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Abstract

In this lecture we will give a brief sketch about linear group actions on
Asplund spaces, focusing on the fact that in this case, the continuity of
the dual action can be derived from the continuity of the original action.

1 Predefinitions

Let (X, ‖ ‖) be a mormed space. The strong topology on X is the the topology
induced by the norm. The weak topology on X is the minimal topology on X for
which all the linear functionals in the dual space X∗ remain continuous. Clearly
it is generated by the sets:

ϕ−1O ϕ ∈ X∗, O is open in R

On X∗ one can define another weaker topology named the weak* topology.
This is the minimal topology on X∗ for which the functionals:

Fx ∈ X∗∗ Fxϕ = ϕx (x ∈ X, ϕ ∈ X∗)

are continuous.
A set of continuous functions F from a metric space X to a metric space Y

is said to be equicontinuous if for every ε > 0 there is δ > 0 such that for every
x, y ∈ X and f ∈ F , d(x, y) < δ derives that d(fx, fy) < ε.

1



2 Dual Actions

Let π : G ×X −→ X a linear continuous action of a topological group G over
a normed linear space (X, ‖ ‖). One can define the dual action of G on X∗ by:

π∗ : X∗ ×G −→ X∗ (ϕg)(x) = ϕ(gx)

Unfortunately, it turns out that the dual action is usually not continuous even
for “simple cases” such as R.

Example 2.1 Let G be an infinite compact not-discrete metric group (i.e. the
topology on G is metrizable. We do not demand the left and right translations
to be isometries. For example, take S = {z ∈ C : |z| = 1}). Consider the
Banach space C(G) of all continuous functions from G to R assigned with the
supremum norm.

Define the “natural” action of G on C(G) by:

g • f(x) = f(gx)

In order to prove • is continuous recall that every f ∈ C(G) is continuous
on a compact set and, hence, equicontinuous. Therefore, given ε > 0 and g ∈ G
we can choose δ > 0 such that:

d(x, y) < δ =⇒ d(f(x), f(y)) <
ε

2

Since the left translation x 7−→ gx is continuous, there is U ∈ Ng such that
h ∈ U =⇒ d(gx, hx) < δ. Now, for every f ′ ∈ B(f, ε

2 ) and h ∈ U holds:

d(g • f(x), h • f ′(x)) = d(f(gx), f ′(hx)) ≤

≤ d(f(gx), f(hx)) + d(f(hx), f ′(hx)) <
ε

2
+

ε

2
= ε

and therefore, • is continuous.
Let us now observe in the (right) dual action of G on C(G)∗. For every

g ∈ G define the functional ϕg by:

ϕg(f) = f(g)

It is easy to verify that ϕg ∈ X∗.
Notice that for h ∈ G holds:

(ϕg • h)(f(x)) = ϕg(h • f(x)) = f(hg) = ϕhg(f(x))

Now, consider a series {hn} of different elements converging to h (such exist
since G is infinite and not discrete). Let us prove that not only ϕg • hn 9 ϕhg,
but ϕg • hn is not even a Couchy series.

For a, b ∈ G, a 6= b define the “cone” function cb
a : G −→ R by:

cb
a(x) =

{
1− d(x,b)

d(a,b) d(x, b) ≤ d(a, b)
0 d(x, b) > d(a, b)

Note that:
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(1) cb
a ∈ C(G)

(2) ‖cb
a‖ = 1

(3) cb
a(a) = 0 and cb

a(b) = 1

Now, for n 6= m:

[ϕg • hn − ϕg • hm]chng
hmg = (ϕhng − ϕhmg)c

hng
hmg = 1− 0 = 1

This implies that ‖ϕg • hn − ϕg • hm‖ ≥ 1 and hence, ϕg • hn cannot converge
and the dual action is not continuous.

In this lecture we will present the class of Asplund spaces and prove that
when X is an Asplund Banach space, the dual action π∗ is continuous at any
point.

Note that G might not be injected in GL(X) for it is assigned with its own
topology (which might not be Hausdorff).

