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1. Basic Definitions

Abstract. In this chapter we define compactifications, and add a sort theorem,
In chapters 2 and 3 we show two specific constructions with interesting properties,
In chapter 4 we study compactifications who are T2, and show that the constructions
form 2 and 3 are, in a way, minimal and maximal among them.

Definition 1.1. A Compactification (Y, h) of a topological
space X is a topological space Y and an embedding h : X → Y
such that h[X ] is dense and Y is compact.

Examples 1.2. Basic examples:

(1) ([0, 1], i) with i the identity is a compactification of (0,1).

(2) (Ĉ, h) the riemann sphere is a compactification of C,
where h is the stereographic projection.

Remark 1.3. After we define (Y, h) and prove h is an embedding
we usually identifyX with h[X ] and sayX ⊂ Y , like commonly

done with Ĉ.

As always, it is preferred to work with Hausdorff spaces, so
we would like to create a compactification that is a T2 space,
however, this is not always possible:

Theorem 1.4. A space X has a Hausdorff compactification
only if X is Tychonoff.

Proof. If Y is a T2 compactification of X then Y is compact
and T2 and there for T4 [lecture 2, prop 2.3.7] so Y is T31

2
and

X ⊂ Y so X is T31
2
. �

Remark 1.5. This is in fact an ”if and only if”, we will show it
in chapter 3, theorem 3.1.

Corollary 1.6. If f : X → Y is an embedding and Y is
compact, then (f [X ], f ) is a compactification of X.

Proof. f [X ] is closed in the compact space Y and so f [X ] is

compact, f [X ] is dense in f [X ], and f is still an embedding. �
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2. The one-point compactification

C can be extended to Ĉ by adding the point at∞ We would
like to create an analog construction for every non-compact
topological space X , which we’ll call X+.

First we add a point∞ 6∈ X to X+, for formality we can take
∞ = {X}, we would like X to be a subspace of X+.

We will like X to be open in X+, (like C is in Ĉ) an so A ⊆ X
is open in X iff it’s open in X+.

If∞ ∈ A ⊂ X+ is open, then Ac ⊆ X is closed in X , and in
X+ which we want to be compact, so Ac is compact, in Ĉ all
such sets are compact, we will do the same in here.

Definition 2.1. Let (X,T ) be a topological space, its
One-Point Compactification is (X+, T ′) where X+ = X∪{∞}
and T ′ = T ∪ {A ∪ {∞}|A ∈ T and Ac is compact }
Remark 2.2. B ⊆ X+ is closed iff B ⊆ X and is closed and
compact, or B = A ∪ {∞} were A ⊆ X is closed.

Theorem 2.3. X+ is a compactification of X, meaning:

(1) T ′ is a topology on X+.
(2) X is a subspace of X+.
(3) X+ is compact.
(4) X is densee in X+ ⇔ X isn’t compact.

Proof. (1) Exercise! (work with closed sets, use remark 2.2).
(2) If A ⊆ X is open, then A ⊆ X+ is open.

And if A ⊆ X+ is open, then (A∩X) ⊆ X+ is open, and
there for (A ∩X) ⊆ X is open.

(3) Let {Ua} be an open cover of X+, so there is a U ∈ {Ua}
such that ∞ ∈ U , by definition, U c is compact, so there
is a finite subcover of U c, {Ua1...Uan} ⊆ {Ua}. and so:

X+ = U ∪ U c ⊆ U ∪
n⋃
i=1

Uai
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(4) If X is compact then by definition X ⊆ X+ is closed, and
so of clX+(X) = X 6= X+.
If X isn’t compact then X ⊆ X+ isn’t closed, and so
X $ clX+(X) ⊆ X+, and the only set like that is X+.

�

Remark 2.4. We just proved every topological space X has a
compactification, if X is compact then X is it’s own
compactification, otherwise X+ will do.

Remark 2.5. X ⊆ Y it doesn’t mean X+ ⊆ Y +.

Example 2.6. (0, 1) ⊆ (0, 1], it is easily shown that (0, 1)+ ∼= S1

and (0, 1]+ ∼= [0, 1], so (0, 1]+ is not a subspace of (0, 1)+.

We prefer to work with Hausdorff spaces, and will like to know
for which X ’s X+ is T2.

Theorem 2.7. X+ is T2 ⇔ X is locally compact and T2.

