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1. Generalized convergence and nets

Abstract. We discuss generalized convergence and weak topologies.

1.1. Some topological concepts.

Definition 1.1. A sequence (an) in a topological space (X, τ )
converges to a point a ∈ X (notation: lim an = a) if every nbd
of a contains almost all points of an.

Theorem 1.2. Let (X, d) be a metric space with the stan-
dard topology

τ = top(d) := {O ⊆ X : x ∈ O ⇒ Bε(x) ⊆ O}

= {∪i∈IBεi(xi) : {xi : i ∈ I} ⊆ X}
(1) x ∈ cl(A) = A if and only if x = lim an for some

an ∈ X.
(2) A function f : X → Y to any topological space Y is

continuous if and only if lim f (xn) = f (x) for every
limxn = x.

Define the sequential closure of A ⊂ X as

scl(A) := {lim
n
an : an ∈ A}.

A topological space X is said to be a Frechet-Urysohn space
if

scl(A) = cl(A)

for every A ⊂ X . Notation: X ∈ FU .
Exercise:

(1) A ⊂ scl(A) ⊂ cl(A).
(2) Every first countable space X is Frechet-Urysohn. In

particular, every metrizable space.

Metr ⊂ B1 ⊂ FU.
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(3) For every Frechet-Urysohn spaceX a function f : X → Y
to any topological space Y is continuous if and only if
lim f (xn) = f (x) for every limxn = x.

For example, Sorgenfrey line (R, τs) is first countable (hence,
FU) but not metrizable.

Examples 1.3. Here we give some natural examples of spaces
which are not FU.

(1) (R, τcocount). This example is not Hausdorff.

Proof. 2 ∈ cl([0, 1]) but there is no sequence in [0, 1] which
converges to 2. �

(2) Let A be an uncountable set and b /∈ A. Define a topology
τ on X := A ∪ {b} as follows. Call a set O ⊂ X open
(O ∈ τ ) if b /∈ U or if A \ O is countable. Then (X, τ )
is a Hausdorff (even, normal) topological space which is
not Frechet-Urysohn. In fact, every convergent sequence
in this space is eventually constant.
scl(A) = A ( cl(A) = X
The map 1X : (X, τ ) → (X, τdiscr) preserves the con-

vergent sequences but it is not continuous.
(3) X := {0, 1}[0,1] = {f : [0, 1]→ {0, 1}}

(generalized Cantor cube. 1 It is a compact Hausdorff
space.

Proof. Y := {f ∈ X| supp(f ) is finite}. Here supp(f ) :=
{x ∈ X : f (x) 6= 0}.

is dense in X (check the definition of the product topol-
ogy 1.17). There is no sequence {fn} in Y which converges
to the constant function 1(x) = 1. Indeed, use the fact
that a countable union of finite sets (look at supp(fn) !) is
countable and we have ”uncountably many coordinates”

1recall that {0, 1}N) is homeomorphic to the Cantor set
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indexed by [0, 1], where fn(x) = 0 ∀n. (Exercise 1.19 can
help here). �

(4) Hilbert space l2 in its weak topology (see Definition 1.16).
2

Hint: Consider

A := {
√
nen : n ∈ N} ⊂ l2

Then
• no subsequence of A converges weakly to 0.

Hint: By Banach-Steinhaus theorem every weakly bounded
is norm bounded.
• 0 ∈ clw(A).

Proof. (see [3]). Consider a basic nbd of the weak topology

O(ε, u1, · · · , un) := {x ∈ l2 : |(x, ui)| < ε i = 1, · · · , k}
where

{ui : i = 1, 2, · · · , k}
is a finite subset in l2.

We have for every i

||ui||2 =

∞∑
n=1

|(ui, en)|2 <∞

So
∞∑
n=1

(

k∑
i=1

|(ui, en)|)2 <∞

There exists n0 ∈ N such that

k∑
i=1

|(ui, en0)| <
ε
√
n0

2Hence, (l2, w) is not metrizable (or, even first countable)
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(otherwise, we have the harmonic series)
In particular

|(ui, en0)| <
ε
√
n0

for every i. Therefore,

|(
√
n0en0, ui)| < ε

for every i.
�

(5) Let β : N ↪→ βN be the Stone-Chech compactification
of N. In a natural sense it is the greatest compactification
of N. Precisely, for every compactification c : N → K
there exists a continuous onto map α : βN → K such
that the following diagram is commutative

N

c   B
BB

BB
BB

B

β
// βN

α
��

K

The space βN is certainly a compact Hausdorff space.
Identify N with its image in βN. Then

scl(N) = N 6= cl(N) = βN
So βN /∈ FU . Moreover, for every ω ∈ βN \ N the

countable subspace

Yω := N ∪ {ω}
of βN with the unique non-isolated point ω is not FU. 3

Note that besides (1) all other spaces in Examples 1.3 are
Tychonoff spaces. Recall that a space X is Tychonoff iff it is
a topological subspace of a compact Hausdorff space iff X is T1

3See for example book of R. Engelking, General Topology
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and continuous real-valued functions on X separate points and
closed subsets.

1.2. Nets. Let (D,≤) be a partially ordered set. That is,

(1) a ≤ a.
(2) a ≤ b and b ≤ c then a ≤ c.

We say that (D,≤) is directed if in addition we have

(3) For every pair a, b ∈ D there exists c ∈ D such that
a ≤ c and b ≤ c.

Definition 1.4. (See for example, [2], [1], [6])
A net (= generalized sequence) in a space X (indexed by a

partially ordered set D) is a function i : D → X . Possible
notation:

(xλ)λ∈D
where i(λ) = xλ.

Example 1.5. Usual sequence in X is just a function

f : N→ X, f (n) = xn

Example 1.6. Given a point x in a topological space, let Nx

denote the set of all nbd’s containing x. Then Nx is a directed
set, where the direction is given by reverse inclusion, so that
T ≤ S if and only if S ⊆ T . For every U ∈ Nx choose a point
xU ∈ U . Then

i : Nx → X, U 7→ xU
or simpler

(xU)U∈Nx
is a net in X .

Example 1.7. Let D = (0, 1) with its usual order. For t ∈ D
define ft(x) = sin(tx). Then (ft, D) is a net of real functions.
It is not a sequence.
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Definition 1.8. We say that a net (xλ)λ∈D in a topological
space X converges to a point x if for every nbd U ∈ Nx there
exists λ0 ∈ D such that

xλ ∈ U ∀λ ≥ λ0

Definition 1.9. We say that x is a cluster point of the net
(xλ)λ∈D in a topological space X if for every nbd U ∈ Nx and
λ0 ∈ D there is a λ ∈ D such that

λ ≥ λ0 and xλ ∈ U

Definition 1.10. A subnet of

(D, i) = (xλ)λ∈D

is a net (M, j) together with a function h : M → D s.t. j = i◦h

M

j !!B
BB

BB
BB

B

h // D

i
��

X

and

∀λ0 ∈ D ∃µ0 ∈M : λ0 ≤ h(µ) ∀ µ ≥ µ0.

4

Remark 1.11. In most cases we may choose h to be monotone
and then, in order to have a subnet, it suffices to check that

∀λ0 ∈ D ∃µ0 ∈M : λ0 ≤ h(µ0)

4another example producing a diagram in latex is

(X, τ)

α

��

φ // (Y, µ)

ν

��
(X ′, τ ′)

φ′
// (Y ′, µ′)
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Lemma 1.12. For every cluster point x of a net (xλ)λ∈D in
a topological space X there is a subnet that converges to x.

