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1. BASIC DEFINITIONS

ABSTRACT. In this chapter we define compactifications, and add a sort theorem,
In chapters 2 and 3 we show two specific constructions with interesting properties,
In chapter 4 we study compactifications who are T5, and show that the constructions
form 2 and 3 are, in a way, minimal and maximal among them.

Definition 1.1. A Compactification (Y, h) of a topological
space X is a topological space Y and an embedding h : X — Y
such that h[X] is dense and Y is compact.

Ezramples 1.2. Basic examples:
(1) (]0,1],7) with i the identity is a compactification of (0,1).
(2) (C,h) the riemann sphere is a compactification of C,
where h is the stereographic projection.

Remark 1.3. After we define (Y, h) and prove h is an embedding
we usually identify X with h[X] and say X C Y, like commonly

done with C.

As always, it is preferred to work with Hausdorff spaces, so
we would like to create a compactification that is a 715 space,
however, this is not always possible:

Theorem 1.4. A space X has a Hausdorff compactification
only if X is Tychonoff.

Proof. If Y is a T, compactification of X then Y is compact
and T3 and there for T} [lecture 2, prop 2.3.7] so Y is Tg% and

XCYSOXiST3%. L]

Remark 1.5. This is in fact an "if and only if”, we will show it
in chapter 3, theorem [3.1],

Corollary 1.6. If f : X — Y s an embedding and Y s
compact, then (f|X], f) is a compactification of X.

Proof. f[X] is closed in the compact space Y and so f[X] is
compact, f[X]isdensein f[X], and f isstill an embedding. [J




2. THE ONE-POINT COMPACTIFICATION

C can be extended to C by adding the point at co We would
like to create an analog construction for every non-compact
topological space X, which we’'ll call X,

First we add a point oo € X to X, for formality we can take
oo = {X}, we would like X to be a subspace of X ™.

We will like X to be open in X, (like Cisin C) anso A C X
is open in X iff it’s open in X

Ifoo e AC X isopen, then A° C X is closed in X, and in
X which we want to be compact, so A® is compact, in C all
such sets are compact, we will do the same in here.

Definition 2.1. Let (X, T) be a topological space, its
One-Point Compactification is (X, T") where X+ = X U{oo}
and T" =T U{AU{oc}|A € T and A° is compact }
Remark 2.2. B C X7 is closed iff B C X and is closed and
compact, or B = AU {oo} were A C X is closed.

Theorem 2.3. X is a compactification of X, meaning:
(1) T" is a topology on X .
(2) X is a subspace of X™.
(3) X is compact.
(4) X is densee in Xt < X isn’t compact.

Proof. (1) Exercise! (work with closed sets, use remark [2.2)).
(2) If A C X is open, then A C X is open.
Andif A C X isopen, then (ANX) C X is open, and
there for (AN X) C X is open.
(3) Let {U,} be an open cover of X so thereisa U € {U,}
such that co € U, by definition, U is compact, so there
is a finite subcover of U, {U,,...U,, } C {U,}. and so:

Xt=vvuu* ¢ vulJu,

1=1



(4) If X is compact then by definition X C X is closed, and
soof clx+(X) =X # X+
If X isn’t compact then X C X7 isn’t closed, and so
X G cly+(X) € X7, and the only set like that is X ™.
[

Remark 2.4. We just proved every topological space X has a
compactification, if X is compact then X is it’s own
compactification, otherwise X will do.

Remark 2.5. X CY it doesn't mean X* C YT,

Example 2.6. (0,1) C (0, 1], it is easily shown that (0,1)* = S*
and (0, 1]* = [0, 1], so (0, 1]" is not a subspace of (0,1)".

We prefer to work with Hausdorff spaces, and will like to know
for which X’s X is T5.

Theorem 2.7. X is Ty < X is locally compact and Ts.

Proof. If X is locally compact and T5, let a,b € X*,a # b:

If a,b € X then there exist A, B C X two disjoint and open
sets such that @ € A and b € B, and by definition A and B
are also open in X,

Else b = 0o, X is locally compact so there is a compact nbd
Kofa,aceUCK=UNK® =0, U isopen in X and
X*, and K C X is compact and closed since X is Ty [lecture
2, prop 2.3.6] and so K¢ is open and b = oo € K°.

If X% is T, then the subspace X is Tp, and if v € U C X
is open, then x € U C X is open, and X is compact and
Ty = Ty = regular, so there is a closed subnbd a € K C U in
X, and by definition, K is a compact subnbd in X [

Result 2.8. A locally compact Hausdorff space is Tychonolff.

Proof. It X is compact and 15 then it’'s Ty = Tg%,
Else X is a T compactification, so we can use theorem|1.4, [
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Erample 2.9. Q is T. 31 but not locally compact, and so Q7 is
not 75.

