]2 and Remark M ={é:ec€e B}
Finally, use Lemma [4.5]2 and Lemma [4.6]2.

(2.b) : Use (2.a) and observe that ker(f.) = [¢] by Lemma O

Theorem 4.14. Let (X,U) be non-archimedean and let B C Eq(Ud) be a base of U.

(1) (abelian case) For every e € B denote by < € > the subgroup of A(X) algebraically
generated by the set

{$_y€A(X) : (I7y) 66},

then {< € >}een is a base of No(An.a)-
(2) (Boolean case) If < e > denotes the subgroup of B(X) algebraically generated by

{xiy € B(X) : (ﬂf,y) € 6}7
then {< € >}een is a base of No(Byra)-
Proof. (1) : By Lemma 2 the topology of Ax 4 is (F)x4 where
F ={ja(e)| € € B}.
Therefore,
NO(AN’A) = NO(A(X)a <]:>NA)'

By Remark and Lemma [1.6]2 a base of Ny(A(X),(F)ua) is formed by the sets
[72(¢)], where e € B and [j2(g)] is the subgroup generated by ja(£). Since € is symmetric
we have

j2(e) ={y —z € A(X) : (z,y) € e} = {2 —y € A(X) : (z,y) € e}
The proof of (2) is similar. O

Remark 4.15. Note that the system B in Theorem [£.13]2 induces a naturally defined
inverse limit lim ez F (X/e) (of discrete groups F'(X/e)) which can be identified with the

complete group F? ,. Similarly, @563 A(X/e) and @563 B(X/e) can be identified
with the groups Ay 4 and B, respectively.
Theorem 4.16. Let X := (X,U) be a Hausdorff non-archimedean space and
G € {F},(X), Aya(X), Bya(X)}.
Then
(1) x(G) =wlUd) and w(G) =wlU) - I(U).

(2) If (X,d) is an ultra-metric space then G is an ultra-normable group of the same
topological weight as X .

Proof. (1) One may assume in Theorems [4.13]2 and [4.14] that B C Eq(U) is a base of U
of cardinality w(l/). This explains x(G) = w(U). Since {“(G) = () (Lemma [2.3]3) we
can conclude by Lemma [2.3]1 that w(G) = w(lf) - L(U).

(2) Combine (1) and Lemma [2.9] O
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Remark 4.17. (1) Note that Pestov showed (see [40]) that the set {[(Vi, )]}, where
{4, } extends over the family of all possible sequences of elements from % (X,
is a base of N.(F(X,U)).

(2) Considering only the sequences of constant functions, we obtain the set {[(&,)] :
en € U ¥n € N} which is a base of N,(F?(X,U)) by Theorem [4.12]

(3) Let (X,U) be a non-archimedean uniform space. One may take in (1) only the
constant sequences and obtain the set {{Vy] : ¢ € UFX)} which is a base of
Ne(Fxa) by Theorem 1.

(4) If, in addition, the functions v are all constant we obtain a base of N.(F? ) (see
Theorem 2).

(5) NA is closed under products and subgroups. So NA is a reflective subcategory
(see for example, [54], Section 9]) of TGr. For every topological group G there ex-
ists a universal arrow f : G — ry4(G), where ry4(G) € NA. For every uniform
space (X,U) the group Fy4(X,U) is in fact ry4(G), where G := F(X,U).

4.2. Noncompleteness of A, ,(X,U). In this subsection we show that A, 4(X,U) is
never complete for non-discrete U.

Definition 4.18. (1) Let w =Y | kiz; be a nonzero element of A(X), where n €
N, and for all1 <i<mn: x; € X and k; € Z\ {0}. Define the length of w to be
Yoy |ki| and denote it by lh(w).
(2) The length of the zero element is 0.
(8) For a non-negative integer n we denote by By, the subset of A(X) consisting of
all words of length < n.

Lemma 4.19. For every n € N the set By, is closed in A 4.

Proof. Tt suffices to show that for every word w of length > n there exists ¢ € U such
that w+ < € > NB,, = (. Since U is Hausdorff there exists ¢ € U such that for every
x # y € supp(w) we have (x,y) ¢ e. It follows that for every (z,y) € € we have either
Ih(w+(z—y)) = Ih(w) or Ih(w+(z—y)) = lh(w)+1. Therefore, w+ < & > NB, =0. O

Lemma 4.20. Let (X,U) be a non-archimedean non-discrete uniform space. Then, for
every n € N, int(By,) = 0.

Proof. Let w € B,,. Since (X,U) is non-discrete and Hausdorff, every symmetric en-
tourage € € U contains infinitely many elements of the form (x,y), where x # .
It follows that there exists (z,y) € ¢ such that x ¢ supp(w). Now, if y ¢ supp(w)
then (h(w + z — y) = lh(w) + 2. Otherwise, we have lh(w + x — y) = lh(w) + 2 or
Ih(w+y — ) = lh(w) + 2, and either one of these cases implies that w+ < & >¢ B,,.
Therefore, by Theorem [.14]1, int(B,) = 0. O

Theorem 4.21. Let (X,U) be a non-archimedean metrizable non-discrete uniform space.
Then Ay 4 is not complete.