Proof. Consider the index set

M := {(λ, U) ∈ D ×Nx : xλ ∈ U}
with the product order and the monotone map

h : M → D, h(λ, U) = λ.

For each λ ∈ D there is V ∈ Nx and ν ≥ λ with xν ∈ V ,
whence h(ν, V ) ≥ λ. Thus (xh(µ))µ∈M is a subnet of (xλ)λ∈D
converging to x (indeed, for every V ∈ Nx the subnet is even-
tually in V , namely when µ ≥ (λ,C) for some (λ,C) ∈ M
with C ⊆ V ).

�

If X is metrizable (or first countable) then ”sequences are
enough” for describing the topology. Nets are enough for every
topological space !

Theorem 1.13. x ∈ cl(A) iff there is a net in A converging
to x in (X, τ ).

Proof. Exercise (hint: Let x ∈ cl(A). Then ∀U ∈ N(x) one
may choose aU ∈ U ∩ A 6= ∅. Use Example 1.6). �

Theorem 1.14. (X, τ ) is Hausdorff iff every converging net
has a unique limit.

Proof. Exercise. �

Theorem 1.15. TFAE:

(1) f : X → Y is continuous.
(2) limxλ = x⇒ lim f (xλ) = f (x).

Proof. Exercise (hint: use the characterization of continuity in
terms of the closure and apply Theorem 1.13). �
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Definition 1.16. Let {fi : X → Yi}i∈I be a family of maps
from a set X into topological spaces (Yi, τi). There is a weak-
est topology τw on X that makes all functions fi continuous.
Terminology: weak topology, initial topology.

A subbasis for τw is

γ := {f−1
i (O) : O ∈ τi, i ∈ I}

So a basis is γ∩fin (= all possible finite intersections using
subfamilies of γ). That is,

γ∩fin := {∩j∈Jf−1
j (Oj) : Oj ∈ τj, j ∈ J, J ⊆ I is finite}

Hence, the topology τw = (γ∩fin)∪.

Examples 1.17. (1) PRODUCTS.
Let {(Xi, τi)}i∈I be a family of topological spaces. Con-

sider the product

X :=
∏
i∈I

Xi = {x : I → ∪Xi : x(i) := xi ∈ Xi}

The weak topology on X induced by the family of all
projections

πi : X → Xi, πi(x) := xi

is called the product topology (or, Tychonoff topology).
So the basic nbd’s are all possible

∩nj∈Jπ−1
j (Oj))

for finite J ⊆ I and Oj ∈ τj.
(2) Weak topology τw on l2.

Generated by the family of all functionals

{fa : l2 → R : fa(x) := (x, a)}
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basic nbd’s are

O(ε, u1, · · · , un) := {x ∈ l2 : |(x, ui)| < ε i = 1, · · · , k}
where

{ui : i = 1, 2, · · · , k}
is a finite subset in l2 and ε > 0.

Lemma 1.18. A net xλ is convergent to x in (X, τw) iff
fi(xλ) is convergent to fi(x) in (Yi, τi) for every i ∈ I.

Exercise 1.19. Characterize the net converging in the product
topology. In particular, observe that we have the ”coordinate-
wise convergence”.

Exercise 1.20. A net uλ in l2 converges in the weak topology
to u iff (uλ, a)→ (u, a) in R for every a ∈ l2.

Exercise 1.21. Show that the product space
∏

i∈I Xi is Haus-
dorff iff every Xi is Hausdorff.

Theorem 1.22. g : Z → (X, τw) is continuous iff
fi ◦ g : Z → Yi is continuous for every i ∈ I.

Proof. (Straightforward) Exercise. �

Example 1.23. Many natural constructions in analysis are in
fact limits of nets . For example, Riemann integral.

• Let f : [a, b] → R be a bounded function. Consider
the net D of finite partitions. That is, subsets λ :=
{x0, x1, · · · , xn} of R such that a = x0 < x1 < · · · <
xn = b} ordered by inclusion. Construct two converging
real valued nets on D. For each λ ∈ D define

Rλ :=

n∑
k=1

sup
x∈[xk−1,xk]

f (x) (xk − xk−1)
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rλ :=

n∑
k=1

inf
x∈[xk−1,xk]

f (x) (xk − xk−1)

Two nets Rλ and rλ both converges in R. If they have

the same limit then it is just the Riemann integral
∫ b
a f (x)dx.

• Another (more direct approach via Riemann sums) is
by tagged partitions of an interval. It is a pair: (λ, T )
a partition λ := {x0, x1, · · · , xn} of an interval together
with a finite sequence of numbers T := {t0, . . . , tn−1}
such that for each i, xi ≤ ti ≤ xi+1. In other words, it
is a partition together with a distinguished point of every
subinterval. In this case we have a net on D where D is
a directed set of all tagged partitions (λ, T ) and its value
is the corresponding Riemann sum

s(λ,T ) :=

n∑
k=1

f (tk−1)(xk − xk−1)

s : D → R, (λ, T ) 7→ s(λ,T )

is a net and if it converges we get∫ b

a

f (x)dx := lim
(λ,T )∈D

s(λ,T )
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2. Compactness

Definition 2.1. A topological space X is compact if each open
cover of X contains a finite part that also covers X.

Introduced by P. S. Alexandrov (1896 – 1982) and P. S. Urysohn
(1898 – 1924).

Lemma 2.2. A space is compact iff for every collection
of its closed sets having the finite intersection property its
intersection is nonempty.

Proof. Use De Morgan’s law. �

Proposition 2.3. Some elementary properties:

(1) Any finite space is compact.
(2) [a, b] is compact but R and (a, b) are not compact.
(3) Every closed subspace of a compact space is compact.
(4) Every compact subset of a metric space is bounded.
(5) Let A be a compact subset of a Hausdorff space X and

b a point of X that does not belong to A. Then there
exist open sets U, V ⊂ X such that b ∈ V , A ⊂ U ,
and U ∩ V = ∅.

(6) Any compact subset of a Hausdorff space is closed.
(7) A compact Hausdorff space is normal.
(8) Every compact metric space is separable (and hence

has a countable basis).

Theorem 2.4. (Heine-Borel) A subset of an Euclidean space
Rn is compact iff it is closed and bounded (e.g., every n-
dimensional cube [a, b]n, n-dimensional torus Sn, etc.).

Remark 2.5. Not true in infinite-dimensional Banach spaces.
For example in the Hilbert space l2 find a bounded closed subset
which is not compact.
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Exercise 2.6. [8] Which of the following subsets of Matn(R)
are compact:

(1) GLn = {A : detA 6= 0}
(2) SLn = {A : detA = 1}
(3) On = {orthogonal matrices} = {A : AAt = I}

2.1. Compactness and Continuous Maps.

Theorem 2.7. (Generalized Weierstrass thm)

(1) A continuous image of a compact space is compact. (In
other words, if X is a compact space and f : X → Y
is a continuous map, then f (X) is compact.)

(2) A continuous numerical function on a compact space is
bounded and attains its maximal and minimal values.
(In other words, if X is a compact space and f : X →
R is a continuous function, then there exist a, b ∈ X
such that f (a) ≤ f (x) ≤ f (b) for every x ∈ X.)