Proof. If X is locally compact and T2, let a, b ∈ X+, a 6= b:

If a, b ∈ X then there exist A,B ⊆ X two disjoint and open
sets such that a ∈ A and b ∈ B, and by definition A and B
are also open in X+.

Else b = ∞, X is locally compact so there is a compact nbd
K of a, a ∈ U ⊆ K ⇒ U ∩ Kc = ∅, U is open in X and
X+, and K ⊆ X is compact and closed since X is T2 [lecture
2, prop 2.3.6] and so Kc is open and b =∞ ∈ Kc.

If X+ is T2 then the subspace X is T2, and if x ∈ U ⊆ X
is open, then x ∈ U ⊆ X+ is open, and X+ is compact and
T2 ⇒ T4 ⇒ regular, so there is a closed subnbd a ∈ K ⊆ U in
X+, and by definition,K is a compact subnbd in X . �

Result 2.8. A locally compact Hausdorff space is Tychonoff.

Proof. If X is compact and T2 then it’s T4 ⇒ T31
2
,

ElseX+ is a T2 compactification, so we can use theorem 1.4. �
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Example 2.9. Q is T31
2

but not locally compact, and so Q+ is

not T2.

Theorem 2.10. If Y is compact and T2, and Y = X ∪ {a}
with (a 6∈ X) then the function f : Y → X+, defied as:
f (a) =∞ and ∀x ∈ X : f (x) = x is a homeomorphism.

Proof. By definition, f is one to one and onto,
We will show U ⊆ Y is open ⇔ f [U ] ⊆ X+ is open:

(1) If a 6∈ U meaning U ⊆ X :
Y is T2 so {a} ⊆ Y is closed, so {a}c = X ⊆ Y is open,
and so U is open in Y ⇔ U is open in X (X is open)
⇔ f [U ] = U is open in X+ (by definition of (X+, T ′)).

(2) If a ∈ U :
U ⊆ Y is open ⇒ U c ⊆ X is closed (in Y ⇒ in X) and
because Y is compact U c is compact ⇒ f [U c] = U c is
closed in x+ ⇒ f [U ] = f [U c]c is open in X+.
And if f [U ] = f [U c]c is open in X+ then f [U c] = U c is
closed in X+ and is there for compact, U c ⊆ Y is compact
and Y is T2, so U c is closed and U ⊆ Y is open.

�

Remark 2.11. We just proved that if X has a T2

compactification Y , such that Y \X has one point,
then X is locally compact. (because Y ∼= X+, so X+ is T2).

Let’s show that theorem 2.10 doesn’t work without the
requirement that Y is T2.

Exercise 2.12. For every topological space (X,T ) you can de-
fine X− = X ∪∞ with the topology T” = T ∪ {X−}).
Prove this is a compactification of X, and that Id : X+ → X−

is not a homeomorphism, even if X is locally compact and T2.
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3. The Stone-Cech compactification

As promised in remark 1.5 we will now prove every Tychonoff
space has a Hausdorff compactification:

Theorem 3.1. Let X be a Tychonoff space, and let Cx be
the set of all continuous functions from X to C then X can
be embedded in ICx.

Proof. For every x ∈ X we define a map x̂ : Cx → I as

∀ϕ ∈ Cx : x̂(ϕ) = ϕ(x).

and we define e : X → ICx by e(x) = x̂, we will prove this is
a topological embedding:

(1) e is 1 to 1:
Let x, y ∈ X and x 6= y, X is T31

2
so there is φ ∈ Cx such

that φ(x) = 0 and φ(y) = 1, and so x̂(φ) = 0 6= 1 = ŷ(φ)
and e(x) 6= e(y).

(2) e is continuous :
By the universal property of a product space, the function
e : X → ICx is continuous iff for every ϕ ∈ Cx,
Pϕ ◦ e : X → I is continuous (Pϕ is a projection to I)
but by definition , for every x ∈ X and ϕ ∈ Cx:

Pϕ ◦ e(x) = e(x)(ϕ) = x̂(ϕ) = ϕ(x)

so Pϕ ◦ e = ϕ, and we know ϕ is continuous .