Theorem 2.10. If Y is compact and Ty, and Y = X U{a}
with (a € X) then the function f Y — X7, defied as:
fla) =00 and Vx € X : f(x) = x is a homeomorphism.

Proof. By definition, f is one to one and onto,
We will show U C Y is open < f[U] C X is open:
(1) If a ¢ U meaning U C X:
Y is Ty so {a} C Y is closed, so {a}° = X C Y is open,
and so U is open in Y <« U is open in X (X is open)
< flU] = U is open in X" (by definition of (X, T")).
(2)IfaeU:
U CYisopen = U C X isclosed (in Y = in X) and
because Y is compact U is compact = f[U] = U° is
closed in 2™ = f[U] = f[U]° is open in X ™.
And if flU] = f[U°]° is open in X then f[U¢] = U° is
closed in X and is there for compact, U¢ C Y is compact
and Y is 15, so U is closed and U C Y is open.
[

Remark 2.11. We just proved that if X has a T5
compactification Y, such that Y\ X has one point,
then X is locally compact. (because Y = X so Xt is Ty).

Let’s show that theorem 2.10 doesn’t work without the
requirement that Y is 75.

FEzercise 2.12. For every topological space (X,T') you can de-
fine X~ = X U oo with the topology 77 =T U{X"}).

Prove this is a compactification of X, and that Id : X* — X~
is not a homeomorphism, even if X is locally compact and T5.



3. THE STONE-CECH COMPACTIFICATION

As promised in remark [1.5{ we will now prove every Tychonoft
space has a Hausdorff compactification:

Theorem 3.1. Let X be a Tychonoff space, and let C be
the set of all continuous functions from X to C' then X can
be embedded in 1.

Proof. For every x € X we define a map z : C, — [ as
Vo € Cp 1 2(p) = p(a).

and we define e : X — I% by e(x) = &, we will prove this is
a topological embedding;:

(1) eis 1 to 1:
Let x,y € X andz # y, X is Tg% so there is ¢ € C, such
that ¢(x) = 0 and ¢(y) = 1, and so z(¢) =0 # 1 = (o)
and e(x) # e(y).

(2) e is continuous :
By the universal property of a product space, the function
e X — I% is continuous iff for every ¢ € C,,
P,oe: X — I is continuous (P, is a projection to I)
but by definition , for every x € X and ¢ € C,:

P,oe(x) = e(z)(p) = () = p(z)
so P, oe = ¢, and we know ¢ is continuous .
(3) et e(X) — X is continuous :
Let x5, € X with e(zs5) — e(x), we will prove z5 — x:

For every ¢ € C,, PP, is continuous , and so
P,oe(x;) — P,oe(x), meaning p(zs) — ¢(x). (*)

[f we assume x5 - x than there is an open z € U C X
such that for every ¢, there is 9, < ¢ with x5 € U°.
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but U° is closed and X is T3%7 so there is a ¢ € C, such
that ¢[U] = {0} and ¢(x) = 1!
And so for every ¢, there is 0, < § with ¢(z5) = 0, and
so ¢(x5) - 1 = ¢(x), in contradiction to (*).
[
1% is compact and Th, and by corollary (1.6 (e[X], e) is a
compactification of X, that is also Hausdorff, we will define

BX = e[ X] to be the Stone-Cech compactification of X.
we should also add that:

Theorem 3.2. If X s compact then e : X — (X is a
homeomorphism.

Proof. Theorem [3.1| proves everything except that e[ X] = X,
BX = e[X] so it’s enough to show e[X] C I is closed, which
is true since it is compact and 19 is Th. ]

Like before, we identify X with e[X], (z <> ) and find that
(X has some interesting properties:

Lemma 3.3. Let X be T3%, and let f : X — I be continu-

ous, then f has a continuous extension F : I — I.
Proof. For every a € 1%, (a : ¢, — I) we define F(a) = a(f),

and so F(z) = z(f) = f(z) like we need.
F'is continuous because it is the Iy projection. [

This can be generalized:

Lemma 3.4. Let X be T3%, S be a set, and f: X — I° be

continuous, then f has a continuous extension
F:I% — [°,

Proof. For every s € S, P,o f can be extended to F} : I — I,
the map [[ Fy : 1% — I® is the extension we need. ]

And from here follows the main property of X :
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Theorem 3.5. Let X be T3%, Y be compact and Ts, and f -
X —Y then f has a continuous extension Bf : X — Y/

Proof. Without loss of generality, we can assume Y is a closed
subset of I4 for some set A, otherwise Y is homeomorphic to
BY [theorem 3.2] which is.

