

COMPACTIFICATIONS
(BAR-ILAN UNIVERSITY, 2009)

DORON BEN HADAR

CONTENTS

1. Basic Definitions	2
2. The one-point compactification	3
3. The Stone-Cech compactification	6
4. T_2 -compactifications	10
References	14

1. BASIC DEFINITIONS

ABSTRACT. In this chapter we define compactifications, and add a sort theorem, In chapters 2 and 3 we show two specific constructions with interesting properties, In chapter 4 we study compactifications who are T_2 , and show that the constructions from 2 and 3 are, in a way, minimal and maximal among them.

Definition 1.1. A Compactification (Y, h) of a topological space X is a topological space Y and an embedding $h : X \rightarrow Y$ such that $h[X]$ is dense and Y is compact.

Examples 1.2. Basic examples:

- (1) $([0, 1], i)$ with i the identity is a compactification of $(0, 1)$.
- (2) $(\hat{\mathbb{C}}, h)$ the riemann sphere is a compactification of \mathbb{C} , where h is the stereographic projection.

Remark 1.3. After we define (Y, h) and prove h is an embedding we usually identify X with $h[X]$ and say $X \subset Y$, like commonly done with $\hat{\mathbb{C}}$.

As always, it is preferred to work with Hausdorff spaces, so we would like to create a compactification that is a T_2 space, however, this is not always possible:

Theorem 1.4. *A space X has a Hausdorff compactification only if X is Tychonoff.*

Proof. If Y is a T_2 compactification of X then Y is compact and T_2 and there for T_4 [lecture 2, prop 2.3.7] so Y is $T_{3\frac{1}{2}}$ and $X \subset Y$ so X is $T_{3\frac{1}{2}}$. \square

Remark 1.5. This is in fact an "if and only if", we will show it in chapter 3, theorem 3.1.

Corollary 1.6. *If $f : X \rightarrow Y$ is an embedding and Y is compact, then $(\overline{f[X]}, f)$ is a compactification of X .*

Proof. $\overline{f[X]}$ is closed in the compact space Y and so $\overline{f[X]}$ is compact, $f[X]$ is dense in $\overline{f[X]}$, and f is still an embedding. \square

2. THE ONE-POINT COMPACTIFICATION

\mathbb{C} can be extended to $\hat{\mathbb{C}}$ by adding the point at ∞ . We would like to create an analog construction for every non-compact topological space X , which we'll call X^+ .

First we add a point $\infty \notin X$ to X^+ , for formality we can take $\infty = \{\infty\}$, we would like X to be a subspace of X^+ .

We will like X to be open in X^+ , (like \mathbb{C} is in $\hat{\mathbb{C}}$) and so $A \subseteq X$ is open in X iff it's open in X^+ .

If $\infty \in A \subset X^+$ is open, then $A^c \subseteq X$ is closed in X , and in X^+ which we want to be compact, so A^c is compact, in $\hat{\mathbb{C}}$ all such sets are compact, we will do the same in here.

Definition 2.1. Let (X, T) be a topological space, its One-Point Compactification is (X^+, T') where $X^+ = X \cup \{\infty\}$ and $T' = T \cup \{A \cup \{\infty\} \mid A \in T \text{ and } A^c \text{ is compact}\}$

Remark 2.2. $B \subseteq X^+$ is closed iff $B \subseteq X$ and is closed and compact, or $B = A \cup \{\infty\}$ where $A \subseteq X$ is closed.

Theorem 2.3. X^+ is a compactification of X , meaning:

- (1) T' is a topology on X^+ .
- (2) X is a subspace of X^+ .
- (3) X^+ is compact.
- (4) X is dense in $X^+ \Leftrightarrow X$ isn't compact.

Proof. (1) Exercise! (work with closed sets, use remark 2.2).

- (2) If $A \subseteq X$ is open, then $A \subseteq X^+$ is open.

And if $A \subseteq X^+$ is open, then $(A \cap X) \subseteq X$ is open, and therefore $(A \cap X) \subseteq X$ is open.

- (3) Let $\{U_a\}$ be an open cover of X^+ , so there is a $U \in \{U_a\}$ such that $\infty \in U$, by definition, U^c is compact, so there is a finite subcover of U^c , $\{U_{a_1} \cup \dots \cup U_{a_n}\} \subseteq \{U_a\}$. and so:

$$X^+ = U \cup U^c \subseteq U \cup \bigcup_{i=1}^n U_{a_i}$$

(4) If X is compact then by definition $X \subseteq X^+$ is closed, and so of $cl_{X^+}(X) = X \neq X^+$.