(3) e−1 : e(X)→ X is continuous :
Let xδ, x ∈ X with e(xδ)→ e(x), we will prove xδ → x:

For every ϕ ∈ Cx, Pϕ is continuous , and so
Pϕ ◦ e(xδ)→ Pϕ ◦ e(x), meaning ϕ(xδ)→ ϕ(x). (*)

If we assume xδ 9 x than there is an open x ∈ U ⊆ X
such that for every δo there is δo ≤ δ with xδ ∈ U c.
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but U c is closed and X is T31
2
, so there is a φ ∈ Cx such

that φ[U ] = {0} and φ(x) = 1!

And so for every δo there is δo ≤ δ with φ(xδ) = 0, and
so φ(xδ) 9 1 = φ(x), in contradiction to (*).

�

ICx is compact and T2, and by corollary 1.6 (e[X ], e) is a
compactification of X, that is also Hausdorff, we will define
βX = e[X ] to be the Stone-Cech compactification of X.
we should also add that:

Theorem 3.2. If X is compact then e : X → βX is a
homeomorphism.

Proof. Theorem 3.1 proves everything except that e[X ] = βX ,

βX = e[X ] so it’s enough to show e[X ] ⊆ ICx is closed, which
is true since it is compact and ICx is T2. �

Like before, we identify X with e[X], (x ↔ x̂) and find that
βX has some interesting properties:

Lemma 3.3. Let X be T31
2
, and let f : X → I be continu-

ous, then f has a continuous extension F : ICx → I.

Proof. For every a ∈ ICx, (a : cx → I) we define F (a) = a(f ),
and so F (x̂) = x̂(f ) = f (x) like we need.
F is continuous because it is the Ff projection. �

This can be generalized:

Lemma 3.4. Let X be T31
2
, S be a set, and f : X → IS be

continuous, then f has a continuous extension
F : ICx → IS.

Proof. For every s ∈ S, Ps◦f can be extended to Fs : ICx → I ,
the map

∏
Fs : ICx → IS is the extension we need. �

And from here follows the main property of βX:
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Theorem 3.5. Let X be T31
2
, Y be compact and T2, and f :

X → Y then f has a continuous extension βf : βX → Y !

Proof. Without loss of generality, we can assume Y is a closed
subset of IA for some set A, otherwise Y is homeomorphic to
βY [theorem 3.2] which is.
[If eY ◦ f : X → βY can be extended to F : βX → βY then
e−1 ◦ F : βX → Y is an extension of f ]

By lemma 3.4 f : X → Y ⊆ IA can be extended to
F : ICx → IA, were F is continuous and X ⊆ F−1[Y ], Y is
closed, so F−1[Y ] is closed, so βX = X ⊆ F−1[Y ]. and so
F |βX : βX → Y is an extension of f : X → Y . �

Remark 3.6. Formally this means that βf : βX → Y is
continuous and βf ◦ e = f [as we identified x with e(x)].

Remark 3.7. This property is unique to (βX, e) among T2

compactifications, as we will show in result 4.8.

The Stone-Cech compactification is, in a way, the biggest
compactification for any given space [see Theorem 4.7].
Unfortunately, it’s size give’s it some pathologic properties, as
seen in the following Theorem and example.

Theorem 3.8. If X is T4 then for every x ∈ βX \X:

(1) No sequence Xn ∈ X converges to x.
(2) βX is not first countable at x.

Proof. (1) If xn → x then {x} ∪ {xn}∞n=1 is compact, [any
open set containing x will contain almost all of {xn}∞n=1] so
it’s closed in βX [who’s T2] so {xn}∞n=1 is closed in X . for
the same reason {x2n−1}∞n=1 and {x2n}∞n=1 are closed in X
who’s T4, so there is a f : X → I such that f (x2n−1) = 0
and f (x2n) = 1 [Urysohn’s lemma] which can be extended
to βf so 0 = lim βf (x2n−1) = βf (x) = lim βf (x2n) = 1
which is a contradiction.
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(2) If βX had a countable local base at x, {Bn}∞n=1 we could
pick xn ∈

⋂n
i=1Bi ∩ X [X is dense, so it intersect every

environment] so xn → x in contradiction of (1).
�

Remark 3.9. (2) is actually true for every T31
2

space, but it’s

beyond the reach of this presentation.

Result 3.10. If X is not compact ⇔ βX \X 6= ∅ then βX
isn’t first countable, and so isn’t metrizable.