Proof. By Theorem A 4 is metrizable. This group is indeed non-complete. Other-
wise, by Baire Category Theorem A, is not the countable union of nowhere-dense closed
sets. This contradicts the fact that Ay 4 = UpenByp, where the sets B,, are nowhere-dense

and closed (see Lemmas and 4.20)). O

As a contrast recall that A(X,U) is complete for every complete uniform space (X,U)
(which for U = Upas gives Tkachenko-Uspenskij theorem). See [2, page 497].
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5. FREE PROFINITE GROUPS

The free profinite groups (in several subclasses 2 of Pro) play a major role in several
applications [I7, [46], [14]. By Lemma the free profinite group Fp,, can be identified

with the completion F[7¢¢ of the free precompact NA group F{7e¢. Its description comes
from the following result which for Stone spaces is a version of a known result in the
theory of profinite groups. See for example [46, Prop. 3.3.2].

Theorem 5.1. Let (X,U) be a non-archimedean precompact uniform space and let B C
EqU) be a base of U of cardinality w(U). Then:
(1) The set S:={H < F(X): [F(X):H <oo, 3ee€B [¢] C H} is a local base
at the identity of F{ec.
(2) Let G € {Fp,,, F7¢}. Then x(G) = w(G) = wlUd) = w(X). In particular, G is

metrizable for every metrizable U.
Proof. (1) : By Lemma 2 the topology of F\¢ is (F)q where
F ={j2(e)l e € B}
and Q = NA N Prec. According to Lemma [£.52 the latter coincides with (M)q where

M = { U (wAw UwA e A ]-'}.
weEF(X)

In particular,
Ne(Fi7{) = Ne(F(X), (M)q).

By the description of the sets & in Definition [£.9]2 and Remark M={é:ec € B}.
Finally, use Lemmas [£.52 and [£.6]3.

(2) : Since U and G are precompact we have w(U) = w(X) and x(G) = w(G). So we
have only to show that x(G) = w(U). Assume that |B| = w(U). By the description of S
in (1), it suffices to show that for every € € B there are countably many normal finite-
index subgroups of F'(X) containing [¢]. Consider the function f; : X — X/e. Note that
F(X/e) is a free group with finite number of generators. It is well known that the set
of all (normal) finite-index subgroups of F'(X/¢) is countable. By the Correspondence
Theorem there are countably many normal finite-index subgroups of F'(X) containing
ker(f.), where f. : F(X) — F(X/¢) is the induced onto homomorphism. Now in order
to complete the proof recall that ker(f.) = [¢] by Lemma O

Let 2 be an SC-variety of groups. Following [54] let us say that two compact spaces
X and Y are Q-equivalent if their Q-free groups F(X) and Fu(Y) are topologically
isomorphic. Notation: X =g Y. In particular, we have the classical concepts of M-
equivalent (in the honor of Markov) and A-equivalent compact spaces (for Q@ = TGr
and 2 = AbGr, respectively). For free compact (abelian) groups and the corresponding
equivalence see [21].

Similarly, we get the concepts of N A-equivalent, AbN A-equivalent and Pro-equivalent
compact spaces. The Pro-equivalence is very rigid as the following remark demonstrates.

Remark 5.2. From Melnikov’s result (see [46, Proposition 3.5.12]) it follows that every
free profinite group on a compact infinite Stone space X is isomorphic to the free profinite
group of the 1-point compactification of a discrete space with cardinality w(X). So two
infinite Stone spaces X and Y are Pro-equivalent if and only if w(X) = w(Y). This
implies that there are Pro-equivalent compact spaces which are not M or A-equivalent.

Note that if X is the converging sequence space and Y is the Cantor set then X Zp., Y
by Remark On the other hand, X 2q Y, where Q@ = NA NPrec, because F/77°(X)
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is countable in contrast to F¢¢(Y). It would be interesting to compare 2-equivalences
on Stone spaces (with the same weight and cardinality) for different subclasses Q2 of NA.

5.1. The Heisenberg group associated to a Stone space and free Boolean profi-
nite groups. To every Stone space X we associate in [35] the natural biadditive mapping

(1) U}ZC(X,ZQ)XC(X,ZQ)*—)ZQ

Where V := C(X, Zsy) can be identified with the discrete group (with respect to sym-
metric difference) of all clopen subsets in X. Denote by V* := hom(V, T) the Pontryagin
dual of V. Since V is a Boolean group every character V' — T can be identified with a
homomorphism into the unique 2-element subgroup 2 = {1, —1}, a copy of Zy. The
same is true for the characters on V*, hence the natural evaluation map w : V x V* — T
(w(zx, f) = f(x)) can be restricted naturally to V' x V* — Zs. Under this identification
V* :=hom(V, Zs) is a closed subgroup of the compact group ZY . In particular, V* is a
Boolean profinite group. Similar arguments show that, in general, any Boolean profinite
group G is the Pontryagin dual of the discrete Boolean group G*.