If X isn't compact then $X \subseteq X^+$ isn't closed, and so $X \subsetneq cl_{X^+}(X) \subseteq X^+$, and the only set like that is X^+ .

□

Remark 2.4. We just proved every topological space X has a compactification, if X is compact then X is it's own compactification, otherwise X^+ will do.

Remark 2.5. $X \subseteq Y$ it doesn't mean $X^+ \subseteq Y^+$.

Example 2.6. $(0, 1) \subseteq (0, 1]$, it is easily shown that $(0, 1)^+ \cong S^1$ and $(0, 1]^+ \cong [0, 1]$, so $(0, 1)^+$ is not a subspace of $(0, 1)^+$.

We prefer to work with Hausdorff spaces, and will like to know for which X 's X^+ is T_2 .

Theorem 2.7. X^+ is $T_2 \Leftrightarrow X$ is locally compact and T_2 .

Proof. If X is locally compact and T_2 , let $a, b \in X^+, a \neq b$:

If $a, b \in X$ then there exist $A, B \subseteq X$ two disjoint and open sets such that $a \in A$ and $b \in B$, and by definition A and B are also open in X^+ .

Else $b = \infty$, X is locally compact so there is a compact nbd K of a , $a \in U \subseteq K \Rightarrow U \cap K^c = \emptyset$, U is open in X and X^+ , and $K \subseteq X$ is compact and closed since X is T_2 [lecture 2, prop 2.3.6] and so K^c is open and $b = \infty \in K^c$.

If X^+ is T_2 then the subspace X is T_2 , and if $x \in U \subseteq X$ is open, then $x \in U \subseteq X^+$ is open, and X^+ is compact and $T_2 \Rightarrow T_4 \Rightarrow$ regular, so there is a closed subnbd $a \in K \subseteq U$ in X^+ , and by definition, K is a compact subnbd in X . □

Result 2.8. A locally compact Hausdorff space is Tychonoff.

Proof. If X is compact and T_2 then it's $T_4 \Rightarrow T_{3\frac{1}{2}}$,

Else X^+ is a T_2 compactification, so we can use theorem 1.4. □

Example 2.9. \mathbb{Q} is $T_{3\frac{1}{2}}$ but not locally compact, and so \mathbb{Q}^+ is not T_2 .

Theorem 2.10. *If Y is compact and T_2 , and $Y = X \cup \{a\}$ with ($a \notin X$) then the function $f : Y \rightarrow X^+$, defied as: $f(a) = \infty$ and $\forall x \in X : f(x) = x$ is a homeomorphism.*

Proof. By definition, f is one to one and onto,

We will show $U \subseteq Y$ is open $\Leftrightarrow f[U] \subseteq X^+$ is open:

(1) If $a \notin U$ meaning $U \subseteq X$:

Y is T_2 so $\{a\} \subseteq Y$ is closed, so $\{a\}^c = X \subseteq Y$ is open, and so U is open in $Y \Leftrightarrow U$ is open in X (X is open) $\Leftrightarrow f[U] = U$ is open in X^+ (by definition of (X^+, T')).

(2) If $a \in U$:

$U \subseteq Y$ is open $\Rightarrow U^c \subseteq X$ is closed (in $Y \Rightarrow$ in X) and because Y is compact U^c is compact $\Rightarrow f[U^c] = U^c$ is closed in X^+ $\Rightarrow f[U] = f[U^c]^c$ is open in X^+ .

And if $f[U] = f[U^c]^c$ is open in X^+ then $f[U^c] = U^c$ is closed in X^+ and is there for compact, $U^c \subseteq Y$ is compact and Y is T_2 , so U^c is closed and $U \subseteq Y$ is open.

□

Remark 2.11. We just proved that if X has a T_2 compactification Y , such that $Y \setminus X$ has one point, then X is locally compact. (because $Y \cong X^+$, so X^+ is T_2).

Let's show that theorem 2.10 doesn't work without the requirement that Y is T_2 .

Exercise 2.12. For every topological space (X, T) you can define $X^- = X \cup \infty$ with the topology $T'' = T \cup \{X^-\}$. Prove this is a compactification of X , and that $Id : X^+ \rightarrow X^-$ is not a homeomorphism, even if X is locally compact and T_2 .