3 Actions of Topological Spaces

We start by defining some properties of abstract actions:
Let π : P ×X −→ X be an action (not necessarily continuous) of a topolog-

ical space P on a metric space X. The functions x̃ : P −→ X and p̃ : X −→ X
are defined in the usual manner to be x̃p = px = p̃x. We also define:

Con`
p(π) = {x ∈ X : x̃ is continuous at p} Con`(π) = ∩{Con`

p(π) : p ∈ P}

Conr
x(π) = {p ∈ P : p̃ is continuous at x} Conr(π) = ∩{Conr

x(π) : x ∈ X}

Conp(π) = {x ∈ X : π is continuous at (p, x)}

Conx(π) = {p ∈ P : π is continuous at (p, x)}

Con(π) = {(p, x) ∈ X × P : π is continuous at (p, x)}

(Conr(π) is the set of p ∈ P such that p̃ is continuous for every x ∈ X).

Note that all the claims presented in this lecture holds for both left and right
actions. The proofs are similar.

Definition 3.1 Let π : P ×X −→ X. We say that X is π-uniform at p0 ∈ P
if for every ε > 0 there are δ > 0 and U ∈ Np0 such that for every p ∈ U
and a, b ∈ X for which d(a, b) < δ holds d(pa, pb) < ε.

X is called π-uniform if it is π-uniform at any point of P .

Lemma 3.2 Let X be π-uniform at p0 ∈ P such that Conr(π) = P (that is,
each p̃ is continuous), then:

Con`
p0

(π) = Conp0(π)

Lemma 3.3 Let (X, ‖ ‖) be a normed space and let π : P × X −→ X be a
linear action on X, then X is π-uniform at p0 if and only if (p0, 0) ∈ Con(π).
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Proof: Assume that X is π-uniform at p0. Let ε > 0. By our assumption
there is U ∈ Np0 and δ > 0 such that x, y ∈ X, d(x, y) < δ and p ∈ P derives
that d(px, py) < ε. If we choose y = 0, we get that for (p, x) ∈ U × B(0, δ)
holds:

d(px, p00) = d(px, 0) = d(px, p0) < ε

and therefore, π is continuous at (p0, 0).
Now assume that π is continuous at (p0, 0). Then for any ε > 0 there is

U ∈ Np0 and δ > 0 such that for every (p, x) ∈ U×B(0, δ): ‖px‖ = d(px, p0) < ε.
Thus, if d(x, y) < δ and p ∈ P :

d(px, py) = ‖px− py‖ = ‖p(x− y)‖ < ε

Thus X is π-uniform at p0. q.e.d.

Definition 3.4 Let π : P × X −→ X be a linear action on a normed space
(X, ‖ ‖). We say that π is locally bounded at p0 if for every bounded subset
B ⊆ X there is U ∈ Np0 such that UB = {px : p ∈ U, x ∈ B} is bounded.

π is called locally equicontinuous at p0 if there is U ∈ Np0 such that the family
Ũ is equicontinuous.

Recall that a set of linear transformations in L(X, Y ) is equicontinuous if
and only if their norm is uniformly bounded.

Lemma 3.5 Let π : P×X −→ X be a linear action on a normed space (X, ‖ ‖),
then the following holds:

(i) If π is continuous at (p0, 0) then π is locally equicontinuous at p0.

(ii) If π is locally equicontinuous at p0 then π is locally bounded at p0.

(iii) If π is locally bounded at p0 then π∗ : X∗ × P −→ X∗ is continuous at
(0, p0).

(iv) If (p0, 0) ∈ Con(π) and P = Conr(π) then Con`
p0

(π) = Conp0(π).

Proof: (i) π is continuous at (p0, 0). Therefore, there exists U ∈ Np0 and
δ > 0 such that for every x ∈ B(0, δ) and p ∈ U holds ‖px‖ ≤ 1. Now, for
arbitrary x ∈ X and p ∈ U :

‖px‖ =
1
δ
‖x‖‖p(

δ

‖x‖
x)‖ ≤ 1

δ
‖x‖

Thus, U is norm bounded and, hence, equicontinuous.
(ii) Since π is locally equicontinuous at p0, there is U ∈ Np0 such that Ũ

is equicontinuous and, hence, norm bounded. Now, if B ⊆ X is bounded then
clearly UB is bounded and π is locally bounded at p0.