We prove in [35] that for every Stone space X the associated Heisenberg type group
H = (Zy x V) X\ V* is always minimal.

This setting has some additional interesting properties. Note that the natural evalu-
ation map

0: X =V o6, 0:(f) = f(z)
is a topological embedding into V*, where w(V*) = w(X). Moreover, if X is a G-space
then the induced action of G on V* is continuous and § is a G-embedding.

The set 6(X) separates points of V' via the biadditive mapping w in . Hence
the subgroup generated by 6(X) in V* is dense. We can say more using additional
properties of Pontryagin duality. We thank M. Jibladze and D. Pataraya for the following
observation (presented here after some simplifications).

Remark 5.3. (M. Jibladze and D. Pataraya) The Boolean profinite group V* together
with § : X — V* in fact is the free Boolean profinite group Bp,,(X) of X. In order to
see this let f : X — G be a continuous homomorphism into a Boolean profinite group
G. Then G is the Pontryagin dual of a discrete Boolean group H. That is, G = H*.
Now consider the natural inclusion

v:G* =hom(G,Zs) — V =C(X,Zs).

Its dual arrow v* : V* — G** can be identified with v* : V* — G = G* such that
v*od = f. Such extension v* of f is uniquely defined because the subgroup generated
by §(X) C V* is dense.

6. SURJECTIVELY UNIVERSAL GROUPS

We already proved in Theorem [£.16] that for metrizable uniformities the corresponding
free balanced, free abelian and free Boolean non-archimedean groups are also metrizable.
The same is true by Theorem for the free profinite group which can be treated as
the free compact NA group over a uniform space. These results allow us to unify
and strengthen some old and recent results about the existence and the structure of
surjectively universal NA groups.

Let €2 be a class of topological groups. We say that a topological group G is surjectively
universal (or, co-universal) in the class Q if G € Q and every H € (Q is isomorphic to a
topological factor group of G.

Remark 6.1. We list some natural classes {2 containing surjectively universal groups:
(1) (Ding [9]) Polish groups. This result answers a long standing question of Kechris.
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(2) (Shakhmatov-Pelant-Watson[53])

(a) The class of all abelian Polish groups. More generally the class of all abelian

complete groups with weight < k.

(b) The class of all balanced metrizable complete groups with weight < k.
(3) (See Gao [15] for (a),(b),(c) and also Gao-Xuan [16] for (b),(c))

(a) NA Polish groups.

(b) NA abelian Polish groups.

(¢c) NA balanced Polish groups.
(4) (Gildenhuys-Lim [I7, Lemma 1.11] (see also [46, Thm 3.3.16])) Profinite groups

of weight < k.

Lemma 6.2. The Baire space B(k) = (kY°,U) is co-universal in the class of all com-
pletely metrizable non-archimedean uniform spaces with topological weight < k.

Proof. (First proof) By Shakhmatov-Pelant-Watson [53] there exists a Lipshitz-1 onto
open (hence, quotient) map B(k) — (X,d) for every complete bounded metric space
(X, d) with topological weight < k.

(Second proof) By Ellis [I1] for every complete ultra-metric space X and its closed
subspace Y there exists a uniformly continuous retraction r : X — Y (which necessarily
is a quotient map by Lemma . O

Lemma 6.3. (see for example [12, Cor. 2.4.5]) If the composition foo f1 : X — Z of
continuous maps f1 : X =Y and fo : Y — Z is a quotient map, then fo:Y — Z is a
quotient map.

Theorem 6.4. (1) Fby4(k%0,U) is surjectively universal in the class of all balanced
NA metrizable complete groups with weight < k.
(2) Aya(sR0,U) is surjectively universal in the class of all abelian NA metrizable
complete groups with weight < k.
(3) Bya(K™,U) is surjectively universal in the class of all Boolean NA metrizable
complete groups with weight < K.

Proof. We give a proof only for (1) because cases (2) and (3) are very similar.
By Theorem Fbyui= Fby (KN Z/{) is metrizable. Hence, Fb ~va Is metrizable,
too. Furthermore, the topomal weight of F' Fb wna is k. Indeed, k™0 topologically gener-

ates Fb,; 4. So, by Lemma 2.3 we get

w(ﬁ/\/A) = X(ﬁ/\m) : lu(ﬁNA) =No - lu(HNOau) =K.
Let P be a balanced N A metrizable complete group with topological weight < k. Then

its uniformity p is both complete (by definition) and non-archimedean (by Fact [2.6]2)
By Lemma there exists a uniformly continuous onto map f : k% — (P, p) which is

a quotient map of topological spaces. By the universal property of F?, , (Lemma (3. )
there exists a unique continuous homomorphlsm f Fb va — P which extends f. That

is, f = f o, where i : kY — Fb, b is the universal arrow. Since f : k¥ — P is a
quotient map we obtain by Lemma that f is a quotient map. O