3. THE STONE-ČECH COMPACTIFICATION

As promised in remark 1.5 we will now prove every Tychonoff space has a Hausdorff compactification:

Theorem 3.1. *Let X be a Tychonoff space, and let C_x be the set of all continuous functions from X to C then X can be embedded in I^{C_x} .*

Proof. For every $x \in X$ we define a map $\hat{x} : C_x \rightarrow I$ as

$$\forall \varphi \in C_x : \hat{x}(\varphi) = \varphi(x).$$

and we define $e : X \rightarrow I^{C_x}$ by $e(x) = \hat{x}$, we will prove this is a topological embedding:

(1) e is 1 to 1:

Let $x, y \in X$ and $x \neq y$, X is $T_{3\frac{1}{2}}$ so there is $\phi \in C_x$ such that $\phi(x) = 0$ and $\phi(y) = 1$, and so $\hat{x}(\phi) = 0 \neq 1 = \hat{y}(\phi)$ and $e(x) \neq e(y)$.

(2) e is continuous :

By the universal property of a product space, the function $e : X \rightarrow I^{C_x}$ is continuous iff for every $\varphi \in C_x$, $P_\varphi \circ e : X \rightarrow I$ is continuous (P_φ is a projection to I) but by definition , for every $x \in X$ and $\varphi \in C_x$:

$$P_\varphi \circ e(x) = e(x)(\varphi) = \hat{x}(\varphi) = \varphi(x)$$

so $P_\varphi \circ e = \varphi$, and we know φ is continuous .

(3) $e^{-1} : e(X) \rightarrow X$ is continuous :

Let $x_\delta, x \in X$ with $e(x_\delta) \rightarrow e(x)$, we will prove $x_\delta \rightarrow x$:

For every $\varphi \in C_x$, P_φ is continuous , and so $P_\varphi \circ e(x_\delta) \rightarrow P_\varphi \circ e(x)$, meaning $\varphi(x_\delta) \rightarrow \varphi(x)$. (*)

If we assume $x_\delta \not\rightarrow x$ than there is an open $x \in U \subseteq X$ such that for every δ_o there is $\delta_o \leq \delta$ with $x_\delta \in U^c$.

but U^c is closed and X is $T_{3\frac{1}{2}}$, so there is a $\phi \in C_x$ such that $\phi[U] = \{0\}$ and $\phi(x) = 1$!

And so for every δ_o there is $\delta_o \leq \delta$ with $\phi(x_\delta) = 0$, and so $\phi(x_\delta) \not\rightarrow 1 = \phi(x)$, in contradiction to (*).

□

I^{C_x} is compact and T_2 , and by corollary 1.6 $(\overline{e[X]}, e)$ is a compactification of X , that is also Hausdorff, we will define $\beta X = \overline{e[X]}$ to be the Stone-Cech compactification of X . we should also add that:

Theorem 3.2. *If X is compact then $e : X \rightarrow \beta X$ is a homeomorphism.*

Proof. Theorem 3.1 proves everything except that $e[X] = \beta X$, $\beta X = \overline{e[X]}$ so it's enough to show $e[X] \subseteq I^{C_x}$ is closed, which is true since it is compact and I^{C_x} is T_2 . □

Like before, we identify X with $e[X]$, $(x \leftrightarrow \hat{x})$ and find that βX has some interesting properties:

Lemma 3.3. *Let X be $T_{3\frac{1}{2}}$, and let $f : X \rightarrow I$ be continuous, then f has a continuous extension $F : I^{C_x} \rightarrow I$.*

Proof. For every $a \in I^{C_x}$, $(a : c_x \rightarrow I)$ we define $F(a) = a(f)$, and so $F(\hat{x}) = \hat{x}(f) = f(x)$ like we need.

F is continuous because it is the F_f projection. □

This can be generalized:

Lemma 3.4. *Let X be $T_{3\frac{1}{2}}$, S be a set, and $f : X \rightarrow I^S$ be continuous, then f has a continuous extension $F : I^{C_x} \rightarrow I^S$.*

Proof. For every $s \in S$, $P_s \circ f$ can be extended to $F_s : I^{C_x} \rightarrow I$, the map $\prod F_s : I^{C_x} \rightarrow I^S$ is the extension we need. □

And from here follows the main property of βX :

Theorem 3.5. *Let X be $T_{3\frac{1}{2}}$, Y be compact and T_2 , and $f : X \rightarrow Y$ then f has a continuous extension $\beta f : \beta X \rightarrow Y$!*

Proof. Without loss of generality, we can assume Y is a closed subset of I^A for some set A , otherwise Y is homeomorphic to βY [theorem 3.2] which is.