Exercise 2.8. (some standard exercises)

(1) Prove that if f : [a, b]→ R is a continuous function, then
f ([a, b]) is a segment.

(2) Let A be a subset of Rn. Prove that A is compact iff each
continuous numerical function on A is bounded.

(3) Prove that if F and G are disjoint subsets of a metric
space (X, d), F is closed, and G is compact, then

d(G,F ) := inf{d(x, y) : x ∈ F, y ∈ G} > 0

(4) Prove that any open set U containing a compact set A of
a metric space X contains an ε-neighborhood of A (i.e.,
the set {x ∈ X : d(x,A) < ε} for some ε > 0).

(5) Prove that if A is a compact subset in a metric space
(X, d) then there exist x, y ∈ X such that diam(A) =
d(x, y).
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2.2. Lebesgue number and uniform continuity.

Lemma 2.9. Let Y be a compact subset in a metric space
(X, d). Prove that for any open family Γ which covers Y
there exists a (sufficiently small) number r > 0
(Lebesgue number) such that each open ball of radius r is
contained in an element of the cover.

Proof. Let {U1, U2, · · · , Un} is a finite subcover of Γ. Consider

f (x) := maxni=1fi(x)

where fi(x) := d(x, U c
i ). Then f (x) > 0 for every x ∈ X .

There exists r > 0 such that f (x) ≥ r for every x ∈ X . �

Theorem 2.10. Let f : X → Y be a continuous map from
a compact metric space X to a topological space Y , and let
Γ be an open cover of Y . Then there exists a number δ > 0
such that for any set A ⊂ X with diameter diam(A) < δ
the image f (A) is contained in an element of Γ.

Proof. Use Lemma 2.9. �

Theorem 2.11. Let f : X → Y be a continuous map from a
compact metric space (X, d) to a metric space (Y, ρ). Then
f is uniformly continuous (that is, for every ε > 0 there
exists δ > 0 such that d(x, y) < δ implies ρ(f (x), f (y)) < ε.

Proof. Apply Theorem 2.10 for Γ := {Bε(y)}y∈Y . �

2.3. Closed Maps. A continuous map is closed if the image
of each closed set under this map is closed.

Proposition 2.12. A continuous map of a compact space
to a Hausdorff space is closed.

Theorem 2.13. A continuous bijection of a compact space
onto a Hausdorff space is a homeomorphism.
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Proof. A continuous bijection is a homeomorphism iff it is closed.
�

Corollary 2.14. A continuous injection of a compact space
into a Hausdorff space is a topological embedding.
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3. Compactness and filters

3.1. Generalized Bolzano theorem.

Theorem 3.1. (Bolzano thm) For a metric space X TFAE:

(1) X is compact.
(2) X is sequentially compact (= every sequence in X has

a convergent subsequence).
(3) X has the Bolzano property (=any infinite subset has

an accumulation point (=each nbd of b contains infin-
itely many points of A).

Proof. (1) ⇒ (2): Let (xn) be a sequence in X having no con-
vergent subsequence. Then every subset of A := {xn}n∈N is
closed in X . Let Ak := {xn}n≥k. Then {Ak}k∈N has FIP but
∩Ak = ∅.

(2) ⇔ (3): Hint: if A is an infinite subset in X then we can
choose a sequence (an) in A with different members.

(2) ⇒ (1):
First note that every sequentially compact metric space (X, d)

is bounded (why ?). Now we show that X has a countable
basis. It is equivalent for metric spaces to show the separability.
Choose arbitrary p0 ∈ X and consider

r0 := sup
x∈X

d(p0, x)

Then r0 is finite by the boundedness of X . Now inductively,
let pi+1 be chosen so that

min
0≤n≤i

d(pn, pi+1) ≥ ri
2

where

ri := sup
x∈X

min
0≤n≤i

d(pn, x)
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Then clearly, r0 ≥ r1 ≥ · · · . We claim that rn → 0. Indeed,
otherwise the sequence (pn) has no convergent subsequence (be-
cause it has no Cauchy subsequence). So, rn → 0. This means
that for every x ∈ X and every ε > 0 there is a pn such that
d(pn, x) < ε. That is, {pn}n∈N is dense in X . So we prove that
X is separable. Therefore, X has a countable basis. It follows
that for every open cover there exists a countable subcover. So
it is enough to prove now that the compactness property for
countable covers.

Let {Un}n∈N be a countable open cover of X with no finite
subcover. Then the decreasing family

{Mn := ∩ni=1U
c
i }n∈N

has FIP and

∩n∈NMn = ∩n∈NU c
n = ∅.

In every Mn := ∩ni=1U
c
i choose a point xn. We can assume that

all the members are different (otherwise, ∩n∈NU c
n 6= ∅). By (3)

there exists an accumulation point x ∈ X for A := {xn}n∈N.
Then (since the family is decreasing and every Mn is closed) we
get in fact

x ∈ ∩n∈NU c
n 6= ∅

�

What for general (not necessarily metrizable) compact spaces ?
A generalized approach can be developed by nets and filters.

3.2. Filters, compactness and Tychonoff theorem.

Definition 3.2. (Filters)

• A filter on X is a system α of nonempty subsets s.t.:
(1) A ∩B ∈ α (equivalently, α has FIP).
(2) If A ∈ α and A ⊂ B then B ∈ α.
• A filter on X is called ultrafilter if it is not properly

contained (=maximality !) in any other filter on X .
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• A filter α converges to a point x ∈ X if Nx ⊂ α.

Lemma 3.3. Every filter (even any system with FIP) on
X is contained in an ultrafilter on X.

Proof. ”Zornification argument”: Let α0 be a filter on X . De-
note by B the collection of all filters on X which contains α0. B
is partially ordered by ⊆. If T is a some totally ordered subset
of B then

αT := {A : A ∈ α ∈ T}
is a filter on X and α ⊆ αT for every α ∈ B. By Zorn’s lemma
there is a maximal element which is obviously on X (containing
α0). �

Lemma 3.4. If α is an ultrafilter in X and Y ⊂ X then
precisely one of the sets Y or Y co is contained in α.

Proof. If Y /∈ α then there exists A ∈ α s.t. A ∩ Y = ∅
(otherwise, α ∪ {Y }, having FIP, is contained in an ultrafilter,
a contradiction). So A ⊂ Y c. Therefore, Y c ∈ α. �

Corollary 3.5. Let α be an ultrafilter on X. If A1 ∪ A2 ∪
· · ·An ∈ α then at least one Ai ∈ α.

Proof. Exercise. �

Theorem 3.6. A topological space X is compact iff every
ultrafilter on X converges to a point in X.

Proof. Let α be a ultrafilter. If it does not converge to any
p ∈ X then some open nbd Up /∈ α and thus its complement
U c
p is in α (Lemma 3.4). So X is covered by {Up : p ∈ X}.

By compactness there is a finite subcover

X = ∪ni=1Upi.

We get that
∅ = ∩ni=1U

c
pi
.
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Means that α is not a filter.

Conversely, suppose that every ultrafilter converges in X . Let
F be a family of closed subsets in X with FIP. There exists an
ultrafilter α which contains F . There exists a point p s.t. α
converges to p. Then p ∈ cl(A) for every A ∈ α (why ?). In
particular, p ∈ cl(A) = A for every A ∈ F . �

Lemma 3.7. Every net in X has a universal subnet (=for
every subset A ⊆ X the net is either eventually in A or
eventually in Ac).