(iii) Let ε > 0. We need to find δ > 0 and U ∈ Np0 such that for ϕ ∈
B∗(0, δ) ⊆ X∗ and p ∈ U holds: ‖ϕp‖ < ε. That is, ‖ϕ(px)‖ < ε for ‖x‖ ≤ 1.
Since the set B = B(0, 1) ⊆ X is bounded and X is locally bounded at p0, we
may choose U such that UB is norm-bounded, say by M . Now choose δ < ε

M
and we are done since:

‖ϕ(px)‖ ≤ ‖ϕ‖‖px‖ <
ε

M
M = ε

(iv) Simply follows form lemmas 3.2 and 3.3. q.e.d.
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Remark 3.6 What lemma 3.5 means is that given a continuous linear action
π : P ×X −→ X, it is enough to check that the map ϕ̃ : P −→ X∗ is continuous
for all ϕ ∈ X∗ in order to prove that π∗ is continuous.

4 Fragmentability

In order to continue we need to present the fragmentability term.

Definition 4.1 Let (X, τ) be a topological space, (Y, d) be a metric space, f :
X −→ Y (not necessarily continuous) and Γ a system of subsets of X. We say
that Γ is fragmented by f if for every φ 6= A ∈ Γ and ε > 0 there is O ∈ τ such
that A ∩O 6= φ and diam(A ∩O) < ε.

In case Γ = Nx we say that X is locally fragmented at x (by f) and in case
Γ = τ we say that X is fragmented (by f). If Γ = P (A) (the power set), we say
that A is fragmented.

Proposition 4.2 Let (X, τ), (Y, σ) be topological spaces and (Y, d) a metric
space. Also let f : X −→ Y be continuous and g : Y −→ Z an arbitrary
function. Then, if for A ⊆ X, f(A) is fragmented by g, then A is fragmented
by g ◦ f .

Proof: Let ε > 0 and A′ ⊆ A. Since f(A) is fragmented by g, there is O ∈ σ
such that f(A′) ∩ O 6= φ and diam(g(f(A′) ∩ O)) < ε. Since f is continuous,
f−1(O) ∈ τ . Now, A′ ∩ f−1(O) 6= φ since there is some a ∈ A′ for which
a ∈ f(A′) ∩O and:

diam(g ◦ f)(A′ ∩ f−1(O)) ≤ diam(g)(f(A′) ∩O) < ε

Thus, A is fragmented by g ◦ f . q.e.d.

We now make some conventions: Let (X, ‖ ‖) be a normed space. We say
that A ⊆ X (X∗) is fragmented if it is fragmented by the inclusion map A ↪→ X
(A ↪→ X∗) when the topology on A is chosen to be the weak (weak*) topology.
(The metric on X (X∗) is the metric induced by the norm.)

Proposition 4.3 Let π : G × X −→ X be a group action on a metric space
(X, d). Also assume that x0 ∈ X, g ∈ G and the following terms hold:

(1) X is π-uniform at g.

(2) G is locally fragmented at e by the orbit map x̃0.

Then x̃0 is continuous at g.

Proof: Let ε > 0. Since X is π-uniform at g, there is P ∈ Ng and δ > 0
such that for all h ∈ P and x, y ∈ X for which d(x, y) < δ holds d(hx, hy) < ε.

We may choose U ∈ Ne such that gU ⊆ P . Since G is locally fragmented at
e by x̃0, there is an open non-empty O ⊆ U−1 such that:

diam(x̃0O) = diam(Ox0) < δ
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Now, choose some u−1 ∈ O ⊆ U−1. Since gU ⊆ P , gu ∈ P . In addition,
g ∈ guO (g = guu−1) and hence, guO ∈ Ng. But:

diam(x̃0guO) = diam(guOx0) < ε

and this means that x̃0 is continuous at g (since guO is a neighborhood of g),
as wanted. q.e.d.

5 Asplund Spaces

Let (X, ‖ ‖) be a normed space. A function f : X −→ R defined on an open
convex U ⊆ X is called Fréchet differentiable at x0 ∈ U if there is ϕ ∈ X∗ such
that for every ε > 0 and bounded B ⊆ X there is δ > 0 such that for all x ∈ B
and 0 6= t ∈ (−δ, δ): ∣∣∣∣f(x0 + tx)− f(x0)

t
− ϕx

∣∣∣∣ < ε

Definition 5.1 Let (X, ‖ ‖) be a normed space. A function f defined on an
open convex subset U ⊆ X is called convex if for every x, y ∈ U and 0 ≤ t ≤ 1:

f(tx + (1− t)y) ≤ tf(x) + (1− t)f(y)

Definition 5.2 A normed space (X, ‖ ‖) is called Asplund if every continuous
convex function (defined on a convex open subset) is Fréchet differentiable at a
Gδ dense subset of its domain.