If in (1) and (2) we assume that x = Xy then we in fact deal with Polish groups. In
this case we get very short proofs of the results mentioned in Remark (assertions 3.b
and 3.c). A new point in this particular case is that the corresponding universal groups
come dlrectly as the free objects. Indeed, recall that by Lemma [3.5] the complete groups

F NAs A NAs BN 4 in Theorem [6.4] are Q¢-free groups for the corresponding classes.
Result (3) in Theorem [6 m 6.4 seems to be new.
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Question 6.5. Let k > w. Is it true that there exists a co-universal space in the class
of all complete non-archimedean uniform spaces with dw(X,U) < (k,k) ?

A positive solution for Question will imply, by Theorem and the approach of
Theorem that there exists a co-universal group in the class of all non-archimedean
balanced (abelian, Boolean) groups with topological weight < k.

The following theorem is known in the theory of profinite groups. Here we provide a
very short proof of the existence of surjectively universal profinite groups of weight < m
using Hulanicki’s theorem. The first assertion can be derived from [I7, Lemma 1.11] (or
[46, Thm 3.3.16]). Its version for the case m = X goes back to Iwasawa. This case was
proved also in [16].

Theorem 6.6. (1) For every infinite cardinal m there exists a surjectively universal
group in the class Progy of all profinite groups of weight < m.
(2) Every free profinite group Fp,,(X) over any infinite Stone space X of weight m
is a surjectively universal group in the class Proy,.

Proof. (1) Let X = {0,1}™. By Theorem [5.1]3, w(Fp,,(X)) = w(X). So, Fp,.(X) €
Proy,. By the universal property of Fp,,(X) it is enough to show that any G € Proy, is
a continuous image of X. It is obvious for finite G. By a theorem of Hulanicki (see [20),
Thm 9.15]) every infinite G € Proy, is homeomorphic to {0,1}X(%) = {0, 1}%(%), Since
w(G) < m, there exists a continuous onto map ¢ : {0,1}™ — G.

(2) See Remark O

7. AUTOMORPHIZABLE ACTIONS AND EPIMORPHISMS IN TOPOLOGICAL GROUPS

Resolving a longstanding principal problem introduced by K. Hofmann, Uspenskij [59]
showed that in the category of Hausdorff topological groups epimorphisms need not have
a dense range. Dikranjan and Tholen [5] gave a rather direct proof of this important
result of Uspenskij. Pestov gave a useful criterion [42] [44] (Fact which we use below
in Theorem This test is closely related to the concept of the free topological G-group
of a (uniform) G-space X introduced in [31]. We denote it by F(X). It is a natural
G-space version of the usual free topological group. Similarly to Definition [3.1] one may
define Q-free (uniform) G-group Fgo(X,U).

A topological (uniform) G-space X is said to be automorphizable if X is a topological
(uniform) G-subspace of a G-group Y (with its two-sided uniform structure). Equiva-
lently, if the universal morphism X — Fg(X) of X into the free topological (uniform)
G-group Fg(X) of the (uniform) G-space X is an embedding.

Fact 7.1. (Pestov [42, [44]) Let f : M — G be a continuous homomorphism between
Hausdorff topological groups. Denote by X := G/H the left coset G-space, where H is
the closure of the subgroup f(M) in G. The following are equivalent:

(1) f: M — G is an epimorphism.

(2) The free topological G-group Fg(X) of the G-space X is trivial.

Triviality in (2) means ‘as trivial as possible’, that is, Fg(X) is isomorphic to the
cyclic discrete group.

Remark 7.2. Let X be the n-dimensional cube [0, 1] or the n-dimensional sphere S,,.
Then by [31] the free topological G-group Fg(X) of the G-space X is trivial for every
n € N, where G = Homeo (X) is the corresponding homeomorphism group. So, one
of the possible examples of an epimorphism which is not dense can be constructed as
the natural embedding H — G where G = Homeo (S;) and H = G is the stabilizer
of a point z € S;. The same example serves as the original counterexample to the
epimorphism problem in the paper of Uspenskij [59].
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In contrast, for Stone spaces we have:

Fact 7.3. [35, Lemma 4.3.2] Every continuous action of a topological group G on a Stone
space X is automorphizable (in NA). Hence the canonical G-map X — Fg(X) is an
embedding.

Roughly speaking the action by conjugations of a subgroup H of a non-archimedean
group G on G reflects all possible difficulties of the Stone actions. Below, in Theorem
we extend Fact to a much larger class of actions on non-archimedean uniform
spaces, where X need not be compact. This will be used in Theorem which deals
with epimorphisms into N A-groups.