Theorem 3.8. [2, 5] For a topological space (X, τ ) TFAE:

(1) X is compact.
(2) Every system of closed subsets with FIP property has

the nonempty intersection.
(3) Every net in X has a cluster point.
(4) Every ultrafilter in X is convergent.
(5) Every net in X has a convergent subnet.

Theorem 3.9. A product X :=
∏

i∈I Xi is compact if (and
only if) each Xi is compact.

Proof. ”Only if” is trivial (why ?).

”If”: Let α be an ultrafilter in X then the set

αi := {πi(A) : A ∈ α}

is ultrafilter (why ?) for every i ∈ I . Since every Xi is compact
each αi converges (Theorem 3.6) in Xi to some pi. Then α
converges to p ∈ X where p(i) := pi. �

Corollary 3.10. The following spaces are compact:

(1) [0, 1]I (Tychonoff cube).
⇓

(2) In particular, the Hilbert cube [0, 1]N.
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(3) Generalized Cantor cube {0, 1}I.
⇓

(4) In particular, Cantor cube {0, 1}N (which is homeo-
morphic to usual Cantor set).

Exercise 3.11. Show that {0, 1}N is homeomorphic with the
Cantor set C ⊂ [0, 1].

Proof. Hint: First recall that C := ∩n∈NCn, where C1 := [0, 1]
and Cn+1 is obtained from Cn by deleting the ”open middle
third”. Furthermore, C can be identified with

{x ∈ [0, 1] : x =

∞∑
n=1

an
3n

an ∈ {0, 2}}

Now by Theorem 2.13 show that C is homeomorphic with
{0, 2}N. �

Exercise 3.12. Show that [0, 1] is a continuous image of the
Cantor set.

Proof. Hint: Consider the function

f : C → [0, 1], f (x) =

∞∑
n=1

an
2n+1

an ∈ {0, 2}}

for every x =
∑∞

n=1
an
3n ∈ C. �

Exercise 3.13. Is it true thatC2 ∼= C, Cn ∼= C for every n ∈ N,
CN ∼= C ?

Exercise 3.14. (see for example [7]) Prove that the Hilbert cube
is a continuous image of the Cantor set.

Remark 3.15. ** (Alexandrov & Urysohn, [7]) Every compact
metric space X is a continuous image of C.

Corollary 3.16. (Peano, ”space-filling curves”) There ex-
ists a continuous onto map p : [0, 1]→ [0, 1]× [0, 1].

Hint: Use the Tietze extension theorem.
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3.3. Universality of the Hilbert cube.

Theorem 3.17. Every compact metrizable space X can be
embedded topologically into the Hilbert cube [0, 1]N.

Proof. Hint: There exists a countable family of functions fn :
X → [0, 1] separating points of X . Then the diagonal product

F : X →
∏
n∈N

[0, 1]N, F (x) = (fn(x))n∈N

is a topological embedding (by Corollary 2.14). �

In fact we have a more general result

Theorem 3.18. (Urysohn’s theorem) Every separable metriz-
able space X can be embedded topologically into the Hilbert
cube [0, 1]N.

Proof. Hint: There exists a countable family of functions fn :
X → [0, 1] separating points and closed subsets of X (Urysohn
functions for every pair U, V of a countable basis where cl(U) ⊂
V ). Then the diagonal product

F : X →
∏
n∈N

[0, 1]N, F (x) = (fn(x))n∈N

is a topological embedding. �

Exercise 3.19. Is it true that every separable metrizable space
X can be embedded topologically into (0, 1)N or RN ?

Exercise 3.20. Prove that a topological space X is compact and
metrizable if and only if X is a closed subspace of the Hilbert
cube [0, 1]N.

Definition 3.21. A (proper) compactification of X is a pair
(K, j) where: K is a compact Hausdorff space, j : X → Y is
a continuous map (resp., an embedding) and cl(j(X)) = K.
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Theorem 3.22. The following conditions are equivalent:

(1) X is a Tychonoff space (= Hausdorff and for every
closed subset A and b /∈ A there exists a separating
function f : X → R with f (b) = 0, f (A) = 1).

(2) X has a proper compactification.
(3) X is a subspace of a compact space.

Exercise 3.23. (1) Prove that every metrizable spaceX is Ty-
chonoff.

Hint (even normal !): For every pair of closed disjoint
subsets A, B consider the function

f : X → R, f (x) :=
d(x,A)

d(xA) + d(x,B)

(2) Is it true that every separable metrizable space X has a
separable metrizable compactification ?

(3) Prove or disprove: Any metrizable space has a proper
compactification.

(4) Prove that every locally compact Hausdorff space admits
the one-point compactification (=Alexandrov compact-
ification).
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4. Completeness and topological groups

4.1. Completeness type conditions.

Definition 4.1. (1) A sequence (an)n∈N in a metric space
(X, d) is a Cauchy sequence if for every ε > 0 there
exists n0 ∈ N s.t.

d(ai, aj) < ε ∀ i, j ≥ n0.

Equivalently,

diam{xn0, xn0+1, · · · } ≤ ε.

(2) A filter α in (X, d) is Cauchy if for every ε > 0 there
exists A ∈ α s.t. diamA ≤ ε.

(3) A net (xi)i∈I in (X, d) is Cauchy if for every ε > 0 there
exists i0 ∈ I s.t.

d(ai, aj) < ε ∀ i, j ≥ i0.

(equivalently, the associated filter is Cauchy).
(4) (X, d) is complete if every Cauchy sequence is conver-

gent (the converse is always true !). Equivalently, if every
Cauchy net is convergent.

(5) A Banach space is a normed space (X, ‖‖) which is com-
plete wrt the metric induced by given norm.

Proposition 4.2. (1) Every convergent sequence is Cauchy.
(2) A Cauchy sequence is convergent iff it has a convergent

subsequence.
(3) A closed subspace of a complete metric space is com-

plete.
(4) A complete subspace of a metric space is closed.
(5) If f : X → Y is uniformly continuous and (xn) is

Cauchy then (f (xn)) is Cauchy in Y .
(6) * Every complete metric space X is a Baire space

(every sequence of dense open subsets has a nonempty



24

interior). Therefore X is of second category in it-
self (if X = ∪n∈NFn of closed subsets Fn then at least
one Fn contains a nonempty open set).

Theorem 4.3. TFAE:

(1) (X, d) is compact.
(2) (X, d) is totally bounded and complete.

Proof. (1) ⇒ (2):
(total boundedness) For every ε > 0 the ε-cover has a finite

subcover...
(completeness) Let (xn) be a Cauchy sequence. Since (X, d)

is a compact metric space it is sequentially compact. So there
exists a convergent subsequence. Now apply Proposition 4.2.2.