[If ey o f : X — BY can be extended to F' : X — (Y then
e loF:3X — Y is an extension of f]

By lemma 3.4 f : X — Y C I¥ can be extended to
F : I% — T4 were F is continuous and X C F7[Y], Y is
closed, so F~1Y] is closed, so BX = X C F![Y]. and so
Flgx : X — Y is an extension of f : X — Y. O]

Remark 3.6. Formally this means that 3f : X — Y is
continuous and Gf o e = f [as we identified x with e(x)].

Remark 3.7. This property is unique to (X, e) among Ty
compactifications, as we will show in result 4.8

The Stone-Cech compactification is, in a way, the biggest
compactification for any given space [see Theorem @.7].
Unfortunately, it’s size give’s it some pathologic properties, as
seen in the following Theorem and example.

Theorem 3.8. If X is Ty then for every x € X \ X:

(1) No sequence X,, € X converges to x.
(2) BX is not first countable at x.

Proof. (1) If x,, — x then {z} U {x,}°°, is compact, [any
open set containing x will contain almost all of {x,,}°° ] so
it’s closed in X [who's Tb] so {x,}5° is closed in X. for
the same reason {xo, 1}5°, and {2, }°°, are closed in X
who'’s T}, so thereis a f : X — [ such that f(x9, 1) =0
and f(xs9,) = 1 [Urysohn’s lemma] which can be extended
to Bf so 0 =lim G f(x9,—1) = Bf(x) = lim Bf(xs,) = 1

which is a contradiction.
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(2) If 8X had a countable local base at z, { B, }>%; we could
pick z,, € (_; B: N X [X is dense, so it intersect every
environment| so x,, — x in contradiction of (1).

[

Remark 3.9. (2) is actually true for every T3% space, but it’s
beyond the reach of this presentation.

Result 3.10. If X is not compact < X \ X # () then X

1sn’t first countable, and so isn’t metrizable.

Ezample 3.11. Let’s look at (0, 1], define f : (0,1] — [—1,1]
as f(z) = sini, for every ¢ € [—1, 1] there is a sequence ,, €
(0, 1] such that x,, — 0 and f(x,) — t, 85X is compact, so z,
has a cluster point (see Wilansky [1I, p.122]) z; € £(0, 1]\ (0, 1]
(we know it’s not in (0, 1]) and so Gf(x;) is a cluster point of
Bf(x,) =t, and there for Gf(x;) = t, so for every t € [—1,1]
there is a different z; € 5(0,1] \ (0, 1].

In a similar way §(0, 1) has two such points for every t € [—1, 1],

x; and a y; cluster point of y,, — 1 such that f(y,) — ¢, and
61d(071) (Ql't) = 0 and ﬁ]d((),l)(yt) =1 s0 Tt 7& Y.

Remark 3.12. Take another look at example [3.11] every
sequence x, from there has a cluster point in (0, 1], but it has
no partial limit in (0, 1] nor in (0, 1] \ (0, 1] because (0, 1] is
Ty, so this is an example of sequences with cluster points but
without converging subsequences, also 3(0, 1] is compact but
not sequentially compact.

Idea 3.13. One last thought on the size on X

consider SN, N is a countable discrete space, and is
homeomorphic to Z" C R", every two sequences in there that
you can separate with a function to I have at list two different
cluster points in BN, including two disjoint subsequences of the
same sequence, thats far larger then any matric space.
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4. T5-COMPACTIFICATIONS

We introduce an ordering on all T5 compactifications of X.

Definition 4.1. Let X be T. 31, we define a Partial Ordering

on the set W(X) of Ty compactifications of X by :
(Y,g) > (Z, h) if there is a continuous f : Y — Z [Onto] such
that h = fog.

XY
NV

Z

Theorem 4.2. That means f|g[X] 1s a homeomorphism, and
S\ glX]] = Z\ h[X].

Proof. f ];&] =go h\;[i] which is continuous,

fIY \ g|X]] 2 Z \ h[X] is trivial,(f is onto) to prove C:

ify € Y\g|X]and f(y) € hlX] let y5 € g|X], ys — y

(g[X] is dense) than h|X]| > f(ys) — f(y) € h|X], and so
vs = flx 0 fys) = flx 0 fly) € g[X] and ys — y & g[X]
a contradiction, because Y is T so a net’s limit is unique. [l

Example 4.3. Let X = (0,1),Y =[0,1], Z = S, g(z) = =
and h(z) = e*™@ (Y, g) and (Z, h) are compactifications of X
(Y, q9) > (Z, h) by hi(z) = e*™ but (Y, g) £ (Z, h), because
if there was a hy : Z — Y like we need, then we will get

hol{1}] = {0, 1} (throw theorem [4.2).