Remark 5.3 The Gδ condition may be dropped if X is Banach.

Now one can ask what is the topological meaning of being Asplund?
For answering this question, consider the unit ball B in (X, ‖ ‖). We may

assign two topologies to B namely the strong topology (denoted as Bs) and the
weak topology (denoted Bw). We can now observe in the “identity” map:

i : Bs −→ Bw

Clearly this map is continuous. But what about its inverse i−1? One can prove
that i−1 is continuous if and only if X is finite dimensional and i−1 is continuous
in a Gδ dense subset of B if and only if X is Asplund.

The following criteria also holds:

Theorem 5.4 Let (X, ‖ ‖) be separable, then X is Asplund if and only if X∗

is separable.

This results in the following example:

Example 5.5 c0 is an Asplund Banach space while `1 ∼= c∗0 is not Asplund
(though being the dual of an Asplund space).

In general we have:

Theorem 5.6 A Banach space (X, ‖ ‖) is Asplund if and only if the dual of
every separable subspace of X is separable.
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The class of Asplund spaces generalizes the class of reflexive spaces as demon-
strated below:

Theorem 5.7 Every reflexive space is Asplund.

We now turn to present the connection between Asplund spaces and frag-
mentability.

Proposition 5.8 Let (X, ‖ ‖) be a normed space and let F ⊆ X∗ be an equicon-
tinuous subset of X∗. Suppose that for every non-empty relatively weak* closed
subspace A of F the (not necessarily linear) functional:

σA(x) = sup{ϕx : ϕ ∈ A}

is Fréchet differentiable at some point of X, then F is fragmented.

Corollary 5.9 If F is a bounded subset of X∗ where is X is Asplund, then F
is fragmented.

Proof: By the last proposition it is enough to check that σA is convex for
every bounded A ⊆ X∗. Indeed, when x, y ∈ X and 0 ≤ t ≤ 1 we have:

σA(tx + (1− t)y) = sup{tϕx + (1− t)ϕy : ϕ ∈ A} ≤
≤ sup{tϕx : ϕ ∈ A}+ sup{(1− t)ϕy : ϕ ∈ A} =
= tσAx + (1− t)σAy

Thus, we are done. q.e.d.

The following theorem generalizes our result when X is Banach and demon-
strates that one can check if a Banach space is Asplund by inspecting its dual:

Theorem 5.10 (Namioka-Phelps) A Banach space is Asplund if and only if
every bounded subset of X∗ is fragmented.

6 Linear Group Actions on Asplund Spaces

Lemma 6.1 Let π : P ×X −→ X be a linear action of a topological space P on
a normed space (X, ‖ ‖) such that P = Conr(π) and (p0, 0) ∈ Con(π). Consider
the dual action:

π∗ : X∗ × P −→ X∗

Then for every equicontinuous subset F ⊆ X∗ there is U ∈ Np0 such that FU
is equicontinuous in X∗.

Theorem 6.2 Let (X, ‖ ‖) be an Asplund Banach space and let π : G×X −→ X
be a continuous linear action of a topological group G on X, then the dual action
π∗ is continuous.

Proof: Due to lemma 3.5, it is enough to prove that the orbit map:

ϕ̃ : G −→ X∗
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is continuous for all ϕ ∈ X∗.
Let g ∈ G. By lemma 3.5(iii), π∗ is continuous at (0, g) and therefore, by

lemma 3.3 it is π-uniform at g.
Now, due to lemma 6.1, there is U ∈ Ne such that ϕU is equicontinuous

in X∗ and by theorem 5.10, ϕU is fragmented. Since π is continuous, the map
ϕ̃ is weak*-continuous. Thus, by proposition 4.2, U is fragmented by ϕ̃. That
derives that ϕ̃ is locally fragmented at e and, therefore, by proposition 4.3, ϕ̃ is
continuous at g. q.e.d.
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