(2) ⇒ (1):
Let α be an ultrafilter in X . It is enough (by Theorem 3.6)

to show that α is convergent. By completeness it is enough to
show that α is Cauchy. Let ε > 0. By total boundedness, X is
a union of finitely many subsets of diameter < ε. Since X ∈ α,
by Corollary 3.5, we get that α contains a set of diameter < ε.
Thus α is Cauchy. �

Examples 4.4. (1) The Euclidean space Rn is a Banach space.
(2) The Hilbert space l2 is a Banach space.
(3) (F b(X), ‖‖sup) of all bounded functions is a Banach

space for every set X .
(4) (C(X), ‖‖sup) of all bounded continuous functions is

a Banach space for every topological space X .
(5) l∞ := C(N) = {bounded sequences}

Theorem 4.5. (Frechet) Every metric space (X, d) is iso-
metric to a metric subspace of the Banach space C(X).

Proof. Sketch: fix z ∈ X and define

j : X → C(X), j(x)(t) := d(x, t)− d(t, z) ∀t ∈ X
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Then j is a distance preserving map.
�

Exercise 4.6. (1) Prove all details of Theorem 4.5.
(2) Show that every metric space (X, d) is isometric to a met-

ric subspace of the Banach spaceC(D), whereD is a dense
subset of X .

(3) Show that every separable metric space (X, d) is isometric
to a metric subspace of the Banach space l∞.

(4) Show that l∞ is not separable.

Theorem 4.7. * (Banach) Every separable metric space is
isometric to a subset of the Banach space C[0, 1] (which is
separable).

4.2. Completion. A completion 5 of a metric space (X, d) is
a pair (Y, j), where Y is a complete metric space and j : X →
Y is an isometric dense embedding.

Theorem 4.8. Every metric space has a completion.

Proof. (I: not constructive) Use Thm 4.5.
(II: constructive) Sketch:
[similar to the construction of R from Q]
The needed metric space Y will be the natural quotient of

a semimetric space Y0. The latter is defined as the set of all
Cauchy sequences in (X, d). The semimetric is

ρ0((an), (bn)) := lim d(an, bn)

�

Theorem 4.9. (Principle of extension of continuity) Let X
and Y be metric spaces and let Y be complete. If f : A→ Y
is uniformly continuous on the dense subset A ⊂ X then f
has a unique continuous extension which is uniformly con-
tinuous.

5uniquely defined up to isometries
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Proof. For x ∈ X take a sequence (an) in A s.t. lim(an) = x
in X . Since (an) is a Cauchy s. and f : A→ Y is uniformly
continuous, the sequence (f (an)) is Cauchy in Y . Since Y is
complete, there is a point y ∈ Y with lim f (an) = y. Define

g : X → Y, g(x) = y

This map is well defined because g(x) depends only on x.
Indeed, if (bn) is another sequence in A with lim bn = x then
lim d(an, bn) = 0. By uniform continuity of f we get

lim d(f (an), f (bn)) = 0.

Therefore, lim f (bn) = g(x).
It is easy to see the uniform continuity of g : X → Y . The

uniqueness of g is obvious. �
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5. (Semi)groups with a topology

5.1. Topological groups.

Definition 5.1. Let (G, ·) be a group and τ be a topology on
G. (G, ·, τ ) (or, simply, G) is a topological group if the group
operations

G×G→ G, (x, y) 7→ xy

G→ G, x 7→ x−1

are continuous.

As usual a function ‖ · ‖ : X → [0,∞) on a vector space X
is said to be a norm on X if:

(1) ‖cx‖ = |c|‖x‖ for every (c, x) ∈ R×X .
(2) ‖x‖ = 0⇒ x = 0.
(3) ‖x + y‖ ≤ ‖x‖ + ‖y‖.

Example 5.2. Every normed space (X, ‖ · ‖) is a topological
group wrt induced topology. (For example, Rn, l2, lp, l∞, c0, C(K))

More generally, we have

Lemma 5.3. Let (G, ·) be a group and p : G → R be a
generalized absolute value function, i.e.,

(1) p(x) ≥ 0, ∀x ∈ G.
(2) p(x−1) = p(x) ∀x ∈ G.
(3) p(xy) ≤ p(x) + p(y) ∀x, y ∈ G.
(4) lim p(xi) = 0⇒ lim p(axia

−1) = 0 ∀a ∈ G. 6

Then d(x, y) := p(x−1y) defines a (left invariant) semimet-
ric on G which induces a group topology.

6one may drop it if G is abelian
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Example 5.4. Let

H+[0, 1] := {homeom. f : [0, 1]→ [0, 1] : f (0) = 0, f (1) = 1}.

Define

p(f ) := max
x∈[0,1]

|f (x)− x|.

Then p is an absolute value function (Lemma 5.3).

Proposition 5.5. (weak topologies on groups)

(1) Any subgroup of a topological group is a topological
group.

(2) Any product of topological groups is a topological group.
(3) The weak topology τw on a group G wrt a system hi :

G→ (Gi, τi) of group homomorphisms into topological
groups is a group topology.

Proposition 5.6. Let X be a group with the identity e and
a topology τ . Then τ is a group topology if and only if:

(1) Every left translate of an open set is open

(aO ∈ τ, ∀(a,O) ∈ X × τ )

(2) U−1 ∈ Ne for every nbd U ∈ Ne.
(3) ∀ U ∈ Ne ∃V ∈ Ne : V V ⊂ U .
(4) ∀ (a, U) ∈ X ×Ne ∃V ∈ Ne : aV a−1 ⊂ U .

Example 5.7. (1) Every group with its discrete topology is a
topological group.

(2) Every linear topological space (in particular, normed space)
is a t.gr.

(3) Q.
(4) Every (multiplicative) subgroup of C\{0}.
(5) GLn(R) is a t. gr. wrt pointwise topology.
(6) ZN

2 (where Z2 := Z/2Z = {[0], [1]}). One may call it,
”Cantor group” !
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(7) * (Z, τp). Z with the p-adic topology is a non-discrete
metrizable t.gr. Its completion is a group of p-adic inte-
gers.

Exercise 5.8. * For every metric space (X, d) the group Is(X)
of all onto isometries (=symmetries) X → X is a topological
group wrt the pointwise topology inherited from XX .

Exercise 5.9. (1) Show that A · B ⊂ A ·B in every t.gr.
(G, ·).

(2) Find two closed subsets A,B in R s.t. A+B is not closed.
(3) Let (G, ·) be a Hausdorff t. gr. Show that if K is a com-

pact subset then KF is closed for every closed subset
F ⊂ G.

Hint: Use nets, let (xi) ∈ KF and xi → x ∈ G. We
have to show that x ∈ KF ...

(4) Show that the inversion map x 7→ x−1 in a t. gr. is a
homeomorphism.

(5) Show that every left (right) x 7→ ax translation in a t. gr.
is a homeomorphism. Derive that every topological group
is homogeneous.

(6) Show that every conjugation x 7→ axa−1 in a t. gr. is a
homeomorphism.

(7) Show that the closure of a (normal) subgroup is a (normal)
subgroup in every t.gr.

(8) show that every open subgroup is clopen in every t.gr.

Proposition 5.10. Let G be a t. gr.

(1) If G is commutative then its completion naturally be-
comes a topological group (with the dense subgroup G,
like Q and its completion R).

(2) A group homomorphism h : G → X is continuous iff
h is continuous at some point (at e for example).
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(3) Let H be a subgroup of G. On the coset set G/H :=
{gH : g ∈ G} define the quotient topology τG/H. That
is, O ⊂ G/H is open iff q−1(O) is open in G. Then:
• q : G→ G/H is an open continuous map.
• The action G×G/H → G/H is continuous.
• G/H is Hausdorff iff H is closed in G.
• If H is a normal subgroup in G then G/H is a t.gr.

wrt the natural group operation.