Example 3.11. Let’s look at β(0, 1], define f : (0, 1] → [−1, 1]
as f (x) = sin1

x, for every t ∈ [−1, 1] there is a sequence xn ∈
(0, 1] such that xn → 0 and f (xn)→ t, βX is compact, so xn
has a cluster point (see Wilansky [1, p.122]) xt ∈ β(0, 1] \ (0, 1]
(we know it’s not in (0, 1]) and so βf (xt) is a cluster point of
βf (xn) = t, and there for βf (xt) = t, so for every t ∈ [−1, 1]
there is a different xt ∈ β(0, 1] \ (0, 1].
In a similar way β(0, 1) has two such points for every t ∈ [−1, 1],
xt and a yt cluster point of yn → 1 such that f (yn) → t, and
βId(0,1)(xt) = 0 and βId(0,1)(yt) = 1 so xt 6= yt.

Remark 3.12. Take another look at example 3.11, every
sequence xn from there has a cluster point in (0, 1], but it has
no partial limit in (0, 1] nor in β(0, 1] \ (0, 1] because (0, 1] is
T4, so this is an example of sequences with cluster points but
without converging subsequences, also β(0, 1] is compact but
not sequentially compact.

Idea 3.13. One last thought on the size on βX :
consider βN, N is a countable discrete space, and is
homeomorphic to Zn ⊆ Rn, every two sequences in there that
you can separate with a function to I have at list two different
cluster points in βN, including two disjoint subsequences of the
same sequence, thats far larger then any matric space.
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4. T2-compactifications

We introduce an ordering on all T2 compactifications of X .

Definition 4.1. Let X be T31
2
, we define a Partial Ordering

on the set Ψ(X) of T2 compactifications of X by :
(Y, g) ≥ (Z, h) if there is a continuous f : Y � Z [Onto] such
that h = f ◦ g.

X

h   A
AA

AA
AA

A

g
// Y

f
��

Z

Theorem 4.2. That means f |g[X] is a homeomorphism, and
f [Y \ g[X ]] = Z \ h[X ].

Proof. f |−1
g[X] = g ◦ h|−1

h[x] which is continuous,

f [Y \ g[X ]] ⊇ Z \ h[X ] is trivial,(f is onto) to prove ⊆:
if y ∈ Y \g[X ] and f (y) ∈ h[X ], let yδ ∈ g[X ], yδ → y
(g[X ] is dense) than h[X ] 3 f (yδ) → f (y) ∈ h[X ], and so
yδ = f |−1

g[X] ◦ f (yδ)→ f |−1
g[X] ◦ f (y) ∈ g[X ] and yδ → y 6∈ g[X ]

a contradiction, because Y is T2 so a net’s limit is unique. �

Example 4.3. Let X = (0, 1), Y = [0, 1], Z = S1, g(x) = x
and h(x) = e2πix. (Y, g) and (Z, h) are compactifications of X,
(Y, g) ≥ (Z, h) by h1(x) = e2πix, but (Y, g) � (Z, h), because
if there was a h2 : Z → Y like we need, then we will get
h2[{1}] = {0, 1} (throw theorem 4.2).

’≤’ is obviously reflexive and transitive, though equivalence is
possible:

Theorem 4.4. If (Y, g), (Z, h) are T2 compactifications of
X and (Y, g) ≤ (Z, h) ≤ (Y, g) then there is a homeomor-
phism f : Y → Z such that h = f ◦ g (the same f form the
definition of ≤).
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Proof. There are f : Y → Z and k : Z → Y such that
h = f ◦ g and g = k ◦ h, so g = k ◦ f ◦ g so (g is 1 to 1)
Id(g[X ]) = (k ◦ f )|g[X] and g[X ] is dense so for every y ∈ Y
there is g[X ] 3 yδ → y so y ← yδ = k ◦ f (yδ)→ k ◦ f (y) and
since Y is T2, y = k ◦f (y), so k ◦f ≡ IdY , for the same reason
f ◦ k ≡ IdX , so f is a homeomorphism. �

Remark 4.5. If (Y, g) and (Z, h) are equivalent [(Y, g) ∼ (Z, h)]
then f is a homeomorphism and f [g[X ]] = h[X ], so we can
treat them as the same compactification.

Now that we have a partial order, it is natural to ask about
minimal and maximal members.