Definition 7.4. [30,832] Let 7 : G x X — X be an action and U be a uniformity on X.
We say that the action (or, X ) is quasibounded if for every ¢ € U there exist: 6 € U
and a neighborhood O of e in G such that

(9z,9y) €V (z,y) €0, g€ O.

We say that the action on the uniform space (X,U) is m-uniform if the action is
quasibounded and all g-translations are U-uniformly continuous. Equivalently, for every
€ €U and gy € G there exist: § € U and a neighborhood O of gy in G such that

(9z,9y) €V (z,y) €0, g€ O.

For a given topological group G denote by Unif® the triples (X,U, ) where (X,U) is
a uniform space and 7 : G x X — X is a continuous w-uniform action.

It is an easy observation that if the action 7 : G x X — X is U-quasibounded and the
orbit maps  : G — X are continuous then 7 is continuous.

It is a remarkable fact that a topological G-space X is G-compactifiable if and only
if X is U-quasibounded with respect to some compatible uniformity ¢« on X, [30, BI].
This was the main motivation to introduce quasibounded actions. This concept gives a
simultaneous generalization of some important classes of actions on uniform spaces.

Fact 7.5. [30, BI] We list here some examples of actions from Unif®.

(1) Continuous isometric actions of G on metric spaces.

(2) CompG C Unif®. Continuous actions on compact spaces (with their unique
compatible uniformity).

(3) (G/H,U,) € Unif’. Let X = G/H be the coset G-space and U, is the right
uniformity on X (which is always compatible with the topology).

(4) Let X be a G-group. Then (X,U) € Unif® for every U € {Up, Uy, Upyr,Uipye }

Recall that the well known Arens-Eells linearization theorem (cf. [1]) asserts that every
uniform (metric) space can be (isometrically) embedded into a locally convex vector space
(resp., normed space). This theorem on isometric linearization of metric spaces can be
naturally extended to the case of non-expansive semigroup actions provided that the
metric is bounded [33], or, assuming only that the orbits are bounded [52].

Furthermore, suppose that an action of a group G on a metric space (X,d) is only
m-uniform in the sense of Definition (and not necessarily non-expansive). Then again
such an action admits an isometric G-linearization on a normed space.

Here we give a non-archimedean G-version of Arens-Eells type theorem for uniform
group actions. Note that we will establish an ultra-metric G-version in Theorem [8.2]
below. The assumption (X,U) € Unif® in Theorems and is necessary by Fact
54
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Theorem 7.6. Let m: G X X — X be a continuous action of a topological group G on
a non-archimedean uniform space (X,U). If (X,U) € Unif® then the induced action by
automorphisms

TG X BNA(X) - BNA(X)v (g?u) = gu
is continuous and (X,U) is a uniform G-subspace of By a(X). Hence, (X,U) is uniformly
G-automorphizable (in NA).

Proof. By Theorem 2 {< & >}eemqu) is a base of Ny(Bya). By Theorem
(X,U) is a uniform subspace of By4. It is easy to see that (X,U) is in fact a uniform
G-subspace of By 4(X). We show now that the action 7 of G on By 4(X) is quasibounded
and continuous. The original action on (X,U) is m-quasibounded and continuous. Thus,
for every e € Eq(U) and gy € G, there exist: 6 € Eq(U) and a neighborhood O(gp) of go
in G such that for every (z,y) € ¢ and for every g € O we have

(gz,9y) € €.

This implies that
g<d>C<e> VgeO,

which proves that 7 is quasibounded. The map ¢ : X — Bya(X), z — {z} is a
topological G-embedding. Together with the fact that +(X) algebraically spans By 4(X)
this implies that the orbit mappings G — Bux(X), g — gu are continuous for all
u € Bya(X). So we can conclude that 7 is continuous (see the remark after Definition

and By 4(X) is a G-group. O

Remark 7.7. Let (X, 1) be a non-archimedean uniform space and 7 : G x X — X be a
continuous action such that (X, z) € Unif®. The lifted action of G on By, is continuous
as we proved in Theorem This implies that B, 4 is the free topological G-group of
(X,U) in the class © of non-archimedean Boolean G-groups. Similarly, one may verify
that the same remains true for FY, ,, Ay, F55e¢, Fp,,. The case of Fy4(X,U), however,
is unclear.

Recall that the sets
U:={(aH,bH):bH CUaH},

where U runs over the neighborhoods of e in G, form a uniformity base on G/H. This
uniformity U, (called the right uniformity) is compatible with the quotient topology (see,
for instance, [4]).

Theorem 7.8. Let f : M — G be an epimorphism in the category TGr. Denote by H
the closure of the subgroup f(M) in G. Then each of the following conditions implies
that f(M) is dense in G.

(1) The coset uniform space (G/H,U,) is non-archimedean.
(2) G € NA.
(3) (T.H. Fay [13]) H is open in G.