"<’ is obviously reflexive and transitive, though equivalence is
possible:

Theorem 4.4. If (Y,g),(Z,h) are Ty compactifications of
X and (Y,g) < (Z,h) < (Y, g) then there is a homeomor-
phism f Y — Z such that h = f o g (the same f form the
definition of <).
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Proof. There are f 1Y — Z and k : Z — Y such that
h=fogandg=koh,sog=ko fogso(gisltol)

Idg|X]) = (ko f)|gx] and g[X] is dense so for every y € Y
there is g[X] > ys — ysoy < ys = ko f(ys) — ko f(y) and
since Y is Ty, y = ko f(y), so ko f = Idy, for the same reason
fok=1Idx,so fis a homeomorphism. [

Remark 4.5. 1f (Y, g) and (Z, h) are equivalent [(Y, g) ~ (Z, h)]
then f is a homeomorphism and f|g|X]] = h[X], so we can
treat them as the same compactification.

Now that we have a partial order, it is natural to ask about
minimal and maximal members.

Lemma 4.6. If X CY 1s dense, X locally compact and Y
18 Th than X C'Y 1is open.

Proof. Let x € X then there are x € U C K C X such that
U is open in X and K is compact. so K is closed in Y and
U=XNGforsomeopenx e GCY. GNXCKCX
socly(GNX) Cecly(K)=K CX, butX CY isdense
and G C Y is open, so cl(G) = cl(G N X) [exercise| and so
G C cl(G) C X and so X is a neighborhood of x for every
x € X so X is open. []

Theorem 4.7. Let X be a Ty space and (Y, g) be a T
compactification of X, then (6X,e) > (Y, g) and if X is
locally compact then (Y, g) > (X, 1).

Proof. (1) g : X — Y is continuous, and Y is compact T5,
so by theorem 3.5 [and remark [3.6] there is a continuous
Bg - BX — Y such that Bg o e = g, to prove (g is
onto: Bg[BX] C Y is compact, so it’s closed [Y is T5] and
glX] = BgoelX] C [g[5X]s0
Y = Cly(g[X]) C Bg|8X] because g[X] is dense in Y,
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(2) We define f: Y — X as: for x € g[X], f(z) = g (z)
and for z € Y \ ¢g|X], f(x) = oo it’s clear that f is onto
and f o g =1, as for continuity:

Let U € X be open:

If U C X then U is open in X so f~ U] = g[U] is open
in g[X] so f7HU] = V N g[X] for an open V C Y, but
g[X] is open in Y [lemma 4.6] so f~1[U] is open in Y.

If oo € U then U® C X is compact, and

(fHU = fHUY = g[U] C Y is compact, so it’s
closed. [Y is Ty] so f~HU] C Y is open.

[

Result 4.8. If (c¢X, f) is a compactification of X such that
for every pair (Y, g) were Y is a compact Ty space and
g : X — Y 1is continuous there is a continuous cq : cX — Y

such that cg o f = g than (cX, f) ~ (X, e).

Proof. By theorem 4.7 (cX, f) < (8X,e), but (cX, f) has all
the properties of (X, e) we used to prove (5X, e)’s minimality.
so (X, f) > (BX,e) and from theorem 4.4| (c X, f) ~ (6X,e).

[]

Remark 4.9. Since X is compact and Y is a Hausdorft
compactification, then Sf : X — Y is a quotient map, which
means:

"Every T compactification of X is a quotient space of 3X”

Fzercise 4.10. We have seen (0, 1) has a one-point 75
compactification S! and a two-point Ty compactification [0, 1],
show it doesn’t have a three-point 75 compactification:
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IfY = {p1,p2, p3} U(0,1) is T than py, po, p3 have pair-wise
disjoint open neighborhoods G1, G2, G s0 G = G1 U Gy U Gy
is open so Y \ G C Y is closed and compact (Y is compact).

Y\NGC (0,1)so Y \G C [a,b] for 0 < a <b < 1and
(O, CL) U (b, 1) C G, Nnow {(O, CL) M Gl, (O, CL) M GQ, (O, CL) M Gg}
is a partition of (0, a) so it must be trivial [(0, a) is connected]
so only one G; may intersect (0, a) [we can say it's Gy WLOG],
for the same reason, only Gy may intersect (b, 1), so

GsN ((0,a)U (b, 1)) = 0.

Since G5\ {p3} C (0,1), we get G3 \ {p3} C [a, b,
la,b] C Y is compact so it’s closed so, GsN (Y \ |a,b]) = {ps}
so p3 C Y is open! = p3 & Cly(0,1) so (0,1) is not dense in
Y, in contradiction to Y being a compactification of X.
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