[If $e_Y \circ f : X \rightarrow \beta Y$ can be extended to $F : \beta X \rightarrow \beta Y$ then $e^{-1} \circ F : \beta X \rightarrow Y$ is an extension of f]

By lemma 3.4 $f : X \rightarrow Y \subseteq I^A$ can be extended to $F : I^{C_x} \rightarrow I^A$, were F is continuous and $X \subseteq F^{-1}[Y]$, Y is closed, so $F^{-1}[Y]$ is closed, so $\beta X = \overline{X} \subseteq F^{-1}[Y]$. and so $F|_{\beta X} : \beta X \rightarrow Y$ is an extension of $f : X \rightarrow Y$. \square

Remark 3.6. Formally this means that $\beta f : \beta X \rightarrow Y$ is continuous and $\beta f \circ e = f$ [as we identified x with $e(x)$].

Remark 3.7. This property is unique to $(\beta X, e)$ among T_2 compactifications, as we will show in result 4.8.

The Stone-Cech compactification is, in a way, the biggest compactification for any given space [see Theorem 4.7].

Unfortunately, it's size give's it some pathologic properties, as seen in the following Theorem and example.

Theorem 3.8. *If X is T_4 then for every $x \in \beta X \setminus X$:*

- (1) *No sequence $X_n \in X$ converges to x .*
- (2) *βX is not first countable at x .*

Proof. (1) If $x_n \rightarrow x$ then $\{x\} \cup \{x_n\}_{n=1}^\infty$ is compact, [any open set containing x will contain almost all of $\{x_n\}_{n=1}^\infty$] so it's closed in βX [who's T_2] so $\{x_n\}_{n=1}^\infty$ is closed in X . for the same reason $\{x_{2n-1}\}_{n=1}^\infty$ and $\{x_{2n}\}_{n=1}^\infty$ are closed in X who's T_4 , so there is a $f : X \rightarrow I$ such that $f(x_{2n-1}) = 0$ and $f(x_{2n}) = 1$ [Urysohn's lemma] which can be extended to βf so $0 = \lim \beta f(x_{2n-1}) = \beta f(x) = \lim \beta f(x_{2n}) = 1$ which is a contradiction.

(2) If βX had a countable local base at x , $\{B_n\}_{n=1}^\infty$ we could pick $x_n \in \bigcap_{i=1}^n B_i \cap X$ [X is dense, so it intersects every environment] so $x_n \rightarrow x$ in contradiction of (1). \square

Remark 3.9. (2) is actually true for every $T_{3\frac{1}{2}}$ space, but it's beyond the reach of this presentation.

Result 3.10. *If X is not compact $\Leftrightarrow \beta X \setminus X \neq \emptyset$ then βX isn't first countable, and so isn't metrizable.*

Example 3.11. Let's look at $\beta(0, 1]$, define $f : (0, 1] \rightarrow [-1, 1]$ as $f(x) = \sin \frac{1}{x}$, for every $t \in [-1, 1]$ there is a sequence $x_n \in (0, 1]$ such that $x_n \rightarrow 0$ and $f(x_n) \rightarrow t$, βX is compact, so x_n has a cluster point (see Wilansky [1, p.122]) $x_t \in \beta(0, 1] \setminus (0, 1]$ (we know it's not in $(0, 1]$) and so $\beta f(x_t)$ is a cluster point of $\beta f(x_n) = t$, and therefore $\beta f(x_t) = t$, so for every $t \in [-1, 1]$ there is a different $x_t \in \beta(0, 1] \setminus (0, 1]$.

In a similar way $\beta(0, 1)$ has two such points for every $t \in [-1, 1]$, x_t and a y_t cluster point of $y_n \rightarrow 1$ such that $f(y_n) \rightarrow t$, and $\beta Id_{(0,1)}(x_t) = 0$ and $\beta Id_{(0,1)}(y_t) = 1$ so $x_t \neq y_t$.

Remark 3.12. Take another look at example 3.11, every sequence x_n from there has a cluster point in $(0, 1]$, but it has no partial limit in $(0, 1]$ nor in $\beta(0, 1] \setminus (0, 1]$ because $(0, 1]$ is T_4 , so this is an example of sequences with cluster points but without converging subsequences, also $\beta(0, 1]$ is compact but not sequentially compact.