Proof. (1) We have to show that H = G. Assuming the contrary consider the nontrivial
Hausdorff coset G-space G/H. By Fact 3 the natural continuous left action 7 :
G x G/H — G/H is w-uniform. Hence, we can apply Theorem to conclude that the
nontrivial G-space X := G/H is G-automorphizable in NA. In particular, we obtain
that there exists a montrivial equivariant morphism of the G-space X to a Hausdorff
G-group E. This implies that the free topological G-group Fg(X) of the G-space X is
not trivial. By the criterion of Pestov (Fact we conclude that f: M — G is not an
epimorphism.
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(2) By (1) it is enough to show that the right uniformity on G/H is non-archimedean.
Since G is N A there exists a local base B at e consisting of clopen subgroups. Then it is
straightforward to show that B := {U : U € B} is a base of the right uniformity of G/H
such that its elements are equivalence relations on G/H.

(3) If H is open then X = G/H is topologically discrete. The discrete uniformity U
is compatible and we have (X,) € Unif®. As in the proof of (1) we apply Theorem
and Fact [711 O

Assertion (3) is just the theorem of Fay [13] mentioned above in Subsection In
assertion (1) it suffices to assume that the universal non-archimedean image of the coset
uniform space G/H is nontrivial.

Note that if H — G is not an epimorphism in NA then, a fortiori, it is not an
epimorphism in TGr. With a bit more work we can refine assertion (2) of Theorem
as follows.

Theorem 7.9. Morphism f : M — G in the category NA is an epimorphism in NA
(if and) only if f(M) is dense in G.

Proof. Assume that X := G/H is non-trivial where H := cl(f(M)). It is enough to show
that there exists a NA group P and a pair of distinct morphisms g,h : G — P such
that g o f = h o f. Theorem says not only that the (nontrivial) G-space X = G/H
is G-automorphizable but also that it is G-automorphizable in NA. By Theorem
By 4(X) € NA is a G-group. Now choose the desired P as the corresponding semidirect
product of By 4(X) and G. Since NA is closed under semidirect products we obtain that
P € NA. According to the approach of [42] there exists a pair of distinct morphisms
g,h: G — Psuchthat go f=ho f. O

8. GROUP ACTIONS ON ULTRA-METRIC SPACES AND GRAEV TYPE ULTRA-NORMS

Lemma 8.1. Let f : X — R be a function on an ultra-metric space (X,d). There exists
a one-point ultra-metric extension X U{b} of X such that f is the distance from b if and
only if

|f(@) = f(y)l < d(z,y) < maz{f(z), f(y)}
for all xz,y € X.

Proof. The proof is an ultra-metric modification of the proof in [45, Lemma 5.1.22] which
asserts the following. Let f : X — R be a function on a metric space (X,d). There
exists a one-point metric extension X U {b} of X such that f is the distance from b if
and only if

|f(x) = f)] < d(z,y) < f(z) + f(y)
for all x,y € X. O

The following result in particular gives a Graev type extension for ultra-metrics on
free Boolean groups B(X). To an ultra-metric space (X,d) we assign the Graev type
group Bgr(X,d). The latter (ultra-normable) topological group is in fact By (X,Uy),
where Uy is the uniformity of the metric d.

Theorem 8.2. Let (X,d) be an ultra-metric space and G a topological group. Let T :
G x X — X be a continuous action such that (X,Uy) € Unif®. Then there exists an
ultra-normed Boolean G-group (E,||-||) and an isometric G-embedding v : X — E (with
closed (X)) C E) such that:
(1) The norm on E comes from the Graev-type ultra-metric extension of d to B(X).
(2) The topological groups E and By 4(X,Uy) (the free Boolean NA group) are nat-
urally isomorphic.
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Proof. Consider the free Boolean group (B(X),+) over the set X. The elements of B(X)
are finite subsets of X and the group operation + is the symmetric difference of subsets.
We denote by 0 the zero element of B(X) (represented by the empty subset of X).
Clearly, u = —u for every u € B(X). Consider the natural set embedding

t: X — B(X), u(z) ={z}.

Sometimes we will identify z € X with «(z) = {z} € B(X).
Fix zp € X and extend the definition of d from X to X := X U {0} by letting
d(z,0) = max{d(x, z¢), 1}.

Claim 1: d: X x X — R is an ultra-metric extending the original ultra-metric d on X.

Proof. The proof can be derived from Lemma 8.1} noting that

[f(@) = f(y)| < d(z,y) < maz{f(z), f(y)}
for f(x) := max{d(z, o), 1}. O

For every nonzero u = {z1, 22,3, - ,Tm} € B(X) define the support of u as supp(u) :=
w if m is even, supp(u) := v U {0} if m is odd.