Proof. For every open O ⊂ G the subset

q−1q(O) = HO ⊂ G

is also open. Hence q(O) is open inG/H (by definition
of quotient topology). �

Proposition 5.11. Let V be a normed space. Then its
completion can be treated as a Banach space.

As an example: (C[0, 1], ‖ · ‖) wrt ‖f‖ :=
∫
|f (t)|dt is a

normed (but noncomplete) space Its completion is a Banach
space denoted as usual by L1[0, 1].

5.2. Semigroups. Let (S, ·) is a semigroup with a topology.
We say that S is a right topological if all right translates are
continuous. Instead of ”right and left topological” we say ”semi-
topological”.

Example 5.12. ** Let V be a normed space.

(1) the semigroup Θ(V ) of all contractive linear selfmaps is a
semitopological monoid wrt weak operator topology.

(2) Θ(V ) is a semitopological monoid wrt strong operator
topology.

(3) the group Is(V ) of all linear self-isometries is a topological
group wrt strong operator topology.



31

A dynamical system is a semigroup action S ×X → X on
X (mostly with compact X). Cascade is a dynamical system
generated by iterations of a continuous selfmap X → X .

Example 5.13. (1) For every topological space X the semi-
group XX is right topological wrt product topology.

(2) ** enveloping semigroups of an action (the pointwise clo-
sure of the (semi)group of all translates s : X → X in
XX) of compact dynamical systems are right topological.

** Example: Consider the cascade on X := [0, 1] gener-
ated by

σ : [0, 1]→ [0, 1], σ(t) := t2.

What is his enveloping semigroup ?

Theorem 5.14. (Ellis Theorem) Let E be a right (or,
left) topological semigroup. Then E contains an idempotent
(i.e., an element u ∈ E s.t. u2 = u).

Proof. Zorn’s Lemma (and compactness of E) imply that there
exists a minimal element Y in the set of all closed non-empty
subsemigroups of E. Fix u ∈ Y . We claim that u2 = u (and,
hence Y = {u}). The set Y u being a closed subsemigroup of
Y , is equal to Y . It follows that the closed subsemigroup

Z := {y ∈ Y : yu = u}
is non-empty. Hence Z = Y and yu = u for every y ∈ Y . In
particular, u2 = u. �

6. Banach spaces

As usual Banach spaces are normed spaces which are complete
wrt its norm.

One of the most important examples is the Banach space
C(X) of all bounded continuous real valued functions on a topo-
logical space X wrt sup-norm ||f || := sup{|f (x)| : x ∈ X}.
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Every finite dimensional normed space (say, n-dimensional) is
topologically isomorphic to the Euclidean space Rn.

A Banach space with an inner (scalar) product is a Hilbert
space. For example, Rn, l2 and L2[0, 1] are (separable) Hilbert
spaces. A Hilbert space is separable if and only if it admits
a countable orthonormal basis. By Riesz-Fisher theorem all
infinite-dimensional separable Hilbert spaces are topologically
isomorphic to l2.

Suppose X is a normed space. We denote by X∗ its dual, i.e.
the space of all continuous linear maps (functionals) from X to
the base field R. Then X∗ := L(X,R) is a Banach space wrt
the natural norm

||f || := sup{|f (x)| : ||x|| ≤ 1} = sup{|f (x)| : ||x|| = 1}.

The weak-star topology w∗ on the dual V ∗ is the (pointwise)
topology inherited from the product RV .

Fact 6.1. (Banach-Alaouglu thm) Let V be a normed space.
Then the unit closed ball B∗ := BV ∗ of the dual V ∗ is com-
pact wrt weak-star topology.

Proof. Define the natural identification map

α : B∗ → K :=
∏
v∈V

[−||v||, ||v||], f 7→< f (v) >v∈V

This map is a topological embedding by the definition of the
weak-star topology w∗. The product space

∏
v∈V [−||v||, ||v||]

is compact by Tychonov thm. Now, observe that the α(B∗)
is closed (hence, compact). Indeed, if a net < fi(v) >v∈V
converges to < sv >v∈V in K then the mapping

s : V → R, v 7→ sv
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defines a functional from B∗. Indeed, the linearity of s is easy.
Now observe that s(v) ∈ [−||v||, ||v||]. Therefore, |s(v)| ≤ ||v||
for every v ∈ V . Hence, ||s|| ≤ 1, that is, s ∈ B∗. �

The weak topology on V is the weakest topology generated
by the family V ∗. The net vi converges to v in V wrt weak
topology iff ψ(vi) converges to ψ(v) for every ψ ∈ V ∗.

We can form the double dual X∗∗, the dual of X∗ for every
normed space X . There is a natural continuous linear transfor-
mation

j : X → X∗∗

defined by j(x)(φ) = φ(x) for every x ∈ X and φ ∈ X∗.
That is, j maps x to the functional on X∗ given by evaluation
at x. As a consequence of the Hahn - Banach theorem, j is
norm-preserving (i.e., ||j(x)|| = ||x|| ) and hence injective. The
space X is called reflexive if j is bijective. In this case X must
be isomorphic to X∗∗. Every Hilbert space is reflexive.

Some examples, of the dual spaces:

• C(K)∗ ∼= M(K) (By Riesz thm for every compact space
K the dual of C(K) is isomorphic to the space of all
regular measures).
• c∗0 ∼= l1
• l∗1 ∼= l∞ = C(N,R).
• l∗2 ∼= l2.
• l∗p ∼= lq with 1/p + 1/q = 1 for every p > 1.

Hence, lp is reflexive if and only if p > 1. For instance, l3 is
reflexive but not Hilbert.

A separable Banach space is said to be Asplund if its dual is
also separable. It is well known (but not trivial) that every sep-
arable reflexive space is Asplund. An easy example of Asplund
which is not reflexive is c0. At the same time l1 is not Asplund
(because its dual l∞ is not separable !).
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6.1. Operator topologies. Let X and Y be Banach spaces.
Then the set L(X, Y ) (in particular, the dualX∗ := L(X,R) of
all continuous linear operators from X to Y is a Banach space
wrt the usual operator norm

||f || := sup{|f (x)| : x ∈ BX} = sup{|f (x)| : x ∈ SX}
where BX and SX are the (closed) unit ball and the unit

sphere of X . Then L(X, Y ) becomes a Banach space wrt that
norm and usual operations. There are two additional important
locally convex topologies on L(X, Y ).

The strong operator topology is the weakest topology ofL(X, Y )
relative to which the mapping

L(X, Y )→ Y, f 7→ f (x)

is continuous for each x ∈ X .
The weak operator topology is the weakest topology ofL(X, Y )

relative to which the mapping

L(X, Y )→ R, f 7→ ψ(f (x))

is continuous for each x ∈ X and ψ ∈ Y ∗.
Consider the particular case of X = Y = V . Then the strong

operator topology on L(V, V ) is just the pointwise (product)
topology which comes from V V . A net fi in L(V, V ) converges
to f iff fi(v) converges wrt the norm to f (v) in V for each
v ∈ V .