Idea 3.13. One last thought on the size on βX : consider $\beta \mathbb{N}$, \mathbb{N} is a countable discrete space, and is homeomorphic to $\mathbb{Z}^n \subseteq \mathbb{R}^n$, every two sequences in there that you can separate with a function to I have at least two different cluster points in $\beta \mathbb{N}$, including two disjoint subsequences of the same sequence, that's far larger than any metric space.

4. T_2 -COMPACTIFICATIONS

We introduce an ordering on all T_2 compactifications of X .

Definition 4.1. Let X be $T_{3\frac{1}{2}}$, we define a Partial Ordering on the set $\Psi(X)$ of T_2 compactifications of X by :
 $(Y, g) \geq (Z, h)$ if there is a continuous $f : Y \rightarrow Z$ [Onto] such that $h = f \circ g$.

$$\begin{array}{ccc} X & \xrightarrow{g} & Y \\ & \searrow h & \downarrow f \\ & & Z \end{array}$$

Theorem 4.2. That means $f|_{g[X]}$ is a homeomorphism, and $f[Y \setminus g[X]] = Z \setminus h[X]$.

Proof. $f|_{g[X]}^{-1} = g \circ h|_{h[X]}^{-1}$ which is continuous,
 $f[Y \setminus g[X]] \supseteq Z \setminus h[X]$ is trivial, (f is onto) to prove \subseteq :
if $y \in Y \setminus g[X]$ and $f(y) \in h[X]$, let $y_\delta \in g[X]$, $y_\delta \rightarrow y$
($g[X]$ is dense) than $h[X] \ni f(y_\delta) \rightarrow f(y) \in h[X]$, and so
 $y_\delta = f|_{g[X]}^{-1} \circ f(y_\delta) \rightarrow f|_{g[X]}^{-1} \circ f(y) \in g[X]$ and $y_\delta \rightarrow y \notin g[X]$
a contradiction, because Y is T_2 so a net's limit is unique. \square

Example 4.3. Let $X = (0, 1)$, $Y = [0, 1]$, $Z = S^1$, $g(x) = x$ and $h(x) = e^{2\pi i x}$. (Y, g) and (Z, h) are compactifications of X , $(Y, g) \geq (Z, h)$ by $h_1(x) = e^{2\pi i x}$, but $(Y, g) \not\leq (Z, h)$, because if there was a $h_2 : Z \rightarrow Y$ like we need, then we will get $h_2[\{1\}] = \{0, 1\}$ (throw theorem 4.2).

\leq is obviously reflexive and transitive, though equivalence is possible:

Theorem 4.4. If (Y, g) , (Z, h) are T_2 compactifications of X and $(Y, g) \leq (Z, h) \leq (Y, g)$ then there is a homeomorphism $f : Y \rightarrow Z$ such that $h = f \circ g$ (the same f form the definition of \leq).

Proof. There are $f : Y \rightarrow Z$ and $k : Z \rightarrow Y$ such that $h = f \circ g$ and $g = k \circ h$, so $g = k \circ f \circ g$ so (g is 1 to 1)

$Id(g[X]) = (k \circ f)|_{g[X]}$ and $g[X]$ is dense so for every $y \in Y$ there is $g[X] \ni y_\delta \rightarrow y$ so $y \leftarrow y_\delta = k \circ f(y_\delta) \rightarrow k \circ f(y)$ and since Y is T_2 , $y = k \circ f(y)$, so $k \circ f \equiv Id_Y$, for the same reason $f \circ k \equiv Id_X$, so f is a homeomorphism. \square

Remark 4.5. If (Y, g) and (Z, h) are equivalent $[(Y, g) \sim (Z, h)]$ then f is a homeomorphism and $f[g[X]] = h[X]$, so we can treat them as the same compactification.

Now that we have a partial order, it is natural to ask about minimal and maximal members.

Lemma 4.6. *If $X \subseteq Y$ is dense, X locally compact and Y is T_2 than $X \subseteq Y$ is open.*

Proof. Let $x \in X$ then there are $x \in U \subseteq K \subseteq X$ such that U is open in X and K is compact. so K is closed in Y and $U = X \cap G$ for some open $x \in G \subseteq Y$. $G \cap X \subseteq K \subseteq X$ so $cl_Y(G \cap X) \subseteq cl_Y(K) = K \subseteq X$, but $X \subseteq Y$ is dense and $G \subseteq Y$ is open, so $cl(G) = cl(G \cap X)$ [exercise] and so $G \subseteq cl(G) \subseteq X$ and so X is a neighborhood of x for every $x \in X$ so X is open. \square