By a configuration we mean a finite subset of X x X (finite relations). Denote by
Conf the set of all configurations. We can think of w € Conf as a finite set of some pairs

w = {(z1,22), (x3,24), -, (Ton—1,T2n) },

where all {z;}?", are (not necessarily distinct) elements of X. If x; # x}, for all distinct

1 <4,k < 2n then w is said to be normal. For every w € Conf the sum

2n n
wi=Y mi= (z2i1— T2)
i=1 i=1
belongs to B(X) and we say that w represents u or, that w is a u-configuration. Notation:
w € Conf(u). We denote by Norm(u) the set of all normal configurations of u. If
w € Norm(u) then necessarily w C supp(u) x supp(u). It follows that Norm(u) is a finite
set for any given u € B(X).

Our aim is to define a Graev type ultra-norm || - || on the Boolean group (B(X),+)
such that d(z,y) = ||z —y||, Vx,y € X. For every configuration w we define its d-length
by

p(w) = max d(w2i—1, T2i).
Claim 2: For every nonzero element u € B(X) and every u-configuration

w = {(z1,22), (x3,24), -+ , (T2n—1,T20)}
define the following elementary reductions:

(1) Deleting a trivial pair (¢,t). That is, deleting the pair (x9;—1,x2;) whenever
T2i—1 = T-

(2) Define the trivial inversion at i of w as the replacement of (2,1, x2;) by the pair
in the reverse order (x9;, x2;—1).

(3) Define the basic chain reduction rule as follows. Assume that there exist dis-
tinct ¢ and k such that xo; = xor_1. We delete in the configuration w two pairs
(r2i-1,%2;), (Tak—1,x2r) and add the new pair (z2;—1,T2x).

Then, in all three cases, we get again a u-configuration. Reductions (1) and (2) do
not change the d-length of the configuration. Reduction (3) cannot exceed the d-length.
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Proof. Comes directly from the axioms of ultra-metric. In the proof of (3) observe that
T2i—1 + T2 + Tagp—1 + Tog = T2i—1 + T2k

in B(X). This ensures that the new configuration is again a u-configuration. ([

Claim 3: For every nonzero element u € B(X) and every u-configuration w there exists
a normal u-configuration v such that p(v) < p(w).

Proof. Using Claim 2 after finitely many reductions of w we get a normal u-configuration

v such that ¢(v) < p(w). O
Now we can define the desired ultra-norm || - ||. For every u € B(X) define
= inf .
||U|| wéégnf(u) QD(W)

Claim 4: For every nonzero u € B(X) we have

ull = min w).
H H wGNorm(u)sa( )

Proof. By Claim 3 it is enough to compute ||u|| via normal u-configurations. So, since

Norm(u) is finite, we may replace inf by min. O
Claim 5: || - || is an ultra-norm on B(X).
Proof. Clearly, ||u|| > 0 and ||u|| = || — u|| (even u = —u) for every u € B(X). For the

0-configuration {(0, 0)} we obtain that ||0|| < d(0,0) = 0, and so ||0|| = 0. Furthermore,
if u # 0 then for every w € Norm(u) and for each (¢, s) € w we have d(t,s) # 0. We can
use Claim 4 to conclude that ||u|| # 0. Finally, we have to show that

[lu + o] < max{[[ul], [[v]]} ¥ u,v e B(X).

Assuming the contrary, there exist configurations {(x;,v:)}i-q, {(ti,si)}/%, with u =
Yo (@i —yi), v=">1"(t; — s;) such that

||lu+ || >c:= maX{fg%};d@i’ Yi)s 1212'2(71(1(752" si)}-

Since w := {(x1,91),** , (Tn,Yn), (t1,51), -+, (tm, Sm)} is a configuration of u + v with
l|u + v|| > ¢(w) = ¢, we obtain a contradiction to the definition of || - ||. O

Claim 6: ¢ : (X,d) — E := (B(X),]||-||) is an isometric embedding, i.e.
Iz —yll = d(z,y) VzyeX.

Proof. By Claim 4 we may compute the ultra-norm via normal configurations. For the
element u = x — y # 0 the only possible normal configurations are {(x,y)} or {(y,x)}.
So ||z — y[| = d(z, y). O

One can prove similarly that d(z,0) = ||z||. This observation will be used in the sequel.
Claim 7: For any given u € B(X) with u # 0 we have
ul| = min{d(z;, xx) : @i, 2k € supp(u), i # i}

Proof. Easily deduced from Claims 3 and 4. U
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We have the natural group action
T:Gx B(X)— B(X),(g,u) — gu

induced by the given action G x X — X. Clearly, g(u + v) = gu + gv for every
(9,u,v) € G x B(X) x B(X). So this action is by automorphisms. Clearly g0 = 0 for
every g € G. It follows that ¢ : X — B(X) is a G-embedding.

Claim 8: The action 7 of G on B(X) is quasibounded and continuous.