Similarly, the weak operator topology on L(V, V ) is the point-
wise (product) topology which comes from V V

w , where Vw means
the space V endowed with the weak topology. A net fi in
L(V, V ) converges to f iff fi(v) converges wrt the weak topology
to f (v) in V for each v ∈ V . Precisely this means that ψ(fi(v))
converges to ψ(f (v)) for every v ∈ V and every ψ ∈ V ∗.

Denote by Θ(V ) the set of all contractive linear operators of
V into itself. That is,
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Θ(V ) = {σ ∈ L(V, V ) : ||σ|| ≤ 1}.
Of course Θ(V ) = BL(V,V ).

Fact 6.2. (1) Θ(V )s is a topological semigroup.
(2) Θ(V )w is a semitopological semigroup.
(3) The pair (Θ(V )w, B(V )w) is a semitopological flow.

Recall some natural ways getting topological monoids and
monoidal actions.

Let V be a normed space.

Examples 6.3. (1) For every metric space (M,d) the semi-
group Θ(M,d) of all d-contractive maps f : X → X
(that is, d(f (x), f (y)) ≤ d(x, y)) is a topological monoid
with respect to the topology of pointwise convergence.
Furthermore, the evaluation map Θ(M,d) × M → M
is a jointly continuous monoidal action. The subspace
Is(X, d) of all linear onto isometries is a topological group.

(2) For every normed space (V, || · ||) the semigroup Θ(V ) of
all contractive linear operators V → V endowed with the
strong operator topology (being a topological submonoid
of Θ(V, d) where d(x, y) := ||x − y||) is a topological
monoid. The subspace Is(V ) of all linear onto isometries
is a topological group.

7. Why we study actions ?

Some examples of groups
Sn, SX := {f : X → X} Symmetric group w.r.t. ◦
G ≤ GL(n,R) Matrix groups
Iso(X, d) Group of isometries
Homeo(X) Group of homeomorphisms

and semigroups (Map(X,X), ◦), C(X,X), ◦),
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S := (fn}n∈N for every f : X → X , where fn := f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
n

.

(Semi)Groups come as usual by transformations of
some X.

SX ×X → X, (σ, x) 7→ σ(x) is the natural action.
Moreover for every homomorphism h : G→ SX we have the

associated action:
G×X → X, (g, x) 7→ h(g)(x)

Definition 7.1. Action of a semigroup S on X is a function

π : S ×X → X, π(s, x) := sx

s.t. s1(s2x) = (s1s2)x (and ex = x if e is the neutral element
of S).

If S and X are topological spaces one can define continuous
actions. (S,X) (sometimes write also as (X,S)) is a dynam-
ical system.

Lemma 7.2. Let S = G be a group and π : S ×X → X be
a (continuous) action. Then

(1) every s-translation ŝ : X → X, x 7→ sx is a homeo-
morphism and φ : S → Homeo(X) ≤ SX is a homo-
morphism of groups.

(2) X :=
⊔
x∈X [x] where

[x] = Sx := {sx}s∈S
is the orbit of x.

If X is discrete and finite with m orbits then

|X| =
∑

1≤i≤m
[G : St(xi)]

”Finite combinatorics” ...

General Problem: What if X and S are not finite ?
Study topological behavior of the action, orbits & etc.
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Symmetry and complicated processes

Definition 7.3. For f : X → X define the action N×X →
X, π(n, x) := fn(x), where fn := f ◦ f ◦ · · · ◦ f . Then (X, f ),
or (X,N) is said to be a cascade (generated by f ). If f is a
homeomorphism one can define Z×X → X .

(S,X) is a dynamical system. We say that (S,X) is:
a) cascade if S := N or S := Z.
b) flow if S := R.

Y ⊆ X is S-invariant if SY ⊆ Y (that is, sy ∈ Y for all
y ∈ Y ). Then (Y, S) is a subsystem of X .
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8. Representations

Let G be a (topological) group and V be a Banach space (Rn,
H = l2, ... for example). An representation of G on V is a
homomorphism h : G → GL(V ). If h(G) ⊂ Is(V ), we say
”isometric representation”. h is (topologically) exact if h is a
(topological) embedding.

Example 8.1. (1) Standard representation by rotations

Zn ↪→ Is(R2) = O(2,R)

[k] 7→
(
cos2πk

n sin2πk
n

−sin2πk
n cos2πk

n

)
(2)

∃ Dn ↪→ O(3,R)

(3)

h : R2 ↪→ GL(3,R)

(x1, x2) 7→

1 0 x1

0 1 x2

0 0 1


is an exact representation (which is not isometric).

Exercise0: There is no topologically exact representation
by isometries R→ Is(Rn) of R on V := Rn.

Question 8.2. Whether G admits a faithful representation
on a good (well behaved class) of Banach space ?

Some ”good” classes (increasing):

(1) Finite dimensional spaces Rn.
(2) Hilbert spaces (l2, L2[0, 1], · · · ).
(3) Reflexive spaces (lp, 1 < p <∞, · · · )
(4) Asplund spaces (c0, · · · ).
(5) Rosenthal spaces.
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Exercise1: Every finite group G is representable on a finite
dimensional space.

Hint: Use RG or do it for the symmetric group Sn on Rn.

Exercise2: Every discrete group G is representable on a
Banach space V .

Hint: Take V := Cb(G) = l∞(G). For example, Z is repre-
sentable on l∞.

Theorem 8.3. (Theorem 1 of Teleman) Every topological
group G is a topological subgroup of Is(V ) for some Banach
space V .

Hint: canonical representation on V := RUC(G).

Theorem 8.4. (Theorem 2 of Teleman) Every topological
group G is a topological subgroup of Homeo(K) for some
compact space K.

Hint: Take K = weak-star compact unit ball of the dual V ∗

of V , where V := RUC(G).

Question 8.5. (General question) Whether V can be Hilbert,
reflexive, Asplund, ... ?

Remark 8.6. Describe finite subgroups of SO(3,R) (up to iso-
morphisms).

Hint: {Cn, Dn, Is(K)}, where K is: a) cube; b) tetrahedron;
c) icosahedron.

Question 8.7. Whether a given action G×X → X admits
a linearization into a good Banach space ?
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9. Orbit hierarchy

Definition 9.1. Orbit hierarchy for the cascade (X,T ) and a
point x0 ∈ X :

a) fixed Tx0 = x0.
b) periodic ∃p > 1 : T px0 = x0.
c) almost periodic (or, uniformly recurrent)
∀ nbd V of x0 ∃l > 0:

∀n > 0 ∃i ∈ {0, · · · , l} : T n+ix ∈ V

c*) ( reformulation of (c)) : ∀ nbd V the set of ”return times”

R(x, V ) := {n ∈ N : T nx ∈ V }

is a syndetic set, where A is syndetic means that F−1A = N
for some finite (”compact” in general case) F ⊂ N.

d) (positively) recurrent x ∈ cl(Orb+(x))
(i.e. for any nbd V of x there exists n ≥ 1 with T nx ∈ V ).
If X is a metric then it is equivalent to saying that

lim
k→∞

T nkx = x

for some sequence nk of natural numbers.

”a point is periodic if it returns to itself every hour on the hour
and is almost periodic if it returns to an arbitrary nbd every hour
within the hour (where the length of the ”hour” depends on the
nbd)”

Definition 9.2. Let (S,X) be a dynamical system.

(1) X is (topologically) transitive if X = cl(Sx0) for some
x0 ∈ X .