Theorem 4.7. *Let X be a $T_{3\frac{1}{2}}$ space and (Y, g) be a T_2 compactification of X , then $(\beta X, e) \geq (Y, g)$ and if X is locally compact then $(Y, g) \geq (X^+, i)$.*

Proof. (1) $g : X \rightarrow Y$ is continuous, and Y is compact T_2 , so by theorem 3.5 [and remark 3.6] there is a continuous $\beta g : \beta X \rightarrow Y$ such that $\beta g \circ e = g$, to prove βg is onto: $\beta g[\beta X] \subseteq Y$ is compact, so it's closed [Y is T_2] and $g[X] = \beta g \circ e[X] \subseteq \beta g[\beta X]$ so $Y = Cl_Y(g[X]) \subseteq \beta g[\beta X]$ because $g[X]$ is dense in Y .

(2) We define $f : Y \rightarrow X^+$ as: for $x \in g[X]$, $f(x) = g^{-1}(x)$ and for $x \in Y \setminus g[X]$, $f(x) = \infty$ it's clear that f is onto and $f \circ g = i$, as for continuity:

Let $U \subseteq X^+$ be open:

If $U \subseteq X$ then U is open in X so $f^{-1}[U] = g[U]$ is open in $g[X]$ so $f^{-1}[U] = V \cap g[X]$ for an open $V \subseteq Y$, but $g[X]$ is open in Y [lemma 4.6] so $f^{-1}[U]$ is open in Y .

If $\infty \in U$ then $U^c \subseteq X$ is compact, and

$(f^{-1}[U])^c = f^{-1}[U^c] = g[U^c] \subseteq Y$ is compact, so it's closed. [Y is T_2] so $f^{-1}[U] \subseteq Y$ is open.

□

Result 4.8. *If (cX, f) is a compactification of X such that for every pair (Y, g) were Y is a compact T_2 space and $g : X \rightarrow Y$ is continuous there is a continuous $cg : cX \rightarrow Y$ such that $cg \circ f = g$ than $(cX, f) \sim (\beta X, e)$.*

Proof. By theorem 4.7 $(cX, f) \leq (\beta X, e)$, but (cX, f) has all the properties of $(\beta X, e)$ we used to prove $(\beta X, e)$'s minimality. so $(cX, f) \geq (\beta X, e)$ and from theorem 4.4 $(cX, f) \sim (\beta X, e)$.

□

Remark 4.9. Since βX is compact and Y is a Hausdorff compactification, then $\beta f : \beta X \rightarrow Y$ is a quotient map, which means:

”Every T_2 compactification of X is a quotient space of βX ”

Exercise 4.10. We have seen $(0, 1)$ has a one-point T_2 compactification S^1 and a two-point T_2 compactification $[0, 1]$, show it doesn't have a three-point T_2 compactification:

If $Y = \{p_1, p_2, p_3\} \cup (0, 1)$ is T_2 than p_1, p_2, p_3 have pair-wise disjoint open neighborhoods G_1, G_2, G_3 so $G = G_1 \cup G_2 \cup G_3$ is open so $Y \setminus G \subseteq Y$ is closed and compact (Y is compact).

$Y \setminus G \subseteq (0, 1)$ so $Y \setminus G \subseteq [a, b]$ for $0 < a \leq b < 1$ and $(0, a) \cup (b, 1) \subseteq G$, now $\{(0, a) \cap G_1, (0, a) \cap G_2, (0, a) \cap G_3\}$ is a partition of $(0, a)$ so it must be trivial [($0, a$) is connected] so only one G_i may intersect $(0, a)$ [we can say it's G_1 WLOG], for the same reason, only G_2 may intersect $(b, 1)$, so $G_3 \cap ((0, a) \cup (b, 1)) = \emptyset$.

Since $G_3 \setminus \{p_3\} \subseteq (0, 1)$, we get $G_3 \setminus \{p_3\} \subseteq [a, b]$, $[a, b] \subseteq Y$ is compact so it's closed so, $G_3 \cap (Y \setminus [a, b]) = \{p_3\}$ so $p_3 \subseteq Y$ is open! $\Rightarrow p_3 \notin Cl_Y(0, 1)$ so $(0, 1)$ is not dense in Y , in contradiction to Y being a compactification of X .

REFERENCES

1. Albert Wilansky, *Topology for Analysis*, 1970.
2. Daniela Leibowitz, *Point Set Topology*, 1999.
3. Ryszard Engelking, *GENERAL TOPOLOGY*, 1976.