Proof. The original action on (X, d) is m-quasibounded and continuous. Since 0 is an iso-
lated point in X then the induced action on (X, d) is also continuous and quasibounded.
Thus, for every € > 0 and gg € G, there exist: 1 > § > 0 and a neighborhood O(gg) of
go in G such that for every (z,y) € X x X with d(z,y) < § and for every g € O we have

d(gz,gy) <e.
By the definition of || - || it is easy to see that
lgull <& Vlull <4, g€O.

This implies that the action 7 of G on B(X) is quasibounded. Claim 5 implies that
t: X < B(X) is a topological G-embedding. Since ¢(X) algebraically spans B(X) and
B(X) is a topological group, it easily follows that every orbit mapping G — B(X), g —
gu is continuous for every u € B(X). Thus we can conclude that 7 is continuous (see

the remark after Definition and B(X) is a G-group. O
By Claims 5 and 6 (see also the remark after Claim 6) || || is an ultra-norm on B(X)

which extends the ultra-metric d defined on X, and it can be viewed as a Graev type
ultra-norm. To justify this last remark and the assertion (1) of our theorem observe that
|| - || satisfies, in addition, the following maximal property.

Claim 9: Let o be an ultra-norm on B(X) such that
U(JJ —y) = d(l‘,y) Va,y € X.
Then || - || > 0.

Proof. Let u be a nonzero element of B(X). By Claim 4 there exists a normal configu-
ration
w = {(z1,72), (x3,74), - -, (T2n-1,T2n)},
such that u = Y7 | (22;—1 — x2;) and ||u|| = maxi<i<p d(T2i—1, T2;).
Now, ¢ is an ultra-norm and we also have
o(z —y) =d(z,y) Vo,y € X.

By induction we obtain that
n
o(u) = U(z;(x%—l —x9;)) < lrg%ﬁg(wziq — X)) = ax d(w2i—1, x2:) = ||ul]-
1=

O

The proof of assertion (2) in view of the description of B 4(X,Uy) given by Theorem
follows from the fact that for every 0 < € < 1 the subgroup generated by

{x —y e B(X):d(z,y) <e}

is precisely the e-neighborhood of 0 in E.
Summing up we finish the proof of Theorem O
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Remark 8.3. Similarly we can assign for an ultra-metric space (X,d) the Graev type
groups Agr(X,d) and Fg,(X,d). Moreover, one may show (making use of Theorems
41411 and 4.13|2) that Ag,(X,d) = Axa(X,Uy) and Fg.(X,d) = FS (X, Uy).

Corollary 8.4. Fvery ultra-metric space is isometric to a closed subset of an wultra-
normed Boolean group.

By a theorem of Schikhof [50], every ultra-metric space can be isometrically embedded
into a suitable non-archimedean valued field. Note that every non-archimedean valued
field is an ultra-normed abelian group.

8.1. Continuous actions on Stone spaces. Assigning to every Stone space X the free
profinite group Fp,,(X) we get a natural functor  from the category of Stone G-spaces
X to the category of all profinite G-groups P (see Remark for the continuity of the
lifted action). This functor preserves the topological weight and there exists a canonical
G-embedding jx : X < vy(X) = Fp,(X) where Fp,,(X) is metrizable if (and only if)
X is metrizable (Theorem [5.1).

This means, in particular, that every Stone G-space is automorphizable in Pro and the
class of (metrizable) profinite G-groups is at least as complex as the class of (metrizable)
Stone G-spaces. In contrast, recall that a compact G-space that is not a Stone space
may not be automorphizable (see Remark .

By Remark the profinite groups j(X) and j(Y') are topologically isomorphic for
infinite Stone spaces X,Y with the same weight. However, if X and Y are G-spaces
(dynamical systems) then the corresponding G-spaces j(X) and j(Y') need not are G-
isomorphic.

9. APPENDIX

By Graev’s Extension Theorem (see [18]), for every metric d on X U {e} there exists
a metric § on F(X) with the following properties:

(1) d extends d.
(2) 4 is a two sided invariant metric on F(X).
(3) 4 is maximal among all invariant metrics on F'(X) extending d.

Savchenko-Zarichnyi [49] presented an ultra-metrization d of the free group of an ultra-
metric space (X, d) with diam(X) < 1. Gao [15] studied Graev type ultra-metrics d,,.
The metrics 6, d satisfy properties (1) and (2) above. As to the maximal property (3)
one may show the following:

Theorem 9.1. Let d be an ultra-metric on X := X UX 1 U{e} for which the following
conditions hold for every x,y € X U{e}:

(1) d(z=y™") = d(z,y).
(2) d(z~1,y) = d(z,y").
Then:

(a) The Graev ultra-metric 6, is maximal among all invariant ultra-metrics on F(X)
which extend the metric d defined on X.

(b) If, in addition, d(z~',y) = d(x,y™') = max{d(z,e),d(y,e)} then &, is mazimal
among all invariant ultra-metrics on F(X) which extend the metric d defined on
X U{e}.

(¢) If diam(X) < 1 and d(z™,y) = d(z,y™') = 1 then 6, = d.
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