Lemma 4.6. If X ⊆ Y is dense, X locally compact and Y
is T2 than X ⊆ Y is open.

Proof. Let x ∈ X then there are x ∈ U ⊆ K ⊆ X such that
U is open in X and K is compact. so K is closed in Y and
U = X ∩ Gfor some open x ∈ G ⊆ Y . G ∩ X ⊆ K ⊆ X
so clY (G ∩ X) ⊆ clY (K) = K ⊆ X , but X ⊆ Y is dense
and G ⊆ Y is open, so cl(G) = cl(G ∩ X) [exercise] and so
G ⊆ cl(G) ⊆ X and so X is a neighborhood of x for every
x ∈ X so X is open. �

Theorem 4.7. Let X be a T31
2

space and (Y, g) be a T2

compactification of X, then (βX, e) ≥ (Y, g) and if X is
locally compact then (Y, g) ≥ (X+, i).

Proof. (1) g : X → Y is continuous, and Y is compact T2,
so by theorem 3.5 [and remark 3.6] there is a continuous
βg : βX → Y such that βg ◦ e = g, to prove βg is
onto: βg[βX ] ⊆ Y is compact, so it’s closed [Y is T2] and
g[X ] = βg ◦ e[X ] ⊆ βg[βX ] so
Y = ClY (g[X ]) ⊆ βg[βX ] because g[X ] is dense in Y .
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(2) We define f : Y → X+ as: for x ∈ g[X ], f (x) = g−1(x)
and for x ∈ Y \ g[X ], f (x) =∞ it’s clear that f is onto
and f ◦ g = i, as for continuity:
Let U ⊆ X+ be open:
If U ⊆ X then U is open in X so f−1[U ] = g[U ] is open
in g[X ] so f−1[U ] = V ∩ g[X ] for an open V ⊆ Y , but
g[X ] is open in Y [lemma 4.6] so f−1[U ] is open in Y .
If ∞ ∈ U then U c ⊆ X is compact, and
(f−1[U ])c = f−1[U c] = g[U c] ⊆ Y is compact, so it’s
closed. [Y is T2] so f−1[U ] ⊆ Y is open.

�

Result 4.8. If (cX, f ) is a compactification of X such that
for every pair (Y, g) were Y is a compact T2 space and
g : X → Y is continuous there is a continuous cg : cX → Y
such that cg ◦ f = g than (cX, f ) ∼ (βX, e).

Proof. By theorem 4.7 (cX, f ) ≤ (βX, e), but (cX, f ) has all
the properties of (βX, e) we used to prove (βX, e)’s minimality.
so (cX, f ) ≥ (βX, e) and from theorem 4.4 (cX, f ) ∼ (βX, e).

�

Remark 4.9. Since βX is compact and Y is a Hausdorff
compactification, then βf : βX → Y is a quotient map, which
means:
”Every T2 compactification of X is a quotient space of βX”

Exercise 4.10. We have seen (0, 1) has a one-point T2

compactification S1 and a two-point T2 compactification [0, 1],
show it doesn’t have a three-point T2 compactification:
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If Y = {p1, p2, p3} ∪ (0, 1) is T2 than p1, p2, p3 have pair-wise
disjoint open neighborhoods G1, G2, G3 so G = G1 ∪G2 ∪G3

is open so Y \G ⊆ Y is closed and compact (Y is compact).

Y \ G ⊆ (0, 1) so Y \ G ⊆ [a, b] for 0 < a ≤ b < 1 and
(0, a) ∪ (b, 1) ⊆ G, now {(0, a) ∩ G1, (0, a) ∩ G2, (0, a) ∩ G3}
is a partition of (0, a) so it must be trivial [(0, a) is connected]
so only one Gi may intersect (0, a) [we can say it’s G1 WLOG],
for the same reason, only G2 may intersect (b, 1), so
G3 ∩ ((0, a) ∪ (b, 1)) = ∅.

Since G3 \ {p3} ⊆ (0, 1), we get G3 \ {p3} ⊆ [a, b],
[a, b] ⊆ Y is compact so it’s closed so, G3 ∩ (Y \ [a, b]) = {p3}
so p3 ⊆ Y is open! ⇒ p3 6∈ ClY (0, 1) so (0, 1) is not dense in
Y , in contradiction to Y being a compactification of X .
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