(2) A closed subsetA ofX is called minimal wheneverA 6= ∅,
A is invariant (that is, SA ⊆ A) and A has no closed
invariant proper subsets.
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SOME EXAMPLES

Example 9.3. For every topological group G and a subgroup
H ≤ G the natural action

G×G/H → G/H, (s, tH) 7→ stH

on the coset space G/H is the ”1-orbit action” = alg. transitive
(hence, minimal (hence, top. transitive)).

Example 9.4. On the ”circle” T := R/Z define the ”irra-
tional rotation”

σθ : T→ T σθ([x]) := [x + θ].

(Equiv.: σθ(e
2πit) = e2πit+2πiθ)

If θ is irrational then the corresponding system is minimal (not
so trivial !). Every point is almost periodic (but not periodic !).

Example 9.5. Logistic map f : [0, 1]→ [0, 1], f (t) := 4t(1− t).
Not transitive but has a subsystem isomorphic to the shift on
the Cantor space {0, 1}N.

Example 9.6. Shift systems (Symbolic cascades).
Λ := {0, 1, · · · , r}, Ω := ΛZ = {ω : Z → {1, · · · , r}}

d(x, y) :=
1

1 + min{|i| : xi 6= yi}
(homeomorphic to the ”Cantor set” !).
Define the ”shift”: σ : ΛZ → ΛZ, (σω)(n) := ω(n + 1).

x := · · · , x−2, x−1, x̆0, x1, · · ·

←

σx := · · · , x−1, x0, x̆1, x2, · · ·
(Ω, σ) is a cascade.
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(clopen) cylinders

x[j; k] := {y ∈ Ω : yi = xi}j≤i≤k
local basis at x.

Exercise 1:

(1) x[−j; j] = {y ∈ Ω : d(x, y) ≤ 1
1+(j+1)}.

(2) For x, y ∈ Ω one has σry ∈ x[0; k] iff the block x0, · · · , xk
occurs in y at place r that is iff xi = yr+i for i = 0, · · · , k.

(3) x 6= y ⇒ ∃k ∈ Z : d(σkx, σky) = 1.

Exercise 2: Ω is sensitive (i.e. there exists ε > 0 s.t. for every
open ∅ 6= O ⊆ Ω there exists k ∈ Z s.t. diam(σkO) ≥ ε).

Exercise 3: Let x ∈ Ω. Then:
(a) Fixed points = constant maps.
(b) x is periodic iff ∃ p ∈ N s.t. xi+p = xi for all i ∈ Z.
(c) A point y ∈ Ω is in the orbit closure of x iff every finite

block which occurs in y also occurs in x (then it occurs at
infinitely many different places in x).

(d) x has a dense orbit in Ω iff every finite block occurs in x
at some place j.

(e)* Ω is topologically transitive (has a dense orbit).
(f) x is positively recurrent iff every block which occurs in x

does so at places j for arbitrarily large j.
(g) x is almost periodic iff every block which occurs in x with

bounded gaps, i.e. for each block b occuring in x the set

{j ∈ Z : b occurs in x at place j}
is syndetic in Z.

Remark: if Ω := {0, 1}Z. Then
(1) Ω is transitive but not minimal.
(2) The set of all periodic points is dense.
(3) is chaotic !
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Definition 9.7. A closed subset A of X is called minimal
whenever A 6= ∅, A is invariant and A has no closed invariant
proper subsets.

Lemma 9.8. An invariant subset A ⊆ X is minimal iff
cl(Orb(x)) = A for every x ∈ A (iff every orbit is dense in
A).

Proof. Indeed cl(Orb(x)) is invariant and closed. �

For example:

• Ω is topologically transitive but not minimal.
• (σθ,T) is minimal for every irrational θ.

Theorem 9.9. Every compact dynamical system (S,X)
contains a minimal subset.

Proof. Apply Zorn’s Lemma to the partially ordered (with re-
spect to inclusion) family of all non-empty closed invariant sub-
sets of X . This family is non-empty (X belongs to it !) and
the intersection of a chain in it is a non-empty because X is
compact. �

Theorem 9.10. [Birkhoff Recurrence Theorem 1927]
Every compact cascade (X,T ) contains a point which is re-
current under T .

Proof. By Theorem 9.9 (with S := N) there exists a minimal
subset, say, Y ⊆ X . Every point y ∈ Y of the minimal set Y
is recurrent. Indeed, by Lemma 9.8 we have cl(Orb+(y)) = Y .
In particular, y ∈ cl(Orb+(y)). �
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Theorem 9.11. [Gottschalk 1944] For every compact
system (S,X) and a point x0 ∈ X TFAE:

(1) The subsystem Y := cl(Sx0) is minimal.
(2) For every open nbd V of x0 in X there exists a fi-

nite set F := {s1, · · · , sn} ⊆ S s.t. F−1V ⊇ Y (i.e.⋃n
i=1 s

−1
i V ⊇ Y ).

(3) x0 is almost periodic in X.

Proof. (1) ⇒ (2): Suppose (Y, S) is minimal. Then for every
y ∈ Y there exists s ∈ S s.t. sy ∈ V . Therefore,⋃

s∈S

s−1V ⊇ Y.

By compactness of Y we can choose a finite subset F ⊆ S s.t.
F−1V ⊇ Y .

(1)⇐ (2): If (Y, S) is not minimal and M is a closed invariant
nonempty subset of Y then define V := X\M . We have⋃

s∈S

s−1V + Y.

(2) ⇔ (3): Clear by the reformulation of Definition 9.1(c).

(3) ⇒ (1): Y = cl(Sx0) is nonempty, closed and invariant.
It remains to show that if y ∈ Y then x0 ∈ cl(Sy). Assume
otherwise, so that x0 /∈ cl(Sy). Choose an open nbd V of x0

s.t. cl(V ) ∩ cl(Sy) = ∅. Since x0 is almost periodic (by (2))
there is a finite set F := {s1, · · · , sn} so that for each s ∈ S
some sisx0 ∈ V . In other words, each

sx0 ∈ F−1V =

n⋃
i=1

s−1
i V.

Hence

Sx0 ⊆
n⋃
i=1

s−1
i V.
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Then

y ∈ cl(SX) ∈ cl(
n⋃
i=1

s−1
i V ) =

n⋃
i=1

s−1
i cl(V ).

But then Sy ∩ cl(V ) 6= ∅ contrary to our assumption. �

Theorem 9.12. Every compact dynamical system contains
an almost periodic point.

Proof. Let Y be a minimal subsystem (exists by Theorem 9.9)
of X . Then every y ∈ Y is almost periodic (by Theorem 9.11)
in Y (and hence also in X). �

Theorem 9.13. [Pouncare Recurrence Theorem 1899]
Let T : X → X be a measure preserving transformation of
a measure space (X,B, µ), with µ(X) < ∞. If B is an ar-
bitrary measurable set in X with positive measure µ(B) > 0
then there is some point x ∈ B and n ∈ N with T nx ∈ B.

Proof. µ(T−nB) = µ(B) > 0 for every n ∈ N. Then T−iB ∩
T−jB 6= ∅ for some i < j ∈ N (otherwise µ(X) =∞ !). Take
y ∈ T−iB ∩ T−jB. Then T j−ix ∈ B for x := T iy ∈ B. �

Since every arbitrarily small set of positive measure returns
to itself it follows that almost all point are recurrent.
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